
AFRAMEWORKOFEPIDEMICMODELING
CONSIDERING PREVENTIVE  BEHAVIORS:

COMPARTMENTAL MODELING, TEXT ANALYTICS, 
AND MACHINE LEARNING

A Dissertation

Submitted to the Graduate Faculty

In Partial Fulfillment of the Requirements for the Degree of

Doctor of Philosophy

Norman, Oklahoma

2024

By

HYEJIN CHO

UNIVERSITY OF OKLAHOMA
GRADUATE COLLEGE



A FRAMEWORK OF EPIDEMIC MODELING CONSIDERING

PREVENTIVE BEHAVIORS: COMPARTMENTAL MODELING,

TEXT ANALYTICS, AND MACHINE LEARNING

A DISSERTATION APPROVED FOR THE

INDUSTRIAL AND SYSTEMS ENGINEERING

BY THE COMMITTEE CONSISTING OF

Dr. Randa Shehab, Chair

Dr. Charles Nicholson

Dr. Shivakumar Raman

Dr. Rui Zhu

Dr. Dean Hougen

Dr. Hairong Song



© Copyright by HYEJIN CHO 2024

All Rights Reserved.



A special feeling of gratitude goes to my loving mom and dad, Hyun J and Kye S, for

being there whenever I found myself lost in the wilderness during my doctoral journey.

A special thanks to my brother, Daniel Tae, my sister-in-law, and my nephew, for

standing by me and encouraging me throughout my doctoral studies. I also dedicate

this dissertation to my grandmother, Gemma Y, who ascended to heaven while I

pursued my studies. I also thank all my family members, my grandmother and

grandfather, my aunties and uncles, and many friends for cheering me on to complete

this long marathon. Lastly, I dedicate my dissertation to the glory of God.

iv



ACKNOWLEDGMENTS

Grateful Acknowledgement is made to the School of Industrial and Systems Engineering

at the University of Oklahoma for their very generous support of my doctoral study, and

to the Data Science and Analytics Institute and the College of Engineering for providing

exceptional resources and space to research and experiment.

I am equally indebted to friends and family. Special thanks to the wonderful staff,

Melodi Franklin, so her fellow staff Jennifer Ille, and to my old friend, Cheryl Carney,

everyone supportive. Thanks to Director Henry Neeman of the OU Supercomputing

Center for helping me to utilize OSCER; to my beautiful mentor, Dr. Kimberly Wolfin-

barger for her warm and encouraging lessons for teamwork and leadership; to Dr. Andres

Gonzalez for allowing me to assist ISE5023; to Dr. Doyle Dodd, such a humorous and

supportive mentor, for allowing me to assist ISE4804; to Dr. Theodore Trafalis, for

sharing me with good books for optimization when we all evacuated to the Crossroads

at the banquet; to Dr. Kash Barker, for supporting my doctoral study and organizing

important seminars; to Dr. Christan Grant, for instructing me in CS5293 and answer-

ing all my questions throughout the course; to Dr. Talayeh Razzaghi, for providing me

several references for early pieces of my study; to Dr. Ziho Kang, such a smart and

caring advisor, for allowing me to assist ISE5663 and ISE5853; to Dr. Rui Zhu and Dr.

Hairong Song, for agreeing to serve on my committee; to my committee, Dr. Charles

Nicholson, who deftly edited several mathematical problems in my study; and to my

committee, Director Dean Hougen, who cleverly guided me through the modeling pro-

cesses for compartmental differential equations and helped me improve computational

experiments; and especially to my wonderful supervisor, Dean Randa Shehab, such a

brilliant and insightful advisor and life-changing mentor, who has believed in my study

from the beginning and has guided me to shape my entire doctoral study to pursue

my academic vision. It is to her that I have dedicated this dissertation, with grati-

v



tude. Finally, I would like to acknowledge my department head, Director Shivakumar

Raman, who, after hearing my vision of pursuing Artificial Intelligence and Production

and Healthcare Systems, looked me in the eye one day and introduced me to Dean

Shehab.

vi



TABLE OF CONTENTS

 LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi

 LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiii

 ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xv

 1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

 1.1 Research Questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

 1.2 Scope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

 1.3 Background Information . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

 1.3.1 COVID-19 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

 1.3.2 Social networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

 2 LITERATURE REVIEW . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

 2.1 Epidemiological Models . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

 2.1.1 Markov process . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

 2.1.2 Compartmental modeling . . . . . . . . . . . . . . . . . . . . . . 17

 2.1.3 Parameter estimation . . . . . . . . . . . . . . . . . . . . . . . . 23

 2.2 Artificial Intelligence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

 2.2.1 Machine learning . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

 2.2.2 Support vector machine . . . . . . . . . . . . . . . . . . . . . . . 28

 2.2.3 K-nearest neighbor . . . . . . . . . . . . . . . . . . . . . . . . . . 30

 2.2.4 Semi-supervised learning . . . . . . . . . . . . . . . . . . . . . . . 31

 2.3 Text Analytics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

 2.3.1 Text classification . . . . . . . . . . . . . . . . . . . . . . . . . . 33

 2.3.2 Topic modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

 2.3.3 Sarcasm detection . . . . . . . . . . . . . . . . . . . . . . . . . . 37

vii



 2.3.4 Bidirectional encoder representations from Transformers . . . . . 39

 2.3.5 Sentiment analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 39

 3 DATA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

 3.1 Scoping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

 3.2 Description of the Data . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

 3.2.1 COVID-19 cases . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

 3.2.2 Twitter (X) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

 3.3 Process for Retrieving the Data . . . . . . . . . . . . . . . . . . . . . . . 48

 3.3.1 Planning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

 3.3.2 Processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

 4 PREDICTION OF INDIVIDUAL PREVENTION BEHAVIORS USING SO-

CIAL MEDIA DATA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

 4.1 Problem Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

 4.2 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

 4.2.1 Data preprocessing . . . . . . . . . . . . . . . . . . . . . . . . . . 54

 4.2.2 Encoding (prevention behaviors lexicon) . . . . . . . . . . . . . . 57

 4.3 Prediction of Individual Prevention Behaviors . . . . . . . . . . . . . . . 59

 4.4 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

 4.4.1 Tweets results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

 4.4.2 Training results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

 Number of iteration of self-training . . . . . . . . . . . . . . . . . 63

 Hyper-parameters . . . . . . . . . . . . . . . . . . . . . . . . . . 63

 4.4.3 Model evaluation results . . . . . . . . . . . . . . . . . . . . . . . 63

 Baseline vs support vector machines . . . . . . . . . . . . . . . . 63

 K-nearest neighbor . . . . . . . . . . . . . . . . . . . . . . . . . . 64

 4.4.4 Prediction results . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

viii



 Individual tweets . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

 Aggregated prediction results . . . . . . . . . . . . . . . . . . . . 66

 4.4.5 Discussion of the Prediction of Individual Prevention Behaviors . 67

 5 INCORPORATIONOF THE EFFECTOF PREVENTION BEHAVIORSWITH

EPIDEMIC MODELING . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

 5.1 Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

 5.2 Data & Experiment Settings . . . . . . . . . . . . . . . . . . . . . . . . . 74

 5.2.1 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

 5.2.2 Public policies - interventions . . . . . . . . . . . . . . . . . . . . 74

 5.2.3 Estimation of transmission rate - deterministic dynamic variable . 75

 5.3 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

 5.3.1 Grid search method . . . . . . . . . . . . . . . . . . . . . . . . . 77

 5.3.2 Trust region method . . . . . . . . . . . . . . . . . . . . . . . . . 78

 Barrier function in trust region interior point . . . . . . . . . . . 78

 Convergence of trust region interior point . . . . . . . . . . . . . 79

 Experiment setting . . . . . . . . . . . . . . . . . . . . . . . . . . 80

 5.3.3 Alternating minimization . . . . . . . . . . . . . . . . . . . . . . 81

 5.3.4 Basic reproduction number of COVID-19 . . . . . . . . . . . . . . 82

 5.3.5 Model validation - bootstrap re-sampling . . . . . . . . . . . . . . 82

 5.4 Result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

 5.4.1 Parameter estimates . . . . . . . . . . . . . . . . . . . . . . . . . 82

 5.4.2 Model validation . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

 5.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

 5.5.1 Parameter estimates . . . . . . . . . . . . . . . . . . . . . . . . . 86

 5.5.2 Comparison between grid search and trust region . . . . . . . . . 87

 5.5.3 Performance of grid search . . . . . . . . . . . . . . . . . . . . . . 87

ix



 5.5.4 Nonlinear constrained optimization to unconstrained optimization

in the trust region interior point method . . . . . . . . . . . . . . 88

 5.5.5 Trust region and initial starting point . . . . . . . . . . . . . . . 88

 5.5.6 Aggregated effect of recovered rate and deceased rate in the SEIRD  89

 5.5.7 Subsequent alternating minimization of the mortality rate . . . . 90

 5.5.8 Measure of the effects of nonpharmaceutical interventions . . . . 90

 6 CONCLUSION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

 6.1 Evaluation of the Compliance with Individual Prevention Behaviors . . . 92

 6.2 Incorporation of the Effect of Preventive Behaviors with Epidemic Mod-

eling  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

 6.3 Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

 7 LIMITATION & FUTURE WORK . . . . . . . . . . . . . . . . . . . . . . . . 97

 APPENDICES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

 A1 COVID-19 Cases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

 A2 Pseudo Code: PRecomm  . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

x



LIST OF TABLES

 1.1 COVID-19 Timeline (  CDC  ,   2023a  ) . . . . . . . . . . . . . . . . . . . . . . . 4

 1.2 Coronavirus variants with dates and locations when first detected (WHO
(2023), CDC (2023)) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

 3.1 Starting and ending dates of stay-home orders by state (as of May 31, 2020) 44

 3.2 United States COVID-19 Cases and Deaths (%) by State (as of May 31, 2020)  45

 3.3 Data specification of the collected COVID-19 cases . . . . . . . . . . . . . . 45

 3.4 Data specification of the collected tweets . . . . . . . . . . . . . . . . . . . . 46

 3.5 The keywords used in searching tweets between March 1, 2020 and May 31,
2020 (  Chen et al.  (  2020a  )) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

 3.6 Search terms for the state of New York used in the python codes . . . . . . 48

 3.7 The number of tweets (%) in the inclusion and the exclusion criteria (2020) . 50

 3.8 Example of the collected tweets . . . . . . . . . . . . . . . . . . . . . . . . . 51

 4.1 Examples of the collected tweets (Tweet ID’s and user names are hidden) . . 55

 4.2 Interventions (prevention behaviors) by CDC . . . . . . . . . . . . . . . . . 57

 4.3 The number of tweets of labeled tweets, labeled tweets after balancing, un-
labeled tweets, and total tweets in the state of New York  . . . . . . . . . . 61

 4.4 The number of tweets in each prevention behavior after balancing (the num-
ber of tweets before balancing is described in parenthesis) . . . . . . . . . . 62

 4.5 Model performance metrics of random forest (RF), support vector machines
(SVM), k-nearest neighbor (KNN) . . . . . . . . . . . . . . . . . . . . . . . 65

 4.6 An example of the PRecomm outcome . . . . . . . . . . . . . . . . . . . . . 70

 5.1 Notation  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

 5.2 COVID-19 Timeline in New York  . . . . . . . . . . . . . . . . . . . . . . . 75

 5.3 Range of parameter values for grid search  . . . . . . . . . . . . . . . . . . . 77

 5.4 Comparison of the mean squared errors, parameter estimates, and computa-
tion times among sequential least squares, linear approximation, and trust
region interior point  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

 5.5 Experiment setup for the trust-region interior-point method  . . . . . . . . . 81

xi



 5.6 Parameter estimates by grid search and trust region in this study compared
to the values from a baseline study (  Chowell et al.  (  2003  ))  . . . . . . . . . . 84

xii



LIST OF FIGURES

 1.1 The number of infected cases by state over 2020-2022 . . . . . . . . . . . . . 6

 1.2 Increase in social media use, 2020 . . . . . . . . . . . . . . . . . . . . . . . . 10

 1.3 Triadic reciprocal causation . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

 2.1 Conceptual overview of text classification . . . . . . . . . . . . . . . . . . . . 34

 2.2 LDA and decomposition of document-word matrix into document-topic ma-
trix and topic-word matrix (  Seth  ,   2021  )  . . . . . . . . . . . . . . . . . . . . 35

 2.3 Algorithm - Latent Dirichlet Allocation (LDA) . . . . . . . . . . . . . . . . 36

 2.4 Pattern extraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

 4.1 A framework of disaster management systems with prediction of individual
prevention behaviors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

 4.2 Inclusion and exclusion criteria of tweets retrieval . . . . . . . . . . . . . . . 54

 4.3 Word cloud of collected tweets in the state of New York . . . . . . . . . . . 56

 4.4 Prediction and Recommended Predictions (PRecomm) . . . . . . . . . . . . 60

 4.5 Original (a) and balanced (b) prevention behaviors distribution . . . . . . . 62

 4.6 F-1 scores for hyper-parameters tuning (a) random forest, (b) support vector
machines, and (c) k-nearest neighbor in the initial training and each iteration
of self-training . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

 4.7 F-1 scores and prediction probabilities or similarity scores by random forest,
support vector machines, and k-nearest neighbor . . . . . . . . . . . . . . . 65

 4.8 Prediction scores distribution - SVM . . . . . . . . . . . . . . . . . . . . . . 66

 4.9 Prediction scores distribution without (a) and with self-training (b)  . . . . . 67

 4.10 Confusion matrix at each iteration of self-training with random forest (a ratio
of training data to pseudo-labeled data was 90%:10% at each iteration) . . . 68

 5.1 The SEIRD model with nonpharmaceutical interventions and model param-
eters  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

 5.2 A theoretical step function of the dynamic variable of transmission rate as-
suming a public policy is implemented on March 23 and another public policy
is implemented on April 30  . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

xiii



 5.3 MSE by SLSQP, COBYLA, Trust region interior point, and a combined
graph of results from all three methods  . . . . . . . . . . . . . . . . . . . . 79

 5.4 Trust region results - (a) the consequent mean squares of errors (b) parameter
estimates with different initial starting points  . . . . . . . . . . . . . . . . . 85

 5.5 Trust region and alternating optimization results – (a) Beta distribution and
(b) prediction of coronavirus dynamics using SEIRD model with the optimal
parameters from trust region and alternating optimization  . . . . . . . . . . 85

 5.6 Grid search and Trust region  . . . . . . . . . . . . . . . . . . . . . . . . . . 87

 5.7 Reduced error in the deceased cases – (a) Before alternating optimization (b)
after alternating optimization  . . . . . . . . . . . . . . . . . . . . . . . . . . 90

 7.1 Heterogeneous SEIRD with variables and weights  . . . . . . . . . . . . . . . 98

xiv



ABSTRACT

Cho, Hyejin. Ph.D., University of Oklahoma, May 2024, A Framework of Epidemic

Modeling Considering Preventive Behaviors: Compartmental Modeling, Text Analytics,

and Machine Learning. Major Professor: Dr. Randa Shehab

The goal of this research is to provide a novel framework for epidemic modeling

incorporating metrics derived from social media to predict epidemic dynamics and to es-

timate the impact of preventive behaviors. This study employs empirical data collected

from Centers for Diseases Control and Prevention, and Twitter (or X) to demonstrate

the practical usability of the proposed framework. Specifically, this research utilizes

optimization, simulation, and compartmental differential equations to predict the num-

ber of infected and deceased individuals. The research estimates the basic reproduction

number (R0) for diseases dynamics. In addition, this study utilizes artificial intelligence

and develops a self-training machine learning algorithm to predict the individual compli-

ance level with prevention behaviors. In the analysis, the effect of preventive behaviors

on mitigating transmission is evaluated quantitatively. The research contributes to en-

hance the accuracy of epidemic modeling and to improve decision-making within public

healthcare systems, ultimately leading to a reduction in mortality rates and the saving

of more lives.

xv



1. INTRODUCTION

Infectious diseases are one of the serious disasters particularly in developing countries.

The Ebola outbreak in West Africa in the 2014-2016 was recorded as the most significant

Ebola epidemic that has occurred worldwide since the virus was first discovered (  Kaner

and Schaack ( 2016 )). About 40% of people infected with Ebola died (  Cho ,  2016 ). In

the subsequent years, there was a significant concern regarding the outbreak of the

Middle East Respiratory Syndrome coronavirus (MERS-CoV), particularly notable in

Saudi Arabia from 2014 to 2016. MERS-CoV is a respiratory virus causing severe illness,

with a historical fatality rate of around 35% (  Donnelly et al.  ( 2019 )). Most recently, the

COVID-19 outbreak was declared as a pandemic on March 10, 2020 by the World Health

Organization (WHO). The pandemic resulted in the loss of numerous lives and paralyzed

normal functioning of societies in both developing and non-developing countries. The

epidemic has continued for more than three years since 2020, officially declared ended

on May 11, 2023 ( CDC ,  2023b ).

Nonpharmaceutical intervention was recommended by WHO and Centers for Dis-

ease Control and Prevention (CDC) even before and after coronavirus variants emerged

( CDC ,  2021 ). While vaccination played a pivotal role in mitigating the spread of the

virus, policymakers implemented non-pharmaceutical interventions (NPIs) both prior to

and along with the development of vaccines, particularly in the initial stage of COVID-19

transmission (  Lee et al. ( 2020 )). These interventions were necessary to reduce transmis-

sion rates and minimize the risk of mortality ( Valladares et al. ( 2022 )).

Since summer 2021, the Delta variant became a predominant virus, discovered in

India, causing several surges of COVID-19 cases worldwide ( Katella et al.  ,  2023 ). Sub-

sequently, Omicron and its subvariants have been a prevalent strain in the United States

of America since late 2021 (  Katella et al.  ,  2023 ). These strains have heightened the

transmission rate and diminished the effectiveness of vaccines, prolonging the COVID-
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19 outbreak. Consequently, it is important that public policies aimed at alleviating

person-to-person transmission be implemented aligned with vaccination efforts to effec-

tively mitigate the spread of the virus and prevent fatalities (  Antonelli et al. ,  2022 ). For

instance, governments and healthcare institutions collaborated to decrease the rate of

person-to-person contact by restricting individual physical movement. These strategies

included social distancing, quarantine protocols, closures or lock-downs, as well as travel

bans. Additionally, efforts were made to minimize the likelihood of respiratory infection

through the use of masks and increased disinfection practices ( CDC ( 2021 )).

Policy-making during epidemics should include analysis of ongoing epidemic dynam-

ics and predictions, as well as evaluating the effectiveness of proposed strategies. How-

ever, previous studies rarely perform a comprehensive estimation of coronavirus dynam-

ics in evaluating the impacts of non-pharmaceutical interventions (NPIs). In many cases,

either parameter estimation or evaluation of NPI effects is missing. For example, studies

that estimate the effects of NPIs often adopted disease dynamics such as transmission

rates from past studies without considering regional or temporal differences, population

density, or contact rates ( Enns et al. ,  2020 ;  Carcione et al. ,  2020 ;  Yarsky ,  2021 ).

1.1 Research Questions

It is important to predict epidemic dynamics and to research the effects of mitigation

strategies for reducing transmission and preventing mortality. Motivated by this per-

spective, I posed following research questions: (i) Can the accuracy of epidemic modeling

be improved by incorporating the effect of preventive strategies?; (ii) how to quantify

the effect of mitigation strategies?; and (iii) how to predict people’s adoption of pre-

ventive behaviors during an epidemic?. The sequence of questions reflects the thought

process behind the proposed research. The second question can be partially answered

by the third question. Thus, to address the initial two questions, the third question

should be addressed as a priority. To sum up, the research questions tackled in this

2



study encompasses: (i) how to predict the extent of individual adoption of preventive

behaviors during an epidemic by using social media data and (ii) can we improve the

accuracy of epidemic modeling by incorporating the effect of preventive behaviors on

transmission. The outcomes from this research can be utilized in policy making process

for disaster management.

1.2 Scope

The primary focus of this research is to construct a framework for epidemic modeling

that integrates the measured impact of preventive behaviors to enhance the accuracy

of predicting disease dynamics. The study analyzed the effects of preventive behaviors

using data extracted from social media. The discussion includes the derived estimates

of preventive behaviors obtained through epidemic modeling, coupled with an analysis

of social media data. Consequently, this study considers pertinent research on epidemic

modeling, analyzes COVID-19 data for demonstration of epidemic modeling considering

preventive behaviors, and the utilization of social media in epidemic contexts to predict

individual preventive behaviors.

1.3 Background Information

1.3.1 COVID-19

The very first cases of COVID-19 were reported in Wuhan China on December 1,

2019. A group of individuals with symptoms of unknown cause were reported (  Huang

et al. ,  2020 ). The World Health Organization (WHO) was informed of the cases with

pneumonia-like symptoms from Wuhan’s Hunan Seafood Wholesale Market on 31 De-

cember, 2019, resulting in the shut down of the seafood market on January 1 2020.

 Huang et al. ( 2020 ) identified the unknown disease as a novel coronavirus, similar to

the one associated with SARS and the MERS. New cases were reported in neighboring
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countries, including Japan and Korea as early as Janunary 20, 2020 ( Shim et al. ,  2020 ).

The first case in the United States was confirmed on January 20, 2020 (  CDC ,  2023a ).

A surge in transmission in Italy was reported February 23, 2020, resulting in a national

shutdown ( Cavallaro et al.  ,  2021 ). On March 11, 2020, the WHO declared COVID-19

a pandemic. There were more than 118,000 cases in 114 countries and 4,291 deaths

( CDC ,  2023a ). Table  1.1 describes the major events during the COVID-19 outbreak.

This information provides the starting time with location of the disease, efforts made to

mitigate the disease, public concerns, etc.

Table 1.1. COVID-19 Timeline ( CDC ,  2023a )

Date Year Location Description

December 1 2019 Wuhan,

China

The first symptoms for COVID-

19

March 11 2020 Worldwide Declaration of COVID-19 pan-

demic by the WHO

March 13 2020 U.S.A Declaration of Nationwide emer-

gency and travel ban by the

Trump Administration

March 28 2020 U.S.A Implementation of social distanc-

ing, quarantine for 14 days

April 3 2020 U.S.A Implementation of mask wearing

April 4 2020 Worldwide More than 1 million cases of

COVID-19 has been confirmed

continued on next page

4



Table 1.1. continued

Date Year Location Description

May 26 2020 U.S.A Implementation of lockdowns,

curfews, stay-at-home orders,

masking, checkpoints by Navajo

officials

May 28 2020 U.S.A The recorded death toll from

COVID of more than 100,000

December 11 2020 U.S.A Recommendation of Pfizer’s

COVID-19 vaccine for all people

ages 16 years or older

December 19 2020 U.S.A Recommendation of the Mod-

erna COVID-19 vaccine in per-

sons ages 18 years or older

January 18 2021 U.S.A The reported death toll from

COVID-19 of more than 400,000

Novel coronavirus (SARS-CoV-2) variants has threatened immunity for COVID-19,

increasing transmissibility and extending infection duration (  Van Egeren et al.  ,  2021 ).

Figure  1.1 presents the number of infected cases over a two-year period in various states

where the number of infected cases were the most serious. WHO defined variants as

viruses evolve as they spread among people over time then these changes become different

from the original virus, which are known as variants (  Burki ,  2021 ). During the COVID-
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19 outbreak, coronavirus variants were named by the Greek alphabet such as alpha,

beta, gamma, delta, or omicron (nu) in May of 2021 (  WHO ,  2021 ). Table  1.2 describes

the timeline of variants. Although this study analyzes coronavirus dynamics considering

only original coronavirus, information regarding the variants is included for future study.

Figure 1.1. The number of infected cases by state over 2020-2022

Nonpharmaceutical interventions (NPIs) in response to infectious diseases have been

only alternative available to mitigate the spread of diseases before the development of

vaccines. Particularly, the importance of NPIs is heightened in developing countries

where access to medical services and medicines are incapacitated. During the COVID-

19 outbreak, populations have experienced delays in vaccination and medication even in

countries with well-established healthcare systems (  Wilder-Smith and Freedman ,  2020 ).

This disorder has highlighted the importance of NPIs in combination with medical treat-

ment for reducing the spread of diseases, which underscores the need for quantifying the

impact of NPIs for policymakers to effectively address epidemics.
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Table 1.2. Coronavirus variants with dates and locations when first de-
tected (WHO (2023), CDC (2023))

Variants First case First case (USA) Note
Alpha September 2020,

UK
29 December
2020, Colorado

–

22 January 2021,
12 states

Universal mitigation
strategies (CDC)

Beta May 2021, South
Africa

28 January 2021,
South Carolina

–

Gamma November 2020,
Brazil

25 January 2021,
Minnesota

–

Delta October 2020,
India

1 June 2021 Third wave of infec-
tions

Omicron November 2021,
Botswana,
South Africa

1 December
2021, California,
San Francisco

More than ten times
infectious than the
delta wave

2 December
2021, Min-
nesota, New
York City

A second case in the
U.S.

Various mitigation strategies aimed at reducing disease transmission categorized as

mask, hygiene, social distancing, and quarantine or isolation, have been adopted for

public health purposes during the COVID-19 pandemic (  CDC ,  2021 ;  Guy et al.  ,  2021 ).

 Haug et al.  ( 2020 ) provided the detail of NPIs, for instance, social distancing was speci-

fied by small gathering cancellation, mass gathering cancellation, closure of educational

institutions, measures for special populations, etc.

Among public policies during the COVID-19 pandemic, limiting physical distances

between individuals such as social distancing and quarantine has been acknowledged as

an effective policy in mitigating the transmission of epidemics ( Shin ,  2021 ;  Chowell et al.  ,

 2003 ).  Tsay et al.  ( 2020 ) emphasized that quarantine was the most crucial strategy, fol-
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lowed by social distancing and lockdown interventions during the COVID-19 pandemic.

Screening and testing for the disease were found to be vital, particularly prior to periods

of relaxed social distancing (  Tsay et al.  ,  2020 ).  Liu et al.  ( 2021 ) reported travel restric-

tions, quarantine, and distancing are potentially effective in delaying COVID-19 spread.

In  Haug et al.  ( 2020 ), the most effective NPIs included curfews, lockdowns and restrict-

ing small or large gathering, while individual movement restrictions were also one of

the top-ranked interventions. Some studies explored the impact of intervention strate-

gies on COVID-19 and other infection such as HIV/AIDS, which has been prevalent

in a developing country. For instance,  Teklu and Kotola ( 2023 ) investigated the im-

pact of intervention strategies on HIV/AIDS and COVID-19 co-infection transmission,

showing increasing treatment intervention highly decreases the number of co-infectious

population, emphasizing the efficacy of intervention.

Several studies acknowledged the significance of quantifying these mitigation poli-

cies during COVID-19. However, although some studies have attempted to quantify

the efficacy of NPIs, they often derived their estimates by assuming disease character-

istics from published literature that had different study scopes compared to their own

research.  Tang et al. ( 2020 ) added compartments of quarantine and isolation to the

classical SEIR model to quantify the effectiveness of quarantine and isolation in Wuhan,

Hubei, China using the Markov Chain Monte Carlo (MCMC) method.  Chinazzi et al.  

( 2020 ) studied the effect of travel ban in Wuhan using a SEIR model and the global

epidemic and mobility model. A metapopulation network in  Chinazzi et al. ( 2020 ) com-

prises sub-populations connected by mobile individuals, with data obtained from the

population database at the Socioeconomic Data and Application Center at Columbia

University. Parameters in  Chinazzi et al.  ( 2020 ) including the latent and infectious pe-

riod, and generation time were derived from previous publications. In  Enns et al.  ( 2020 ),

COVID-19 spread in Minnesota was modeled by adding 4 additional compartments (i.e.,

subclinical infection, symptomatic infection, hospitalized and not ventilated, and ICU
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and ventilated) to the SEIRD model. In the modeling process in  Enns et al.  ( 2020 ),

the incubation and infectious periods were derived from a study conducted in Wuhan,

while the range of basic reproduction number was derived from a study conducted in

European countries. Then, the transmission rate was adjusted to be consistent with the

basic reproduction number (  Enns et al.  ,  2020 ). Additionally, social distancing was as-

sumed to reduce contacts by 50%, while shelter in place was assumed to reduce contacts

by 80% in  Enns et al. ( 2020 ).

Therefore, it has been investigated that while several studies have considered the

significance of quantifying the effectiveness of NPIs, they have estimated the impact of

NPIs based on assumptions used in previously published studies that differed in terms

of time, location, and population density. Hence, it is unavoidable that the analysis

might not fully reflect the true values, since the study did not use the same data or

adjust it according to their specific research focus. To address this limitation, our study

involves estimating the parameters of COVID-19 evolution inspired by empirical data

and subsequently evaluating the impact of NPIs based on these estimated parameters.

1.3.2 Social networks

Statistics in  Clement ( 2020 ) show that, in 2020 approximately 3.6 billion people were

using social media (e.g., YouTube, Facebook, and Twitter) worldwide, and the number

was projected to continue to grow. A survey study examined the impact of the pandemic

also showed that increase on social media use for the United States adults in Figure  1.2 

( Insider Intelligence ,  2020 ). About 5-25% of respondents answered they increased their

usage on social media, with YouTube showing the largest increase and Twitter showing

about 10% increase during the COVID-19 outbreak in May 2020. With such a large

membership and growing usage, social media has become one of the popular methods to

engage in dialogue and exchange information in emergency situations ( Liu ,  2021 ). One of

the striking features of social media is the relationship between human behaviors in social
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Figure 1.2. Increase in social media use, 2020

media, which is bidirectional and interactive (  Liu ,  2021 ). In other words, exposure to

certain information or messages was associated with individual cognition, which in turn,

influenced their behaviors (  Bandura ,  1984 ).  Hu et al. ( 2018 ) found a similar pattern

such that user engagement in online communities corresponded to activities in physical

world.

Government agencies also leverage social media to encourage citizen engagement in

disaster management. For instance, during the 2012 Hurricane Sandy crisis in the United

States, government agencies adopted Twitter to engage citizens in critical public services

development ( Chen et al.  ,  2020b ) such as digital volunteer organizations (  Meier ,  2010 ).

Another instance is the United Nations Offices for the Coordination of Humanitarian

Affairs. They collaborate with online communities of volunteer organizations and extract

information from social media for responding emergency situation ( Meier ,  2010 ).

10



However, data credibility is one of the concerns about social media data.  Cinelli

et al.  ( 2020 ) analyzed narratives and moods in five different social media platforms (e.g.,

Twitter, Instagram, YouTube, Reddit and Gab) during the COVID-19 outbreak.  Cinelli

et al. ( 2020 ) first clustered news into two groups: reliable or questionable sources based

on guidelines shared by online fact checking organizations using Partitioning Around

Medoids (PAM) algorithm with cosine distance. Then, the authors evaluated the ratio

of reliable to questionable sources across platforms and analyzed the number of newly

created posts relevant to coronavirus across social media. Lastly, the authors modeled

the spread of information with epidemic models and evaluated the basic reproduction

number of the mis- or disinformation. The study included more than 8 million comments

and posts related to coronavirus over 45 days (1st of January to the 14th of February)

from worldwide services. The authors used the stochastic gradient descent with back-

propagation rule for contents representation. The study found that users in Twitter,

Instagram, YouTube were less susceptible to diffusion of information from questionable

sources. Also, it found that information deriving from news marked as reliable or ques-

tionable did not present a significant difference in the way it spreads. The study showed

that among mainstream social media, Twitter was the most neutral, whereas YouTube

amplifies questionable sources less.  Cinelli et al.  ( 2020 ) concluded that the main drivers

of information spreading are related to specific peculiarities of platform.

 Bae et al.  ( 2021 ) studied the effect of misinformation on social media in epidemic

modeling. Misinformation include information designed to harass specific targets or

inaccurate information or fake news on purpose of deceiving individuals.  Bae et al.  

( 2021 ) assumed that those negative functionalities of social media were associated with

an increase in the transmission rate of the epidemic and modeled it by a penalty term

in epidemic model.  Chan et al.  ( 2021 ) studied public opinions that were malignant to

individual motivation. For instance, dissemination of negative opinions of face masks
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evokes discrimination toward and labeling of individuals who adhere to those advised

preventive behaviors ( Chan et al. ,  2021 ).

Furthermore, individuals and organizations need to know what is happening with

the disaster response and determine how they might help. Social media can facilitate

this process ( Sharf and Rahman  ,  2018 ). Furthermore, social media can be particu-

larly helpful in connecting victims, survivors from disaster, and susceptible people to

other individuals. It facilitates attitudes and feelings of support, encouragement, and

connection, which improve mental health.  Merchant and Lurie ( 2020 ) emphasized the

importance of trustworthy data on social media. While acknowledging its positive im-

pact, particularly in times of crisis with limited resources, it is crucial to ensure data

reliability when understanding user preferences for new business models. On the other

hand, during crises, it is vital to recognize that individuals turn to social media as major

means to connect with their family and friends, share their situation, and seek support.

Social Learning Theory

 Bandura ( 1984 ) proposes that individuals are influenced by observing others’ behav-

ior, emphasizing the relationship between social media usage and COVID-19 transmis-

sion. Applying social learning theory,  Bae et al.  ( 2021 ) utilized Uses and Gratification

theory to categorize motivations for social media engagement into social and informa-

tional motives. Specifically, the impact of social media on healthcare practices and

disease prevention can be analyzed in terms of both positive and negative contributions.

Regarding positive contributions, the study identified and adapted a range of functions

to enhance social media’s effectiveness during crises, including disseminating interven-

tion guidelines (such as self-quarantine and social distancing), sharing information on

therapies, maintaining ongoing communication with affected individuals, promoting pos-

itive behavioral changes, facilitating public relations efforts, serving as a contact point

for service provision, supporting recruitment activities, gauging public opinion, enabling
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online medical consultations, gathering data, spreading positive news, and potentially

correcting behavior.

Information available on social media can be used to measure the spread of disease

since keywords and emotional status on social media were highly correlated with the

degree of the disaster in affected regions. In contrast, negative functions of social media

also exist. For instance, users find a target to harass online or share inaccurate informa-

tion or fake news on purpose to deceive individuals. In this study, social media use with

a negative function is associated with an increase in the transmission rate of epidemic.

This can be modeled by a penalty term in epidemic model.

Social Cognitive Theory

Social cognitive theory emphasizes that reciprocal causation of individual behaviors

between personal factors, behavioral factors, and social environmental factors, which is

called triadic reciprocal causation (  Bandura ,  1984 ;  Li et al.  ,  2020 ). This triadic reciprocal

causation is illustrated in Figure  1.3 . The distinctive aspect of social cognitive theory

is that it holds human behavior is shaped and controlled by both personal cognitive

(e.g., expectations, beliefs) and social network (e.g., social systems). For instance, per-

sonal factors include values, self-efficacy, outcome expectations, and behavioral factors

encompass include prior behavior, and social environmental factors encompass others’

behaviors and feedback ( Li et al. ,  2020 ).

Figure 1.3. Triadic reciprocal causation
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Therefore, it is important to understand the possible impact of exposure to social me-

dia to access health information or to simply observe social environmental factors on

individual’s preventive behavior change in a pandemic.

Social cognitive theory supports the outcome expectancy because people are moti-

vated to perform a particular behavior if they feel driven, while self-efficacy deals with

judgements of one’s learning and performing actions when handling the prospective sit-

uation. In case of individual preventive behavior during COVID-19, people would be

more motivated to overcome the pandemic threat by following prevention guidelines by

learning about the social norm online community while social distancing ( Chan et al.  ,

 2021 ). Regarding consumer behavior during the pandemic, it was shown that emotional

states including vulnerability and pressure affect consumption decision making, which

consequently influences their personal motivation and behavior process (  Kursan Mi-

laković ,  2021 ). Also, several studies advocate that self-efficacy is an important driver of

behavioral processes ( Chan et al. ,  2021 ;  Kursan Milaković ,  2021 ).

Social cognitive theory has been applied to explore health promotion and disease

prevention, based on the belief that individuals possess significant control over their

health.  Moeini et al.  ( 2019 ) investigated how alterations in constructs of Social Cog-

nitive Theory correlate positively with changes in depression levels. Key components

of intervention modules based on social cognitive theory include self-efficacy, outcome

expectations, social support, and goal setting.
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2. LITERATURE REVIEW

2.1 Epidemiological Models

Epidemic is defined as a widespread occurrence of an infectious disease in a commu-

nity at a particular time. The key research questions arise in modelling epidemics are

the risk of an epidemic to occur, the severity level of the epidemic, duration, and what

impact a particular intervention have on the risk, severity and duration of the epidemic.

The basic reproductive ratio R0 is an important epidemiological measure for how

infectious a disease is. It’s defined as the average number of people an infectious person

will infect, assuming that the rest of the population is susceptible. A threshold of 1 is

used to determined whether disease will die out or can explode.

Epidemiological studies that divide a population into compartments are called com-

partmental models. The most commonly used epidemiological models are SIR and SEIR,

which have been widely used in many studies analyzing the spread of infectious disease

including Ebola and COVID-19 ( Cho ,  2016 ;  Chowell and Nishiura ,  2014 ;  Kumar et al. ,

 2021 ;  Abou-Ismail ,  2020 ). Epidemiological models utilize differential equations to fo-

cus on the rate of change of variables as time passes. This concept of compartmental

modeling is based on a birth and death process, which is a continuous Markov process

( Kermack ,  1927 ;  Ross ,  2014 ). In  Kermack ( 1927 ), it was explained that the fundamental

theory of epidemic modeling involves the process of infection, transitioning to recovery

or death among individuals, and how these events change over a specific unit of time.

Additionally,  Kermack ( 1927 ) explained the necessary parameters such as the infectiv-

ity, recovery, and death rates for epidemic modeling. This compartmental model has

been applied to answer following questions: (i) how many individuals will be infected

and died; (ii) How long will the epidemic last; and (iii) How much good would mitiga-

tion strategies do in reducing the severity of the epidemic (  Kermack ,  1927 ;  Shin ,  2021 ;

 Brauer et al.  ,  2008 ). During last decades, the SIR or SEIR model has been applied to
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model epidemic dynamics such as transmission of Ebola, Mers, influenza, and Severe

Acute Respiratory Syndrome (SARS) (  Brauer et al. ,  2008 ;  Chowell and Nishiura ,  2014 ;

 Chowell et al.  ,  2003 ;  Diaz et al.  ,  2018 ;  Lin et al.  ,  2023 ;  Beckley et al.  ,  2013 ). Several

researchers have enhanced the classical compartmental models by adding variables that

control the rates of changes between compartments or by adding more compartments to

specify diverse conditions of patients.

Since compartmental modeling has been considered as an application of the birth and

death process in Markov process ( Ross ,  2014 ), understanding the fundamental assump-

tions of Markov process is useful in epidemic modeling. Definitions and assumptions of

Markov process is described as follows.

2.1.1 Markov process

Let {Xn, n = 0, 1, 2, ..., } be a stochastic process that takes on a finite countable

number of possible values. If Xn = i, then the process is said to be in state i at time n.

Suppose that whenever the process is in state i, there is a fixed probability Pij that will

next be in state j. That is, suppose that

P (Xn+1 = j | Xn = i, Xn−1 = in−1, ..., X1 = i1, X0 = i0) = Pij (2.1)

for all states i0 , i1, ... , in−1, i, j and all n ≥ 0. This stochastic process is defined

as a Markov chain (  Ross ,  2014 ). An assumption defining a Markov chain is that the

conditional distribution of Xn+1 given all the past events X0, X1, ..., Xn−1 depends

on these past events only through the event at the end of day n. Pij represents the

probability that the process will, when in state i, next make a transition into state j.

Therefore, the properties of Pij include

Pij ≥ 0, i, j ≥ 0;
∞∑

j=0
Pij = 1, i = 0, 1, ... (2.2)
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A continuous-time Markov chain is a stochastic process { X(t), t≥0 }, if for all

s, t ≥ 0 and integers must be non-negative i, j, x(u), and 0 ≤ u < s as defined in  2.3 

P{X(t + s) = j|X(s) = i, X(u) = x(u), 0 ≤ u < s}

= P{X(t + s) = j|X(s) = i}
(2.3)

A birth and death process is a continuous-time Markov chain with states {0,1,...}

for which transitions from state n may go only to either state n− 1 or state n + 1. This

process describes the dynamics of population size in an epidemic. Epidemic modeling

considers the change of population size from a state (e.g., infected), say n, to a connected

state (e.g., exposed, recovered), say n−1 or n+1, at time t. Further, the rate of change in

population size at time t only considers the population size at time t−1, which is similar

with the assumption of Markov process. Particularly, the key epidemiological quantity,

the basic reproduction number R0, is used to identify situations when a disease can

invade a population with an assumption that the dynamics of host births and deaths are

not considered (  Kermack and McKendrick ,  1927 ). If each member acts independently

of the others and takes an exponentially distributed amount of time, with mean latent

time 1/λ, to infect another member, then if X(t) is the population size at time t, then

X(t), t ≥ 0 is a pure birth process with λn = nλ, n ≥ 0 ( Ross ,  2014 ). It shows that the

dynamics of the second infection is evaluated based on the birth and death process.

2.1.2 Compartmental modeling

The classical compartmental modeling, say the SIR or SEIR modeling, has been

modified by introducing additional compartments or by dividing a compartment into

multiple sub-compartments. The more compartments are added to the model, the more

parameters are required to explain the rates of change from one compartment to another.

For instance,  Enns et al.  ( 2020 ) divided the susceptible population by nine 10-year age
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groups, while  Nabi ( 2020 ) added 4 more compartments to the SEIR model; including a

symptomatic infected-, an asymptomatic infected-, a quarantined-, and the hospitalized

compartment. Similarly,  Friji et al.  ( 2021 ) added a quarantine- and hospitalization

compartment to the SEIR model.  Shin ( 2021 ) modeled the COVID-19 epidemic in

Korea for the one-year period from February 18 2020 to February 8 2021. The study

employed the SEIR and SEIRD models to estimate time-varying and context-dependent

parameters of the epidemic along with multiple stages of its development. Findings in

 Shin ( 2021 ) showed that the government’s effective non-pharmaceutical interventions

significantly reduced transmission rate and the basic reproduction number. The study

discussed that the compartment of D in the basic SIR model improved the analytical

robustness.

Susceptible-Infectious-Removed (SIR) model

One of the simplest epidemiological models is the Susceptible-Infectious-Removed

(SIR) model. The SIR model divides a population into three compartments – Susceptible-

Infectious-Removed. It measures the number of people in each group changes. For in-

stance, the number of susceptible population decreases as the epidemic spreads among

people, whereas the number of infectious people increases. These changes can be mod-

eled by a differential equations compartmental model.

Let S(t) denote the number of susceptible people at time t. Let I(t) denote the

number of infectious individuals at time t. Similarly, R(t) denote the number of removed

individuals at time t. Removed means that they are no longer infectious because they

recovered or died. Let N denote the total number of people. Then,

S(t) + I(t) + R(t) = N
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We can rewrite it as
S(t)
N

+ I(t)
N

+ R(t)
N

= 1

and, let s(t), i(t), and r(t) denote each composite function, respectively.

The sum of the three variables at time t remains constant as long as the total

number of people in the population N is constant. The SIR model assumes that a closed

population of constant size N. If there is a significant change in N, the SIR model cannot

be used ( Abou-Ismail ,  2020 ).

Intuitively, S(t) will either stay in S(t) or move into the I(t). As a result, the rate

at which susceptible individuals (S(t)) get infected must be negative. The magnitude

of this change depends on the ratio of infected people at t, i(t), the ratio of susceptible

people, s(t), and the likelihood of disease transmission between the two groups, β. Then,

the rate of change of the susceptible individuals over time can be expressed as:

dS

dt
= −βS(t)I(t)

N

When β is relatively large, the infection spreads fast and S(t) decreases quickly, whereas

when β is relatively small, the disease spread becomes slower.

Let γ denote the rate of change over time of I(t). It can be interpreted as the rate at

which I(t) moves into R(t). Then. the rate of change of the I(t) depends on both γ and

β. It also depends on the ratio of individuals in the infectious and susceptible groups at

time t. It can be mathematically expresses as

dI

dt
= βS(t)I(t)/N − γI(t)

As β increases, the I(t) increases, and as γ increases, the I(t) decreases.
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The rate of change of R(t) at time t depends on I(t) and γ.

dR

dt
= γI(t)

The average number of days it takes for an individual to recover from the disease, denoted

by n, is inversely proportional to γ. Note that the rate of change of the removed group is

always positive, since R(t) can only increase with time. When γ is large, people recover

very quickly and more from the I(t) to the R(t). This means that the disease can be

under control.

The basic reproduction number R0 is defined as the average number of secondary

cases generated by a primary case over his/her infectious period when introduced into

a large population of susceptible individuals (  Diekmann et al. ,  1990 ). R0 is an estimate

of the epidemic growth at the start of an outbreak if everyone is susceptible (  Cho ,  2016 ;

 Chowell et al. ,  2004 ). That is, R0 is used to describe the contagiousness or transmissi-

bility of infectious agents. Assuming that the total population is 1.0 and that each of

the three subgroups are a fraction of the total, R0 can be calculated as:

R0 = β

γ

Susceptible-Exposed-Infectious-Removed (SEIR) model

The Susceptible-Exposed-Infectious-Removed (SEIR) model is one of the variants

of the SIR model. It’s distinctive characteristic is that the SEIR model considers the

exposed group, which has a latent period. In other words, the exposed group E(t) is a

group between the S(t) and the I(t). It includes individuals who have been exposed to

the infection but are not infectious yet. This additional group enables the model to be

more realistic when simulating the infectious disease because most of infectious disease
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have latent period to develop the symptoms. For instance, Ebola has about 2 to 21 days

of latent period and COVID-19 has about 5.6 days of latent period after contact.

The rate of change of S(t) and R(t) remains same in the SEIR model as the SIR

model. We introduce the likelihood that an exposed person becomes infected, δ. Then,

the rate of change of E(t) is mathematically expressed as:

dE

dt
= βS(t)I(t)/N − δE(t)

and, accordingly the rate of change of I(t) becomes:

dI

dt
= δE(t)− γI(t)

The R0 measures the initial growth rate of the epidemic and for the model above

it can be shown that R0 = β0/γ, where β0 is the pre-interventions transmission rate

and 1/γ is the mean infectious period. The effective reproductive number at time t,

Reff (t) = (β(t)/γ)s(t), measures the average number of secondary cases per infectious

case t time units after the introduction of the initial infections and s(t) = S(t)
N
≈ 1 as

the population size is much larger than the resulting size of the outbreak. Therefore,

Reff (0) = R0 ( Chowell et al. ,  2004 ).

The classical SIR model was used to estimate the dynamics of generation of misin-

formation (  Cinelli et al. ,  2020 ). Multiple social media platforms were used to compare

misinformation pattern across different sources.  Cinelli et al.  ( 2020 ) described the SIR

model by a set of differential equations:

dS

dt
= −βS(t)I(t)/N

dI

dt
= βS(t)I(t)/N − γI(t)

dR

dt
= γI(t)
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where S(t) is the number of susceptible, I(t) is the number of infected and R(t) is the

number of recovered. The study interpreted the number I(t) + R(t) as the number of

authors that have published a post on the subject. Least square estimation was used

to estimate the models’ parameters and bootstrapping was used to get the range of

parameters. As a result, each platform has R0 > 1, which implies the possibility of an

infodemic. Therefore, when making intervention strategy using social media in a crisis,

it is important to choose a social media platforms by considering their contexts (  Cinelli

et al. ,  2020 ).

 Kumar et al.  ( 2021 ) studied social media effects in reducing transmission rate of in-

fluenza and pandemic by using SEIR model. The researchers used decreasing functions

with respect to the current number of infected individuals in the population to incorpo-

rate the number of tweets related to COVID-19. Specifically, the study used the total

number of tweets (M(t)) about the infectious disease at any given time. In the SEIR

model, the researchers divided the susceptible individuals into two groups; who are not

influenced by the tweets (S) and who are influenced by the tweets (S1).

Individuals who are influenced by the tweets at time t will move to S1 at the rate of

τM(t). The transmission rates β and β1 are the rates at which a susceptible individual

in S and S1 is infected by infectious individuals, respectively. N is the total population.

The SEIR model is described by following equations:
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dS

dt
= −βI(t)

N
S(t)− τM(t)S(t)

dS1

dt
= −β1I(t)

N
S1(t) + τM(t)S(t)

dE

dt
= βI(t)

N
S(t)) + β1I(t)

N
S1(t)− σE(t)

dI

dt
= σE(t)− γI(t)− δD

dR

dt
= γI(t)

dD

dt
= δD(t)

2.1.3 Parameter estimation

Once the transmission of infectious diseases is represented using compartmental mod-

els, it becomes essential to ascertain the parameter values that indicate the rates at which

individuals transition between compartments. These parameter values are crucial for

examining and predicting disease dynamics, particularly in the context of disaster man-

agement. Typically, these parameter values are determined by comparing the reported

number of infected cases by organizations such as WHO or CDC with the predicted

number of infected cases from a proposed model. A good model is expected to show a

small discrepancy between the reported cases and the analytical results. Hence, one of

the primary tasks in epidemic modeling is to identify the optimal or best parameters for

these explanatory models, ensuring they accurately capture the real-world phenomenon.

 Chowell et al.  ( 2003 ) studied SARS outbreaks using a compartmental model. In the

process of data fitting through simulation, the research varied two parameters: a rel-

ative measure of reduced risk among diagnosed cases and a rate of progression from

infected to diagnosed per day. Meanwhile, all other parameters were either roughly

estimated based on collected data or literature, or fixed arbitrarily.  Yarsky ( 2021 ) es-
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timated parameters of an SEIR model for coronavirus using a genetic algorithm with

a multi-objective function consisting of residuals in both infected case data and casu-

alty counts in fitting.  Nabi ( 2020 ) utilized a trust-region-reflective algorithm to modify

the baseline parameters and discovered the optimal parameters for their compartmental

model containing 8 compartments.  Tsay et al.  ( 2020 ) used the least-squares regression

for parameter estimation to find the parameter values that minimize the mean squared

error (MSE) between the predicted cases and measured values of the total infected-,

recovered-, and dead subjects reported by Johns Hopkins University. The study used

the Pyomo package in Python to find the optimal parameter values with the minimum

MSE. Then, the study used an interior-point filter line-search (IPOPT) algorithm to

solve the nonlinear dynamic optimization problem ( Wächter and Biegler ,  2006 ).  Nsoesie

et al.  ( 2013 ) utilized the simulation optimization approach for forecasting the influenza

epidemic curve. For parameter estimation,  Nsoesie et al. ( 2013 ) applied the Nelder-Mead

simplex method to find the optimal parameter set that minimizes the error between the

estimated infected counts and the true infected counts.  He et al.  ( 2007 ) employed both

the particle swarm optimization method and the genetic algorithm to estimate parame-

ters for chaotic systems, including disease transmission. In  He et al.  ( 2007 ), the particle

swarm optimization method revealed better accuracy in parameter estimation in their

study.

One important assumption made in  Kumar et al.  ( 2021 ) was the vital intervention

in controlling COVID-19 was social distancing and the study borrowed the estimation

of its effect from Chu et al. (2020). The social distancing measures could decrease the

transmission risk by 7.5 - 15.9% (i.e. η ∈ (7.5%, 15.9%)) and the study assumed that

β1 = β(1 − η), where β is the transmission rate at which a susceptible individuals in

non-social media users. Then, this study solved an optimization problem:

min|ŜV − 2.1 ˆS1V |
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subject to

16.1%N ≤ Ŝ1 ≤ 21%N

14.3%N ≤ V̂ ≤ 14.4%N

v1 ≥ v ≥ 0

Then, the study searched the solution space by running the

dS

dt
= −βI(t)

N
S(t)− τM(t)S(t)− vS

where v denotes vaccine rate, which are both set to 0. Then, the solution sets of when

η = 16%, 21% are combined and are simulated as long as the objective value is less than

0.5 ( Kumar et al.  ,  2021 ).  Kumar et al.  ( 2021 ) assumed the total population N is 10,010

and the susceptible population S(0) is 10,000. Next, ninety four keywords and hashtags

are used to collect tweets, such as corona, coronavirus, covid, covid19, covid-19, sarscov2,

sars cov2, quarantine, flatten the curve on April 18, 2020 and May 16, 2020. The authors

then adjusted the raw data to make the daily number of tweets consistent during the time

period from March 22, 2020 to July 20, 2020. After normalizing, the daily normalized

number of tweets is used as M(t).  Kumar et al. ( 2021 ) use the performance measures

to evaluate the effectiveness of social media in the COVID-19 pandemic: (1) peak time

when the infected is at its maximum, (2) peak magnitude, which is the number of people

who are infected at the peak time, (3) total infected, and (4) the total deaths caused by

COVID-19.

In the findings, the impact of social media seems to have the least influence on

peak times. Social media’s effects on the total number of infections and deaths are

more responsive to changes in the basic reproduction number (R0) compared to its

impact on the magnitude of the peak. Specifically, when R0 exceeds 1.9, the declines in
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total infections and deaths attributed to social media diminish more rapidly than the

reductions in peak magnitude. In general, social media proves less effective when dealing

with either mild or extremely severe infectious diseases. However, it is most effective in

curtailing a pandemic when the disease’s R0 falls within the range of 1.5 to 1.9 (  Kumar

et al.  ,  2021 ). Moreover,  Kumar et al.  ( 2021 ) found that the peak time can be prolonged

or shortened when social media is in effect. Peak magnitude, total infected cases, and

total deaths can be reduced when social media is in effect. In conclusion, social media

is less effective when the infectious disease is mild or very severe, and social media is

most effective in mitigating the pandemic if the disease’s R0 is between 1.5 and 1.9.

Thus,  Kumar et al.  ( 2021 ) found that social media has a positive effect in mitigating

the infectious disease.

2.2 Artificial Intelligence

The definition of Artificial Intelligence (AI) was defined as the science and engineering

of making intelligent machines (  McCarthy et al. ,  1955 ). In fact, AI has been implemented

in many real-world applications including production systems and healthcare systems

( Christopher Manning  ,  2020 ;  Ivanov et al.  ,  2021 ;  Yang et al.  ,  2019 ;  Pham et al.  ,  2020 ).

The concept of AI gained attention after a five-game match of the game Baduk (or Go)

between an AI program developed by Google DeepMind, called AlphaGo, and Saedol

Lee, the world champion, in March 2016 ( Korea Baduk Association ,  2016 ;  BBC ,  2016 ).

AlphaGo defeated Saedol Lee with 4 to 1 score. Through this DeepMind Challenge

Match, Google demonstrated the complicated strategies and computational power of its

AI machine. AlphaGo used Monte Carlo tree search ensembled with neural networks.

The concept of neural networks was inspired by biological systems, particularly by how

neurons in the brain might work ( McCulloch and Pitts  ,  1943 ;  Widrow et al.  ,  1960 ;

 Rosenblatt et al. ,  1962 ;  Rumelhart et al. ,  1986 ). AlphaGo was able to consider 250150

or 10360 moves due to its neural network architecture and due to the advancement

26



of hardware such as processors, memory, and storage (  Sze et al.  ,  2017 ). Within the

realm of AI, the domain of machine learning is regarded as an analytical technique

and methodology. Therefore, machine learning is considered as an application of AI

( Microsoft Azure ,  2024 ). This research includes the development and application of

machine learning methodologies in prediction and recommendation. Specifically, two

foundational techniques in machine learning, support vector machine and K nearest

neighbor, are discussed.

2.2.1 Machine learning

The problem of searching for patterns in data is a fundamental research area (  Bishop

and Nasrabadi  ,  2006 ). Efforts to understand data requires that researchers classify and

categorize different data sets to understand data and generalize that understanding to

new data (  Bishop and Nasrabadi  ,  2006 ). To achieve this goal, machine learning is applied

to given data to learn (train) and to predict (test). The prime theory behind machine

learning is based on Bayes’ theorem (Equation  2.4 ), which deduces the likelihood of a

new event (Y ) based on existing knowledge or empirical evidence (X).

p(Y |X) = p(X|Y )p(Y )
p(X) ,

p(X) =
∑
Y

p(X|Y ).
(2.4)

Three types of problems exist in machine learning: supervised, unsupervised, and

reinforcement learning. Supervised learning is a problem where the goal is to take an

input vector x and to assign it to one of K discrete classes Ck where k = 1, ..., K. Each

class is disjoint, so that each input is assigned to one and only one class. Examples

of classification methods are support vector machines (SVM) and k-nearest neighbor

(KNN). On the other hand, the problem of clustering, or unsupervised learning, is to
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discover groups of similar examples within the data. Lastly, the goal of reinforcement

learning is to find actions to maximize a reward. Considering the research scope in this

dissertation, methods in solving supervised learning to be applied to semi-supervised

learning are discussed in the following sections.

2.2.2 Support vector machine

Support vector machines (SVM) are useful for classification problems when two data

sets are not linearly separable. For instance, two sets of points in Rn are given by

{x1, ..., xN} and {y1, ..., yM}. The goal is to find a function f : Rn → R such that

f(xi) > 0, i = 1, ..., N,

f(yi) < 0, i = 1, ..., M,
(2.5)

and f classifies or separates the two sets of points. In linearly separable problems, the

goal is to find an affine function, or hyperplane, f(x) = aT x− b such that

aT xi − b > 0, i = 1, ..., N,

aT yi − b < 0, i = 1, ..., M.
(2.6)

However, when the two sets of data cannot be linearly separable, support vector

machines are useful for approximate linear classification (  Boyd and Vandenberghe ,  2004 ).

Support vector machines add nonnegative slack variables to a feasibility problem to

increase the margin around the boundary, or the supporting hyperplane, between two

sets of data.

aT xi − b > 1− ui, i = 1, ..., N,

aT yi − b < −(1− vi), i = 1, ..., M.
(2.7)
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The goal of support vector machines is to find a, b, and nonnegative u and v that

satisfy the inequalities (Equation  2.7 ). To solve this, a heuristic (Equation  2.8 ) can be

minimized.

min 1T u + 1T v

subject to aT xi − b > 1− ui, i = 1, ..., N,

aT yi − b < −(1− vi), i = 1, ..., M

u ≥ 0, v ≥ 0.

(2.8)

Support vector machines are used in this research to be selected as a classifier in self-

training machine learning to predict the most likely preventive behavior with which each

tweet user complies. Specifically, the support vector machines with the linear kernel is

used. In text data, they are unstructured with many features and entries. The dimension

of textual data should be reduced instead of mapping data into high dimensional space,

which is not useful for already high dimensional data (  Hsu et al.  ,  2003 ) due to expensive

computation cost and low accuracy. Support vector machines with linear kernel allow

fast computation as well as to overcome over-fitting. The objective function for support

vector machines with linear kernel is mathematically formulated as

min
w,b

1
2wT w + C

n∑
i=1

max(0, 1− yi(wT φ(xi) + b)), (2.9)

where w, b are the model parameters of the hyperplane, x represents the input variables,

C is a constant, and φ is the identity function (i.e., f(x) = x). All x’s are vectorized

to real numbers. The distance from the hyperplane to input data shows how confident

prediction is. Only if an x is classified correctly and the distance from the plane is

larger than the margin will there be no penalty. The purpose of penalty function is to

assure the classification is correctly made, minimizing misclassification. The Euclidean
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distance is proper to measure the closeness (or absolute differences) between text and

the decision boundary ( Bertsimas and Tsitsiklis ,  1997 ).

2.2.3 K-nearest neighbor

K-nearest neighbor algorithm (KNN) classifies the new data based on the proximity

between the new data and existing training data (  Dasarathy ,  1991 ). K-nearest neighbor

algorithm is useful particularly for multiple recommendation or multi-label classification.

The K-nearest neighbor algorithm finds the k closest data points based on a distance

measure between the new data and the training data. The new data is classified to the

most frequent class of its k nearest data (  Latah and Toker ,  2020 ). Possible distance

metrics include l1 norm (i.e., Manhattan distance), l2 norm (i.e., Euclidean distance),

l∞ (i.e., Chebyshev distance), etc. The formula of each distance metric is expressed in

Equation  2.10 .
λ

√√√√ n∑
i=1
|xi − yi|λ, (2.10)

here xi is a point of the vector x, whereas yi is a point of the vector y.

The performance of k-nearest neighbor algorithm is affected by the distance metric with

the choice of parameter k. When λ = 1, the metric is the Manhattan distance. If λ = 2,

the metric is the Euclidean distance. If λ = ∞, the metric is the Chebyshev distance.

Selection of a distance metric depends on the performance measures used in research of

interest.

In applying k-nearest neighbor algorithm to the research question in this study, cosine

distance is selected and the optimal k is selected by comparing the F-1 scores. Cosine

similarity is a popular metric to measure the similarity between texts. As the cosine

distance considers the angle between two texts instead of length, it describes the context

similarity.
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K-nearest neighbor algorithm was applied to twitter data in this study. Suppose that

an input tweet includes a similar set of words in the body text to other tweets that have

been labeled. The input tweet can be considered as similar to the labeled tweets. This

is a classification problem. Specifically, when similar contextual information is present,

characteristics (e.g., prevention behaviors) in the input data can be inferred from the

labeled tweets. Similarity between an input tweet (x) and another tweet (x’) can be

measured by calculating the difference of angle between two vectors (i.e., cosine distance).

The distance, or dissimilarity, is opposite to the similarity. These two measures are

mathematically expressed below.

sim(x, x′) = cos(θ) = x · x′

‖x‖ · ‖x′‖
,

dist(x, x′) = 1− sim(x, x′)
(2.11)

where θ is an angle between two vectors ~x, ~x′. The problem is to find a set of the n

nearest neighbors of x as X ′ = {x′
1, x′

2, ..., x′
n} ⊆ D such that

∀(x′, y′) ∈ D \X ′,

dist(x, x′) ≥ max
(x′′,y′′)∈X′

dist(x, x′′),
(2.12)

that is, every point in D but not in the set X ′ is at least as distant from x as the furthest

point in X ′. Then, K-nearest neighbor model chooses the most common label, say y, in

X ′ ( Cover and Hart ,  1967 ).

2.2.4 Semi-supervised learning

Semi-supervised learning is a methodology that combines the techniques of super-

vised learning and unsupervised learning. When a training set does not have enough

data, the learnable features are insufficient to allow for effective learning processes. And
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the process of labeling data is expensive, requiring expert knowledge. Semi-supervised

learning alleviates the need for labeled data by allowing a model to leverage unlabeled

data ( Foulds and Smyth ,  2011 ;  Berthelot et al. ,  2019 ).

One fundamental methodology of semi-supervised learning method is generative mix-

ture models. This assumes a generative model p(x, y) = p(y)p(x|y) where p(x|y) is an

identifiable mixture distribution, for example a Gaussian mixture model. With a large

amount of unlabeled data, the mixture components can be identified, then theoreti-

cally, only one labeled example per component is needed to fully determine the mixture

distribution (  Zhu ,  2005 ). Another fundamental theory for semi-supervised learning is

self-training. In self-training, a classifier is first retrained with a small amount of labeled

data. The classifier is then used to classify the unlabeled data. Typically the most con-

fident unlabeled points, together with their predicted labels, are added to the training

set. The classifier is re-trained and the procedure repeated ( Rahmani and Goldman  ,

 2006 ;  Zhu ,  2005 ).

2.3 Text Analytics

Text analytics, a technique of natural language processing, is tools, techniques, and

algorithms to process and understand natural language-based data (i.e., text), which is

unstructured. Text analytics relies heavily on machine-readable dictionaries. Natural

language toolkit (NLTK) is the most popular dictionary for machines (  Bird et al.  ,  2009 )

and WordNet is one of the NLTK corpus readers. WordNet provides data entries that

have traditional lexicographic information and a programming-familiar structure (  Miller ,

 1995 ). Several text analytics packages in python depend on WordNet lexical databases,

especially to English texts.

Linguistic relations were defined in WordNet so that machines can identify relations

among words. For instance, ssemantic relations includes synonymy (similar), antonymy

(opposite), hyponymy (subordinate), meronymy (part), troponomy (manner), and en-
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tailment. A syntactic category includes English nouns, verbs, adjectives, and adverbs

and past study has demonstrated that adjectives are good indicators of subjective, eval-

uative sentences (  Miller ,  1995 ;  Esuli and Sebastiani  ,  2006 ). More than 116,000 of these

semantic relations between words and word senses were included in the original WordNet.

Additionally, WordNet considers contextual representations for machine translation. It

provides alternative senses of a word so that a computer distinguishes between differ-

ent sets of linguistic contexts. Several methods in text analytics have been investigated

before determining the appropriate method to address the research question.

2.3.1 Text classification

Text classification is defined as the process of assigning text documents into one or

more classes or categories, given a predefined set of classes (  Sarkar ,  2016 ;  Mirończuk

and Protasiewicz  ,  2018 ). From perspective of machine learning, text classification is a

supervised learning. In the text classification process, the following analysis steps are

involved - data acquisition, data preprocessing including labeling and normalization,

feature selection, training, and evaluation ( Mirończuk and Protasiewicz  ,  2018 ). A con-

ceptual representation of the text classification process is shown in Figure  2.1 ( Sarkar ,

 2016 ).

2.3.2 Topic modeling

Topic modeling categorizes given documents (in this case groups of texts) into similar

topics based on the words that constitute the documents. Identifying relevant topics in

large conversational data such as social media data is often difficult (  Baeza-Yates ,  1999 ).

However, analyzing a large set of documents is time consuming, and requires efficient

dimensionality reduction techniques ( Deerwester et al. ,  1990 ).

33



Figure 2.1. Conceptual overview of text classification

One of the fundamental dimensionality reduction techniques, or topic modeling meth-

ods, is Latent Dirichlet Allocation (LDA). The objective of the LDA model is to find

the best representative document-topic distribution and topic-word distribution. To do

so, the LDA model evaluates 2 probabilities for every topic: (i) proportion of words in

the document(D) that are currently assigned to the topic(t); and (ii) the proportion of

documents, in which the word is also assigned to the topic(t).

LDA is a generative, unsupervised, and probabilistic topic modeling method used for

discovering and extracting the hidden structure topics in textual data (  Blei et al.  ,  2003 ;

 Ghosh and Guha  ,  2013 ;  Griffiths and Steyvers ,  2004 ;  Murshed et al.  ,  2022 ). Generative

models can be used to predict complex latent structures related to a set of language-based

observations, enabling to use statistical inference to recover this structure (  Griffiths and

Steyvers ,  2004 ). For instance, text includes the observed data (i.e., words) which are

intended to communicate a latent structure (i.e., implicit meaning) consisting of a set

of topics ( Blei et al. ,  2003 ;  Griffiths and Steyvers ,  2004 ).
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The LDAmodel decomposes the observed documents of words (i.e., the larger matrix)

into two sub-matrices: the document-topic matrix and the topic-word matrix. LDA

seeks to find a probability distribution of a mixture of topics as well as a probability

distribution of a set of words for each topic. Figure  2.2 visualizes the decomposition

process of LDA, where D represents a document, w represents a word, and T represents

a topic. The number 1 means included, whereas 0 means not included.

Figure 2.2. LDA and decomposition of document-word matrix into
document-topic matrix and topic-word matrix ( Seth ,  2021 )

The generative process of the LDA method is iterative as described in Algorithm  2.3 .

If there exist T topics, the probability of the ith word in a given document is

P (wi) =
T∑

j=1
P (wi|zi = j)P (zi = j), (2.13)

where zi is a latent variable indicating the topic from which the ith word was drawn and

P (wi|zi = j) is the probability of the word wi under the jth topic. P (zi = j) gives the

probability of choosing a word from topics j in the current document, which will vary

across different documents.

LDA combines Equation  2.13 with a prior probability distribution on the probability

of topics with a set of D multinomial distribution θ over the T topics. In LDA, documents
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1: procedure LDA training
2: x ←texts . Load data
3: x ←preprocessing(x) . Tokenize, remove stop words, lemmatize
4: x ←vectorizer(x) . Numerical representation of x
5: gensim.LDAModel(k)(): . Training the LDA model
6: Choose θi ∼Dirichlet(α), i ∈ {1, ..., M}
7: Choose φk ∼Dirichlet(β), k ∈ {1, ..., K}
8: for i,j, where i ∈ {1, ..., M}, and j ∈ {1, .., Ni} do:
9: Choose a topic and word ti,j ∼Multinomial(θi) & wi,j ∼Multinomial(φti,j)

10: LDAModel.print_topics() . Display topics

Figure 2.3. Algorithm - Latent Dirichlet Allocation (LDA)

are generated by first picking a distribution θ over topics using a Dirichlet distribution,

which determines P (z) for words in that document. The words in the document are

then generated by picking a topic j from this distribution and then picking a word from

that topic according to P (w|z = j), which is determined by a fixed φ(j). The estimation

problem becomes one of maximizing P (w|φ, α) =
∫

P (w|φ, θ)P (θ|α)dθ, where P (θ) is a

Dirichlet(α) distribution. The integral in this expression is intractable, and φ is thus

usually estimated by using sophisticated approximations.

The Dirichlet distribution is Bayesian-alike, because its conjugate prior is also a

multinomial distribution ( Ferguson ,  1973 ). The definition of conjugate prior is if the

posterior distribution p(θ|x) is in the same probability distribution family as the prior

probability distribution p(θ), the prior and posterior are then called conjugate distribu-

tions, and the prior is called a conjugate prior for the likelihood function p(x|θ) ( Raiffa

et al.  ,  1961 ). The LDA model uses the Dirichlet distribution in an iterative process

to identify similarity, frequency, and co-occurrence of topics and words for the given

documents.
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2.3.3 Sarcasm detection

Indirect speech is a sophisticated form of a speech act in which speakers convey their

message in an implicit way (  Tsur et al. ,  2010 ). Sarcasm is a manipulation of indirect

speech and communicates the opposite message of what the speaker is saying (  Bharti

et al. ,  2015 ). Therefore, contextual information could be interpreted incorrectly if speech

is not examined for sarcastic meaning in context n analysis.

Given the political discourse that surrounded COVID-19, sarcasm in tweets must be

considered.  Tsur et al.  ( 2010 ) studied sarcasm in user reviews on Amazon.com using

semi-supervised pattern acquisition and a classification algorithm. In their algorithm,

syntactic and pattern-based features were employed. Syntactic features were directly

related to linguistics such as grammatical features. Pattern-based features were com-

posed of high frequency words appearing more than 1,000 words per million and content

words less than 100 words per million (  Tsur et al.  ,  2010 ;  Davidov and Rappoport  ,  2006 )

(Figure  2.4 ).

Figure 2.4. Pattern extraction

 Tsur et al.  ( 2010 ) defined a decision rule for pattern extraction: high frequency words

(HW) were placed in the first and the last position in the pattern. Also, 2 to 6 positions

were assigned to high frequency words and 1 to 6 positions were assigned to content

words (CW). The study included punctuation characters in high frequency words.

Extracted patterns were filtered by removing product-specific patterns and patterns

clearly showing both sarcastic and not sarcastic speech (  Tsur et al. ,  2010 ). Speech

patterns were used to match each sentence. That is, if all the pattern components

appeared in the sentence without additional words, then the sentence was assigned
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by the value 1. If some additional non-matching words were inserted in the pattern

components, α was assigned to the sentence. If some number of N pattern components

appeared in the sentence, and some non-matching words were inserted, γ × n
N

was

assigned. If nothing or only a single pattern component appeared in the sentence, then

0 was assigned. The study used α = γ = 0.1 (0 ≤ α ≤ 1 and 0 ≤ γ ≤ 1 can be used).

The study used k-nearest neighbors (KNN)-like methods with Euclidean distance to

identify sarcasm (  Tsur et al.  ,  2010 ) with an average value of weighted labels based on

frequency in classification.

 Bamman and Smith  ( 2015 ) modeled the relationship between a tweet and an author’s

past tweets in order to improve accuracy of sarcasm detection. The study collected 3,200

tweets from authors who mentioned #sarcasm or #sarcastic in the Gardenhose sample

of tweets from August 2013 to July 2014. The study sub-sampled this set to include

only tweets that were in response to another tweet. This yielded a positive training

set of 9,767 tweets. The reason why the number of subsamples was greater than the

collected tweets was not specified. The author selected an equal number of tweets

from users over the same time period who had not mentioned #sarcasm or #sarcastic

in their messages.  Bamman and Smith ( 2015 ) used binary logistic regression with `2

regularization using 10-fold cross-validation, split on authors. Five combinations of

four features were considered: tweet features only; tweet features and response features;

tweet features and audience features; tweets features and author features; and all features

together. For sarcasm detection, the author feature yield the greatest improvements in

accuracy over the tweet features alone, whereas all feature classes display statistically

significant improvements over the tweet only features. Additionally, the study found

that the strongest audience based features do not show closeness between the author

and audience.

38



2.3.4 Bidirectional encoder representations from Transformers

Bidirectional Encoder Representations from Transformers (BERT) can also be used

to model to extract sentiment. BERT is based on transformers, a machine learning

technique for natural language processing ( Devlin et al.  ,  2018 ). Transformers are a type

of neural network architecture, consisting of multiple layers. However, transformers do

not have to process textual data with sequences in linear fashion. BERT alleviates

the uni-directionality constraint (e.g., left to right or right to left language models) by

a masked language model pre-training. Additionally, BERT was pre-trained by next

sentence prediction to understand the relationship between two sentences. BERT was

trained on the BooksCorpus and English Wikipedia (  Seo et al. ,  2016 ). In fine-tuning,

the self-attention in the transformer: (i) determines appropriate inputs and outputs;

and (ii) encodes common text pairs ( Seo et al.  ,  2016 ;  Devlin et al.  ,  2018 ). BERT can

be applied in a specific domain with an additional layer and fine-tuning. As BERT has

been pre-trained on large corpus, this transfer learning scheme lowers cost when BERT

needs to be find-tuned for domain-specific tasks.

2.3.5 Sentiment analysis

Sentiment analysis focuses on semantic inferences and enables researchers to identify

the context (subjectivity) beyond the content (objectivity). Attributes of contents in-

clude more or less title, author, date and time, text body, location (may not be available),

comments, interactions (e.g, likes, views, number of shared), etc. Characteristics of con-

text is normally latent and not directly observable from the acquired text. Sentiment

analysis actually focus on emotion recognition (  Pang et al. ,  2008 ). Existing approaches

to sentiment analysis can be grouped into three main categories: knowledge-based tech-

niques, statistical methods, and hybrid approaches ( Mirończuk and Protasiewicz ,  2018 ;

 Cambria et al.  ,  2013 ). Challenges of sentiment analysis lies in named-entity recognition,
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ambiguity of words, and privacy. It is, therefore, easy to observe researchers grouped

emotions into simple nuances - positive, neutral, and negative, rather than highly cate-

gorized emotions.

 Zhou et al. ( 2021 ) suggested a framework to predict users’ adoption behavior within

different periods. The study extracted two features, users and contagions features based

on a Latent Dirichlet Allocation (LDA) topic model and deep learning within a weighted

network model for information diffusion. Attributes of contagions, including category,

popularity, freshness, semantics, and sentiment affects the information spreading among

connected users, while attributes of users, including social roles, preferences, and instant

states, may affect their information adoption behaviors. Moreover, a sentiment-LDA

topic model is used to represent both the semantic and sentiment features. A keywords

vector is built according to the word frequency in descending order and selected the

top 20% portion of keywords to reduce the computational burden. By the sentiment-

LDA topic model, the words, the topics, and the sentiment polarities are generated.

The author categorized the sentiment into three groups: negative, neutral, and positive.

The authors then estimated the semantic topic and the sentiment polarity by the topic

probability distributions. Finally, the authors generated the word during the sampling

process with the semantic topic and the sentiment polarity. Therefore, the extracted

topic set and the corresponding sentiment polarity set are utilized to represent the

semantic and sentiment features in corpus contents ( Zhou et al. ,  2021 ).

Subjective words in text documents are explored by unsupervised sentiment analysis.

TextBlob is one of the python packages that is easily utilized in text analytics. TextBlob

provides techniques to perform tasks such as part-of-speech tagging, noun phrase extrac-

tion, classification, translation, sentiment analysis, etc. The decision rules of sentiment

analysis used in TextBlob are rule-based, meaning TextBlob refers to the predefined

dictionary (e.g., the NLTK corpus), which contains pre-trained polarity score.
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The outcomes of the TextBlob sentiment analysis include a polarity score, ranging

from -1 to +1, and a subjectivity score, ranging from 0 to +1. The polarity score

identifies if the tone of texts is negative or positive, whereas the subjectivity score

distinguishes between factual information and subjective opinions.

The scoring mechanism is that any given text is broken down to words, called tokens,

which are evaluated with the pre-trained scores (  Steven, Loria  ,  2017 ;  Miller ,  1995 ). In

determining the negative or positive sentiment, several linguistic relations and rules are

used. For example, negation of a positive word flips the polarity score to negative by

multiplying −0.5 to the original polarity score. Emphasis of a word weights the polarity

score by ×1.3.

The sentiment analyzer in TextBlob includes two sentiment analysis implementa-

tions, the pattern analyzer and the Naive Bayes analyzer ( Loria ,  2017 ). The pattern

analyzer refers to a dictionary of adjectives and their labeled scores in the pattern library

when evaluating polarity and subjectivity score of words in a given text. The pattern

library takes the individual word scores from the sentiwordnet, a lexical resource (  Esuli

and Sebastiani ,  2006 ).

On the other hand, the Naive Bayes analyzer is an NLTK classifier trained on a

movie reviews corpus. The Naive Bayes analyzer is based on the Bayes rule to find

the probability for a label, P (label|features). With the predefined dictionary with some

labeled data, P (label) and P (features|label) are able to be found. The assumption is

that all features are independent, given a label. That is,

P (label|features) =

P (label)× P (feature1|label)× P (feature2|label)
× P (feature3|label)× · · · × P (featuren|label)

P (features)

To build the conditional probabilities of P (featurei|label), the Naive Bayes analyzer first

chooses relevant words by removing the words with a probability less than a threshold.

Then, for each word in the dictionary, the analyzer evaluates a probability of that word
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being in each label. Finally, the classifier can make a prediction using the conditional

probability. The probability of a label given features obtained from the Bayes rule is

then used as a polarity score. In a sentence, these probabilities given multiple words are

averaged, consequent on a single polarity score.
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3. DATA

3.1 Scoping

The scope of study is limited to the infected area of interest, the United States of

America, particularly New York. In the initial peak time of COVID-19 transmission,

March 1 to May 31, 2020, New York had the most infected cases in the United States.

Thus, the research scope of this dissertation includes data in New York. Two sets of

empirical data sampled during the months of March, April, and May 2020, are included:

(i) COVID-19 infectious cases and (ii) social media data.

First of all, Twitter APIs were used to collect tweets related to the coronavirus. Prior

to developing the code for retrieving tweets, a few parameters needed to be determined:

(1) the time window; (2) the targeted region; (3) the search keywords; and (4) the

number of tweets.

To determine the time window, it was considered the initial peak of the COVID-19

outbreak when the WHO declared it a global pandemic on March 10, 2020. Around this

time, national lockdowns (or quarantines) were implemented, and social distancing was

recommended. Due to individuals maintaining distance and relying on social media for

communication, it was valuable to examine data during this period.

In order to gain a deeper understanding of people’s sentiments towards this unpar-

alleled situation, the initiation of tweet data collection was set approximately ten days

prior to the official declaration of the pandemic on March 1, 2020. The end time for

tweets was decided based on reports concerning the conclusion of the stay-at-home or-

ders in various states. Since the majority of states lifted the stay-at-home orders in

middle to late May 2020, the designated end time for tweet collection was set to May

31, 2020.

In deciding on the target regions, I referred to the total number of infected cases

in every state as of May 31, 2020, and ranked them in descending order. The infected
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Table 3.1. Starting and ending dates of stay-home orders by state (as of
May 31, 2020)

State Starting date Ending date
New York March 22, 2020 May 15, 2020
New Jersey March 21, 2020 June 9, 2020
Illinois March 21, 2020 May 30, 2020
California March 19, 2020 June 15, 2021
Michigan March 24, 2020 June 1, 2020
Massachusetts April 24, 2020 May 18, 2020
Pennsylvania April 1, 2020 May 8, 2020
Texas April 2, 2020 April 30, 2020
Florida March 20, 2020 April 30, 2020
Maryland March 30, 2020 May 15, 2020

and deceased cases as reported by CDC were employed. The numbers of infected cases

and deaths caused by coronavirus in the top 10 states are described in Table  3.2 ( CDC ,

 2021 ). New York City had the highest number of infected cases (206,857) and the highest

death toll (22,131) in the United States of America. The state of New York had the

second-highest number of infected cases (167,467) in the states, but was surpassed by

the death toll in New Jersey. Therefore, the study scope in this research includes the

infected- and deceased cases in both New York state and New York City.

3.2 Description of the Data

The COVID-19 data were collected from the CDC website (  CDC ,  2019 ) and the

variables extracted are shown Table  3.3 .

Social media data were collected from Twitter using Twitter API, a set of Python pro-

gramming functions that enable access to Twitter feeds (  Twitter ,  2019 ). In alignment

with the timeline for the collected COVID-19 cases, tweets that were created from March
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Table 3.2. United States COVID-19 Cases and Deaths (%) by State (as
of May 31, 2020)

State Total Cases Total Deaths
New York City 206,857 22,131 (11%)
New York 167,467 8,130 (5%)
New Jersey 160,807 11,698 (7%)
Illinois 120,260 5,390 (4%)
California 110,583 4,043 (4%)
Michigan 98,121 5,932 (6%)
Massachusetts 96,965 7,239 (7%)
Pennsylvania 75,940 5,567 (7%)
Texas 64,287 1,919 (3%)
Florida 55,131 2,644 (5%)
Maryland 52,778 2,653 (5%)
Total 1,209,196 74,693 (6%)

Table 3.3. Data specification of the collected COVID-19 cases

Description

States
The number of total cases
The number of new cases
The number of total deaths
The number of new deaths
Data created date and time

1, 2020 to May 31, 2020 were collected. Table  3.4 describes the specification of the col-

lected tweets.
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Table 3.4. Data specification of the collected tweets

Header

Posted dates
User ID
User name
Location
User description
Body texts
Total number of posts
Total likes
Total number of followers
Total number of followings
Account created date

3.2.1 COVID-19 cases

From March 1 to May 31, 2020, travel to the United States was restricted from more

than two dozens European countries. Simultaneously, a nation-wide lock down and stay

at home orders were issued across the states. Specific dates for the starting date and

ending date of stay at home order in each state are provided in Table  3.1 . For instance,

the stay at home order in New York was started on March 22, 2020 and ended on May

15, 2020. Most of the states, excluding eight states (i.e., Iowa, Arkansas, North Dakota,

South Dakota, Nebraska, Oklahoma, Wyoming, and Utah) started stay at home orders

approximately in the middle of March and ending in the middle of May.

3.2.2 Twitter (X)

Twitter changed its name to X as of 2023 December, limiting access to the past tweets

through API’s. Thus, among the public domain,  Chen et al.  ( 2020a ) published tweet

ID’s generated from posts related to COVID-19 using the list of keywords described in

Table  3.5 .
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Table 3.5. The keywords used in searching tweets between March 1, 2020
and May 31, 2020 ( Chen et al. ( 2020a ))

# Keyword # Keyword
1 Coronavirus 31 panic shop
2 Koronavirus 32 DuringMy14DayQuarantine
3 Corona 33 14DayQuarantine
4 covid-19 34 InMyQuarantineSurvivalKit
5 corona virus 35 coronakindness
6 sars-cov-2 36 quarantinelife
7 COVID�19 37 chinese virus
8 COVD 38 chinesevirus
9 pandemic 39 stayhome
10 coronapocalypse 40 stayhomechallenge
11 canceleverything 41 sflockdown
12 Coronials 42 DontBeASpreader
13 CDC 43 lockdown
14 Wuhancoronavirus 44 shelteringinplace
15 Wuhanlockdown 45 staysafestayhome
16 Ncov 46 saferathome
17 Wuhan 47 trumppandemic
18 N95 48 flattenthecurve
19 Kungflu 49 PPEshortage
20 Epidemic 50 GetMePPE
21 outbreak 51 covidiot
22 Sinophobia 52 covididiot
23 China 53 epitwitter
24 Sinophobia
25 SocialDistancingNow
26 Social Distancing
27 SocialDistancing
28 panicbuy
29 panic buy
30 panicbuying
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The shared tweet ID’s were numeric digits which identified each tweet. In order

to collect the source tweets with user name, body texts, etc., tweet ID’s needed to

be matched to the actual tweet post. However, if a tweet had already been removed

before Twitter API’s search and match process was executed, Python threw an error in

the process of matching a tweet ID to its associated post. This error was handled by

removing tweet ID’s for all such deleted tweets.

An additional challenge was computational burden. The original tweet ID’s shared

by  Chen et al.  ( 2020a ) included more than 300 million daily tweets related to COVID-

19 worldwide. Thus, to minimize computational burden, tweets were randomly selected

by generating random numbers for the index number of each tweet ID before filtering

tweets only in New York. Thus, tweets from the state of New York were selected by

considering the location field in a user bio. Note that, the state of New York including

the New York City had the most infected cases as of 31 May, 2020. The state of New

York was recorded by texts in several formats. Table  3.6 describes the search terms that

were used to identify the state of New York.

Table 3.6. Search terms for the state of New York used in the python codes
State Search terms
New York , ny | new york | gotham | nyc | manhattan | long island | brooklyn |

bronx | times square

3.3 Process for Retrieving the Data

3.3.1 Planning

In order to investigate the reasonable size of social media data for analysis, past

studies using tweets in disaster or epidemics were referred.  Chatfield and Reddick ( 2018 )

included 132,922 #sandy tweets from October 23 to November 10, 2012 to analyze the
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interactions on social network during the time the Hurricane Sandy hit the Northeastern

of the United States in late October of 2012.  Cinelli et al.  ( 2020 ) included 638,214

tweets from January 1 to February 14, 2020 to analyze how social media platforms

handle questionable posts and credible posts.  Lamsal ( 2021 ) selected 141,000 tweets

worldwide with geographical coordinates in English from Jan 20 to April 18, 2020 for

sentiment analysis. It has been observed that strikingly less number of tweets are geo-

tagged.  Burton et al.  ( 2012 ) studied online health information and found that only

about 2% of tweets were geo-tagged. Also,  Qazi et al.  ( 2020 ) studied that only 0.072%

tweets of multiple languages in the context of coronavirus were geo-tagged. To improve

such a small number of tweets with location, location information indicated by users is

employed in this study.

3.3.2 Processing

For data retrieval, I used the tweepy library on python 3.8. All developments were

conducted on my Samsung laptop (Intel Core i5 CPU, 8GB RAM). The initial data

retrieval was conducted in May, 2022. Before retrieving data, it was important to check

whether the tweet ID’s were still available as of the early May 2022. However, the

largest number of tweet ID’s that can be queried at one time is merely 100 (i.e., batch

size). Therefore, I randomly selected 100 unique id’s to check their availability and

repeated this process for 5,000 times (number of batches) for March, April, and May

of 2020. Thus, the data could include a max of 500,000 tweets per month, if all the

tweet ID’s were available as of May 2022. Among available tweets, non-English tweets

and all retweets were excluded. The remaining tweets were parsed into the following

fields: date, tweet ID, body text, user ID, location, description, screen name, number of

followers, number of followings, account created date, number of tweets the user liked

during the account’s lifetime, and total number of tweets (including retweets) issued by

the user during the account’s lifetime. This process took about five days.
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Table  3.7 describes the number of tweets at each step of the retrieval process. For

instance, after checking the availability of 1,500,000 tweet ID’s, about 83% of these

randomly sampled tweets were available (N = 3,755,752). Of those available tweets,

about 39% tweets were in non-English reducing the data set further (N = 2,306,549).

Removing the retweets (73%), the data set included 633,777 tweets, or about 38% of

the English tweets. Finally, filtering for location New York yielded a final data set of

13,210 tweets. The entire process is shown in Table  3.7 and a sampled tweet is shown

in Table  3.8 . Tweet ID and user name were masked to avoid issues regarding privacy.

Emojis, URLs, and special characters in the collected tweets were removed by using

regular expressions. The number of the final tweets was not changed after cleaning. To

verify the number of tweets, another data retrieval process was conducted in September,

2022. In this second run, the number of sample size is increased to 15,000 instead of

5,000 (conducted in May, 2022).

Table 3.7. The number of tweets (%) in the inclusion and the exclusion
criteria (2020)

Description March April May Total

Random samples 1,500,000 1,500,000 1,500,000 4,500,000
Available 1,200,953 (80) 1,280,874 (85) 1,273,925 (85) 3,755,752 (83)
Non-English 430,326 (36) 521,338 (41) 497,539 (39) 1,449,203 (39)
English 770,627 (64) 759,536 (56) 776,386 (61) 2,306,549 (61)
Retweets 586,829 (76) 538,466 (71) 547,477 (71) 1,672,772 (73)
Original 183,798 (24) 221,070 (29) 228,909 (29) 633,777 (38)

& New York 4,442 (2) 4,227 (2) 4,541 (2) 13,210 (2)
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Table 3.8. Example of the collected tweets
Field Value
Date 2020-03-17 21:04:06

Tweet ID 1200011119999990000

Text Trying to move during the coronavirus crisis under threat of
the city entering a lockdown is one of the most stress

User name johndoe1

Location NYC

User description writer

Account created date 2017-12-31 19:42:57

Followers 20

Total posts 223
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4. PREDICTION OF INDIVIDUAL PREVENTION

BEHAVIORS USING SOCIAL MEDIA DATA

The following summary is an excerpt a paper presented at the AI for Behavior Change

Workshop of the 2023 Association for the Advancement of Artificial Intelligence (AAAI)

Conference ( Cho and Shehab ,  2023 ).

4.1 Problem Description

Figure  4.1 presents a visual framework for how individual behaviors are influenced in

a pandemic through social media. The structure of the framework is described as follows:

in the COVID-19 outbreak, disaster relief organizations convey prevention guidelines to

population. At the same time, people share their status via social media. Disaster relief

teams leverage the quantitative analysis of prediction for individual prevention behaviors

using artificial intelligence with social media data. Decision makers in disaster manage-

ment organizations take actions after utilizing the quantitative analysis. Decision makers

decide to promote the interventions with a probability of low compliance level by news

and advertisements. Also, decision makers cooperate with social media platforms for

providing personalized contents for individuals with low involvement in certain inter-

ventions. This study focuses on quantitative analysis by artificial intelligence and social

media.

4.2 Data

In order to lower transmission, it is important to understand individual prevention

practices for better intervention implementation. Individual preventive practices can

be learned through social media data by machine learning. In particular, a self-training

machine learning using tweets was developed and applied to predict individual prevention
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Figure 4.1. A framework of disaster management systems with prediction
of individual prevention behaviors

behaviors in a disaster response phase. We collected tweets from March 1 to May 31,

2020 using Twitter API’s. Due to the limited access to past tweets, we referred to

publicly available tweet ID’s (  Chen et al.  ,  2020a ) and then identified their availability

as of May 2022 by using the tweepy library in python. We refined the study scope to

the state of New York, because it had the most infected cases in the United States of

America between March 1 to May 31, 2020.

Figure  4.2 describes data retrieval process. Due to the computational burden, we

randomly sampled 500,000 tweets per March, April, and May for checking tweets’ avail-

ability. We verified whether the number of tweets in the prevention behaviors were

balanced. If not, we collected more tweets for underrepresented behaviors. The pro-

gression of these steps with Intel Core i3 CPU, 2.30 GHz, 8.00 GB RAM necessitated

approximately a week’s duration for completion. We filtered out non-English tweets by

checking ”lang=en” of each tweet’s user object and removed re-tweets by searching ”RT

@” in body text. The number of tweets in English and without retweets was 163,821
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worldwide. Among them, tweets with location information in user bios are selected if

their ”location” of user objects matches New York.

Figure 4.2. Inclusion and exclusion criteria of tweets retrieval

Each data entry included the tweet’s created date, tweet ID, main text (or body

text), user name, location, user description (or user bio), account created date, number

of followers/followings, total number of tweets a user has liked during the account’s

lifetime, and total number of tweets (including re-tweets) created by a user. Table  4.1 

describes examples from the collected tweets. We replaced tweet IDs and user-specific

information with mock data.

4.2.1 Data preprocessing

Emojis, urls, special characters were removed by regular expressions. Stop words

in each tweet were removed if they were included in the nltk corpus. We verified that

each tweet was created in March 1 to May 31, 2020 by the data filtering function in

Excel. Additionally, body texts collected in data were randomly verified whether they

had relevant keywords to coronavirus in Excel. All numeric features of tweets such as the
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Table 4.1. Examples of the collected tweets (Tweet ID’s and user names are hidden)

Header Data
Date 2020-03-17 21:04:06
Tweet ID 1200011119999990000
Text Trying to move during the coro-

navirus crisis under threat of the
city entering a lockdown is one of
the most stress

User name johndoe
Location NYC
User description writer of things, mostly comics
Followers 20
Followings 11
Total likes 250
Total posts 223
Account created date 2018-05-12 23:13:54

Date 2020-05-15 14:27:55
Tweet ID 1200011119999990001
Text My job is requiring covid anti-

body test. Soon I will know if I
am immune. If I am immune, I
will be unstoppable

User name janedoe
Location New York
User description someday everything is gonna be

different when I paint that mas-
terpiece

Followers 279
Followings 1362
Total likes 2464
Total posts 3153
Account created date 2018-01-23 17:26:27
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number of followings/followers, number of likes, and number of posts were standardized

by log function. Outliers were removed. Polarity scores and subjective scores were

evaluated based on given data. TextBlob library in python was used. These scores were

included in a feature set to augment the features for better prediction of the individual

prevention behaviors. Figure  4.3 shows the word cloud of collected 4,764 tweets in the

state of New York. These tweets included the preventive behaviors of relevant terms.

Figure 4.3. Word cloud of collected tweets in the state of New York
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4.2.2 Encoding (prevention behaviors lexicon)

If tweets included appropriate keywords for certain prevention, they were then la-

beled by that prevention behavior. Table  4.2 provides an overview of the preventive

behaviors and associated conceptual terms (or keywords) utilized in encoding tweets

prior to model training. Equivalent conceptual terms corresponding to each preventive

behavior were collected from sources including the CDC, scholarly literature, and on-

line repositories (  CDC ,  2020 ;  Kwon et al.  ,  2020 ;  Wikipedia ,  2021 ). These categories

encompass: mask usage; hygiene practices; social distancing protocols; quarantine mea-

sures; and travel restrictions. The validation of the lexicon involved the augmentation

of additional keywords and subsequent reassessment through the identification of absent

synonyms for the prevention behaviors using the word cloud. Any identified missing

synonyms were subsequently incorporated into the lexicon.

In cases where a tweet encompassed multiple prevention behaviors, preference was

given to the prevention method mentioned most frequently. In situations where mul-

tiple prevention behaviors were equally mentioned within the same tweet, priority was

allocated based on the level of restrictiveness, adhering to the sequence: travel ban,

quarantine, distancing, mask, hygiene.

Table 4.2. Interventions (prevention behaviors) by CDC

Prevention Relevant words

Mask mask(s), facemask, wearamask, face coverings,

face shields, respirator(s), N-95 (n95, nn95), KF-

94 (kf94), ppe

continued on next page
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Table 4.2. continued

Prevention Relevant words

Hygiene hygiene, hygienic care, hygienic, hand washing,

wash(ing) (your) hands, cover(ing) coughs and

sneeze, sanitize(d), sanitizer, disinfect, disinfec-

tion, disinfectant(s), avoid poorly ventilated, avoid

closed spaces, intervention(s), prevention(s), pre-

ventive, guideline(s), guidance(s)

Distancing physical distancing, social distancing, social dis-

tance, distancing, distance, 6 feet, flatten the

curve, keep(ing) space, give(ing) space, no (large)

gathering, no party, avoid crowds

Quarantine quarantine(s), self-quarantine, isolation, curfew,

separate(s) and restrict(s) the movement(s), busi-

ness closures, lockdown, lock down, shutdown,

stay(ing) home, stay-at-home, stay at home

Travel ban travel ban, travel(ing), travel(ed), tour, tourism,

fly(ing), cruise, ship, private jets, train, trans-

portation, border closures, travel restrictions, can-

cel trip, flying jet, flight(s), airplane(s), airbus, air-

line(s)

Basic hygienic behaviors such as hand washing and disinfecting were categorized

into hygiene. If tweets included [prevention], [intervention], or [guidelines], but did not

explicitly include the lexicon, then these tweets were grouped into hygiene.
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This encoding process only considered whether input tweets included the keywords

specified in the dictionary. After extracting the keywords, only less than 15% tweets

explicitly contained the keywords. These tweets were manually validated by inspecting

whether each context conformed with the given label, or prevention behavior.

4.3 Prediction of Individual Prevention Behaviors

The question of predicting adoption of intervention behaviors require predicting in-

dividual prevention behaviors. The most likely preventive behaviors can be inferred by

probabilities given social media data. Processing social media data involves the reduc-

tion of textual information into a numeric vector space, achieved through pre-processing,

encoding, and TF-IDF vectorizer. Given that the labeled dataset constitutes a small

fraction of the overall collected data, the present study engaged in semi-supervised learn-

ing. To address the problem, a machine learning with self-training scheme is developed

( Zoph et al.  ,  2020 ;  Baevski and Mohamed  ,  2020 ). Figure  4.4 conceptualizes the methods,

PRecomm. In the initial training, the labeled tweets were partitioned into training and

testing sets to facilitate classical machine learning classifiers. Specifically, this research

employed random forest, support vector machine, and k-nearest neighbor algorithms for

analysis. After the initial training, PRecomm was trained with both original training

data and data with predicted labels (or pseudo-labeled data) from the pre-trained PRe-

comm. The new-trained PRecomm makes a new prediction for unlabeled data. This

process is defined as self-training. This self-training process was repeated until the stop-

ping criteria was met. A heuristic approach was used for stopping criteria, in which if

improvement in F-1 score was not greater than the previous iteration, then iteration was

stopped. Pseudo code of PRecomm is shown in Algorithm  1 in Appendix  A2 .

Random forest was used as a baseline classifier as compared to support vector ma-

chines. The candidates for the number of estimators for random forest were {1, 2, 8, 32,

90, 100, 110}. Support vector machines with linear kernel was used to predict the most
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Figure 4.4. Prediction and Recommended Predictions (PRecomm)

likely prevention behavior of each input tweet. The candidates for regularization param-

eter (C) were {0.1, 0.2, 0.7, 0.9, 1.0 ,1.8, 2.0}. K-nearest neighbor was used for prediction

of multiple preventions. It was assumed that close tweets share similar labels. PRecomm

ranks the nearest tweet ID’s from k-nearest neighbor in descending order of similarity

scores (i.e., 1-distance). Top two prediction results with the highest frequency were

assigned to input tweets. Cosine distance was used, because it gives closer distance than

`2 norm. The candidates for the number of neighbors (K) were {1, 2, 9, 10, 12, 19,

20}. Labeled and pseudo-labeled tweets were split into training and testing with the

ratio of 80% to 20%. 5 fold cross-validation was used to both estimate the parameters

of classifiers and subsequently adjust classifiers to provide more accurate probability of

prediction. Model performance was measured by F-1 score and efficiency (or computa-

tion time). Prediction probabilities for unlabeled data by support vector machines and
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random forest was evaluated using predict_proba from the sklearn package. Similarity

scores for unlabeled data by k-nearest neighbor was evaluated using 1-distance.

4.4 Results and Discussion

4.4.1 Tweets results

Only 541 (13%) tweets contained the prevention behaviors lexicon. We collected more

tweets for underrepresented prevention in the encoded data such as mask, distancing, and

travel ban. Consequently, 663 tweets (14%) were included as the encoded tweets after

balancing and used for training the model. The 4,101 (86%) tweets were unlabeled and

predicted by the PRecomm. Table  4.3 describes the distribution of labeled and unlabeled

tweets from New York in each month. All tweets were unique. We defined noise in tweets

when users posted tweets multiple times with specific prevention behaviors. Seven tweets

were determined to be noise and removed from study data. 663 unique tweets from 631

unique users were included in this study.

Table 4.3. The number of tweets of labeled tweets, labeled tweets after
balancing, unlabeled tweets, and total tweets in the state of New York

New York March April May Total
Labeled 131 194 216 541
Balanced 216 216 231 663 (14%)
Unlabeled 1,378 1,345 1,378 4,101 (86%)
Total 1,594 1,561 1,609 4,764(100%)

Figure  4.5 describes the prevention behaviors distribution before and after balanc-

ing. Table  4.4 also describes the number of tweets in each prevention before and after

balancing. The disproportion inherent in the original random sampling was partially

considered in balancing.
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Figure 4.5. Original (a) and balanced (b) prevention behaviors distribution

Table 4.4. The number of tweets in each prevention behavior after bal-
ancing (the number of tweets before balancing is described in parenthesis)

Prevention March April May Total
Mask 40 (12) 47 (27) 47 (41) 134 (80)
Hygiene 36 (26) 30 (22) 39 (30) 105 (78)
Distancing 46 (22) 49 (45) 47 (49) 142 (116)
Quarantine 50 (41) 64 (87) 63 (86) 177 (214)
Travel ban 44 (30) 26 (13) 35 (10) 105 (53)
Total 216 (131) 216 (194) 231 (216) 663 (541)
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We observed 30 (5%) tweets with multiple prevention behaviors when encoding.

These tweets were encoded by a single prevention based on the decision rule of frequency

and restrictiveness discussed in Section 4.4.

4.4.2 Training results

Number of iteration of self-training

For the baseline classifier and support vector machines, two iterations of self-training

improved F-1 scores the most, whereas for k-nearest neighbor, single self-training im-

proved F-1 score the most. Figure  4.6 describes the F-1 scores of hyper-parameter tuning

for the baseline classifier (i.e., random forest), support vector machines, and k-nearest

neighbor in the initial training and at each iteration of self-training.

Hyper-parameters

After hyper-parameter tuning, We choose the regularization parameter (C) for sup-

port vector machines as 0.7 with F-1 score of 0.98. For random forest, the number

of estimators was selected as 100 (F-1=0.74). We choose the number of neighbors for

k-nearest neighbor as K = 10 (F-1=0.55).

4.4.3 Model evaluation results

Baseline vs support vector machines

F-1 score of support vector machines was evaluated as 0.97, which is 31% higher than

F-1 score (F-1 = 0.74) of the baseline classifier (random forest). The computation time

of the baseline classifier was 6,618 seconds to complete initial and three iterations of

self-training, which was 262% more expensive than support vector machines. Random

forest had an average prediction score of 0.72, which is similar to the support vector
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Figure 4.6. F-1 scores for hyper-parameters tuning (a) random forest, (b)
support vector machines, and (c) k-nearest neighbor in the initial training
and each iteration of self-training

machines’ average prediction score of 0.73. Therefore, support vector machines were

selected instead of the baseline classifier in consideration of both accuracy and efficiency.

K-nearest neighbor

While support vector machines achieve the highest F-1 score for predicting the most

likely prevention, k-nearest neighbor provides the fastest computation for multiple pre-

ventions. K-nearest neighbor had accuracy score of 0.64 and F-1 score of 0.55. Its com-

putation time was 1,172 seconds for completing self-training including hyperparameter
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tuning and ordering of multiple prevention behaviors by similarity scores. Its average

similarity score of prediction results was 0.8.

Table  4.5 describes accuracy, F-1, computational time, and prediction scores or sim-

ilarity scores of random forest (RF), support vector machines (SVM), and k-nearest

neighbor (KNN). Figure  4.7 describes F-1 scores across the different classifiers in the

initial- and self-training.

Table 4.5. Model performance metrics of random forest (RF), support
vector machines (SVM), k-nearest neighbor (KNN)

Metrics RF SVM KNN
Accuracy 0.84 0.99 0.64
F-1 0.74 0.97 0.55
Time (seconds) 6,618 1,827 1,172
Prediction score 0.72 0.73 -
Similarity score - - 0.80

Figure 4.7. F-1 scores and prediction probabilities or similarity scores
by random forest, support vector machines, and k-nearest neighbor
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4.4.4 Prediction results

Individual tweets

Table  4.6 describes one example of the results from the PRecomm. PRecomm pre-

dicted the input tweet as travel ban with probability of 0.91. Also, it listed 10 similar

tweets with similarity scores for any chance of multiple prevention behaviors it might

had, then it predicted the input tweet as hygiene, travel ban, and mask based on the fre-

quency. Similarly, the rest of 4,101 unlabeled tweets were predicted in the same format

as Table  4.6 .

Aggregated prediction results

Prevention behaviors distribution after prediction is as follows: hygiene (1221 (30%)),

travel ban (1094 (27%)), quarantine (1067 (25%)), mask (524 (13%)), distancing (195

(5%)). Also, average prediction probabilities across different classes was 0.73 with stan-

dard deviation of 0.02. Distribution of prediction probabilities across prevention behav-

iors are described in Figure  4.8 .

Figure 4.8. Prediction scores distribution - SVM
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The prediction probabilities were improved with self-training machine learning, as the

average prediction score became higher than the one without self-training machine learn-

ing (Figure  4.9 )

Figure 4.9. Prediction scores distribution without (a) and with self-training (b)

4.4.5 Discussion of the Prediction of Individual Prevention Behaviors

Self-training performance was inherited by selection of machine learning classifiers.

The parameters for classifiers after cross validation without or with self-training were not

changed. Even if any change in F-1 score existed, it was that the original parameter still

had higher F-1 score than the other candidates after self-training. In addition, it was

observed that self-training with random forest (with the number of estimators = 100)

converged to a single class even after three iterations where all pseudo labeled data was

inputs to the model at once at each iteration. The ratio of original training data to

pseudo-labeled data was experimented using 90% to 10% (and 70% to 30%) iteratively.

The pseudo-labeled data was randomly selected at each iteration. However, the small

portion method did not fix the issue of convergence to a single class but just took more

time to reach to the convergence. Therefore, it seems that small imbalance in classes can

cause self-training machine learning to converge to the majority class regardless of the

ratio of pseudo labels. Hence, whole pseudo labels was leveraged at once in self-training
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and the and observed F-1 scores at each iteration in deciding stopping timing. Figure

 4.10 describes confusion matrices of self-training with the small portion approach.

Figure 4.10. Confusion matrix at each iteration of self-training with ran-
dom forest (a ratio of training data to pseudo-labeled data was 90%:10%
at each iteration)

Although self-training did not seem to significantly improve model performance (F-

1 score), it was observed that both average prediction probabilities in support vector

machine and random forest and average similarity scores in k-nearest neighbor were

improved after self-training. Even though training without self-training seemingly had

good model performance in our experiment, it was partially due to well encoded and

balanced training data. It required meticulous work in construction of the lexicon for

encoding and re-collection of data for balancing. Therefore, it is recommendable to

experiment how self-training performs in the situation where such sedulous work is not

available.
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In consideration of efficiency and accuracy, prediction made by support vector ma-

chines is preferable to the baseline classifier in predicting the most likely prevention

behavior. It is not negligible that the baseline classifier took 3.6 times slower than

support vector machines in contemplating the fact that tweets size exponentially grows

in practice. K-nearest neighbor was able to predict multiple prevention behaviors in a

short amount of time. Therefore, k-nearest neighbor results can be adopted along with

support vector machines results for better flexibility in prediction.

From perspective of practical application of the aggregated results of preventions,

about 25-30% of individuals were likely to follow the prevention of hygiene, travel ban,

and quarantine, whereas only 5-13% of population were likely to follow mask and dis-

tancing. Therefore, while sustaining high compliance level with hygiene, travel ban,

and quarantine, it is recommended for disaster management organizations to concen-

trate on deploying mask and distancing as well. It is noteworthy that the utilization

of this quantitative measure of individual compliance with intervention has the poten-

tial to improve a mitigation plan to prevent transmission. Policy makers can promote

interventions with low compliance level, deploying personal protective tools in order to

improve the compliance level. Further, the compliance level with intervention can be

further investigated based on location, providing local policy makers the quantitative

evidence for updating the prevention strategies. As our PRecomm can evaluate the indi-

vidual compliance level with intervention in real-time, policy makers and disaster relief

organization can reduce response time and improve the efficacy of prevention strategies

during emergencies. Moreover, the implementation of traditional methodologies such as

observation or survey studies during emergencies is frequently challenged by cost con-

straints. Hence, the utilization of self-training machine learning techniques to quantify

individual compliance levels with preventive measures using social media data offers

a viable alternative for policy making during emergency situations where conventional

approaches are not feasible.

69



Table 4.6. An example of the PRecomm outcome

Field Value
Time 2020-03-01 23:39:11
Tweet ID 1200008100001990001
Body Diamond Princess passen-

ger: I have the coronavirus.
So far, it isn’t that bad. via
Advocate

Location Manhattan
User description Father husband volunteer

fireman data analyst. Oc-
casionally life gives us fairy-
tale

User name jacobdoe
#Followers 3.60
#Followings 2.63
Account created date 2014-02-14 23:28:02
#Likes 3.88
# Posts 4.31

Predicted prevention travel ban
Probability score 0.91
Nearest neighbors: score hygiene: 1.0, distancing:

0.1, travel ban: 0.09, mask:
0.09, hygiene: 0.09, mask:
0.08, mask: 0.08, travel
ban: 0.08, hygiene: 0.07,
travel ban: 0.07

Prediction (frequency) hygiene(3), travel ban(3),
mask(3), distancing(1)
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5. INCORPORATION OF THE EFFECT OF PREVENTION

BEHAVIORS WITH EPIDEMIC MODELING

This manuscript has been submitted to the Institute of Industrial and Systems Engineers

(IISE) Transactions on Healthcare Systems Engineering in September 2023 and is in

revision.

5.1 Problem Formulation

Classical epidemic modeling method, compartmental differential equations, was em-

ployed in this study. In this model, there are five states, susceptible (S), exposed (or

latent) (E), infected (I), and recovered (R) or deceased (D). Figure  5.1 illustrates the

states and associated parameters that govern the rate of population change as it transi-

tions from one state to another.

Figure 5.1. The SEIRD model with nonpharmaceutical interventions
and model parameters

Nonpharmaceutical interventions (NPIs) aim to reduce the transmission rate between

individuals in the susceptible and exposed populations by a factor of τ . Once patients

transition to the recovered or deceased state, they are assumed not to re-enter the SEIRD
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system. The changes in population size in each state are mathematically formulated in

Equation  5.1 .

dS

dt
= −τβ(t)SI/N

dE

dt
= τβ(t)SI/N − σE

dI

dt
= σE/N − (γ + ρ)I

dR

dt
= γI

dD

dt
= ρI.

(5.1)

N denotes the total number of population such that N = S(t)+E(t)+I(t)+R(t)+D(t),

S(t) denotes the number of susceptible population at time t who are not infected yet,

E(t) denotes the number of population exposed to infected population but not infectious

yet at time t, I(t) denotes the number of population who are infected at time t, R(t)

denotes the number of population who get recovered at time t, and D(t) denotes the

number of deceased population at time t. β(t) is a transmission rate at time t, τ is the

effect of nonpharmaceutical intervention, σ is an exposed rate, γ is a recovery rate, and

ρ is a mortality rate. N is assumed to be a static variable, while the transmission rate

β(t) is assumed to be a dynamic variable in the course of the disease. Details will be

discussed in Section 4.3. Intuitively, β(t) is interpreted as a probability of transmission

for a single individual after contacting with the potential infectious population ( I
N
).

Table  5.1 describes the parameters and notations in the model and their definition.
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Table 5.1. Notation

Notation Definitions

β Rate from susceptible to exposed

σ Rate from exposed to infectious

γ Rate from infected to recovered

ρ Rate from infected to deceased

τ NPI effect on March 23

τ ′ NPI effect on April 30

A general representation of the parameter estimation problem can be formulated as

Equation  5.2 , where the objective is to minimize the mean squared errors between the

reported infected cases and the estimates of infected cases. The observation y represents

the reported infected cases on day t, and the goal is to find parameter values that result

in the minimum squared residuals between the model’s predicted values and the observed

data.

arg min
θ

1
T

T∑
t=1
‖y(t)− hθ(t)‖2

s.t. θ ∈ Θ,

(5.2)

where hθ is our hypothesized function, which is the integral of the rate of change of

infected cases (dI/dt) as described in Equation  5.1 . The parameter vector θ represents

the values of various parameters in the model, such as θ = [β(t), σ, γ, ρ, τ, τ ′]T , where

t represents time in days and Θ is a feasible set of θ. Each parameter value, such as

exposed-, recovered-, and death- rate, are bounded within a tighter range of values in

reality.
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5.2 Data & Experiment Settings

5.2.1 Data

This study utilized the infected and deceased counts data reported by the CDC for

the state of New York during the period from March 1 to June 8, 2020 (  CDC ,  2020 ).

Simulation method was employed to study the dynamics of the coronavirus outbreak by

tracking the number of individuals in different compartments, Susceptible (S), Exposed

(E), Infected (I), Recovered (R), and Deceased (D), over a hundred-day period that

included the first peak of the coronavirus outbreak. The study also considered the

effect of nonpharmaceutical interventions, accounting for the realistic timeline of public

policies implemented in New York. The total population estimate of New York was

19,378,102 (N) on April 1 2020 ( United States Census ,  2020 ).

5.2.2 Public policies - interventions

Before vaccines were developed (and even after vaccines became available) during the

COVID-19 pandemic, public policies were implemented in affected regions for decreasing

respiratory infections and reducing the contact rate per individual, to intervene the

transmission chain. Table  5.2 summarizes the timeline of public policies implemented

in New York state in March 2020. The New York governor banned gatherings of more

than 500 people on March 12 (  NewYork ,  2020 ). Local schools temporarily shut down

on March 13, followed by NYC closed public schools on March 15. On March 23, all

schools and businesses were closed (i.e., New York on pause). Then, on April 30, the

subway in New York City stopped the service from 1-5 AM for disinfection (i.e., metro

shutdown).

In this study, it was assumed that nonpharmaceutical interventions aimed at altering

the transmission rate began on Saturday, March 23, when New York state went on pause

and all non-essential businesses were closed (i.e., β(t) = τβ(t−1)). Then, it was assumed
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that another intervention of metro closure was implemented on April 30. Similarly, we

divided the time horizon into smaller segments, aligned with the timeline of events, and

estimated the β(t) for each time segment.

Table 5.2. COVID-19 Timeline in New York

Date Orders

March 12 Banned gatherings of more than 500 people

March 13 Local Schools shut down

March 15 Closed public schools in NYC

March 23 All non-essential for profit or non-profit businesses

statewide to close their in-office personnel func-

tions (New York on Pause)

April 30 NYC subway closures from 1 a.m. to 5 a.m. dur-

ing the coronavirus pandemic in order to disinfect

trains and stations (metro shutdown)

May 20 Daily new hospitalizations drop below 5,000 daily

for the first time

5.2.3 Estimation of transmission rate - deterministic dynamic variable

In the simulation model, we assumed that the transmission rate β is not static,

instead dynamic; β changes over time, particularly it decreases when public policies

are implemented. Figure  5.2 illustrates this dynamics of the transmission rate with a

discontinuous step function. Modeling with a dynamic variable of the transmission rate

allows for a more accurate estimation of the time-varying evolution of the COVID-19

outbreak.
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Figure 5.2. A theoretical step function of the dynamic variable of trans-
mission rate assuming a public policy is implemented on March 23 and
another public policy is implemented on April 30

In our model, we update the value of β at time t was updated based on the starting

times of COVID-19 interventions described in Table  5.2 (t = 0 indicates March 1 and

t = 100 indicates June 8, 2020). In this study, we considered two major interventions

in the modeling process, which includes the New York lockdown on March 23 and the

metro shutdown on April 30. The decreasing rate of the transmission rate due to public

interventions is denoted by τ ’s such that 0 < τ < 1. τ denotes the decreasing rate of

transmission rate by the New York on pause, while τ ′ denotes the decreasing rate of

transmission rate by the metro shutdown. This can be formulated by:

β′(t) = τβ(t− 1), for τ ∈ (0, 1) and t = 23.

The updated transmission rate remains unchanged until the next update. Similarly, on

April 30, the transmission rate was further reduced due to another intervention of metro
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closures in New York City. In this study, we assumed that the effectiveness of metro

closures results in a further decrease in the transmission rate by τ ′ such that:

β̃′(t) = τ ′β′(t− 1), for τ ′ ∈ (0, 1) and t = 61.

5.3 Methods

5.3.1 Grid search method

In the grid search approach, different combinations of values for the parameters β,

σ, γ, ρ, and τ ’s are plugged into Equation  5.1 and  5.2 . Table  5.3 describes the ranges

of values for each parameter used in this study based on CDC reports (  CDC ,  2022 ).

Then, the mean squared error was calculated for 3.24 million combinations resulted

from multiplying parameters’ dimensions (i.e., 3.24 million= ||β · σ · γ · ρ · τ · τ ′||). The

step size was determined empirically by examining a range of parameter values and

the number of iterations. That is, the step size was evaluated by dividing a range of

parameter values by the number of iterations. This approach allowed for a systematic

exploration of parameter space to find the combination of values that minimizes the

mean squared errors.

Table 5.3. Range of parameter values for grid search

Parameter Range Dimension Incremental value

β [0.2, 0.9] |β| ≤ 20 0.0335

σ [0.7×10−1, 0.5] |σ| ≤ 20 0.0215

γ [0.7×10−1, 0.2] |γ| ≤ 10 0.0130

ρ [0.1×10−3, 9.2×10−2] |ρ| ≤ 10 0.0092

τ [0.5×10−1, 9.5×10−1] |τ | ≤ 9 0.1000

τ ‘ [0.5×10−1, 9.5×10−1] |τ ‘| ≤ 9 0.0900
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5.3.2 Trust region method

To justify the selection of trust region interior point, we illustrate the preliminary

result from three methods including sequential least squares programming (SLSQP),

linear approximation (COBYLA), and the trust region interior point method (trust

region) in Figure  5.3 .  5.4 compares the details of result. The mean squared error

exhibited a descending trend in the following sequence: SLSQP, COBYLA, and trust

region.

To solve Equation  5.2 , we applied nonlinear optimization algorithms from the opti-

mize package in the Scipy library in python. After investigating three different nonlinear

optimization methods, the trust region method was selected in this study based on the

fitting result with the least mean squared error.

The primary goal of this study was not to discover a nonlinear solver or demonstrate

algorithmic effectiveness. Instead, it focused on solving the optimization problem to

analyze the evolution of COVID-19 and assess the effectiveness of nonpharmaceutical

interventions. As a result, delving into the specifics of each algorithm and its performance

was beyond the scope of our research. Instead, we compared the mean squared errors by

3 different methods in the preliminary study. We investigated the trust region interior

point method had the best objective value among 3 methods for finding parameters

describing the COVID-19 dynamics. Therefore, the trust region interior point method

was selected as a nonlinear optimization solver in this study.

Barrier function in trust region interior point

In applying nonlinear optimization algorithms, Equation  5.2 , which is a constrained

problem, can be transformed to a unconstrained problem shown in Equation  5.3 by

introducing a penalty term, or a log-barrier term, consisting of each constraint to the

original objective function. For instance, if θ is greater than 0 and less than 1, where θ
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Figure 5.3. MSE by SLSQP, COBYLA, Trust region interior point, and
a combined graph of results from all three methods

is a parameter in Θ in Equation  5.2 , then the penalty term −µ(log θ +log(1−θ)), where

µ is a barrier parameter such that µ > 0 is added to the original objective function.

arg min
θ

1
2

T∑
t=1

{
‖y(t)− hθ(t)‖2

}
− µ(ln(−θ + 1) + ln θ), (5.3)

Convergence of trust region interior point

The trust-region interior-point method defines a neighborhood, known as the trust re-

gion or the trust region radius (r), around the current solution based on the performance

in the previous iteration, and then searching for the direction and step size within that

neighborhood that approximates the minimizer of the problem (  Nocedal and Wright ,
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Table 5.4. Comparison of the mean squared errors, parameter estimates,
and computation times among sequential least squares, linear approxima-
tion, and trust region interior point

Name SLSQP COBYLA Trust region
Mean squared error 3538.92× 107 108.27× 107 25.69× 107

β 0.485 0.716 0.675
σ 0.334 1.492 0.490
γ 0.070 0.083 0.070
ρ 0.0001 -0.004 0.002
τ 0.600 0.196 0.600
τ ′ 0.700 0.630 0.700

Time (sec) 151 813 2,720

 1999 ). When the steps taken in the previous iteration are accurate in minimizing the

objective function, a greater trust-region radius can be chosen to allow for bigger steps,

which can potentially progress the optimization process towards the optimal solution

faster, that is the optimization converges faster. By adjusting the trust-region radius

at each iteration, the trust-region interior-point method aims to balance the trade-off

between exploration and exploitation, finding a good compromise between taking large

steps for faster convergence and ensuring accuracy in the optimization process.

Experiment setting

Initial starting points were selected randomly within a range of parameter values

based on CDC reports (  CDC ,  2022 ). Details of the experiment setting were descried in

Table  5.5 . In the trust region method, the incubation and infectious periods are set to

be within [2, 14] days and [5, 14] days, respectively ( CDC ,  2022 ). The initial value for

r is 1 and the stopping criteria is 0.1× 10−7 in the trust-region interior point method.
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Table 5.5. Experiment setup for the trust-region interior-point method

Name Range/Initial value
Iterations (k) 100
Initial value (r) 1
Stopping criteria per each iteration r < 0.1× 10−7

Total population (N) 19,378,102
Incubation period (days) [2, 14]
Infectious period (days) [5, 14]
Transmission rate (β) [0,∞)
Exposed to infectious rate (σ) [0,1]
Recovery rate (γ) [0.07, 0.2]
Mortality rate (ρ) [0.0001,0.1]
NPI effect 1 (τ) [0,0.95]
NPI effect 2 (τ ′) [0,0.95]

5.3.3 Alternating minimization

In the preliminary study, we investigated that the selected mortality rate by trust

region interior point could be improved after investigating the graphical result. There-

fore, we formulated an alternating minimization to target only the mortality rate while

keeping the optimal values of the other parameters constant. Equation  5.4 includes the

mean squared error between the reported- and estimated death counts.

arg min
ρ

1
T

T∑
t=1
‖yD(t)− hρ(t)‖2

s.t. ρ < 0.1,

− ρ < 0,

(5.4)

where yD(t) is the number of deceased population reported by CDC, hρ(t) is the estimates

of deceased cases, and ρ is a mortality rate. The upper bound of ρ is 0.1 (  Ahmad et al.  ,
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 2021 ;  Nabi ,  2020 ). We applied the trust region interior point method to solve Equation

 5.4 .

5.3.4 Basic reproduction number of COVID-19

The reproduction number was estimated using a formula in Equation  5.5 ( Van den

Driessche ,  2017 ;  Jones ,  2007 ).

R0 = σβ

σ(γ + ρ) = β

γ + ρ
(5.5)

5.3.5 Model validation - bootstrap re-sampling

Using the parameter estimate obtained through trust region, we employed bootstrap-

ping to create a confidence interval for the number of infected cases and the number of

deaths. This was done to show the precision of the parameter estimates.

5.4 Result

5.4.1 Parameter estimates

We compared the parameter estimates with the results in  Chowell et al. ( 2003 ).

Because coronavirus is one of SARS virus and  Chowell et al.  ( 2003 ) studied a model

of general SARS dynamics, the parameter estimates in their study can be used as a

baseline in modeling COVID-19 ( Carcione et al. ,  2020 ). Others studied the COVID-19

dynamics in New York City with consideration of vaccination, but the exact values of

parameters were not found ( Demongeot et al. ,  2022 ).

The initial transmission rates estimated in this study were shown to be similar with

the ranges of baseline parameter values in published studies (  Chowell et al.  ,  2003 ;  Car-

cione et al.  ,  2020 ). The initial transmission rate was estimated by 0.73 by grid search,

while the transmission rate was estimated by 0.675 by trust region interior point, com-
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pared with 0.75 in  Chowell et al.  ( 2003 ) when R0 > 1 without mitigation strategies.

The incubation period was estimated by 3.8 days by grid search, while the incubation

period was estimated by 2.04 days by trust region interior point, compared with 3 days

in  Chowell et al.  ( 2003 ). In addition, the infectious period was estimated by 13.42 days

by grid search, while the infectious period was estimated by 13.48 days by trust re-

gion, compared with 8 days in the baseline values. The mortality rate was estimated by

0.1×10−3 by grid search, while the mortality rate was estimated by 2.22×10−3 by trust

region, compared to 1.44× 10−3 in the baseline parameter.

Most importantly, the effect of school and business closures on March 23 was esti-

mated by 77% by grid search, while the effect of school and business closures on March

23 was estimated by 40% by trust region interior point. The effect of metro closure

was estimated by 14% by grid search, while the effect of metro closure was estimated

by 30%. There was no literature found which quantified the effect of the New York on

pause and the metro shutdown as of 2023. The effect of these policies were obtained by

100(1− τ ′s).

The average basic reproduction number R0 obtained through grid search was 5.89,

whereas the average R0 calculated using the trust region interior point method was 5.85,

as compared to the baseline study’s value of 5.72.

Table  5.6 summarizes the results from the grid search and trust region interior point

method with comparison with the results in (  Chowell et al.  ,  2003 ). We recommend to

consider the parameter estimates and the quantified effect of NPIs obtained through

trust region interior point, since it exhibited smaller errors than the grid search.

In Figure  5.4 , the errors and parameter estimates were illustrated according to 100

different initial values utilized in the trust region interior point method. The minimum

was obtained when the initial values for parameters was θ = [β, σ, γ, ρ, τ, τ ′]T = [0.675,

0.162, 0.07, 0.0001, 0.6, 0.7]T . Then, ρ, a mortality rate, was determined by solving

a subsequent alternating minimization of the mean squared errors of the death count
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with the initial value of 0.0016. We illustrate in Figure  5.5 (a) the beta distribution

obtained from trust region with different starting points (b) the prediction of number of

population in the state of SEIRD over a four hundred-day period, utilizing the optimal

parameter that minimizes the mean squared error.

Table 5.6. Parameter estimates by grid search and trust region in this
study compared to the values from a baseline study (  Chowell et al. ( 2003 ))

Name Grid Search Trust Region Baseline

N 19,378,102 19,378,102 10,000,000

β(t = 0) 0.730 0.675 0.750

β(0 ≤ t < 23) 0.730 0.675 -

β(23 ≤ t < 61) 0.562 0.405 -

β(t≥61) 0.079 0.284 -

σ 0.2600 (=1/3.80) 0.4900 (=1/2.04) 0.3300 (=1/3)

γ 0.0700 (≈1/13.42)∗ 0.0701 (≈1/13.48)∗ 0.1250 (=1/8)

ρ 0.10×10−3 2.22×10−3 1.44×10−3

τ 0.77 0.60 -

τ ′ 0.14 0.70 -

Error (I) 1, 080.00× 107 25.69× 107 -

Error (D) 369.29× 107 3.36× 107 -

Average R0 5.89 5.85 5.72

Time (sec) 9,926 2,351 -
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Figure 5.4. Trust region results - (a) the consequent mean squares of
errors (b) parameter estimates with different initial starting points

Figure 5.5. Trust region and alternating optimization results – (a) Beta
distribution and (b) prediction of coronavirus dynamics using SEIRD
model with the optimal parameters from trust region and alternating op-
timization

5.4.2 Model validation

Bootstrap resampling

Based on the selected parameter values by trust region interior point, we constructed

a confidence interval for the number of infected cases and the number of deceased cases.

The result shows that the model by trust region is within 95% of confidence interval

for 1,000 samples. Specifically, the confidence interval for the number of infected has a
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lower bound of 167342.43 and a upper bound of 307133.06, which includes the median of

the number of infected cases. Similarly, the median of the number of deceased cases was

included in the 95% of confidence interval (i.e., lower bound = 4735.93, upper bound =

13899.89).

5.5 Discussion

5.5.1 Parameter estimates

After comparing the MSE from grid search and trust region methods, the parameter

estimates from trust region interior point had lower error than grid search. The param-

eter estimates by trust region interior point were compared to the baseline parameters

of general SARS viruses in  Chowell and Nishiura  ( 2014 ). The initial transmission rate

of 0.675 in this study is about 90% of the baseline transmission rate of 0.75. The latent

period of 2.04 days is 0.86 days shorter than the baseline study of 3 days, while the

infectious period of 13.48 days in this study is 5.48 days longer than the baseline study

of 8 days. Further, the mortality rate of 0.0022 in this study is 0.78× 10−3 higher than

the baseline mortality rate of 0.0014. Intuitively, this investigation showed although

the transmission rate of coronavirus is 10% less than the transmission rate of general

SARS viruses, the infectious period of coronavirus is longer than general SARS viruses.

This describes that COVID-19 symptoms last 5.48 days longer than usual SARS symp-

toms, possibly increasing the risk of transmission, causing the prolonged timeline of the

COVID-19 outbreak. Notably, the mortality rate of coronavirus was 54% higher than

general SARS viruses, showing the fatality of coronavirus. The average basic reproduc-

tion number R0 was estimated as 5.85, which is about 2.72% larger than the baseline

reproduction number.

The effectiveness of New York on Pause reduced the transmission rate by 40%, while

the metro closure reduced the transmission rate by 30%. As of 2023, there have been
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no studies that quantified the effectiveness of the New York on Pause and the metro

closure, causing difficulty in direct comparison.

5.5.2 Comparison between grid search and trust region

The results indicated that the model chosen through trust region outperformed the

model selected through grid search in terms of fitting empirical data with less error (as

demonstrated in Figure  5.6 ) and achieving faster computation time.

Figure 5.6. Grid search and Trust region

5.5.3 Performance of grid search

Grid search explored 3,240,000 combinations of parameter values, requiring a sub-

stantial amount of computation time. In a preliminary study, we explored parameter

values with a larger step size of 0.1 to approximate the range of best values. As a result,

we determined that the transmission rate was roughly greater than 0.2. Therefore, we

set the initial value for β to 0.2 instead of 0. After investigating the grid search results,

we found that the best parameter values were similar to those from the trust region

method.
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5.5.4 Nonlinear constrained optimization to unconstrained optimization in
the trust region interior point method

We have formulated a mathematical problem to optimize the model parameters for

the SEIRD model for COVID-19. Theoretically, the constraints set in our optimiza-

tion problem could be removed by incorporating a penalty function into the objective

function. The primary motivation was to apply the existing solvers designed for uncon-

strained nonlinear optimization. To assess this, we conducted experiments using solvers

available in the Python library for nonlinear optimization problems, specifically we used

the optimize module within the Scipy library.

To convert the original problem’s constraints into an unconstrained problem, a

penalty function (such as −µ(log θ + log (1− θ))) was introduced and added to the

initial objective function. The trust region method was subsequently employed to deter-

mine the optimal values for various parameters, including transmission rate, exposure

rate, recovery rate, fatality rate, the impact of the first non-pharmaceutical intervention

in New York (known as New York on pause), and the impact of the second NPI, which

involved the closure of the metro system.

5.5.5 Trust region and initial starting point

The selection of initial starting points had a significant impact on the optimal solution

achieved through the trust region interior point method. To address this issue, we

adopted a heuristic approach, trial and error method, to find the most suitable initial

starting point that minimizes the objective value. Initially, we used an educated guess

based on the outcome of grid search, and subsequently fine-tuned the initial values by

making small adjustments within the constraints of each parameter. This approach

aimed to narrow down the range of values and enhance the optimization process. In

order to thoroughly explore the parameter space, we considered a hundred different
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initial points and assessed their corresponding objective values. Since all six parameters

were optimized simultaneously, their interdependence played a crucial role. Even if

just one out of the six parameters deviated from the promising initial point, the trust

region method could potentially become trapped in a local minimum. Therefore, it was

essential to investigate a diverse set of initial starting points in the optimization process,

utilizing the trust region method. Since we explored a hundred different combinations

of initial values for the parameter vector, it allowed a comprehensive exploration of the

parameter space.

5.5.6 Aggregated effect of recovered rate and deceased rate in the SEIRD

After examining the coronavirus dynamics using the optimal solution obtained from

the primal optimization problem, it was investigated that the recovered- and deceased

rate had an aggregated effect on the number of infected population in the objective

function of mean squared error. Thus, the impact between the recovered rate and death

rate on the loss function was not distinguishable due to the combined effect on the

loss function. It was investigated that the mortality rate determined through the trust

region method did not accurately align with the number of deaths reported by the

CDC. Consequently, an additional problem of alternating minimization was formulated

to identify the optimal death rate that minimized the mean squared errors between

the reported and estimated number of deaths. As a result, we successfully developed

an optimal model that fit empirical data, incorporating both the number of infected

individuals and the number of deaths, while minimizing errors to the greatest extent

possible.
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5.5.7 Subsequent alternating minimization of the mortality rate

After optimizing all parameter values, the mortality rate was further calibrated

though solving an alternating minimization problem with the objective function of the

mean squared error between the reported number of deceased cases and the predicted

number of deceased cases. By incorporating this additional calibration process, the mod-

eling accuracy was enhanced as it effectively minimized errors not only in the counts of

infected cases but also in the counts of deaths. Figure  5.7 presents a comparison be-

tween the outcomes obtained without using alternating minimization and those achieved

with alternating minimization. The improvement in the error of death counts is visually

represented by the blue arrow.

Figure 5.7. Reduced error in the deceased cases – (a) Before alternating
optimization (b) after alternating optimization

5.5.8 Measure of the effects of nonpharmaceutical interventions

Transmission rate was modeled as a dynamic variable (β(t)) affected by public poli-

cies (τ) such that β(t) = τβ(t − 1) when a public policy is implemented at time t.

This idea allowed to fit empirical data in a realistic scenario and enables to measure

the public policies effect. We updated the variable twice, on March 23 and April 30,

90



after contemplating the school closures and metro closures ordered in New York on each

respective date. Deployment of additional public policy decreased transmission rate fur-

ther, resulting in slowing down the transmission chain after 61-70 days. This finding

aligns with the official announcement of the first decline in the hospitalization rate on

May 20th.
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6. CONCLUSION

The purpose of this study was to integrate social media data into epidemic modeling to

improve prediction accuracy. The study analyzed two sets of empirical data collected

from Twitter and the Centers for Disease Control and Prevention, covering the period

from March 2020 to May 2020. The first research question attempted to answer how to

evaluate the extent of individual adoption of preventive behaviors during an epidemic.

Text analytics was employed in analyzing Twitter data. Furthermore, a self-training

machine learning model, consisting of support vector machines and k-nearest neighbor,

was developed to classify individual use of prevention behaviors based on the social

media data. The second research question addressed improvement of can we improve

the accuracy of epidemic modeling by incorporating the effect of preventive behaviors

on transmission. The classical compartmental differential equations system was applied

to model COVID-19 dynamics. For parameter estimation, both heuristic algorithms

and nonlinear optimization techniques were employed, chosen based on the minimum

mean squared error. Specifically, grid search and the trust-region interior point method

were applied in parameter estimation. These two analyses help to address our research

questions.

6.1 Evaluation of the Compliance with Individual Prevention Behaviors

The novel idea of predicting individual preventive behaviors was investigated. Pre-

dicting pre-defined preventive behaviors, in the social media data was considered as a

form of semi-supervised learning. In addressing the proposed problem, this study de-

veloped a self-training machine learning algorithm, called PRecomm, which stands for

prediction and recommendation.

Empirical data, in the form of tweets, was collected from Twitter aligned with the

timeline during which the COVID-19 dynamics were analyzed (from March 1, 2020, to
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May 31, 2020). Techniques in text analytics, such as regular expressions and TF-IDF

vectorization, were used for analyzing the text. Additionally, the study addressed the

challenge of imbalance within the collected data by removing excessive tweets related to

each preventive behavior and by collecting more tweets in under-represented classes.

Findings in this study indicated that the performance of self-training machine learn-

ing was affected by the selection of the classifier. It was shown that self-trained PRe-

comm processed 4,764 tweets with 0.97 F-1 score in less than 1,827 seconds. The study

revealed that the support vector machine outperforms the random forest in terms of pre-

diction accuracy, particularly the F-1 score, as well as computation time. Additionally,

the study found that k-nearest neighbor was useful in predicting multiple preventive

behaviors due to its fast computation time. The study suggested that the results from

both the support vector machine and k-nearest neighbor could be utilized together in

the real world for a flexible and resilient response to emergency situations.

The research also emphasized the challenge of imbalance in the collected data. The

analytical results of this study indicated that even a small imbalance in the collected

data led to convergence towards a majority label after self-training machine learning.

Therefore, the research emphasized that addressing such imbalance should take prece-

dence over self-training.

Another finding indicated that self-training machine learning did not improve the

F-1 score compared to classical machine learning. However, it did improve both average

prediction probabilities in support vector machines and random forests, as well as the

average similarity scores in k-nearest neighbor models. Furthermore, the performance

of classical machine learning was as high as the performance of self-training machine

learning, partially due to well-encoded and well-balanced data. However, encoding and

balancing training data required meticulous work. Therefore, it was recommended to

experiment with how self-training performs without such sedulous work on training data

to discover the true benefits of self-training.
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Based on the analytical results, approximately 25-30% of individuals were likely to

follow the preventive measures of hygiene, travel bans, and quarantine, whereas only

5-13% of the population was likely to follow mask-wearing and distancing. Quantitative

results from this study offer insights for improving deployment of prevention strategies

with low compliance. For example, policy makers can develop strategies (e.g., deploy-

ment of personal protective tools, such as masks) to help improve prevention strategies

with weak compliance. Furthermore, disaster relief organizations can provide personal-

ized social media contents to influence individuals with low compliance.

6.2 Incorporation of the Effect of Preventive Behaviors with Epidemic Mod-
eling

This study adapted a SEIRD model to examine the dynamics of the coronavirus.

The model investigation accounted for the influence of specific public health policies,

including closures of schools, stores, and subways. The transmission rate in this study

was characterized by a dynamic variable, allowing for the estimation of the effects of

non-pharmaceutical interventions (NPIs), considering the temporal implementation of

public policies in New York. To estimate the model parameters, the study employed grid

search, a heuristic method and nonlinear optimization using trust region interior point

method and alternating optimization. The study recommended prioritizing the results

obtained from the trust region method rather than the grid search due to its lower error.

For model validation, bootstrap resampling was utilized.

For New York between March and May of 2020, average reproduction number R0 was

estimated as [5.85,5.89]. This average basic reproduction number was approximately

2.72% higher than the baseline reproduction number (R0=0.72) of the general SARS

virus studied in  Chowell et al.  ( 2003 ). This study estimated effect of the New York

lockdown at 40%, indicating that public policy reduced the transmission rate by 40%.

Meanwhile, the effect of metro closure was estimated at 30%, suggesting that metro
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closure reduced the transmission rate by 30%. The analytical results suggest that the

lockdown had a greater effect than the metro closure in reducing COVID-19 transmission

rate.

Based on the results from both the grid search and the trust region method, the

best-fitting model was obtained with an initial transmission rate of [0.675,0.730], an

exposed rate of [0.26,0.49], and a recovered rate of 0.07, resulting in an incubation

period of approximately 2.04 to 3.80 days and an infectious period of approximately

13.42 to 13.48 days. This result estimates the infectious period of COVID-19 to be 5

days longer than that of the typical SARS virus, possibly prolonging the duration of the

pandemic. Furthermore, the mortality rate of COVID-19 was also about 54% higher

than the mortality rate of the typical SARS viruses, consistent with the high fatality of

coronavirus.

In conclusion, the study emphasized the importance of incorporating empirical data

regarding public policies, such as the types of public policies, precise implementation

dates, and localized considerations, into the modeling and analysis procedures for epi-

demic dynamics. This integration can enhance the prediction accuracy by incorporat-

ing realistic scenarios. In parameter estimation, the single objective function can be

improved by solving an additional optimization problem or adding a multi-objective

function to properly estimate the deceased rate. It is also critical to consider a wide

range of initial starting points when applying trust-region method. The study’s findings

demonstrate the potential to be applied to diverse regions and different virus variants,

thereby offering important support to policymakers engaged in disaster management.

6.3 Contribution

This research demonstrated the novel use of social media data to predict individual

compliance with prevention behaviors and integrating the effect of prevention behaviors

into epidemic modeling. This research provides an important foundation for integrating
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contextual data into epidemic modeling. Classical epidemic modeling only considers the

magnitude of population size in each compartment. This is based on the assumption of

homogeneity of the population, and can be relaxed by considering a heterogeneous pop-

ulation with different statuses and conditions, as learned from contextual information.

In application, contextual information can provide real-time awareness of individual be-

havior and health status during outbreaks of diseases. As seen in this research, the

implementation level of non-pharmaceutical interventions can be learned by the indi-

vidual compliance level through social media data. This result can be used in epidemic

modeling to consider the effect of non-pharmaceutical intervention by replacing the pre-

dicted population-level compliance with prevention behaviors learned from contextual

data, then weighted to calibrate the model accuracy. This idea is novel and this research

provides an important cornerstone for the feasibility of integrating contextual data into

epidemic modeling for practical and resilient real-time responses to disasters.
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7. LIMITATION & FUTURE WORK

Evaluation of the Individual Preventive Behaviors

The research should be improved in three aspects: (1) incorporating qualitative data,

(2) broadening the data, (3) and methodology. Most importantly, the study needs to be

combined with qualitative data such as interviews, observations, or survey data to verify

the prediction of individual prevention behaviors. Secondly, social media data should

be expanded to include data from multiple platforms while also increasing the data

size to reduce selection bias and improve generalizability. The labels for non-prevention

should be considered in encoding process. Multiple labels should be incorporated as well.

Thirdly, term frequency–inverse document frequency vectorizer should be compared to

other methods, such as BERT transformer, for representation of context. Fourthly,

feature selection should also be conducted in improving model performance. Finally, it

would be worth investigating alter native labels during encoding, for example labeling

non-compliance and use of multiple prevention behaviors.

Incorporation of the Effect of Preventive Behaviors with Epidemic Modeling

The research should examine enhancements to improve the prediction accuracy.

First, this research should incorporate additional time points, such as weekly updates,

to enable more frequent updates of the transmission rate. To accomplish this, the inte-

gration of real-time communication systems within disaster management and epidemic

modeling systems is crucial to enable more timely and frequent incorporation of real-

world data. Furthermore, the research should take into account the emergence of new

coronavirus variants over time. While the study made attempts to predict the long-term

dynamics of COVID-19 using empirical data from the initial three months, it may not

accurately reflect disease progression beyond the time when a new coronavirus variant

emerged. Lastly, it is recommended that future research focuses on examining the ef-
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fects of local interventions in each affected area, while considering geo-spatial limitations.

This would enable a comprehensive understanding of the impact of interventions within

specific regions.

Heterogeneous Epidemic Modeling

The challenges of incorporating social media data into the SEIRD model should also

be addressed in future work. The first step towars this goal is to introduce heterogeneous

populations, those who use social media denoted as S1, and those who do not use social

media as S0. The transmission rates from each susceptible population to the exposed

compartment can be modeled by β0 and β1 for S0 and S1, respectively. The transmission

rates are then influenced by the effects of preventive behaviors, denoted by τ and τ ′ for

β0 and β1. Figure  7.1 illustrates the proposed heterogeneous SEIRD model.

Figure 7.1. Heterogeneous SEIRD with variables and weights
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APPENDICES

A1 COVID-19 Cases

Table 1. Daily counts of infected- and deceased cases in

New York (CDC, 2022)

Date Total infected Total Deaths

3/1/2020 0 0

3/2/2020 0 0

3/3/2020 0 0

3/4/2020 1 0

3/5/2020 12 0

3/6/2020 21 0

3/7/2020 28 0

3/8/2020 28 0

3/9/2020 125 0

3/10/2020 137 0

3/11/2020 164 0

3/12/2020 230 0

3/13/2020 267 0

3/14/2020 311 0

3/15/2020 400 1

3/16/2020 487 1

3/17/2020 730 1

3/18/2020 1043 1

3/19/2020 1683 5

continued on next page
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Table 1. continued

Date Total infected Total Deaths

3/20/2020 2694 15

3/21/2020 4145 21

3/22/2020 6123 24

3/23/2020 8570 31

3/24/2020 10761 39

3/25/2020 12955 52

3/26/2020 15865 59

3/27/2020 19237 96

3/28/2020 22552 107

3/29/2020 25745 119

3/30/2020 29044 155

3/31/2020 32656 211

4/1/2020 36273 275

4/2/2020 40572 395

4/3/2020 45704 508

4/4/2020 50398 566

4/5/2020 54480 1017

4/6/2020 58188 1197

4/7/2020 61897 1378

4/8/2020 67513 1545

4/9/2020 72910 1787

4/10/2020 78128 2024

4/11/2020 82150 2260
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Table 1. continued

Date Total infected Total Deaths

4/12/2020 85486 2443

4/13/2020 88268 2661

4/14/2020 91743 2882

4/15/2020 95477 3081

4/16/2020 99138 3247

4/17/2020 102290 3560

4/18/2020 105548 3562

4/19/2020 108350 3787

4/20/2020 110706 3940

4/21/2020 112365 4107

4/22/2020 114784 4260

4/23/2020 117605 4407

4/24/2020 121117 4552

4/25/2020 127030 4715

4/26/2020 129787 4831

4/27/2020 131507 4947

4/28/2020 132768 5060

4/29/2020 134850 5170

4/30/2020 136894 5345

5/1/2020 138624 5442

5/2/2020 140623 5544

5/3/2020 142084 5651

5/4/2020 143302 5808
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Table 1. continued

Date Total infected Total Deaths

5/5/2020 144318 5907

5/6/2020 145627 6482

5/7/2020 147253 6580

5/8/2020 148624 6657

5/9/2020 149833 6766

5/10/2020 150978 6867

5/11/2020 151698 6947

5/12/2020 152362 7045

5/13/2020 153411 7132

5/14/2020 154506 7211

5/15/2020 155456 7279

5/16/2020 156632 7377

5/17/2020 157528 7448

5/18/2020 158141 7496

5/19/2020 159024 7550

5/20/2020 159820 7606

5/21/2020 160783 7660

5/22/2020 161670 7716

5/23/2020 162660 7762

5/24/2020 163392 7830

5/25/2020 164033 7879

5/26/2020 164535 7927

5/27/2020 164997 7977
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Table 1. continued

Date Total infected Total Deaths

5/28/2020 165682 8023

5/29/2020 166285 8058

5/30/2020 166909 8100

5/31/2020 167467 8130

6/1/2020 167947 8159

6/2/2020 168663 8198

6/3/2020 169213 8230

6/4/2020 169727 8259

6/5/2020 170268 8284

6/6/2020 170805 8308

6/7/2020 171128 8339

6/8/2020 171446 8362

6/9/2020 171789 8391

6/10/2020 172038 8416

6/11/2020 172375 8438

6/12/2020 172760 8468

6/13/2020 173137 8489

6/14/2020 173446 8502

6/15/2020 173685 8521

6/16/2020 173984 8538

6/17/2020 174201 8551

6/18/2020 174500 8568

6/19/2020 174886 8580
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Table 1. continued

Date Total infected Total Deaths

6/20/2020 175211 8595

6/21/2020 175490 8606

6/22/2020 175747 8613

6/23/2020 176029 8627

6/24/2020 176318 8636

6/25/2020 176716 8645

6/26/2020 177150 8654

6/27/2020 177489 8664

6/28/2020 177789 8667

6/29/2020 177991 8673

6/30/2020 178275 8680

...

5/1/2021 1121015 19409

5/2/2021 1122872 19431

5/3/2021 1124156 19454

5/4/2021 1125497 19480

5/5/2021 1126855 19499

5/6/2021 1128398 19508

5/7/2021 1129878 19522

5/8/2021 1131817 19540

5/9/2021 1133242 19551

5/10/2021 1134154 19561

5/11/2021 1135113 19581
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Table 1. continued

Date Total infected Total Deaths

5/12/2021 1136256 19591

5/13/2021 1137617 19600

5/14/2021 1138883 19612

5/15/2021 1140253 19623

5/16/2021 1141186 19638

5/17/2021 1141984 19645

5/18/2021 1142612 19654

5/19/2021 1143571 19666

5/20/2021 1144584 19680

5/21/2021 1145551 19688

5/22/2021 1146403 19702

5/23/2021 1147037 19706

5/24/2021 1147626 19715

5/25/2021 1148105 19722

5/26/2021 1148695 19736

5/27/2021 1149326 19742

5/28/2021 1149873 19753

5/29/2021 1150405 19759

5/30/2021 1150933 19770

5/31/2021 1151220 19780

6/1/2021 1151435 19788

6/2/2021 1151698 19792

6/3/2021 1151994 19799
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Table 1. continued

Date Total infected Total Deaths

6/4/2021 1152423 19808

6/5/2021 1152913 19818

6/6/2021 1153222 19830

6/7/2021 1153515 19835

6/8/2021 1153736 19844

6/9/2021 1153952 19848

6/10/2021 1154216 19852

6/11/2021 1154481 19858

6/12/2021 1154753 19867

6/13/2021 1154953 19872

6/14/2021 1155117 19878

6/15/2021 1155263 19884

6/16/2021 1155433 19887

6/17/2021 1155645 19889

6/18/2021 1155881 19889

6/19/2021 1156118 19902

6/20/2021 1156172 19902

6/21/2021 1156227 19906

6/22/2021 1156354 19910

6/23/2021 1156486 19916

6/24/2021 1156655 19916

6/25/2021 1156796 19919

6/26/2021 1156956 19922
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Table 1. continued

Date Total infected Total Deaths

6/27/2021 1157104 19925

6/28/2021 1157238 19927

6/29/2021 1157344 19928

6/30/2021 1157475 19930

7/1/2021 1157650 19932

7/2/2021 1157893 19933

7/3/2021 1158044 19933

7/4/2021 1158205 19935

7/5/2021 1158346 19936

7/6/2021 1158474 19939

7/7/2021 1158647 19942

7/8/2021 1158865 19944

7/9/2021 1159186 19947

7/10/2021 1159441 19947

7/11/2021 1159695 19947

7/12/2021 1159918 19947

7/13/2021 1160203 19952

7/14/2021 1160539 19954

7/15/2021 1160945 19955

7/16/2021 1161322 19956

7/17/2021 1161724 19957

7/18/2021 1162215 19958

7/19/2021 1162577 19959
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Table 1. continued

Date Total infected Total Deaths

7/20/2021 1163052 19960

7/21/2021 1163634 19963

7/22/2021 1164284 19964

7/23/2021 1165058 19966

7/24/2021 1165798 19966

7/25/2021 1166710 19973

7/26/2021 1167263 19975

7/27/2021 1168038 19976

7/28/2021 1168983 19981

7/29/2021 1170157 19981

7/30/2021 1171416 19983

7/31/2021 1172784 19985

8/1/2021 1174038 19990

8/2/2021 1174979 19990

8/3/2021 1176467 19991

8/4/2021 1177993 19996

8/5/2021 1179682 20000

8/6/2021 1181447 20002

8/7/2021 1183888 20009

8/8/2021 1185661 20014

8/9/2021 1187342 20020

8/10/2021 1189064 20028

8/11/2021 1191255 20039
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Table 1. continued

Date Total infected Total Deaths

8/12/2021 1193699 20052

8/13/2021 1196273 20060

8/14/2021 1198595 20069

8/15/2021 1200816 20080

8/16/2021 1202885 20086

8/17/2021 1204930 20096

8/18/2021 1207588 20111

8/19/2021 1210346 20123

8/20/2021 1213128 20135

8/21/2021 1216034 20148

8/22/2021 1218532 20164

8/23/2021 1220826 20177

8/24/2021 1222592 20185

8/25/2021 1224985 20196

8/26/2021 1228157 20212

8/27/2021 1232380 20226

8/28/2021 1235297 20248

8/29/2021 1238214 20270

8/30/2021 1240856 20278

8/31/2021 1243236 20290

9/1/2021 1246065 20308

9/2/2021 1249321 20332

9/3/2021 1253112 20352
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Table 1. continued

Date Total infected Total Deaths

9/4/2021 1256486 20370

9/5/2021 1259355 20392

9/6/2021 1261814 20410

9/7/2021 1264076 20436

9/8/2021 1266531 20456

9/9/2021 1269961 20471

9/10/2021 1274025 20498

9/11/2021 1277616 20518

9/12/2021 1281351 20538

9/13/2021 1283649 20555

9/14/2021 1286202 20576

9/15/2021 1289383 20601

9/16/2021 1294121 20628

9/17/2021 1297994 20651

9/18/2021 1301280 20670

9/19/2021 1304800 20695

9/20/2021 1306963 20716

9/21/2021 1310574 20745

9/22/2021 1313543 20770

9/23/2021 1316837 20799

9/24/2021 1321300 20818

9/25/2021 1325098 20842

9/26/2021 1328061 20871
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Table 1. continued

Date Total infected Total Deaths

9/27/2021 1330887 20887

9/28/2021 1333608 20908

9/29/2021 1337434 20938

9/30/2021 1340812 20968

10/1/2021 1344740 20991

10/2/2021 1348076 21009

10/3/2021 1351472 21033

10/4/2021 1353306 21047

10/5/2021 1356030 21075

10/6/2021 1360301 21098

10/7/2021 1363979 21118

10/8/2021 1368316 21151

10/9/2021 1371855 21179

10/10/2021 1373932 21204

10/11/2021 1377715 21226

10/12/2021 1380063 21251

10/13/2021 1383582 21276

10/14/2021 1386927 21314

10/15/2021 1391234 21336

10/16/2021 1395252 21355

10/17/2021 1398401 21386

10/18/2021 1400717 21407

10/19/2021 1402567 21432
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Table 1. continued

Date Total infected Total Deaths

10/20/2021 1406104 21458

10/21/2021 1409282 21498

10/22/2021 1412017 21518

10/23/2021 1415481 21549

10/24/2021 1417633 21573

10/25/2021 1419988 21594

10/26/2021 1421629 21626

10/27/2021 1425129 21656

10/28/2021 1428328 21680

10/29/2021 1432516 21707

10/30/2021 1435659 21734

10/31/2021 1438453 21760

11/1/2021 1440632 21786

11/2/2021 1442927 21800

11/3/2021 1446157 21513

11/4/2021 1449814 21542

11/5/2021 1453696 21570

11/6/2021 1457547 21604

11/7/2021 1461262 21624

11/8/2021 1463956 21646

11/9/2021 1467214 21676

11/10/2021 1471378 21701

11/11/2021 1476679 21735
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Table 1. continued

Date Total infected Total Deaths

11/12/2021 1481688 21760

11/13/2021 1486783 21775

11/14/2021 1490979 21796

11/15/2021 1494504 21820

11/16/2021 1498463 21846

11/17/2021 1503387 21867

11/18/2021 1509904 21894

11/19/2021 1515921 21925

11/20/2021 1521477 21943

11/21/2021 1526969 21967

11/22/2021 1531063 21994

11/23/2021 1535193 22018

11/24/2021 1540890 22043

11/25/2021 1547652 22067

11/26/2021 1552589 22067

11/27/2021 1555836 22123

11/28/2021 1560342 22150

11/29/2021 1564336 22185

11/30/2021 1569506 22221
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A2 Pseudo Code: PRecomm

Algorithm 1 PRecomm (Prediction & Recommendation)
1: procedure Initialization
2: ny ←tweets in New York (after pre-processing)
3: ny[y] ←[1, 2, 3, 4, 5] (encoded values for each preventive behavior)
4: un_ny ←NOT encoded tweets only
5: cnt ←0
6: n ←cosine distance (knn parameter)
7: y ←prediction from svm ([prevention behaviors, probabilities])
8: y2 ←prediction from knn ([prevention behaviors, similarity scores])
9: procedure Initial- & Self-Training

10: if (cnt < 3) then:
11: if (ny[y] is not null) then
12: TfidfVectorizer(ny[body], ny[location], ny[bio])
13: [train, test] ←split_train_test(ny, 8:2)
14: for (c in [0.1, 0.2, 0.7, 0.9, 1.0, 1.8, 2.0]) do
15: svm(c, penalty) with train, train[y] (Train the svm model)
16: test[yhat] ←Predict test[y] by the trained svm
17: f1_score ← Append f1_score(test[y], test[yhat])
18: c ←Select c with the highest f1_score
19: for (n in [1, 2, 3, ..., 20]) do
20: knn(n, cosine) with train, train[y] (Train the knn model)
21: test[yhat] ←Predict test[y] by the trained knn(n, cosine)
22: f1_score ←Append f1_score(test[y], test[yhat])
23: n ←Select n with the highest f1_score
24: else:
25: remove the null data
26: procedure Prediction & Recommendation
27: [ny[y], probability] ←svm(un_ny)
28: GO TO 12:
29: [ny[y2], similarity] ←knn(un_ny)
30: GO TO 20:
31: cnt = cnt+1
32: return ny[y, y2], probability, similarity
33: else:
34: stop
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