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Abstract 

According to the National Institute of Health (NIH), oral cancer is one of several major types of 

head and neck cancer (HNCs) and affects approximately 54,000 individuals in the United States 

each year [20]. Recognized risk factors for HNCs are primarily tobacco use, alcohol intake, and 

inadequate oral hygiene, the latter of which is significant for oral cavity cancer [22, 23, 24]. Like 

treatment for other cancers, oral cancer therapies usually include surgery, radiotherapy, 

chemotherapy or a combination thereof [21, 25, 26, 27]. Treatments can cause loss of clear speech 

as a result of resecting parts of the vocal tract, which alters the vocal tract shaping and/or limits 

mouth movement.  

For this thesis, a software application was developed to evaluate a participant’s spoken 

communication by simultaneously analyzing facial features and voice recordings of him or her 

reading a scripted passage.  The effect of vocal tract changes following oral surgery was 

investigated using the new application, which showed measurable, quantifiable loss of speech. The 

goal of development and testing was providing medical doctors, speech therapists, and researchers 

the ability to leverage data-drive algorithms when designing strategic rehabilitation treatment plans 

to improve patient recovery. With the use of machine learning techniques, a model was developed 

for analyzing speech patterns and identifying/quantifying an emulated impact of oral surgery on 

generating speech. Such an approach leverages acoustic analysis and offers a non-invasive, 

accessible means of assessment, especially when compared to other methods (e.g., high-speed 

video-stroboscopy) that are known to cause side effects of swelling/pain and exclude some cancer 

patients. By focusing on extracting and analyzing various audio features from speech recordings 

and spatial dynamics of the lips—including formant frequencies—investigators are able to discern 
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subtle changes in motor speech task characteristics. This information could indicate post-surgical 

complications or suggest improvements during recovery. The framework built in this thesis 

identifies a process for comparing speech samples and special facial dynamics both before and 

after surgery. Detecting impairments, like shift in speech frequencies, offers valuable feedback 

about a patient’s motor speech task monitoring and rehabilitation progress. Results demonstrate 

the effectiveness of therapeutic interventions after cancer treatment.   

Experimental analyses emulated possible post-surgical scenarios for two healthy participants.  The 

first participant was a non-native English speaker and the second participant was a native English 

speaker with American accent. Various speech patterns were observed under both regular 

conditions and those experienced as a consequence of two types of oral obstructions. Preliminary 

results demonstrate the potential for using the novel method detailed herein for objectively 

assessing speech loss and monitoring speech rehabilitation for patients who suffer from oral cancer. 

In short, this thesis presents a framework for non-invasive assessment of speech impairments 

following oral cancer treatment that bridges the gap between clinical speech therapy and 

computational speech analysis. The impact will enhance oral health and surgery rehabilitation. 

This study was conducted under an approved IRB by the University of Oklahoma No. 17042 and 

title: AI For Facial Rehab Post Oral Surgery Speech Recovery. 
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1 Introduction 

The ability to accurately analyze and interpret human speech has profound implications across a 

wide range of fields, from healthcare and assistive technologies to communication and artificial 

intelligence. Speech motor task is one of the most natural and fundamental means of human 

expression and communication, carrying not only linguistic information but also nuances that 

convey emotions, intentions, and even the speaker's physical condition. In healthcare, for instance, 

speech analysis can offer non-invasive diagnostics and monitoring for conditions affecting speech 

capabilities, such as those experience in the aftermath of oral surgery. By focusing on the 

differentiation between regular and emulated speech—along with cross-subject analysis, the study 

undertaken for this thesis aims to contribute to the broader understanding of how speech 

characteristics vary under different physical restrictive conditions of the oral cavity, as emulated 

through post oral-operative data for a variety of individuals. The methodology is suggested for 

clinical diagnostics, post-operative care, and rehabilitative therapy to track speaking rehabilitee 

and improvement during speech therapy. 

The proposed method integrates voice and imaging analysis to recognize facial features and speech 

deficiencies after oral cancer surgery. Results provide a way to characterize the loss of speech 

motor task ability by utilizing recorded audio and visual data gathered while a participant reads a 

scripted passage both before and after surgery. Data was collected using a commercial camera to 

capture the act of two participants reading a passage from the novel “the caterpillar” [30]. Motor 

speech disorders simulated by two emulated conditions, namely oral obstacle under the tongue and 

clenching teeth together while speaking were assessed to a) mimic oral surgery effects and b) limit 

oral cavity motion. Findings were compared with baseline speech data gathered under normal 

conditions (i.e., not restrictions or oral obstructions during speaking). Prior to processing, the audio 
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and video signals were separated. Images extracted from the video were processed using artificial 

intelligence (AI) to identify facial features (i.e., landmarks) on the participant’s face, including lip, 

nose, eyes, and face boundary. An algorithm was then implemented to track and synchronize lip 

movements with the audio signal. Next, passage words and their associated timings were separated 

using a speech recognition algorithm so that corrections to the participant’s lateral head movements 

that might negatively impact lip tracking accuracy could be made. Audio-visual features, including 

formants, pitch, vertical and lateral lip opening/closing displacements and rate, among other 

parameters, were calculated for each word uttered by the participant while reading the passage. 

Features were subsequently utilized to determine post treatment speech loss and to quantify 

recovery and gain-to-normal changes during speech therapy.  

Method validation was achieved using data gathered from two healthy participants reading a 

passage “the caterpillar.”—Each participant was evaluated during normal conditions and also 

under two restrictive, emulated conditions: 1) speaking with a hard candy in the mouth and 2) 

speaking with clenched teeth. Preliminary results demonstrate the potential of the proposed method 

for objectively assessing speech loss and monitoring speech rehabilitation for oral cancer patients. 

Machine learning models were developed to differentiate normal speech with restrictive speech 

for an individual with an 80% F1 score. The results underscore the efficacy of integrating voice 

and imaging analysis when assessing and monitoring speech rehabilitation after oral cancer 

surgery. The method's ability to objectively quantify speech loss and to track the speech task 

rehabilitation progress via audio-visual feature analysis represents a significant advancement in 

personalized cancer care. Compared to traditional subjective assessments of speech quality, the 

novel approach detailed in this thesis offers a more precise, data-driven evaluation and specifically 

targeted interventions. 
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1.1 Thesis Contributions 

This thesis analyzes simultaneous lip motion patterns and speech audio signals that both 

characterize the loss and track the improvement of speech therapy for patients undergoing oral 

cancer treatment. Method includes image alignment and processing, digital signal processing, and 

statistical analysis, as well as the use of machine learning classification models. Findings outlined 

in this study enhance patient recovery experiences after oral surgery and aid both speech therapists 

and researchers when selecting/applying more strategic techniques and approaches for minimizing 

recovery time and reducing medical costs. 

Primary contributions of this study are summarized below. 

[1] Implemented an automated process to measure the displacements of the facial expressions 

including lip movement while correcting for head motions. 

[2] Implemented an automated framework to measure audio features including zero crossing, 

formant frequencies, and pitch frequency per word. 

[3] Constructed a machine learning algorithm to differentiate between a baseline audio-visual 

recording and a recording of passage reading inhibited with a hard candy in the mouth. 

[4] Evaluated the importance of each machine learning feature to detect drift from the 

audiovisual baseline. 
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2 Related Work and Background 

Head and neck cancer (HNC) impacts over half a million people worldwide; its management exerts 

a significant burden on the patient and the healthcare system [16]. Impairments after final treatment 

of HNC could include physical appearance, speaking ability, swallowing, chewing, saliva 

production, nerve-movement connectedness, discomfort, and dietary health [15]. The authors in 

[4] focused on evaluating the impact of HNC treatments on patients' functional outcomes and 

quality of life, using quality of life questionnaires. Specific activities assessments included eating, 

swallowing, speaking, social participation, and pain management. Results indicate treatments like 

radiation therapy, surgery, and chemoradiotherapy can lead to significant functional impairments 

and reduced quality of life. Authors advised that understanding patients' priorities and perspectives 

is crucial for treatment plan evaluation and decision-making.  

Speech and swallow rehabilitation for HNCs includes several steps and guidelines. Clinical 

guidelines outlined in [1] suggest the importance of completing an evaluation of patients’ speech 

and swallowing abilities before treatment to establish a baseline. The guideline emphasizes that 

patients undergoing radiation for HNC often experience trouble swallowing due to side effects, 

like soreness and swelling. 

Findings by authors in [3] stress the need for a focus on trismus (i.e., limited mouth opening) for 

postoperative management, especially for patients with oral and oropharyngeal cancers, to improve 

their rehabilitation and quality of life. Limited mouth opening is a common and significant 

complication that hinders activities like eating, drinking, and speaking, thus patient quality of life. 

Their study examined 101 patients who filled out a questionnaire focusing on nutritional, sensual, 

and speech disorders, along with pain. Researchers evaluated maximal interincisal mouth opening 

(MIO); results showed that about 50% of participants experienced trismus—defined in the study 
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as an MIO of less than 36 mm. This incidence was particularly high among patients with 

oropharyngeal cancer, specifically, over other types of HNCs. Patients reported a range of 

problems, including difficulties with mouth opening, eating, drinking, dry mouth, speech 

disorders, and voice problems. Radiotherapy could result in edema in soft issues and dryness. 

Researchers in [2] emphasize the importance of speech-language pathologist evaluations to ensure 

vital assessments, like swallow function and safe nutrition.  

One test focused on assessing the effects of concurrent chemoradiotherapy (CCRT) on voice and 

speech outcomes of patients with advanced HNC.  In the prospective clinical trial voice and speech 

quality were evaluated by expert listeners using perceptual metrics and by patients themselves 

using a structured questionnaire. Data at three key points of time —before treatment, 10 weeks 

after treatment, and one year after treatment—were examined. While the study did not outline 

specific speech therapy interventions, it did implement preventive rehabilitation exercises for 

enhancing swallowing and mouth opening. Doing so highlighted the importance of including voice 

and speech rehabilitation in the treatment plan. Results indicate changes in voice quality post-

CCRT, with perceptual evaluations indicating significant improvements or even a return to 

baseline at 1-year post-treatment evaluation. Many patients, however, continued to perceive their 

voice differently from before their illness [5]. 

Authors of [6] concluded that patients evaluated in a multidisciplinary clinic (e.g. oncologists, 

surgeons, speech-language pathologists, and other specialists) are more likely to adhere to speech–

language pathology treatment recommendations, emphasizing the importance of multidisciplinary 

care in improving patient compliance and, potentially, optimizing outcomes for patients with HNC. 

Studies highlighted above suggest that the common side effect of oral cancer treatments is loss of 

speech and voice quality, limited mouth opening, and swallowing difficulties.  Although several 
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rehabilitation methods are recommended, none are based on treatments benefitting from an 

engineering perspective. This void was filled in this work by leveraging Pixel-in-Pixel Net 

(PIPNet) opensource software [7, 19]—2-D facial landmark tracking algorithm—and WhisperX 

audio speech recognition developed by the University of Oxford [8, 18], which is an updated 

version of Whisper developed by OpenAI [17]. Treatment plans substantiated by automated 

tracking of speech quality and mouth-opening measurements that utilize image and signal 

processing are an intelligent strategy for advancing the field of HCN healthcare. 
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3 Facial Measurements 

This chapter explains how facial muscle movements were tracked and measured. First, data 

collection setup and components used for measurement are discussed have used. Next, details are 

provided about software utilized to process video frames and track facial movements. Software 

modifications are highlighted that describe how head motion was detached from facial muscle 

movements, the way in which rotational head movements were eliminated, and the process for 

focusing on the facial frame. Displacement and distance measurement methodology within the 

facial frame will then be discussed detailed. Finally, information is given about the method for 

aligning the processed motion and audio data, as well as the technique for visualizing the audio-

visual synchronized analysis. 

3.1 Data Collection and Facial Tracking Model 

The data collection setup was based on a synchronized audio-visual data recording made possible 

by a camera with dual channel microphone. The camera has a rate of 30 FPS for video recording 

and 44.1 KHz for audio data recording. A grid of 3x3-inch squares was set behind participants as 

a reference for measurements. The distance from camera to the grid was 2.5 meters. Notably, this 

distance can be altered, as discussed later in this chapter. During testing, participants are asked to 

read a passage appearing on a screen, while their facial movement and speech data are recorded. 

The high accuracy of deep learning models has been proven for face and facial landmark detection. 

Recording video data is first sliced into frames, which are each processed by a modified version 

of a CNN based model—FaceBoxesV2—to detect and insert a bounding box on the participant’s 

face. This processed segment is then passed through a 2D facial landmark detection model (i.e., 

PIPNet) to track participant face movements. The model for each image frame detects 68 

landmarks specified on eyes, eyebrows, nose, mouth, and facial border. Size and location of 
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bounding box changes from frame to frame due to uncertainty in face detector model and head 

movements. A method to compensate for this uncertainty was developed, wherein a dynamic 

bounding box served as a reference point and head motions were eliminated. See the next 

subsection for a detailed explanation. 

 

Figure 3-1 Data collection setup 

3.2 Translational and Rotational Adjustments 

In the original python script of PIPNet, landmarks are referenced to the top left corner of bounding 

boxes, which makes it difficult to detach facial motion from head movements due to changes in 

the location and size of the bounding box. The software script was modified to indicate the x-y 

location of landmarks and bounding boxes for each frame in a NumPy array. Two translations 

were written to detach head motion from facial muscle movements. First, original image landmarks 

were saved in NumPy arrays, making the top left corner of every video frame the fixed reference 

point. However, this fixed reference point does not eliminate head motion. Hence, landmarks were 

translated to the top of the participant’s nose landmark. Combined, these two steps eliminated the 

primary head locational movement from the trajectory of landmarks, leaving only facial muscle 

movements, as well as rotational and up-down head motions that must be eliminated. 
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Figure 3-2 Landmarks coordinate translation. 

Lateral rotation of head was measured using the angle between the middle point of the top lip 

relative to the y-axis. Next, landmarks were multiplied by the rotation matrix to compensate for 

lateral rotation.  

 

Figure 3-3 Head rotational corrections (image alignment) 

The angle θ, can be calculated as [3-1]. 

 Θ	= arctan	(!(#)
%(#)

) 3-1 

The general formula for a 2-D counterclockwise rotation is given as [3-2]. 
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 +𝑥′𝑦′/ = 	 +
cos(𝜃) −sin(𝜃)
sin(𝜃) cos(𝜃) / 5

𝑥
𝑦6 3-2 

A clockwise rotation is required to adjust Figure 3-3 left. Given that location of point m is used 

for calculating θ, this point now has a negative y position, [3-1], thus a negative number for angle 

θ,  [3-2] automatically makes a clockwise rotation, as shown in Figure 3-3. 

Head up-down motion is removed using a nose length measurement. Since this factor is the most 

stable element among facial muscles, any change of its projection on a 2-D camera frame indicates 

up-down head motion. To avoid complexities caused by increasing the number of cameras in the 

recording setup and becoming aware that this motion is inconsequential during the speech task, a 

2-D up-down rotation correction equaling a nose length-based scaling factor was multiplied by the 

location of all translated landmarks to maintain a consistent length. Eventually, only facial frame 

muscle movements remain, which accurately provide displacements. 

3.3 Measurements 

To measure either landmark displacement or the distance between landmarks, a projected length 

of the object was required for the camera sensor. Here we provide an example case of the 

measurement methodology. Calculating pixel amount for the 3*3 inch (76.2*76.2 mm) marked 

reference grid was necessary. Distance between face surface (i.e., facial frame) and background 

grid suggested scaling a correction factor in pixels relative to the grid on the facial frame. The 

original size of the grid at distance of 2.5 meters from the camera measured 51*51 pixels. The 

distance of face from the grid was approximately 1 Ft (= 0.3048 m). The scaling correction factor 

for grid size with 2.5 meters distance from the camera to grid is shown in [3-3]. 

 

Scaling	correction	factor	=	 &'()*+,-	/0	,*1-2*	02/1	32'4
&'()*+,-	/0	,*1-2*	02/1	32'45	&'()*+,-	/0	32'4	02/1	0*,-

																																																										

= 6.8
6.8	–	:.;:<=

= 	1.1388	
3-3 



 11 

Hence, corrected pixel size of the grid is 1.1388*51 or 58 pixels. Camera focal length was 26 mm. 

Length of reference grid in the camera sensor is given in formula [3-4]. 

 

Distance	of	camera	to	object	(mm) = 

/>?-,)	@-+3)A	'+	2-*@	B/2@4	(11)	∗	0/,*@	@-+3)A	(11)
/>?-,)	@-+3)A	'+	,*1-2*	(-+(/2	(11)

 3-4 

 2500	(mm)–304.8	(mm)	= DE.6	(11)	∗	6E	(11)
F	(11)

   è		x	=	0.9025	(mm) 3-5 

Knowing the length of reference grid in the camera sensor (0.9025 mm) provides a proportional 

relationship to find the length of a referenced 63.5 mm object in a facial frame with 49 pixels [3-

6]. 

 y	(mm)	= <G	(H'F-@()	∗	:.G:68	(11)
8=	(H'F-@()

= 0.76	(𝑚𝑚) 3-6 

Accordingly. object length for the camera sensor can be calculated for the real world [3-7] with 

indicated error [3-8]. 

 2500	(mm)	–	304.8	(mm)	= I	(11)	∗	6E	(11)
:.DE	(11)

		è		L	=	64.45	(mm) 3-7 

 error	=	| E<.<85E;.8
E;.8

| = %	1.496 3-8 

A summary of measured object lengths at various camera-to-grid distances between 2.5 and 4 

meters is provided in Table 3-1. 
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Table 3-1 Measurement errors at different distances of camera to the reference grid and object 

Distance from 

camera to grid 

(meter) 

 

Object Length (pixels) 

Calculated 

Length 

(mm) 

Error 

2.5 49 64.45 % 1.496 

3 39 63.81 % 0.852 

3.5 32 62.11 % 1.496 

4 28 62.27 % 1.936 

 

3.4 Audio and Motion Alignment 

To visualize lip movements during the pronunciation of specific words (e.g. “caterpillar”), time 

intervals of the specific word and segmented audio/motion array data is required. Frame-by-frame 

lip movement progression had to be saved as .jpeg files and attached to segmented audio and .jpeg 

files to align motion and voice data. Since video frame rate (i.e., 30 FPS) is considerably less than 

audio recording frequency (i.e., 44.1 KHz), a maximum miss alignment error of 1/30 (or 33 

milliseconds) was obligatory. Figure 3-4 visualizes the motion of four points (e.g., top, down, left 

and right locations of lip) over time for pronouncing the word “caterpillar”. The bottom right 

subplot in Figure 3-4 illustrates the progression of lip horizontal axis (x) position over time. This 

plot clearly demonstrates the accurate translational and rotational adjustments impact discussed 

earlier. The upper and lower lip landmarks are positioned on the origin of horizontal axis (or x-

axis) over time, since they are always aligned with the nose for a healthy person within the facial 

frame. Furthermore, left and right lip corners have a symmetrical trajectory along this axis for a 
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healthy person, which is also demonstrated in Figure 3-4. Results indicate the power of the head 

motion corrections that are made possible by this research. The shrinking effect of corners during 

pronunciations indicate that the effect is a personalized characteristic and can be different from 

person to person. Compare motion in Figure 3-4 with Figure 3-5. The top right plot shows the 

progression of lip vertical (y) position over time, clearly demonstrating mouth opening and closing 

over time wherein the upper lip (blue) and lower lip (orange) have a larger and smaller gap between 

each other. For example, the circled region shows where the sound /p/ happens, and the time 

interval (0 sec – 0.15 sec) demonstrates the mouth opening for pronouncing /ca/ phoneme. 

 

Figure 3-4 First subject’s lip motion pronouncing the word “caterpillar”. 
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Figure 3-5 second subject’s lip motion pronouncing the word “caterpillar”. 

 

3.5 Motion Features 

Three distances were selected to obtain the oral cavity related measurements for a motion-and-

audio feature space after each recording. These measurement features are visualized in Figure 3-

6. Maximum vertical distance is the maximum distance between the upper and lower lip while 

pronouncing a single word. Maximum horizontal distance and minimum horizontal distance are 

the maximum and minimum width of the lips, respectively, while pronouncing a word. A time 

segment was derived for each word which will be explained in the voice analysis chapter. A 

visualization of these distances is shown in Figure 3-6. After measuring the values in pixels and 

depending on the distance between camera and subject, lip distances were calculated in 

millimeters, utilizing the method explained in the measurements section, above. The features were 

saved in the feature space table for each participant. This information provides a summary of the 
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amount of mouth opening and shrinking effects on sides of the lips and helps track changes 

resulting from either pain or speech therapy following oral cancer surgery. Table 3-2 offers 

examples of abovementioned features for each word in “The caterpillar” passage. 

 

Figure 3-6 Selected motional distance features for the feature space.  
Table 3-2 Lip Motion Measurements 

word max_vertical_distance 
(mm) 

max_distance - 
horizontal(mm) 

min_distance - 
horizontal(mm) 

do 8.89 47.06 43.20 
you 11.48 44.16 41.29 
like 21.76 59.44 48.30 
amusement 6.93 55.87 49.91 
parks 9.01 53.96 47.87 
well 20.93 52.28 40.68 
i 17.30 57.11 55.07 
sure 9.63 51.93 44.56 
do 7.57 48.04 40.99 

 

3.6 Lip Displacements Distributions 

Insights from the comparison of the distribution of lip displacement of normal and the emulated 

case study is anticipated to be valuable for healthcare providers to design speech therapy and 

rehabilitation protocols, especially those focusing on exercises for enhancing articulation. 

Analyzing the ways in which artificial constraints affect speech can provide clues about the 

mechanics of various speech impediments, as well as guide diagnosis and intervention strategies. 
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 When compared with the baseline normal condition, two simulations (e.g., keeping an oral 

obstacle under the tongue and clenching teeth while reading a passage “the caterpillar”) 

demonstrated two behaviors to compensate for limitations resulting from tongue position and jaw 

displacement. Measurements of simulated conditions from the first participant (see first row of 

histograms in Figure 3-7) shows nearly the same behavior for maximum lip distance between the 

upper and lower lips. The third column shows only a slight change in skewness. 

However, measurements of simulated conditions for the second participant (see second row of 

histograms in Figure 3-7) show lower mean and standard deviation for maximum vertical distances 

when teeth were clenched (see third column) when compared to normal teeth positioning (see first 

column). These results indicate that both conditions pose potential challenges to clear articulation, 

as they mimic particular speech impediments. 

 

Figure 3-7 Distribution of motional feature “maximum vertical distance” (maximum distance between the upper lip and the 

lower lip) while reading “the caterpillar” passage under normal condition and emulated by oral obstacle under the tongue and 

teeth clenched together. First participant on the first row and second participant on the second row. 

Different motional behavior is also evident from the maximum and minimum width of the lips 

while reading “the caterpillar” passage. Measurements for the first subject (see first row of Figure 

3-8) under normal condition reveal a more concentrated distribution for maximum and minimum 
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width. However, under simulated conditions, the spread of values (i.e., standard deviation) 

increases significantly with a nearly 78% and 73% increase in maximum horizontal distance (see 

Figure 3-8) and minimum horizontal distance (see Figure 3-9), respectively. On the other hand, 

measurements for the second subject show no significant change for minimum and maximum lip 

width distribution. 

 

Figure 3-8 Distribution of motional feature “maximum horizontal distance” (maximum width of the lips) while reading “the 

caterpillar” passage under normal condition and emulated by oral obstacle under the tongue and teeth clenched together. First 

participant on the first row and second participant on the second row. 

 

Figure 3-9 Distribution of motional feature “minimum horizontal distance” (minimum width of the lips) while reading “the 

caterpillar” passage under normal condition and emulated by oral obstacle under the tongue and teeth clenched together. First 

participant on the first row and second participant on the second row. 



 18 

3.7 Summary 

This chapter provided an in-depth exploration of methods used to track and measure facial muscle 

movements: data collection setup, adjustments for head and facial movements, displacement and 

distance measurement methodology, and synchronizing motion with audio for analysis. The setup 

involved synchronized audio-visual recordings using a camera and dual-channel microphone, with 

a specific protocol to facilitate precise measurements with a reference grid. Subject data, including 

the capture of facial movements and speech sound, were recorded foreach while he/she read a 

passage “the caterpillar.”, Utilizing deep learning models (e.g., FaceBoxesV2 [13, 14] and PIPNet 

[7]), faces and facial landmarks across frames were detected, which enabled detailed tracking of 

facial muscle movements. Modifications were made to PIPNet’s original script to accurately 

separate facial movements from head motions. Doing so involved translating landmark positions 

to a fixed reference in the facial frame and compensating for head movements, including both 

translational and rotational adjustments that were based on landmark positions. These adjustments 

enabled the isolation of pure facial muscle movements from other head movements. The process 

for synchronizing audio and motion data explained how the visualization of lip movements was 

aligned with spoken words. This chapter also demonstrated the effectiveness of the earlier 

described adjustments necessary for accurately tracking and visualizing facial movements to 

synchronize with audio data.  Finally, the way in which oral-related measurements were derived 

from recorded data—including distances between key points on the lips during speech—was 

provided. These measurements are critical for analyzing speech dynamics and can be used to track 

changes over time, especially those resulting from medical treatments or therapy. Overall, this 

chapter outlined a comprehensive approach for accurate measurement and analysis of facial 
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movements, providing a framework for facial measurements, which is necessary for analyses 

detailed in upcoming chapters. 
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4 Voice Analysis 

This chapter details speech audio signal analysis and the importance of each audio feature in the 

study methodology. First is a brief overview of the audio recognition software utilized to segment 

audio files into individual words that are detected at specific time intervals. Next, audio features 

(e.g., time duration, RMS sum, zero crossings, pitch [or fundamental frequency], and formant 

frequencies) are defined, and the way in which each was extracted for the model is described. 

Special attention is given to formant frequency distributions derived by signal processing methods 

to provide a foundation for the comparison between normal and restrictive conditions and to 

characterize the loss, gain, and shift of frequencies. 

4.1 Speech Audio Segmentation 

Start and end times for the utterance of each word is necessary to extract audio features. To extract 

these time intervals, detached audio files of recordings were put into the speech recognition 

software. In this way, speech characteristics per pronounced words can be measured for analyses. 

Table 4-1 Audio Segmentation Examples 

word Start time End time Duration (sec) 
do 1.668 2.008 0.3400000000000000 
you 2.349 3.389 1.0400000000000000 
like 4.829 5.029 0.2000000000000000 
amusement 5.129 5.629 0.5 
parks 5.669 5.969 0.3000000000000010 
well 6.329 6.569 0.2400000000000000 
i 6.769 6.849 0.08 
sure 6.869 7.07 0.2010000000000010 
do 7.09 7.29 0.2000000000000000 

 

Understanding the behavior of the speech signal is necessary for characterizing audio features. 

During pronunciation of a word, a speech signal is defined as the combined effect of the vibration 

of vocal cords and the shape of the vocal tract. The latter is important because it determines how 
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air passes through the mouth, which effects pronunciation. When examining the speech signal for 

the word “scared”, for example, (see Figure 4-1), phonemes can be determined by looking only at 

the periodicity of the signal, as explained below. The zero-crossing rate (ZCR) for the unvoiced 

consonant /s/ is much higher when compared to other consonants and vowels. In fact, there is a 

high frequency content carried by the signal in this part of the word. Periodicity also changes for 

different phonemes when examining the signal for consonants /c/, /a/, /r/, and /ed/. Figure 4-1 

demonstrates the importance of frequency-related features (e.g., ZCR, pitch, and formants) to be 

analyzed under both regular and emulated conditions. 

 

Figure 4-1 Raw Audio Speech Signal Behavior for Different Phonemes. 
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4.2 Audio Features 

4.2.1 Time Duration 

One simple, yet principal feature for analysis is the time duration (i.e., length) of the pronunciation 

of a word. It is important to note that this can change as a result of loss of vocal tract components 

after oral surgery. 

4.2.2 RMS Sum 

A more complex feature utilized for analysis of this same variable is the root mean square (RMS) 

of an audio signal. The RMS value of an oscillating AC signal represents its DC component. For 

this study, the RMS value represents the loudness of the audio [4-1]. The RMS was calculated for 

small time frames (e.g., 20 ms), and then summed, to stay within the time interval of each spoken 

word. 

 
𝑅𝑀𝑆	 = 	U	

1
𝑛	W𝑥J6

J

 
4-1 

 
𝑅𝑀𝑆_𝑠𝑢𝑚	 = 	WU	

1
𝑛	W𝑥J6

JK

 
4-2 

where j is the number of frames in the equation 4-2. 

4.2.3 Zero Crossing Rate 

A common way to measure the smoothness of a signal is counting the number of zero crossings 

within a time interval [9]. Voiced signals (e.g. /z/, /v/) are produced by the vibration of the vocal 

cords in addition to the way in which the vocal tract is shaped. Unvoiced signals (e.g. /s/, /f/) do 

not require vocal cord vibration. Typically, voiced signals have lower zero crossings than unvoiced 

signals. This specification can be affected by modifications in the vocal tract shape, which likely 
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occurs as a consequence of oral surgery. The plots shown in Figure 4-2 through Figure 4-5 serve 

as examples of measured ZCR for a specific sentence aligned with the audio amplitude. The figures 

illustrate high ZCR for unvoiced signal segments that were measured for two participants under 

normal conditions (see Figure 4-2 and Figure 4-3). The start and end of each word is indicated by 

dashed lines, and the word being pronounced is positioned between those dashed lines. It is worth 

mentioning that ZCR varies across individuals. The plots for phonemes /d/ and /s/ show that the 

second participant has a much higher ZCR because of dissimilar accent and frequency content. 

When listening to the audio signal for that participant pronouncing the word “do,” a partial sound 

of /z/ is audible in the pronunciation.  

 

Figure 4-2 First Subject under Normal Condition 

 

Figure 4-3 Second Subject Normal Condition 
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Figure 4-4 First Subject Emulated with Oral Obstacle Under the Tongue 

 

Figure 4-5 Second Subject Emulated with Oral Obstacle Under the Tongue 

When comparing the ZCR produced under regular and emulated conditions, it is apparent that the 

overall rate increased for the given sentence, even though the peak is lower. This phenomenon is 

a consequence of tongue positioning, which limits the tongue’s motion and keeps its front 

component on a lower position and its back component on a higher position. This positioning 

makes it difficult to pronounce unvoiced sounds (e.g. /s/) clearly and decreases the vocal tract tube 

volume. Figure 4-6 and Figure 4-7 show that the distribution’s variability (e.g. std) of ZCR for 

“the caterpillar” passage words is decreased for both participants under emulated conditions. The 

first participant has a standard deviation of 2191 under normal conditions and 1285 and 1239 for 
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emulated conditions, as shown in Figure 4-6. Standard deviation for the second participant is 3222 

under normal conditions and 1627 and 2585 for the emulated conditions, as shown in Figure 4-7. 

 

Figure 4-6 From left to right respectively: First subject's ZCR per word distribution while reading the caterpillar passage under 

normal (i.e., regular) condition; reading with oral obstacle; and reading while teeth are clenched together. 

 

Figure 4-7 From left to right respectively: Second subject's ZCR per word distribution while reading “the caterpillar” passage 

under normal (i.e., regular) condition; reading with oral obstacle; and reading while teeth are clenched together. 

4.2.4 Pitch (Fundamental Frequency) 

Pitch frequency is directly related to oscillations originating from vocal cords. Fundamental 

frequency (F0) typically fluctuates throughout a sentence —rather than remaining static—due to 

the variability in speech signal and pronunciation of various vowels. MATLAB’s built-in “pitch” 

function was used to estimate the F0 for a word in a “.wav” file. A histogram was derived for each 

word, and the F0 with the highest count was selected as the dominant pitch frequency of the 

pronounced word for the feature space. The bin size in the histogram was set at 4.5 Hz. The plots 

shown below visualize pitch frequencies for the word “memorable” under normal condition and 

when emulated with an obstacle under the tongue. 
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Figure 4-8 First participant’s pitch (i.e., fundamental frequency) while pronouncing the word “memorable” under normal 

condition. 

 

Figure 4-9 First participant’s pitch (i.e., fundamental frequency) while pronouncing the word “memorable” under emulated 

condition with oral obstacle under the tongue. 

4.2.5 Formant Frequencies 

Peaks in the envelop of the audio spectrum represent high energy areas of the spectrum. These 

frequencies are known as formants, and each corresponds to a resonance in the vocal tract. The 

vocal tract is tube shaped and closed at one end by vocal folds and at the other by the lips. The 

shape of the vocal tract's cross-sectional area is modulated by the positioning of the tongue, lips, 

jaw, and soft palate (i.e., velum). The resulting spectrum of the vocal tract's response includes a 

series of resonance frequencies (i.e., formants) that are unique to the tract’s shape. For a short time-

frame, formant’s location specifies the vowel that was pronounced [10, 11]. The location of these 

frequencies is closely related to the shape of vocal tract. Pain or loss of muscles that shape the 
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vocal tract and/or muscle movements often change after oral cancer surgery and, subsequently, 

change formant’s location. Thus, analyzing these frequencies is crucial for tracking the quality of 

speech after surgery. A common and well-known method for extracting the frequency envelop in 

speech processing is Linear Predictive Coding (LPC).  

4.2.5.1 Linear Predictive Coding 

The hypothesis underlying linear predictive analysis is that a speech sample can be estimated from 

a linear combination of past speech samples. Unique predictor coefficients are determined by 

minimizing the squared error between predicted and actual speech samples [11]. 

Speech samples are related to the excitation pulse as expressed in equation 4-3: 

 𝑠(𝑛) = 	WaL 𝑠(𝑛 − 𝑘) + 𝐺𝑢(𝑛)
M

LNO

 4-3 

Between pitch pulses Gu(n) is assumed to equal zero, so that predicted s(n) is a linear weighted 

discrete sum over past speech samples. Given that Gu(n) is nonzero, s(n) can be estimated 

approximately. 

Let us assume speech signals are obtained via a linear predictor with αk coefficients. Output is 

calculated, as follows. 

 �̂�(𝑛) = 	W𝛼L 𝑠(𝑛 − 𝑘)
M

LNO

 4-4 

This equation indicates that the nth sample can be predicted from last p samples. Error between the 

actual and predicted speech signal is shown in equation 4-5. 

 𝑒(𝑛) = 𝑠(𝑛) −	 �̂�(𝑛) = 𝑠(𝑛) −	W𝛼L 𝑠(𝑛 − 𝑘)
M

LNO

 4-5 
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Figure 4-10 Linear prediction model block diagram. 

4.2.5.2 Estimation of the Prediction Coefficients 

To minimize the squared error and find the coefficients, a condition must be found that satisfies 

the derivative of squared error equal to 0: 
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The definition of the autocorrelation function can be found using equation 4-11. 
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 𝑅(𝑘) = W𝑠(𝑛) 𝑠(𝑛 + 𝑘)
P

QN:

 4-11 

The left side of the previous equation can be replace n-k by l and obtain 4-12. 

 W𝑠(𝑙) 𝑠(𝑙 + 𝑘 − 𝑖) = 𝑅(𝑘 − 𝑖)
P

RNO

 4-12 

Note that in autocorrelation, R(k) = R(-k) for the right side of 4-10 to obtain 4-13. 

 W𝑠(𝑛) 𝑠(𝑛 − 𝑖) = 𝑅(𝑖)
P

QNO

 4-13 

Subsequently, by substituting 4-12 and 4-13 in 4-10, we obtain: 
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This equation can be written in matrix form 4-15: 
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To obtain coefficients, we need to calculate R-1, then: 

 𝛼 = 𝑅5O𝑟 4-16 

R, known as the Toeplitz matrix, is symmetric, and elements on the main diagonal are always 

equal. This equation can be solved using iterative methods, such as Durbin’s algorithm. After 

determining LPC coefficients, the frequency response of the obtained filter from equation 4-4 

provides the spectral envelope, which represents the smooth curve capturing harmonics peaks or 

signal spectrum formants. Formants are resonant frequencies of the vocal tract and are crucial in 

determining the characteristics of speech sounds. LPC coefficients model the vocal tract as a series 



 30 

of filters, and thus, the spectral envelope derived from LPC coefficients reflect the formant 

structure of the speech signal. Furthermore, the relationship between LPC coefficients and the 

spectral envelope can be understood through the filter model used in LPC. The signal is modeled 

as being produced by exciting a linear predictive filter with a specific set of LPC coefficients. The 

filter's frequency response characterizes the spectral envelope.  

4.2.5.3 Formant Frequency Determination 

Five formant frequencies were derived in this study using LPC for each word in two ways. First, 

to intuitively find an averaged frequency behavior of a word and to have the same number of 

features for each word, a time window for LPC was selected as the same time duration of each 

word and extracted a unique number of formants per word for the feature space. This reveales the 

average of formants across different vowels and phonemes within the word. Corresponding 

spectral envelop and formants for the sample word “caterpillar” are visualized in Figure 4-11 for 

two participants under both regular and emulated conditions for five trials. Minor differences are 

evident when comparing the spectral envelopes. These are primarily due to the context and 

pronunciation; however, a similar pattern is repeated throughout. 
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Figure 4-11 Spectral envelopes and formant frequencies for five trials of the word “caterpillar” under normal condition 

pronounced by two participants: First participant is indicated in Column1, and the second in Column2. The Second Subplot on 

each row of columns 1 and 2 is has been magnified from 0 to 8 KHz. 
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Figure 4-12 Spectral envelopes and formant frequencies for five trials of the word “caterpillar” under an emulated condition 

with an oral obstacle under the tongue; pronounced by two participants; first participant in Column1 and second participant in 

Column2. Second subplot on each row of Column1 & 2 is magnified from 0 to 8 KHz. 

Second, oral cancer surgery can cause the loss of ability to preserve formant frequencies or can 

lead to a shift in frequencies and the appearance of new frequencies. To analyze these changes, 

formants with high temporal resolution are required. Consequently, formants with 25 milli-second 

time frames were derived within the time interval for words under investigation. 25 milli-seconds 

was the optimal window size, because the speech signal is nearly stable at this point and behavior 

is constant. Smaller window size values resulted in frequency resolution loss; larger window size 
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resulted in loss of temporal resolution. The right side of following plots shows a histogram with 

five formants for all word frequencies in “the caterpillar” passage that were combined under both 

regular and emulated conditions. The left side shows differences after subtracting five frequency 

formants from an emulation under normal conditions.  Figure 4-13 illustrates a shift of frequencies 

in formants 4 and 5. 

 

Figure 4-13 Distribution of the five formant frequencies and the subtraction of normal from emulated condition (with oral 

obstacle) for the first participant in the left columns and for the second participant in the right columns. 

Dynamic Time Warping (DTW) and cross-correlation were calculated to investigate similarities 

between normal and emulated distributions and to determine frequency shift between them, 

respectively. DTW is an algorithm used for measuring similarity between two temporal sequences 
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that might vary in speed, cross-correlation is a method used to determine shift between two or 

more time series, wherein maximum value indicates the amount of shift DTW values have specific, 

converse interpretations: low DTW indicates a high degree of similarity between sequences,  and 

high DTW value indicates a low degree of similarity.   

 

Figure 4-14 Distribution of the five formant frequencies and cross correlation between normal and emulated conditions(with oral 

obstacle) for the first participant in left columns and for the second participant in the right columns. 
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Figure 4-15 Distribution of the five formant frequencies after the shift of emulated condition and the subtraction of normal from 

emulated condition for the first participant in the left columns and for the second participant in the right columns. 

 

Figure 4-16 Distribution of the five formant frequencies after shifting back of emulated condition and the subtraction of normal 

from emulated condition for the first participant in the left columns and for the second participant in the right columns. 
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Lower DTW values were found for both participants on the third, fourth, and fifth formants when 

compared to the first and second, indicating a high similarity between normal and emulated 

conditions. Hence, one can assume only a shift in the distribution of these formants. We found the 

amount of shift from the peaks in cross-correlation and shifted the emulated distribution and 

subtracted the regular from shifted emulated [Figure 4-15]. Now if we shift back the subtracted 

values, baselining regular condition, positive values show us the new frequencies present in the 

emulated and negative values show the missing frequencies in the emulated as are shown in [Figure 

4-16]. 

4.3 MFCC 

Mel Frequency Cepstral Coefficient (MFCC) is a widely used feature extraction technique in the 

field of speech and audio processing. Both have application for speech recognition, speaker 

identification, and audio classification. Several steps are required to compute MFCCs. First, audio 

signals must be segmented into short frames (e.g., 20 to 50 ms) to account for temporal variations 

in speech and Hamming widow is applied to them. Next, Fourier transform is applied to each frame 

to convert it from time domain to frequency domain, thus capturing the signal's spectral 

information. The Mel scale filter bank is then applied to mimic the human ear's non-linear 

perception of pitch, which emphasizes the importance of low over high frequencies. The next step 

is to compute the logarithm of the energy in each Mel frequency band, acknowledging the human 

ear's logarithmic (or log) perception of amplitude. Finally, Discrete Cosine Transform (DCT) is 

applied to the log energies, resulting in a set of uncorrelated coefficients that compactly represent 

the audio signal's spectral shape. 
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Figure 4-17 MFCC Filter Banks [12]. 

MFCC’s coefficients are uncorrelated due to the definition of discrete cosine transform, which 

makes the coefficients orthogonal to each other: 

 𝐶Q =	v𝑆	(𝑘) 	∗ 	𝑐𝑜𝑠 y
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in which, C(n) is the nth cepstral coefficient; S(k) is the log Mel spectrum at the kth band; and K is 

the total number of Mel frequency bands. To prove that coefficients are uncorrelated, their inner 

product must be calculated: 
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MFCCs was applied to the audio signal of specific words that were repeated in “the caterpillar” 

passage. For improved visualization in a 3-dimensional space, MFCCs were further processed by 

applying PCA. Results demonstrate good separation between normal and emulated data for both 

participants. Visualized separation was verified with ANOVA analysis in which the low p-value 

rejects the null hypothesis. 
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Figure 4-18 First participant’s PCA visualization of the normal and emulated with obstacle for the word “caterpillar” 

pronunciations with the F-value of 11.77 and P-value of 0.0008 from ANOVA. 

 

Figure 4-19 Second participant’s PCA visualization of the normal and emulated with obstacle for the word “caterpillar” 

pronunciations with the F-value of 9.87 and P-value of 0.002 from ANOVA. 

4.4 Summary 

This chapter delved into the analysis of speech audio signals and the importance of methodology 

for extracting/modeling various audio features. We highlighted audio recognition software used to 

segment audio files into words and to detecting their time intervals. This process is critical for 

analyzing speech characteristics on a per-word basis. Various audio features (e.g., time duration, 

RMS sum, zero crossings, pitch or [fundamental frequency], and formant frequencies) were 

defined and discussed, including extraction methods for each. F0 distribution utilizing signal 

processing methods were detailed to explain how to compare normal and restrictive conditions, 

which aids in characterizing frequency loss, gain, and shifts. This information is important for 

understanding the impact of conditions like oral surgery on speech. Preliminary results 

demonstrated a major shift of frequencies for the third, fourth, and fifth formant for both study 

participants. 
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5 Machine Learning 

This chapter discusses the methods and preliminary results for tracking patients’ improvements 

during speech therapy following oral cancer surgery. First, the use of principal component analysis 

(PCA) for projecting feature space results is detailed, along with information about separating 

participant recordings and comparing normal and emulated conditions. Next, distances between 

normal and emulated data are detailed. Finally, machine learning models are introduced as a 

method for a binary classification for normal and emulated conditions. These are beneficial for 

monitoring speech rehabilitation after cancer treatment. 

5.1 Principle Component Analysis 

PCA is well-known method for reducing dimensionality and visualizing data. This statistical 

technique facilitates pattern identification by projecting original features into a new set of 

orthogonal vectors (or principal components), which are ordered by the eigen values’ magnitude 

of covariance matrix from highest to lowest. This method was used to investigate the possibility 

of visualizing feature spaces in a lower dimension and finding separation between them.  

 

Figure 5-1 PCA Results of Feature Spaces for First Subject (Red) vs Second Subject (Blue), both under Normal Condition. 
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PCA 3D visualization and recognizing that these three components contain only 60 percent of 

variance implies that a good separation is not possible for two participants based on just three 

components. The low variance ratio from Principal Components (PCs) suggests some key points 

about the dataset and the nature of the variance it contains. Regarding its multidimensional nature, 

the feature space does not contain a small subset of features for capturing most variance. Instead, 

variance is spread out across many dimensions, implying that the dataset is complex and the 

information it contains cannot be easily summarized by just a few principal components. 

Regarding feature importance, PCA’s explained variance ratio of a component indicates how much 

of the total variance in the dataset is captured by a specific component. Low percentages mean that 

each component captures only a small part of the total variance, suggesting that more than a small 

subset of features dominates the dataset (i.e. all the features contribute to the overall variance). In 

other words, low and gradually decreasing variance ratios indicate that the dataset structure used 

for this study is complex with many features contributing to its variance. This complexity 

necessitates using a larger number of principal components for a fuller representation of the data 

and implies that insights will likely come from understanding how groups of features interact, 

rather than focusing on just a few key features. 

It is important to note that PCA loadings are coefficients of the linear combination that defines 

each principal component in terms of its original features. A high absolute value of a loading for a 

particular feature indicates that the feature has a strong influence on the principal component. A 

positive loading indicates that as the feature value increases, the principal component value tends 

to increase. Conversely, a negative loading indicates that as the feature value increases, the 

principal component value tends to decrease. For the first PC, the four formants, namely F_2 to 

F_5, have the highest contributions, likely due to the overall distinguishable patterns characterizing 
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the way that the two participants a) pronounce the context of “the caterpillar” passage, b) shape 

their vocal tract, and c) let the air flow to produce these frequencies. The second PC is mostly 

influenced by duration, RMS sum (or loudness), lip maximum vertical distance, and lip minimum 

horizontal distance. On its own, the RMS value is only related to audio signal volume; however, 

the definition for RMS sum makes RMS correlated with the duration of a word pronunciation, 

since it reflects summing the RMS value for small time frames of 20 ms to equal the total duration 

of a word with the correlation demonstrated in the second PC loadings since both have a similar 

effect on PC 2. Also, features related to lip motions are distinguishable patterns. Recall the example 

in the facial measurement chapter. The minimum horizontal distance of the lips (lip width) was 

different for the two participants. One showcased a shrinking effect; the was nearly solid. The high 

absolute value of magnitude for min distance horizontal indicates this differentiating pattern. Other 

PC loadings can be interpreted using the same approach. The following figures highlight PCA 

comparisons between normal and emulated conditions. The results for both participants are similar 

to comparisons for low variance ratio and PC loading coefficients. 

 

Figure 5-2 First participant under normal condition vs. first participant under emulated condition with oral obstacle. 
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Figure 5-3 Second participant under normal condition vs. second participant under emulated condition with oral obstacle. 

 

Figure 5-4 First participant under normal condition vs. first participant under emulated condition with clenched teeth. 

 

 

Figure 5-5 Second participant under normal condition vs. second participant under emulated condition with clenched teeth. 
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Figure 5-6 PCA component loadings, first participant vs. second participant, both under normal condition. 
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Figure 5-7 PCA component loadings., left: First participant under normal condition vs. first participant under emulated 

condition with oral obstacle under tongue. Right: Second participant under normal condition vs. second participant under 

emulated condition with oral obstacle under tongue. 
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Figure 5-8 PCA component loadings. Left: First participant under normal condition vs. first participant under emulated 

condition with teeth clenched together. Right: Second participant under normal condition vs. second participant under emulated 

condition with teeth clenched together. 
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5.2 Feature Space Distance Analysis 

In speech therapy it is important to have a measurable method for tracking patient progress, 

particularly following surgical interventions that impact vocalization. The method proposed in this 

work is a data-driven metric based on feature space (i.e., the distance between normal (pre-surgery) 

and emulated (post-surgery) conditions. Speech data gathered before surgery provides a patient-

specific ground truth, reflecting the individual's inherent linguistic traits and motor capabilities. 

This personalized baseline is important, as it considers natural variability in speech, and then 

guides targeted interventions for post-operative recovery. Quantitative analysis provides a suitable 

qualitative assessment, as it facilitates a precise evaluation of speech characteristics. These include 

a spectrum of features, like formant frequencies, temporal aspects, and articulatory motion 

dynamics, all of which are integral to the components of speech. By assessing the 

multidimensional nature of these attributes, the complexity of speech production and its deviations 

from normal pre-surgery speech can be captured. Normalization of feature spaces is key for 

meaningful comparisons that integrate all features and ensure that each contributes to the distance 

in the same way. For normalization, feature vectors are rescaled when each is divided by the 

maximum sum of corresponding features across the recordings—both normal and emulated—

given that the Manhattan distance was calculated between the two datasets. 

This method allows therapists to set measurable and individualized therapeutic goals, thereby 

customizing interventions that address specific deficits identified via feature space analysis. 

Additionally, the evolution of these distances over time provides an objective metric for tracking 

improvements and progress toward pre-surgery articulation. 
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Table 5-1 Feature space distances 

Comparison Cases Manhattan Distance 

First Subject’s Normal Condition 

and Emulated with Oral Obstacle 

 

3.49 

First Subject’s Normal Condition and 

Emulated with Clenched Teeth 

 

3.71 

Second Subject’s Normal Condition 

and Emulated with Oral Obstacle 

 

4.12 

Second Subject’s Normal Condition 

and Emulated with Clenched Teeth 

 

3.18 

 

 

Figure 5-9 First participant’s normal condition and emulated with oral obstacle. 
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Figure 5-10 First participant’s normal condition and emulated with clenched teeth. 

 

Figure 5-11 Second participant’s normal condition and emulated with oral obstacle. 

 

Figure 5-12 Second participant’s normal condition and emulated with clenched teeth. 
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Distances highlighted in Figures 5-9, 5-10, 5-11, and 5-12 demonstrate a low value for both the 

minimum and maximum horizontal distance (i.e., lip’s width) This finding was intuitively 

predicted, as emulations did not limit the sides of lips and predicted similar. The maximum distance 

of lips changed for both participants under the restrictive conditions (see distributions in Figure 3-

7.)  and resulted in either a higher contribution to maximum vertical distance (i.e., max_distacne) 

or a maximum distance between the upper and lower lips. The ZCR and five formants—F_1 to 

F_5—are characterized with a fairly high distance due to the effect of physical restrictions on 

articulation. There was not a big difference for time duration when compared to a normal condition, 

which resulted in the lower contribution to distances for this feature. 

5.3 Machine Learning Classification 

This section explores distinctions between normal and emulated speech conditions, as well as 

variances across different participants, Machine learning classification models were used to 

understand the impact of oral constraints on speech production. This approach proved crucial for 

identifying specific speech characteristics influenced by emulated post-operative conditions, 

which offered insights for speech therapy and rehabilitation techniques. This process can 

demonstrate the stage of articulation improvement and assist speech therapists at each step of the 

treatment. Moreover, analyzing speech variations among individuals enables the customization of 

therapeutic interventions, ensuring they are applicable to personal speech patterns and recovery 

needs.  

The developed model  utilized for this classification is termed random forest with 100 trees, 

Maximum number of leaf nodes is 10, and number of features randomly sampled for each split is 

set with the default value of a scikit-learn library (i.e., equal to the square root of the number of 

input features or 12. Each row in the feature space was labeled either normal or emulated in the 
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corresponding datasets. During testing, one emulated scenario was concatenated with a patients’ 

normal condition. 80 % of collected data was used for the training set and 20 percent for the test 

set to predict a binary classification. Given the small dataset, data had to be split randomly 100 

times, and trained to establish a new model. Reported results are the average of Figure 5-9 and 

Figure 5-10. 

 

Figure 5-13 Classification between normal condition vs. oral obstacle under the tongue. 

 

Figure 5-14 Classification between normal condition vs. teeth clenched together. 

 

5.3.1 Feature Importance 

Feature importance was extracted utilizing scikit-learn library attributes. In both classification 

models, there was a high importance for separating normal conditions from emulation data in either 

the third or fourth formants, which demonstrates that either having an oral obstacle under the 

tongue or clenching teeth together while speaking has a significant articulation effect on the two 

formants. It is worth reiterating that in the narrative in Chapter 4 highlighted a clear shift  in the 
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fourth formant when analyzing windowed formant frequencies (see Figure 4-11). The “RMS sum” 

(i.e., energy fo audio signl) proved to be the next audio related feature causing acceptable 

separation across different cases The reason for this phenomenon is that when vocal tract motion 

is limited by either an oral obstacle under the tongue or clenched teeth, airflow through the vocal 

tube is changed, which in turn changes the energy or volume of speech. 

The lip motion-related feature relative to maximum horizontal distance and a side shrinking effect 

of the lips, proved to create high distinction between normal and emulated condition, given the 

presence of an oral obstacle [(see Figure 5-9]). Chapter 3 results demonstrated that   when 

analyzing the distribution of this same feature there was a difference in mean and standard 

deviation. This also demonstrated an effect in the classification model. Results for classification 

when evaluating the difference between a normal condition and speaking while teeth were 

clenched proved that maximum lip distance is highly important for classification. For example, 

when teeth are clenched, distance between the lips is limited, since the upper and lower jaws are 

fixed, which prevents the mouth from opening freely. 

5.4 Summary 

This chapter delved into the methodologies and preliminary findings for monitoring patient 

progress during speech therapy following cancer surgery. A feature space projection analysis 

utilizing Principal Component Analysis (PCA) assessed the distinction between participants' 

speech recordings under both normal conditions and post-surgery simulations in a low dimensional 

space. Results suggest that PCA addresses dataset complexity and indicates that rather than relying 

on a small subset of features, it is best to spread variance across many dimensions. This complexity 

signifies that a more substantial number of principal components is necessary for full data 

representation. Further, the importance of PCA loadings was discussed, which highlighted the 
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influence of specific features on principal components and indicated significant patterns in speech 

production differ among participants. Contributions of formant frequencies and articulatory 

dynamics to these patterns are particularly notable. Latter sections focused on distance analysis in 

feature spaces, proposing a data-driven metric to evaluate speech therapy progress. The measure 

compared the distances between pre- and post-surgery speech data and offered a personalized 

baseline for monitoring recovery and establishing measurable therapeutic goals. Normalization of 

feature spaces ensured equitable comparisons across different speech characteristics. This chapter 

also outlined the application of machine learning models for binary classification of normal and 

emulated speech conditions among participants. This approach identifies speech production 

characteristics affected by oral constraints and encourages superior speech therapy and 

rehabilitation strategies. Models highlighted the significance of certain speech features, including 

formant frequencies and articulatory dynamics, when distinguishing between normal and 

simulated post-operative conditions. In summary, this chapter provided a comprehensive analysis 

of speech feature space for monitoring patient recovery in speech therapy following oral cancer 

surgery. It also promoted the use of PCA for understanding data complexity, executing distance 

analysis for progress tracking, and leveraging machine learning for detailed speech characteristic 

classification. 
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6 Conclusion and Future Work 

The research presented in this thesis details a variety of methods for characterizing audio and facial 

motion during speech tasks. The first step was analyzing the distribution of extracted F0s of small-

time frames to discover behavioral patterns under both normal and emulated conditions. More 

specifically, normal condition were baselined, and then a dynamic time warping algorithm was 

used to find the minimal distance between emulated formants and typical ones to establish an 

awareness of the similarity between them. Results from two participants reflected a high similarity 

for two conditions on the fourth and fifth formants. Cross-correlation indicated the amount of 

formants shift. Coupling this informative data with the characterization of frequency shift indicated 

newly generated and lost frequencies, which was explained in Chapter 4. Another approach 

leveraged the window size of the proposed formant derivation algorithm with the length of a 

spoken word to archive the information for a machine learning feature space. Utilizing these 

frequencies and other audio and motion related features, this work’s analysis demonstrated a 

distance between a participant’s baseline and emulated conditions, which can be used to track 

improvement during motor rehabilitation and speech therapy after cancer treatments (e.g. surgery, 

chemotherapy, and the like). Moreover, developed machine learning models classified differences 

among participants and speech impairments, which makes these technologies a powerful source 

for tracking the stage of rehabilitation relative to that being trained on a large dataset. In 

conclusion, the research and experimental results detailed in this thesis lay the groundwork for 

further advancing analysis methodology and improve tracking the HNC patient speech motor task 

rehabilitation/progress following cancer treatment. This work could minimize the duration of a 

patient’s medical care and improve their quality of life. 
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6.1 Future Directions 

This chapter highlights various directions for future research. Of utmost interest is estimating vocal 

tract shape and tongue position, which could provide insightful information for medical doctors 

and speech therapists. The method developed in [28] generates vocal tract shape as observed in X-

ray images of most English vowels by utilizing the first three formant frequencies. Using the 

methodology proposed herein, facial border tracking and component locations (e.g., lips), will add 

valuable information. This advancement will lead to the development of a more advanced 

algorithm to integrate motion and speech audio formants, and then more accurately estimate vocal 

tract shape and its dynamics. 

Another idea that could further expand the research carried out for this thesis is adding a lateral 

camera and developing an algorithm to track a selected points on one side of a patient’s head. A 

particular methodology could then be developed to synchronize front and lateral camera 

recordings. Adding insertion dynamics of head lateral motion to the vocal tract shape estimation 

algorithm could provide valuable information for reconstructing a 3D shape of the vocal tract. The 

process should involve depth estimation techniques and triangulation methods to merge 2D data 

from each camera into a cohesive 3D structure. Finally, the developed methodologies must be 

validated through clinical trials and/or studies involving participants with and without speech 

impairments. Such authentication is poised to refine algorithms and confirm the utility of 3D 

models for diagnosing, understanding, and treating speech generation issues. While existing 

methods are able to estimate vocal tract shape with high accuracy, the work in [29] utilized high 

frame rate (166/sec) MRI scanning of a participant’s head during the speech task with a spatial 

resolution of 2.2 * 2.2 * 5.0 mm3. However, limited accessibility to MRI equipment makes this 

method impractical for widespread research or clinical use. Using the proposed approach with 
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synchronized video recordings from frontal and lateral cameras presents a more accessible and 

cost-effective solution. 
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