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Abstract 

General Circulation Models (GCMs) are important tools in simulating and projecting future 

precipitation at the decadal scale. However, it is inevitable that simulation and projection errors 

and uncertainty exist in GCMs, hindering their applications for regional water resources planning. 

Different post-processing tools are available to address the uncertainty issues associated with 

GCMs and to utilize these tools better for regional water resources planning. For example, a multi-

model ensemble (MME) could reduce uncertainties from different GCMs and help reduce the 

model biases from a single model. In this study, we employed multiple Machine Learning 

algorithms (MLs) to combine ensemble members from NOAA’s Seamless System for Prediction 

and EArth System Research (SPEAR) to reconstruct historical monthly precipitation over 

Oklahoma during a study period (1981-2014). The employed MLs include Random Forest (RF), 

eXtreme Gradient Boosting (XGBoost), Support Vector Machines (SVM), and Classification And 

Regression Trees (CART). The performances of the employed MLs are benchmarked with Simple 

Model Averaging (SMA), Bayesian Model Averaging (BMA), and Reliability Ensemble 

Averaging (REA). Our result echoes previous studies where the raw precipitation simulation from 

SPEAR presents significant simulation bias and marginal simulation skills. Different spatial and 

seasonal patterns of the simulation bias and skill are also observed over our study region. All the 

employed multi-model averaging techniques have delivered better performances than any single 

ensemble member from SPEAR. The employed MLs have outperformed SMA, BMA, and REA, 

which is evident from the reduction of bias and skill improvement. In general, this study highlights 

future applications of other data-driven techniques in post-processing the multi-model simulation 

from GCMs.
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1 Introduction 

Global climate change alters the climate of precipitation worldwide (Brekke 2009, 

Trenberth 2011), which could seriously affect water resource operations such as hydropower 

generation, irrigation planning, proactive flood control, etc. (Handmer et al. 2012, Pielke Sr et al. 

2009).   

General Circulation Models (GCMs) are important tools to quantify and predict future 

changes in the climate of precipitation. Available GCMs are coupled with dynamic land surface, 

oceanic, and atmospheric components, allowing for a comprehensive consideration of the Earth 

System. To further advance and demonstrate the effectiveness of available GCMs, the World 

Climate Research Program (WCRP) initiated the Coupled Model Inter-comparison Projects 

(CMIPs) for an international and multi-agency effort to include and intercompare different GCMs 

worldwide (Dufresne et al. 2013). The current state-of-the-art CMIP results are known as CMIP6. 

Compared to previous CMIP results, CMIP6 has advancements made in its simulation resolution 

and additional inclusion of various earth system processes (O'Neill et al. 2016, Tokarska et al. 

2020).   

Despite the advancements made in GCMs, the GCMs’ simulation outputs are still subjected 

to uncertainty arising from various sources, including model structures, parameterization schemes, 

and boundary conditions (Hawkins and Sutton 2011, Woldemeskel et al. 2012, 2014). Further, it 

is reported by (Knutti and Sedláček 2013) that errors associated with the GCMs could also arise 

from the limited computational resources, spatial resolution, and internal variability. As a result, 

simulation bias as well as low simulation skills of GCM-simulated or -projected precipitation are 
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commonly reported in different study regions over the globe (Aloysius et al. 2016, Kumar et al. 

2013, Mehran et al. 2014, Palerme et al. 2017).  

To address such simulation uncertainty, various multi-model ensemble techniques are 

commonly applied to improve the accuracy of GCM simulation/projections. By perturbating the 

initial states, employing different parameterization schemes, and/or the inclusion of multiple GCM 

models, an ensemble that contains multiple GCM simulations at the same time could be generated. 

By adopting such techniques, the uncertainty of GCM-simulated precipitation could be quantified 

mathematically. But more importantly, it is reported that by combining different ensemble 

members with the same weight (Simple Model Averaging, i.e., SMA), the simulation performance 

could be improved in contrast to that of individual simulation members (Ma et al. 2018, Yumnam 

et al. 2022, Zhang et al. 2021).   

Based on the need to combine simulation results of a large ensemble, the Bayesian Model 

Averaging (BMA) and Reliability Ensemble Averaging (REA) have become more popular. Unlike 

SMA, which assigns the same weight to different ensemble members, BMA and REA combine 

estimations from individual simulation members while considering different ensemble members’ 

simulation performance during a training period (Raftery et al. 2005, Raftery et al. 1997). In 

comparison to SMA, BMA could provide a probability distribution that reflects the prediction 

uncertainty quantitatively. BMA incorporates the uncertainty of ensemble members based on their 

simulation performance of the reference dataset. As for REA, it assigns weights to the ensemble 

members based on their reliability values rather than assigning equal weights to all the ensemble 

members. The reliability values in REA are calculated based on the calculated bias. Both BMA 

and REA are extensively studied in the field of hydroclimatology and reported to be effective in 
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improving GCM simulation skills (Jiang et al. 2012, Liu and Merwade 2018, Massoud et al. 2020, 

Yan et al. 2020). 

However, limitations of the BMA and SMA reside when applying them to post-process 

GCM-simulated precipitation. The SMA does not consider the performance differences between 

ensemble members when assigning weights to different ensemble members for model averaging. 

Instead, SMA simply computes the arithmetic mean of all simulations. The BMA assumes that the 

sum of the likelihood of all candidate ensemble members being the “perfect” model should equal 

1, which is not always the case (Ley and Steel 2009). Furthermore, BMA is restricted to static 

applications, which means that the model might not be suitable for capturing the evolving and 

changing dynamics of climate (Nonejad 2021). As for REA, it only considers bias and does not 

consider temporal variabilities (Tegegne et al. 2019). Moreover, both BMA and REA assume that 

different ensemble members are independent to each other and should follow different 

distributions, which could be invalid since GCM-simulated ensemble precipitation is normally 

generated with a shared methodology and data sources (Li et al. 2022). As a result, the limited 

performance of baseline model averaging techniques from SMA, BMA and REA indicate the need 

for novel model averaging techniques. 

A promising alternative to SMA, BMA and REA could be various Machine Learning (ML) 

algorithms. MLs can effectively identify the complex relationships between input and target 

variables, which may not be directly related to each other. MLs can address non-linearity in time-

series data, such as precipitation. A good number of previous studies have reported the 

effectiveness of various MLs in the field of hydroclimatology for post-processing GCM 

simulations (Balhane et al. 2022, Sachindra et al. 2018, Wang et al. 2017). Ahmed et al. (2020) 

and Crawford et al. (2019) have found that the application of different ML-based model averaging 



4 

 

techniques like Random Forest (RF) and Relevance Vector Machine (RVM) show better 

simulation performance than MME simulated precipitation. Similarly, other ML algorithms like 

eXtreme Gradient Boosting (XGB) and Extra Tree Regressor (ETR) have also produced better 

simulation skills in averaging the MME simulated precipitation (Jose et al. 2022, Shetty et al. 

2023).  

However, it is also reported that different MLs tend to provide different levels of 

performance at different geospatial locations over the world. For example, Wang et al. (2018) and 

Crawford et al. (2019) reported that the RF produces the optimal results for averaging multi-model 

simulated precipitation in Australia and in parts of North America. Likewise, Jose et al. (2022) 

found that RF and Long Short-Term Memory (LSTM) to be the most effective for combining 

multi-model ensembles in India. In addition, Ahmed et al. (2020) concluded that K-Nearest 

Neighbors (KNN) and RVM produced the optimal results for similar tasks in Pakistan. This 

implies that different MLs present different performances in simulating the precipitation. 

Therefore, the goal of this thesis is to test the performance of different MLs in 

reconstructing historical monthly precipitation by averaging multiple GCM simulations over 

Oklahoma during a study period from 1981 to 2014. A total of 4 MLs are employed in this thesis, 

including the Random Forest (RF), Support Vector Machine (SVM), eXtreme Gradient Boosting 

(XGBoost), and Classification And Regression Trees (CART). The multi-model ensemble 

precipitation simulation from NOAA’s Seamless System for Prediction and EArth System 

Research (SPEAR) is used as the study dataset. The precipitation dataset generated with the 

Parameter-elevation Relationships on Independent Slopes Model (PRISM) is used as a reference. 

The performance of the employed MLs is benchmarked with 3 baseline approaches of SMA, BMA 

and REA. Three different evaluation statistics, including percentage bias, coefficient of 
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determination, and root mean square error, are utilized to conduct the spatial and temporal analysis 

of the simulated precipitation.  
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2 Literature Review 

2.1 General Circulation Models (GCMs) 

 

General Circulation Models (GCMs) are critical tools in the field of climate science that 

offer information regarding  the physics of the Earth system. Such models simulate interactions 

between different geophysical processes within the Earth system and are important in 

understanding the past, present and future climate scenarios (Flato et al. 2014). GCMs are 

composed of dynamical components that numerically simulate the behavior of the atmosphere, 

land surface, oceans, sea ice, and many more. Different components of GCMs are dynamically 

coupled with each other, allowing for a comprehensive representation of the Earth system (Flato 

et al. 2014, Hunke et al. 2010, Pitman 2003). 

The Coupled Model Inter-Comparison Project (CMIP) was initiated to better utilize and 

advance GCMs in climate science. The CMIP aims to facilitate the comparisons between available 

GCMs, to propel the advancements of GCMs and climate science (Eyring et al. 2016, Taylor et al. 

2012). Over the years, CMIP has grown steadily from its first phase project of CMIP1 to the latest 

CMIP6. Every phase of CMIP project has served as a major tool for the assessment of climate 

change all over the globe. CMIP6, being the most recent phase of CMIP, has many notable 

advancements over its predecessors. CMIP6 has increased the temporal and spatial resolution 

along with the implementation of a new scenario framework, integrating both shared socio-

economic pathways (SSP) and radiative forcing levels (O’neill et al. 2016). Further, it has included 

the components representing complex processes of the earth system related to biogeochemical 

cycle, land use, carbon cycle and others to incorporate their corresponding control over climate 

change (Eyring et al. 2016). As a result, according to Zelinka et al. (2020), CMIP6 models have 
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higher climate sensitivity than the previous models, which will lead to more accurate and skillful 

simulations/projections of the climate of the Earth system overall. 

The Seamless System for Prediction and EArth System Research (SPEAR) from NOAA is 

one of the contributing models to CMIP6. The SPEAR is developed with the intention of providing 

seamless climate simulation/projection across different timescales and is used in studying seasonal 

to decadal climate variability along with the real-time predictions of precipitation (Delworth et al. 

2020). There are many advantages of the SPEAR model over previous generation CMIP models, 

such as the incorporation of advanced parameterization of physical processes (Delworth et al. 

2020), the enhancement of the predictive skill for climate forecasts and climatic teleconnections 

(Xiang et al. 2021), and the reduction of the model’s ocean bias (Bushuk et al. 2021). Multiple 

studies have reported that SPEAR is effective in simulating and projecting future precipitation and 

other climatic variables (Murakami et al. 2020, Zhang and Cooke 2021). For instance, Pascale et 

al. (2020) found that the use of SPEAR large ensemble dataset improves the regional-scale 

simulation of droughts in southern South Africa. More details regarding SPEAR can be found on 

Delworth et al. (2020).  

Despite many advancements made in available GCMs, the GCMs simulated precipitation 

are still subjected to various errors. The errors in the GCMs occur from various sources: (1) 

simulation errors due to imperfect model structure, (2) errors due to the resolution of GCMs, and 

(3) other sources. For source (1), the volume and occurrence of precipitation are jointly determined 

by intricate feedback mechanisms between cloud, radiation, topography, and soil moisture. But 

such intricate mechanisms are hard to represent accurately by GCMs, which eventually leads to 

erroneous simulation and projection of precipitation (Berg et al. 2017, Zhao et al. 2016). As for 

source (2), the resolution of GCMs prevents the capturing of small-scale physical and chemical 
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processes related to condensation and evaporation (Demory et al. 2014, Ingram and Bushell 2021). 

As for source (3), factors like topography also produce errors in GCMs. For instance, studies have 

found that GCMs might not produce accurate projections in areas with complex terrain and 

topography (Dai 2006, Posada-Marín et al. 2019). Similar limitations persist in SPEAR and 

CMIP6 projects as well, where these errors in model structures and resolutions have led to 

projection uncertainties and poor simulation, thereby compromising the performance of the models 

(Abdelmoaty et al. 2021, Johnson et al. 2022, Li et al. 2021a).  

To summarize, GCMs are widely used tools to quantitatively study the Earth System 

climate. Many advancements have been made in the latest GCMs projects and models, such as 

CMIP6 and SPEAR. However, accurately simulating historical precipitation remains an extremely 

challenging task.   

2.2 Multi-model ensembles (MME) and model averaging techniques 

 

Efforts have been made to improve the quality of GCM simulations from a post-processing 

perspective (Duan et al. 2021, Li et al. 2021a, Schepen et al. 2018). Among which, various multi-

model ensembles (MME) are widely studied and reported to be effective in quantifying simulation 

uncertainty and enhancing simulation accuracy (Ahmed et al. 2020, Jiang et al. 2012, Schepen et 

al. 2018).  

The key concept of MME is to create multiple simulation/projection trials at the same time 

utilizing available GCMs. By doing so, the simulation/projection uncertainty can be quantified 

numerically. In general, different MME techniques can be categorized into 3 groups: (1) 

perturbation of the physics of GCMs, (2) considering multiple GCMs, and (3) a combination of 

(1) and (2) (Murphy et al. 2004). When choosing to adopt (1) to realize MME, multiple 

simulation/projection outputs are generated using different initial conditions, physics components, 
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parameters or forcings with available GCMs. Whereas if choosing (2) to realize MME, a 

simulation/projection ensemble is formed with multiple GCM’s outputs (Parker 2013, Rowlands 

et al. 2012). The availability of a large number of ensembles makes the quantification of climatic 

uncertainties, along with the reduction and detection of errors, easier and efficient (Becker et al. 

2022, Jebeile and Crucifix 2020). 

With the employment of MME techniques, it is reported that further combining different 

members of MME leads to overall superior simulations/projections. Figure 2.1 shows the 

schematic illustration of the model averaging technique using a three-member ensemble and one 

set of measurements (Vrugt 2016). The right panel of Figure 2.1 shows the probability density 

functions (PDFs) of the combined forecast (solid black line) and of individual models (solid-

colored lines). By combining multiple forecasted values as well as the pdfs of MME, it is expected 

that the combined forecast shall have a better agreement with the measurement compared to 

individual predictions. Among all developed multi-model averaging techniques, SMA is the most 

widely used. SMA considers all the members to be equally informative and present the same level 

of performance. Miao et al. (2014) reported that SMA delivers superior performance than 

individual CMIP5 models in simulating the precipitation and temperature over Northern Eurasia. 

Moreover, several other studies have also found the use of SMA in producing better simulation 

results than the individual models in different parts of the world (Mitra et al. 2011, Yang et al. 

2012, Zhang and Yan 2018). 
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Figure 2.1. Schematic illustration of model averaging (Vrugt, 2016) 

However, SMA has its limitations when it comes to model averaging. SMA assigns equal 

weights to all the ensemble members regardless of their performance. But different ensemble 

members within MME normally present different levels of simulation skills (Miao et al. 2014, 

Zhang and Yan 2018). As a result, the improvement associated with SMA is normally limited. 

Moreover, Lambert and Boer (2001) found that the SMA method produces the best results in 

comparison to the observations when the models are developed independently to each other. But 

GCMs extensively share a similar concept of developing parameters and model components along 

with the duplication of code and sharing of forcing (Sanderson et al. 2015, Wang et al. 2018). This 

makes different GCM ensemble members normally dependent on each other to some degree, 

which consequently compromises the performance of the application of SMA in GCMs.  

Therefore, the use of SMA might not provide appropriate and accurate results in all the scenarios. 

Recognizing the limitations of SMA, more advanced model averaging approaches, such as 

BMA and REA became popular. While SMA assigns equal weights to all the ensemble members, 
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REA and BMA assign variable weights to ensemble members based on their skill in simulating 

observations during a historical period (i.e., training period). BMA incorporates probabilistic 

techniques to assign different weights to the models by creating probability density functions (pdf) 

of weather variables (Sloughter et al. 2007). The pdf value is dependent upon prior distributions, 

which refers to the initial belief of the BMA model before observing the data. Likewise, REA 

assigns weight to the individual ensemble members based on their “reliability”. The reliability is 

determined according to the ability of ensemble members to simulate the observations and their 

degree of convergence compared to other ensemble members (Giorgi and Mearns 2002, Tanveer 

et al. 2016).  

It is reported that REA and BMA produce better simulation skills compared to SMA as the 

weighted approach accounts for the performance variation of individual models (Ahmed et al. 

2020, Leduc et al. 2016, Wang et al. 2018, Yang et al. 2012). Studies performed by Miao et al. 

(2014) and Tanveer et al. (2016) have demonstrated the applicability and reliability of REA in 

projecting future climate scenarios. Both BMA and REA have been widely reported to be effective 

in post-processing predictions and simulations of precipitation in various locations over the world 

(Ji et al. 2019, Sloughter et al. 2007, Wang et al. 2012). It is also reported that BMA and REA 

provide results with similar reliability even though they follow different assumptions and technical 

steps (Duan et al. 2021, Mani and Tsai 2017). In general, past studies reported that the application 

of weighted ensemble approaches, like BMA and REA, can provide superior performance over the 

traditional SMA and individual raw ensembles. 

However, BMA and REA are associated with many limitations as well. For example, in 

BMA, the calculation of weights is dependent upon prior distributions representing prior 

knowledge or assumption regarding the observed data. So, the assignment of prior distributions 
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and other parameters of the models can influence the outcome since the allocation of priors can 

often be vague (Fragoso et al. 2018, Hinne et al. 2020). On the other hand, BMA assumes that the 

sum of the likelihood of all candidate ensemble members should equal 1, which is not always the 

case (Ley and Steel 2009). Furthermore, BMA is restricted to static applications, which means that 

the model might not be suitable for capturing the evolving and changing dynamics of climate 

(Nonejad 2021). Similarly, REA model only considers bias in its weighting approach and does not 

consider the temporal variabilities, which is key in this changing climate (Tegegne et al. 2019). 

In summary, Multi-Model Ensembles (MME) that contain multiple members are normally 

constructed to quantify better and address the simulation/projection uncertainties of GCMs. 

Moreover, it is reported that combining different members of MME through techniques such as 

SMA, BMA, and REA further improves the simulation/projection of GCM. However, the 

weighted approaches, like SMA, BMA and REA, have their own limitations. Therefore, novel 

MME techniques are critically needed to combine a large number of ensembles. 

2.3 Machine Learning (ML) approaches 

 

Given the limitations of conventional model averaging techniques, nowadays very popular 

ML approaches become promising alternatives for MME model averaging to further improve the 

quality of GCM simulation/projections (Reichstein et al. 2019). 

ML has been a very useful and transformative tool in various fields, and more so in climate 

science. Specifically, ML has been utilized extensively to enhance the performance of MMEs. ML 

can identify complex patterns and learn about the features from a large number of datasets, while 

it can also determine the optimal weights of those datasets for the purpose of model averaging 

(McGovern et al. 2017, Sloughter et al. 2007). Moreover, the adoption of ML techniques could 

help quantify the uncertainties of GCM-generated predictions (Ahmed et al. 2020, Song et al. 
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2020). With these advanced features, ML has the ability to provide better and more accurate results 

in the projection and reconstruction of various climatic variables, such as precipitation (Li et al. 

2021b, Xu et al. 2020). 

MLs are considered to have good potential in averaging different GCM-generated 

precipitation simulations/projections, as ML algorithms can better learn and detect the patterns and 

trends of precipitation globally. Typically, ML-based model averaging techniques have yielded 

lower bias and higher skill in the simulation of precipitation across the world (Dey et al. 2022, Xu 

et al. 2020). Ahmed et al. (2020) used multiple ML-based techniques in simulating the 

precipitation over Pakistan and found that the application of MLs improved the simulation in all 

seasons. Further, Li et al. (2021b) and Dey et al. (2022) found that the application of ML preserves 

regional and temporal patterns of precipitation over different study regions. A number of other 

studies have also recommended applying ML-based methods to combine MMEs for future climatic 

projections (Jose et al. 2022, Wang et al. 2023, Xu et al. 2020). 

However, different levels of performance have been reported for different ML-based model 

averaging techniques in terms of simulating precipitation in different geographic locations around 

the world (Crawford et al. 2019, Jose et al. 2022, Wang et al. 2018). The performance of different 

ML algorithms can vary due to the particular strengths and weaknesses associated with those 

algorithms (Osisanwo et al. 2017). Shetty et al. (2023) conducted a study in the Western Ghats of 

India for combining MME simulated precipitation. This study by Shetty et al. (2023) reported that 

XGBoost and RF produce better simulation performance, while SVM produces poor performance 

in the simulation of precipitation. Further, RF produced optimal results in Australia and parts of 

North America for similar tasks (Crawford et al. 2019, Wang et al. 2018). In addition, KNN and 
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RVM are reported to present better results in combining MME simulated precipitation in Pakistan 

(Ahmed et al. 2020). 

To summarize, ML algorithms are novel data-driven approaches that have been widely 

used in the field of hydroclimatology due to their ability to capture and preserve various patterns 

and trends. But different ML algorithms demonstrate varying simulation accuracies depending 

upon the geographical location, which emphasizes the need to implement and evaluate multiple 

ML algorithms' performance in combining the MME simulations. Therefore, applying and 

evaluating the robustness of different ML algorithms in reconstructing the historical monthly 

precipitation over Oklahoma is important and remains unexplored. 
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3 Goals and Motivations 

It is evident from the literature review that GCMs are associated with various errors when 

simulating historical precipitation and projecting future precipitation scenarios. One way to 

improve the simulation skill of precipitation from GCMs is to adopt model averaging techniques 

and combine the simulation results from different GCMs. Model averaging can be conducted by 

using baseline approaches, such as SMA, BMA and REA, and by using novel ML algorithms. 

Compared to baseline approaches, ML techniques present a superior ability in capturing the 

nonstationary model error structures. However, when using ML algorithms to enemble GCM 

outputs, different MLs may have varying performances depending upon the geospatial location of 

the study areas as well as the specific algorithm being used. Therefore, it is imperative to further 

test the robustness and effectiveness of different MLs in combining MME preciptiation of GCMs, 

especially over a region with complex precipitation dynamics.  

Given the motivation above, I choose to adopt Oklahoma as the study region of this thesis, 

considering Oklahoma’s significant variability in temporal and spatial patterns of precipitation. 

The precipitation in Oklahoma is influenced by many physical processes, such as the moisture 

coming from the Gulf of Mexico, or the deserts from the Southwest US, the Mesoscale Convective 

Systems (MCS), and others. As a result, the precipitation events in Oklahoma can be attributed to 

various climate and weather systems, thus making it a suitable study region for testing the 

robustness of different MLs (Ford et al. 2015b). More details regarding the study region can be 

found in section 4.2. Specifically, the following research hypotheses are tested in this thesis. 

1. The raw monthly GCM-simulated precipitation presents errors and bias over Oklahoma 

during a historical period. 
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2. The performance of GCM-simulated monthly precipitation can be improved through 

baseline MME techniques of SMA, BMA, and REA. 

3. Various novel ML algorithms are also effective in combining the GCM-simulated 

precipitation. 

4. The employed ML algorithms present superior simulation skills for precipitation compared 

to the baseline approaches of SMA, BMA, and REA. 
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4 Data and Study region 

4.1 Data 

Two precipitation datasets are used in this thesis to test the performance of different model 

averaging techniques. The first dataset used in this thesis is the GCM-generated ensemble 

precipitation simulation from the Seamless System for Prediction and Earth System Research 

(SPEAR). In this thesis, I use the SPEAR precipitation for model averaging experiments with 

various algorithms. The second dataset used in this thesis is the reference precipitation from the 

Parameter-elevation Regressions on Independent Slopes Model (PRISM), which is used to validate 

the outcome of the models developed using SPEAR. 

The SPEAR dataset is developed by the National Oceanic and Atmospheric Administration 

(NOAA)’s Geophysical Fluid Dynamics Laboratory (GFDL). It contains 30 ensemble members 

generated through perturbed initial conditions containing simulations of different climatic 

variables from the period from 1921 to 2100 (Delworth et al. 2020). In the SPEAR dataset, all 

historical simulations are forced with historical radiative forcing from 1921 to 2014. The historical 

precipitation from SPEAR is provided with a spatial resolution of 0.625̊ * 0.5̊.  

Based on the SPEAR dataset, the verification and validation of all the proposed model 

averaging techniques are done against the PRISM dataset as a reference. In this thesis, the monthly 

gridded precipitation observation developed by PRISM Climate group at Oregon State University 

is used (https://prism.oregonstate.edu/). The PRISM data provides monthly precipitation 

observations at a spatial resolution of 4 km (~0.04̊). The PRISM takes into account the orographic 

enhancement of precipitation, combining both rain-gauge records and RADAR measurements 

(Daly and Bryant 2013). PRISM has proven to be a reliable dataset and has been applied by many 

hydrometeorological related studies (Buban et al. 2020, Prat and Nelson 2015, Zhang et al. 2021). 
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4.2 Study Area 

 

Oklahoma is located in the Southern Great Plains of the United States constituting plains 

and gently rolling hills with its elevation decreasing from west to east (Allen and Gichuki 1989). 

There is a significant variability in the precipitation pattern across Oklahoma, which is evident 

from its distinct precipitation gradient. The eastern half of Oklahoma receives a considerable 

amount of rainfall whereas the western part receives comparatively less rainfall (Ford et al. 2015a). 

Such positive precipitation gradient across the state from the west to the east can be attributed to 

the moisture brought by the southerly winds from the Gulf of Mexico (Tian and Quiring 2019). 

Due to the location of Oklahoma being in a midlatitude continental region, the precipitation 

patterns over Oklahoma are also influenced by multiple climate patterns over a wide range of time 

scales ranging from diurnal to annual (Fisher 2004). During the warm summer months, the 

precipitation in Oklahoma is influenced by high levels of moisture activity and Mesoscale 

Convective Systems (MCS) (Easterling et al. 2017, Hand and Shepherd 2009). This brings more 

precipitation in the warmer summer months. 
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5 Methods 

A total of seven different model-averaging techniques are used in this thesis. Among these, 

three of the employed methods are baseline/traditional approaches to benchmark the outcomes 

generated from the remaining four ML algorithms. The employed baseline approaches include 

Simple Model Averaging (SMA), Bayesian Model Averaging (BMA), and Reliability Ensemble 

Averaging (REA). Out of four ML algorithms, three are decision tree-based algorithms of Random 

Forest (RF), eXtreme Gradient Boosting (XGB), and Classification And Regression Trees 

(CART). Another employed ML algorithm is a popular non-tree-based algorithm, termed the 

Support Vector Machine (SVM).  

5.1 Data preparation 

 

Considering the common availability of both the SPEAR and PRISM precipitation dataset, 

the study period is set from 1981 to 2014 for a total of 34 years. Bilinear interpolation is used for 

both datasets (SPEAR and PRISM) to match their spatial resolution such that the application of 

subsequent model averaging techniques and the evaluation of results can be consistent. The 

common spatial resolution is set to be 0.25̊ * 0.25̊. Before the evaluation, the datasets are masked 

out to contain only the precipitation data over the study area, i.e., the state of Oklahoma. The 

clipping of data over Oklahoma allows us to analyze the precipitation precisely over Oklahoma, 

making the evaluation of results more accurate and representative of the study region. 

5.2 Training of Model averaging techniques 

 

The training of all employed model averaging approaches follows the same three-fold 

cross-validation strategy for consistency. To be specific, out of the 34 years of data records (1981-

2014), 22 years are used as a training period, and the remaining 12 years of data are used to validate 
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the models. A three-fold cross-validation approach is employed such that the training and 

validation approach is more robust. For the three-fold cross-validation, the study period (1981-

2014) is further divided into three folds or subsets such that the split folds do not overlap with each 

other. Then in a sequential manner, each fold serves as a validation data set, and the remaining two 

folds act as the training data set. 

All the employed model averaging techniques are trained for different months separately 

to account for potential seasonal patterns of precipitation. To be more specific, both SPEAR and 

PRISM precipitation are divided into 12 months for separate training of the employed model 

averaging techniques. More details about the employed model averaging techniques are described 

in detail in the subsequent sections. 

5.3 Baseline approaches 

 

The baseline model averaging techniques employed in this thesis are SMA, BMA, and 

REA. The baseline model averaging techniques assign multiple ensemble members with certain 

weights. More detailed information about SMA, BMA, and REA are described in Sections 5.3.1, 

5.3.2, and 5.3.3, respectively.  

5.3.1 Simple Model Averaging (SMA) 

SMA is the simplest and the most common approach to combine results from different 

models. The SMA considers all ensemble members equally informative and shall present the same 

level of performance. SMA combines simulations from different ensemble members by assigning 

them with equal weights. The computation of SMA can be represented with the following equation 

(1): 

𝑃 =  
1

𝑛
∑ 𝑀𝑖
𝑛
𝑖=1        (1) 
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Where 𝑃 is the SMA of an ensemble of simulations, 𝑛 indicates the total number of 

ensemble members, and 𝑀i indicates the simulated value of ith ensemble member.  

5.3.2 Bayesian Model Averaging (BMA) 

BMA combines different ensemble members by assigning them with different weights. In 

BMA, the weights are computed based on the performance of different ensemble members during 

a training period. With derived weights, BMA generates a probability density function (PDF) that 

is centered on the averaged simulated values. The weights thus generated reflect the relative 

contribution of all the ensembles on the obtained multi-model ensemble. Consequently, these 

weights can be used to determine the usefulness of a particular ensemble member in the combined 

model. The combined PDF of the simulated values can be represented with the following equation 

(2):  

  𝑝(𝑦|𝑦𝑇)  =  ∑ 𝑝(𝑦|𝑀𝑖, 𝑦
𝑇) 𝑝(𝑀𝑖|𝑦

𝑇)𝑛
𝑖=1    (2) 

Where 𝑛 indicates the total number of ensemble members, 𝑝(𝑦|𝑀𝑖, 𝑦
𝑇) is the simulated 

PDF of a certain ensemble member 𝑀𝑖 estimated by using the observations  𝑦𝑇 during the training 

period for BMA, and 𝑝(𝑀𝑖|𝑦
𝑇) is the posterior probability of the model 𝑀𝑖 that is corrected using 

the training data which is computed based on the Bayesian theory with equation (3): 

    𝑝(𝑀𝑖|𝑦
𝑇) =  

𝑝(𝑦𝑇|𝑀𝑖 )𝑝(𝑀𝑖 )

∑ 𝑝(𝑦𝑇|𝑀𝑗 ) 𝑝(𝑀𝑗|𝑦
𝑇)𝑛

𝑗=1

                (3) 

In this thesis, the BMA weights are computed by maximizing the likelihood algorithm 

according to Raftery et al. (2005). Here, the posterior probabilities of the model are determined by 

maximizing the equation (3) which are then eventually assigned as weights of the models. More 

details of the BMA process are provided in Duan and Phillips (2010). 
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5.3.3 Reliability Ensemble Averaging (REA) 

REA is a weighted averaging approach that assigns weight to the individual ensemble 

members based on their “reliability” (Giorgi and Mearns 2002). The reliability of an individual 

model is determined primarily from two different criteria: model performance bias and model 

convergence. The reliability factor of the different ensemble members is calculated using the 

following equation (4): 

                             𝑅𝑖  =  [(𝑅𝐵,𝑖)
𝑚
 𝑋 (𝑅𝐷,𝑖)

𝑛
]
[

1

𝑚𝑥𝑛
]
                                     (4) 

𝑅𝐵,𝑖 and 𝑅𝐷,𝑖, in equation (4) can be calculated as shown in equation (5) and (6) respectively: 

                            𝑅𝐵,𝑖 = 
𝜖𝑇

𝑎𝑏𝑠(𝐵𝑇,𝑖)
                                                                (5) 

                            𝑅𝐷,𝑖 = 
𝜖𝑇

𝑎𝑏𝑠(𝐷𝑇,𝑖)
                                                                (6) 

where Ri indicates the model reliability factor of ith ensemble member, RB,i indicates the 

model reliability for ith ensemble member, which is a function of model bias BT,i, and RD,i indicates 

the model reliability for ith ensemble member, which is calculated based on distance DT,i. The 

parameter ε is a measure of natural variability in the model. The parameters m and n are the weights 

given to the two criteria of model performance bias and model convergence. The values of m and 

n are typically assigned to 1.  

With the computed reliability factors for all the individual models, the calculation of 

weights for different ensemble members is represented following equation (7): 

                                     𝑤𝑖  =  
𝑅𝑖

∑𝑅
                                                                       (7) 
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where, wi is the weight of an ith model in the combined multi-model ensemble, Ri is the 

reliability factor of an ith model determined using equation (5), and the denominator is the sum of 

the reliability factors of all the individual members of an ensemble. The detailed process regarding 

REA can be found in (Giorgi and Mearns 2002). 

5.4 Machine Learning (ML) approaches 

 

Two different types of ML approaches are used in this thesis namely Decision Tree (DT) 

based ML algorithms and Non-tree-based ML algorithms. The primary motivation behind using 

these different ML algorithms is to ensure diversity in the employed model-averaging techniques. 

The Decision Tree (DT) based ML models function by creating a tree-like structure where it 

continuously partitions training datasets into smaller sub-sets such that regression relationship can 

be generalized between the training and target variables. The DT is considered to be a “white-box” 

data driven Machine Learning approach as the running of the models are transparent to the end-

users (Yang et al. 2021). While partitioning the data, DT models function by following a simple 

if-then logical statement. Due to the tree-based structure, the DT models split data more efficiently 

and intuitively. Since the decision tree models can be visualized graphically, the interpretation and 

explanation of these models are generally easier than other non-tree-based models (Nourani et al. 

2019). However, there are instances of the DT models being overfitted or underfitted in the case 

of insufficient training data or samples. 

In this thesis, three tree-based ML algorithms are employed: CART, RF, and XGB. CART 

is a traditional decision tree-based model whereas RF and XGB have been developed more 

recently. CART is a simple decision tree regressor which offers more interpretability as compared 

to RF and XGB. The decision-making process of the CART model can be visualized clearly with 

ease. CART is robust to outliers and can neglect irrelevant features without requiring extensive 
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computation. On the other hand, RF and XGB are ensemble learning methods which build multiple 

base models and come up with a single, more accurate prediction by combining them. Since these 

ensemble learning methods combine the predictions from multiple base models, they reduce the 

impact of individual model errors and also overcome the potential overfitting problems. As 

compared to CART, RF and XGB typically provide more accurate predictions as they can capture 

non-linear and complex relationship of the precipitation variable. Moreover, RF and XGB 

algorithms are incorporated with bagging and boosting techniques, respectively. Bagging and 

Boosting are techniques incorporated to reduce the error and optimize the performance of DT-

based MLs RF and XGB.  

Unlike DT-based ML models, non-DT-based ML models utilize other algorithms that are 

not based on the construction of decision trees. Non-DT models differ from DT models in their 

approach to making predictions. In this thesis, I have employed one non-DT-based ML model, 

SVM. Being a non-DT-based ML, SVM could complement other employed DT-based MLs by 

providing a different model-averaging approach. Moreover, SVMs are also effective at capturing 

non-linear relationships associated with precipitation data and work well with problems dealing 

with high-dimensional spaces. 

5.4.1 Classification And Regression Trees (CART) 

The CART is a top-down and greedy approach that recursively conducts binary splitting 

by creating a tree-like structure (Breiman et al. 1984). The CART predicts a continuous target 

variable and does not rely on any assumptions in terms of the distribution of input/target data 

samples. CART is a simple tree-based ML algorithm and has served as a baseline to the later 

developments of other advanced DTs like RF and XGB. CART is predominantly used in both 

classification and regression tasks. Specifically, the decision tree regressor from CART is used in 
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this thesis for the precipitation variables. Considering that we assume a training dataset with 𝑛 

samples having 𝑥𝑖 as input features and 𝑦𝑖 as the corresponding target value. After assigning input 

variables to a CART model, the corresponding output 𝑦̂ is expressed in the following equation (8): 

𝑦̂ = ∑ 𝑐𝑚𝐼 (𝑥𝜖𝑅𝑚)
𝑀
𝑚=1      (8) 

Where 𝑦̂ is partitioned into 𝑀 groups of [𝑅1, 𝑅2, …, 𝑅𝑚] and the constant value 𝑐𝑚 can be 

estimated by averaging all output values of the CART in group 𝑅𝑚. The iteration of the splitting 

process in CART is continued until the error of resulting 𝑦̂ is minimized with given target values. 

More details regarding CART can be found on (Yang et al. 2021). In this thesis, the maximum tree 

depth of employed CART is set to be 5. The minimum number of samples required to split an 

internal node is set to 15; The minimum number of samples required to be at a leaf node is set to 

15. 

5.4.2 eXtreme Gradient Boosting (XGB) 

 XGB is a recently developed DT-based algorithm by Chen and Guestrin (2016) and its 

development is based on the previously developed gradient boosting algorithm. However, unlike 

traditional gradient boosting, XGB incorporates advanced regularization techniques in its 

algorithm by constructing a second-order Taylor approximation of the loss function during the 

training process. XGB is an ensemble learning process that makes use of a boosting technique. It 

contains multiple CART models as candidates which are subjected to training. All the individual 

CART models thus created are trained sequentially one after another where, each time, the new 

CART model will be trained to correct the errors made by the previously trained corresponding 

CART model. Out of all the individual CART models used for training, XGB boosts the 

performance of the “weak learners” through an additive strategy (Boutaba et al. 2018). XGB 
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handles both classification and regression problems, and this thesis employs the XGB regressor to 

predict the precipitation variable. 

The final predicted value from the XGB model can be expressed with the following 

equation (9): 

𝑦̂ = ∑ 𝑓𝑖  (𝑥𝑖)
𝑛
𝑖=1                                                               (9) 

Where xi indicates the simulation of the ith ensemble member, fi is an individual regression 

tree among a total of n regression trees. 

While training an XGB model, the regularization term is defined by an objective function 

which needs to be minimized. This regularized objective function can be expressed with the 

following equation (10): 

                                    ∑ 𝑙(𝑦𝑖 , 𝑦𝑖̂) + 𝛾𝑇 +
1

2

𝑛
𝑖=1 λ‖ω‖                                     (10) 

Where yi is the target variable, ŷi is output from a certain CART model used in an XGB 

model and l is the loss function between the predicted output from an individual CART model and 

the target variable. The second and third terms are introduced in the objective function to penalize 

the model based on their complexity. The parameters in the second and third terms of the objective 

function can be described as: γ is the complexity of an individual leaf, T is the number of leaves in 

an individual CART model, λ is the trade-off parameter used in scaling the penalty, and ω is the 

vector of scores on the leaves. In this thesis, I have set the hyperparameter set of the employed 

XGB to be [subsample:0.7, reg_lambda:7, reg_alpha:0.5, objective: reg:squarederror, 

n_estimators:80, min_child_weight:9, max_depth:4, learning_rate:0.25, gamma:0.5, 

colsample_bytree:0.005]. 
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5.4.3 Random Forest (RF) 

RF is a powerful and robust supervised DT-based algorithm that randomly creates a forest 

of decision trees (Breiman 2001). It constructs multiple decision trees and combines their results 

to come up with a single output. Similar to XGB, RF builds multiple CART models as candidates 

that are subjected to training using the training dataset. RF uses a bagging approach such that a 

random sample of input features is selected with replacement. The input features thus selected are 

then fed into individual CART within the RF model. RF can be used for both classification and 

regression problems. In this thesis, a Random Forest Regressor is used for regression. Eventually, 

the final predicted value is determined by combining the predicted values from all the individual 

CART models that were used in creating the RF model. The aggregation is done by taking the 

average of all the outputs from the CART models, which can be expressed with the following 

equation (11): 

                                    𝑦̂ =  
1

𝑛
∑ 𝑦𝑖
𝑛
𝑖=1                                                                (11) 

Where n indicates the total number of individual CART models used in creating a RF 

model, 𝑦𝑖 is the predicted value from the ith CART model in RF, and 𝑦 is the final predicted value 

which is the average of all the predicted values from individual CART models. The 

hyperparameters of RF were set to [max_depth:3, n_estimators:500, min_samples_leaf:20, 

max_features:1] in this thesis. 

5.4.4 Support Vector Machine (SVM) 

SVM is a supervised non-tree-based DT and was first proposed by Cortes and Vapnik 

(1995). The key step in SVM is to find an optimal hyperplane that distinctly partitions the data 

points that are passed as the training input variables. Similar to RF and XGB, SVM can also be 
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used in both classification and regression problems. In particular, the Support Vector Regressor 

(SVR) is used in this thesis. The regression function of SVM that is used to generate the predictions 

can be expressed with the following equation (12): 

                                    𝑓(𝑥)  =  𝜔.𝛷(𝑥)  +  𝑏                                                  (12) 

Where ω indicates the normal weight vector, b indicates bias, and Φ(x) refers to the 

nonlinear transformation function that maps the input features into a higher-dimensional feature 

space. 

In SVM, the margin between the optimal hyperplane and training data points are 

maximized with the aid of the loss function. Considering the optimization of the loss function, the 

SVM regression function can be expressed as in following equation (13): 

                                       𝑓(𝑥)  =  ∑ (𝛼𝑖  −  𝛼𝑖
∗)𝑘(𝑋𝑖, 𝑋)  +  𝑏𝑛

𝑖=1                       (13) 

Where k(Xn, X) is known as the kernel function and b indicates the bias. The 𝛼 terms are a 

series of Lagrange multipliers used to solve the optimization problem. In this study, I have applied 

the Radial Basis Function (RBF) Kernel. 

5.5 Evaluation Statistics 

 

In this thesis, a total of three evaluation statistics are computed and analyzed to quantify 

the performance of the employed model averaging techniques. The employed evaluation statistics 

include Percentage Bias (pbias), Coefficient of Determination (R2) and Normalized Root Mean 

Squared Error (NRMSE). 
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5.5.1 Percentage Bias (pbias) 

Percentage bias measures the percentage difference of long-term climatology between 

SPEAR and reference PRISM precipitation. The 𝑝𝑏𝑖𝑎𝑠 can be computed with the following 

equation (14): 

𝑝𝑏𝑖𝑎𝑠 =  
∑ (𝑦 𝑖 − 𝑦𝑖)
𝑛
𝑖=1

∑ 𝑦𝑖
𝑛
𝑖=1

 ∗  100%     (14) 

Where 𝑛 is the total number of observations (i.e., the total length of the data records), 𝑦𝑖 is 

reference precipitation, and 𝑦 𝑖 is simulated precipitation of SPEAR with the application of 

different model averaging techniques. 

5.5.2 Coefficient of Determination (R2) 

In addition to 𝑝𝑏𝑖𝑎𝑠, the R2 is also computed to quantify the simulation skill of SPEAR 

after the application of different model averaging techniques. The R2 is a commonly used metric 

to quantify the “goodness-of-fit” of simulated and reference sequential datasets. The R2 can be 

computed with following equation (15):  

𝑅2  =  1 – 
∑ (𝑦𝑖 – 𝑦 𝑖)

2𝑛
𝑖=1

∑ (𝑦𝑖 – 𝑦 𝑖)
2𝑛

𝑖=1
      (15) 

Where 𝑛 is the total number of reference or simulated precipitation (i.e., the total length of 

data records), 𝑦𝑖 is reference precipitation, 𝑦 𝑖 is simulated precipitation of SPEAR with the 

application of different model averaging techniques, and 𝑦̅𝑖 is the average value of the reference 

precipitation. 

5.5.3 Normalized Root Mean Square Error (NRMSE) 

The last evaluation statistic that is employed in this thesis is the Normalized Root Mean 

Square Error (NRMSE). The NRMSE quantitively reflects the simulation errors. NRMSE is a 
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dimensionless measure calculated from Root Mean Square Error (RMSE), which measures the 

average difference between the simulated and reference observation datasets. The 𝑁𝑅𝑀𝑆𝐸 can be 

computed with following equation (16):  

𝑁𝑅𝑀𝑆𝐸 =  
√
1

𝑛
∑ (𝑦𝑖 – 𝑦 𝑖)

2𝑛
𝑖=1

𝑦 𝑖
                (16) 

Where 𝑛 indicates the total number of observations (i.e., the total length of data records), 

𝑦𝑖 is reference precipitation, 𝑦 𝑖 is simulated precipitation of SPEAR with the application of 

different model averaging techniques, and 𝑦̅𝑖 is the average value of the reference precipitation. 
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6 Results 

6.1 Performance of the raw precipitation simulation from SPEAR 

 

Figure 6.1 presents the mean monthly climatology of three randomly selected SPEAR 

members’ precipitation simulation alongside with the climatology of the reference precipitation 

(i.e., PRISM). The blue colors indicate higher precipitation values, whereas the red colors indicate 

lower precipitation values. Ideally, the individual ensemble members of SPEAR should replicate 

the observed precipitation climatology from PRISM. According to Figure 6.1, the observed 

monthly precipitation climatology shows lower precipitation in the northwestern part of Oklahoma 

and higher precipitation in the southeastern part of Oklahoma. In general, there is an increasing 

trend of precipitation gradient going from the west to the east of Oklahoma. The randomly selected 

individual SPEAR ensemble members have preserved the general pattern of precipitation gradient 

from west to east. However, SPEAR has failed to present the magnitude of precipitation accurately 

over Oklahoma. Specifically, SPEAR presents higher precipitation than the observation in the 

panhandle/western part of Oklahoma. SPEAR also presents lower precipitation compared to the 

observation in the eastern half of Oklahoma. 
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Figure 6.1. Mean monthly precipitation of individual ensemble members from SPEAR (randomly 

selected the 1st, 11th, and 19th members) and Observations over Oklahoma 

  

 Further spatial evaluation of monthly precipitation from randomly selected individual 

ensemble members of SPEAR is conducted by calculating Percentage Bias for each pixel over 

Oklahoma, as shown in Figure 6.2. In Figure 6.2, the cooler blue colors indicate a positive bias or 

overestimation of precipitation, and the warmer red colors indicate a negative bias or 

underestimation of precipitation. The optimal value of percentage bias is zero which is represented 

by grey color. In general, all four randomly selected ensemble members show significant bias 

throughout Oklahoma. Particularly, there is an overestimation of precipitation in the western and 

panhandle region of Oklahoma, and an underestimation of precipitation in the eastern region of 

Oklahoma. 
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Figure 6.2. Percentage bias of monthly precipitation for individual ensemble members from SPEAR 

(randomly selected the 1st, 11th, 19th, and 24th members) and Observations over Oklahoma 

 

Figure 6.3 presents the R2 scores of monthly precipitation for randomly selected individual 

ensemble members of SPEAR over Oklahoma. In Figure 6.3, the cooler blue colors indicate a 

positive R2 score with high simulation skill and the warmer red colors indicate a negative R2 score 

with low simulation skill. All the randomly selected individual ensemble members of SPEAR have 

shown negative R2 throughout Oklahoma, which represents a complete lack of skill in simulating 

precipitation.  
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Figure 6.3. Coefficient of Determination (R2) of monthly precipitation for individual ensemble members 

from SPEAR (randomly selected the 1st, 11th, 19th, and 24th members) and Observations over Oklahoma 

 

6.2 Simulation performance of different model averaging techniques 

 

Figure 6.4 presents the reconstructed monthly mean precipitation over Oklahoma from the 

period of 1981 to 2014 derived using different model averaging techniques. In Figure 6.4, the blue 

colors indicate higher precipitation, while the red colors indicate lower precipitation. For an 

optimal result, the monthly precipitation from different model averaging techniques should match 

the observed monthly precipitation. The same spatial pattern of the observed monthly precipitation 

climatology (i.e., west-to-east precipitation gradient) previously observed in Figure 6.1 is also 

observed in Figure 6.4. From Figure 6.4, it can be observed that the baseline approach of SMA, 

BMA and REA have preserved the general west-to-east precipitation trend over Oklahoma. 

Moreover, the baseline approaches of SMA, BMA, and REA have presented higher precipitation 

than observed precipitation in panhandle or western Oklahoma and lower precipitation than 
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observed precipitation in eastern Oklahoma. So, it is clear that the amount of precipitation is not 

represented accurately throughout the study region. On the other hand, all the ML-based model 

averaging techniques have successfully presented the west-to-east precipitation gradient along 

with the distinct changes in the amount of precipitation across the study region. ML-based 

techniques show better agreement with the observed monthly mean climatology over Oklahoma 

as compared to the baseline approaches. 

 

Figure 6.4. Mean monthly precipitation resulted from different model averaging techniques and 

observations over Oklahoma 

 

 Figure 6.5 shows the spatial plot of the percentage bias resulting from the employed model 

averaging techniques over Oklahoma. In Figure 6.5, the cooler blue colors indicate negative bias, 

and the warmer red colors indicate positive bias. The optimal value of percentage bias is zero, 

indicated by grey colors, which implies that there is no bias in the models. From Figure 6.5, It can 

be observed that the BMA, SMA and REA show very similar patterns over Oklahoma, where they 
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have resulted in positive bias in the northwestern part of Oklahoma and negative bias in the 

southeastern part of Oklahoma. The ML algorithms (RF, SVM and CART) have delivered superior 

percentage bias compared to the baseline approaches. In general, MLs have removed the 

simulation bias almost entirely as compared to benchmark BMA, SMA and REA. Unlike RF, SVM 

and CART, the application of XGB has presented some degree of negative bias (~10%) throughout 

the study region.  

 

Figure 6.5. Percentage bias of monthly precipitation resulted from different model averaging techniques 

over Oklahoma 

 The simulation skill associated with the different model averaging techniques is further 

quantified and evaluated from the spatial plot of R2 over Oklahoma as shown in Figure 6.6. The 

darker green colors in Figure 6.6 represent higher R2 values (i.e., higher simulation skill), and the 

lighter green colors represent the lower R2 values (i.e., lower simulation skills). It is evident that 

the baseline approaches of SMA, BMA, and REA show lower simulation skills throughout the 

study region than the ML-based techniques. For instance, SMA, BMA, and REA have nearly zero 
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skills in the northwestern and southeastern regions of Oklahoma. The baseline approaches have 

presented moderate skill in between the northwestern and southeastern parts, which can be seen in 

the form of a “stripe”. In contrast, the ML-based techniques (RF, SVM, CART, and XGB) 

displayed comparatively higher simulation skills than most regions of Oklahoma. It should also be 

noted that, as compared to baseline approaches, the northwestern part of Oklahoma has shown 

significant improvement in the simulation skill, while the southeastern regions do not show 

significant improvements. In between the northwestern and southeastern Oklahoma (i.e., the mid-

regions of Oklahoma), the MLs have presented moderate improvements in simulation skill. 

However, these improvements in the mid-regions are not significant as the pixels with low skill 

are scattered around the area. The employed MLs show a similar level of simulation skill 

throughout Oklahoma, and no significant differences can be observed in their performance. 

 

Figure 6.6. Coefficient of Determination (R2) resulted from different model averaging techniques over 

Oklahoma 
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6.3 Seasonal evaluation statistics of different model averaging techniques and 

individual SPEAR ensembles 

 

Figure 6.7 and Figure 6.8 present the R2 values of the spatially averaged precipitation 

across different months over Oklahoma. Specifically, Figure 6.7 presents the R2 values resulting 

from the employed model averaging techniques, and Figure 6.8 presents the R2 values of the 30 

individual ensemble members of SPEAR. In Figure 6.7, R2 values from each model averaging 

technique in each month are labeled within the corresponding boxes, aiding in more detailed 

comparison. In both Figure 6.7 and Figure 6.8, the cooler blue colors indicate higher simulation 

skill with higher value of R2, whereas the warmer red colors indicate lower simulation skill with 

lower value of R2.   

Comparing Figure 6.7 and Figure 6.8, it is evident that all the model averaging techniques 

have significantly improved the R2 score over individual ensemble members of SPEAR across all 

the months. As shown in Figure 6.8, most of the individual ensemble members show negative 

simulation skills across all the months except for the colder months in December and January 

where R2 scores are slightly above zero. However, the R2 scores obtained after applying model 

averaging techniques display significant improvements in simulation skills in all the months with 

a clear seasonal pattern. The employment of different model averaging techniques has presented 

higher simulation skills in the colder seasons and lower simulation skills in the warmer seasons. 

Even though there are improvements in both warmer and colder months, the skills in the warmer 

months of June, July and August are still in the lower spectrum. Moreover, a comparison can also 

be made between the different model averaging techniques where the MLs have outperformed the 

baseline approaches of BMA, SMA and REA in all the months. Among the employed MLs, RF, 

XGB and CART have presented overall better performance than the SVM. 
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Figure 6.7. Spatially averaged Coefficient of Determination (R2) resulted from different model averaging 

techniques across the months 

 

 

Figure 6.8. Spatially averaged Coefficient of Determination (R2) resulted from individual ensemble 

members of SPEAR across the months 
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 Similarly, Figure 6.9 and Figure 6.10 present the NRMSE values across all the months for 

the spatially averaged precipitation over Oklahoma. Figure 6.9 presents the NRMSE values 

resulting from the employed model averaging techniques and Figure 6.10 presents the NRMSE 

values of the 30 individual ensemble members of SPEAR. In Figure 6.9, the NRMSE values 

obtained from each model averaging technique in each month are labeled within the corresponding 

boxes, aiding in a more detailed comparison. In both Figure 6.9 and Figure 6.10, the cooler blue 

colors indicate lower simulation error with lower NRMSE values, whereas the warmer red colors 

indicate higher simulation error with higher NRMSE values. 

 The NRMSE results obtained in Figure 6.9 and Figure 6.10 are consistent with the R2 score 

results observed in Figure 6.7 and Figure 6.8. Significant differences can be observed between the 

plots showing NRMSE of different model averaging techniques and individual SPEAR ensembles. 

In Figure 6.10, all the individual ensemble members of SPEAR show higher errors across all the 

months except for the cooler months of November, December, and January where the errors are 

comparatively lower. As compared to the individual ensemble members, all the model averaging 

techniques have presented better simulation performance. Even though there is improvement in all 

the months after the application of model averaging techniques, the warmer months of July and 

August are still associated with higher errors. As a result, a clear seasonal pattern can be observed 

in the performance of different model averaging techniques. Moreover, comparisons can also be 

made between the different model averaging techniques. All the ML-based techniques have 

delivered lower NRMSE than the baseline SMA, BMA, and REA in all the months. Among the 

employed ML techniques, the RF, XGB, and CART present overall better performance than the 

SVM.  
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Figure 6.9. Spatially averaged NRMSE resulted from different model averaging techniques across the 

months 

 

Figure 6.10. Spatially averaged NRMSE resulted from individual ensemble members of SPEAR  across 

the months 
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7 Discussion 

As presented in the results section, the Percentage Bias, R2 score, and NRMSE values of 

the individual ensemble members of SPEAR indicate an extremely limited simulation skill of 

historical monthly precipitation over Oklahoma. After applying different model averaging 

techniques, the reduced Percentage Bias, improved R2 score, and lower NRMSE values can be 

observed. This performance improvement suggests that the different model averaging techniques 

are effective in reconstructing the historical monthly precipitation over Oklahoma. 

Among different model averaging techniques, the employed MLs have shown superior 

performance to the baseline SMA, BMA, and REA. This is because, as compared to SMA, BMA 

and REA, the ML-based model averaging techniques can combine the individual ensemble 

members optimally producing better simulation results (Sloughter et al. 2007). The superior 

performance of the ML-based techniques can be attributed to MLs' capacity to extract nonlinear, 

high dimensional and complex patterns between the climatic variables simulated by the climate 

models (Dey et al. 2022, Li et al. 2021b). Moreover, the DT-based ML algorithms employed in 

this thesis function by building decision trees. As a result, these DT-based techniques can be used 

to assign weights to the individual ensemble members by generating feature importance values. 

The weights thus generated can then be evaluated and compared with the weights generated from 

the baseline approaches of BMA and REA. 

Despite improving the simulation performance, ML-based model averaging techniques do 

have their caveats which affect the performance of MLs applications. For example, MLs are 

considered as non-physics-based algorithms which hinder the understanding of mechanisms 

governing the climate system (Jebeile et al. 2021, Reichstein et al. 2019). While MLs can capture 
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complex non-linear relationships effectively as compared to baseline approaches, MLs might not 

be able to capture all the nuances and intricacies involved with precipitation since precipitation 

can be highly non-linear and can have very complex patterns. Other potential limitations of the 

MLs can be the requirement of a large amount of data to train the ML models, and the issue of 

overfitting and underfitting of the models. Moreover, MLs assume that the successive values of 

precipitation in a time series are sequentially independent of each other. However, the precipitation 

data can exhibit dependencies between successive values (Jose et al., 2022). As a result, the more 

advanced data-driven techniques like Long Short-Term Memory (LSTM) and Recurrent Neural 

Network (RNN) shall produce better simulation results as they can learn these sequential 

dependencies of precipitation variables. 

 On the other hand, even after improving simulation performance with ML-based model 

averaging techniques, the reconstructed monthly precipitation over Oklahoma still presents 

performance variations in different seasons and at different geolocations. Given the complex 

precipitation mechanisms over Oklahoma, I suspect such seasonal and spatial performance 

patterns of the reconstructed precipitation can be attributed to the inherent limitation of GCMs. To 

be specific, high rainfall in Oklahoma during summer months is contributed by high levels of 

moisture and convective instability (Bradley and Smith 1994, Hand and Shepherd 2009). 

Oklahoma receives much of its precipitation during the warmer summer months, with nearly half 

of the precipitation being contributed by Mesoscale Convective Systems (MCS) (Easterling et al. 

2017, Fritsch et al. 1986). But for GCMs, convective systems are neither perfectly parameterized 

nor fully resolved (Moncrieff 2019). Moreover, the formation of MCSs occurs within smaller 

spatial scales that are typically smaller than GCM grids (Eden et al. 2012). Therefore, it is 

reasonable to suspect that the available GCMs have little skill in simulating such precipitation 
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during warm seasons in Oklahoma. With compromised GCM simulations, it is natural that 

different model averaging techniques are extremely limited and present comparably inferior 

performance during warm seasons. 

In light of the potential limitation of GCMs during warm seasons, I reckon further 

improvement of GCMs shall lead to overall more accurate and reliable precipitation 

simulation/projection. Such improvements of GCMs can be made through three different 

approaches. The first approach in making advancements in the GCMs can be done by enhancing 

the resolution of the GCMs. The GCMs with higher resolutions can improve the simulation 

accuracy of precipitation as it can accurately represent small-scale features, and atmosphere 

dynamics, and lead to better reproduction of large-scale precipitation patterns (Gao et al. 2008, 

Mishra et al. 2023). Secondly, GCMs should include and better represent more physical and 

dynamical forces of the climate system (Chen et al. 2021, Wu et al. 2020). Finally, the lack of 

inclusion of the physical processes can be better represented through the parameterization schemes 

of precipitation. With parameterization schemes of precipitation, the sub-grid physical process can 

be represented more accurately, and the observed climatic variables can be matched better by the 

GCMs (Demory et al. 2020). I believe that by enhancing the resolution of GCMs, including more 

physical processes and/or by better parameterization schemes of precipitation, advancements in 

the GCMs can be made. As a result, these advancements in the GCMs shall lead to more accurate 

precipitation simulation/projection. 

In summary, this thesis has demonstrated the capability of different model averaging 

techniques in combining the multi-model ensemble from SPEAR to reconstruct the historical 

monthly precipitation over Oklahoma. The baseline techniques of SMA, BMA and REA presented 

an advantage over individual ensemble members of SPEAR. The employed ML-based techniques 
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produced superior performance compared to the baseline techniques in all the evaluation statistics 

for Oklahoma. I believe that the result from this thesis highlights the potential success of other 

data-driven ML or deep learning techniques in combining multi-model ensembles in the future. 

On the other hand, I also reckon that newer datasets from more advanced GCMs can be utilized to 

reconstruct historical precipitation. I believe that the utilization of more accurate and skillful 

simulation from newer GCMs shall provide a better representation of the observed historical 

precipitation. And to advance the GCM simulations, the GCMs shall have finer spatial resolutions 

along with the inclusion of more physical and dynamic processes of the atmosphere. 
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8 Conclusions 

In this thesis, a total of seven different model averaging techniques are utilized to combine 

the historical monthly precipitation from 30 ensemble members of NOAA’s SPEAR. The thesis is 

conducted over Oklahoma during a study period from 1981 to 2014. Out of seven different model 

averaging techniques, three baseline approaches of Simple Model Averaging (SMA), Bayesian 

Model Averaging (BMA) and Reliability Ensemble Averaging (REA), and four Machine Learning 

(ML) techniques of Classification And Regression Trees (CART), Random Forest (RF), eXtreme 

Gradient Boosting (XGB) and Support Vector Machine (SVM) are employed. The baseline 

approaches of SMA, BMA and REA are used as benchmarks to evaluate the performance of the 

ML algorithms. To validate the performance of precipitation simulation, three different evaluation 

statistics, namely Percentage Bias, Coefficient of Determination, and Normalized Root Mean 

Square Error, are used. These evaluation statistics are employed in analyzing and quantifying the 

spatial and temporal characteristics of precipitation over Oklahoma. The major conclusions from 

this thesis are listed as follows: 

1. All employed model averaging techniques have improved the simulation performance as 

compared to the individual ensemble members of SPEAR. 

2. Among the employed model averaging techniques, the ML approaches lead to better 

simulation skills and lower simulation bias than baseline BMA, SMA and REA. 

3. The decision-tree-based ML algorithms (RF, XGB and CART) slightly outperformed the 

non-tree-based ML (SVM) in simulating the historical monthly precipitation over 

Oklahoma. 

4. Strong spatial and temporal patterns have been observed in the performance of model 

averaging techniques while simulating precipitation over Oklahoma.  
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5. The results from this thesis suggest that novel and more advanced data-driven techniques 

as well as GCMs, have the potential to improve the performance of GCM-simulated 

precipitation. 
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