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Abstract

Determination of how proteins transform into their biologically relevant structure

is an extraordinarily complex research area. They fold into their native state as

a population of conformations on time scales that experimental methods struggle

to resolve. Molecular dynamic simulations can avoid some of these issues, pro-

viding theoretical answers to protein dynamics. To that effect, this work presents

two enhanced sampling methods that aim to lower the computational cost of the

Replica Exchange protocol with fewer replicas while avoiding the exchange bot-

tleneck in an approach called Replica-Exchange-with-Tunneling. The method is

used to simulate the folding switch of the metamorphic chemokine Lymphotactin.

Go-model potentials bias replicas to fold as either the Ltn10 form or Ltn40 form.

This study proposes that the conversion between the two forms is assisted by bi-

furcated hydrogen bonding. Resolution-Exchange-with-Tunneling (ResET) builds

further on these advancements by reducing the number of replicas to the minimum

of 2, while still avoiding exchange rejection and enhancing sampling. The folding

performance of the method is shown to outperform other simulation approaches

for folding the trpcage protein. It was also used to elicit the contribution that

amino acid mutations have on the behavior of Alzheimer associated amyloid beta

proteins.
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Chapter 1

Concerning Proteins

1.1 Introduction

This dissertation is largely concerned with proteins, and from within its pages,

the reader may discover how these molecular machines facilitate the biological

processes necessary for life.

The instructions for creating a protein are encoded by Deoxyribonucleic acid

(DNA). A DNA sequence is translated to produce an unique polypeptide chain,

made via permutations of 20 amino acid compounds.1 These unique chains may

constitute what a protein is, but not what function the protein performs. Their

biological role is a factor of their geometric shape, which can not be ascertained

solely from the amino acid sequence. In a post-translation process known as pro-

tein folding the polypeptide chain undergoes conformation changes, transforming

into its biologically significant structure, or native state.2,3

Though individual members of the amino acid chain, called residues, influence

this structure, it is primarily the impact of the surrounding solvent environment

that drives the folding process.4 In fact, challenges to the Anfinsen’s dogma of “one

amino acid sequence equals a single folded protein structure” have been seen.5–7

In Chapter 4, the metamorphic protein lymphotactin exhibits two separate bi-

ologically significant folds based on current cell solvent conditions. Chapter 5
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studies the Alzheimer’s disease related protein amyloid beta (Aβ). These proteins

can be induced to adopt an alternative mis-folded structure by other mis-fold Aβ

neighbors. The accumulation of these mis-folded proteins are the hallmark for

Alzheimer’s disease.8–10 Understanding the molecular forces that drive these fold-

ing behaviors provide insights for therapeutic treatments or disease preventions,

by developing methods that can target critical points in the folding of the polypep-

tide chain.11

Given the nano-scales in which a protein exist, with respect to both time and size,

the study of protein folding is a non-trivial task using traditional experimental

approaches. Depending on the method, the experimentally determined structures

are only a snapshot of an equilibrium of native conformations, with limited expla-

nation of the forces controlling a conformation’s expression. To overcome these

shortcomings the folding process of the experimentally resolved structure can be

computationally simulated by using Molecular Dynamics.12 By computing classi-

cal Hamiltonian equations of motion, Molecular Dynamic can explore an energy

landscape to determine the probability of possible molecular configurations. This

barrier can be alleviated by applying algorithmic improvements designed to en-

hance the sampling of the configuration space. Analyst of this statistical data

provides insight in both the thermodynamics and kinetics of the folding process.

Unfortunately the number of degrees of freedom that must be solved to properly

sample a folding process are a barrier for even small proteins. This barrier can

be alleviated by applying algorithmic improvements designed to enhance the sam-

pling of the configuration space.

Numerous of such methods have been created over the years, each with their own

approaches on how to efficiently and accurately simulate the folding phenomenon.

The intention is to provide yet another method on folding proteins and how to

find them.
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1.2 Proteins

Proteins are the foundations on which cellular life is built. They are not only the

structural scaffolding of the cell but also function in other roles such as trans-

porting other molecules throughout the cell, participating in the defense of the

cell against infection, either directly or signalling the need for larger immune re-

sponse, and even acting as catalysis in reactions. These dynamic capabilities are

determined by the three dimensional shape the protein expresses. This correlation

between protein biological function and 3D structure is a factor of creating active

interaction sites for recognition with other molecules. Given the impact of this

relationship, eliciting the factors that control what structure a protein can exhibit

is critical to understanding how cellular life operates.13 Unfortunately this is not

trivial.

The genesis of protein can be explained by Francis Crick’s Central Dogma of

Biology.14 Though amendments have been made to the Dogma, the core tenets re-

main, which state that the genetic information encapsulated within the DNA code

is transformed to create polypeptide polymers that are proteins.15 The strands of

DNA do not directly participate in the protein synthesis, rather a multi-step pro-

cess occurs involving the transcription and translation of DNA by ribonucleic acids

(RNA).

The DNA helix is first unwound, then replicated during the transcription step

by messenger RNA (mRNA). By replicating, the genetic code can be used in

the construction of larger biomolecules without consuming DNA. Transfer RNA

(tRNA) then decodes the mRNA replicated DNA sequences during the translation

stage to synthesis proteins by rendering an amino acid when their corresponding

triplet of DNA codons are processed. A peptide bond (Figure 1.1) is formed be-

tween a carboxylic carbon and amide nitrogen linking individual amino acids into

3



the polypeptide chain. The sequence of the amino acids residues in a chain are

unique to each protein, which acts as the first dimension of identity, known as

the primary structure. These amino acids are differentiated by what side chain

functional group is bound to the α-carbon. The composition of these side chains

impact local protein structure through factors of steric hindrance and hydropho-

bicity.16–18 In fact, as the translation stage proceeds, a freshly made segment will

geometrically transform by folding into itself, forming a more compact state. This

transition stage folding does not result in the final native protein structure, rather

it is the initial transitions from a “random coil” of chain towards an intermediate

molten globule state that lacks the complete organized structure found in a folded

native state.19 It is during this collapse, hydrogen bonding can occur between the

peptide backbone carbonyl oxygen and the amide hydrogen, leading to the forma-

tion of local structural elements called secondary structure, the second dimension

of identity. The shape of these secondary structure elements are a key factor in a

protein’s function as they form the major active sites. These structural motifs are

shared across all protein families and are characterized by the hydrogen bonding

patterns.20–22 The most common and important of these motifs are known as α-

Figure 1.1: Amino acids are linked into a chain when a condensation reaction
forms the covalent peptide bond

helix and β-sheets. The α-helix forms when a protein coils into a right turn helix,

burying its hydrophobic residues into the core of the helix, creating a hydrophilic

interface.23,24 β-sheets form when strands of the protein are repeatedly pleated

4



Figure 1.2: The classification of β-sheets is defined by their orientation with the
another β strand, as anti-parallel (left) or parallel (right). The α helix between
the two β-sheets show the hydrogen bonding pattern that occurs within the helical
coil.

with itself. The hydrogen bonding occurs either in a parallel or anti-parallel fash-

ion (Figure 1.2). The pleated nature of β-sheets results in a multitude of extended

structures by deforming the strands via twisting and bending. This provides ac-

tive sites for intra and inter interactions, either with the ”face” of the β-sheet

or at the edges of the strand.25,26 These interaction options provide the β-sheet

the ability to aggregate other molecular structures or form complexes.27,28 Though

they are fundamental structural elements, proteins are not built entirely of these

secondary structures. Rather proteins are a series of different secondary structure

motifs, connected by sections that lack the hydrogen bonding which permits for

higher flexibility between the more organized secondary structure regions. Thus

the complete protein is able to fold into a 3D shape that aligns the individual

secondary structures to prime positions for interaction. This level of structural

arrangement is the third dimension of protein identity, the tertiary structure. A

protein must undergo the entire folding process into the proper tertiary structure

to achieve its native fold state.

It should be noted that prior to these larger folding events, post-translation mod-

ification may occur, modifying protein’s functionality with additional non-amino

acid molecules such as sugars and lipids or adjustment of phosphate groups. After

these modifications are complete, a protein will begin to exchange energy with its
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surroundings as it traverses down a funnel shaped energy surface that represents

all possible structures, minimizing its total free energy to enter a stable native

state.

Proteins navigate this landscape at rates that deny the possibility that the folding

behavior is the result of random motions.29–32 This leads to what is known as the

protein folding problem, which asks how the polypeptide polymer deduces the

structure of its native state, the mechanisms that protein folding undergoes, and

what can be predicted.33 The answer to these questions reside within the folding

funnel landscape.

1.3 Folding Landscape

The theory that protein folding occurs in a funnel like shape in a multi-dimensional

position-energy space derives from early studies that sought to explain the driv-

ing forces of folding against the entropic penalties the process overcomes. As the

protein forms into a compact state, the chain suffers a lost of entropy that is

offset by increases in solvent entropy. A hydrophobic effect drives the non-polar

residues to bury themselves within the chain that increases the solvent mobility,

which stabilizes developing conformations. In fact a protein’s native structure is

most affected by mutating a residue with a non-polar amino acid, disrupting the

hydrophobic effect.34 Kauzman was able to demonstrate the hydrophobic effect

contribution to the folding process in a study that showed a protein will enter an

unfolded denatured state when removed from an aqueous cell like environment to

a non-polar solvent, additionally that at temperatures greater than 55◦C, where

thermal fluctuations are too large for the folding process, and < 20◦C when hy-

drophobic interactions are weak.35,36 More importantly, this study showed that

the denatured proteins would spontaneously refold when returned to proper sol-
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vent conditions, and that protein self-assembly is encoded within the amino acid

sequence but is influenced by the solvent environment. To model this behavior

the forces and movement of the particle’s are mapped unto a topological surface

known as phase space.37

The space is constructed from the collection of all phase points defined by each

particles position and momentum in the system. The construct provides an avenue

to extract physical quantities by sampling from the ensemble of all possible con-

figurations within the space. A trajectory path for folding events can be obtained

by tracking the curves created by a series of phase points through this space.

Any such path can not cross itself due the deterministic property of the classical

equations of motions used to determine particle movement and the law of conser-

vation of energy, thus each point has a unique ”next” point that is determined

completely by the previous point. Path crossing would create divergent curves at

these points.38 The dimensionality of the configuration space is commonly reduced

to fewer degrees of freedom for projections into thermodynamic energy terms. The

reduction simplifies the landscape, but it remains a wasteland of energies, with a

surface that is neither perfectly smooth or always a singular funnel.39

Potential energy wells exist throughout the landscape that represent meta-stable

structures along a folding pathway. Theses wells are defined by their barrier height

facing the decent down the funnel, and are the free energy barriers of folding. As

a result the protein structures in these will have a larger population, and there-

fore are targets of research interest.40,41 They can provide insights into folding

mechanisms or as therapeutic treatment targets when structural weak points are

exposed.42–44 The movement down the funnel which produce the protein folding

event are dependent on overcoming these barriers that are entropic.

Folding occurs faster during the initial stages, due to greater conformational en-
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tropy of an unfolded chain which can more easily overcome the barrier. The

process slows as the formation of bonds that constitute the secondary structure

motifs leads to a decrease in chain surface area, reducing the ability to expel

the heats of formation associated with the new bonds. The thermal fluctuations

between the solvent and protein trapped within a well eventually allowing it to

overcome the barrier. Proteins atop these barriers proceed further down the fun-

nel to potential wells that are more favorable with lower total energy.19,45 This is

repeated until the protein enters a global minimum, adopting its native conforma-

tion. To fold correctly, a pathway must be thermodynamically stable and fast.46

Secondary structures are formed by the cooperatively of many weak bonding in-

teractions, and stable intermediate states are necessary to prevent fluctuations

from hindering their formation. On the other hand, longer folding times increases

the probability for mis-folding during extended periods of exposed states. These

two criteria for folding imply a proper pathway is also the path of minimum free

energy due to low potential well barriers minimizing the global folding rate.

A mapping of the free energy landscape would reveal the potential wells as re-

gions with the largest number of conformations, where a theoretical folding path-

way could be proposed by tracing path between these regions to the global min-

imum.47 That will not be a single structure, rather the representation for the

ensemble of native conformations the protein can express (see Figure 1.3). Native

structure determination from conformations can be complicated by proteins that

exhibit multi-funnel landscapes by having more than one thermodynamically sta-

ble conformation. Two such classes of proteins are study here, mis-folded proteins

and metamorphic.7,39,48

Mis-folded proteins can exhibit an alternative stable structure instead of the native

conformation proscribed by the amino acid sequence. Not only will these proteins

lack their biological function, but in cases of prion-like mis-folded proteins, they

8



Figure 1.3: Folding begins at the top of this simple example funnel, rapidly con-
densing to encourage secondary structure formation. The process slows as the
protein entering metastable intermediate states within a local energy minimum
until overcoming the barriers to descend to the native conformation. Proteins
with many conformations will contain a broad or second funnel basin.

will cause their correctly folded neighbors to adopt their mis-folded shape. This be-

havior has been associated in the pathology of several neurodegenerative disorders

where the mis-folded proteins accumulated within the body, resisting attempts of

disposal or propagate at rates that exceed removal.49,50 The protein associated

with the Alzheimer diseases amyloid-beta (Aβ) is one such example. Studies have

shown that the accumulation of the mis-folded Aβ into insoluble plaque deposits

inhibit neuroplasticity resulting in the onset of dementia.51 In Chapter 5, we show

that the mutation of a hydrophobic residue is a likely contributor for the pro-

tection against mis-folding of an Aβ mutant strongly correlated with Alzheimer

disease.

The multi-funnel behavior can also be beneficial as in the case of metamorphic

proteins. Metamorphic proteins have a single sequence with two unique folds,

where separate biology functions are associated with each structure.52 In the case

of the chemokine protein lymphotactin, studied in Chapter 4, the two folds exist

in near equilibrium and rapidly switch between folds as a function of current cell

9



needs, signalled via the environment.53,54 This creates two near equal global min-

ima separated by a free energy barrier that is not the same entropic barrier seen

in the folding process, but an enthalpic one due to the thermodynamic work re-

quirements of bond breaking to unfold, in order to reform new secondary structure

bonds. Though these barriers are generally much smaller than most of the folding

barriers, the changes in structure are pronounced. In lymphotactin, the conversion

between folds inverts the protein core, inverting surface residues, and creates an

entirely new secondary structure hydrogen bonding network. The method used

in Chapter 4 is able to demonstrate that this process is assisted by bifurcated

hydrogen bonds that initiate and stabilize the transformation.

To generate an accurate energy landscape that can explore how proteins fold

or a system that can exist with a multi-structural state; the surface must be

well-sampled. All configurations within energy minima and barrier peaks must be

evaluated. This task is difficult to conduct experimentally, due to spectral method

limitations and complexity. Examples of these limitations can be seen in X-ray

crystallography and Nuclear Magnetic Resonance (NMR).

X-ray crystallography resolves well-defined structures, but its accuracy is dimin-

ished by the crystallization process that also reduces conformations to a single

structure. Additionally, X-ray diffraction detects only the heavier atoms, and

is unable to determine positions of the hydrogen that constitutes the secondary

structure.55 NMR spectra present an averaging of conformations that exist in solu-

tions and cover a range of protein motions. Consequently such NMR data requires

a deal of refinement to resolve structures, which includes statistical elimination.

The method is limited by a variety of factors. Proteins must be less than 60

kDa. The interconversion rate between conformations states should not exceed

spectral relaxation times. Lastly, the protein structure may be affected by the

denatured solvent exchanging with the amide hydrogens.56 Other spectral meth-

10



ods avoid some of these impediments, but they still share a common difficulty,

that of independently producing a well sampled energy landscape for determining

thermodynamic or kinetic properties of the folding process. But due to the pro-

tein folding protein being a question of thermodynamics, physics can be applied

to model the molecular motion to determine behavior as a property of statistical

mechanics

11



Chapter 2

Molecular Dynamics

2.1 Molecular Dynamics

The interactions and motions of all particles must be considered to properly model

a protein. The atomistic behavior of these interactions imply that they should be

treated quantum mechanically; fortunately this can be simplified into classical

mechanics due to the consideration of systems with many identical particles on

time and energy scales that exceed individual electronic contributions.57 This con-

sideration is the foundation of the method known as Molecular Dynamics.

The microscopic properties of many-body proteins are now defined by their posi-

tions and momenta using the classical Newtonian equation of motion, ~F = d
dt

(m~v).

Any electronic contributions can then be simplified into averaged properties due

to the low mass of electrons with the Born-Oppenheimer Approximation, that a

model’s energy can be expressed as a sum of the individual contributions.58 This

allows the total energy to be described by the Hamiltonian with phase space coor-

dinates. States generated with this formulation follow the Boltzmann distribution,

from which the probability density can connect the microscopic state properties

to macroscopic thermodynamic ones. Exactness requires all points in a system’s

phase space to be included. Given the impossibility of such a task, a well sam-

pled ensemble may be considered with a large population sampling throughout

the space. This requires numerical optimization to compute the large number of

12



Hamiltonian terms.

Molecular Dynamic energies are calculated using a collection of functional forms

with empirically derived constants known as “forcefields.” These parameters vary

between forcefields, but share the assumption that bonds do not break. Bond

lengths are instead modeled by their atom-types equilibrium value, with specifica-

tion of the atom-types characterizing the forcefield.59–61 The general form for the

sum of individual intramolecular and intermolecular contributions is:

Epot =
∑
Bonds

ki
2

(li − li,0)2 +
∑
Angles

ki
2

(θi − θi,0)2 +
∑

Torison

kn
2

(1 + cos (nϕi − γ))

+
∑

non−Bonded

4εij

((
σi,j
ri,j

)12

−
(
σi,j
ri,j

)6
)

+
∑
Charge

qiqj
4πε0ri,j

(2.1)

Simplified models of motions can be used for the intramolecular forces of stretch-

ing, bending and rotation, due to the no-bond-breaking criteria. Bond lengths are

assumed to have harmonic behavior (see Figure 2.1), that do not deviate beyond

their equilibrium range. Values that deviate are penalized by comparing them

with a reference term calculated for when all other forces are zero.

U(li) =
∑
i

ki
2

(li − li,0)2 (2.2)

where: k = force constant, l i = bond length, and l i,0 = reference bond length.

The modeling of energy as the square of the difference from the reference l i,0,

maintains the bond close to its equilibrium length, due to high energies being

required to significantly deviate.

The angles formed between 3 atoms parameterize the bending motions and can

13



similarly be modelled using harmonic potentials of the form:

U(θi) =
∑
i

ki
2

(θi − θi,0)2 (2.3)

where: k = force constant, θi = angle, θi,0 = reference angle

Figure 2.1: The solid black line shows bond energy as a function of length. The
assumption of no-bond-breaking allows the tail of the potential bond energy curve
to be removed and replaced with a parabola. The potential well at the base of
both curves represent the ground-state of the bonds. The overlap between the
models shows that a harmonic potential can reasonably model the behavior in
this region, given a bond does not deviate far from the equilibrium.

The torsional term for bond rotations can not be consider with harmonics but

with a periodic potential. The form varies between forcefields, with the example

below shows a basic form that uses a single term for rotational periodicity:

U(ϕi) =
N∑
n=0

kn,i
2

(1 + cos (nϕi − γ)) (2.4)

ϕi = torsion angle, γ = period minimum, n = multiplicity, k i,n = period height

Interactions between independent atoms that lack a physical bond connection are

modelled as non-bonded energies in forcefields, which are classified as either long-

range or short-range interactions. The non-bonded pair term uses them for the

van der Waals forces of attraction and repulsion calculated as a Lennard-Jones

14



potential as function of distance in the form below:

U(ri,j) =
∑
i=1

∑
j=i+1

4εi,j

[(
σi,j
ri,j

)12

−
(
σi,j
ri,j

)6
]

(2.5)

where: ε = well depth, σ = separation distance at which energy is zero, the

minimum occurring at 2
1
6σ, r i,j = inter-atom distance

The potential well in Figure 2.2 provides a visual representation for these terms.

Cut-off distances can also be applied to optimize computation by limiting the

number of neighbors under consideration. Such methods are not applicable to

long-range electrostatics. Ionic charges induce dipole moments that are not an

additive term, or appropriate for cut-off distance due to an inverse distance rela-

tionship.

Figure 2.2: The Lennard-Jones potential for non-bonded energy as a function of
interatomic separation distance.The terms ε is the potential well depth for the
interaction, the distance from the well and the potential energy is 0 is measured
by σ.
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Coulomb pair-pair potentials are therefore applied to one of that neighbors such

that:

U(ri,j) =
qiqj

4πε0rij
(2.6)

where: qn = charge of n-neighbor, ε0 = permittivity of free charge, and

r ij = Distance between pairs i,j

These terms are evaluated numerically, often with an Ewald summation that stipu-

lates for convergence, the overall system is neutral. The resulting forcefield energy

term is used in the equations of motion to compute forces as the change in potential

energy with respect to positions.

F =
−δU
δxn

(2.7)

New positions and velocities are solved with a numerical integrator, the Velocity-

Verlet method is used extensively in this work.62–64 The Velocity-Verlet algorithm

contains all of the qualities required in a Molecular dynamic integrator: numerical

stability, time reversibility and is also self-starting due to computing the new values

on the same time points rather than “leap-frogging” over separate half time steps.

This is performed using the following schema in determining the new positions

and velocities:

Positions : ~x(t+ δt) = ~x(t) + v(t)δt+
1

2
a(t)δt2 (2.8)

V elocites : ~v(t+ δt) = ~v(t) +
a(t) + a(t+ δt)

2
δt (2.9)

Molecular Dynamics calculates properties across a constant energy ensemble, there-

fore the conservation of energy is critical in an integrator.57 Computer rounding

error causes the energy to drift with each trajectory update. Larger integrator

time steps reduce this rate but are bounded by the highest frequency of motion,

bond stretching. Constraining the bonds as rigid or semi-rigid can optimize the
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step to the 2-6 femtosecond range, but are still ineffective at sampling for protein

dynamics beyond millisecond ranges.65–67 It then becomes beneficial to tweak the

Molecular Dynamic method. Two general modifications are used in this work:

reducing the degrees of freedom by coarse graining the models, and improved

sampling methods that enhance configuration space explorations for well sampled

ensembles. The following sections outline the theoretical basis for the precise

methods implemented.

2.2 Model Granularity

Protein studies can require system sizes that exceed what computers can effi-

ciently manipulate. Coarse graining the model can reduce the computation cost

by combining degrees of freedom. The grouping can be represented by a bead of

semi-empirical potential. The reduction produces smoother energy landscapes but

the larger time steps results fewer computations to obtain a larger sample of states

for calculating ensemble averages. Motions of high frequency, such as hydrogen

bonds, are primary targets for grouping, but can also group under shared com-

monality. Recall from Chapter 1 that only backbone protein atoms participate in

secondary structure bonding. Therefore coarse graining the entire side chain may

still produce reasonable folding information.68 The beading method is applied in

Chapter 5 with the Martini-forcefield that combines four heavy atoms into a single

bead, parametrizing each according to the intensity level of their interaction type:

polar, non-polar, apolar, or charged.69,70

Chapter 4 uses a structure-base reduction called Go-models. This method retains

much of the fine-grain quality, relying on an additional potential energy term

to bias a model to go to its native state.71 The Go-potential is parameterized

from a folded structure’s native contacts, which drive the model to reform them.

Structure-based models therefore required resolved target structures with well-

defined native contacts, which is strongly correlated with high secondary struc-
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Figure 2.3: Coarse grain beading reduces the degrees of freedom with the color
beads representing the all of the overlapped atoms into single parameterized po-
tential.

ture content.72,73 This limits structure methods to single target considerations,

implicating a singular smooth folding funnel. Proteins with multiple native con-

formations or sizeable disordered regions can not be accurately modeled with this

method. These drawbacks can be alleviated by combining with sampling algo-

rithms that operate over multiple model-resolutions.74,75

2.3 Sampling Methods

Lack of efficiency in molecular dynamic sampling is often not an issue of physics

and can be divided into two competing goals: system exploration (ergodicity) and

global convergence (time). Many solutions have been proposed, and what follows

is a brief introduction to fundamental method this work builds upon.

Local minimum trapping can make satisfying ergodicity difficult using determin-

istic equations of motions. In such cases, solutions may be found in stochastic

methods such as Markov Chain Monte Carlo (MCMC).76 The equations of motions

are replaced by randomly choosing new positions to generate new configurations.

Proposed moves are approved only if they are consistent with the Boltzmann distri-

bution. The acceptance probability is determined in a criteria function comparing

the difference the current and proposed state energy difference.

w = min(x, exp(−β∆E)) (2.10)

where: x∈ random[0,1], β = 1
kBT
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New states lower in energy are accepted with w > 1. Proposed states of higher

energy are only stochastically accepted if the Boltzmann weight is higher than

a random number between 0 and 1. The higher energy states represent uphill

transitions that may be unfavorable but small energy difference can increase the

probability of escaping the local minimum. Naturally, acceptance rates are then a

factor of producing optimal ∆E terms, which hinder the method. Each additional

degree of freedom increases the rejection rate exponentially, thus providing little

benefit for proteins. To address this shortcoming, more advanced algorithms were

developed that combine aspects of MCMC moves, with molecular dynamics mo-

tions,77 the most relevant of these being replica exchange.78,79

The protocol simulates a number of identical replica systems using molecular dy-

namics. Each replica differs from other replicas by a manipulation of a system

parameter or degree of freedom value, that can contribute to the folding of a pro-

tein when adjusted. The fundamental version of the method is known Replica

Exchange Molecular Dynamics (REMD), and performs the method by serially in-

creasing the system temperature over the replicas. The ordering creates a temper-

ature ladder, with high temperature replicas escaping local minimum on one end,

opposite of the low temperature replicas that find local minimum when trapped.

To sample the N-independent local minimum, periodic exchanges of neighboring

replicas are performed. Before any exchange move is performed, MD motions are

conducted so the replicas can independently explore their own landscape using

natural dynamics. This allows systems to evolve without the high rejection seen

in MCMC, but return local minimum trapping issues. After a set length of an MD

stage, an exchange move is proposed and accepted according to their Boltzmann

weight:

w(i, j) = min(1, exp(−∆βi,j∆Ei,j)) (2.11)

where: ∆ β = Difference in inverse temperature, ∆Ei,j = Difference in potential

energy, i = i th replica, and j = j th replica

19



Depending on the temperatures of the two replicas, the exchange rate can become

vanishingly small. This can be alleviated with rescaling of the velocities with a

scaling coefficient calculated from a ratio of the kinetic energy term from both

replicas.80

(v0, v1)→ (rv0, rv1) r =

√
T0
T1

=

√
Ekin(v0)

Ekin(v1)
(2.12)

These exchanges allow the simulation to walk randomly throughout the energy

space, improving sampling at the cost of generating artificial trajectories. The

performance of REMD is thus dependent on sufficient replica mixing, which is

the method’s bottleneck. Similar to the energy step size for a MCMC move, the

temperature gap between replicas must be minimized to reduce rejection rates.

The N-replicas required is unfortunately a factor of system size that scales poorly

as a power series. Addressing this bottleneck is the fundamental aim in this work.

Two replica exchange protocols are proposed that attempt to simultaneously im-

prove the molecular dynamics stages and exchange while lowering the number of

required replicas.

Neither methods use temperature to explore the replica space, instead specific

degrees of freedom are targeted using a measure of structural differences between

a fine-grain and coarse-grain model. The lack of cardinality between model resolu-

tions force missing degrees of freedom to be reconstructed during communications.

Resolution exchange methods lessen the difficulty of this task, reintroducing miss-

ing degrees with exchanges of increasing fine grain replicas, but shares all of the

bottlenecks of REMD.81 The pitfalls can be avoided with Multiscale-Essential-

Sampling, which directly communicates the structural differences between granu-

larity through the addition of restraining potential terms to the potential energy.

Epot = EFG + ECG + λEλ (2.13)

The λ potential can be scaled using a Hamiltonian Replica exchange variant, that

uses the λ coefficient to exchange across a λ space of replicas.82 The targeted
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Figure 2.4: REMD has is a single replica ladder that only exchanges up and down
with temperature. Replica-Exchange-with-Tunneling has a double ladder system
using a Hamiltonian exchanges with λ. The sides do not interact, and are biased
to their own model. The strength of the bias is scaled by λ and decreases until 0
at the top. Exchanges with neighbors occurs in pairs that shifts with attempts.
First attempt shown as blue dashed arrows. Solid red for second.

behavior of this method requires a strong λ bias with a large replicas system to

function. The Replica Exchange with Tunneling (RET) method discussed in Chap-

ter 4 reduces these problems including a tunneling stage that improves exchange

rates with fewer replicas and can be applied to two state systems like metamor-

phic proteins using a twin ladder replica system.83 The Resolution-Exchange-with-

Tunneling method in Chapter 5 uses even fewer replicas for a resolution exchange

by communicating in both directions of model granularity The remaining chapters

are the application and development of the two methods that utilize features dis-

cussed in this chapter to determine protein folding behavior outlined in Chapter

1. The goal of which is to produce a means to efficiently fold a protein and an

effective way to find its many folds.
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Chapter 3

Research Overview

3.1 Chapter summary

The first two chapters were dedicated to the introduction of the protein folding

process and the computational methods to discern their behavior. The genesis

of functional proteins described in Chapter 1 does not end with chain creation.

The functionality of the molecule only emerges after the chain collapses into a

proper structure. With an energy landscape that is populated with intermediate

conformations critical to the success. And though this fold is entirely encoded

within its amino acid sequence, it is susceptible to solvent effects that is difficult

to determine by experiment or prediction.

Chapter 2 discussed how computational physics models can provide theoretical

answers to these behaviors. The first half of the chapter established that Molecu-

lar Dynamics (MD) can simulate the motions of the proteins but that dynamics of

protein folding occurs on time frames beyond the range of what modern computers

can achieve. Solutions to this issues are presented in the second part in the forms

of model simplifications and enhance sampling methods. Reducing model resolu-

tion improves simulation computing cost, therefore feasible trajectory length but

at the cost of result details. Where as computational cost and energetic barriers

are the constraints to the enhance sampling of energy landscape methods. These

potential pitfalls can be alleviate by combining aspects of different methods for
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efficient, faster, and accurate system modeling.

3.2 Project Summary

Transition rates times between proteins of two native conformation can exceed the

capabilities of many methods. To this extent we applied the Replica-Exchange-

with-Tunneling (RET) method (detail explanation in Chapter 4) to investigate the

folding switch of the metamorphic chemokine lymphotactin. Go-model potentials

tuned to each of lymphotactin’s two native structures were broadcast to fine-grain

system models from the Go-model systems. RET is able to perform the rapid

conformation switch with exchanges over a replica ladder of scaling λ coefficients

for the Go bias.

Advancements to the RET design are presented in Chapter 5 with Resolution-

Exchange-with-Tunneling (ResET). The number of replicas required to avoid ex-

change bottlenecks is eliminated, requiring only two replicas of different reso-

lutions. Design validation was performed using the folding benchmark protein

trpcage, as well amyloid beta protein.

These chapters were taken from published works as following:

• Bifurcated Hydrogen Bonds and the Fold Switching of Lymphotactin, Jour-

nal of Physical Chemistry B 2020, 124(20), 6555- 6564 by Prabir Khauta,

Alan J. Ray, Ulrich H. E. Hansmann

• Resolution Exchange with Tunneling for Enhanced Sampling of Protein

Landscapes, Physical Review E 106, 015302 by Fatih Yasar, Alan J. Ray,

and Ulrich H. E. Hansmann
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Chapter 4

Bifurcated Hydrogen Bonds and the Fold

Switching of Lymphotactin

The following chapter was published in the Journal of Physical Chemistry B with

the dissertation author as the article; Bifurcated Hydrogen Bonds and the Fold

Switching of Lymphotactin, Journal of Physical Chemistry B 2020, 124(20), 6555-

6564 by Prabir Khauta, Alan J. Ray, Ulrich H. E. Hansmann. All text and figures

are taken with the permission from the publisher.

4.1 Abstract

Lymphotactin (Ltn) exists under physiological conditions in an equilibrium be-

tween two interconverting structures with distinct biological functions. Using

Replica-Exchange-with-Tunneling we study the conversion between the two folds.

Unlike previously proposed, we find that the fold switching does not require unfold-

ing of Lymphotactin, but proceeds through a series of intermediates that remain

partially structured. This process relies on two bifurcated hydrogen bonds that

connect the β2 and β3 strands and ease the transition between the hydrogen bond

pattern by which the central three-stranded β-sheet in the two forms differ.
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4.2 Introduction

Exhibiting a diverse spectrum of functions, ranging from transport of molecules

to catalysis of biochemical reactions, proteins play a crucial role in the molecular

machinery of cells. Protein function is determined by the three-dimensional struc-

ture. In the now classical model of protein folding the sequence of amino acids

encodes an energy landscape that funnels folding pathways into a unique native

state.32,84 While this mechanism describes folding of many proteins, it needs to be

modified for intrinsically disordered85,86 or metamorphic proteins[7, 87] where the

sequence encodes not only a single native fold but an ensemble of structures, allow-

ing a single protein to take multiple functions. Hence, for understanding the role

of intrinsically disordered and metamorphic proteins in cells, and the regulation

of their function, it is necessary to establish the underlying multi-funnel energy

landscape that leads to this ensemble of diverse structures, and to comprehend

the mechanism by which these structures convert into each other.

This task can be most easily tackled for metamorphic proteins such as the 93-

residue protein Lymphotactin (Ltn) which are observed in two well-defined struc-

tures. As a chemokine Ltn belongs to a family of signaling proteins whose primary

function is to direct immune response leukocytes toward areas of inflammation.53,88

Ltn has only one of the two disulfide bonds otherwise found in chemokines, al-

lowing it to adopt and switch between two well-defined native folds with distinct

functions. The first one (Ltn10) is a typical chemokine-like fold with a three-

stranded β-sheet attached to a C-terminal α-helix (PDB ID: 2HDM;89 see Fig-

ure 4.1(a)). When in its second form, Ltn40, the protein forms dimers and has

a four-stranded β-sheet in a dimeric β-sandwich (PDB ID: 2JP1;54 see Figure

4.1(b)). The two forms have distinct and complementary functions: Ltn10 ac-

tivates the XCR1 receptor on the cell surface, while Ltn40 binds to heparin, a

polysaccharide component of the extracellular matrix.7,90 By being able to assume
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Figure 4.1: Lymphotactin chains can take two distinct structures, both deposited
in the Protein Data Bank: (a) Ltn10 (PDB-ID: 2HDM) and Ltn40. The Ltn40
monomer is shown in (b) and derived from the experimentally observed dimer
(PDB-ID: 2JP1) shown in (c). Labels identify the secondary structural elements,
and the N-terminal and C-terminal Cα atoms are drawn as spheres in red and
orange, respectively.

both motifs and perform disparate and complementing functions, lymphotactin

bridges the two main functional aspects of chemokine physiology: activation of

specific G-protein-coupled receptors (GPCRs) leading to chemotaxis,91 and estab-

lishing a signaling gradient toward the target location by binding with extracel-

lular matrix glycosaminoglycans (GAGs). Under physiological conditions, both

forms rapidly interconvert and are equally populated. However, the presence of

several basic amino acids (nine Arg and six Lys residues) makes Lymphotactin

sensitive to solution conditions and temperature. For example, Ltn10 is the dom-

inant conformation at lower temperature (10◦C) and high salt concentration (200

mM NaCl), while the alternative fold Ltn40 is dominant at 40◦C and no salt.

This shift of the equilibrium with temperature and ionic strength was investigated

in CHARMM simulations92,93 in which an accumulation of sodium ions around

the charged residues of the helical region increased with decreasing temperature.

These computational results are in agreement with experimental observations that

high salt concentration and low temperature stabilize the chemokine fold.94

While the structure and function of the two Lymphotactin motifs have been stud-

ied in detail,54,89,90,94,95the mechanism of interconversion is still unclear. Unlike
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other metamorphic proteins such as mitotic arrest deficiency 2 protein (Mad2),96–98

the fold switch requires a complete reorganization of core residues[7] making the

conversion especially difficult to study in experiments. Volkman’s group99 exam-

ined the kinetic rates of the process by stopped-flow fluorescence. Their results

suggest that the conversion process involves large-scale unfolding with a disrup-

tion of all stabilizing hydrogen bonds. However, such a mechanism is difficult to

reconcile with the surprisingly low barrier separating Ltn10 and Ltn40 that rather

suggests a conversion pathway going through intermediates with conserved local

contacts (such as in three β-strands β1, β2 and β3) found in both folds and only

encountering minimal disruptions of bonds. Unfortunately, such crucial but tran-

sient intermediates are hard to resolve on the short-time scales by which Ltn10

and Ltn40 convert into each other, and may have been below the temporal res-

olution of the Volkman’s experiments.99 On the other hand, the interconversion

time scales are still too long to be studied with sufficient statistics in constant

temperature all-atom molecular dynamics simulations. Computational studies of

fold switching have to rely instead on either enhanced sampling techniques100,101

or structure-based models (also called Go-models) [102]. They were used, for in-

stance, to study the fold switching in the transcription factor RfaH.101,102 A two-

funneled Go-model was also used in a recent computational study of Camilloni

and Ludovico103 to probe the fold-switching of Lymphotactin. While this study

reported the presence of structured intermediates for the fold-switching, it is not

clear how far the presence of the intermediates and the barrier heights reflect the

details of the construction of this model rather than the physics of the system.

In this study, we aim to resolve the experimental discrepancy by studying the

Lymphotactin conversion process in all-atom simulations relying on a physical

force field. As it is difficult to obtain from regular molecular dynamics sufficient

statistics, we utilize an enhanced sampling technique developed in our lab, that

was designed specifically for the investigation of such switching processes. Our
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technique, Replica-Exchange-with-Tunneling (RET),83,100,101,104 allows us to ob-

serve the interconversion process with sufficient detail to characterize important

intermediates. This in turn enables us to propose a conversion mechanism that

is consistent with the experimentally observed low barrier separating Ltn10 and

Ltn40. While the experimentally observed equilibrium is between Ltn10 monomers

and Ltn40 homodimers, dimerization and conversion are separate processes, with

the transition between Ltn10 monomers and Ltn40 monomers being the rate-

limiting process.99 For this reason, we consider only the conversion of monomers,

but one should keep in mind that the Le Chatelier’s principle would imply a shift

of the equilibrium between Ltn10 and Ltn40 monomers toward the Ltn40 form

if also the subsequent dimerization is considered. Our analysis indicates that the

fold switch in Lymphotactin monomers occurs along a series of only partially un-

folded intermediates, with the breaking and reformation of secondary structure

relying on the presence of two bifurcated backbone hydrogen bonds that connect

the β2 and β3 strands found in both motifs. We conjecture that these bifurcated

hydrogen bonds are essential for fold switching, as they allow a repositioning of

the β-strand forming residues without the need to cross high energy barriers.

4.3 Materials and Methods

4.3.1 Replica-Exchange-with-Tunneling

In order to understand the mechanism of fold switching in Lymphotactin by way of

computer simulations, one has to sample the free energy landscape of the protein

with high accuracy. However, the accessible time scales in all-atom molecular

dynamics simulations in explicit solvent are even for small proteins with less than

100 residues only of order ≈ µs, and therefore insufficient to obtain sufficient

statistics. We have proposed in earlier work83,100,101,104 a variant of the Hamilton

Replica Exchange method[82, 105] as a way to overcome this sampling problem

in studies of conformational transitions. Our approach relies on two ingredients.
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First, a ladder of replicas is set up, where on each replica a “physical” model is

coupled with a structure-based model. On one side of the ladder the structure-

based model biases the physical system toward the Ltn10 state, on the other side

toward Ltn40. The strength of the coupling (biasing) on each replica is controlled

by a parameter λ which is maximal at the two ends, and zero for the central

replica, where the physical model is therefore not biased by one of the structure-

based models. Exchange moves between neighboring replicas induce a walk along

the ladder by which the Lymphotactin configuration changes from one motif into

the other. When these exchange moves are accepted or rejected with the criterium

commonly used in Replica Exchange Sampling, the correct distribution according

to the given λ value will be sampled on each replica. Hence, on the central

replica, at λ = 0, the correct and unbiased distribution of the physical model of

Lymphotactin will be sampled. While formally correct, this sometimes also called

Multi Scale Essential Sampling (MSES)74,106 is of limited use in studies of large

systems, as the acceptance probability for exchange moves becomes vanishingly

small. Hence, the second ingredient of our approach is to replace the canonical

acceptance criterium with a new one that allows the system to “tunnel” through

the unfavorable “transition state” generated by the exchange move. This tunneling

is achieved by re-scaling the velocities of atoms in the two configurations in such

a way that the total energy at a given λ value is the same before and after the

exchange. The two replicas evolve then by microcanonical molecular dynamics,

exchanging potential and kinetic energy, symbolized by the gradual color change

in the schematic diagram of Figure 4.2. After a short time (a few picoseconds)

the velocity distribution of each of the two replicas will approach the one that

would be expected at the given temperature. At this point, the potential energies

of the two configurations are compared with the corresponding energies before the

exchange move, and either accepted or rejected. We have coined this approach as

Replica-Exchange-with-Tunneling (RET), and described it and its limitations in

detail in our earlier works.83,100
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Figure 4.2: A schematic diagram of the RET approach. The new configuration
R2** on replica 1 has after rescaling of velocities the same total energy as the old
configuration R1*. While evolving to the state R2* potential and kinetic energies
interconvert, symbolically noted by the shift in color. In a similar way have the
configurations R1** and R2* on replica 2 the same energy, and does R1** evolve
to R1.)

In previous work,100,101,104 we could show that our above described approach

leads indeed to an enhanced sampling of transition events and an improved statis-

tics in the sampled energy landscape (which is generated from the unbiased central

replica where λ = 0). Being specifically designed for simulating conversions be-

tween known structures, RET proved to be more efficient than other enhance

sampling techniques in our previous studies;100,101,104 however, the improvement is

a quantitative one, not a qualitative one. As in generalized ensemble techniques,

the system evolves in an RET simulation by an artifical kinetics, which does not

neccessarily lead to physical trajectories; see also our discussion in Section 5.4 Re-

sults and Discussion. Hence, kinetic information has to be obtained in an indirect

way by extracting it from the free-energy landscape by the transition path theory,

Markov state model (MSM) analysis, or similar approaches. For instance, upper

bounds on the transition rates can in principle be deduced from the height of the

free-energy barriers using Kramers’ theory, as proposed in ref 37.

4.3.2 Simulation Setup

In the present work we use our enhanced sampling method to study the conversion

between Ltn10 and Ltn40 monomers. For this purpose, we simulate our system
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with an energy function

Epot = Ephy(qphy) + Ego(qgo) + λEλ(qphy, qgo) (4.1)

where Epot is the total potential energy of the system, Ephy(qphy) and Ego(qgo) are

the potential energies of the physical model and Go-model, respectively, and

Eλ(qphy, qgo) describes the coupling between the two models.

Interactions in the physical model are described by the CHARMM36m force-

field107 in combination with TIP3P explicit solvent[108], with an acetyl group

cap on the N-terminus and a methylamine group cap for the C-terminus. The

protein is then solvated with 9639 water molecules in a cubic box of length 67.5

Å. Each systems is neutralized by adding 8 chloride (Cl−) ions. By choosing the

box size comparable to the end-to-end distance of a polymer in a good solvent, we

try to allow for the possibility that conversion between Ltn10 and Ltn40 requires

unfolding of the protein (as was proposed in earlier work99), while at the same time

minimizing computational costs. Re-scaling the masses of the all-atom physical

models by 14.49 is required to match the temperature scales of the two models

as the Go-models do not include hydrogen atoms, i.e., have a smaller number of

degrees of freedom. The initial configurations (taken from the PDB) are random-

ized for 1 ns in high temperature molecular dynamics simulations at 1500 K. After

visual inspection that the high temperature simulation did not lead to unphysical

geometries, we cooled the system down to the target temperature of 310 K by

performing an additional simulation of 1 ns duration. The resulting configuration

was further minimized to generate the start configuration for the actual RET run.

The two structure-based (Go-)models (one biasing toward Ltn10, the other to-

ward Ltn40) were generated using the SMOG-Server109 at http://smog-server.org.

While the wild-type form of Lymphotactin consists of 93 residues, most of the C-

terminus tail is disordered in both conformations, 30% for Ltn10 and 42% for
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Ltn40.54 As the set-up of a structure-based energy function is meaningless for

such unstructured regions, we have not considered this tail. Instead, we have

restricted our simulations to a 75 residue fragment which describes the parts of

Lymphotactin that are structured in at least one of the two folds. The length

of this fragment matches the one of the NMR resolved Ltn10 forms (PDB ID:

2HDM89), but is larger than the Ltn40 form (PDB ID: 2JP1[54]) for which only

60 residues are resolved. For the generation of the SMOG parameter the remain-

ing 15 residues were assumed to be in a random configuration and added using

the PyMOL110 mutagenesis tool.

The biasing energy is defined as74,106

Eλ =



1

2

(
∆2 (i, j)

)
−ds < ∆ (i, j) < ds

A+
B

∆S (i, j)
+ fmax∆(i, j) ∆(i, j) > ds

A+
B

∆S(i, j)
(−1)S − fmax∆(i, j) ∆(i, j) < −ds

(4.2)

where ds marks the region in which Eλ is a quadratic function of ∆(ij) =

δphy(ij)− δgo(ij) , i.e., of the difference of the distances between Cα-atoms i and

j as measured in the two models. Guided by previous work we chose ds = 0.3nm.

The control parameter fmax sets the maximum force when ∆ (i, j) → ∞, and

S determines how fast this value is realized. As discussed in earlier studies74,106

it is convenient to choose S = 1 and fmax = 0. The parameter ds determines the

region in which the Eλ is assumed to be a quadratic function of The parameters

A and B ensure continuity of Eλ and its first derivative at ∆ (i, j) = ±ds, and are

given by

A =

(
1

2
+

1

S

)
ds2 −

(
1

S
+ 1

)
fmaxds and B =

(
fmax − ds

S

)
dsS+1. (4.3)
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The 24 replica systems were prepared with a λ distribution of λ = 0.1, 0.09,

0.08, 0.07, 0.06, 0.05, 0.04, 0.03, 0.02, 0.01, 0.009, 0, 0, 0.009, 0.01, 0.02, 0.03,

0.04, 0.05, 0.06, 0.07, 0.08, 0.09, 0.1. Here the Eλ term biases replica 0–10 to-

ward the Ltn10 motif, and replica 13–23 toward Ltn40. In order to simplify our

programming, we use two replicas (with indices 11 and 12) to represent the case

where the physical model is not biased by any structure-based biasing-term, i.e.,

where λ = 0. One of the two replicas exchanges configurations with the neigh-

boring replica in the Ltn10 branch, and the other with the neighbor replica of the

Ltn40 branch. Since at λ = 0 physical and Go-model are independent can the

configuration of the physical model be easily exchanged between the two replicas.

Our simulations rely on an in-house implementation of the above described ap-

proach into the Gromacs 4.6.5 package111 that is available from the authors and

an Github (github.com/orgs/hansmann-lab). The equations of motion are inte-

grated with the Velocity Verlet algorithm,64 with hydrogen bonds constrained by

the LINCS algorithm[112], using a time step of 2 fs. The van der Waals and

electrostatic cutoffs are set to 1.2 nm. Note that instead of simulating each of

the replicas at a constant temperature, the temperature of the replicas is changed

in steps of 0.01 K between 310 and 310.23 K due to the way our code has been

implemented into Gromacs, where the temperature of the replicas is maintained

by using the v-rescale thermostat.113 Choosing the length of the microcanonical

segment in the RET move as 1 ps, a 100 ns trajectory was generated. Thermo-

dynamic quantities were calculated solely from replicas with λ = 0, i.e., without

bias from the two structure-based models.
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4.3.3 Observables

The free energy as a function of order parameter, λ, is defined as

∆G(λ) = −kBT [ln ρ(λ)− ln ρmax] , (4.4)

where kB and T denote the Boltzmann’s constant and temperature, respectively.

ρ is an estimate of the probability density function calculated from a histogram

of the data, while ρmax is the maximum of the density. The second term ensures

that ∆G = 0 for the lowest free energy minimum. Free energy values reported in

this work are calculated at a temperature of 310 K.

The configurations as obtained from the equilibrated trajectories that correspond

to unbiased trajectories (λ = 0) are characterized based on secondary structure

pattern. The pattern are calculated using the STRIDE algorithm114 as imple-

mented in VMD software[115] and characteristic backbone hydrogen bonding pat-

tern specific to each of the Ltn native forms (see Table 4.1). Ltn has four char-

acteristic β-strands, β0 (residue 10–15), β1 (residue 25–31), β2 (residue 34–41),

β3 (residue 44–51) and a C-terminal helix, H (residue 54–66). Based on the sec-

ondary structural pattern of these five regions and backbone hydrogen bonding

pattern in β1 − β2 − β3 region, we define three variables (B0, H, and B123) using

following logical expression, which eventually helps us characterize the configura-

tions and distinguish the pattern among them.

• B0: If there are at least two residues in β-strand in β0 region, then the value

of B0 is 1 i.e., β0 exists; otherwise it is zero.

• H: If there are at least three residues in helix in C-terminal helix region,

then the value of H is 1 i.e., C-terminal helix exists; otherwise it is zero.

• B123: If there is no characteristic hydrogen bonds (Ltn10-like or Ltn40-

like) in β1− β2− β3 region and there is less than two residues in β-strand in
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β1−β2 or β2−β3 regions, B123 will be assigned to have a value of zero. If this

condition is not satisfied, B123 will have hydrogen bonding pattern as that

of Ltn10-like or Ltn40-like or Mixed (i.e., substantial existence of both type

of hydrogen bonds) depending on the conditions: if the difference in number

of characteristic Ltn10-like and Ltn40-like hydrogen bonds (see Table 4.1) is

greater than or equal to two, B123 is Ltn10-like. Similarly, if the difference in

number of characteristic Ltn40-like and Ltn10-like hydrogen bonds is greater

than or equal to two, B123 is Ltn40-like. All other remaining configurations

will be considered to have mixed hydrogen bonding pattern.

One quantity by which we have measured similarity of a given configuration to

one of the two native Lymphotactin folds is the fraction of specific native contacts

Qspec,1(X), defined as

Qspec,1(X) =
1

N

∑
(i,j)

1

1 + exp
[
β
(
rij(X)−min(λr1ij, r

2
ij)
)] (4.5)

Here, 1 denotes one native fold of Lymphotactin (Ltn10 or Ltn40), while 2 repre-

sents the alternative one. Only contacts specific to either of the native folds are

considered, i.e., contacts that are found in both native folds are excluded. Here,

we define a contact in the native structure by the requirement that two backbone

atoms on distinct residues are within 4.5 Å. Thus, N is the number of such contact

pairs (specific to the one form of Lymphotactin native structure) of (i, j) back-

bone atoms i and j belonging to residues θi and θj. To avoid the contacts forming

by adjacent residues, we have considered only the residues where | θi − θj |> 3.

rij(X) is the distance between the atoms i and j in conformation X, while r1ij,

r2ij are that distance in the native fold 1 and 2, respectively. β is used to smooth

the distribution of the values and considered to be 5 Å−1. The fluctuation of the

contact formation is controlled by the minimum value of λ times r1ij and r2ij, where

λ is taken to be 1.8. By introducing such a minimum value between the above
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mentioned two quantities, we set a range of fluctuation for each of the specific na-

tive contacts considered so that one could differentiate between the set of specific

native contacts with respect to the two folds, and thus measure the similarity of

a given configuration with respect to only one of the two native folds.

The transition pathway between Ltn10 and Ltn40 is derived from the free energy

landscape projected on suitable coordinates by calculating the minimum energy

pathway with the MEPSA software.116 This user-friendly software utilized the

graph-theory based Dijkstra’s algorithm117 to construct a minimum energy path-

way between two given minima, identifying the barriers among different minima

along such a pathway. Hence, the perspective here is one of transition state theory.

Unlike competing approaches such as, transition path sampling, (autocite paper

50-53), string method, (cite paper 53,54) kinetic network model (cite paper 55),

traveling-salesman-based automated path searching (TAPS), (cite paper 56) etc.,

it requires fewer resources but may not in all cases identify the optimal pathway.

4.4 Results and Discussion

Previous investigations into the conversion mechanism between the two Lympho-

tactin motifs were hampered by the computational difficulties of sampling the

protein’s free energy landscape with sufficient statistics. In regular molecular dy-

namics simulations, the protein will spend most of the time in one of the basins

of attraction - either exploring configurations similar to Ltn10, or, in the other

case, Ltn40-like configurations - with transitions between the two basins being

rare events. We argue that these computational difficulties can be overcome with

our variant of replica exchange sampling which was designed specifically for in-

vestigation of switching between two well-defined states. In order to demonstrate

that our approach allows indeed a more accurate sampling of the free energy land-

scape by raising the rate of transitions between the two main basins, we show in

Figure 4.3(a) the walk of a typical realization of our system along the ladder of
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Figure 4.3: (a) A typical example of a replica walking through λ space starting
from a replica, where the physical model is initially biased toward Ltn40 with
λ = 0.009. While the system walks between replicas with bias toward Ltn10 and
such with bias toward Ltn40, its configuration changes accordingly. This can be
seen in (b) where we show the corresponding time evolution of Cα distances (dCα)
between L14 and L45 (black) and that between T15 and A49 (red). The first
distance is a measure for the similarity with Ltn40, and the second distance one
for the similarity with Ltn10.

replicas. At start time (t = 0) the physical system sits on a replica where it is

biased with λ = 0.009 toward the Ltn40 form. During the 100 ns of simulation this

realization of Lymphotactin walks numerous times between the two end-points of

the ladder. On the one end, the physical system will be biased maximally with

coupling parameter λmax = 0.1 toward the Ltn40 structure, and on the other end

with a maximal λmax = 0.1 toward Ltn10. The average exchange rate between

neighboring replicas is ∼ 47%. In Figure 4.3(a) we show that this walk through

λ-space induces indeed inter-conversion between the two forms. For this purpose,

we characterize the state of a given configuration by the Cα distances between
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two specific residue pairs. In the Ltn10 structure the two residues T15 and A49

form a hydrophobic contact, while they are separated by a large distance in Ltn40.

The opposite relation is found for the pair L14 and L45, which form hydrophobic

contacts in Ltn40 but are far away from each other in the Ltn10 structure. Both

distances are shown in Figure 4.3(b) and evolve in anti-correlated fashion over

the 100ns of simulation. If the system is on one side of the ladder and biased

toward Ltn10, the distance between T15 and A49 (shown in red) will have small

values and the distance between L14 and L45 (drawn in black) have large values,

while the opposite is true once the system is on replica where the bias from the

structure-based model is toward the Ltn40 structure.

A measure for the efficiency of our method, and a lower limit on the number

of independent configurations sampled at the λ = 0 replicas, is the number of

walks along the whole ladder, from the replica with maximal bias toward Ltn10

to the one with maximal bias toward Ltn40, and back. Such a walk along the

whole ladder of replicas is called by us a tunneling event, and inversely related to

the average time needed to cross the ladder (termed by us the tunneling time).

The higher the number of tunneling events, and the shorter the tunneling time,

the more efficient will be our approach. However, calculation of the number of

tunneling events or the tunneling time gives only meaningful results after the sys-

tem has approached equilibrium. This convergence of the simulation is checked

by calculating the free energy as a function of the two distances introduced above,

and comparing it for two non-overlapping different time intervals.

Resemblance of the data for these two intervals in Figure 4.4 suggests that the

simulation has converged after 20 ns, and therefore, we use the last 80 ns of the

simulated trajectories for our analysis. In this time span, we find a total of 31 tun-

neling events with an average tunneling time of ∼ 33 ns. We have demonstrated

in earlier work83,100,101,104 for smaller systems that the number of tunneling events
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Figure 4.4: Free energy (∆F ) as a function of the two Cα distances (dCα) between
(a) L14 and L45 (a measure for the similarity to Ltn40) and (b) between T15
and A49 (a measure for the similarity to Ltn10), as obtained from the unbiased
replica where λ = 0. Shown are values as measured for different segments of the
simulation.

is in our approach much higher than the ones found in regular Hamilton replica

exchange simulations with comparable number of replicas and λ distribution. In

the latter case, often not a single tunneling event could be detected. As Lympho-

tactin is larger than the previously studied systems, and the sampling difficulties

increase exponentially with system size, we expect that for Lymphotactin the im-

provement over regular Hamilton replica exchange is even higher than seen in our

previous work.

The increased efficiency of our approach, leading to 31 tunneling events, gives us

confidence in the free energy landscape found at λ = 0, i.e., at a replica where the

“physical” model of our system is not biased toward either Ltn10 or Ltn40. In or-

der to measure the frequency of these two motifs for the unbiased replica, we define

a configuration as Ltn10-like if the Cα distances between T15 and A49, dCα (T15-

A49), is less than 8 Å and and that between L14 and L45, dCα (L14-L45), greater

than 12 Å. This definition was derived from visual inspection of the landscape as

obtained for the replica with maximal bias toward Ltn10. Guided in a similar way

by a visual inspection of the landscape as obtained for the replica with maximal

bias toward Ltn40, we define a configuration as Ltn40-like if dCα (L14-L45) is less

than 8 Å and dCα (T15-A49) greater than 12 Å. Using the above definitions we

find that on the unbiased replica about 17% of configurations are Ltn10-like, while
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34% are Ltn40-like. This suggests that Ltn40 is the most stable form and about

50% of the configurations sampled in our simulation do not represent either fold.

Visual inspection and secondary structure analysis indicate that most of those con-

figurations are intermediates on the pathway between the two opposite folds. The

slightly higher population of Ltn40 over Ltn10 is in accord with the experimental

study,94 where under physiological conditions 46% of the configurations are Ltn10-

like, and 54% Ltn40-like. On the other hand, configurations that do not belong

to either of the two motifs are not observed with the large frequency seen in our

simulations. This difference can be explained by the low temporal resolution of the

experiments which makes it difficult to characterize short-lived intermediates, i.e.,

the experimentally reported frequencies for Ltn10 and Ltn40-like configurations

are relative frequencies resulting from the well-resolved signals corresponding to

12 residues collected from a two-dimensional 15N-1H HSQC spectrum.

In order to explore the inter-conversion pathway, we show in Figure 4.5(a) the free

energy landscape projected on the two characteristic distances introduced earlier:

dCα (L14-L45) (measuring similarity with Ltn40) and dCα (T15-A49) (quantifying

similarity to Ltn10). For calculating the landscape, we use only data sampled at

the λ = 0 replicas, where the physical model is not biased by any Go-model term.

The so-drawn landscape is characterized by two prominent basins correspond-

ing to either Ltn10-like or Ltn40-like configurations. Conversion events can be

described by pathways connecting the two basins in the landscape. However, not

all possible pathways are equally likely. Take as an example the pathway repre-

sented by a black line in Figure 4.5(a). This path is obtained by projecting onto

the landscape the configurations sampled along the walk in λ space during a cer-

tain tunneling event.

This pathway describes a transition between the two Lymphotactin folds that

requires crossing an energy barrier much higher than that reported in the experi-
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Figure 4.5: Free energy landscape as obtained from our RET simulation at replicas
where the physical models are not biased by any Go-term. The landscape is in
(a) projected on Cα distances between L14 and L45 ((dCα (L14-L45)), a measure
for similarity to the Ltn40 structure) and between T15 and A49 ((dCα (T15-A49),
a measure for the similarity to Ltn10). The black line shows a typical pathway
as obtained during a tunneling event, i.e., from a walk in λ-space between the
structure strongly biasing toward Ltn10 and that toward Ltn40. On the other
side, the minimum energy pathway as obtained from MEPSA software116 is drawn
in white. The labels A-E mark five distinct regions that can be identified along
this pathway (discussed in the text). For comparison, we show in (b) the same
landscape, but projected on the fraction of specific native contacts (defined in Eqn.
4.5) with respect to Ltn10 (Qspec,Ltn10) and Ltn40 (Qspec,Ltn40) native structure.
Both the minimum energy and the tunneling pathways are shown again, using the
same color coding as in (a).

ments, indicating that this is not true pathway. On the other hand, we can obtain

a thermodynamically reasonable pathway by using the MEPSA software116 to con-

struct the minimum energy pathway, which we have drawn as a white line in the

landscape in Figure 4.5(a). The algorithm used to determine such a minimum

energy pathway in the MEPSA software116 and the advantages of this software

have been discussed in Section 5.3.3. Unlike the tunneling pathway, this pathway
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does not go through regions of the landscape characterized by unfolded configu-

rations, but instead proceeds through a series of basins, with an effective energy

barrier similar to that reported in experiments. This indicates that the intercon-

version process does not proceed by unfolding of the Ltn10 or Ltn40 structure

but rather involves a series of intermediates or transition states. By construc-

tion the minimum energy pathway does not connect specific configurations but

bins in the landscape each containing a certain number of configurations sampled

throughout the simulations. These configurations can be characterized according

to presence (or lack) of a C-terminal helix (found in the Ltn10 structure), the

N-terminal β0 strand (found in the Ltn40-structure), and the hydrogen bonding

in the β1 to β3 region, which offers another way of distinguishing between the

Ltn10 and Ltn40-like configurations. The procedure by which we attribute these

three traits to a configuration is described in the method section. The frequency

with which the three traits are observed allows one to identify five distinct regions

along the pathway that correlate with the basins and barriers of the landscape.

These segments are labeled as A to E in Figure4.5(a). A similar division is not

possible for the pathway, derived from the tunneling event.

The difference between the two possible pathways does not depend on the specific

coordinates on which the landscape is projected. This can be seen from Figure

4.5(b) where we project the free energy landscape on the fraction of specific native

contacts with respect to each of the two folds, and overlay again both paths on the

landscape. The pathway derived from the tunneling event is again not consistent

with the landscape. Hence, the tunneling events in our RET approach cannot be

used to derive a conversion mechanism as they rely on an artificial dynamics, de-

signed to increase sampling efficiency. On the other hand, while the configurations

in the minimum energy pathway calculated for the new landscape will differ from

the one calculated for the other landscape, we can again identify the same five

regions. We remark that the radius of gyration (a measure for the compactness

42



of configurations) of the central part, made up of β1 − β2 − β3 in both Ltn10

and Ltn40, differs little along the pathway, which implies that the Lymphotactin

configurations do not unfold and refold while assuming this pathway during the

inter-conversion process.

The qualitative agreement between the minimum energy pathways found for the

two landscapes suggests that these pathways describe indeed the conversion pro-

cess. Hence, in order to determine the mechanism and to establish the separating

free energy barrier, we have analyzed in more detail the pathway shown in Fig-

ure 4.5(a). When starting from the Ltn40 basin of region A, the β0 strand gets

dissolved when reaching basin B which has about 1.5 kcal/mol higher free energy

than the Ltn40 fold of basin A. Upon crossing this barrier, the Lymphotactin con-

figuration evolves further through a number of intermediates with little difference

in free energy, forming the flat-floored valley of region C. Using visual inspection

and the STRIDE algorithm114 as implemented in VMD software[115] for secondary

structure analysis, we observe a re-arrangement of backbone hydrogen bonds, un-

til, when entering region D the hydrogen bond pattern of the remaining three

β-strands (β1, β2, and β3) becomes similar to that of the Ltn10 fold.

The Ltn10 basin (region E) has again about 1.5 kcal/mol lower free energy value

than the transition state D and is reached when the helix slowly begins to form

at the C-terminus (within the residues 54 to 66). A schematic diagram explaining

the mechanism is shown in Figure 4.6.

From the above discussed conversion process, we have estimated a total energy

barrier of ∼ 2 kcal/mol for Ltn40→Ltn10 conversion, while slightly a lower value

of ∼ 1.5 kcal/mol is the barrier for the reverse process.

While the higher energy barrier for the Ltn40→Ltn10 conversion, implying a

slower conversion rate than the reverse one, is in agreement with the experimen-
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Figure 4.6: A schematic diagram of the interconversion mechanism between Ltn40
and Ltn10 with representative structures.

tally reported results,90,99,118 the energies are higher than the ones measured in

the experiments: 0.5 kcal/mol and 0.2 kcal/mol, respectively. This divergence

may reflect again the difference between our computational setting (considering a

transition between monomer structures) and the experimental setting that studies

the transition from Ltn10 monomers to Ltn40 dimers. As the dimerization is the

fast process, the Le Chatelier’s principle will predict a shift of the equilibrium

toward the Ltn40 motif, effectively lowering the barrier.

Unlike an earlier proposal,99 our conversion mechanism does not require unfolding

of the Ltn monomers. Instead it assumes partially conserved contacts as have also

been reported in another previous computational study.103 Our mechanism relies

on a sequence of local changes with the main assumption that the intermediates

keep part of the local ordering. Especially, we assume that the central three-

stranded β-sheet (β1, β2, and β3) is preserved. This sheet is found in both motifs,

but with a shift in the backbone hydrogen pattern by one residue,54 see Table 4.1.

Not that residues on the central β2 strand do not get shifted. Instead, they change

their hydrogen bond forming partners on the adjacent strands (β1 or β3). Our pro-
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Table 4.1: Characteristic Backbone Hydrogen Bonding Pattern among Different
β-Strands for Ltn10 and Ltn40 Lymphotactin Native Forms as Obtained from Our
Study and Reported in the NMR Structure.54

β1 ↔ β2 β2 ↔ β3
Ltn10 Ltn40 Ltn10 Ltn40

T26 ↔ I40 K25 ↔ I40 – R35 ↔ D50
T28 ↔ I38 Y27 ↔ I38 V37 ↔ A49 V37 ↔ C48
T30 ↔ A36 I29 ↔ A36 F39 ↔ V47 F39 ↔ K46

– E31 ↔ L34 T41 ↔ L45 T41 ↔ G44

posed conversion mechanism therefore has to explain how this shift between these

residues can proceed without the need of a complete unfolding. A more thorough

analysis of the pathway shows that the unfolding of the β-sheet and the resulting

high barriers are avoided by some residues forming bifurcated/bridged hydrogen

bonds with two consecutive residues. For example, while in the Ltn40 configura-

tions of basin A, residue F39 forms a backbone hydrogen bond with residue K46,

and in the Ltn10 configurations of basin E backbone hydrogen bonds with residue

V47. However, we observe that F39 (located on strand β2) can also form simul-

taneously hydrogen bonds with residues K46 and V47 on strand β3. In this case,

the amide nitrogen of F39 only participates in forming hydrogen bonds and thus

acts as a bifurcated donor, or both carbonyl oxygen and amide nitrogen of F39

participate in forming those hydrogen bonds, helping in forming bridged hydro-

gen bonds. Similarly, we find that in a similar manner residue T41 can also form

hydrogen bonds with both residues G44 and L45. All six residues on the central

β2 strand (see Table 4.1) can form such bifurcated hydrogen bonds that bridge

between Ltn10-like and Ltn40-like hydrogen bonding, but for most residues these

bifurcated hydrogen bonds appear with a relative frequency of less than 5%, that

is, less than 5% of all hydrogen bonds connecting a residue on strand β2 with a

partner residue on either β1 or β3 are bifurcated hydrogen bonds.

The exceptions are the already mentioned bifurcated hydrogen bonds F39-K46/V47,
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which is observed with a relative frequency of about 24%, and T41-G44/L45, which

appears with a relative frequency of about 11%. We remark that we also find sim-

ilar frequencies for the minimum free energy path of the free energy landscape in

Figure 4.5(b). Both bifurcated hydrogen bonds connect residues located at the

start of the sheet formed by the β2 and β3 strand. In the Ltn10 motif, residue F39

forms a hydrogen bond with V47, and T41 one with L45. Transitioning to the

Ltn40 hydrogen bonding of F39 with K46 and T41 with G44 will be eased by tran-

sient formation of the bifurcated hydrogen bonds at these locations as they avoid

the energetic costs of dissolving and reforming hydrogen bonds. Correspondingly,

the F39-K46/V47 is observed with highest relative frequency in the transition re-

gions B (about 37%) and D (about 64%), and with about 16% relative frequency

in the intermediate region C. The corresponding frequencies are lower for the T41-

G44/L45 bifurcated hydrogen bond, which appears in 8% (11%) in the transition

region B (D), and with a relative frequency of 14% in the intermediate region C.

We conjecture that formation of the bifurcated/bridged hydrogen bonds F39-

K46/V47 and T41-G44/L45 at the turn region between the β2 and β3 strands is

crucial for enabling the fold switch as it disturbs the geometry of the sheet and

initiate a wave of successive re-arrangement hydrogen bonds in the three-stranded

β-sheet which avoids large energy barrier that would otherwise arise from break-

ing and forming hydrogen bonds. Our conjecture could be tested in principle by

mutation experiments where the mutated side chain would form contacts that

lead to repositioning of the backbone atoms that would restrict formation of such

bifurcated hydrogen bonds. Another possibility would be the use of deuterium

which would also alter the relative frequency of bifurcated hydrogen bonds.

Interestingly, both bifurcated hydrogen bond pairs are also seen with substan-

tial frequency in the region E (dominated by Ltn10-like configurations), where

the F39-K46/V47 bond is observed in about 49% of the configurations, and the
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T41-G44/L45 one in about 16% of configurations. Hence, in Ltn10-like configu-

rations the hydrogen bond pairs F39-V47 and T41-L45 are easily replaced by the

corresponding bifurcated hydrogen bonds. This is likely because the extension

from the hydrogen bond F39-V47 to the bifurcated hydrogen bond F39-K46/V47

involves rotation of the side chains of the three residues that reduces the hy-

drophobic solvent accessible surface area (SASA) by about 26 Å2, and increases

the exposure of the charged K46 by about 7 Å2. Both are energetically favorable

changes. The effects are less pronounced for the bifurcated hydrogen bond T41-

G44/L45 where there is only a small reduction in hydrophobic SASA ≈ 7 Å2. On

the other hand, in region A (where Ltn40-like configurations are found) only the

T41-G44/L45 bifurcated hydrogen bond is observed with substantial, but much

smaller, relative frequency (about 9%). Here, formation of a bifurcated hydrogen

bond T41-G44/L45 would not change the solvent accessible surface area of the

three involved residues, while the bifurcated hydrogen bond F39-K46/V47 would

lead to a reduction of about 45 Å2 of solvent exposure for the charged K46 that

could not be compensated by the favorable loss of hydrophobic SASA of about

18 Å2. However, we remark that unlike to the Ltn10 configuration, where the

β3 strand is stabilized by four contacts with the N-terminal helix, no such β3-

stabilizing contacts with the β0 strand exist in the Ltn40 configuration. Hence,

the barrier for unraveling the β2−β3 hydrogen bonding is likely lower in the Ltn40

configurations than in the Ltn10 configurations where instead formation of the two

bifurcated hydrogen bonds circumvents the otherwise higher barrier.

Differences in the number of stabilizing side chain contacts are also the reason

why we observe bifurcated hydrogen bonds with appreciable frequency only be-

tween β2 and β3, but not between β2 and β1. In the Ltn10 configuration, four side

chain contacts (A49-W55, A49-V56, D50-V56, P51-V56) with the helix stabilize

the β3 strand, but ten such side chain contacts (L24-W55, L24-C59, L24-M63, L24-

K66, T26-M63, Y27-V60, Y27-R61, Y27-M63, Y27-D64, I29-V60) that stabilize
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the β1 strand. The difference in number of stabilizing side chain contacts is even

larger for the Ltn40 configuration. In this motif are no side chain contacts with

the β0 strand that could stabilize the β3 strand, but four such contacts stabilizing

the β1 strand. As formation of bifurcated hydrogen bonds requires repositioning

of backbone atoms that in turn depends on suitable rotation of side chain atoms,

such bifurcated hydrogen bonds are less likely between β1 and β2 than between

β2 and the more flexible β3.

4.5 Conclusions

Using a variant of Replica-Exchange-with-Tunneling (RET), we have probed the

interconversion of a metamorphic protein that switches biological function by al-

tering its three dimensional structure between two well-defined native forms, Ltn10

and Ltn40. While Ltn10 is monomer with three-stranded β-sheet ending with a

C-terminal helix, Ltn40 exists as a dimer with all β-sheet arrangements. In or-

der to ease the numerical difficulties, we have only considered the conversion for

a monomer. This is justified as conversion and dimerization are separate events,

with the conversion the time-limiting process.99 Our investigation relies on the use

of RET, an enhanced sampling method developed in our group, that has enabled us

to sample the free energy landscape of the protein with high precision. We find rel-

ative population frequencies that are consistent with experimental measurements,

but our simulations predict a larger population of intermediate configurations than

reported in the experiments. We reason that our method allows us to identify in-

termediates that due to their short-life time are difficult to observe in experiments.

Analyzing the free energy landscape allows us to identify an conversion mechanism

that relies on passage through a number of distinct structural intermediates, and

involves breaking and reformation of the β0-strand and the C-terminal helix and

a re-arrangement of hydrogen bonds in the central three-stranded β-sheet made

from β1, β2 and β3. The associated high costs of breaking and forming hydro-
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gen bonds are avoided by formation of bifurcated hydrogen bonds that naturally

bridge between the characteristic hydrogen bond pattern in the three β-sheets

common in both motifs. These pattern differs in both forms by being shifted by

one residue. We surmise that formation of these bifurcated hydrogen bonds facil-

itates the switch between these two patterns, guiding in this way the conversion

between the two motifs.
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Chapter 5

Resolution Exchange with Tunneling for

Enhance Sampling of Protein Landscape

The following chapter was published in Physical Review E with the dissertation

author as the article; Resolution Exchange with Tunneling for Enhanced Sampling

of Protein Landscapes, Physical Review E 106, 015302 by Fatih Yasar, Alan J.

Ray, and Ulrich H. E. Hansmann. All text and figures are taken with permission

from the publisher.

5.1 Abstract

Simulations of protein folding and protein association happen on timescales that

are orders of magnitude larger than what can typically be covered in all-atom

molecular dynamics simulations. Use of low-resolution models alleviates this prob-

lem but may reduce the accuracy of the simulations. We introduce a replica-

exchange-based multiscale sampling technique that combines the faster sampling

in coarse-grained simulations with the potentially higher accuracy of all-atom sim-

ulations. After testing the efficiency of our Resolution Exchange with Tunneling

(ResET) in simulations of the Trp-cage protein, an often used model to evaluate

sampling techniques in protein simulations, we use our approach to compare the

landscape of wild type and A2T mutant Aβ1−42 peptides. Our results suggest a

mechanism by that the mutation of a small hydrophobic Alanine (A) into a bulky
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polar Threonine (T) may interfere with the self-assembly of Aβ-fibrils.

5.2 Introduction

While molecular dynamics is now commonly used to study folding, association

and aggregation of proteins and other biological macromolecules,119–127 biochemi-

cal processes such as the formation of amyloid fibers from monomers123,127,128 often

occur on timescales128,129 that exceeds what can be covered in all-atom simulations.

Coarse-graining, i.e., lowering the resolution of a system,122,130–134 allows one to

reduce the computational difficulties and to access timescales not obtainable to

the fine-grained all-atom models,122,130 but it often results in lower accuracy. This

is because the smaller number of degrees of freedom lowers the entropy of the sys-

tem, and it is difficult to compensate for this reduction by modifying the enthalpic

contributions accordingly.130 Multiscale techniques try to combine the advantages

of fine-grained models (that are more accurate but costly to evaluate) with that

of coarse-grained models (which are less detailed but enable larger time steps).

One example is Resolution Exchange135 where the replica-exchange protocol [136]

is used to induce a walk in resolution space. In the same way that for Replica-

Exchange molecular dynamics (REMD)136,137 the walk in temperature space leads

to faster sampling at low temperatures, enables exploration of resolution space a

faster convergence of simulations at an all-atom level.135,138 However, the replica-

exchange step requires reconstruction of the fine-grained degrees of freedom of

a previously coarse-grained configuration, for instance, by adding side chains

to a conformation that was described prior only by the backbone. Various ap-

proaches75,135,138–140 have been developed to address this problem, but often they

result in high energies of the proposal configuration (and therefore low acceptance

rates)75,138 or introduce biases [139, 140].
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The dilemma can be alleviated by introducing a potential energy made of three

terms:

Epot = EFG + ECG + λEλ . (5.1)

The first term is the energy EFG of the protein system and the surrounding en-

vironment as described by an all-atom (fine-grained) model. The second term

ECG describes the same system by a suitable coarse-grained model. Both models

are coupled by a system-specific penalty term Eλ
141,142 that measures the similar-

ity between the configurations at both levels of resolution, with the strength of

coupling controlled by a replica-specific parameter λ. Hence, Hamilton Replica

Exchange143,144 of the above defined multiscale system leads to an exchange of

information between fine-grained and coarse-grained models, with measurements

taken at the replica where λ = 0. However, while avoiding the problem of steric

clashes in resolution exchange, the exchange probability is often still small,145 and

the resulting need to use multiple replica to bridge the two levels of resolution

makes this approach not appealing.

As an alternative, we propose here a Resolution Exchange with Tunneling (ResET)

approach that requires only two replicas. Working and efficiency of our approach is

tested in simulations of the Trp-cage146,147 miniprotein (Protein Data Bank (PDB)

Identifier: 1L2Y), an often used model for testing new sampling techniques. As

a first application we use in the second part ResET to compare the landscape of

Aβ1−42 wild type peptides, implicated in Alzheimer’s disease, with that of A2T

mutants which seems to protect against Alzheimer’s disease.148–150 Our results sug-

gest a mechanism by that the mutation of a small hydrophobic Alanine (A) into

a bulky polar Threonine (T) may interfere with the self-assembly of Aβ-fibrils,

decreasing the chance for formation of the Aβ-amyloids that are a hallmark of

Alzheimer’s disease.151–153
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5.3 Resolution Exchange with Tunneling

Resolution Exchange with Tunneling (ResET) utilizes two replica, each containing

both a coarse-grained and a fine-grained representation of the system. On each

replica, both representations evolve separately by molecular dynamics. On the

first replica, A, is the coarse-grained model in a configuration ACG and has a po-

tential energy Epot
CG(ACG) and a kinetic energy Ekin

CG(ACG). On the other hand, the

fine-grained model is in a configuration AFG that has a kinetic energy Ekin
FG(AFG)

and a potential energy Ebiased
FG (AFG) which depends on the configuration ACG of

the coarse-grained model by Ebiased
FG (AFG) = Epot

FG(AFG)+λ1Eλ(ACG, AFG). Hence,

the two models on this replica interact only by the term λ1Eλ(ACG, AFG) that bi-

ases the fine-grained model, but are otherwise invisible to each other. The effect of

this biasing term is that configurations of the fine-grained model are favored which

resemble the coarse-grained model configuration, with the strength of the bias con-

trolled by parameter λ1. The opposite situation is found on the replica B. Here

lives an independent fine-grained model with configuration BFG that has a poten-

tial energy Epot
FG(BFG) and kinetic energy Ekin

FG(BFG), while, on the other hand,

the configuration BCG of the coarse-grained model has a kinetic energy Ekin
CG(BCG)

and a potential energy Ebiased
CG (BFG, BCG) = Epot

CG(BBG) + λ2Eλ(BCG, BFG) that

depends on the fine-grained model by a term λ1Eλ(ACG, AFG). This biasing term

now ensures that on replica B the coarse-grained configuration resembles the one

of the fine-grained model.

While the time step for integrating fine-grained and coarse-grained models may

differ, they have to be the same for the corresponding models on both replicas.

This is because after a certain number of molecular dynamics steps a decision is

made on whether to replace on the replica B the configuration BFG in the unbiased

fine-grained model by the configuration AFG of the auxiliary (biased) fine-grained
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model of the replica A. This replacement goes together with a re-weighting of

the velocities vFG(AFG) such that Êkin
FG(AFG) = Ekin

FG(BFG), and is accepted with

probability:

w(B → A) = min
(
1, exp(−β(Epot

FG(AFG)− Epot
FG(BBG)− λ1Eλ(AFG, ACG)−∆Ekin

FG)
)

(5.2)

with ∆Ekin
FG = Ekin

FG(AFG)−Ekin
FG(BFG). The re-weighting of the velocities and the

Metropolis-Hastings acceptance criterium accounts for the fact that the proposal

configurations AFG are generated on replica A by a biased process, i.e., it corrects

for the resulting skewed probability with which the configuration AFG is proposed

as a replacement for BFG.

At other times, the the coarse-grained configuration ACG on replica A is replaced

by the configuration BCG of the biased coarse-grained model on replica B with

probability:

w(A→ B) = min
(
1, exp(−β(Epot

CG(BCG)− Epot
CG(ABG)− λ2Eλ(BFG, BCG)−∆Ekin

CG)
)

(5.3)

with ∆Ekin
CG = Ekin

CG(BCG)+Ekin
CG(ACG). Re-weighting the velocities of configuration

BCG such that Êkin
CG(BCG) = Ekin

CG(ACG), and the Metropolis-Hastings acceptance

criterium are again to correct for the skewed probability by which the configura-

tion BCG is proposed.

Note that the update of the unbiased coarse-grained configuration on replica A

also changes the Eλ biasing term in the ancillary fine-grained configuration, as

does the update of the unbiased fine-grained configuration on replica B changes

the corresponding biasing term in the steered coarse-grained configuration. In

order to minimize this disturbance, we also rescale the velocities in the biased

models such that the change in kinetic energy compensates for the change in Eλ.
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We remark that in software packages such as GROMACS154 it is sometimes simpler

to separate the biased and unbiased models onto different replicas. In this case

one would have four replicas, with a possible distribution of the models sketched

in the table below.

Table 5.1: ResET Model Distribution

Model replica Potential Energy Kinetic Energy Lambda Lambda Energy

unbiased fine-grained model 0 P0 K0

biased fine-grained model 1 P1 K1 λ1 Eλ(1, 3)

biased coarse-grained model 2 P2 K2 λ2 Eλ(0, 2)

unbiased coarse-grained model 3 P3 K3

In this implementation, the replica 0 and 2, and replica 1 and 3, communicated

during the molecular dynamics evolution of the configurations; and the ResET

move replaces the configuration of replica 0 by that of replica 1, and/or the con-

figuration on replica 3 by that of replica 2.

5.4 Material and Methods

5.4.1 Setup of the ResET Simulation

Our simulations utilize a modified version of the GROMACS154 molecular package

available from the authors. Initial tests of the working and efficiency are for the

Trp-cage protein,146,147 an often used system for evaluating new algorithms. In or-

der to compare our simulations with previous studies, we follow closely the set-up

of Han et al155 for the coarse-grained model, and that of Kouza et al [156] for the

fine-grained model. Hence, our coarse-grained Trp-cage protein model is described

by PACE force-field,122 with the uncapped protein solvated by 1118 MARTINI157

coarse-grained water molecules, and buffered 0.15M Na+ and Cl− ions, in a cubic

box of length 5.18 nm, leading to a total of 1313 coarse-grained particles. On the
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other hand, in our fine grained model is the N-terminus capped by an acetyl group

and at C-terminus by methylamine, leading to a total number of 313 atoms for

the protein that are solvated with 2645 extended simple point charge (SPC/E158)

water molecules in a cubic box with an edge length of 4.4 nm. One chlorine ion

(Cl−) is added to neutralize the system. Hence, the system contains 8249 fine-

grained particles, with the interactions between them described by the AMBER94

force-field.159

As a first application we compare in the second part of this study the ensem-

ble of configurations sampled by ResET simulation of Aβ1−42 wild type and A2T

mutant peptides. While aggregates of the wild type Aβ-peptides are implicated

in Alzheimer’s disease, the A2T mutant appears to be protective, i.e, reducing the

probability for acquiring the disease. We use in our simulations for both wild type

and mutant as coarse-grained model the MARTINI force-field,157 which is com-

putationally efficient and has been already used earlier in Aβ simulations.160,161

Here, the main chain of each amino acid is represented by one bead, and the side

chains by up to four beads depending on the size of the amino acid. Our wild

type protein thus contains 91 beads, and the mutant 92 beads. Each peptide is

placed in a cubic box and solvated with the MARTINI-CG water molecules rep-

resented by single beads. Together with 3 Na+ MARTINI-ion beads and a box

size of 7.16 nm (wild type) and 7.24 nm A2T mutant) we arrive at 2925 and 3189

particles, respectively. On the other hand, the fine-grained representations of wild

type and mutant peptides are modeled by the CHARMM36 force-field162 which

we found in previous work to be efficient for simulations of intrinsically disordered

and amyloid-forming proteins. The N- and C-termini are capped with Methyl

groups. The protein is placed in the center of a cubic box using a 1 nm distance

between the atoms of the protein and box. The each system is solvated with TIP3

water molecules163 and neutralized with 3 Na+ ions. This leads to a box size of

7.5 nm and a total number of 41412 particles for the wild type. Correspondingly,
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we get a box size of 7.6nm and a total number of 44509 particles for the mutant.

In simulations of both the Trp-cage protein and the Aβ-peptides we use for both

fine-grained and coarse-grained models shift functions with a cut-off of 1.2 nm

in the calculations of Coulomb and van der Waals interactions. Because of peri-

odic boundary conditions we employe Particle mesh Ewald (PME)164 summation

to account for long-range electrostatic interactions. Hydrogen atoms and bond

distances are constraint in the fine-grained model by the LINCS algorithm.165

Equations of motion are integrated using a leap-frog algorithm, with a time step

of 2 fs for both the fine-grained model and coarse-grained model. The v-rescale

thermostat166 with a coupling time of 0.01 ps is used to maintain the temperature

in the coarse-grained models, while a Nose-Hoover167,168 thermostat with the cou-

pling time of 0.5 ps controls the temperature in the fine-grained models.

A key element of the ResET sampling technique is the restraining potential Eλ

which quantifies the similarity between fine-grained and coarse-grained configura-

tions. In our case, we choose a function of the form.142

Eλ(qFG, qCG) =



1

2

(
∆2 (i, j)

)
−ds < ∆ (i, j) < ds

A+
B

∆S (i, j)
+ fmax∆(i, j) ∆(i, j) > ds

A+
B

∆S(i, j)
(−1)S − fmax∆(i, j) ∆(i, j) < −ds

(5.4)

where qFG are the coordinates of atoms in the fine-grained model and qCG the

ones in the coarse-grained model. ∆(ij) = δFG(ij) − δCG(ij) is the difference

between the distances (δ(ij)) measured in either the fine-grained or the coarse-

grained models between the Cα-atoms i and j. The control parameter fmax sets the

maximum force as ∆ (i, j)→∞ and S determines how fast this value is realized.

The parameters A and B are included to ensure continuity of Eα(qfg, qcg) and it’s

first derivative at values where ∆ (i, j) = ±ds, i.e., where the functional form of
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Table 5.2: Simulation details

Trp-cage Aβ1−42

Method Force-Field Sampling No Time (ns) Force-Field Sampling No Time(ns)
Canonical FG AMBER94 3 5000 CHARMM36 −−− −−−
REMD FG AMBER94 1 200 −−− −−− −−−
ResET FG+CG AMBER94+PACE 6 200(1000) CHARMM36+MARTINI v2.2 2 100(500)

5.4 changes. These parameters are thus computed by

A =

(
1

2
+

1

S

)
ds2 −

(
1

S
+ 1

)
fmaxds and B =

(
fmax − ds

S

)
dsS+1. (5.5)

In the ResET simulations is the biased fine-grained model on replica A coupled

to the unbiased coarse-grained model by a parameter λ1 = 0.5, while on replica

B the biased coarse-grained models is coupled to the free fine-grained models by

a parameter λ2 = 2.5. The ResET replacement move is tried every 250 ps, with

the bias-correction factor λ1Eλ(AFG, ACG)−∆Ekin
FG limited to the interval (0,100),

and on replica B λ2Eλ(BFG, BCG)−∆Ekin
CG) to the interval (0,20), choices that we

found in preliminary test runs leading to increased numerical stability.

Start structures for both fine-grained and coarse-grained models are generated by

heating up the experimental structures of PDB-ID: 1L2Y (Trp-cage) and PDB-ID:

1Z0Q (Aβ1−42)
151,169 to 500 or 1000 K in short molecular dynamics simulations

under NVT conditions (0.5 ns and 1 ns), and cooling them down to the respec-

tive temperatures (with the exception of the REMD simulations is this 310 K).

Simulations of the various systems start from the so-generated configurations and

are performed in the NVT ensemble, with the simulation details listed in Table 5.2.

For most of our analysis we use GROMACS tools154 such as gmx-rms which calcu-

lates the root-mean-square deviation (RMSD) and the root-mean-square fluctua-

tions (RMSF) of residues with respect to an initial configuration. For visualization

we use the VMD software,170 which we also use to calculate the solvent accessible

surface area (SASA) using a probe radius of 1.4 Å. Other quantities are calculated
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with in-house programs and defined in the manuscript. An example are dynamic

cross-correlation maps which are calculated using the definition of:171,172

C(i, j) =
〈∆ri.∆rj〉
〈∆r2i 〉〈∆r2j〉

. (5.6)

where ∆ri and ∆ri are the displacement vectors of i-th and j-th residues of the

system and angle brackets represent ensemble averages. Positive values mark

correlated motions of the respective residues while negative values indicate anti-

correlated motion.

5.5 Results and Discussion

5.5.1 Efficiency of ResET

In order to test the working and efficiency of our multiscale approach ResET, we

perform first simulations of the Trp-cage146,147 miniprotein, an often used model

for testing sampling techniques. Choice of this system, with which we are familiar

from previous work, therefore allows a direct comparison with past simulations.

An example are the replica exchange molecular dynamics (REMD) simulations of

Ref.,156,173 where 40 replicas of equal volume are simulated at 40 temperatures

spanning a range from T= 280 K to T=540 K. Configurations are exchanged be-

tween neighboring temperatures according to a generalized Metropolis criterium,

leading to a random walk in temperature that allows replicas to find local minima

(when at low temperatures) and escape out of them (when at high temperatures).

The net-effect is an enhanced sampling at the target temperature. Defining a con-

figuration as native-like if the root-mean-square deviation (RMSD) to the PDB-

structure (PDB-ID: 1L2Y) of less than 2.5 Å, we find at T=310 K native-like

configuration with a frequency of 87 %, using the more restrictive criterium of

a RMSD smaller than 2.2 Å, the frequency reduces to 55%. Note, that these

frequencies do not change beyond statistical fluctuations once the REMD simu-
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lation has reached 50 ns, and we therefore neglect the first 50 ns of our 200 ns

long trajectories when calculating the frequencies. While these frequencies are

similar to the ones observed in earlier work,156,173 we suspect that our values over-

estimate the frequency of folded configurations that reside at a certain time at

T=310 K. This is because the systems are simulated at each temperature with

the same volume. This volume, while sufficiently large at the target temperature

may at the higher temperature suppress extended configurations, therefore artifi-

cially stabilizing folded configurations. For this reason, we prefer to compare our

ResET simulations instead directly with regular constant temperature molecular

dynamics, simulating the Trp-cage protein in three independent trajectories at

T=310 K over 5000 ns, a value that is comparable to the experimental measured

folding times of around 4µ.174 The RMSD as function of time is shown for all three

trajectories in Figure 5.1a.

Visual inspection of the three trajectories points to another problem. For a small

protein such as Trp-cage is the RMSD not good measure for similarity as config-

urations that appear as similar by visual inspection may differ by relatively large

RMSD values. This can be seen, for instance, in the second trajectory where at

around 600 ns the RMSD increases from 2.0 Å to 3.6 Å, i.e., from native-like to

configurations to one considered no longer native-like according to the above defi-

nition of a native configuration (i.e., having a RMSD of less than 2.5 Å). However,

visual inspection shows that the molecule keeps its native-like fold, see the cor-

responding configurations also shown in the Figure. This contradiction between

our RMSD-based definition and visual inspection made us configurations while

the RMSD consider another quantity as measure for similarity. The two main

characteristics of the Trp-cage native structure are its two helices (residues 2-9

and 11-14), and the contact between residues 6W (a Tryptophan) and residue 18P
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Figure 5.1: The time evolution of RMSD (a) and folding parameter Otrp (b) as
measured in regular molecular dynamics simulations at T=310 K. Trajectory 1 is
drawn in purple, trajectory 2 in green and trajectory 3 in blue. The two snapshots
are taken from trajectory 2 at 601.0 ns (snapshot at the bottom) and 602.3 ns
(snapshot on top). Both snapshots show similar configurations while the RMSD
changes from 2.0 Å to 3.6 Å. N- and C-terminal residues in the snapshots are
marked in blue and red color, respectively.

(a Proline). Hence we define as marker for Trp-cage folding a new quantity:

Otrp = d6−18 + 1/(nH + 1) (5.7)

Here, d6−18 is the difference between residues 6W and 18P, and nH the number

of residues that have dihedral angles as seen in a helix. The time evolution of

this quantity in Figure 5.1b shows that the new coordinate allows indeed a better

description of the folding transitions, as its behavior differs less from the visual

inspection. Especially, we do not see for the second trajectory at 600 ns the false

signal for non-native configurations that we see in the RMSD plot. Comparing

Otrp as function of time with visual inspection of configurations along the trajec-
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tories suggests that folded configurations are characterized by values of Otrp < 1,

and we use in the following this definition to quantify frequencies of folded con-

figurations.

With this definition, we observe the first folding event at t=11.6 ns (in trajec-

tory 2), and the systems stays folded for about 600 ns before unfolding again. For

trajectory 1 folding is observed at t=800 ns, and no folding is observed within 3500

ns in the third trajectory where the protein unfolds afterwards again at about 4500

ns. As a consequence, we find between 250 ns and 500 ns folded configurations

with a frequency of about 26% and between 750 ns and 1000 ns, with about 49%.

The frequencies increase only slowly as the simulations proceed, and between 3000

ns and 5000 ns we find native-like configurations with about 58%. The above num-

bers are consistent with the experimentally measured folding times of about 4µ.174

How does our new multiscale method fits in this discussion? The time evolution

of our marker function Otrp(t) is shown in Figure 5.2. Native-like configurations

according to our criterium are observed after around 30 ns, and between 50 ns and

100 ns seen with a frequency of about 59%. The frequencies do not change much

as the simulation progresses, and between 150 ns and 200 ns are native-like con-

figurations observed with 65%. We remark that these frequencies do not depend

on the choice of parameters with which we scale the λ energy contribution in the

ResET update.

These frequencies for folded configurations are similar to what is seen in long-

time canonical runs, but require shorter simulation times. Hence, our simulations

of the Trp-cage protein indicate that our new multiscale simulation method leads

indeed to an increase in sampling efficiency. If we take as criterium for the com-

parison the time it takes to have (on average) about 50% of configuration folded

(about 800 ns for the canonical runs and 50 ns for the ResET run) we find that

ResET is about 16 times faster than the canonical simulations. While the gain
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Figure 5.2: The time evolution of the order parameter for 100-20 kJ/mol. Trajec-
tory 1 is drawn in purple, trajectory 2 in green and trajectory 3 in blue.

in efficiency will depend on the specifics of the coarse-grained model (i.e. how

much faster it samples the configuration space) and its coupling to the physical

force-field, our data demonstrate the faster sampling properties of our multiscale

approach.

5.5.2 Comparing Aβ wildtype and A2T mutant

Our evaluation of the sampling efficiency of ResET relies on a rather simple test

case. As a more interesting first application, we use in the second part our sam-

pling technique to compare the ensembles of wild type and A2T mutant Aβ1−42

peptides. Fibrils containing Aβ1−40 or the more toxic Aβ1−42 are a hallmark of

Alzheimer’s disease and the focus of intense research.148 A large number of familial

mutations are known that worsens the symptoms of Alzheimer’s disease or hasten

its outbreak,149,150 but there have been also mutations identified that are protec-
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tive, i.e. lower the risk to fall ill with Alzheimer’s disease. One example is the

mutant A2T where the second residue (counted from the N-terminus) is changed

from a small hydrophobic Alanine (A) into a bulky polar Threonine (T).151 It has

been not yet established why this mutation is protective [152, 153], but one possi-

bility is that this mutation alters the pathway for amyloid formation, for instance,

by making it more difficult to form aggregates. In order to test this hypothesis

we simulate here Aβ1−42 wild type and A2T mutant monomers, and compare the

ensembles of sampled configurations for their aggregation propensities.

Under physiological conditions are Aβ-peptides intrinsically disordered, and we

do not expect the appearance of folded structures. Instead, we assume that the

ensemble of configurations contains such with transiently formed β-strands that

would encourage aggregation. We conjecture that such transient ordering ap-

pears more often for wild type Aβ1−42 than for the A2T mutant peptides. In

order to identify these differences in local ordering, we have measured the root-

mean-square-fluctuations (RMSF) of residues for both cases, taking as reference

structure the corresponding start configuration, but discarding for the calculation

of the RMSF the first 50 ns of the simulation. The RMSF is chosen because this

quantity describes the flexibility of residues or segments of the protein, and the

more flexible a segment is the less likely will it be involved in forming stable struc-

tures. Our data are shown in Figure 5.3, and while there are only small differences

for the first 20 residues between wild type and mutant, the situation is different

for the C-terminal half of the chain. For residues 21-37 is the RMSF considerably

lower for the mutant than for the wild type. We remark that this picture does not

change if we recalculate the RMSF, including now all heavy atoms (i.e, not only

backbone but also side-chain atoms).

The lower flexibility of the segment 21-37 in the mutant is not correlated with

increased secondary structure. Residues take dihedral angle values as in a helix
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Figure 5.3: Root-mean-square-fluctuations of residues in either wild type (purple)
or A2T mutant (green) Aβ1−42 peptides. Only heavy atoms are considered in the
calculation, and the first 50 ns of the 100 ns trajectories discarded to allow for
convergence of the simulations.

or a β strand with about 10% in both wild type and mutant. However, there

is a change in the average radius of gyration (RGY, a measure for the volume),

which with 10.6(1) Å is larger for the mutant than for the wild type where it is

10.5(1) Å. Similarly is the average solvent accessible surface area (SASA) of the

peptide in the mutant with 38.0(1) nm2 less fluctuating than in the wild type

(38.0(3) nm2), reflecting the gain in surface area resulting from the more bulky

Threonine. However, the relation is different for the segment of residues 21-37,

where the wild type has a SASA value of 18.2(3) nm2 and the mutant a SASA

of 18.1(2) nm2 . The differences for the segment result from polar residues as the

solvent accessible surface area of hydrophobic residues is with 4.1(1) nm2 the same

for both mutant and wild type. Hence, the differences in SASA values for this

segment indicate that in the mutant polar residues, which are exposed to solvent

in the wild type, form contacts with other residues. In order to understand the
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differences between mutant and wild type in more detail, we have also analyzed

the contacts and cross-correlations between residues, focusing again on the final

50 ns of the trajectories for both systems. The resulting maps for both systems

are shown in Figure 5.4 a-b, with the coloring describing the degree of correlation

between residues.

Unlike in the wild type are in the A2T mutant the disordered N-terminus (residues

1-9) and residues 27-33 correlated. This correlation results from electrostatic in-

teractions, for instance between the NH3+ group of residue K28 (a Lysin) with

negatively-charged COO- group of residue E7 (a Glutamic acid) seen in the snap-

shot shown in Figure 5.4 d. Hence, the replacement of the small hydrophobic

Alanine by a bulky polar Threonine allows for the above electrostatic interactions

in the mutant that do not exist in the wild type, and whose importance for in-

hibiting amyloid formation in the A2T mutant has been already noticed earlier

in Ref..175 These interactions likely stabilize not only the segment 27-33, but are

responsible for the lower RMSF seen for residues 21-37. The interactions between

N-terminus and residues 27-33 compete now in the A2T with hydrophobic inter-

actions between the segment formed by residues 13-21, which include the central

hydrophobic core (L17VFFA21), and the mostly hydrophobic C-terminus (residues

37-42), see the corresponding snapshot in Figure 5.4 c. As a result the two seg-

ments are correlated in the wild type but not in the mutants. These interactions

between the peptide’s two main hydrophobic domains are thought to be crucial

for the self-assembly of Aβ-fibrils,176,177 but are now missing in the A2T mutant,

reducing the risk for aggregation.

5.6 Conclusion

We have described a replica-exchange-based multiscale simulation method, Resolution-

Exchange with Tunneling (ResET), designed for simulation of protein-folding and
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Figure 5.4: Two-dimensional dynamic cross-correlation map extracted from (a)
wild type and (b) mutant Aβ1−42 ResET simulations. A representative snapshot
obtained from the wild type simulations is shown in (c), where the central hy-
drophobic core L17VFFA21 and the C-terminal hydrophobic residues G37GVVIA42

are drawn in green and orange color, respectively. A corresponding snapshot from
the mutant simulation is shown in (d), where the disordered N-terminus (residues
1-10) and residues 27-31 are colored in ice-blue and orange, respectively. N- and
C-terminal residues are represented by blue and red spheres.

aggregation. Our approach combines the faster sampling in coarse-grained simu-

lations with the potentially higher accuracy of all-atom simulations. It avoids the

problem of low acceptance rates plaguing similar approaches and requires only few

replica. After testing the accuracy and efficiency of our approach for the small Trp-

cage protein by comparing our approach with long-scale (5 µs) regular molecular

dynamic simulations, we use our new method to compare to compare the ensemble

of Aβ1−42 wild type peptides, implicated in Alzheimer’s disease, with that of A2T

mutants which seems to protect against Alzheimer’s disease. Our ResET simula-

tions indicate that the replacement of a small Alanine (A) by a bulky Threonine

(T) as residue 2 alters the pathway for amyloid formation by introducing steric
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constraints on the mostly polar N-terminal residues that encourage electrostatic

interactions with residues 27-33. These interactions reduce the flexibility of the

extended segment 21-37, therefore contributing to the overall larger volume, more

exposed surface and resulting higher solubility of the mutant. At the same time

do this interactions also interfere with the hydrophobic interactions between the

central hydrophobic core (L17VFFA21), and the mostly hydrophobic C-terminus

(residues 37-42), known to be crucial for the self-assembly of Aβ-fibrils, decreas-

ing therefore the chance of formation of Aβ-amyloids. Further contributing to

this mechanism that may explain why the A2T mutant seems to protect the car-

rier against Alzheimer’s disease, could be the larger exposed hydrophobic surface

area that in connection with increase solubility may trigger faster degradation of

the mutant. We plan to test this hypothesis by comparing the A2T mutant with

suitable double mutants that interfere with this mechanism.
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Chapter 6

ResET GPU

The following chapter is from unpublished work in preparation for a manuscript

for publication.

6.1 Abstract

Molecular Dynamic simulations performed with Graphical Processing Units (GPU)

have dramatically extend the time range for studying protein folding.178 However,

the sampling inefficacies inherent to Molecular Dynamics still remain. These barri-

ers can be overcome with enhanced sampling methods. We present a new version

of our Resolution-Exchange-with-Tunneling that has been combined with GPU

computing power for improved simulation and sampling performance over tradi-

tional methods. The previously demonstrated ResET for GROMACS method has

been completely redesigned as a python library for the OpenMM MD package.60,179

The updated version is deployable on high performance computers (HPC) or per-

sonal workstations, using either CPU or GPU architectures. These improvements

expand ResET applicability to larger systems and time scales, that were unfeasible

using CPUs.

6.2 Reason for Revisions

The previous version of the ResET algorithm was built on the framework of the

Replica-Exchange-with-Tunneling method (RET). The ordinal implementation of

69



RET was incorporated, at that time, the most current GROMACS version 4.6.5.

The extension of the shard sub-routines from the previously proven RET algo-

rithm simplified the initial presentation of ResET, the method was now limited by

a dated GROMACS version. Rather than updating the program to a more recent

GROMACS version, ResET has been rewritten as a python library for the molec-

ular dynamic package OpenMM with the capacity to perform its replica exchange

method on a single GPU. The change is a simpler implementation, that is faster

and more widely applicable for folding studies.

6.3 Summary of Revisions

The redesign is now a Python library for the Molecular Dynamic package OpenMM.

The implementation to a new software was done to take advantage of OpenMM’s

GPU capabilities and modular custom forces. These attributes have modernized

ResET into a faster, more accessible and applicable method. GPU-ResET can

now simulate at speeds up to 100 fold greater than the previous CPU version.

Distributing the method as an add-on library removes the need for a modified in-

stallation that solely performs ResET. OpenMM custom forces tools have also ex-

panded ResET’s capabilities. Our new design permits choices of collective variable

or coarse grain models for the multi-scale essential sampling part of the algorithm.

We outline in this section the critical changes necessary for the improved of ResET.

While OpenMM is able to perform MD simulations with GPU’s, their applica-

tion with replica exchange protocols, present difficulties. Multiple GPUs can be

used for a single MD simulation, but replica exchange methods are commonly as-

signment as 1 replicas to 1 GPU. This presents a resource barrier with n-number of

identical GPUs required to operate n-number replicas in traditional parallel com-

puting. This limitation and lock of replica exchange protocol in basic OpenMM,

guided us to a serial computing method to overcome the barriers. Our approach

lowers the resource requirements, as the method can be performed using a single
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GPU. The design can still benefit from multiple GPUS, without overhead lost due

to message interface passing (MPI).180

The serial method general work-follow operates by first setting an n-number of

replica exchange moves to attempt. The number of attempts act as a master

loop for the algorithm. During each iteration of the exchange loop, the replicas

are simulated one at a time, creating exact checkpoints when completed, deleting

the current replica system and loading the next replica. Once all replica systems

are simulated, the current exchange loop ends, restarting the cycle. At no point

during the cycle do replicas directly communicate, Plain text datafiles store all in-

formation. This includes files for storing all system parameters that enable for the

repeated creation and deletion replicas, and all structural and energy information

for the ResET algorithm.

The communication of the configuration bias term Eλ (discussed in Section 5) be-

tween fine-grain and coarse-grain models require the unbias models are performed

first. Both unbias models types record their distance matrix into respective data

files. The appropriate partner replica receive the data by loading the unbias dis-

tance map file into memory to calculate as a OpenMM Custom non-bonded force

according to calculation show in Chapter 4. Thus removing any communication

log or idling, while a slower replica system updates. Information to perform the

exchange protocol outlined in Chapter 5 is stored in the same fashion. The algo-

rithm evaluates the exchange with saved data files, to create a replica ID index for

a who-has-what-now replica hash-table. In the case of a successful replacement,

the exchange partner index is used to load accompanying checkpoint file, but set-

ting the system parameters according to the original target replica, completing the

exchange replacement. By interactions only with outputs or memory stored data,

the simulations suffer less than 15% performance decrease versus MD simulation.

The frequency of data output is the primary source for the lost, the exchange
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procedure coast is nominal.

A Github repository is available for installation alongside an OpenMM python

environments. This distribution contains all tools required to perform ResET

simulations, with examples and analyst codes for processing ResET results as a

user friendly platform.‘

6.4 Performance Evaluation

6.4.1 ResET Simulation Setup

In order to validate the new ResET program, we closely follow the amyloid beta

(Aβ) simulations performed in our initial application with the GROMACS ver-

sion 4.6.5. The same structural files for both fine-grain (FG) and coarse-grain

(CG) models of Aβ42 model simulations were used for the validation test. The

GROMACS MARTINI coarse grain model was converted into an OpenMM topol-

ogy using the Martini-OpenMM library by MacCallum Lab.181 The Charmm36

forcefield used for the GROMACS fine grain models was exported and explicitly

referenced to OpenMM.162 The Martini Aβ42 model was a 7.16 nm box with a 91

bead representation, containing 3 Na+ Martini ion for a total particle number of

2925. The Aβ42 fine grain model N- and C- terminals were capped with acetyl

and methyl groups in a 7.5 nm cubic box. The system was solvated with TIP3P

water with 3 Na+ ions for a total of 41412 particles.182

Due to difference in OpenMM and GROMACS exact operation and offerings, a

few simulation parameters required adjusting. These variations should not cause

significant deviation from the previous results but must be state with the goal to

replicate previous results. The same shift function cut-offs of 1.2 nm for Coulomb

and van der Waals interactions with a Particle Mesh Ewald were employed but hy-

drogen bond lengths were restricted using the OpenMM H-bond restraint method.
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In lieu of the leap-frog integrator with the v-rescale thermostat for the CG-model

and Nose-Hoover for the FG model in GROMACS, the OpenMM version used the

Langevin Integrator with a collision frequency of 1 ps and Andersen Thermostat

with frequency control of 0.5 ps at 310 K for both CG and FG simulations.62,183–185

The CG model model used a timestep of 10 fs in contrast to the FG timestep of

2 fs. This allowed the coarse grain model to evolve further before broadcasting

information to the FG partner. At the start of the simulation protocol, each model

is prepared in separate warm-up simulations to bring the system to the correct

temperature prior to production. The coupling bias is turned off during this stage

but is enabled after warm-up stage using the previous factors of λCG = 2.5 and

λFG = 0.5 with a bias structure correction frequency of 100 steps and 20 steps

respectively. The ResET replacement attempts are performed every 250 ps.

Simulations were performed using a single Intel Skylake 6130 CPU with a NVIDIA

Quadro RTX6000 GPU.

6.4.2 Validation

The wild-type Aβ1−42 (PDBID:1Z0Q) was simulated for 100 ns using OpenMM

ResET for comparison with like GROMACS ResET. In non-time series analyst,

only data after 50 ns is take, this was done to only consider results after con-

vergences, the same criteria used for the previously analyst. RMSD from the

reference structures were measured for both simulations. The time series in both

simulations show that the method maintains an elevated RMSD. A series average

after the 50 ns convergence show the GROMACS version averaged 8Å, while the

OpenMM GPU version averaged 10Å.

Though the OpenMM version averaged higher in RMSD, the difference in aver-

age RMSD falls within the deviation of the GROMACS results. Visual inspection

of the 60-80 ns segment show two molecules show similar structures. The OpenMM

simulation also produces a β-sheet formation between the strands, which did not

occur in the GROMACS simulations.
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Figure 6.1: Initially higher, the OpenMM RMSD deviates less after 40 ns.

Figure 6.2: The contacts between residues L17VFFA21 and G37GVVIA42 that ap-
pear in Chapter 6 Figure 17(c),shown again on the right, occur again in the new
simulations. Additional β-sheet formation also appears in the OpenMM simula-
tion, shown on the left.

Though these simulations are not mirror results they follow the same trends as

were expected in our previous study. Simulating this model in physiological con-

ditions folded structures were not expected but rather configuration ensembles for

beta strand aggregation, so the additional appearance is a positive result. The new

simulations appear produce this behavior and at higher rates. We can therefore

conclude our ReSET method has been successfully recreated in OpenMM and can

be simulated with GPU hardware. The performance increases allows the method

to be applied to complex larger systems with ease, that can additionally be fine
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tuned to investigate specific questions with the updated modular design.
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Chapter 7

Conclusion

7.1 Conlcusion and Outlook

The enhanced sampling methods presented in this dissertation demonstrated no-

table advancements in reducing algorithm difficulties that replica exchange meth-

ods face. The RET method was able to explore a multi-funnel landscape basin

in the lymphotactin folding switch that simpler method could not explore. The

double ladder biasing scheme showed that the switch between Ltn10 and Ltn40

relies on bifurcated hydrogen bonds to avoid the energy cost from reconstructing

the hydrogen bonding network between the fold’s secondary structure. The high

frequencies of these interactions and rapid conversion between states would im-

pede other methods due to the short-life spans of any intermediate states. The

exchange-with-tunneling method was able to capture these moments, allowing us

to propose a transition pathway.

The performance of the Resolution exchange with Tunneling was benchmarked

using the mini-protein trpcage. By coupling behavior in both directions of model

resolution, ResET was not able to only fold the difficult protein but also match

and outperformed the accompanying cases with a fraction of simulation time. Ap-

plicability of ResET to study larger systems of research interest was also presented

with Aβ proteins. The results implicated the mutation of the hydrophobic Alanine

residue to the bulkier polar Threonine as a possible factor to the protective nature

of the A2T Aβ mutant. This was determined by construct an energy landscape for
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both variants that show divergent bonding behaviors around the mutated regions.

Again the method was able to produce these results with fewer resources with

shorter trajectories than canonical simulations would require.

Both methods are large contributions forward in solving protein folding prob-

lems but further advancements must be met before solved. The systems studied

here, were of moderate size with only monomeric representations of the proteins.

Additionally, they were performed using unoptimized computer hardware, which

impeded feasible total simulation time and system sizes. The future of protein

folding studies will need to consider larger systems, containing multiple protein

to properly model phenomenon such as aggregation or dimerization, events that

occur with the proteins studied here. The outlook for this is positive with the up-

coming publication of the OpenMM GPU ResET discussed in Chapter 6, which

further extents the capabilities of the sampling method to increasing complex

systems. Future work will seek to develop a algorithmic method for parameter

determination.

77



Bibliography

[1] Harvey F Lodish. Molecular cell biology. Macmillan, 2008.

[2] Scott Freeman. Biological science. Pearson education, Inc., 2008.

[3] Massimo Stefani and Christopher M Dobson. “Protein aggregation and

aggregate toxicity: new insights into protein folding, misfolding diseases

and biological evolution”. In: Journal of molecular medicine 81 (2003),

pp. 678–699.

[4] Philip Charles Nelson and Philip Nelson. Biological physics. WH Freeman

New York, 2004.

[5] Christian B Anfinsen. “Principles that govern the folding of protein chains”.

In: Science 181.4096 (1973), pp. 223–230.

[6] Lauren L Porter, Irina Artsimovitch, and César A Ramırez-Sarmiento.

“Metamorphic proteins and how to find them”. In: Current Opinion in

Structural Biology 86 (2024), p. 102807.

[7] Alexey G Murzin. “Metamorphic proteins”. In: Science 320.5884 (2008),

pp. 1725–1726.

[8] Prabir Khatua, Alan J Ray, and Ulrich HE Hansmann. “Bifurcated hy-

drogen bonds and the fold switching of lymphotactin”. In: The Journal of

Physical Chemistry B 124.30 (2020), pp. 6555–6564.

[9] Fatih Yasar, Alan J Ray, and Ulrich HE Hansmann. “Resolution exchange

with tunneling for enhanced sampling of protein landscapes”. In: Physical

Review E 106.1 (2022), p. 015302.

78



[10] David Eisenberg and Mathias Jucker. “The amyloid state of proteins in

human diseases”. In: Cell 148.6 (2012), pp. 1188–1203.

[11] Julie S Valastyan and Susan Lindquist. “Mechanisms of protein-folding

diseases at a glance”. In: Disease models & mechanisms 7.1 (2014), pp. 9–

14.

[12] Andrew R Leach. Molecular modelling: principles and applications. Pearson

education, 2001.

[13] Brian Kuhlman and Philip Bradley. “Advances in protein structure pre-

diction and design”. In: Nature reviews molecular cell biology 20.11 (2019),

pp. 681–697.

[14] Francis Crick. “Central dogma of molecular biology”. In: Nature 227.5258

(1970), pp. 561–563.

[15] Matthew Cobb. “60 years ago, Francis Crick changed the logic of biology”.

In: PLoS biology 15.9 (2017), e2003243.

[16] Joel Janin et al. “Conformation of amino acid side-chains in proteins”. In:

Journal of molecular biology 125.3 (1978), pp. 357–386.

[17] Donard S Dwyer. “Electronic properties of the amino acid side chains con-

tribute to the structural preferences in protein folding”. In: Journal of

Biomolecular Structure and Dynamics 18.6 (2001), pp. 881–892.

[18] Ken Dill and Sarina Bromberg. Molecular driving forces: statistical thermo-

dynamics in biology, chemistry, physics, and nanoscience. Garland Science,

2010.

[19] Kerson Huang. Lectures on statistical physics and protein folding. World

Scientific, 2005.

[20] Patrick A Alexander et al. “The design and characterization of two pro-

teins with 88% sequence identity but different structure and function”. In:

Proceedings of the National Academy of Sciences 104.29 (2007), pp. 11963–

11968.

79



[21] Mallika Iyer et al. “What the protein data bank tells us about the evolution-

ary conservation of protein conformational diversity”. In: Protein Science

31.7 (2022), e4325.

[22] Andrew CR Martin et al. “Protein folds and functions”. In: Structure 6.7

(1998), pp. 875–884.

[23] Linus Pauling. “The discovery of the alpha helix”. In: Culture of Chemistry:

The Best Articles on the Human Side of 20th-Century Chemistry from the

Archives of the Chemical Intelligencer (2015), pp. 161–167.

[24] Rajeev Aurora and George D Rosee. “Helix capping”. In: Protein Science

7.1 (1998), pp. 21–38.

[25] James S Nowick. “Exploring β-sheet structure and interactions with chemi-

cal model systems”. In: Accounts of chemical research 41.10 (2008), pp. 1319–

1330.

[26] Ning Zhang et al. “New insights regarding protein folding as learned from

beta-sheets”. In: EXCLI journal 11 (2012), p. 543.

[27] Takami Tomiyama et al. “A mouse model of amyloid β oligomers: their

contribution to synaptic alteration, abnormal tau phosphorylation, glial

activation, and neuronal loss in vivo”. In: Journal of Neuroscience 30.14

(2010), pp. 4845–4856.

[28] Yifat Miller, Buyong Ma, and Ruth Nussinov. “Polymorphism of Alzheimer’s

Aβ17-42 (p3) oligomers: the importance of the turn location and its con-

formation”. In: Biophysical journal 97.4 (2009), pp. 1168–1177.

[29] Martin Karplus. “The Levinthal paradox: yesterday and today”. In: Folding

and design 2 (1997), S69–S75.

[30] Robert J Good. “Surface free energy of solids and liquids: Thermodynamics,

molecular forces, and structure”. In: Journal of colloid and interface science

59.3 (1977), pp. 398–419.

80



[31] Joseph D Bryngelson et al. “Funnels, pathways, and the energy landscape of

protein folding: a synthesis”. In: Proteins: Structure, Function, and Bioin-

formatics 21.3 (1995), pp. 167–195.

[32] Peter E Leopold, Mauricio Montal, and José N Onuchic. “Protein fold-
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