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Abstract

Pickup systems for musical instruments generally serve the purpose of improving the

perceived quality of instrument sound through appropriate amplification of electrical sig-

nals. While different pickups like a microphone or piezoelectric pickup are common to many

string instruments, magnetic pickups are mostly used for plucked string instruments like the

electric guitar or electric bass guitar. For a bowed instrument like a violin, microphones

and piezoelectric pickups are commonly used, but magnetic pickups (which convert mechan-

ical oscillations of a magnetized string to oscillatory changes in magnetic flux, manifesting in

changes in voltage) are rarely used. The primary objective of this work was to establish foun-

dational insights for new designs of magnetic pickups for bowed instruments like the violin.

A secondary objective of this work was to motivate a modified damping factor term or modi-

fied external force term associated with dampening of vertical bowed string motion based on

experimental evidence. To achieve these objectives, a new experimental setup was consid-

ered for exploration of the behavior of a bowed string-magnetic pickup system, specifically

examining maximum and average voltage outputs across different frequency distributions,

magnetic flux densities and their evolution over time for different rotational positions of the

magnetic pickup about a magnetized, monochord string. Validation studies showed that

the findings were consistent with expected results from tonal theory and literature, based

on analysis of frequency spectra, voltage output (both obtained from magnetic pickup and

optical switches) and magnetic flux densities. Based on the new experimental setup, an

optimal position of the magnetic pickup was determined according to selected performance

criteria. This work showed ample experimental evidence demonstrating the prevalence of

significant damping of the vertical string oscillations by the combination of the presence of

bow hairs at the point of bow-string interface and the downward bow force applied. Based

on the insights and findings of this work, new and advanced designs of magnetic pickups for

bowed string instruments could be achieved.

iv



Dedications

“Praise ye the Lord in his holy places: praise ye him in the firmament of his power.... Praise

him with timbrel and choir: praise him with strings and organs.” Psalm 150

To Mike Lyddane (Lolo)

for instilling in me the love of mathematics, even when I did not yet know it.

To Karin Enebo

for teaching me to love the violin.

v



Acknowledgements

I am greatly indebted to Dr. Prakash Vedula for believing in me and believing in this work.

His guidance and enthusiasm throughout the process pushed me forward to learn new ideas

and extract new findings. Dr. Tom Boone was always available to help as he always proved

to be an excellent foil, offering fresh perspectives when I was attempting to resolve issues

during my work. I would also like to express my appreciation for Dr. Thomas Moore and

Dr. John Woodhouse. They both helped me gather confidence in the work with their insight

and helped provide a fruitful direction for the whole study when it was in its initial stage.

I would also like to thank the University of Oklahoma’s Aerospace and Mechanical Engi-

neering (AME) Department and the AME machine shop. My education through the depart-

ment and the help from Billy Mays and Greg Williams in the shop gave me all the mental

and physical tools necessary to complete this thesis.

Finally, I would like to thank my family. My parents, Felix and Teresa Adamo, supported

me in so many ways during my education and during this work and I am glad they can see

their efforts come to fruition. And I want to thank my brother, Zane Adamo, for having me

become a member of his band, the Soda Crackers; I do not think I would have pursued this

topic if I had not taken that deeper dive into the world of music.

vi



Contents

Abstract iv

Dedications v

Acknowledgements vi

Contents vii

List of Figures xi

1 Introduction 1

1.1 Amplification of Musical Instrument Sounds . . . . . . . . . . . . . . . . . . 1

1.2 Literature Survey . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 Purpose of Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.4 Hypothesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.5 Potential Advantages of a Magnetic Pickup . . . . . . . . . . . . . . . . . . . 6

1.6 Overview of Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2 Theory Overview and Exploration 11

2.1 Development of Bowed String Equations . . . . . . . . . . . . . . . . . . . . 12

2.2 Faraday’s Law of Induction . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.3 Rotating the Components of a Magnetic Field . . . . . . . . . . . . . . . . . 24

vii



2.4 Proposal to Account for Vertical String Oscillation Damping in Governing

Bowed String Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3 Parameters and Dimensions of Experiment 32

3.1 Bow and String Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.2 Measurement Position Piece Design . . . . . . . . . . . . . . . . . . . . . . . 33

3.3 Monochord Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.4 Magnetic Pickup Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.5 Optical Switches and Fixtures . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.6 Bow Stroke Mechanism Design . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.7 Interference Reduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4 Data Collection 44

4.1 Magnetic Pickup Voltage Signal . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.2 Horizontal and Vertical String Displacement . . . . . . . . . . . . . . . . . . 45

4.3 Magnetic Flux Density . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4.4 Use of Digital Oscilloscope . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4.5 Procedure for an Experiment Repetition of Data Collection . . . . . . . . . . 46

5 Post-Processing of Data 48

5.1 Maximum Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

5.2 Average Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

5.3 Fast Fourier Transform Analysis . . . . . . . . . . . . . . . . . . . . . . . . . 50

5.4 Short-Time Fourier Transform: Spectrograms . . . . . . . . . . . . . . . . . 52

5.5 Magnetic Flux Density over Time . . . . . . . . . . . . . . . . . . . . . . . . 52

6 Comparison with Previous Studies 55

6.1 Construction of Monochord . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

6.2 Magnetic Flux Density as Function of Distances . . . . . . . . . . . . . . . . 58

viii



6.3 Capturing an Accurate Frequency Spectrum . . . . . . . . . . . . . . . . . . 59

6.4 Capturing Bowed String Motion Displacement . . . . . . . . . . . . . . . . . 62

6.5 Wave Polarization Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

6.5.1 0.05 Seconds Period . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

6.5.2 0.5 Seconds Period . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

6.5.3 0.05 Seconds Period: Subjectively Plucked String . . . . . . . . . . . 68

6.5.4 0.05 Seconds Period: Subjectively Bowed String . . . . . . . . . . . . 69

6.6 Expected Results of Voltages, Magnetic Flux Density, and Frequency Distri-

butions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

7 Results and Discussion 73

7.1 Maximum Voltage and Average Voltage . . . . . . . . . . . . . . . . . . . . . 73

7.2 Frequency Spectra and Timbre: comparing spectra between magnetic pickup

positions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

7.3 Frequency Spectra: pickup position-string polarization comparisons . . . . . 92

7.4 Spectrograms Between Positions: Frequency Over Time . . . . . . . . . . . . 96

7.5 Spectrograms of Transverse String Displacements: Frequency Over Time . . 103

7.6 Magnetic Flux Density Over Time . . . . . . . . . . . . . . . . . . . . . . . . 106

7.7 Subjectively Bowed String . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

7.7.1 Waveforms And Voltage Outputs . . . . . . . . . . . . . . . . . . . . 117

7.7.2 Frequency Spectra . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

7.7.3 Spectrograms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

7.7.4 Magnetic Flux Density Over Time . . . . . . . . . . . . . . . . . . . 122

7.8 Subjectively Plucked String . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

7.8.1 Waveforms and Voltage Outputs . . . . . . . . . . . . . . . . . . . . 123

7.8.2 Frequency Spectra . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

7.8.3 Spectrograms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

7.8.4 Magnetic Flux Density Over Time . . . . . . . . . . . . . . . . . . . 128

ix



8 Conclusion 131

8.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

8.2 Suggestions for Improvement . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

8.3 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

Bibliography 146

x



List of Figures

3.1 Pickup Coil Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

6.1 All experiment components. . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

6.2 Monochord and bow stroke mechanism. . . . . . . . . . . . . . . . . . . . . . 57

6.3 Monochord . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

6.4 Bow stroke mechanism. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

6.5 Magnetic flux density as a function of probe height above the top magnetic

pole face. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

6.6 Magnetic flux density as a function of probe distance from the center of the

magnet, fixed at a height of 7.1 mm above the top magnetic pole face. . . . . 60

6.7 Example of an accurate frequency spectrum for a bowed string when the string

is tuned to 196 Hz, a G3. This spectrum comes from a 0.05 second long signal

obtained by a magnetic pickup. . . . . . . . . . . . . . . . . . . . . . . . . . 62

6.8 Example of an accurate frequency spectrum for a bowed string when the string

is tuned to 196 Hz, a G3. This spectrum comes from a 0.05 second long signal

obtained by an horizontally placed optical switch. . . . . . . . . . . . . . . . 62

6.9 Voltage signal, 0.05 seconds long, of the horizontal optical switch. The signal

was generated by a bowed string of the same downward bow force and bow

velocity used for the main experiment repetitions. . . . . . . . . . . . . . . . 63

xi



6.10 Voltage signal, 0.05 seconds long, of the horizontal optical switch. The signal

was generated by a bowed string of subjective bow force. . . . . . . . . . . . 64

6.11 Simulation of horizontal transverse string displacement for a bowed string

tensioned such that it has a fundamental frequency of 196 Hz. The simulation

code used comes from Bilbao [2]. . . . . . . . . . . . . . . . . . . . . . . . . 64

6.12 Unfiltered wave polarization for a bowed string for a period of 0.05 seconds. . 66

6.13 Filtered wave polarization for a bowed string for a period of 0.05 seconds. . . 67

6.14 Unfiltered wave polarization for a bowed string for a period of 0.5 seconds. . 68

6.15 Filtered wave polarization for a bowed string for a period of 0.5 seconds. . . 68

6.16 Unfiltered wave polarization for a subjectively plucked string for a period of

0.05 seconds. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

6.17 Filtered wave polarization for a plucked string of subjective force for a period

of 0.05 seconds. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

6.18 Unfiltered wave polarization for a bowed string of subjective force for a period

of 0.05 seconds. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

6.19 Filtered wave polarization for a bowed string of subjective force for a period

of 0.05 seconds. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

7.1 Maximum and average voltage outputs of all 8 magnetic pickup signals for

the first iteration of the experiment. . . . . . . . . . . . . . . . . . . . . . . . 74

7.2 Maximum and average voltage outputs of all 8 magnetic pickup signals for

the second iteration of the experiment. . . . . . . . . . . . . . . . . . . . . . 74

7.3 Maximum and average voltage outputs of all 8 magnetic pickup signals for

the third iteration of the experiment. . . . . . . . . . . . . . . . . . . . . . . 75

7.4 Maximum and average voltage outputs of each horizontal optical switch mea-

surement taken during the measurement of the magnetic pickup signal for a

specific position for the first iteration of the experiment. . . . . . . . . . . . 75

xii



7.5 Maximum and average voltage outputs of each horizontal optical switch mea-

surement taken during the measurement of the magnetic pickup signal for a

specific position for the second iteration of the experiment. . . . . . . . . . . 76

7.6 Maximum and average voltage outputs of each horizontal optical switch mea-

surement taken during the measurement of the magnetic pickup signal for a

specific position for the third iteration of the experiment. . . . . . . . . . . . 76

7.7 Maximum and average voltage outputs of each vertical optical switch mea-

surement taken during the measurement of the magnetic pickup signal for a

specific position for the first iteration of the experiment. . . . . . . . . . . . 77

7.8 Maximum and average voltage outputs of each vertical optical switch mea-

surement taken during the measurement of the magnetic pickup signal for a

specific position for the second iteration of the experiment. . . . . . . . . . . 77

7.9 Maximum and average voltage outputs of each vertical optical switch mea-

surement taken during the measurement of the magnetic pickup signal for a

specific position for the third iteration of the experiment. . . . . . . . . . . . 78

7.10 Normalized amplitude frequency spectrum of the signal from the magnetic

pickup at the first position for a total time period of 0.05 seconds. . . . . . . 84

7.11 Normalized amplitude frequency spectrum of the signal from the magnetic

pickup at the first position for a total time period of 0.5 seconds. . . . . . . . 85

7.12 Normalized amplitude frequency spectrum of the signal from the magnetic

pickup at the second position for a total time period of 0.5 seconds. . . . . . 85

7.13 Normalized amplitude frequency spectrum of the signal from the magnetic

pickup at the third position for a total time period of 0.5 seconds. . . . . . . 86

7.14 Normalized amplitude frequency spectrum of the signal from the magnetic

pickup at the fourth position for a total time period of 0.5 seconds. . . . . . 86

7.15 Normalized amplitude frequency spectrum of the signal from the magnetic

pickup at the fifth position for a total time period of 0.5 seconds. . . . . . . 87

xiii



7.16 Normalized amplitude frequency spectrum of the signal from the magnetic

pickup at the sixth position for a total time period of 0.5 seconds. . . . . . . 87

7.17 Normalized amplitude frequency spectrum of the signal from the magnetic

pickup at the seventh position for a total time period of 0.5 seconds. . . . . . 88

7.18 Normalized amplitude frequency spectrum of the signal from the magnetic

pickup at the eighth position for a total time period of 0.5 seconds. . . . . . 88

7.19 Linear amplitude frequency spectrum of the signal from the magnetic pickup

at the eighth position for a total time period of 0.5 seconds. . . . . . . . . . 89

7.20 Linear amplitude frequency spectrum of the signal from the magnetic pickup

at the eighth position for a total time period of 0.5 seconds. . . . . . . . . . 89

7.21 Linear amplitude frequency spectrum of the signal from the magnetic pickup

at the eighth position for a total time period of 0.5 seconds. . . . . . . . . . 90

7.22 Normalized amplitude frequency spectrum of a horizontal optical switch signal

for a total time period of 0.5 seconds. . . . . . . . . . . . . . . . . . . . . . . 93

7.23 Normalized amplitude frequency spectrum of a vertical optical switch signal

for a total time period of 0.5 seconds. . . . . . . . . . . . . . . . . . . . . . . 94

7.24 Normalized amplitude frequency spectrum of a horizontal optical switch signal

for a total time period of 0.05 seconds. . . . . . . . . . . . . . . . . . . . . . 94

7.25 Normalized amplitude frequency spectrum of a vertical optical switch signal

for a total time period of 0.05 seconds. . . . . . . . . . . . . . . . . . . . . . 95

7.26 Normalized amplitude spectrogram of the signal from the magnetic pickup at

the first position for a total time period of 0.05 seconds. . . . . . . . . . . . . 97

7.27 Normalized amplitude spectrogram of the signal from the magnetic pickup at

the first position for a total time period of 0.5 seconds. . . . . . . . . . . . . 97

7.28 Normalized amplitude spectrogram of the signal from the magnetic pickup at

the second position for a total time period of 0.5 seconds. . . . . . . . . . . . 98

xiv



7.29 Normalized amplitude spectrogram of the signal from the magnetic pickup at

the third position for a total time period of 0.5 seconds. . . . . . . . . . . . . 98

7.30 Normalized amplitude spectrogram of the signal from the magnetic pickup at

the fourth position for a total time period of 0.5 seconds. . . . . . . . . . . . 99

7.31 Normalized amplitude spectrogram of the signal from the magnetic pickup at

the fifth position for a total time period of 0.5 seconds. . . . . . . . . . . . . 99

7.32 Normalized amplitude spectrogram of the signal from the magnetic pickup at

the sixth position for a total time period of 0.5 seconds. . . . . . . . . . . . . 100

7.33 Normalized amplitude spectrogram of the signal from the magnetic pickup at

the seventh position for a total time period of 0.5 seconds. . . . . . . . . . . 100

7.34 Normalized amplitude spectrogram of the signal from the magnetic pickup at

the eighth position for a total time period of 0.5 seconds. . . . . . . . . . . . 101

7.35 Normalized amplitude spectrogram of a horizontal optical switch signal for a

total time period of 0.05 seconds. . . . . . . . . . . . . . . . . . . . . . . . . 103

7.36 Normalized amplitude spectrogram of a vertical optical switch signal for a

total time period of 0.05 seconds. . . . . . . . . . . . . . . . . . . . . . . . . 104

7.37 Normalized amplitude spectrogram of a horizontal optical switch signal for a

total time period of 0.5 seconds. . . . . . . . . . . . . . . . . . . . . . . . . . 104

7.38 Normalized amplitude spectrogram of a vertical optical switch signal for a

total time period of 0.5 seconds. . . . . . . . . . . . . . . . . . . . . . . . . . 105

7.39 Magnetic flux density over time for the signal from the magnetic pickup at

the first position for a total time period of 0.05 seconds. . . . . . . . . . . . . 107

7.40 Magnetic flux density over time for the signal from the magnetic pickup at

the eighth position for a total time period of 0.05 seconds. This was from the

third iteration of the experiment. . . . . . . . . . . . . . . . . . . . . . . . . 107

xv



7.41 Magnetic flux density over time for the signal from the magnetic pickup at

the eighth position for a total time period of 0.05 seconds. This was from the

second iteration of the experiment. . . . . . . . . . . . . . . . . . . . . . . . 107

7.42 Magnetic flux density over time for the signal from the magnetic pickup at

the fifth position for a total time period of 0.05 seconds. This was from the

second iteration of the experiment. . . . . . . . . . . . . . . . . . . . . . . . 108

7.43 Magnetic flux density over time for the signal from the magnetic pickup at

the seventh position for a total time period of 0.05 seconds. . . . . . . . . . . 108

7.44 Magnetic flux density over time for the signal from the magnetic pickup at

the first position for a total time period of 0.5 seconds. . . . . . . . . . . . . 108

7.45 Magnetic flux density over time for the signal from the magnetic pickup at

the second position for a total time period of 0.5 seconds. . . . . . . . . . . . 109

7.46 Magnetic flux density over time for the signal from the magnetic pickup at

the third position for a total time period of 0.5 seconds. . . . . . . . . . . . . 109

7.47 Magnetic flux density over time for the signal from the magnetic pickup at

the fourth position for a total time period of 0.5 seconds. . . . . . . . . . . . 109

7.48 Magnetic flux density over time for the signal from the magnetic pickup at

the fifth position for a total time period of 0.5 seconds. . . . . . . . . . . . . 110

7.49 Magnetic flux density over time for the signal from the magnetic pickup at

the sixth position for a total time period of 0.5 seconds. . . . . . . . . . . . . 110

7.50 Magnetic flux density over time for the signal from the magnetic pickup at

the seventh position for a total time period of 0.5 seconds. . . . . . . . . . . 110

7.51 Magnetic flux density over time for the signal from the magnetic pickup at

the eighth position for a total time period of 0.5 seconds. . . . . . . . . . . . 111

7.52 Magnetic pickup signal waveform of a bowed string of subjective force at the

specified pickup position. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

xvi



7.53 Magnetic pickup signal waveform of a bowed string of subjective force at the

specified pickup position. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

7.54 Magnetic pickup signal waveform of a bowed string of subjective force at the

specified pickup position. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

7.55 The frequency spectrum of the magnetic pickup signal of a bowed string of

subjective force at the specified pickup position. . . . . . . . . . . . . . . . . 119

7.56 The frequency spectrum of the magnetic pickup signal of a bowed string of

subjective force at the specified pickup position. . . . . . . . . . . . . . . . . 119

7.57 The frequency spectrum of the magnetic pickup signal of a bowed string of

subjective force at the specified pickup position. . . . . . . . . . . . . . . . . 120

7.58 The spectrogram of the magnetic pickup signal of a bowed string of subjective

force at the specified pickup position. . . . . . . . . . . . . . . . . . . . . . . 121

7.59 The spectrogram of the magnetic pickup signal of a bowed string of subjective

force at the specified pickup position. . . . . . . . . . . . . . . . . . . . . . . 121

7.60 The spectrogram of the magnetic pickup signal of a bowed string of subjective

force at the specified pickup position. . . . . . . . . . . . . . . . . . . . . . . 122

7.61 The magnetic flux density over time for the magnetic pickup signal of a bowed

string of subjective force at the specified pickup position. . . . . . . . . . . . 122

7.62 The magnetic flux density over time for the magnetic pickup signal of a bowed

string of subjective force at the specified pickup position. . . . . . . . . . . . 123

7.63 The magnetic flux density over time for the magnetic pickup signal of a bowed

string of subjective force at the specified pickup position. . . . . . . . . . . . 123

7.64 Magnetic pickup signal waveform of a plucked string of subjective force at the

specified pickup position. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

7.65 Magnetic pickup signal waveform of a plucked string of subjective force at the

specified pickup position. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

xvii



7.66 Magnetic pickup signal waveform of a plucked string of subjective force at the

specified pickup position. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

7.67 The frequency spectrum of the magnetic pickup signal of a plucked string of

subjective force at the specified pickup position. . . . . . . . . . . . . . . . . 125

7.68 The frequency spectrum of the magnetic pickup signal of a plucked string of

subjective force at the specified pickup position. . . . . . . . . . . . . . . . . 126

7.69 The frequency spectrum of the magnetic pickup signal of a plucked string of

subjective force at the specified pickup position. . . . . . . . . . . . . . . . . 126

7.70 The spectrogram of the magnetic pickup signal of a plucked string of subjective

force at the specified pickup position. . . . . . . . . . . . . . . . . . . . . . . 127

7.71 The spectrogram of the magnetic pickup signal of a plucked string of subjective

force at the specified pickup position. . . . . . . . . . . . . . . . . . . . . . . 127

7.72 The spectrogram of the magnetic pickup signal of a plucked string of subjective

force at the specified pickup position. . . . . . . . . . . . . . . . . . . . . . . 128

7.73 The magnetic flux density over time for the magnetic pickup signal of a plucked

string of subjective force at the specified pickup position. . . . . . . . . . . . 128

7.74 The magnetic flux density over time for the magnetic pickup signal of a plucked

string of subjective force at the specified pickup position. . . . . . . . . . . . 129

7.75 The magnetic flux density over time for the magnetic pickup signal of a plucked

string of subjective force at the specified pickup position. . . . . . . . . . . . 129

xviii



Chapter 1

Introduction

1.1 Amplification of Musical Instrument Sounds

Amplification of the sounds produced by musical instruments has always been a pertinent

issue among musicians since the inception of instruments. Before the advent of electricity,

achieving more amplification came from a heuristic development of instrument bodies, in-

strument material choices, and musical venue design. With electricity commonplace in the

modern day, musicians experienced a great improvement in amplification of music, whether

they found themselves in a music hall or a club setting.

There are various modern electrical methods for instrument amplification. Of these are

the use of microphones, piezoelectric pickups, and magnetic pickups. Each use different

methods of generating a voltage signal that is related to the amplitudes and frequencies of

sounds produced by an instrument. The magnetic pickup began as a pursuit to amplify

the acoustic guitar in swing bands featuring large brass sections that overpowered string

instruments. The guitar was one of the lead instruments of a swing band and struggled to

overcome the volume of brass instruments. In short, the magnetic pickup for musical instru-

ments acts as a musical application of Faraday’s Law of Induction, where string oscillation

information is preserved in a proportional voltage wave signal or the mechanical vibrations
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of the string are transformed into a voltage waveform. And it is this voltage waveform that

can be amplified, what many refer to as amplifying an instrument.

As previously noted, magnetic pickups are not the only type of pickups for musical

instruments. There also exist specifically designed microphones and piezoelectric pickups.

Microphones are usually reserved for acoustic instruments and the complete sound of the

instrument, as a whole system, is expressed. Piezoelectric pickups are more common for

acoustic instruments as well. These optimize a piezoelectric effect on a crystal, which in

turn produces a voltage. The stress experienced by the crystal is transformed into a voltage

waveform, preserving the wave information in the pressures felt.

For bowed instruments like a violin, microphones and piezoelectric pickups are most

common. But, there are very few magnetic pickups available commercially. And the ones

that are, are not usually sought out. This thesis began with the question “why are magnetic

pickups not common for bowed instruments?” With this in mind, analysis of a magnetic

pickup and bowed string is pursued in this work.

1.2 Literature Survey

The recognized start of the sub-area of acoustics, bowed string dynamics, can be traced

back to Helmholtz’s work on the subject in 1863 [12]. It is through this work that the

sawtooth-like displacement of a bowed string was first observed, which was subsequently

named “Helmholtz motion.” Raman advanced the area further with the introduction of

an early theoretical model of a bowed string in the early twentieth century [26]. Further

developments towards better theoretical models came from both Friedlander and Keller in

the mid-twentieth century [8, 15]. Another key development of bowed string dynamics was

by Schelleng, providing the “Schelleng Diagram” which describes general minimum and

maximum bowing force bounds along the string to describe different types of sounds, be

they pleasant or unlikable [31]. Schelleng contributed a plethora of contributions to the
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area. Woodhouse is another key contributor to the area of bowed string dynamics [36].

Woodhouse and Galluzzo provide a cursory overview of the developments of this area from

Helmholtz to the time of publication [36]. In the early 1980s, Cremer provided a commanding

work, covering many physics topics of the violin, including very detailed work regarding the

bowed string of a violin [4]. In the early 1990s, Ricca made contributions to bowed string

dynamics through studying impedance to a bowed string by a bow [28]. Ricca’s work also

serves as one of few works that addresses damping of vertical string oscillations by the bow.

When discussing bowed string dynamics, certain nonlinear characteristics can be found.

For a general elastic string, there is nonlinear coupling between the two transverse oscillations

in the overall string displacement. This investigation started initially with Kirchhoff in 1883

but was later expounded upon by Carrier, resulting in the “Kirchhoff-Carrier Equations” [3].

These equations serve as a good modeling of average nonlinear string tension in a physical,

elastic string. As it is a popular area of study, other authors who have made contributions

to this area for either bowed string motion or general string motion are Bilbao, Tan, and

Cremer (non-extensive) [2, 35, 4]. Another area concerning nonlinear effects in a physical

string is the study of pitch glide. Near the initial instance of excitation of a string, a string

can experience small changes in frequency. Kartofelev et al. and Lee et al. have made

helpful contributions to this area [14, 19].

More recently, the areas of sound synthesis and more advanced modeling of bowed in-

struments are increasingly popular. A staple work for sound synthesis comes from Smith,

detailing many concepts of audio signal processing [34]. Russo et al. have recently con-

tributed to better modeling bowed string motion with nonlinear effects from the friction

between the bow and string [30]. Akar and Willner recently took a finite element approach

to modeling Helmholtz motion of a bowed string [1]. Mansour has provided a very detailed

work towards developing even more accurate violin models [21]. Desvages has put forward

a rich contribution for both modeling of a violin and work towards sound synthesis of the

instrument [6]. For cost-effective experimental measurement of string oscillations, Le Carrou
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et al. provide a concise and comprehensive work [18].

Alongside bowed string dynamics, nonlinear string behavior, and bowed instrument mod-

eling and sound synthesis, there is also research being conducted for magnetic pickups which

are common to guitar. Modeling of magnetic pickups is a popular and fruitful area, which

Norton and Moore, Lemarquand and Lemarquand, Guadagnin et al., and Ray et al. have

all contributed to [23, 20, 11, 27]. Perov et al. took an experimental route and developed

experimental results in frequency analysis for a guitar and magnetic pickup setup [25]. In

addition to modeling and frequency analysis with experiment, other authors have taken in-

terest in the nonlinear effects generated by magnetic pickups in guitar signals. Novak et al.

take an experimental and modeling approach to the topic [24]. Mustonen et al. contribute

to the area of study by providing experimental results demonstrating nonlinear behavior in

a string-magnetic pickup system [22].

There are many other notable contributors to the area of bowed string dynamics, non-

linearity in strings, electromagnetism for magnetic pickups, and modeling, simulation, and

sound synthesis of bowed instruments that were not mentioned. But, of the authors and

works mentioned, all provide excellent insight into these topics.

1.3 Purpose of Thesis

Suppose there is a monochord whose string is fixed along the x-axis such that when looking

at the y − z plane, the bridge is viewed in front of the nut and the string passes through

the origin. The magnetic pickup’s center is fixed at a specific x-position along the string.

The cylindrical axis through the pickup can be rotated in the y− z plane such that the axis

is coincident with the origin and the pickup’s exposed pole face looks inward on the string

at a fixed distance from the string. Rotating this pickup cylindrical axis about the origin

from 0 radians to any angle up to 2π radians rotates the pickup around the string the same

amount. For this experiment specifically, eight magnetic pickup positions are considered,
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equally spaced 1π
4

radians or 45◦ from each other. So the positions are 0π
4

to 7π
4

every 1π
4

radians. These positions of the pickup (note, not the direction in which they point) can be

thought of as the cardinal and inter-cardinal directions: east, northeast, north, northwest,

west, southwest, south, and southeast. An alternative naming convention of these positions,

which is commonly used in this work, is: right horizontal, top right diagonal, top vertical,

top left diagonal, left horizontal, bottom left diagonal, bottom vertical, and bottom right

diagonal. An experiment repetition is conducted by exciting the string with a bow via the

bow stroke mechanism at a constant string location, constant bow forces, and constant bow

velocity, such that signals from appropriately placed optical switches (which will generate

signals related to string displacement) and from the magnetic pickup at a position for that

specific experiment repetition are recorded by an oscilloscope. These repetitions also all begin

at the same time and with the same bow location. For the specific experiment repetition,

the data is then post-processed and the specific results are obtained. This process is then

repeated but for the next sequential position, such that the magnetic pickup is placed in

that next position. With this in mind, the purposes of the work can be better understood.

The purpose of this thesis is multifaceted. A crucial component to this thesis, serving as

part of its purpose, is to provide novel findings, through experimentation, for the behaviors

of signal amplitude, frequency distributions, spectrograms, and magnetic flux density for a

bowed string-magnetic pickup system. These results can help to inform the current theory

of bowed string motion, particularly that of the vertical transverse bowed string equation,

Eq. 2.1.14. In addition, the results of the experimentation can help to inform what sort of

assumptions can be made regarding the use of Faraday’s Law of Induction to simplify the

problem for magnetic pickup modeling. Another key purpose of the thesis is to lay down

the groundwork for designing a magnetic pickup for bowed instruments, particularly based

on angling the magnetic pickup. Only a few patents for bridge motion actuated magnetic

pickups of violins can be found for the past ninety years. There are a few luthiers who

have made violins with magnetic pickups applied to the strings, but a quick overview of
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market available electric violins would direct players almost exclusively to ones amplified

through microphones or piezoelectric pickups. Better understanding bowed string motion

and how electromagnetism figures in a magnetic pickup are essential to the design of a

bowed instrument magnetic pickup. And the experimentation and its results involving a

bowed string-magnetic pickup system can realize these theoretical descriptions and provide

a foundation for a future design.

1.4 Hypothesis

Consider a bowed string-magnetic pickup system where the magnetic pickup can be rotated

as described in Sec. 1.3. A few result types are considered. This work considers the

effects in voltage, frequency distribution, frequencies over time, and magnetic flux density,

as functions of magnetic pickup position around the monochord. This work posits that when

considering the subset of 8 pickup positions, when a magnetic pickup is placed horizontally to

a bowed string, it will produce the best outcomes in voltage output, frequency distribution,

frequencies over time, and magnetic flux density. In addition, a vertically placed pickup

will show that vertical transverse string displacement is significantly smaller than horizontal

transverse string displacement for a bowed string, lending to useful assumptions for bowed

string dynamics. The results of the experiment inform the governing equations for this

work and will test the veracity of these hypotheses. Regardless of the outcome concerning

the hypotheses, the results will in turn advance the development and design of a magnetic

pickup for bowed instruments, which ares uncommon in musical circles.

1.5 Potential Advantages of a Magnetic Pickup

There are certain advantages that magnetic pickups enjoy and avoid certain disadvantages of

other pickup designs. For this, magnetic pickups are considered in general and microphone

and piezoelectric pickups specifically for violins. A fault of microphones is the potential

6



presence of background noise or any unwanted sound. Particularly for violin microphones

(sometimes called gooseneck microphones), the microphone is pointed near and at the f-hole,

which acoustically projects the violin’s acoustic sound. One disadvantage to the microphone

is that sounds made by the player like a sneeze or talking can also be picked up. Stage noise

from other instruments or even the ambient sound of the room has the potential to interfere

with the signal produced solely by the instrument. If a stationary microphone is being

used, certain positional and ergonomic problems arise. The violinist’s bodily movement and

movement and direction of the violin’s f-holes (the openings of the violin body that project

a majority of the instrument’s sound) invite many more variables when it comes to how the

violin’s sound is received. It should be noted that a gooseneck microphone avoids this issue,

given its position is fixed always to the direction of sound projection coming from the violin

f-hole. So the player is free to move without compromising amplification. The magnetic

pickup on the other hand does not respond to sound waves. One could yell into a magnetic

pickup and the yelling would not be picked up by the pickup or interfere with the signal

from the instrument’s strings’ mechanical vibrations Sounds from the player or background

noise does not affect the magnetic pickup. This can be demonstrated easily.

The piezoelectric pickup is a reliable pickup method, but still has downsides. For the

violin, the use of a piezoelectric pickup typically necessitates the use of a “pre-amplifier”

which is a device that allows the player to “soften” the signal, when the signal’s higher fre-

quencies are very amplified. Settings like “gain,” “treble” “middle” and “bass” are typically

seen. Gain nominally refers to the amplitude level of the input signal, while the latter three

terms refer to frequency ranges where “treble” is usually the 1000− 7000 Hz range, “bass”

the 20− 250 Hz range, and “middle,” the 250− 1000 Hz range. For the piezoelectric pickup

for violin, treble or higher frequencies are usually favored. This produces a sharp, nasally

sound. Many professional violinists strongly suggest using a pre-amplifier to process the

violin signal into a sound that is more usable and pleasant.

Another disadvantage of the piezoelectric pickup is that it has a higher risk of acoustic
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feedback. The piezoelectric pickup functions on pressure more generally. Pressure waves

can come from all vibrating parts of the violin, which will feed into the pickup’s signal.

There is a certain threshold to be cognizant of when amplifying a signal from a piezoelectric

pickup or one runs the risk of having the signal being subject to a positive feedback loop.

If a magnetic pickup were being used on an acoustic instrument, this problem is still there,

but the difference is that the problem is scaled down because the magnetic pickup will only

pickup the velocity of the vibrating ferromagnetic string. Vibrations of the whole acoustic

body will have to first feed into the mechanical vibrations of the string before the magnetic

pickup.

A magnetic pickup thrives best in a non-hollow instrument, where acoustic feedback is

virtually eliminated. Acoustic amplification is not a problem to be solved as it was before

the advent of electric amplification. A piezoelectric pickup would also thrive in a non-hollow

instrument, but for many models, the extra cost of a pre-amplifier is a necessity.

To the best of the author’s knowledge and literature survey, there is currently no research

being conducted in the research area of magnetic pickup behavior for a bowed string-magnetic

pickup system. The only works that could be found are early 1970s works on bowed string

behavior that used a magnet of dense magnetic field as merely a measurement tool [32,

17]. Experimental frequency analysis, amplitude observations, and deriving magnetic flux

density over time for a magnetic pickup whose signal comes from a bowed string has not yet

been explored. Many works also focus on the horizontal transverse string displacement of a

bowed string, but fewer look into vertical transverse string displacement of a bowed string.

Ricca and Desvages are two authors that address this specific string displacement [28, 6].

Intuitively, these oscillations can be expected to be dampened by the bow, but aside from

their contributions, considering an additional damping factor in relation to bow hair motion

or an external force term to the bowed string equation for vertical transverse motion has not

been investigated as much as other topics in bowed string dynamics. Given the effectiveness

of a magnetic pickup is a function of directional dependence through the angle between the
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area vector of the measurement coil and an arbitrary magnetic field line, having equations

that capture key behaviors of bowed string motion is important. For future works, modeling

of a bowed string-magnetic pickup system would benefit greatly from this acknowledgement

of significant vertical oscillation dampening and directional dependence of a magnetic pickup.

1.6 Overview of Study

This thesis is structured as follows. Chapter 2 consists of an overview of bowed string theory

overview and development, connecting certain governing equations of bowed string dynamics

to Faraday’s Law of Induction. It provides a rotational and translational transformation of

coordinates for an analytic model for components of a magnetic pickup’s magnetic field. It

also briefly describes the need for a modified dampening factor term or external force term

to account for the dampening of vertical string oscillations of a bowed string.

Chapter 3 includes a discussion of key parameters and dimensions of the experiment.

It also includes a discussion on the design and construction of the experiment’s different

components.

Chapter 4 covers the collection of data from the measurement tools of the experiment.

This covers how the measurement tools operate and how they are used. And it also provides

a procedure for how a full experiment iteration of experiment repetitions is conducted.

Chapter 5 goes into detail on the post-processing of the collected data. There are a

group of results that will be considered, concerning voltage outputs, frequency distributions,

frequency distributions over time, and magnetic flux density over time. These results inform

the investigation and will provide better insight into what magnetic pickup position is the

most optimal given such results and will also provide insight into the governing bowed string

equations and the modified Faraday’s Law of Induction equation. The results also provide

a foundation for the design of a magnetic pickup for a bowed instrument.

Chapter 6 provides a discussion of results that resemble and correlate with results from
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previous authors in the field of acoustics, string dynamics, and electromagnetism (focusing

on magnetic pickups). In addition, this work also makes note of certain common quanti-

ties or general results (particularly voltage output, magnetic flux density, and tonal theory)

of electric guitar magnetic pickups which are very common and reliable as products. Cer-

tain results from the experiment can be compared to these expected results, lending to the

viability of a magnetic pickup design for bowed instruments.

Chapter 7 details the results of the experiment and provides discussion and analysis of

them. The specific results of the experiment repetition signals are the maximum and average

voltage outputs, frequency spectra, spectrograms, and magnetic flux density over time.

Finally, Chapter 8 concludes the investigation and summarizes the work overall. In

addition, suggestions for improvement to the experiment were given and future areas of

potential research are proposed.
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Chapter 2

Theory Overview and Exploration

The main purpose of this chapter is to provide a theoretical underpinning to the bowed string

motion of the experiment, the behavior of the magnetic field, the generation of voltage from

a magnetic pickup, and the rotation of the magnetic field of the magnetic pickup in relation

to transverse string displacements which remain directionally constant throughout the ex-

periment. In these, a thread is connected between all of them, showing how the governing

equations of bowed string motion are present in Faraday’s Law of Induction applied to a

magnetic pickup and how the magnetic field of said pickup can be rotated to correlate with

the main experiment variable in consideration, rotation of the magnetic pickup’s position.

With these equations to be developed, a foundation is laid for the discussion of adding an

extra damping factor or external force term to account for significant damping from the bow

to the vertical string oscillations. With this in mind, a brief qualitative consideration of the

interactions between the string and bow as the string vertically oscillates is given. There

are various results of specific result types in Chapter 6 and Chapter 7 that will indicate

significant damping of the vertical string oscillations. And with respect to the magnetic

pickup, a theoretical foundation and understanding of Faraday’s Law of Induction is needed

for deriving an approximate solution for magnetic flux density over time using the voltage

signals derived from the experiment.
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2.1 Development of Bowed String Equations

The motions of a bowed string come in the form of waves and can partially be described

using the wave equation as the foundation. One may first consider the unsteady, second-order

partial differential equation, the 1-D wave equation,

∂2

∂t2
u(x, t) = c2

∂2

∂x2
u(x, t), (2.1.1)

where u(x, t) is the displacement of the wave and c is the wave speed.

Building off of Eq. 2.1.1, a system of transverse wave equations can be constructed.

A wave is called a transverse wave if the propagation of the wave is perpendicular to the

direction of its oscillations. For example, a transverse wave that oscillates up and down will

have its wave travel from left to right. Therefore, it is useful to consider transverse waves

with the use of 1-D wave equations like Eq. 2.1.1. Consider a 3-dimensional space with the

z-axis as the vertical axis. A system of transverse wave equations is then,

∂2

∂t2
η(x, t) = c2t

∂2

∂x2
η(x, t), (2.1.2)

∂2

∂t2
ζ(x, t) = c2t

∂2

∂x2
ζ(x, t), (2.1.3)

where η(x, t) is the transverse displacement of a wave in the y-direction, ζ(x, t) is the trans-

verse displacement in the z-direction, and ct is the transverse wave speed. The system, Eq.

2.1.2 and Eq. 2.1.3 can be extended to a physical string, once string mass and string tension

is considered. It should be noted, too, that η(x, t) is the horizontal transverse displacement

of the string and ζ(x, t) is the vertical transverse displacement of the string. Recall the

coordinates in relation to the monochord detailed in Sec. 1.3. Following Cremer’s definition

and extending it to the present system of wave equations, if the transverse wave speed were

defined as,
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ct =

√
Fs

m′
s

, (2.1.4)

then Eq. 2.1.2 and Eq. 2.1.3 become,

m′∂
2ηs
∂t2

− Fs
∂2ηs
∂x2

= 0, (2.1.5)

m′
s

∂2ζs
∂t2

− Fs
∂2ζs
∂x2

= 0, (2.1.6)

where Fs is the constant string tension, and m′
s is the string mass per unit length [4]. And

because this study concerns itself with a physical string, stiffness is also present in the

governing equations. This introduces a fourth-order term to each equation of system, Eq.

2.1.5 and Eq. 2.1.6, so that the following is defined as such,

m′
s

∂2ηs
∂t2

− Fs
∂2ηs
∂x2

+B
∂4ηs
∂x4

ηs = 0, (2.1.7)

m′
s

∂2ζs
∂t2

− Fs
∂2ζs
∂x2

+Bs
∂4ζs
∂x4

= 0, (2.1.8)

where Bs = Es
a2π
4

such that Es is the string’s Young Modulus and a is the radius of the

string.

Again, following Cremer, dampening is also considered for the string equations [4]. A

physical string is not a lossless system. There is dampening of the string oscillations due to

friction with air. With the damping factor, viscous impedance per unit length for a string,

r′s, the system, Eq. 2.1.7 and Eq. 2.1.8, becomes,
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m′
s

∂2ηs
∂t2

+ r′s
∂ηs
∂t

+Bs
∂4ηs
∂x4

− Fs
∂2ηs
∂x2

= 0, (2.1.9)

m′
s

∂2ζs
∂t2

+ r′s
∂ζs
∂t

+Bs
∂4

∂x4
− Fs

∂2ζs
∂x2

= 0[4]. (2.1.10)

With the system, Eq. 2.1.9 and Eq. 2.1.10, a good foundation is laid to then extending

the use of the wave equation to the topics aimed in this investigation. The wave equation

theory will extend to a continuous excitation force from a bow, nonlinearity, and a coupled

system.

It is simple enough to incorporated bowing into the system of string equations. With the

same axes convention, suppose that a violin bow makes continuous contact with the string

at a specific x value and thus applies a continuous excitation force to the string for a specific

amount of time. With this in mind, a force term can be introduced to both transverse

equations for string motion. A force is applied downward and tangentially across the string

(which for this study is assumed to be applied directly to the center of the string instead)

So, the system, Eq. 2.1.9 and Eq. 2.1.10 become,

m′
s

∂2ηs
∂t2

+ r′s
∂ηs
∂t

+Bs
∂4ηs
∂x4

− Fs
∂2ηs
∂x2

= F ′
y,s(x, t), (2.1.11)

m′
s

∂2ζs
∂t2

+ r′s
∂ζs
∂t

+Bs
∂4

∂x4
− Fs

∂2ζs
∂x2

= F ′
z,s(x, t). (2.1.12)

The two transverse oscillations of the bowed string can exhibit coupled and nonlinear

behavior due to nonlinear string tension. Kirchhoff and Carrier introduced a nonlinear

coupling factor for string tension, because there is a tendency of physical strings to have

oscillations of different planes to transfer energy to one another and have string tension

change with respect to different components of position. This means that the initial constant

tension term, Fs, will be replaced. The new factor is an average of the sum of the squared
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spatial change of either displacement. Converting the system, Eq. 2.1.11 and Eq. 2.1.12, to

a Kirchhoff-Carrier form renders,

m′
s

∂2ηs
∂t2

+ r′s
∂ηs
∂t

+Bs
∂4ηs
∂x4

− (Ts,0 +Ns)
∂2ηs
∂x2

= F ′
y,s(x, t), (2.1.13)

m′
s

∂2ζs
∂t2

+ r′s
∂ζs
∂t

+Bs
∂4ζs
∂x4

− (Ts,0 +Ns)
∂2ζs
∂x2

= F ′
z,s(x, t) (2.1.14)

such that Ts,0 is the initial string tension and

Ns =
EsAs

2L

∫ L

0

[(
∂ηs
∂x

)2

+

(
∂ζs
∂x

)2
]
dx, (2.1.15)

where Es is, again, the string’s Young Modulus, As =
a2π
4

is the cross-sectional area of the

string, and L is the length of the string [16, 3, 35].

When discussing bowed string motion, Helmholtz motion should be addressed, which

is the horizontal string oscillations. Friction between the bow and string is the root of

Helmholtz motion. When static friction is high between the bow and string, for a rosined

bow particularly, the string “sticks” to the bow causing a kink (as seen from the x−y plane,

the “bird’s-eye-view”) in the string to travel from the bow-string interface. This is the stick

regime and the string segments on either side of the interface moves in the same direction

as the bowing direction. Once the kink travels down the string and reflects back from either

end point, when it returns to the interface, the string “slips”, enabling slipping friction with

the bow. This is the slip regime and the string segments on either side of the interface move

in the opposite direction of the bowing direction. Once the string approaches the speed of

the bow and moves in the same direction, the stick regime begins. This is a periodic cycle

which lasts for as long as the string is continuously excited by the bow. The aforementioned

kink travels along the path of an envelope comprised of two parabolic segments, which both

intersect at both string end points, mirrored about the x-axis. For a bowed string excited
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near an end point, more harmonic frequencies will be present, generating a richer sound. A

plucked string’s higher frequencies will dissipate quickly after the moment of excitation. In

contrast, a bowed string will sustain its higher frequencies as long as the bow continues to

excite it.

Associated with Helmholtz motion is the displacement of the string segment, ηs, at time,

t. Akar and Willner provided an example of what Helmholtz motion displacement should

ideally look like [1]. It resembles a sawtooth waveform. Using Schelleng’s Diagram, they

provide additional figures to show the displacement over time for bowed strings experiencing

different amounts of bow forces [32]. Along with Helmholtz motion displacement, there

can be multiple slip motion and no periodic motion, which indicates excessive sticking. In

relation to Schelleng’s diagram, this makes sense. More slips would occur if there were not

enough downward and horizontal bow force applying enough static friction at the bow-string

interface and this would cause an empty, high-frequency-oriented sound. Similarly, too much

sticking would occur if there is excessive downward and horizontal bow force, not allowing

enough slipping friction to occur at the bow-string interface. This would result in a raucous

sound. Though, there are other ways through which sticking or slipping can occur, such as

the amount of rosin applied to the bow. These considerations will be important for Sec. 7.6.

2.2 Faraday’s Law of Induction

One of the crucial aspects of this investigation is the application of electromagnetism, specif-

ically Faraday’s Law of Induction. It is thus beneficial to review how Faraday’s Law works

with respect to a magnetic pickup. Consider a magnetic field produced by a cylindrical

magnet with a copper coil wrapped around it such that the entire coil’s surface area, Sc,

changes with respect to space, radially, in the x− y plane. This surface area is also parallel

to the poles of the magnet. Above this magnet is a ferromagnetic string, which is in turn

magnetized by the magnet. The magnetic field,
−→
B , of the magnet and magnetized string
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has field lines which represent the direction of magnetic force from the magnet. Faraday’s

Law of Induction essentially states that an electromotive force or a voltage induced by a

source (not to be conflated or confused with a voltage resulting from a potential difference)

is generated by the change of the number of field lines of a magnetic field passing through

the areas of the whole coil, such that there are certain angles, θB, between the area vector

(which is perpendicular to the coil areas) and field lines of the magnetic field.

One of the goals of a magnetic pickup using Faraday’s Law of Induction is to affect

greater magnetic flux, the number of field lines passing through the entire coil surface. This

does not induce greater voltage output, but if magnetic flux were to go from a large amount

to a small amount, then a greater voltage would be induced. There are three key ways to

increase magnetic flux. One could change the maximum size of the coil areas and increase

the number of coils, decrease the angle between the area vector and the field lines, or change

the magnetic field with a ferromagnetic string such that the field lines concentrate in the coil

areas. This list is not exhaustive. For example, a diamagnetic string, such as a string with

silver content, could be used to change the magnetic field, though it is not ferromagnetic.

For a magnetic pickup, enough voltage signal is desired, such that there is enough of a signal

to be amplified without loss of tonal quality.

Consider the entire coil of the previously mentioned magnetic pickup. Its surface area

is in effect a large annulus. Within the annulus are coil areas of varying sizes. Increasing

magnetic flux can come from increasing the size of this large annulus. This would be such

that there would be more larger coils and more coils as well.

The angle between the area vector and field lines, which is defined in the associated dot

product between the area vector and the magnetic field, can be reduced by decreasing the

distance between the magnet and the ferromagnetic string. Again, large magnetic flux alone

does not induce voltage. Large change in magnetic flux over time, however, does induce a

larger voltage output.

Changing the magnetic field can both increase and decrease magnetic flux. This can be
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done with the oscillations of a ferromagnetic string. In short, certain oscillations of the string

can contract the field into the coil surface areas and detract it out of them. This produces an

oscillatory voltage, related to the mechanical vibrations of string velocity. As a reiteration,

consider the following. Consider a magnetic pickup that has a coil surface area parallel to

the poles of the magnet. These coil surface areas are also situated near the bottom pole face

along the z-axis. There is also a ferromagnetic string above the top pole face.

Suppose that the displacement over time of a segment of the string is taken to be a 2-D

vector whose components are the horizontal and vertical transverse string displacements.

An almost necessary condition, or, at least, a more practical requirement, to increasing

magnetic flux for a magnetic pickup and ferromagnetic string is to angle the pickup such

that at least one of the component vectors of displacement has a small angle between it

and the area vector. Note that transverse string displacements for a 3-D string are ideally

perpendicular, so usually only one form of displacement will share a small angle with the

area vector. This small angle, ideally 0 radians, between the specific transverse displacement

component vector and the area vector ensures that the pickup is positioned in a direction

where string oscillations can contract more of the magnetic field into the coil surface areas and

detract more of the magnetic field out of the surface areas. Less field lines are available for

contraction and detraction through the surface the further they are from being perpendicular

to the surface. During contraction, the string is closer to the pole face and there is greater

magnetic flux. During detraction, the string is further from the pole face and there is less

magnetic flux.

Consider the other component vector that has a large angle between it and the area

vector, ideally π
2
radians. The oscillations in this direction will not contract and detract the

magnetic field through the surface areas. With these oscillations, the magnetic field would

seem to “rock” from side to side or experience a side-to-side deformation similar to strain

on an elementary volume. This instead would produce little change in magnetic flux. So,

greater change in magnetic flux with respect to time occurs where the string oscillates to
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and fro the pole face. But if it oscillates across the pole at a fixed height, there will be much

lower change in magnetic flux over time or virtually none.

There are some simple scenarios to further contextualize this behavior. Consider again

a magnetic pickup with a magnetized ferromagnetic string above its top pole face. Verti-

cal string oscillations will effect greater magnetic flux over time for a vertical area vector.

Horizontal string oscillations will effect greater magnetic flux over time for a horizontal area

vector. Vertical and horizontal string oscillations will effect greater magnetic flux over time

for a diagonal area vector, given it is composed of vertical and horizontal component vectors.

In these three scenarios, contraction and detraction of the magnetic field through the coil

surface areas occur. This in turn will generate large voltage outputs.

This introduction serves as a good foundation for extending Faraday’s Law of Induction

for the purposes of this thesis. A few things are to be accomplished in this section. Faraday’s

Law of Induction will be extended to include the dimensions of a copper coil. Under cer-

tain simple assumptions, the equation can be used to process voltage signal data to achieve

results in magnetic flux density over time. This in turn makes it possible to show how Fara-

day’s Law of Induction is mathematically connected to the solutions of the system of wave

equations defining the transverse displacements of a bowed string, Eq. 2.1.13 and Eq. 2.1.14

through provided analytical definitions of magnetic field components for a magnetic pickup.

Following this specific section, it will also be shown how the magnetic field components for

the magnetic pickup can be mathematically transformed such that the definitions of the

components correspond to the physical rotation of the experiment’s magnetic pickup and its

magnetic field in the y − z plane.

Faraday’s Law of Induction can be expressed as,

U(t) = − ∂

∂t

(∫ ∫
Sc

(−→
B (t) · n̂

)
dSc

)
, (2.2.1)

where U(t) is the voltage (electromotive force in volts) over time, dSc is the elemental surface
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area of the coil,
−→
B (t) is the magnetic field as it is perturbed over time, and n̂ is the unit

vector normal to the coil surface area, the area vector as previously mentioned. Eq. 2.2.1

can be extended to include the number of revolutions of present in a coil. This results in,

U(t) = −Nc
∂

∂t

(∫ ∫
Sc

(−→
B (t) · n̂

)
dSc

)
, (2.2.2)

such that Nc is the number of revolutions in the coil of the magnetic pickup. This scaling

of the effects of one coil is done to substitute the solving of Faraday’s Law of Induction for

all coils of the same area. But, as Eq. 2.2.2 stands, it fails to capture a physical aspect

of the coil. As it will be shown in Sec. 3.4, the coil of the magnetic pickup changes with

respect to x and y or radially. This should not be conflated with the proposition that the

magnetic field changes with respect to x and y inside the coil. This spatial change in the

coil is evident by the fact that an innermost coil is smaller than an outermost coil. Thus,

the number of revolutions in the entire coil is also dependent on x and y. This ought to be

reconciled in this section and especially for Sec. 6.2 where magnetic flux density over time is

to be derived from the experiment’s magnetic pickup signals. Accounting for the variation

in coil area allows for the introduction of some simple assumptions for Eq. 2.2.2. In this

reduction is also an opportunity to introduce a basic modeling for a non-uniform magnetic

field.

Looking to the derivative term in Eq. 2.2.2, the integral term, which is definitionally,

magnetic flux, ΦB, can be approximated as,

n∑
i=1

NciSci ×
1

n
(
−→
B (t) · n̂)i, (2.2.3)

such that 1
n
is a scaling factor for the iterative dot product term. In Eq. 2.2.3, Sci, is an

annular area which can not exceed the inner and outer radii of the magnetic pickup’s entire

coil, r1 and r2 as defined later in Sec. 3.4. With each Sci is an associated number of coil

revolutions, Nci, which is dependent on the annular area’s specific inner and outer radii. In
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the same way that the total number of coil revolutions in the entire magnetic pickup coil was

deduced in Sec. 3.4, the number of coil revolutions can be approximated for these discretized

annuli elements. n ∈ N is the number of discretized annuli for the coil, bounded by the entire

coil’s inner and outer radii. For the dot product term, (
−→
B (t) · n̂)i =

−→
Bi(t) cos(θi). This is

such that
−→
Bi(t) is locally uniform for its corresponding annulus of same index, the same

annulus. This field is considered only when it passes through that annulus. Another step in

approximating or modeling the non-uniform magnetic field,
−→
B (t), is to artificially apply an

angle (which is ordinarily obtained passively due to the non-uniformity of the vector field

when applied in a dot product), θi, between the locally uniform magnetic field segment,

−→
Bi(t) and the area vector, n̂. Note that the use of the index, i and the angle, θi, has no

relation to the uses of i and θ in Sec. 2.3 which is concerned with transforming coordinates to

rotate and translate a magnetic field in space. With the related previous assumption of local

uniformity, the composition of locally uniform magnetic field segments serves to supplant

the surface integral in the same way that a globally uniform magnetic field would allow for.

With this in mind, from Eq. 2.2.3, follows

n∑
i=1

NciSci ×
1

n
Bi(t) cos

(
α
i

n

)
(2.2.4)

under the assumption that the angles between
−→
Bi and n̂ are equal, resulting in θi = α i

n

for some α, the maximum angle of segmented field orientation, which must be declared

regardless of angular spacing being equal or not. To progress, the summation of products in

Eq. 2.2.4 becomes the multiplication of sums,

(
n∑

i=1

NciSci cos

(
α
i

n

))
×

(
1

n

n∑
i=1

Bi(t)

)
, (2.2.5)

such that for ai = NciSci cos
(
α i

n

)
and bj = Bj(t), aibj = 0 if and only if i ̸= j, which also

implies index of bj thus becomes i. With this assumption, suppose that,
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1

n

n∑
i=1

Bi(t) ≈ B(t), (2.2.6)

where B(t) is the magnetic flux density over time. The purpose of this approximation

or model of the non-uniform magnetic field is to have the composition of locally uniform

vector fields,
−→
Bi(t), behave similarly to the actual non-uniform vector field near the magnet’s

bottom pole face where the coil areas are to be found (recall the bottom of the entire coil is

approximately 2.73 mm above the lower magnet pole face). It should be noted that the effects

of the coils along the length of the magnet in the z direction are assumed to be captured in

the multiplication of the areas of an arbitrary annulus they subside in respectively, Sci, by

the number of revolutions, corresponding to the said arbitrary annulus, Nci. With Eq. 2.2.5

and Eq. 2.2.6, Faraday’s Law of Induction applied to a magnetic pickup, Eq. 2.2.2, can be

approximated as

U(t) ≈ − 1

n

∂

∂t

((
n∑

i=1

NciSci cos

(
α
i

n

))
×B(t)

)
. (2.2.7)

Only magnetic flux density changes with respect to time in Eq. 2.2.7, so it becomes,

U(t) ≈ − 1

n

(
n∑

i=1

NciSci cos

(
α
i

n

))
∂

∂t
B(t). (2.2.8)

For the purposes of sufficiently defining the governing equations for this work and specif-

ically for the bowed string-magnetic pickup system, analytical expressions for the magnetic

field components from Guadagnin et al. are defined. These magnetic field components are

for a non-uniform magnetic field, which is fitting for establishing a theoretical connection

between the bowed string equations to Faraday’s Law of Induction. For
−→
B (t), components,

By and Bz, can be defined as,
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By(y, z, t) = 2B0ξ
(y − ys)(z − zs)

((y − ys)2 + (z − zs)2)2
, (2.2.9)

Bz(y, z, t) = B0

(
1 + ξ

(z − zs)
2 − (y − ys)

2

((y − ys)2 + (z − zs)2)2

)
, (2.2.10)

where ys = ys(t), zs = zs(t), and ξ = a2 µr−1
µr+1

such that a is the string’s radius, as mentioned

when defining Eq. 2.1.8, and such that the linear relative permeability, µr, is equal to
µ
µ0
, the

ratio of material permeability and vacuum permeability [11]. In these equations, ys is the

horizontal transverse string displacement in the x− y plane and zs is the vertical transverse

string displacement in the x− z plane.

With these components definitions, Eq. 2.2.9 and Eq. 2.2.10, in mind, Eq. 2.2.8 can be

expressed as,

∂

∂t

(√
B2

y +B2
z

)
≈ −n(∑n

i=1NciSci cos
(
α i

n

)) × U(t). (2.2.11)

Eq. 2.2.11 is a fittingly developed equation towards the goals of this thesis because there

is now an expression which relates the reduction of Faraday’s Law of Induction to the signal

of the magnetic pickup, which only relays voltage over time.

With Eq. 2.2.11, it is also true that,

U = U(t) = U(y, z, t) = U(y, z, ys(t), zs(t)), (2.2.12)

By = By(y, z, t) = By(y, z, ys(t), zs(t)), (2.2.13)

Bz = Bz(y, z, t) = Bz(y, z, ys(t), zs(t)). (2.2.14)

Eq. 2.2.12, Eq. 2.2.13, and Eq. 2.2.14 simply state that voltage over time and the magnetic

field are functions of both transverse string displacements over time. So that it may be

formally stated, this revelation results in the following,
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ys(t) = η(x, t), (2.2.15)

zs(t) = ζ(x, t). (2.2.16)

In this section, an approximation of Faraday’s Law of Induction was defined in Eq. 2.2.8,

which includes a rudimentary discretizing model of a non-uniform magnetic field. This

equation can be used for post-processing of the experiment data with respect to solving for

magnetic flux density over time. In addition, with Eq. 2.2.15 and Eq. 2.2.16, the connection

between the bowed string equations and Faraday’s Law of Induction has been demonstrated.

This is fitting for this work, which intends to learn more of the behavior of the bowed

string-magnetic pickup system. But, the rotation of the magnetic pickup in relation to the

transverse string displacements must also be accounted for in the theory for this type of

system. If the pickup is rotated in the y − z plane about the string’s center, its magnetic

field and coils, which are spatially fixed relatively to one another, are rotated as well. But

the string displacements remain the same spatially. Sec. 2.3 develops a matrix transform for

an arbitrary 2-D vector field, which can be applied to the y and z arguments of the magnetic

field components.

2.3 Rotating the Components of a Magnetic Field

Consider again the components of the magnetic field, Eq. 2.2.13 and 2.2.14, of a magnetic

pickup with a single cylindrical magnet centrally located, surrounded by a coil, such that the

bottom of the whole coil is coincident with the x− y plane, meaning 2.73 mm of the magnet

along its own axis protrudes below the x− y plane. With this placement, the pickup would

be at the 3π
2
position if it were being rotated about the string’s center, which is taken to be

centered through the y − z plane at its origin.

With the transverse string displacement terms present in the magnetic field component
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equations, it is possible to define the magnetic field components in terms of the string equa-

tion solutions, but only in one position, the aforementioned 3π
2
position, with the bottom of

the coil coincident with the origin, perpendicular to the original z-axis, such that the mag-

net’s cylindrical axis is collinear with the z-axis. Note that the magnetic field component

equations are also functions of y and z as well. This thesis is primarily concerned with the

effects of rotating the magnetic pickup while string displacement in both transverse planes

remain sufficiently constant (depending mostly on the consistency of the bow stroke mech-

anism). While the string displacements remain the same spatially, the y and z arguments

of Eq. 2.2.13 and Eq. 2.2.14 can be transformed to match the rotation of the magnetic

pickup around the string. This transformation of the y and z arguments is comprised of two

rotation matrices and a translation matrix. This leads to the rotation definition,

Definition 1. First let the y − z plane be such that the pickup coil’s bottom is coincident

with the horizontal y-axis (this assumption is only made for the rotation of the magnetic

field, while considering the monochord in practice takes the origin of the y − z plane to be

intersected by the string along the x-axis). Let y and z be coordinates of the y−z plane which

make up and is equivalent to the vector, [y z]T . Let θ be some angle of rotation about the

point, (0, (ds + dc)), denoting the position of a magnetic pickup around a monochord string,

such that, ds is the distance of the magnetic pickup’s inward facing pole to the string, hm

is the length of the magnet, and cb is the depth of the bobbin cavity that holds the magnet

in place in the pickup bobbin, and dc = (hm − cb) is distance from the bottom of the pickup

coil to the string-facing magnet pole face. Let ϕ be the angle between [y z]T and the positive

y-axis.

Then,

Rmag

(y, z) ≡

y
z

 , θ
 ≡ (yi,j, zi,j) ≡

yi
zi


j

,

such that,
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Rmag

(y, z) ≡

y
z

 , θ


=cosψi,j − sinψi,j

sinψi,j cosψi,j

 ·

cos(−ϕi) − sin(−ϕi)

sin(−ϕi) cos(−ϕi)

 ·

y
z

+

 (ds + dc) cos θj

(ds + dc) sin θj + (ds + dc)

 ,
where

j =



1 θ ∈ [0, π
2
)

2 θ ∈ [π
2
, π)

3 θ ∈ [π, 3π
2
)

4 θ ∈ [3π
2
, 2π)

, θ = θj , (sgn(y) = 1) ⇒ i =



1 sgn(y) = sgn(z) = 1

2 sgn(y) = −1 ∧ sgn(z) = 1

3 sgn(y) = sgn(z) = −1

4 sgn(y) = 1 ∧ sgn(z) = −1

,

(sgn(y) = −1) ⇒ i =



1 sgn(−y) = sgn(z) = 1

2 sgn(−y) = −1 ∧ sgn(z) = 1

3 sgn(−y) = sgn(z) = −1

4 sgn(−y) = 1 ∧ sgn(z) = −1

,

ϕi =
iπ

2
− tan−1

(
yimod2
i · z(i+1)mod2

i

y
(i+1)mod2
i · z(i)mod2

i

)
, and ψi,j = θj + ϕi +

π

2
.

A proof is not provided for this definition but rather a demonstration. The index, j,

refers to what quadrant the magnetic pickup is rotated to about the new origin point, the

center of a cross-section of the string. This is why θ = θj for computational and definitional

purposes. The z-axis remains the same, though the new y-axis, the y1-axis, has moved up
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(ds + dc). Thus, j indexes through the new quadrants of these axes.

The index, i, refers to what the original quadrant [y z]T lies in with respect to the original

axes, the z-axis and y0-axis, and original origin. Assigning an original quadrant index, i,

for a pair of coordinates or [y z]T in question depends on the sign of each coordinate. The

sgn(x) function for y and z was used to define the index i for [y z]T . Though if y were

negative, sgn(−y) was used instead.

ϕi defines the angle between [y z]T and the positive y0-axis. It was defined in such a

way that it is general to a vector of any quadrant with the use of basic trigonometry, the

modulo function, and the quadrant index, i, derived from the vector’s respective coordinate

signs. The first rotation matrix of Rmag rotates [y z]T clockwise back such that the vector is

collinear with the positive y0-axis. It can be said that [y z]T “collapses” into said axis. This

allows one to think of the rotation of the axes instead of the rotation of y and z coordinates.

The rotation of these axes will depend on θj.

To correctly rotate [y z]T back to its original position relative to the θj-dependent

rotated axes, called zθ and yθ, requires an expression that incorporates both θj and ϕi. Here

it is beneficial to visualize the rotated axes, zθ and yθ, and a rotated [y z]T such that a

translation has already taken place such that the origin of the zθ and yθ axes lies along a

circle which is centered at (0, (ds + dc)), of radius, (ds + dc), where the positive zθ-axis faces

inward of said circle, passing through its center. Of course, this image prematurely describes

the translation matrix’s function, but this is only part of better demonstrating how Rmag

can be derived. With this visualization in mind, also visualize that the original axes, z0 and

y0, have been translated such that its origin is coincident with the origin of the rotated axes.

The zθ-axis runs through two parallel axes, the y1-axis that passes through (0, (ds+dc)) and

the superimposed original positive y0-axis. Thus, there is a corresponding angle between

the y1-axis and the superimposed y0-axis, θj. The positive y1-axis is considered because it

is from that axis that θj is defined. The magnetic pickup rotates θj around the string at

(0, (ds + dc)) in the y − z plane.
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Suppose there is an arbitrary θj, θa, and arbitrary ϕi, ϕa, corresponding to an arbitrary

vector to be rotated, [y z]Ta . As the original axes were translated and rotated to yθ and

zθ, the collapsed vector, [y z]T , is also rotated by θa. Here, it will be shown how to

“uncollapse” [y z]Ta for rotated axes, yθ and zθ. The first observation is that from the

superimposed positive y0-axis, the rotated collapsed vector, [y z]Ta , can rotate θa radians

counter-clockwise, making it co-linear with the negative zθ-axis. The second observation is

that this arbitrary vector can rotate π
2
radians counter-clockwise from the negative zθ-axis to

the positive yθ-axis. [y z]Ta is now in the same position as the original collapsed [y z]T vector

by analogy, given either vector collapses to the yθ-axis and y0-axis respectively. The third and

final observation is that [y z]Ta can rotate an extra ϕa radians counter-clockwise, successfully

rotating the vector to its final rotational position before translation (notwithstanding the

use of translation for purely visualization purposes).

Thus, after rotating the original axes by θj counter-clockwise, centered at (0, (ds+dc)), the

original [y z]Ti , after being collapsed into the positive y0-axis, can be rotated ψi,j = θj+ϕi+
π
2

radians, such that it returns to its intended position, which is by analogy, the same as it

was in relation to the original axes. After this, a simple translation matrix based on the

rectangular-to-polar coordinate formula can be applied to the rotated coordinates or vector

such that the new origin is (0, (ds + dc)), where the string passes through, but the origin

of the newly rotated and translated (y, z) vector is always located at the polar coordinates,

((ds + dc), θj), all of which lie along the circumference of a circle.

These two rotations and translation are in effect a radially symmetric transformation.

Consider an arbitrary vector field, [y z]T , with its axes being the z0-axis and the y0-axis.

The transformation rotates and translates the field in such a way that if one were to rotate

their view of the original field about the center, (0, (ds + dc)), the transformed field would

be indistinguishable from the field in the original position in the original view.

Since it is now possible to rotate the (y, z) coordinates, the y and z arguments of the

magnetic field components, equations 2.2.13 and 2.2.14, can be rotated. This in turn means
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rotation of the magnetic pickup for the experiment can be analytically described. Thus, the

rotatable magnetic field component equations are defined as,

Byj(yi,j, zi,j, t) = 2B0ξ
(yi,j − ys)(zi,j − zs)

((yi,j − ys)2 + (zi,j − zs)2)2
, (2.3.1)

and

Bzj(yi,j, zi,j, t) = B0

(
1 + ξ

(zi,j − zs)
2 − (yi,j − ys)

2

((yi,j − ys)2 + (zi,j − zs)2)2

)
. (2.3.2)

With the transformation matrix defined in Def. 1, the components of the magnetic field

of the pickup, Eq. 2.2.13 and Eq. 2.2.14, can be rotated in accordance with the possible

rotations of the magnetic pickup for this work’s experiment. Those components being rotated

about the string result in Eq. 2.3.1 and Eq. 2.3.2. These equations can thus be substituted

into Eq. 2.2.11. This in turn provides governing bowed string equations whose solutions

are independent variables of Faraday’s Law of Induction, such that the associated magnetic

field components of Faraday’s Law and of the magnetic pickup can be rotated in conjunction

with the possible rotations of the magnetic pickup about a bowed string.

So far in this section, a system of partial differential equations has been derived to ade-

quately describe the transverse string displacements of the monochord as it is continuously

excited by a bow. An extension of Faraday’s Law of Induction has been derived such that

one can observe the voltage over time and derive magnetic flux density over time with a

reduction of Faraday’s Law based on some simple assumptions. The solutions of the bowed

string equations were also shown to be independent variables of Faraday’s Law of Induction

as well. And, a vector or coordinate transform for rotating the components of the magnetic

pickup’s magnetic field has been derived in order to correctly represent the magnetic field of

the pickup as it is rotated around the monochord. With all these derivations, there is now

a set of equations that can adequately describe the bowed string-magnetic pickup system

dynamics and behaviors.
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2.4 Proposal to Account for Vertical String Oscillation

Damping in Governing Bowed String Equations

Concerning accounting for extra damping of the vertical transverse string displacement by

the bow, Eq. 2.1.14 would be the equation affected. Under the assumption that a string can

vibrate in two transverse planes, horizontal and vertical, it is evident that with the presence

of a bow as a continuous excitation force through the friction of the stick-slip regime at the

bow-string interface, the bow’s hairs would pose a spatial interference to the string as it

oscillates vertically. Note that the main driver of sounds to be produced in a bowed string

will be from the horizontal transverse string oscillations. Suppose for a bow stroke, sound

is produced. This would imply that there is a constant or arbitrarily quasi-continuous bow-

string interface such that the stick-slip regime occurs as long as the bow stroke is sustained.

This in turn would imply that as the string oscillates vertically, the bow hair must stay in

contact. This would mean, assuming the vertical oscillations are ideally periodic, for any

whole period, the downward bow force dampens the wave as it travels vertically up and it

either strengthens or makes negligible contributions to wave amplitude as the wave travels

vertically down. Because the vertical string displacement is a waveform, one can think the

bow hair dampens specifically the amplitude of the wave and specifically the amplitudes

of the present modes. Overall, this heavy damping can imply increased energy loss in the

vertical string oscillations, reducing overall amplitude. For a bowed string excited by a violin

bow, all governing equations would incorporate both transverse string motions, longitudinal

string motion, torsional string motion, both transverse bow hair motions, and longitudinal

bow hair motion [28]. Many of these can be treated as uncoupled as was done for Eq.

2.1.13 and Eq. 2.1.14 from the other motions, though those two are treated as coupled.

But, for vertical transverse bow hair motion and vertical transverse string motion, coupling

would also occur, potentially, through the dampening of the string motion by the bow hair

motion. This would introduce a third governing equation. For this work, it is uncertain if
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this reduction in energy and wave amplitude should be derived from a damping factor as a

function of bow hair motion or be derived from an external force as a function of bow hair

motion which contributes to the vertical bowed string equation’s sum of forces. It is possible

that with the presence of the downward bow force term of Eq. 2.1.14, this damping effect

is accounted for such that as the string displaces in the positive z-direction, the force term

in the negative z-direction deamplifies the displacement. One may consider the bow hair’s

deflection due to this downward bow force and positive vertical string displacement as well,

but this is outside the scope of this work. It should also be noted that through coupling of

both transverse string displacements for a bowed string, energy from horizontal oscillations

can be transferred to vertical oscillations. The expected presence of low amplitude vertical

string oscillations for a bowed string would receive energy in this way, but the main source of

these oscillations comes from the transverse displacement of the string by the bow. So, it is

more likely that vertical string oscillations are not small because of low energy transfer from

horizontal string oscillations, but because of some dampening effect by bow interference.

As the results of the experiment are given throughout Sec. 6 and Sec. 7, various differ-

ent results will be shown that indicate significant dampening of vertical string oscillations.

These results can be taken as evidence for the need of an update of governing bowed string

equations for vertical string oscillations. This is particularly important to the development

of a magnetic pickup for a bowed string, given that a magnetic pickup is directionally de-

pendent with respect to voltage generation. This specifically will be demonstrated in the

results section. As for further research, modeling of bowed string motion with vertical string

oscillation dampening is a potential future area of study. It can contribute to more accuracy

in sound synthesis, modeling, and modeling for a bowed string-magnetic pickup system as

well.
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Chapter 3

Parameters and Dimensions of

Experiment

This chapter defines and discusses the various experiment components used in the exper-

iment. The discussion of each can vary from elaborating on parameters, dimensions, con-

struction, and determining certain parameters.

3.1 Bow and String Parameters

An Ernie Ball guitar D string was used for the monochord. The string core is tin plated high

carbon steel, wounded by a tin plated nickel winding. Considering nickel is ferromagnetic

and this brand of guitar string is marketed for electric guitar use, the string can be used with

the magnetic pickup for the experiment. The string is rated at 26 gauge, where “gauge” in

guitar parlance refers to “part per thousandth inch.” So, a 26 gauge string should have a

string diameter of 0.026 in. or 0.6604 mm. Upon measuring the diameter at multiple string

locations it is instead approximately 24 gauge. So, the string diameter is,

Ds = 0.6096 mm. (3.1.1)
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For the experiment, the string was tuned to 196 Hz, G3 ,which is the fundamental frequency

for the G string of a violin.

The bow has the following dimensions. The bow hair has an average width of 8 mm and

the length of the bow hair is 650 mm. The bow’s axis is positioned at approximately 64 mm

from the bridge end point of the monochord. This places the bow contact in a range of 60

mm to 72 mm from the bridge end point. This position for a violin bow can be called sul

tasto, meaning “on the touch [of the fingerboard].” For the purposes of designing a magnetic

pickup for a violin, both the bow and the magnetic pickup have to share the distance between

the violin bridge and end of the fingerboard, which is approximately 55 mm. For the purpose

of this work, allowing the magnetic pickup to be in the most probable x position along the

string was deemed more important, allowing for some deviation in typical bowing location

along the string.

Temperature can affect the tension of the bow hair of the bow and the tension of the

monochord, but this was not taken into consideration given the data was collected in one ses-

sion. The experiment displayed high efficiency in repeatability. Based on how the monochord

was initially tuned with a tuner, results showed no significant effects from temperature when

comparing results from each magnetic pickup position. The influence of how much rosin

was present on the string and on the bow hair was not taken into consideration because

the ability to do so was outside the capabilities and scope of this work. It is true that the

amount of rosin on the bow and on the string will be inconsistent between experiment rep-

etitions. Though, many expected results were observed despite the potential varying effects

from temperature and rosin.

3.2 Measurement Position Piece Design

The root of the experiment concerns measurements from ideal radially symmetric, string-

centric pickup positions. These measurements will be made in conjunction with the mea-
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surements of string displacement in two transverse directions. For both measurement types

to be made, a 3D printed PLA (Polylactic Acid) measurement tool holder was designed

such that the magnetic pickup could take 8 radially symmetric positions around the string,

where its inward facing pole would always be 2 mm away from said string. The same design

was used for mounting the horizontal and vertical optical switches for string displacement

measurements. The measurement tool holder can be called a position piece for brevity. The

position piece for the pickup was placed along the string axis (x-axis), near the bridge (string

end point) so that the pickup might be at a more realistic string position, reminiscent of

traditional electric guitar pickup positions: between the end of the fretboard (fingerboard)

and the tailpiece (bridge). This is out of spatial necessity to better approximate possible lo-

cations of a magnetic pickup for a violin. The magnetic pickup would need to be sufficiently

close to the strings to work efficiently. A majority of the fingerboard of a violin must be

available to the player for playing. Therefore, the only place that a magnetic pickup could

potentially be situated at is between the bridge and fingerboard. Another position piece for

the optical switches (which capture a voltage related to string displacement) was placed near

the nut side (string end point) of the monochord. This was done to allow the switches to

read significantly smaller string displacements.

3.3 Monochord Design

The monochord was designed in such a way to provide a controlled environment to test

a magnetic pickup at various rotational positions along with measurements from optical

switches to capture string displacement. With a traditional violin, the autonomy of the

experiment would be more limited due to spatial restrictions and complexities of the system

that otherwise fall outside the scope of this thesis. With ample room around the string,

measurement tools can be placed in more complex positions. One of the main purposes of

this thesis is to set the groundwork for the development of a magnetic pickup for a violin,
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but only at that latter stage of development should physical limitations of the violin be

accounted for.

For the materials, the monochord was made up of aluminum for the bridge and nut, the

two rigid end points, and particle wood boards of two thicknesses, 12.7 mm and 19.05 mm,

where the particle board of the first thickness was only used to allow for more exposure and

clearance of tuners pegs.

Like for most full size violins, the distance between the two endpoints is L = 330 mm.

The height of the string relative to the monochord frame is circumstantial to the parts

necessary for measurement. The angles at which the string is tensioned at the guitar tuners,

beyond both endpoints, is approximately 73◦ which is within the angular range that violin

luthiers tension the string behind the bridge to the tailpiece.

In order to preserve radial symmetry for the magnetic pickup’s coil and pole distance

from the string, the relative difference in height of the bridge and nut were of an order of

magnitude, 0.01 mm. This is important for when the magnetic pickup is in any diagonal or

vertical rotational position, given those positions have a vertical position component relative

to the string. But, it should also be noted that because of the position of the measurement

position piece for the magnetic pickup is so close to the bridge boundary condition, vertical

and diagonal displacement between each position should already be negligible when the

string is at rest with no load. But, this precaution was still taken. Horizontal symmetry

was also an issue. Measurements from diagonal and horizontal pickup positions could be

artificially influenced by bias initial string position. Certain monochord dimensions were

calibrated with a “G” (196 Hz) violin string (though the experiment used a guitar string

with high ferromagnetic content, but at the same fundamental frequency).

To account for minimal relative displacement of string segments in the y-direction, the

probe of a Haas CNC (Computer Numerical Control) mill was used to check the y-component

of the positions of string segments relative to the mill’s own origin. Imagine facing the

monochord with the bridge in front and the string extending away. With this orientation in
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mind, one can say that for either the bridge or nut, relative displacement to the left of the

endpoint would be visually to the left and the same reasoning applies to relative displacement

to the right. The relative displacement between the bridge and nut was approximately 0.63

mm with the nut being slightly left-favoring. From the middle of the string to the bridge and

nut respectively, the displacements were approximately 0.42 mm and 1.05 mm, where the

middle of the string was displaced to the left relative to both endpoints. But due to string

tension, particularly for a string with a lower fundamental frequency when excited, larger

relative displacement between the middle of the string and at its endpoints is expected. The

relative displacement between the bridge and the pickup was approximately 0.23 mm to the

left of the bridge, where the distance of the pickup’s magnet axis away from the bridge being

approximately 43.45 mm. So there was negligible displacement in the y-directions. For the

pickup, radial symmetry of position relative to the string is preserved within a small error

margin for displacement. Calibration for the optical switches in relation to the nut was also

taken, but their positions will remain static for all iterations.

Holes in the base of the monochord were drilled to help accurately place the position pieces

near both endpoints. The idea is to position the measurement tools, the magnetic pickup

and both optical switches perpendicular to the string. Mentioned before was the method of

string tensioning. Two guitar tuners were used, with the bridge side tuner holding the string

in place by the string ball and the nut side tuner acting as the tensioner.

All the designs and key dimensions were initially designed using CAD (Computer Aided

Design), specifically in SolidWorks. And finally, the monochord is fastened to a lab jack

lift, which allows it to be moved vertically to meet the bow height. This allows for ease

of calibration when finding a suitable downward bow force onto the string. Instead of a

violinist pressing down on the bow onto the string with more force, a weight on the bow

tip along with an appropriate string height achieves a similar result. A 0.071 kg weight

was attached to the tip of the bow. Due to this form of applying downward bow force,

there is potential for vertical oscillations of the bow to influence the forces, acting as a
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cantilever beam. This calibration seeks to find the most amplified signal for each experiment

iteration and a typical frequency distribution of a bowed instrument. Calibration of the

monochord height in relation to the bow’s vertical height can be attained through use of the

oscilloscope. Voltage output over time and frequency distribution can be readily viewed on

the oscilloscope to make quick, incremental changes in monochord height. Once a favorable

or expected voltage output and frequency spectrum is arrived at, the height will remain

constant for all iterations. Note that “favorable” and “expected” do not affect the results of

each experiment iteration when compared relatively. Bow stroke parameters and monochord

height will remain constant throughout.

3.4 Magnetic Pickup Design

The magnetic pickup design was inspired by the classic single-coil magnetic pickup design

seen in many electric guitars. It features a 3-D printed PLA (Polylactic Acid) bobbin with

an extruded key for placing the pickup in specific rotational, string-centric positions. The

magnetic used is an AlNiCo-V magnet with a diameter of 5 mm and length of 18 mm. For

the construction of the coil, 42 AWG copper wire was used. Assembling the magnet and

bobbin together, the pickup could then be wound.

Using a simple winding method with a power drill, pickup wounding can be achieved

quickly, but at a cost. The number of revolutions in the coil is initially unknown when using

this method. But, an approximation can be made. Suppose there is a general magnetic

pickup whose dimensions are all in millimeters. It has a cylindrical magnet of radius, r1,

and the outer annular radius at the outside of the entire coil is r2, such that the magnet and

coil are concentric. The actual coil is essentially an annular cylinder with r1 as the inner

radius and r2 as the outer radius, where the copper wire is located in between both radii and

vertically within the height to be defined. The entire coil varies radially as well, as mentioned

in Sec. 2.2. The height of the coil is hc. For a copper wire of arbitrary size, the diameter is
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Dw. Two observations can be made. To determine the number of revolutions in the coil, it

has to be related to the dimensions defined. The first observation for one side of a maximum

cross-section of the pickup, is that a single layer of copper wire must be bounded by radii,

r1 and r2, and that within these bounds, a single revolution of wire occupies a distance, Dw.

With this, there is a relation between radii and revolutions for a single layer of copper wire

in the coil. This relation is defined as,

Dw · rev
lyr

= (r2 − r1). (3.4.1)

Thus the equation for revolutions per layer is,

rev

lyr
=

(r2 − r1)

Dw

. (3.4.2)

Similarly, another observation about the coil dimensions can be made. Copper wire is

bounded by the height of the coil. The available vertical space for copper wire decreases by

Dw every time an entire layer is laid. With this, there is a relation between height and layers

of copper wire in the coil. This relation is defined as,

Dw · lyr = hc. (3.4.3)

Therefore, the equation for number of layers of copper wire is,

lyr =
hc
Dw

. (3.4.4)

Using relations 3.4.3 and 3.4.4, we have an equation for the approximate number of revolu-
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Figure 3.1: Pickup Coil Diagram

tions in a coil,

rev =
rev

lyr
· lyr

⇔

rev =
hc(r2 − r1)

D2
w

.

(3.4.5)

Figure 3.1 shows a diagram of the magnetic pickup and how equations 3.4.2 and 3.4.1

are represented physically. For this thesis, the magnetic pickup dimensions are defined as,

r1 = 2.5 mm, r2 = 5.74 mm, hc = 11 mm, and Dw = 0.0633 mm for 42 AWG copper wire.

This gives an approximate number of revolutions in the magnetic pickup’s coil,

Nc = 8, 894. (3.4.6)

Typical commercially magnetic pickups feature coils with upwards of 8,000 revolutions,

which will provide a higher voltage output. In this thesis and experiment, it is beneficial

to have more revolutions due to the smaller coil surface area of a single pole pickup in

comparison to the much larger coil surface area in a standard 6-pole pickup for a guitar. It

should be noted that it is important to this thesis to attempt to get signals from all positions,
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given some will inherently output weaker ones.

3.5 Optical Switches and Fixtures

To secure the optical switches in both the horizontal and vertical positions, 3D printed

frames were designed. These frames were based off the dimensions of Optek’s OPB380T11Z

optical switches. Both frames were held in place by a position piece. This piece holds the

optical switches instead of the pickup, where only the π
2
and π positions of the position piece

were used. Both switches were situated near the nut, the other boundary condition. The

horizontally positioned optical switch was 281 mm (0.852
L

) from the bridge. The vertically

positioned optical switch was 286.4 mm (0.868
L

) from the bridge.

Each optical switch is rated for 5 volts of power. Both switches were powered by the

same 11.1 V Zeee 2200 mAh lithium polymer battery which was used in conjunction with a

Drok Step Down Voltage Regulator Module to convert the 11.1 V down to 5 V. The battery

was then wired to a breadboard in which both optical switches can receive 5 V. Following

the wiring diagram (Le Carrou et al.’s Fig. 1) provided by Le Carrou et al., resistors were

required [18]. The 5 volts powered a breadboard such that each row received 5 volts in

parallel. Then, the following was done for each optical switch. Two 220 Ω resistors were

wired in series from power to the switch’s diode anode and the diode cathode was grounded.

From power, two 1000 Ω resistors were wired in parallel to the phototransistor’s collector and

the phototransistor’s emitter was also grounded. From the collector and emitter, positive

and negative leads were wired to them respectively, such that oscilloscope probes could be

properly attached. This was done for both optical switches.

3.6 Bow Stroke Mechanism Design

Repeatability of consistent bow strokes is crucial to the experiment. Maintaining no change

in bow velocity, horizontal and vertical bow forces, bow contact width, and bow position

40



on the string for each experiment iteration with distinct magnetic pickup position is very

important for ensuring no bias is felt by any iteration with respect to bowing consistency. In

this thesis, voltage output, frequency distributions, frequency distributions over time, and

magnetic flux density over time will be considered. Variability in the bow action can lead

to biases in voltage output. With Schelleng’s diagram in mind, frequency distributions can

reflect raucous, normal, or higher-mode oriented tone [32]. And magnetic flux density over

time can be artificially weighted by such inconsistencies in downward bow force and bow

velocity.

To better avoid these biases due to bow stroke, an electric motor-powered linear motion

slider was used to drive the bow. The slider comes from what is traditionally used for

constructing a 3-D printer. A sliding plate used to mount the bow and a t-rail made up the

main section of the slider. The bow stroke mechanism has a maximum stroke length of 320

mm, which will allow for sufficient bow velocity and recording time for the oscilloscope. The

motor is a 12−24 V DC motor. Fixed to the motor is an aluminum spool with a nylon string

fixed to it. The other end of this string is tied to the plate. The bow stroke mechanism acts

as a winch. The same model of battery used for the optical switches was used to power the

bow stroke mechanism motor.

The bow was secured to the moving plate using zip ties. The whole linear actuator was

elevated to an arbitrary height with a particle wood pedestal and remained constant for all

experiment repetitions. The monochord, being on a lab jack lift, could be raised or lowered

to the bow stroke mechanism’s bow height accordingly.

The speed of the bow can be measure and approximated, but because it must be constant

for all repetitions, this was not recorded. It must be noted that this quantity can be easily

recorded, though. The weight attached to the end of the bow for increased downward

force was determined heuristically and again, was chosen to be 0.071 kg. It is sufficient

to qualitatively calibrate both bow speed and bow pressure (downward force on the bow

onto the string) using a trained ear. The purpose of this calibration is to provide a realistic
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bow stroke, one that gives an expected frequency distribution of an excited bowed string,

not withstanding the variety of such a distribution. The author is an experienced violinist

of over 20 years and can calibrate the experiment’s general sound quality. This is fitting

because with this type of experience, a realistic sound can be achieved, as opposed to say a

calibration that produces only “wolf notes” which do not accurately represent the sound of a

bowed instrument. For this work specifically, there is no aim to investigate musical errors or

anomalies like that. The calibration was done in conjunction with an oscilloscope, observing

the voltage output and frequency distribution for each stroke, as previously mentioned in

Sec. 3.3. With these considerations in mind, the experiment errs on the side of higher

downward bow force with the use of the aforementioned weight and position of said weight.

On the topic of bow forces, the Schelleng diagram, produced by Schelleng, relates bow force

to bow position relative to the bridge with respect to what combinations of the two produce

what type of horizontal bowed string motion, associated horizontal string displacement, and

subjective musical concepts regarding the sound produced like “raucous,” “empty,” and

“brilliant” [32, 1]. The diagram specifies minimum and maximum limits of bow force that

delineate types of bowed string motion, string displacement, and sound type. The diagram

in general is defined for the distance along the string between the bridge and the bowing

position, which, for a violin, does not exceed too far beyond the end of the fingerboard. For

this experiment specifically, the bowing position is within the sul tasto range, mentioned

in Sec. 3.1. At this position, the range of bow force that generates Helmholtz motion, its

associated string displacement, and a “brilliant” sound, is much wider. In short, it is easier

to produce a good sound from a violin when drawing the bow near the fingerboard than near

the bridge. The Schelleng diagram will be important when discussing the results for voltage

outputs in Sec. 7.1 and magnetic flux density over time in Sec. 7.6 for the signals of the

magnetic pickup at each rotational position.

Note that the results of the magnetic pickup signals will be compared relatively to one

another and to the results of the optical switch signals. Though for some results like voltage
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output, the bow forces used will be addressed alongside considering common, expected results

detailed in Sec. 6.6.

3.7 Interference Reduction

Certain precautions were taken to ensure there was no EMF wave interference or general

ground noise interference with the magnetic pickup and the measurements from it. The

magnetic pickup was properly grounded to a small piece of steel, reducing ground noise

emanating from the pickup. The experiment was conducted in a room during the daytime

because the lights in the room emitted interfering EMF waves. In addition, cellphones were

kept sufficiently far away from the experiment and not utilized during it. The oscilloscope is

a digital type, which required plugging it into a laptop. The laptop could not be charged at

the same time during signal recording, or there would have been EMF interference. There

was some noise present in the magnetic pickup signals, but through visual inspection with no

excitation of the string for the measurement tools, comparing the real-time pickup signal to

the real-time optical switch signals without any known EMF influences, noise in either signal

channel seemed to be indistinguishable from one another. This led to the plausible conclusion

that the noise or sensitivity of the channels were inherent to the specific oscilloscope used.
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Chapter 4

Data Collection

This chapter is concerned with briefly describing how data is collected for all three mea-

surement tools, describing how an oscilloscope captures the voltage signals from these mea-

surement tools, and giving a short procedure description for how an experiment repetition

is done such that the data is collected and can be processed after collection.

4.1 Magnetic Pickup Voltage Signal

The magnet pickup acts as a data collector itself, given that its design is essentially the

musician’s application of Faraday’s Law. The voltage signal generated by change in magnetic

flux is a type of measurement of string velocity. As it was previously discussed in Sec. 2.2, the

magnetic pickup produces an electromotive force in volts that preserves key components of

the string’s mechanical vibrations, most notably, the frequency distribution of string velocity.

Using the oscilloscope to read a voltage signal over time, the signal of the magnetic pickup

can be captured.
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4.2 Horizontal and Vertical String Displacement

For measuring the string displacement in both transverse planes, horizontal and vertical,

two optical switches were used. An optical switch was chosen such that the apertures of the

switch’s LED diode and its phototransistor were smaller than the diameter of the string.

The aperture of both components were 0.254 mm and the string diameter was 0.6096 mm.

As it was mentioned in Sec. 3.5, the specific model of optical switch used was Optek’s

OPB380T11Z. Both switches have a defined optical center line where the infrared laser beam

is centered at as it travels from the diode to the phototransistor. The optical switch works

by the act of the laser hitting the phototransistor such that the phototransistor then allows a

current and voltage to pass through the circuit. As the string passes in an oscillatory fashion,

this beam is uninterrupted, interrupted, or partially interrupted in a proportional oscilla-

tory fashion, maintaining the frequency distribution information of the string’s mechanical

vibrations. These voltage outputs can be recorded by the oscilloscope and can describe a

voltage function of string displacement in either transverse plane.

It is possible to solve for transverse string displacement over time using the equation from

La Carrou et al.,

V = (Vmax − Vmin)

(
1 +

γ

2
+
γ

π
arcsin(

χ

r
) +

γχ

πr

√
1− (

χ

r
)2
)
+ VLE, (4.2.1)

where γ is the string’s opacity, r is the radius of the phototransistor, Vp is the switch’s voltage

output in a dark room with no obstructions to diode beam, VLE is the voltage output of the

switch in the lighted environment in which the switch is used, and χ is the displacement of

the string in one of two transverse directions [18].
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4.3 Magnetic Flux Density

In an effort to achieve similar results to those of other authors on magnetic flux density as

a function of vertical distance and horizontal distance across the magnet pole face at a fixed

vertical distance, a GLTL Gaussmeter was used at incremental distances, one millimeter at

a time for 30 mm. The Gaussmeter was also used to determine suitable initial conditions for

magnetic flux density over time when solving Faraday’s Law of Induction for all the magnetic

pickup signals.

4.4 Use of Digital Oscilloscope

A digital oscilloscope is used for the collection of voltage signals from the magnetic pickup

and from both optical switches. The specific model is a Hantek 1008C oscilloscope. It

features a frequency range of 0 − 250 kHz and sample rate of 2.4 MSa/s. It also provides

internal Fourier analysis and other signal processing methods.

4.5 Procedure for an Experiment Repetition of Data

Collection

The collection of data follows a clear procedure for each repetition of rotating the pickup

around the string. First, the digital oscilloscope is set to its trigger mode, where it will record

the three signals simultaneously once a respective minimum voltage “triggers” the start of

the data collection for an experiment repetition. One only needs a single channel with a

trigger function. The channel used is the one for the horizontal optical switch. The voltage

signals to record are from the magnetic pickup in a certain position, the horizontal optical

switch, and the vertical optical switch. All signals will be recorded on separate channels of

the oscilloscope. Assuming a satisfactory bow velocity and downward bow force, both of

which will remain constant for all pickup positions, are decided, the bow can be drawn. The
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bow stroke mechanism is set at its initial position and a battery supply is applied to the

linear actuator of the mechanism, initiating a bow stroke. Assuming the voltage signal of the

horizontal optical switch surpasses the minimum voltage necessary for the trigger, the data

will be recorded. Once an iteration is complete, the data can be saved as a comma-separated

values file or “.csv” file, which will later be used for post-processing and analysis via Python.
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Chapter 5

Post-Processing of Data

All the collected data was converted to “.csv” files which can be processed in Python. The

data collected from the pickup and both optical switches can be better understood with

post-processing, which produces the intended result types. Each repetition of the experiment

refers to the position of the magnetic pickup around the string. An experiment repetition

corresponds to the position of the pickup as it is rotated around the string. For this exper-

iment, an arbitrary position is (k − 1)π
4
for some experiment repetition, k ∈ [1, 8] | k ∈ N.

With the repetition number in mind, one can speak clearly of the results of each experiment

repetition.

Each of these result types are for an experiment repetition, k. The maximum absolute

voltage over time for vk(t) is vmax
k . The average voltage of absolute local extrema voltage

over time for vk(t) is v
avg
k . Both frequency spectrum results and spectrogram results will be

treated differently, while this section clearly defines what results match which repetitions.

And finally, magnetic flux density over time is denoted as Bk(t). These quantities are defined

in order to provide formal distinctions between result types and results. Though, most results

are represented in figures.
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5.1 Maximum Voltage

One of the key goals of this thesis is to show the advantages and disadvantages of a magnetic

pickup’s rotational position. With respect to signal strength, this work considers the maxi-

mum voltage output of the magnetic pickup. For a viable pickup design, it must be able to

convert and relate mechanical vibrations of a string into a large enough voltage signal for the

purpose of amplification. A weak signal is not beneficial to the musician. A weak signal can

also imply a loss in amplitude of otherwise amplified modes. In Sec. 6.6, details on typical

voltage outputs will be discussed.

Consider an experiment repetition, k. The pickup sends an alternating current which

means voltage over time, vk(t), can oscillate from positive to negative and vice versa. To

consider the maximum voltage output, an absolute value is applied. This results in an

expression for maximum voltage for vk(t),

max( |vk(t)| ) = vmax
k . (5.1.1)

Using Python and the Python package, NumPy, maximum voltage can be calculated using

the NumPy functions for absolute value and maximum value respectively, numpy.abs() and

numpy.max().

5.2 Average Voltage

Much like maximum voltage, this work aims to see how a magnetic pickup in a specific

position performs with respect to average voltage of a signal. An effective way of deter-

mining average voltage is to first apply an absolute value to vk(t) for some experiment

repetition, k. With |vk(t)|, the local maxima, over a specified range, of the absolute volt-

age over time can be determined using a signal processing function provided by SciPy,

scipy.signal.argrelextrema(). Aside from the data provided, this function can take
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other arguments into consideration. There are comparator and order arguments which allow

first, the function to compare two data points and second, how many points on each side are

to be compared before resulting in a maximum. The comparator used was numpy.greater()

and the order was the length of vk(t), vk, floor divided by 100. The signals of the main ex-

periment repetitions were 0.5 seconds long, discretized around 1000 samples. This, of course,

would alter the coming average value, but determining a reasonable choice for an order argu-

ment is possible. Once the values of the local maxima are determined, this particular average

can be taken. Since this work uses Python for the post-processing, the numpy.average()

works for this. With these considerations, the average voltage of local maxima of absolute

voltage over time can be defined as,

vavgk . (5.2.1)

5.3 Fast Fourier Transform Analysis

For the purposes of this work and particular processing of specific data’s tonal quality, or

“timbre”, is considered. Timbre is the subjective interpretation or experience of sound by

a person. This is an sub-area of study under “psychoacoustics” which relates mechanical

vibrations felt by the human ear and the perception of these sounds by the brain. Timbre

is an expression of why an “A4” played by a violin, guitar, or trumpet may be in tune

with what is traditional considered “A” but still have a certain unique character to each

instrument as the note is played. In short any two instruments can play the same note but

still sound distinct from one another. Mathematically, a considerable portion of timbre of

an instrument is determined by the frequency distribution of the vibrations produced.

For results from frequency analysis, the reader should be cognizant of this. Many in-

struments today are the results of meticulous research and heuristics for their designs. In-

struments were not only designed to acoustically amplify but to also produce favorable tonal

character to said instruments. For this thesis, the “instrument” in consideration is the mono-
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chord, materially comprised of particle fiber wood, aluminum, and a ferromagnetic nickel

and steel string. It is designed to be simple enough to conduct measurements for a simple

bowed string as opposed to a complex instrument like a violin. The results from the exper-

iment will inform the more complex string systems that fundamentally stem from a simple

one like the monochord. With that said, the monochord is not designed to optimize tonal

quality, for it is not a musical instrument. For a high quality violin designed to produce

beautiful sounds, a typical frequency spectrum for a single sustained note would feature the

fundamental frequency having the largest amplitude among the following harmonics. The

presence of the harmonics may vary in amplitude, but a more brilliant sound would feature

high amplitudes for higher harmonics. This is an example of the sort of accessible subjective

descriptions of sound that have an objective source in the physics of the sound.

For the monochord’s frequency analysis results, there is the potential for “unideal”

frequency spectra simply due to the simple, nonmusical construction of the monochord.

Though, the string used is designed specifically for playing music. A common instrument,

say a violin, has a body, material, and geometry that allows for the expression and amplifi-

cation of certain modes. Supposing a magnetic pickup were fixed to said violin, these modes

would feedback into the modes present in the string vibration, which would then be cap-

tured in the corresponding frequency spectrum of good tonal quality. Or if the monochord

of this experiment were to have an exceptional well crafted string, one would see a frequency

spectrum of good tonal quality. Note that in Sec. 7.2, tonal theory will be addressed more

in depth.

As it has been mentioned before, bow force is also a contributing factor to frequency

distribution in a signal. This of course opens the door to future investigation into applying

magnetic pickups to an actual bowed instrument and seeing if frequency spectra are captured

by the pickup are similar to those of a piezoelectric pickup or microphone.

For the experiment results and comparing certain results to previous studies, certain

signal processing functions were used and different parameters for signal processing were
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derived. The sample rate for a signal was determined by dividing the size of the signal

array by the length of time elapsed. Thus, the sampling interval was the inverse of the

sample rate. The specific fast Fourier transform function used was numpy.fft.fft() and

the frequency discretization was determined with numpy.fft.fftfreq(). From there, the

frequency spectra of the experiment’s collected data could be retrieved.

5.4 Short-Time Fourier Transform: Spectrograms

For deriving spectrograms for all the experiment signal data, the short-time Fourier transform

(STFT) was applied. To apply the STFT transform specifically for the data collected, SciPy’s

function scipy.signal.spectrogram() was used. The number of samples per time segment

to apply the Fourier transform was the length of the signal array floor divided by 5. And the

amount of overlap between segments was defined to be the length of the signal array floor

divided by 10.

5.5 Magnetic Flux Density over Time

Per Sec. 2.2, Faraday’s Law of Induction can be extended such that the magnitude of

magnetic field over time can be solved for. For some experiment repetition, k, using the

derived Faraday’s Law equation, Eq. 2.2.8, for a voltage, vk(t), magnetic flux density over

time can be approximated with,

Bk(t) ≈
−n(∑n

i=1NciScicos(α
i
n
)
)
k

∫ tf

0

vk(t)dt, (5.5.1)

such that tf is the length of time the signal spans. This is much more difficult to

solve analytically due to the complexity of the signal produced. If one also considers the

presence of nonlinearities in the signal due to the nature of a magnetic pickup, an ana-

lytical approach may either be impossible or would require more effort to solve analyti-
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cally. A solver will be used instead to approximate a solution. SciPy’s solver function,

scipy.integrate.solve ivp() was used. To calculate Eq. 5.5.1 using the solver, (Bi(t))k

is solved for with,

−1(
NciScicos

(
α i

n

))
k

∫ tf

0

vk(t)dt, (5.5.2)

for α = π
3
. The total angle to discretize over was decided by evaluating the periodicity

of sample signals. As it will be shown in Sec. 6.4, experiment repetitions exhibit periodicity

in their horizontal optical switch signals. If magnetic flux density over time depends on the

displacement of the string, particularly its horizontal transverse displacement, it is possible

to expect periodicity in magnetic flux density over time. This was observed as different

total angles were checked. α = π
3
was chosen given it returned a waveform for magnetic flux

density that was most periodic.

But, to approximate Bk(t), Eq. 5.5.1 must be iterated n times, where all iterations are

summed and scaled by 1
n
. The number of annuli of equal area, n, was determined by not

only the presence of periodicity in magnetic flux over time but also the range of the outputs.

Based on the expected range of magnetic flux density for the specific magnet used, as detailed

in Sec. 6.6, n was chosen to be 100 because it gave realistic magnetic flux density values

while maintaining a sense of periodicity.

With an α and n chosen, Eq. 5.5.1 can be iterated with the solver such that,

Bk(t) ≈
1

n

n∑
i=1

(Bi(t))k (5.5.3)

for α = π
3
and n = 100 in conjunction with Eq. 5.5.2. Once the solver was executed n

times, Eq. 5.5.3 can be calculated. But, when solving a differential equation, an initial

condition is required. Consider the initial instance of time for an experiment iteration, k,

t = 0. Then an initial condition for Bk(t) at t = 0, tk, is recorded before the kth repetition

begins. The approximation of Faraday’s Law and modeling of the magnetic field does not
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incorporate unique initial conditions based on the annulus position. This is something that

could be improved in the future. As discussed previously, a Gaussmeter can be used to

capture the initial condition for magnetic flux density over time. Sec. 7.6 discusses how the

initial conditions for experiment repetitions were recorded. As it will be addressed later in

Sec. 7.1, the initial conditions for magnetic flux density are not equal, given the influence of

the downward bow force on the equilibrium of the string at rest.
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Chapter 6

Comparison with Previous Studies

The purpose of this chapter is to demonstrate that various measurement and post-processing

methods used in this work’s experiment can generate results that are fundamentally similar

to results in the literature, demonstrating that they are of the same family. Material or

physical differences of the experimental set-up prevent exact replication of these results.

By doing this, confidence can be given to the experiment, including its construction and

methods. This section will aid in demonstrating the reliability of the measurement tools

used and various post-processing techniques. There are various results from previous studies

on magnetic flux density and frequency distributions which can be replicated within the

limits of available materials like types of magnets, strings of various gauges and tunings, and

optical switch capabilities.

Specifically, this section covers construction of the monochord briefly, magnetic flux den-

sity as a function of vertical distance over the pickup and of horizontal distance along the

centerline of the pickup at a fixed height, capturing accurate frequency spectra of a bowed

string, wave polarization types for a bowed and plucked string, and some of the commonly

expected results for voltage output, magnetic flux density, and frequency distributions.
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6.1 Construction of Monochord

The monochord design takes inspiration from Schelleng and Ricca [32, 28]. From Schelleng’s

construction, the use of a tuning peg and rigid end points for the bridge and nut were used

in the construction of this monochord. Instead of using a traditional violin tailpiece or a

new fixture, another tuning peg was used to hold the string in place. All of these features

can be seen in Fig. 6.3. Schelleng used a magnet to generate an electrical current in the

string to then measure string displacement and string velocity. This magnet could be moved

axially along the string to place the magnet at different string nodes. The experiment of

this work moves the magnetic pickup rotationally around the string in a fixed x-position to

simulate the physical restraints imposed by a violin. It cannot be reliably placed under or

through the fingerboard without sacrificing playability at those fingerboard sections. But

this monochord uses the magnetic pickup to measure string velocity and optical switches to

measure string displacement. These measurement tools can be seen in Fig. 6.1, which shows

the experiment apparatus in its entirety.

The monochord construction is also similar to the one Ricca’s work, particularly Fig.

2.7, [28]. The terminating bridges are the bridge and nut. Ricca uses diagonally placed

photodectors, or optical switches, (forming an “X” pattern with the bottom of the pattern

directed at the bottom of the monochord) for string displacement measurement. For this

monochord, optical switches are positioned horizontally and vertically near the nut boundary

condition. Calibration of the switches followed the procedure detailed by La Carrou, which

was compared to how Jiolat calibrated an optical switch for a string instrument, using the

same calibration technique [18, 13].

The whole experiment without the electronics is shown in Fig. 6.2. The bow stroke

mechanism was designed independently, but with the goal of creating a repeatably consistent

bow stroke for one whole experiment iteration. This is shown by itself in Fig. 6.4. An old

design for a programmable bowing machine, MUMS, can be found in Cronhjort, where bow

velocity and downward bow force can be inputted [5]. Future research into the behaviors of
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Figure 6.1: All experiment components.

Figure 6.2: Monochord and bow stroke mechanism.

Figure 6.3: Monochord

a bowed string-magnetic pickup system can be done by varying bow velocity and downward

bow force. A potential modern bow stroke machine of this sort would be to modify a belt-

driven linear actuator used for a 3-D printer extruder. Bowing velocity in either bowing

direction, “up bow” or “down bow”, can be programmed in Arduino. Downward bow force

would require a wider carrier plate which can mount a motor to actuate a cantilever beam

upward and against the bottom of the bow’s frog (the end where the player holds the bow.
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Figure 6.4: Bow stroke mechanism.

It is a few centimeters behind the usual point of downward load application to the bow),

following the design of the MUMS. This too can be programmed through Arduino. It is

possible to apply a variable velocity and a variable force which is natural of much violin

playing.

6.2 Magnetic Flux Density as Function of Distances

It is the magnetic pickup that gave rise to the electric guitar. Its construction will partially

dictate its outputs in voltage, magnetic flux density, and frequency distribution. A critical

component is the magnet itself, which magnetizes the string such that its mechanical vibra-

tions in turn oscillate the magnetic field to generate a voltage output. The basic fabrication

of a magnetic pickup is a straight forward process. Its different components and materials

contribute to the solving of Faraday’s Law of Induction for the purpose of deriving magnetic

flux density over time. Most notable of these components are: magnetic pole face and coil

surface areas, wire gauge, magnet length, and number of coil revolutions. Specifically, for

the magnet material and dimensions, magnetic flux density in either Gauss or Tesla can

be measured as a function of vertical or horizontal distance in relation to a magnet pole.

Achieving results for these sorts of magnetic flux density functions, similar to those of other

authors, proves to be beneficial in justifying the magnetic pickup as a reliable translator of

a bowed string’s wave information.

Looking to Norton’s and Moore’s results, Fig. 6 and Fig. 7, similar results have been
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developed [23]. Fig. 6.5 shows magnetic flux density as a function of vertical distance of a

Gaussmeter probe from the magnet pole face, where the Gaussmeter probe is centered on

the pole face. Given the difference in magnet materials, magnet dimensions, and points of

measurement, the results of Fig. 6.5 are different from Norton’s and Moore’s Fig. 6, but both

figures reveal that the experimental data are of the same family, resembling 1
x
for x ∈ (0, L]

for some distance, L cm [23]. Note that does not imply this is the actual family of curves

they exist in. Both results demonstrate asymptotic behavior at both axes. In both results

from Norton and Moore and this work, magnetic flux density decreases as the measurement

probe’s height increases. Guadagnin et al. also have a similar plot in Fig. 5 [11].

Fig. 6.6 shows magnetic flux density as a function of lateral distance across the magnet

pole face where the Gaussmeter probe is at a fixed height above the magnet pole face,

approximately 7.1 mm above it. As the probe moves laterally, it moves along the centerline

of the magnet pole face. Like previously, the exact values are not the same as the results

found by Norton and Moore, specifically for Fig. 7, given the difference in magnet material

and dimensions [23]. But the values from the experiment and the curves they respectively

fit resemble a family of curves indicative of Gaussian distribution. Note that this is not

a formal statement about these function’s families of curves, but that they both display a

bell curve-like shape. For the specific magnet of this work’s experiment, its magnetic flux

density respectively over vertical and horizontal distance matches well with results from

previous studies.

6.3 Capturing an Accurate Frequency Spectrum

Frequency distributions are a critical result type to obtain for this work since it provides

valuable information for a musical device design, namely a magnetic pickup for a bowed

instrument. Frequency analysis in relation to tonal theory informs us more on the design

of a bowed instrument magnetic pickup. Being able to compare the frequency spectra from
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Figure 6.5: Magnetic flux density as a function of probe height above the top magnetic pole
face.

Figure 6.6: Magnetic flux density as a function of probe distance from the center of the
magnet, fixed at a height of 7.1 mm above the top magnetic pole face.

magnetic pickup signals to the spectra of the optical switch signals which are related to the

transverse string displacements is also important. In Ricca’s work, a string has bow hair

placed on top of it and a driver plays a sound with only a frequency of 440 Hz, A4. This in

effect simulated a bowed string without moving the bow (it also allows for isolating bow hair
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interactions). This in turn produces a frequency distribution shown in Ricca’s Fig. 3.2 which

represents the frequency spectrum of a signal related to both transverse string displacements,

such that Ricca used two pohtotransistors for only one spectrum [28]. There are two peaks

near 440 Hz both of which emanate from the signal produced by either photodetector. But

for this experiment, frequency analysis is reserved for whatever is generated by the bowed

string-magnetic pickup system and the non-intrusive optical switches. Ricca’s Fig. 3.3

shows the frequency spectrum for the photodectors signals, once differentiated [28]. This

spectrum also had two peaks, but one being decisively greater than the other in amplitude.

Because the signal was once differentiated with respect to time, the spectrum represents the

frequencies related to a bowed string’s velocity over time. Given the physical limitations of

the optical switches’ LED beam and phototransistor apertures and the string thickness and

tension necessary to tune to a fundamental frequency of 440 Hz, this work shows, instead,

accurate, expected frequency distributions for a string tuned to 196 Hz, G3. Fig. 6.7 and

Fig. 6.8 show the frequency spectra for the signals of a magnetic pickup placed horizontally

around the bowed string at position 0π
4
and of a horizontal optical switch capturing a voltage

signal related to the string’s horizontal transverse displacement. Note that the magnetic

pickup signal is related to string velocity and the optical switch signals are related to string

displacement. Both spectra for the magnetic pickup and the horizontal optical switch show

that the fundamental frequency of 196 Hz is being derived from the bowed string oscillations

for both the pickup and optical switch, which operates fundamentally the same as Ricca’s

photodetectors. When comparing Fig. 6.7 to Ricca’s string velocity frequency spectrum

in his Fig. 3.3 and Fig. 6.8 to Ricca’s string displacement frequency spectrum in his Fig.

3.2, qualitative similarities are achieved [28]. In addition, despite potential nonlinearities

arising from the magnet or optical components respectively, only harmonics are showing

considerably amplified peaks. With this, this work’s method of capturing and computing

frequency distributions is sufficient for frequency analysis.
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Figure 6.7: Example of an accurate frequency spectrum for a bowed string when the string
is tuned to 196 Hz, a G3. This spectrum comes from a 0.05 second long signal obtained by
a magnetic pickup.

Figure 6.8: Example of an accurate frequency spectrum for a bowed string when the string
is tuned to 196 Hz, a G3. This spectrum comes from a 0.05 second long signal obtained by
an horizontally placed optical switch.

6.4 Capturing Bowed String Motion Displacement

Recall from Sec. 2.1, that for bowed strings, displacement of the string in the horizontal

transverse direction exhibits a sawtooth waveform. Considering one wavelength of Helmholtz
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motion displacement, the sloped section corresponds to the stick phase, when there is static

friction at the bow-string interface. The string travels with the bow at the speed of the bow

in the same direction as it. The vertical section of the wavelength corresponds to the slip

phase, when there is slipping friction initiated at the bow-string interface. The string travels

in the opposite direction of the bow movement. The sawtooth waveform emerges from how

static friction and slipping friction change over time. It is possible for bowed string motion

displacement to exhibit a triangular waveform based on the stick-slip regime.

With that being said, consider again that the horizontal optical switch being used pro-

duces a voltage signal related to horizontal transverse string displacement, shown by Eq.

4.2.1 in Sec. 4.2 and is subject to inherent noise, assumed to be due to the oscilloscope used.

Cremer demonstrates a triangular wave displacement for bowed string motion in his own

Fig. 3.4, which was sourced from another author’s unpublished work [4]. It shows the result

of passing an oscilloscope signal through an integrator, such that the oscilloscope signal was

derived from electrodynamic sensing about a bowed string. That specific experiment used

a magnet to move current through the oscillating, magnetized string as it was bowed. The

oscilloscope was connected to the string, receiving a signal related to string velocity. For this

experiment, the horizontal optical switch also displays a triangular waveform for a signal

that is proportional to horizontal transverse string displacement for a bowed string.

Figure 6.9: Voltage signal, 0.05 seconds long, of the horizontal optical switch. The signal
was generated by a bowed string of the same downward bow force and bow velocity used for
the main experiment repetitions.
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Figure 6.10: Voltage signal, 0.05 seconds long, of the horizontal optical switch. The signal
was generated by a bowed string of subjective bow force.

Figure 6.11: Simulation of horizontal transverse string displacement for a bowed string
tensioned such that it has a fundamental frequency of 196 Hz. The simulation code used
comes from Bilbao [2].

Looking at Fig. 6.9, there is an anomaly where there are very tall spikes of short time

lengths near the lower crests. The noise inherent to the oscilloscope can explain the jagged

nature of the plot mostly. But, using the fact that the signal is discretized, it can be visually

confirmed these thin peaks do not occupy more than a few data points. An argument can be

made that they are artifacts that do not stem from the horizontal bowed string motion. Sup-

posing it is ignored, the resulting signal demonstrates a thin triangular waveform. Though,

the qualitative elements of a sawtooth waveform can be potentially inferred. The same type

of artifact is seen in Fig. 6.10 and the signal also demonstrates a triangular waveform. The

corners of these waves appear to be somewhat more rounded, which is possible, but recall

that these figures are zoomed in on a smaller time domain. Though, this would not entirely
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exclude the presence of some rounding. This rounding can be partially attributed to the

issues of a lower discretization of the signal and of noise from the oscilloscope. On the entire

time domain of the signal, from 0 seconds to 0.05 seconds, the wave demonstrates sharper

corners. Secondly, the kink in Helmholtz motion and the corners in the associated displace-

ment tend to be rounded due to energy loss of the wave at higher frequencies [36, 4]. A

sufficient cause of this is the lack of horizontal bow force applied to the string. This could

occur through a lower static friction coefficient of the bow. Musicians increase static friction

between the bow and string through the use of rosin, a resin-like material, and increased

downward bow force. Aside from scaling differences, qualitatively comparing the figures of

this section to the results from Cremer, it is seen that the horizontal optical switch of this

experiment is capturing a signal proportional to that of horizontal transverse string dis-

placement of a bowed string [4]. In addition, the resulting displacements shown in Fig. 6.9

and Fig. 6.10 correlate with a standard simulation of horizontal bowed string displacement.

Fig. 6.11 shows a similar sawtooth or triangular waveform expected of a bowed string. The

simulation is provided by Bilbao [2], which approximately solves for a simpler version of Eq.

2.1.13, a more basic horizontal bowed string displacement equation. With expected theo-

retical results, the results from a previous study and horizontal bowed string displacement

simulation, it can be strongly argued that the horizontal optical switch produces accurate

results. This same type of sawtooth waveform can also be derived from certain magnetic

pickup signals indicating the measurement tool’s capability, assuming certain assumption

about Faraday’s Law of Induction, of accurately representing expected results and results of

other authors. This will be discussed further in Sec. 7.6.

6.5 Wave Polarization Types

Given the voltage signals from the horizontal and vertical optical switches and the fact that

they are functions of either transverse string displacement over time, each signal can be

65



treated as parametric equations. Suppose the horizontal optical switch signal is Vy(t) and

the vertical optical switch signal is Vz(t). It is possible to look at a parametric plot in the

y − z plane which describes a function of string motion polarization. For a plucked string

with two boundary conditions at the end of the string, the polarization is typically elliptical

[35, 9, 22]. This occurs because the string is free to vibrate in both transverse planes, x− y

and x− z. If a string is bowed, it should approach a linear polarization with a bias towards

displacement in the y-direction, horizontally. Ideal polarization of a bowed string would be

exactly linear. For a physical string, it may exhibit a polarization that appears to be a thin

ellipse due to the small presence of vertical string oscillations.

In addition to the voltage signal polarization plots, there are corresponding plots where

the signals have been filtered. A high-pass filter was applied with a threshold of 0.5 normal-

ized linear amplitude for the frequencies in the signals. After the filter was applied in the

frequency domain, the inverse Fourier transform was applied to return filtered signals for

filtered voltage signal polarization plots.

6.5.1 0.05 Seconds Period

Figure 6.12: Unfiltered wave polarization for a bowed string for a period of 0.05 seconds.
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Figure 6.13: Filtered wave polarization for a bowed string for a period of 0.05 seconds.

Consider the wave polarization for a signal of 0.05 seconds of a bowed string shown in Fig.

6.12. There is an inherent noise to the oscilloscope used, but with both signals unfiltered,

there is clear linear polarization of the bowed string displacement. Looking to Fig. 6.13

with the signals cleaned up by the high-pass filter, one can see the linear nature of the string

displacement polarization. This is evidence for the proposal for updating the bowed string

equations in Sec. 2.4, given how small vertical oscillations in the voltage signal are.

6.5.2 0.5 Seconds Period

For a longer signal of 0.5 seconds, the ratio of amplitudes per frequency appear to not result

in an integer. With that in mind and a longer signal, the periodicity of the polarization

can greatly increase. Such would be the case even for heavily filtered signals. Despite

this, the displacement from the origin horizontally is approximately 3× greater than that of

displacement vertically for the unfiltered plot and approximately 2.6× greater for the filtered

plot. These are shown in figures, Fig. 6.14 and Fig. 6.15. Just as for 0.05 second signals,

these results argue in favor in updating Eq. 2.1.14 in order to account for vertical string

oscillation dampening, as discussed previously in Sec. 2.4.
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Figure 6.14: Unfiltered wave polarization for a bowed string for a period of 0.5 seconds.

Figure 6.15: Filtered wave polarization for a bowed string for a period of 0.5 seconds.

6.5.3 0.05 Seconds Period: Subjectively Plucked String

For a subjectively plucked string such that the excitation force was not measured, it was ex-

pected that the string displacement polarization would be elliptical. For both horizontal and

vertical voltage signals, captured for 0.05 seconds, both the unfiltered and filtered polariza-

tion plots exhibited a hyperbolic polarization. They are shown in figures, Fig. 6.16 and Fig.
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6.17. Many attempts with different plucking styles and strengths were attempted, but an

elliptical polarization could not be reproduced. When comparing the filtered and unfiltered

polarizations, the hyperbolic projection seems to mirror its orientation about the vertical

axis, such that the bottom of the saddle first points to the left then to the right. Though,

the main concern of this section is to demonstrate linear polarization of a bowed string’s

oscillations, so this result does not need to be explored further. Though it does warrant

consideration in the future. Future research on this topic may be started in investigating

the materials used to create a monochord and establishing a well-defined and repeatable

excitation method.

Figure 6.16: Unfiltered wave polarization for a subjectively plucked string for a period of
0.05 seconds.

6.5.4 0.05 Seconds Period: Subjectively Bowed String

Looking to a bowed string with subjective bow forces and bow velocity applied, there are

figures, Fig. 6.18 and Fig. 6.19, showing the unfiltered and filtered string displacement

polarization plots. At first glance of the unfiltered plot, it appears that there may be two

prongs pointing in the negative y-direction, indicating a potentially hyperbolic polarization.
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Figure 6.17: Filtered wave polarization for a plucked string of subjective force for a period
of 0.05 seconds.

Given the same monochord used for the plucking is used here, it is possible that this may be

the polarization type. But there is a considerable amount of noise which may hide the true

general path. Looking to the filtered polarization plot, however, the horizontal and vertical

optical switch signals decidedly form a thin ellipse. The horizontal displacement from the

origin is approximately 3× greater than that of the vertical displacement. This supports the

conclusion that the plot shown in Fig. 6.18 probably approaches a linear polarization. Even

for the subjectively excited bowed string, this linear polarization behavior holds. Just as for

the 0.05 and 0.5 second signals derived from a bowed string, these polarization plots and

results strengthen the proposal in Sec. 2.4 to update the bowed string equations with a new

term for the bow hairs’ dampening effects.
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Figure 6.18: Unfiltered wave polarization for a bowed string of subjective force for a period
of 0.05 seconds.

Figure 6.19: Filtered wave polarization for a bowed string of subjective force for a period of
0.05 seconds.

71



6.6 Expected Results of Voltages, Magnetic Flux Den-

sity, and Frequency Distributions

A general rule of thumb for voltage output of an electric guitar’s magnetic pickup is that it

should be at least 0.1 volts and typically can reach up to 1 volt. Given the subjectivities

of how much force is applied to a string by the player and in what direction with respect

to the magnet pole, what type of magnetic is used, or how many windings of the copper

coil there are in the pickup, this voltage range can change. The magnet type and number

of coil revolutions are what mostly drive the voltage range for an electric instrument in

a passive fashion. In an active fashion, it is the player who can apply a greater force to

the string to increase the voltage output. For this experiment, a stronger magnet and a

high number of coil revolutions were used to better amplify the signal produced by string

oscillations in the service of analysis. For a commercial application, these different materials

and quantities would be tested and compared among each other. Recall that the magnetic

used for the magnetic pickup is an AlNiCo-V magnet. According to Gough, the expected

magnetic flux density of the magnet when measured at the pole face is typically within the

range, 0.09 Tesla to 0.11 Tesla [29, 10]. For frequency distributions, the main expectation

is that the fundamental frequency and following harmonics are what are amplified. Given

inherent nonlinearities of the magnetic pickup and optical switches, there is potential for non-

harmonic frequencies to emerge. Noise due to various sources may also inform the frequency

distributions, but care was taken to properly ground the magnetic pickup and reduce EMF

waves that may come from expected sources.
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Chapter 7

Results and Discussion

7.1 Maximum Voltage and Average Voltage

One of the main concerns for the design and analysis of a magnetic pickup is its signal

strength. For the purposes of amplification of a bowed instrument, sufficient amplitude is

needed. In Sec. 7.1, maximum and average voltage outputs of the magnetic pickup in eight

positions and of the two optical switches, horizontal and vertical, corresponding to each

position, are recorded and shown.

There are many observations that can be made by looking at these voltage outputs. The

first result to notice with the magnetic pickup voltages in Fig. 7.1, Fig. 7.2, and Fig. 7.3,

is that for both the maximum and average voltages, they are not constant across the eight

pickup positions. Across all three iterations of the whole experiment, the higher maximum

voltages were found at positions, 0π
4
, 4π

4
, 5π

4
, and 7π

4
. The range of maximum voltages for

these positions for all three iterations is from approximately 1.5 volts to 3 volts. Recall the

calibration of the bow force and bow velocity. The forces and velocities are constant between

all iterations. A decision was made to err on the side of greater downward bow force and bow

velocity to ensure a more consistent and expected frequency output. A result of this will be

a larger voltage output than expected. As mentioned in Sec. 6.6, the typical range expected
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Figure 7.1: Maximum and average voltage outputs of all 8 magnetic pickup signals for the
first iteration of the experiment.

Figure 7.2: Maximum and average voltage outputs of all 8 magnetic pickup signals for the
second iteration of the experiment.

of an electric guitar pickup is approximately 0.1 − 1.0 volts, but this varies so much with

the strength with which the player strikes the strings and with the design and materials of

the pickup. The experiment, which maintains constant downward and horizontal bow forces

between repetitions for each position, exhibits stronger bowing, hence a higher-than-expected
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Figure 7.3: Maximum and average voltage outputs of all 8 magnetic pickup signals for the
third iteration of the experiment.

Figure 7.4: Maximum and average voltage outputs of each horizontal optical switch mea-
surement taken during the measurement of the magnetic pickup signal for a specific position
for the first iteration of the experiment.

voltage output.

The average voltage outputs for all iterations for all pickup positions display, understand-

ably, lower values. Looking to the same figures, the average voltages of positions, 0π
4
, 4π

4
, 5π

4
,

and 7π
4
, fall within or close to the approximate output range, 0.5 − 1.0 volts, which is the
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Figure 7.5: Maximum and average voltage outputs of each horizontal optical switch mea-
surement taken during the measurement of the magnetic pickup signal for a specific position
for the second iteration of the experiment.

Figure 7.6: Maximum and average voltage outputs of each horizontal optical switch mea-
surement taken during the measurement of the magnetic pickup signal for a specific position
for the third iteration of the experiment.

expectation for voltage seen in Sec. 6.6.

Both the maximum and average voltage outputs show what sort of pickup positions

produce favorable voltage outputs for the purpose of bowed instrument amplification. It was
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Figure 7.7: Maximum and average voltage outputs of each vertical optical switch measure-
ment taken during the measurement of the magnetic pickup signal for a specific position for
the first iteration of the experiment.

Figure 7.8: Maximum and average voltage outputs of each vertical optical switch measure-
ment taken during the measurement of the magnetic pickup signal for a specific position for
the second iteration of the experiment.

hypothesized that the pickup when placed horizontally at either 0π
4
or 4π

4
would produce the

greatest voltage outputs. This turned out to be incorrect, despite significant outputs from

the pickup at both positions, but it is due to an unaccounted for bias from downward bow

77



Figure 7.9: Maximum and average voltage outputs of each vertical optical switch measure-
ment taken during the measurement of the magnetic pickup signal for a specific position for
the third iteration of the experiment.

force. This will be addressed later in this section. Across all iterations of the experiment,

the pickup at 7π
4

produced the highest maximum and average voltage outputs. The pickup

signal’s maximum and average outputs for positions 0π
4
, 4π

4
, and 5π

4
are also high, though not

as great as for the 7π
4
position. The pickup at the two vertical positions, 2π

4
and 6π

4
accounted

for the two lowest outputs for both voltage types. These results for when the pickup was

positioned vertically is evidence for the arguments put forward in Sec. 2.4 and the need

for an update of Eq. 2.1.14 to account for the dampening effects onto the vertical string

oscillations by the bow hair. And the middling outputs came from the two top diagonal

positions, 1π
4
and 3π

4
.

It is observed that the maximum and average voltage outputs of the pickup are most

dominant when located at the bottom diagonals and the right horizontal positions (assuming

the y − z axis is defined such that the positive y axis is to the right of the string as it

passes through the origin along the x-axis, where one may look down the string from the

bridge to the nut). The vertical positions produce little signal because of the lack of a

presence of vertical string oscillations over time, which will be explored further through
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Chapter 7. One might expect similar voltage results between mirrored positions, vertical-

to-vertical, horizontal-to-horizontal, and diagonal-to-diagonal, but this was not the case.

The discrepancies between mirrored positions has to do with the directions of bow forces in

relation to the orientation of the magnetic field of the pickup.

The bow experienced a downward bow force with a weight attached to the tip. Stationary,

the bow with the weight in this position is a third class lever with the fulcrum being the

string. Instead of applying a vertical force to the lever, the bow stroke mechanism simply

moves this lever horizontally, effectively moving the fulcrum, the string, closer to the weight.

With that being said, this downward bow force, from the start of the experiment repetition

to the end, displaces the string downward. This in effect changes the equilibrium of the

string for both its horizontal and vertical waves. If the string vibrates closer to the magnetic

pole face, greater magnetic flux density and magnetic flux will be generated, which creates

a larger voltage signal. Fig. 6.5 supports this explanation. In some cases during testing, the

downward force of the bow in combination with both the initial distance between the string

and magnetic pole face and the tension of the string tuned to 196 Hz, G, caused enough

string displacement causing the string to physically hit the magnet during oscillation.

For the purpose of future pickup design, a greater vertical distance between the string

and magnet may be needed. With the string oscillating closer to the magnetic pole face,

the voltages will be greater. This is why the pickup at the top diagonal positions produces

much lower voltages. The downward bow force displaces the string away from the magnet

pole face, which will reduce magnetic flux and magnetic flux density when the string is

excited with its equilibrium being further away. This is also one reason why the pickup at

the bottom vertical position is slightly greater than that of the top vertical position. The

right diagonal position, 7π
4
, experiences the greatest voltage outputs due to the great string

equilibrium displacement towards the magnet pole face and also because of the influence of

the horizontal bow force. The experiment simulates a simplified down bow, where the bow

moves across the string from left to right, given the previously defined axes of the experiment.
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The string oscillations operate under a stick-slip regime, where the bow excites the string in

the stick regime and causes vibration during the slip regime. The horizontal bow force of a

down bow, particularly as the downward bow force brings the string closer to the magnet

in rest and through its equilibrium during oscillations, will provide a fuller capture of the

string oscillations by the magnetic pickup, which will produce a much greater voltage signal

than if it were at other positions. Note that for these increased voltage outputs for the

magnetic pickup signals of bottom positions, downward bow force affected the increase due

to the vertical displacement of the string’s equilibrium. It is possible that the downward

bow force added to the static friction between the bow and the string as well. Another

consideration that can be explored for a pickup signal of any diagonal position is to see how

the frequency spectrum is influenced by both the horizontal and vertical string oscillation

components being captured by the diagonal pickup.

For a design of a magnetic pickup for a bowed instrument, one would need to account

for both bowing directions, up and down. Ideally, to preserve a consist signal output, two

magnets and coils would be needed per string to provide a consistent signal for both bowing

directions.

The maximum and average voltages of the optical switch signals were also recorded.

These can be seen in figures, Fig. 7.4, Fig. 7.5, and Fig. 7.6 for the horizontal switch and

in figures, Fig. 7.7, Fig. 7.8, and Fig. 7.9 for the vertical switch. The scaling of these

figures are kept the same as for figures, Fig. 7.1, Fig. 7.2, and Fig. 7.3 to emphasize the

difference in voltage output between the magnetic pickup signals and the optical switches’

signals. Both switches remained stationary for the entirety of the experiment for all three

iterations. When a magnetic pickup signal was recorded for a specific position, the signals

of both optical switches were recorded too. Recall that the horizontal optical switch records

a voltage signal related to horizontal string displacement and the vertical optical switch

records a voltage signal related to vertical string displacement. The first result to notice for

the horizontal optical switch signals is that they remain very consistent between experiment
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iterations and between all eight repetitions per iteration. This indicates that the bow stroke

mechanism demonstrates good consistency for downward and horizontal bow force between

every stroke. This can also be demonstrated by the similar results between iterations for

the magnetic pickup signals. The voltage outputs for the horizontal optical switch are not

as large as the ones of the magnetic pickup, but it is designed more for measurement than

for amplitude. With that being said, the average voltage output is around 0.5 volts, with its

maximum voltages not being much greater than its averages.

Considering the vertical optical switch outputs, it is clear that they are much smaller in

comparison to those of the horizontal optical switch signals. For both the maximum and

average signals, the vertical optical switch signals are about 50% or less of the volts produced

by the horizontal optical switch signals. This is further evidence towards demonstrating the

dampening effect on vertical waves of a bowed string. This is evidence for adding a new

term to the governing bowed string equation, Eq. 2.1.14, and strengthens the arguments

put forward in Sec. 2.4. The vertical optical switch’s signals also demonstrate the reliable

consistency of the bow stroke mechanism with respect to consistent downward bow force and

bow velocity between bow strokes.

7.2 Frequency Spectra and Timbre: comparing spectra

between magnetic pickup positions

For acoustics and particularly better understanding the relationship between a magnetic

pickup and a bowed string, frequency analysis is imperative. One of the considerable aims

of this work is to inform the design of a magnetic pickup for a bowed instrument. In

this aim is producing an agreeable sound and tone. When considering tonal quality, or

“timbre,” of an instrument’s sound, one imposes subjective terms and concepts onto the

frequency distribution present in such sound. This is to say that frequency analysis can aid

in understanding whether or not a signal is acceptable tonally. With this, design decisions
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of a magnetic pickup can be supported or rejected.

In the scope of this work, frequency spectra were obtained for each magnetic pickup

signal at each position. The signals of the main experiment repetitions are 0.5 seconds long.

It should be noted that the start and end of the signals have the potential to exhibit non-

harmonic frequencies and non-periodicity. This is partially due to the fact that the bow

must get up to speed initially and quickly decelerate when the bow stroke ends. During the

initial period, it is possible for there to be deficient static friction at the bow-string interface

such that, the expected stick-slip regime of Helmholtz motion has yet to be realized. While

cognizant of this, many of the main results still exhibited expected results such as key

frequency characteristics, despite the realities of using the entire 0.5 second signal which

invites potential non-harmonic frequencies and non-periodicity in part. This decision to

maintain the initial and final portions of the signals was also recognized in Sec. 7.4. With

these considerations in mind, the frequency spectra of all the signals of the magnetic pickup

in the various positions can be analyzed and be used to inform design decisions for the

development of a bowed instrument magnetic pickup.

When speaking of timbre for instruments, one can suppose there is a unique tonal color

to each instrument. Instruments of the same species, of the same family, or simply of the

instrumental genus, all possess timbre. When the A4 (440 Hz) note is played on both a

violin and a trumpet, it is evident that both instruments are playing the same note, yet the

violin and trumpet do not sound the same. They possess different tonal character or tonal

color called timbre. Mathematically, timbre relates primarily to the frequency distribution

or “spectral envelope” produced by an instrument [7]. Both the violin and trumpet play the

A4 note, but along with both instruments producing a fundamental frequency (the lowest,

present harmonic in the signal) of 440 Hz, their spectra reveal very different and unique

presences of harmonics of varying amplitudes. It is the combination of the fundamental fre-

quency and various harmonics of varying amplitudes that gives tonal color or unique timbre

to two different instruments. This area of study, again, is called “psychoacoustics”, where
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objective analysis of acoustics is connected to the more approachable realm of describing

one’s experience when hearing music or the sounds of an instrument.

For bowed instruments, including the violin, a good tonal quality would have a frequency

spectrum that has the fundamental frequency being most amplified. But it should be noted

that some instruments may not follow this standard. In addition to that attribute of a

good bowed instrument frequency spectrum, a higher number of following harmonics in the

spectrum indicates a full, rich sound. A beneficial analogy to explain why having more

harmonics is a pleasant attribute is to imagine an orchestra playing an A note of each

octave from A1 − A7 in contrast to a section of violins of the same number of players as

the orchestra only playing one A note from one octave, A4. The orchestra with the wide

range of harmonics undoubtedly produces a more brilliant sound. Much is the same when

considering the frequency spectrum of a sound produced by a single instrument. Another

aspect of a good frequency spectrum of a bowed instrument would be that the amplitudes

of a wide range of harmonics are large. For violins, brightness, or high amplitudes of higher

harmonics is another acceptable characteristic.

When musicians refer to “bass,” “middle,” and “treble” for an equalizer, pre-amplifier, or

amplifier they are generally referring to the low (41 Hz to 200 Hz), medium (200 Hz to 1000

Hz), and high (1000 Hz to 3000 Hz) frequency bands of standard instruments like bass, guitar,

violin, saxophone, etc. A problem that piezo-electric pickups for violins face is that they

produce signals that greatly favor treble frequencies with respect to increasing amplitude.

They are known for producing very “sharp,” top-end frequency range biased sounds. In the

area of live music, in a band, it is practically industry standard for most violins to use a

“pre-amplifier” in conjunction with the piezo-electric pickup to better balance the frequency

distribution of the signal. For the purposes of amplification and amplifying a pleasant sound

from a violin, one may very well need to purchase a pre-amplifier that costs upwards of 200

US dollars. Avoiding the financial burden of a pre-amplifier or equalizer for a piezo-electric

pickup would be a good benefit to the musician. A magnetic pickup can be designed to be
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“warmer” (greater presence of lower harmonics) or “brighter” (greater presence of higher

harmonics) at a price relatively close to that of a piezoelectric pickup, yet without there

being a need to purchase a pre-amplifier or equalizer. This work aims to demonstrate this

sort of characteristic of a magnetic pickup of a bowed string. And with the aforementioned

considerations on tonal quality in mind, there is now a good and accessible point to discuss

the frequency spectra results.

Figure 7.10: Normalized amplitude frequency spectrum of the signal from the magnetic
pickup at the first position for a total time period of 0.05 seconds.

A frequency spectrum for the magnetic pickup signal at the 0π
4
position for a time period

of 0.05 seconds is given in the results initially before the following figures, which detail the

frequency spectra of the main experiment repetition signals. This is shown in Fig. 7.10.

The signal obtained by the oscilloscope was discretized into 937 points of data. But for the

frequency spectra of the magnetic pickup signals at each position for a time period of 0.5

seconds were based off of a signal discretization of 1000 points of data. This is to say that,

due to the limitations of the oscilloscope used, wave information is not as precise for the

magnetic pickup signals that were 0.5 seconds long. It may appear that the signals for 0.5

seconds only produce frequency distributions up to 980 Hz with 196 Hz as the fundamental

frequency, but it is argued that this is merely a limitation due to the oscilloscope’s lower
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Figure 7.11: Normalized amplitude frequency spectrum of the signal from the magnetic
pickup at the first position for a total time period of 0.5 seconds.

Figure 7.12: Normalized amplitude frequency spectrum of the signal from the magnetic
pickup at the second position for a total time period of 0.5 seconds.

resolution discretization of signals over a longer period on time. Fig. 7.10 is based off the

same bow stroke velocity and bow forces used for all signals recorded for this thesis. It shows

that with a higher resolution signal, a more complete frequency spectrum of magnetic pickup

signal can be achieved and does exist. It shows at least three extra harmonics present in the
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Figure 7.13: Normalized amplitude frequency spectrum of the signal from the magnetic
pickup at the third position for a total time period of 0.5 seconds.

Figure 7.14: Normalized amplitude frequency spectrum of the signal from the magnetic
pickup at the fourth position for a total time period of 0.5 seconds.

signal (1176 Hz, 1372 Hz, and 1960 Hz), which could not be seen in signals that were 0.5

seconds long with an only marginally higher discretization.

With basic tonal theory in mind, figures, Fig. 7.11, Fig. 7.12, Fig. 7.15, and Fig. 7.18

maintain the fundamental frequency, 196 Hz, as the most amplified frequency in each of
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Figure 7.15: Normalized amplitude frequency spectrum of the signal from the magnetic
pickup at the fifth position for a total time period of 0.5 seconds.

Figure 7.16: Normalized amplitude frequency spectrum of the signal from the magnetic
pickup at the sixth position for a total time period of 0.5 seconds.

the distributions. In all these figures, the following three harmonics, 392 Hz, 588 Hz, and

784 Hz, have amplitudes that are at least 50% of the fundamental frequency amplitude.

These are high harmonic-to-fundamental-frequency ratios, which indicate a fuller sound and

a brightness to the sound. At the same time, the fundamental frequency is still the most
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Figure 7.17: Normalized amplitude frequency spectrum of the signal from the magnetic
pickup at the seventh position for a total time period of 0.5 seconds.

Figure 7.18: Normalized amplitude frequency spectrum of the signal from the magnetic
pickup at the eighth position for a total time period of 0.5 seconds.

dominant frequency in each respective spectrum.

Fig. 7.14 shows the frequency spectrum of the magnetic pickup signal in the top left

diagonal position. It exhibits expected behavior of a string, in that the correct harmonics are

more or less present, but the fundamental frequency, 196 Hz, is not the dominant frequency
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Figure 7.19: Linear amplitude frequency spectrum of the signal from the magnetic pickup
at the eighth position for a total time period of 0.5 seconds.

Figure 7.20: Linear amplitude frequency spectrum of the signal from the magnetic pickup
at the eighth position for a total time period of 0.5 seconds.

in the spectrum. It should be noted that the most amplified frequencies in this spectrum are

slightly higher than 196 Hz or the following harmonics. It is possible that this is an instance

of pitch glide due to nonlinear string-barrier interaction and the effects of nonlinear string

tension, where the frequency “glides” higher during the initial moments in time immediately
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Figure 7.21: Linear amplitude frequency spectrum of the signal from the magnetic pickup
at the eighth position for a total time period of 0.5 seconds.

after excitation [14]. But these are very small changes in frequency. Another consideration

is that the string may have changed tuning due to changes in temperature. The latter

consideration is the more probable and small variations in pitch like that can go unnoticed,

even to trained professionals. For the spectra that exhibit good tonal behavior and have

instances of amplitude peaks near expected harmonics, pitch glide could potentially be an

explanation. Consider again Fig. 7.14 for the signal of the magnetic pickup at position,

3π
4
. The peak amplitudes occur at frequencies, 198 Hz, 396 Hz, 796 Hz, and 990 Hz. For

the frequencies, the nominal percent difference from their corresponding expected harmonics

are respectively, 1.01%, 1.01%, 1.51%, and 1.01%. Aside from the percent difference for 784

Hz, the consistency in percent differences for the other frequencies is probably due to the

constant geometry of the bridge and nut for the one repetition of the experiment. This would

be the case such that the bridge and string and the nut and string present two nonlinear

string-barrier instances. The bridge and nut have small radii when considered as barriers

and larger barriers induce greater percent difference in pitch, or pitch gliding. The fact that

for these spectra the percent differences are high, but the barrier radii are small, change in

string tuning due to temperature and long durations of play time are probably also factors.
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If one considers the end point fixtures as barriers which change the wave behavior of the

string when it is oscillating near and against them, it is also possible to consider a similar

effect from the bow hairs, assumed they can be treated as a barrier where wave behavior of

string displacement is affected. Looking to the corresponding spectrogram, Fig. 7.30, it can

be seen that for the most prominent frequencies near 588 Hz and 784 Hz maintain consistent

frequency amplitude across time segments. In Kartofelev et al.’s work, pitch glide reached a

maximum near the time of excitation, as shown in their Fig. 2 [14]. Similar work is found in

the research conducted by Lee et al. as well and the results of this thesis can be compared to

the results of that previous study [19]. But for a bowed string, excitation is approximately

continuous, so the percent differences for the frequencies of the signal should be sustained

as long as the bow excites the string. In contrast, a spectrogram for a plucked string, if it

experienced pitch glide, should exhibit a frequency amplitude presence at the pitch glided

frequency initially, then fall back down to the nominal, expected frequency. So pitch glide

and a sightly out of tune string due to short term temperature drop may explain why the

most amplified frequencies are only approximately 1% higher than the expected nominal

frequencies. This effect can be seen in various other frequency spectra.

Fig. 7.16, which shows the frequency spectrum of the bottom left diagonal position

of the magnetic pickup, also does not feature the fundamental frequency as the dominant

frequency. With the magnetic pickup position at 5π
4
, 392 Hz is the most dominant frequency.

The spectrum also does not exhibit the same behavior of higher frequencies with large

amplitudes being near the expected harmonics, multiples of 196, but are not results of pitch

glide. Fig. 7.13 shows the spectrum of the magnetic pickup signal with the pickup at the

top vertical position, 2π
4
. There is a vague semblance of an expected frequency distribution

with peaks at the multiples of 196 Hz, but the signal is very noisy, has a weak amplitude

for the fundamental frequency, 196 Hz, and demonstrates that the signal has a very poor

frequency distribution. Looking to the result of the magnetic pickup signal at the bottom

vertical position, 6π
4
, Fig. 7.17 displays a distribution not entirely dissimilar to that of Fig.
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7.16. It appears to be a little noisier and has comparatively (to that of the signal from the

5π
4
position) greater peaks at unexpected frequencies near harmonics, which can be observed

in Fig. 7.11 and Fig. 7.16.

Looking specifically to figures, Fig. 7.19, Fig. 7.20, and Fig. 7.21, the frequency spectra

of linear amplitude for signals of a magnetic pickup at positions, 0π
4
, 6π

4
, and 7π

4
are given.

In relation to the results of Sec. 7.1, these figures show how the vertical string oscillations

for a bowed string are greatly dampened. The bottom vertical and bottom right diagonal

positions are dependent on downward bow force, further amplifying their signal. The bot-

tom right diagonal and right horizontal positions both have horizontal string oscillations

exciting the magnetic field of the pickup in those respective positions. Simply looking to

the amplitudes of the fundamental frequency for each, the results show that the amplitude

for the bottom vertical position is approximately 8.5× smaller than the amplitude for the

bottom right diagonal position and approximately 7.5× smaller than the amplitude for the

right horizontal position. For the magnetic pickup signal from the better of the two vertical

positions, the frequency amplitudes are significantly smaller in comparison to those of hori-

zontal and diagonal positions. This coincides with the voltage amplitude results of Sec. 7.1

and demonstrates how vertical string oscillations are much weaker, even when transformed

and viewed in the frequency domain. This strengthens the proposal in Sec. 2.4 to add a new

damping factor or external force term to the vertical transverse bowed string equation, Eq.

2.1.14, which occurs in the interaction between the vertical bow oscillations and the vertical

string oscillations.

7.3 Frequency Spectra: pickup position-string polar-

ization comparisons

Results similar to those of Sec. 7.2 were achieved for signals coming from either optical

switch. These results serve as helpful benchmarks to compare to the good spectra from
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pickup signals. Recall the optical switch signals are related to the transverse string displace-

ments as opposed to the string velocity which is captured by the magnetic pickup. Being

able to capture the frequencies of these signals or enhancing them will show that a magnetic

pickup for a specific position is a viable alternative to other amplification methods for a

bowed instrument.

Figure 7.22: Normalized amplitude frequency spectrum of a horizontal optical switch signal
for a total time period of 0.5 seconds.

It should be reiterated that the frequency spectra of the experiment results was for

signals of lower resolution, leading to a smaller sampling rate and thus simpler frequency

distributions reaching only up to around 1000 Hz. When comparing these results to Fig.

7.10 for a signal of 0.05 seconds, one can see a fuller frequency distribution present in a

magnetic pickup signal. The results of the experiment for the signals of the magnetic pickup

at all positions for a time period of 0.5 seconds can also be compared to the signals of the

horizontal and vertical optical switches. The voltage signals captured by the optical switches

are proportional to the two transverse string displacements, respectively. Comparing the

frequency results of the magnetic pickup signals to the results of the optical switch signals

can shed light on the relationship between the actual string displacement and what the

magnetic pickup is “picking up” from the overall string velocity.
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Figure 7.23: Normalized amplitude frequency spectrum of a vertical optical switch signal for
a total time period of 0.5 seconds.

Figure 7.24: Normalized amplitude frequency spectrum of a horizontal optical switch signal
for a total time period of 0.05 seconds.

The frequency spectra for the signals of the horizontal optical switch are shown in figures,

Fig. 7.22 and Fig. 7.24. Fig. 7.24 displays a fuller, encapsulating frequency distribution.

Signals of both time periods, 0.5 seconds and 0.05 seconds display similar amplitudes for

the peaking frequencies. For figures, Fig. 7.11, Fig. 7.16, and Fig. 7.17, the appearance
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Figure 7.25: Normalized amplitude frequency spectrum of a vertical optical switch signal for
a total time period of 0.05 seconds.

of twin peaks near high amplitude harmonics was unexpected. Comparing these results

to that of Fig. 7.24, the frequency spectrum for the horizontal optical switch, the same

characteristic is observed. There is a potential to rule out the influence of the magnetic

pickup on this frequency domain result, given it occurred for both the magnetic pickup and

the optical switch signals. This opens the opportunity to future research in deriving the

source of this frequency characteristic and attempting to replicate it. When considering

the signals of the magnetic pickup at specific positions that produce favorable frequency

spectra with a dominating fundamental frequency, high number of present harmonics, and

high amplitudes of those harmonics, Fig. 7.22 and Fig. 7.24 seems to lack in comparison.

The horizontal optical switch signals exhibit the presence of many harmonics and have the

fundamental frequency as the most dominant in amplitude, but after the first two harmonics,

the amplitudes decrease for the harmonics, 588, Hz and on. Though they are still there.

With the pickup in the best positions for tone, the 0π
4
, 4π

4
, and 7π

4
positions, harmonics

from mechanical string vibrations, which were initially weak in amplitude, were amplified

when captured using the magnetic pickup. This is in part related to the reception of a new

amplitude scalar to string velocity, given the nature of the derivative of string displacement,
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which is a waveform (one can imagine how the chain rule is applied to a sinusoidal function

where the derivative gains in amplitude). Much like how the violin’s material types and

geometries are able to resonant with certain frequencies to amplify them, it is observed that

the magnetic pickup can also heighten certain frequency amplitudes to bring out a more

excellent sound.

The frequency spectrum for the vertical optical switch signal for 0.5 seconds, shown in

Fig. 7.23, is noisy like the spectra for the signals of magnetic pickup placed in either vertical

positions. Smaller amplitude frequency peaks can be seen at the harmonics of 196 Hz, but

are all very shallow. Fig. 7.25 shows the vertical optical switch signal for 0.05 seconds.

This reveals that the most dominant frequency is the fundamental frequency and that the

harmonics have very low amplitude. They are surrounded by noisy frequencies of similar

low amplitude.

7.4 Spectrograms Between Positions: Frequency Over

Time

Additional frequency analysis was conducted on the experiment data by looking at spectro-

grams. By looking at frequency amplitudes over time for various frequencies, better insight

into the use of a magnetic pickup for a bowed string can be achieved. Ideally, for an ar-

bitrary frequency spectrum from the magnetic pickup at a specific position, the associated

spectrogram should produce a frequency amplitude that is very close to the normalized am-

plitudes of the spectrum for all time segments. This is to say that frequency distribution

should be consistent over time. This would indicate that frequencies vary little over time.

Though, note that signals for this work are both quite short, 0.05 seconds and 0.5 seconds,

respectively. Even then, spectrograms are an excellent analysis tool to review the efficacy of

magnetic pickups for bowed instruments.

For the start of the results, Fig. 7.26 is given, which is the spectrogram of the magnetic

96



Figure 7.26: Normalized amplitude spectrogram of the signal from the magnetic pickup at
the first position for a total time period of 0.05 seconds.

Figure 7.27: Normalized amplitude spectrogram of the signal from the magnetic pickup at
the first position for a total time period of 0.5 seconds.

pickup at the 0π
4
position for a total time period of 0.05 seconds. Looking to it, one can see

some variability between what frequency is most prominent over time, particularly for 196 Hz

and 392 Hz. From 0.02 seconds to 0.03 seconds, there is a drop in overall frequency amplitude

across all frequencies, once previously present, but immediately after, the frequencies appear
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Figure 7.28: Normalized amplitude spectrogram of the signal from the magnetic pickup at
the second position for a total time period of 0.5 seconds.

Figure 7.29: Normalized amplitude spectrogram of the signal from the magnetic pickup at
the third position for a total time period of 0.5 seconds.

again. This is such a short span of time, it calls into question whether or not such a drop in

frequency can be detected by the average listener.

For the experiment results with 0.5 seconds, the results are better fit for the use of

spectrograms as analysis tools. Fig. 7.27 is a good spectrogram given that the amplitude of
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Figure 7.30: Normalized amplitude spectrogram of the signal from the magnetic pickup at
the fourth position for a total time period of 0.5 seconds.

Figure 7.31: Normalized amplitude spectrogram of the signal from the magnetic pickup at
the fifth position for a total time period of 0.5 seconds.

the fundamental frequency and three following harmonics is consistent over tenths of seconds

respectively. For many of the spectrograms in this section, the first or first two time segments

have very low frequency amplitudes and number of frequencies. This is simply the result of

no sound being produced as the signal was being recorded by the oscilloscope. Recall that
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Figure 7.32: Normalized amplitude spectrogram of the signal from the magnetic pickup at
the sixth position for a total time period of 0.5 seconds.

Figure 7.33: Normalized amplitude spectrogram of the signal from the magnetic pickup at
the seventh position for a total time period of 0.5 seconds.

the oscilloscope’s trigger method used the horizontal optical switch signal channel to trigger

recording of 0.5 seconds of data. As the bow stroke mechanism initially moves, the string

undergoes the stick regime, where the string’s displacement follows the point of the bow in

which it is in friction with. That small movement is enough to move the string to change
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Figure 7.34: Normalized amplitude spectrogram of the signal from the magnetic pickup at
the eighth position for a total time period of 0.5 seconds.

the signal of the horizontal optical switch and trigger the oscilloscope to record, but not

enough to sufficiently amplify the waveform of the string and thus amplify the associated

frequencies of the magnetic pickup signal. No attempt was made to avoid this given that the

experiment required consistency between positional data with respect to each signal starting

its recording time at the same bow position, not randomly along any bow position as the

bow was already in motion. Note that this did not occur for all signals, though. The virtual

absence of frequency amplitude among the initial one or two time segments can be expected

due to this attempt for inter-positional time consistency and bow stroke location consistency.

And given the lower resolution of signals even at a short signal of 0.5 seconds, the signals were

not clipped to exclude these portions because for spectrograms, it is beneficial to observe

frequency distributions at these longer time segments.

Looking to the signal of the magnetic pickup when it is in the top right diagonal po-

sition, 1π
4
, its spectrogram, shown in Fig. 7.28, produces good frequency amplitudes for

each harmonic in the latter two time segments. This is consistent with the corresponding

non-time-dependent frequency spectrum shown in Fig. 7.12. In contrast, when the magnetic

pickup is in the top left diagonal position, 3π
4
, its spectrogram, shown in Fig. 7.30, reveals
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that the fundamental frequency has a very low amplitude over the whole time period. In

fact, the harmonic, 784 Hz, is the most amplified overall and over the 0.5 second time pe-

riod. This is in agreement with the corresponding frequency spectrum shown in Fig. 7.14.

Note that in Sec. 7.2, pitch glide considering Fig. 7.30 was discussed. Potential evidence

for continuous pitch glide due to the continuous excitation of the string by the bow can be

inferred from other spectrograms of the section.

For the signal of the magnetic pickup at the top vertical position, 2π
4
, the spectrogram

in Fig. 7.29 shows much inconsistency of frequency amplitudes between time segments and

reveals that the signal over time, though somewhat orbiting expected frequencies, multiples

of 196, does not maintain any orderly structure. With respect to magnetic pickup position,

this is not an optimal position when one wants to have a faithful frequency presence and one

consistent over time as well. For the magnetic pickup in the bottom vertical position, 6π
4
, its

signal’s spectrogram, shown in Fig. 7.33, shows inconsistency of frequency density between

time segments. From 0.1 to 0.2 seconds, 392 Hz is the frequency of peak amplitude, then

towards the end of the signal, 196 Hz is. When comparing this result to Fig. 7.17, there is

not an inconsistency between the two results, but the spectrogram reveals more information

about the signal’s frequencies. Though it is a short time period of 0.5 seconds, when the

magnetic pickup is in either vertical position, the frequency distribution over time is not very

consistent. Given music occurs over time, this would be a problem for the violinist using a

magnetic pickup in such a way.

The signal for when the magnetic pickup is in the left horizontal position, 4π
4
, produces

a good and consistent frequency distribution over time. As seen in Fig. 7.31, each harmonic

is consistent between time segments. Additionally, it correlates with the corresponding

frequency spectrum seen in Fig. 7.15. Both the spectrograms of the signal of the magnetic

pickup in both bottom diagonal positions, 5π
4
and 7π

4
(left and right), are also fairly consistent

over time as well.
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7.5 Spectrograms of Transverse String Displacements:

Frequency Over Time

The spectrograms of the optical switch signals will also be evaluated and discussed. This

help provides a reference for the magnetic pickup spectrograms, so that the magnetic pickup

signal results can be compared to the optical switches’ results.

Figure 7.35: Normalized amplitude spectrogram of a horizontal optical switch signal for a
total time period of 0.05 seconds.

Figures, Fig. 7.35 and Fig. 7.37, show the spectrograms for the horizontal optical switch

signals for time periods, 0.05 seconds and 0.5 seconds respectively. Fig. 7.35 shows a strong

continuity of the fundamental frequency’s amplitude across all time segments. The same

can be said for the 392 Hz harmonic as well. Looking to Fig. 7.37, the same is true, but

for a time period of 0.5 seconds. In both figures, there is also the lesser presence of higher

harmonics as well, which coincides with the results for the corresponding frequency spectra

for the horizontal switch signals shown in figures, Fig. 7.24 and Fig. 7.22.

Figures, Fig. 7.37 and Fig. 7.38, show the spectrograms for the vertical optical switch

signals for time periods, 0.05 seconds and 0.5 seconds respectively. The spectrogram for the

short time period signal of the vertical optical switch reveals frequency amplitude consistency
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Figure 7.36: Normalized amplitude spectrogram of a vertical optical switch signal for a total
time period of 0.05 seconds.

Figure 7.37: Normalized amplitude spectrogram of a horizontal optical switch signal for a
total time period of 0.5 seconds.

in the latter time segments, but not the first two. A similar result is found in Fig. 7.38. In

addition, the frequency amplitude of the fundamental frequency slightly diminishes towards

the end of the signal’s time.

The spectrograms of the horizontal optical switch signals correlate most with the spectro-
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Figure 7.38: Normalized amplitude spectrogram of a vertical optical switch signal for a total
time period of 0.5 seconds.

grams of the signals of the magnetic pickup for the positions, 0π
4
, 4π

4
, 5π

4
, and 7π

4
. The number

of frequencies in these magnetic pickup spectrograms do not reach the same number as in

the horizontal optical switch’s for a 0.05 signal, but this is only due to the signal resolution

automatically generated by the specific oscilloscope used. This result was expected because

the magnetic pickup in the horizontal positions and the bottom diagonal positions make it to

where the magnetic field can be excited through its horizontal components (and the diagonal

positions allow the smaller influences of the vertical oscillations of the string to affect the

vertical components of the field). For these more optimal magnetic pickup positions, the

spectrograms show that the tone of a note can be reliably maintained over time. A more

effective method for the future would be to apply the same spectrogram technique to a much

longer signal on a time period that envelops typical note length for common time signatures

and tempos in sheet music.
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7.6 Magnetic Flux Density Over Time

Based on the assumptions made regarding the construction of the magnetic pickup in Sec.

3.4, the assumptions regarding the magnetic field in Sec. 2.2 and Sec. 5.5, and initial

conditions for magnetic flux density of the magnetic pickup’s magnet, Faraday’s Law of

Induction was solved for with respect to time. The initial conditions were taken with a

Gaussmeter and were applied to the magnet pole face facing the string. It was discussed in

Sec. 7.1 that voltage outputs were greater for the magnetic pickup signals when the pickup

was in the bottom diagonal positions and the right horizontal position. This was due to the

initial displacement of the string due to downward bow force. A similar result was found

when taking the initial conditions for the signal at each position. The initial conditions of all

the signals for when the pickup was in the bottom positions, were comparatively higher than

when the pickup was located horizontally or above. This had to do with the magnetized

string being closer to the magnet pole face. It stands to reason that with this extra initial

string displacement due to the weight on the tip of the bow, which was approximately the

length of the bow away from the inward facing magnet pole face, the number of field lines of

the magnetic field passing through the cross-sectional area of the coils would be much greater,

affecting thus magnetic flux density. For future work, using different amounts of downward

bow force and horizontal bow force would be a fruitful exploration when measuring magnetic

flux density over time. To reiterate, this experiment erred on the side of greater downward

bow force to ensure realistic frequency distributions of the bowed string.

One of the most interesting results for magnetic flux density over time can be seen in

figures, Fig. 7.39, Fig. 7.40, Fig. 7.41, and Fig. 7.42. Before discussing the main feature

of these, one ought to look to a plot of magnetic flux density over time for a shorter signal

time. Fig. 7.39 maintains a higher resolution because it has nearly the same discretization

size as the experiment signals but covers a tenth of the time elapsed. Looking first to this

figure, it strongly exhibits a sawtooth wave pattern. In fact, all the figures for the magnetic

pickup at a horizontal or bottom diagonal position display a variant of the sawtooth wave
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Figure 7.39: Magnetic flux density over time for the signal from the magnetic pickup at the
first position for a total time period of 0.05 seconds.

Figure 7.40: Magnetic flux density over time for the signal from the magnetic pickup at the
eighth position for a total time period of 0.05 seconds. This was from the third iteration of
the experiment.

Figure 7.41: Magnetic flux density over time for the signal from the magnetic pickup at the
eighth position for a total time period of 0.05 seconds. This was from the second iteration
of the experiment.

107



Figure 7.42: Magnetic flux density over time for the signal from the magnetic pickup at the
fifth position for a total time period of 0.05 seconds. This was from the second iteration of
the experiment.

Figure 7.43: Magnetic flux density over time for the signal from the magnetic pickup at the
seventh position for a total time period of 0.05 seconds.

Figure 7.44: Magnetic flux density over time for the signal from the magnetic pickup at the
first position for a total time period of 0.5 seconds.

pattern. The reason for this pattern is because of the wave pattern of the horizontal string

displacement of a bowed string. As it was discussed in Sec. 2.1, for the horizontal trans-
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Figure 7.45: Magnetic flux density over time for the signal from the magnetic pickup at the
second position for a total time period of 0.5 seconds.

Figure 7.46: Magnetic flux density over time for the signal from the magnetic pickup at the
third position for a total time period of 0.5 seconds.

Figure 7.47: Magnetic flux density over time for the signal from the magnetic pickup at the
fourth position for a total time period of 0.5 seconds.

verse string displacement of a bowed string, assuming the string is producing Helmholtz

motion, the displacement should resemble a very orderly sawtooth pattern. Fig. 7.39 seems
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Figure 7.48: Magnetic flux density over time for the signal from the magnetic pickup at the
fifth position for a total time period of 0.5 seconds.

Figure 7.49: Magnetic flux density over time for the signal from the magnetic pickup at the
sixth position for a total time period of 0.5 seconds.

Figure 7.50: Magnetic flux density over time for the signal from the magnetic pickup at the
seventh position for a total time period of 0.5 seconds.

to demonstrate Helmholtz motion displacement [1]. This also correlates with the results of

the horizontal optical switch, triangular wave displacement from Cremer, and the horizontal
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Figure 7.51: Magnetic flux density over time for the signal from the magnetic pickup at the
eighth position for a total time period of 0.5 seconds.

bowed string displacement simulation [4, 2]. Over time, the waveform climbs, indicating a

continuous change in amplitude. Though, the plot indicates it is quasi-periodic on this short

time period. Looking to the stick phases of the displacement, the sloped sections, it does

not exhibit a straight line as would be expected for Helmholtz motion displacement. Near

the start of each stick phase, there is a second corner developed and then two extremely

shallow corners (analogous to a sloped wave of long wavelength) before each local maximum

crest. Considering the Schelleng diagram again, as mentioned in Sec. 3.6, the bow position

is in the sul tasto range, around 66 mm from the bridge end point, and that the downward

bow force is qualitatively high along with the horizontal bow force, as evidenced by the

calibration of the experiment’s bow forces and the results in Sec. 7.1 [32, 1]. There are

qualitative indications in bow forces with respect to bow position that indicate the expected

motion of the experiment’s bow stroke mechanism should be that of Helmholtz motion or

even slightly non-periodic motion. With the Schelleng diagram, this specific result indicates

that, due to an insufficiently high horizontal bow force, there should be multiple-slip mo-

tion displacement where small spikes appear along the main stick phase slope of Helmholtz

motion displacement. Though, consider that horizontal bow force is only a sufficient cause

of multiple-slip motion displacement. This type of motion and displacement qualitatively

indicates an insufficiently high enough static friction coefficient or an excessively high slip-

ping friction coefficient for the bow-string interface. One way other than the application of
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insufficient bow forces to effect either of these is to have a lack of rosin on the bow, which

decreases the static friction. It is possible to then have both the presence of high bow forces

and instances of multiple-slips in the bowed string motion’s displacement. The lack of suffi-

cient amount of rosin applied to the bow is a plausible explanation for the inter-stick phase

slips as seen in Fig. 7.39. Despite this, many of the characteristics of this displacement are

indicative of Helmholtz motion and its displacement. Note also that this plot, along with

the others of this section, denotes magnetic flux over time, not explicitly the displacement

of the string. There are many other factors to consider in describing its characteristics such

as the other independent variables and scalars in Faraday’s Law of Induction, Eq. 2.2.11, or

particularly the methods used to reduce Faraday’s Law and model a non-uniform magnetic

field. For this short time period, the reduction of Faraday’s Law of Induction and rudi-

mentary modeling of the non-uniform magnetic field are sufficient. This is supported by the

observed Helmholtz motion displacement sawtooth waveform, existence of explainable minor

slips in the stick phase of the displacement, the quasi-periodicity of the waveform, and the

value range of magnetic flux density falling within or near the expected range as mentioned

in Sec. 6.6.

For figures, Fig. 7.40, Fig. 7.41, and Fig. 7.42, there are qualitative characteristics of

Helmholtz motion displacement with the appearance of the sawtooth waveform. They are

also quasi-periodic, but to a lesser degree qualitatively. Recall that for these figures, they

are derived from a longer time signal of 0.5 seconds. The full plots of magnetic flux density

over time for the magnetic pickup signals at each position are depicted in figures, Fig. 7.44

– Fig. 7.51. More discussion of periodicity and accuracy of the reduction and model with

respect to the signals and magnetic flux density over time plots in the associated figures will

be provided later in this section.

Looking to magnetic flux density over time for when the pickup is in a vertical position,

as seen in Fig. 7.43, it does not exhibit similar characteristics to displacement due to

horizontal string oscillations. Recall that Helmholtz motion is derived from the stick-slip
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regime of the bow and string. The static and slipping frictions that cause that type of motion

and thus displacement are in horizontal directions, not vertical ones, assuming the string is

excited transversely in the positive y-direction (simulating a down bow). The bowed string

will vibrate vertically due to transverse displacement, downward bow force, and transfer

of energy from horizontal vibrations, but the string does not experience the same type of

friction as it would horizontally. As it was demonstrated in Sec. 2.2, electromotive force or

voltage and the components of the magnetic field are dependent on string displacement in

both transverse directions, even as the magnetic field is rotated as the magnetic pickup is

rotated from position to position (noted in Sec. 2.3). So, it would be sensible to think that

bowed string motion appears in magnetic flux density over time. And at least for short time

signals, this occurrence also provides more justification for the assumptions made regarding

Faraday’s Law of Induction for this specific design of magnetic pickup and the design of the

experiment.

Fig. 7.42 is the magnetic flux density over time for the signal of the magnetic pickup

when it is located in the left horizontal position. Notice that it is a sawtooth pattern, but

in the other direction. Most overviews of displacement of horizontal bowed string motion

shows it in the other direction. But in this figure, this is the result of the magnetic pickup

point in the same direction of the bowing direction. This same result can be seen for when

the pickup is in the left horizontal position as well.

On the shorter time period, as for Fig. 7.39, for certain signals of specific pickup positions,

magnetic flux density over time exhibits the displacement of Helmholtz motion apart from

minor slips due to lower static friction from a lack of rosin on the bow and only strong quasi-

periodicity as opposed to pure periodicity of the waveforms. This is the most significant

result of Sec. 7.6. Quasi-periodicity was observed in figures, Fig. 7.42 – Fig. 7.41, but

to a lesser extent. Those plots were derived from pickup signals of 0.5 seconds as opposed

to 0.05 seconds. Looking at the totality of these signals in figures, Fig. 7.44 – Fig. 7.51,

there are many differences from signals of 0.05 seconds like that shown in Fig. 7.39. First
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recall in Sec. 7.4 the issue of time consistency between experiment repetitions of the main

experiment. This compromise allowed for inter-repetition synchronicity in time with the

same starting bow position at the expense of having around 0.2 seconds of initial signal that

would not be representative of a genuine bow stroke. With this in mind, for all signals of

the main experiment repetitions, within the first 0.1– 0.2 seconds, magnetic flux density

over time generally did not display any meaningful sense of order or periodicity. All signals

except for the signals when the pickup was placed vertically as seen in figures, Fig. 7.46 and

Fig. 7.50, displayed generally unique signal envelopes. Magnetic flux density over time was

somewhat similar for when the pickup was in positions, 0π
4
, 5π

4
, and 7π

4
, in that when applying

a periodic window to each, the waveforms were qualitatively shaped similarly. Local extrema

amplitudes of magnetic flux density over time for positions 1π
4

and 3π
4

as shown in figures,

Fig. 7.45 and Fig. 7.47, were comparatively smaller than those of other positions, excluding

those of vertical positions. As it was shown in figures, Fig. 7.42 – Fig. 7.41, sawtooth

waveforms, indicative of bowed string motion displacement, are exhibited in a shorter time

period for magnetic flux density over time for the signals in all positions except the vertical

ones. This is observed for figures, Fig. 7.44 – Fig. 7.51, except for figures, Fig. 7.45 and Fig.

7.47. It is perhaps possible to argue there is local periodicity, but for these pickup positions’

signals and figures, the sawtooth waveform appears similarly to wave composition of a low

frequency wave and high frequency wave.

When looking to the longer signals and deriving magnetic flux density, there are sawtooth

wave forms locally, but weak local quasi-periodicity and definitive global non-periodicity.

And for some signals, particularly for pickup positions, 3π
4
, 4π

4
, and 7π

4
, magnetic flux density

falls below the expected range as detailed in Sec. 6.6. But, This must also be compared to

the figure showing magnetic flux density as a function of vertical distance from the magnet

pole face, Fig. 6.5. This would indicate that the magnetic flux density values for the signals

of the specified positions are not as low when taking into account vertical distance of a probe

and the position of the string segments altering the magnetic field over time. The global

114



non-periodicity of magnetic flux density over time and weak local quasi-periodicity of the

sawtooth waves of the aforementioned figures for the specific signals could be the result of

one of two or both causes to be discussed. First, the reduction of Faraday’s Law of Induction

and or the rudimentary modeling of the non-uniform magnetic field, both being based on

certain simple assumptions, may be inherently unable to accurately capture magnetic flux

density for longer periods of time. Recall that for magnetic flux density over time for short

signals, there are many characteristics that argue in favor of the approximations’ accuracy

in a short time period. Future areas of research could be applied to utilizing and improving

on different models of magnetic pickups to then capture magnetic flux density over time for

pickup signals derivative of a bowed string. Another potential cause or explanation is that

magnetic flux density is not identical with Helmholtz motion displacement or displacement

of bowed sting motion in general. String displacements in both transverse directions are

independent variables of the pickup’s magnetic field, as shown in equations, Eq. 2.3.1 and

Eq. 2.3.2, so it would make sense some form of displacement will appear in magnetic flux

density over time. When tuning the approximation of Faraday’s Law of Induction and the

magnetic field in Sec. 2.2 and Sec. 5.5, frequency spectra were used to help calibrate the

approximations and used to see how much magnetic flux density over time was influenced by

string displacement. These specific results were not provided, but many of the spectra for

signals of both 0.05 seconds and 0.5 seconds did in fact exhibit amplitude peaks at 196 Hz

and following harmonics, but also sometimes at 20 Hz. For the longer signals, the string and

string velocity harmonics were present but with a maximum amplitude at typically 20 Hz

and much noise in the range up to about 100 Hz. With this aside about frequency spectra

in this application, wave composition should be considered when considering magnetic flux

density over time. This would explain the presence of bowed string motion displacement

with the sawtooth waveform locally and its associated weak quasi-periodicity, which would

be dependent on the structure of lower frequency waves present in the result. With these two

causes or explanations in mind, it can be argued that it is likely that, with respect to searching
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for the displacement of Helmholtz motion in magnetic flux density over time, the causes of

weak local quasi-periodicity and global non-periodicity are a non-exclusive combination,

first, of the reduction of Faraday’s Law of Induction and basic magnetic field modeling being

inherently unable to accurately capture magnetic flux density over longer time periods and

second, of the structure of magnetic flux density over time being only partially dependent

on the horizontal transverse string displacement of the bowed string. For the latter possible

explanation, consider that for Fig. 7.39 and Fig. 7.44, which represent magnetic flux density

over time for the 0π
4

position but for a 0.05 second and 0.5 second signal respectively, the

magnetic flux density range was approximately 0.02 Tesla wide for both the 0.05 second

plot and a 0.05 second window from 0.2 seconds to 0.25 seconds for the 0.5 second plot.

The local extrema of these two windows, the crests of the sawtooth waveforms, differed in

that those of the latter window do not exhibit the same approximation of periodicity of the

first. Acknowledging these similarities and differences specifically inform the plausibility of

the magnetic flux density realistically having a waveform beyond just that of a function of

horizontal string displacement. There is potential for magnetic flux density over time to

be globally quasi-periodic with a sawtooth waveform of Helmholtz motion displacement or

general bowed string motion displacement. But, again, this topic can be, instead, explored

further in future research with respect to using better modeling for the magnetic field and

exploring the presence of Helmholtz motion displacement with respect to magnetic flux

density.

7.7 Subjectively Bowed String

After the survey of the main experiment results and discussion of these results, it would also

prove to be beneficial to compare these results to those of a plucked string of subjective exci-

tation force and those of a bowed string of subjective excitation force. Subjective excitation

force on the string refers to an arbitrary amount of plucking or bowing force being applied
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to the string. For the experiment, a constant bow velocity and downward bow force was

necessary to compare the results of the magnetic pickup signals for each position from one

to another. This standard need not apply for capturing the results of this section and the

next. To reiterate, the author is a classically trained violinist of over 20 years of experience.

The plucked string and bowed string experienced forces which would elicit a sound whose

loudness would be considered mezzo forte, which is the formal musical term for “moderately

loud.” For both subjective results, it was decided to only look at the results for the magnetic

pickup at three positions, 0π
4
, 6π

4
, and 7π

4
, which are the right horizontal, bottom vertical,

and bottom right diagonal positions.

7.7.1 Waveforms And Voltage Outputs

Figure 7.52: Magnetic pickup signal waveform of a bowed string of subjective force at the
specified pickup position.

Looking at waveforms of the magnetic pickup signals for the three positions, the maxi-

mums and averages are compared respectively. For position, 0π
4
, Fig. 7.52 shows that the

maximum voltage output is 2.2 volts. The average voltage output is 0.66 volts. For position,

6π
4
, Fig. 7.53 shows that the maximum voltage output is 0.15 volts. The average voltage

output is 0.06 volts. And for position, 7π
4
, Fig. 7.53 shows that the maximum voltage output

is 1.24 volts. The average voltage output is 0.4 volts. After a quick comparison of these volt-

age values to those shown in Sec. 7.1, these are decidedly lower. Even with a middling bow
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Figure 7.53: Magnetic pickup signal waveform of a bowed string of subjective force at the
specified pickup position.

Figure 7.54: Magnetic pickup signal waveform of a bowed string of subjective force at the
specified pickup position.

force applied, these voltage ranges for the pickup in the horizontal and diagonal positions

are entirely sufficient for amplification’s sake. As expected, the maximum voltage output

of the magnetic pickup signal in the vertical position is comparatively lower, similar to the

results for vertically placed pickups in Sec. 7.1.

7.7.2 Frequency Spectra

When looking at the frequency spectra of the magnetic pickup signals for when the string

is bowed with subjective bow forces, there are the favorable results in accordance with good

tonal quality. For all spectra, shown in figures, Fig. 7.55, Fig. 7.56, and Fig. 7.57, the

fundamental frequency, 196 Hz, G3, is the most amplified frequency. For all spectra, there is
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Figure 7.55: The frequency spectrum of the magnetic pickup signal of a bowed string of
subjective force at the specified pickup position.

Figure 7.56: The frequency spectrum of the magnetic pickup signal of a bowed string of
subjective force at the specified pickup position.

a healthy presence of following harmonics in both amount and their respective amplitudes.

Though the amplitudes are small, ranging from 0.2 to 0.3, the spectra for the magnetic

pickup in the bottom vertical position as seen in Fig. 7.56 has the most following harmonics

between the three spectra (though this is not to disregard that for a non-normalized linear
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Figure 7.57: The frequency spectrum of the magnetic pickup signal of a bowed string of
subjective force at the specified pickup position.

scaling, the modal amplitudes are decidedly smaller than the modal amplitudes of a spectrum

of a signal receiving significant influence from horizontal string displacement). Comparing

these results to those shown in Sec. 7.2 and Sec. 7.3, these frequency spectra results match

well with the better results in those sections.

7.7.3 Spectrograms

In figures, Fig. 7.58 and Fig. 7.60, the frequency amplitudes across time segments are

fairly consistent, indicating a steady sound across the short time period. These results for a

subjectively bowed string match well with the results seen in Sec. 7.4 for the corresponding

pickup positions. Note that unlike the signals recorded for the main experiment, these signals

are not time consistent with one another, meaning that the signals were recorded for 0.05

seconds, but at different bow segments, even if close. Recall Fig. 7.10 and how there is

a loss of frequency amplitude for the time segment containing 0.02 seconds along the time

axis. Fig. 7.58 and Fig. 7.60 give the same characteristic, but when the pickup is in the 7π
4

position as seen in Fig. 7.59, the spectrogram does not exhibit the same characteristic. It
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Figure 7.58: The spectrogram of the magnetic pickup signal of a bowed string of subjective
force at the specified pickup position.

Figure 7.59: The spectrogram of the magnetic pickup signal of a bowed string of subjective
force at the specified pickup position.

instead shows a loss in overall frequency amplitude across the 0.03 second time segment. As

it was previously stated in Sec. 7.4, it is doubtful that the human listener can detect this

short change in frequency over time.
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Figure 7.60: The spectrogram of the magnetic pickup signal of a bowed string of subjective
force at the specified pickup position.

7.7.4 Magnetic Flux Density Over Time

Figure 7.61: The magnetic flux density over time for the magnetic pickup signal of a bowed
string of subjective force at the specified pickup position.

Similar to the results of Sec. 7.6 for the signals of the magnetic pickup in horizontal

and diagonal positions, Fig. 7.61 and Fig. 7.63 also demonstrate a waveform similar to

the bowed string displacement corresponding to Helmholtz motion. So even with varying

bow velocities and bow forces, this result is consistent. Exploring this waveform behavior of

a magnetic pickup signal from a bowed string proves to be an interesting potential future

research area. Though, the same waveform pattern is not present when the magnetic pickup
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Figure 7.62: The magnetic flux density over time for the magnetic pickup signal of a bowed
string of subjective force at the specified pickup position.

Figure 7.63: The magnetic flux density over time for the magnetic pickup signal of a bowed
string of subjective force at the specified pickup position.

was in the vertical position, which can be viewed in Fig. 7.62.

7.8 Subjectively Plucked String

7.8.1 Waveforms and Voltage Outputs

Looking to figures, Fig. 7.64, Fig. 7.65, and Fig. 7.66, the maximum voltages can be ob-

served for the plucked string of subjective force. The same magnetic pickup positions as

the subjectively bowed string were used. Like those results, these signals are also not time

consistent between each other, in that the standard for applied string force was maintaining

a mezzo forte level of loudness. For position, 0π
4
, the maximum and average voltages, respec-
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Figure 7.64: Magnetic pickup signal waveform of a plucked string of subjective force at the
specified pickup position.

Figure 7.65: Magnetic pickup signal waveform of a plucked string of subjective force at the
specified pickup position.

Figure 7.66: Magnetic pickup signal waveform of a plucked string of subjective force at the
specified pickup position.

tively, were 0.67 volts and 0.43 volts. For position, 6π
4
, the maximum and average voltages,

respectively, were 0.88 volts and 0.68 volts. And for position, 7π
4
, the maximum and average
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voltages, respectively, were 1.33 volts and 0.63 volts. The signal for when the pickup is in the

bottom right diagonal position exhibits the highest maximum and average voltage outputs.

Note that the waveforms are sinusoidal in nature.

7.8.2 Frequency Spectra

Figure 7.67: The frequency spectrum of the magnetic pickup signal of a plucked string of
subjective force at the specified pickup position.

In comparison to the frequency spectra results shown in Sec. 7.2 which featured the

experiment results for a bowed string and magnetic pickup in all positions, the frequency

spectra of the plucked string are much simpler. The same is true for their comparison to

the resulting spectra of the subjectively bowed string in Sec. 7.7.2. The spectra are shown

in figures, Fig. 7.67, Fig. 7.68, and Fig. 7.69. For the corresponding pickup positions,

the resulting spectra of the plucked string all have a fourth harmonic, 784 Hz, of very low

amplitude in contrast to the amplitude of the corresponding harmonic seen for bowed string

results. Fig. 7.69 has a significantly lower amplitude for the third harmonic, 588 Hz, which

is not the case for the majority of other spectra shown in the result sections. While the 0.05

seconds signal of the experiment shown in Fig. 7.10 and the figures of Sec. 7.7.2 have a
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Figure 7.68: The frequency spectrum of the magnetic pickup signal of a plucked string of
subjective force at the specified pickup position.

Figure 7.69: The frequency spectrum of the magnetic pickup signal of a plucked string of
subjective force at the specified pickup position.

higher number of present harmonics with normalized amplitudes of around 0.2 to 0.3, the

same cannot be said of the spectra of the plucked string. And of the present harmonics

beyond 588 Hz, none have a normalized amplitude greater than 0.2.
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7.8.3 Spectrograms

Figure 7.70: The spectrogram of the magnetic pickup signal of a plucked string of subjective
force at the specified pickup position.

Figure 7.71: The spectrogram of the magnetic pickup signal of a plucked string of subjective
force at the specified pickup position.

The spectrograms of the magnetic pickup signals for a plucked string of subjective force

produce unexpected results. Fig. 7.70 shows reasonable frequency amplitude consistency

across time segments for the first three peaking frequencies, aside from a drop and spike in
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Figure 7.72: The spectrogram of the magnetic pickup signal of a plucked string of subjective
force at the specified pickup position.

amplitude of the 0.03 second segment for 196 Hz and 588 Hz respectively. Fig. 7.71 produces

good consistency of frequency amplitude across the time segments as well. And Fig. 7.72

drops in frequency amplitude across the 0.02 and 0.03 segments to spike again for 196 Hz

and 392 Hz. In comparison to the results of Sec. 7.4 and Sec. 7.5, they are similar except

for the occasional drops and spikes in frequency amplitudes at varying time segments.

7.8.4 Magnetic Flux Density Over Time

Figure 7.73: The magnetic flux density over time for the magnetic pickup signal of a plucked
string of subjective force at the specified pickup position.
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Figure 7.74: The magnetic flux density over time for the magnetic pickup signal of a plucked
string of subjective force at the specified pickup position.

Figure 7.75: The magnetic flux density over time for the magnetic pickup signal of a plucked
string of subjective force at the specified pickup position.

The initial conditions for the plucked string are different, given there is not a downward

weight and bow weight applied downward onto the string, displacing it downward. Magnetic

flux density over time for a subjectively plucked string are shown in figures, Fig. 7.73, Fig.

7.74, and Fig. 7.75. In contrast to the results shown in Sec. 7.6 and Sec. 7.7.4, the magnetic

flux density over time does not exhibit a waveform indicative of displacement corresponding

to Helmholtz motion. For all three figures, all appear to be sinusoidal and not emblematic

of a sawtooth waveform. This makes sense given that the string was not excited by a bow

which excites continuously. The length scale of magnetic flux density cannot be compared to

those of Sec. 7.6 given the difference in time domain of the signals, 0.05 seconds versus 0.5

seconds. But for the plucked string, the pickup in the vertical position produces a signal with
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expected voltage outputs and well-behaved (meaning that it is comparable to the other plots

for different pickup positions) magnetic flux density over time when there is no considerable

damping from the bow. The vertical transverse string displacement is not inhibited by a

damping bow when it is instead plucked.
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Chapter 8

Conclusion

8.1 Summary

This work focused on exploration of the behavior of a bowed string-magnetic pickup sys-

tem, specifically examining maximum and average voltage outputs across different frequency

distributions and their evolution over time. Through a combination of theoretical analysis

and experimental investigation, the study analyzed frequency distributions over time and

tracked changes in magnetic flux density. The primary objective of this work was to es-

tablish foundational insights for designing magnetic pickups for bowed instruments like the

violin. A secondary objective of this work was to motivate a modified damping factor term

or modified external force term associated with dampening of vertical bowed string motion

based on experimental evidence.

Recall the description of the experiment provided in Sec. 1.3, where a monochord is

excited by a controlled bow. A magnetic pickup can be rotated around this string with

eight possible positions corresponding to the cardinal and inter-cardinal positions. One of

the goals of the work (related to the primary objective) was to determine, out of the subset

of magnetic pickup positions considered, what position for the magnetic pickup is most

optimal. Note that the magnetic pickup locations can be specified by the cardinal and inter-
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cardinal directions, corresponding to incremented counter-clockwise angles, 0π
4

(along with

the positive-y axis of the y− z plane as viewed from the bridge endpoint of the monochord),

1π
4
, . . . , 7π

4
.

An optimal magnetic pickup position is determined by criteria relevant to voltage outputs,

frequency distributions, frequency distributions over time, and magnetic flux density over

time. With this context in mind, the main results of this work can be summarized as follows.

1. When the magnetic pickup was at the bottom right diagonal position, 7π
4
, it produced

the highest maximum and average voltages, had a favorable frequency distribution

with respect to tonal quality, maintained consistent frequency amplitudes over time,

and produced expected magnetic flux density levels.

2. When the magnetic pickup was in either vertical position, 2π
4
or 6π

4
, the maximum and

average voltage outputs were the lowest for all positions, the frequency distributions

were chaotic and noisy, and the linear amplitudes for their frequencies were very low

compared to other positions.

3. There is ample experimental evidence demonstrating significant damping of the vertical

string oscillations by the combination of the presence of bow’s bow hairs at the point

of bow-string interface and the downward bow force applied. This strengthens the

argument for updating governing bowed string equations to account for said dampening

through either an additional damping factor as a function or constant of the bow hair’s

motion or an external force as a function of bow hair’s motion.

4. For a magnetic pickup signal of 0.05 seconds in length, magnetic flux density over time

exhibited a quasi-periodic sawtooth waveform for any signal when the magnetic pickup

was in a horizontal or diagonal position. This sawtooth pattern is derivative of the

displacement of Helmholtz motion from the horizontal transverse string oscillations of

a bowed string. For signals of 0.5 seconds, there was local weak quasi-periodicity for

the sawtooth pattern and global non-periodicity.
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5. There is experimental evidence for continuous pitch glide for bowed strings.

6. Supposing a violin is used, when a string is excited by a bow, a magnetic pickup placed

at an angle from the bottom produces sufficient signal amplitude unlike the vertically

placed magnetic pickup. When placed at an angle from the bottom, the magnetic

pickup has a spatial advantage over one placed horizontally at the string. This is

because the most viable location for a pickup is between the bridge and the end of the

fingerboard. Placing a pickup horizontally in this area would impede the bow.

There have been many research contributions presented in this work and can be sum-

marized as the following. An overview of the theory surrounding the governing equations

of bowed string motion was presented in Sec. 2. Under various simplifying assumptions,

Faraday’s Law of Induction was utilized and the non-uniform magnetic field was modeled in

order to solve for magnetic flux density over time with the collected voltage signals from the

magnetic pickup. Faraday’s Law of Induction in this form was also related to the two trans-

verse displacements of a bowed string. In addition to this, to theoretically account for the

rotation of the magnetic pickup, a transformation matrix was derived to translate and rotate

the magnetic field components to correlate the governing equations with how the experiment

was to rotate the magnetic pickup, thus also the magnetic field. And finally, for Sec. 2, a

brief qualitative description was provided for the bow-string interactions specifically related

to the vertical motions of the string and bow. This part was dedicated to acknowledging

the potential need for updated governing bowed string equations to account for the damp-

ing effects of the bow on the string. This potential need was contingent on what available

evidence would be obtained from the experiment results.

The various parameters of the experiment detailed the design and construction of the

monochord, the bow stroke mechanism, the magnetic pickup, the measurement position

piece, and the fixtures to hold the optical switches. This was seen in Sec. 3. For those men-

tioned parts, the electronics, and the pertinent materials like the bow and string, parameters

and measurements were given. These designs were made such that the experiment could, in
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a simplified fashion, mimic playing a violin bow in an approximate position of typical violin

playing with a magnetic pickup that would be placed in a fixed x-position along the string

in accordance with the common distance between the bridge and the end of the fingerboard.

Details of the methods of how data was collected from the experiment were given and

discussed. These were expounded upon in Sec. 4. There were three measurement types

made by one magnetic pickup and two optical switches which were to capture the transverse

string displacements and convert them to voltages. For magnetic flux density as a function

of distance from the magnet pole face, a Gaussmeter was used to capture the data. The

use of a Gaussmeter was also used to capture initial conditions for magnetic flux density

over time. In addition, a step-by-step procedure for one repetition of the experiment was

provided.

The various post-processing techniques used to interpret the collected data and pro-

duce results from the experiment were defined and discussed in Sec. 5. They describe

first the derivation of the maximum and average voltage over magnetic pickup position for

the magnetic pickup signals and the voltage outputs across all eight repetitions of an ex-

periment iteration coming from each optical switch set of results. The section also details

how frequency spectra were to be derived for all the signals obtained. The same is true

for spectrograms for all the signals obtained. And for magnetic flux density, based on the

assumptions to simplify Faraday’s Law of Induction to better fit the method of capturing

the string motion by the magnetic pickup. In addition, the section provided a description

of how the oscilloscope was used to capture the signals and a description of how the data

was converted to comma-separated values files which could be imported to Python for the

post-processing techniques. And finally, a procedure describing how the experiment operates

in its totality was given. Recall that the repetitions of the experiment, are all time consistent

with one another, meaning that the same amount of time elapsed for the same distance of

bow traveled for each repetition.

Results that strongly resemble results from the literature demonstrating the reliability
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of the measurement tools and post-processing methods used were obtained and detailed in

Sec. 6. The construction of the monochord shared similar design features to other authors

[32, 28]. Results for magnetic flux density as functions of vertical distance above the magnet

pole face and horizontal distance at a fixed distance above the magnet pole face demonstrated

the same type of results found in the works of other authors [23]. In accordance with expected

results from Fourier analysis in relation to tonal theory and the results of another author,

accurate frequency spectra were obtained from both the magnetic pickup and both optical

switches [28]. The distributions exhibited amplitude peaks at the fundamental frequency

which the string was tuned to, specifically, 196 Hz. Accurate displays of horizontal bowed

string displacement were also achieved. Aside from an anomalous short-time peak in voltage,

the horizontal optical switch signals displayed waveforms that were sawtooth or triangular in

nature. This correlated well with theory, other authors’ results, and simulation [1, 4]. When

using the voltage signals obtained by the optical switches, linear wave polarization was

achieved in the y − z plane for bowed string motion. Particularly, though, the polarization

plots shown were derived with the voltage signals as opposed to with the actual string’s

transverse displacements. These plots were evidence demonstrating significant dampening

of the vertical string oscillations, which further the argument for updating the governing

bowed string equations. Though, the voltages are proportional to the displacements. It

is possible with numerical methods to solve for displacement using the equation shown in

Sec. 4.2, Eq. 4.2.1, which comes from Le Carrou et al. [18]. This was in accordance with

theory behind parametric sinusoidal functions and more broadly that of Lissajous curves.

For plucked string motion, some authors have displayed elliptical polarization of the string’s

transverse waves, but this was not replicated in the section [22]. Many attempts with various

different plucking techniques were used, but hyperbolic polarization of the plucked string’s

transverse waves was demonstrated instead. And lastly, a short survey on expected results

with respect to voltage outputs, frequency distributions, and magnetic flux densities was

briefly given.
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Results from the experimentation were obtained and the findings were discussed in Sec.

7. For the main experiment repetitions which featured 0.5 second long signals from the

magnetic pickup at the eight rotational positions around the string, maximum and average

voltage outputs revealed that the signal was strongest for when the pickup was at either

horizontal position, 0π
4
or 4π

4
, and at either bottom diagonal position, 5π

4
or 7π

4
. This was true

for both maximum and average voltage. They produced signals that exceeded expectations

in voltage output, but this is partly due to the heavy downward bow force used to ensure

frequency distributions comparable to those of a regularly played violin and due to the

sensitivity of the magnetic pickup coming from the high number of coil revolutions. But, the

bottom right diagonal position of the pickup produced the greatest outputs do to the large

downward bow force and bow velocity moving the string’s equilibrium, during horizontal

oscillation, closer to the magnet pole face, making the signal much stronger. For both

vertical positions, the magnetic pickup signal was significantly weaker, demonstrating the

lack of energy and amplitude in vertical transverse string oscillations of a bowed string. The

presence of downward bow force, which is unavoidable in bowed instruments, caused a bias

in amplitude towards the bottom positions, though the signal of the magnetic pickup in the

bottom vertical position was only greater than that of it in the top vertical position. This

led to the implication that for purposes of amplification, viable magnetic pickup design for

a violin would need to feature an angled orientation from below the string, such that it can

be moved closer to the string with less consideration from string contact due to the lack of

vertical displacement. This both avoids the lack of signal for amplification from the vertical

position and the spatial limitations of having a horizontally placed magnetic pickup in or

near the window of bowing for typical violin playing. These results also demonstrate that

the bow provides significant dampening to the vertical transverse string displacement and

the need for updating the governing bowed string equations to account for such dampening.

And looking to the voltage outputs of the two optical switches, the results show very little

variance across eight repetitions per whole experiment iteration, indicating the consistency
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of the bow stroke mechanism.

Due to the oscilloscope’s lack of resolution comparatively between signals lasting 0.05

seconds and 0.5 seconds (both signals had approximately the same amount of samples),

frequency spectra of the main results, lasting 0.5 seconds, only reached up to the fifth

harmonic, 980 Hz. The spectra for 0.05 seconds could account for up to the twelfth harmonic.

This is to say that the frequency distributions, arguably, of the 0.5 second signals are not

limited to the fifth harmonic. Of the results, spectra for pickup positions, 0π
4
, 1π

4
, 4π

4
, and 7π

4

had the fundamental frequency, 196 Hz, as the most amplified frequency. Each had a strong

presence of following harmonics as well. In some cases, there may have been instances of

continuous pitch glide and temperature effects on the string, ultimately slightly varying the

pitch of the string higher. In terms of tonal quality, the aforementioned pickup positions

have spectra that would indicate good tonal quality. The pickup in the top vertical position

had a spectrum which was dominated greatly by high amplitude noise. Comparing the

frequency spectra of the optical switch signals to those of the pickup signals, the pickup

signals clearly amplified higher harmonics present in the overall string displacement. This

is a significant advantage musically, achieving a brighter and fuller sound. A small set of

linear amplitude frequency spectra were also looked at. The results showed that for the

fundamental frequency, its amplitude was significantly smaller when the magnetic pickup

was in the bottom vertical position in comparison to when in the bottom right diagonal or

right horizontal position. Again, this indicated a need to update the governing equations for

bowed string motion to account for dampening of vertical string oscillations by the vertical

bow hair motions.

Like for the frequency spectra, resolution was an issue for spectrograms. So a spectrogram

for a 0.05 second signal was shown, revealing a fuller frequency distribution over time. The 0.5

signals, arguably, were not limited to the fifth harmonic for frequency makeup. Of the main

experiment results, pickup positions, 0π
4
, 4π

4
, 5π

4
, and 7π

4
had consistent frequency amplitude

over time for their respective spectral envelopes. Musically, it is crucial that when a note is
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played, it does not waver in tone or frequency amplitudes over time, unless this is an intended

technique by a player, like vibrato, which is has a larger spectral envelope and is controllable.

For the pickup in either vertical position, the frequency amplitudes are not consistent across

time segments. The spectrograms for the horizontal optical switch signals show consistent

frequency amplitude for present frequencies across time segments, while the vertical optical

switch spectrograms shower less consistency. And for the frequency spectra with good results,

their corresponding spectrograms typically exhibit similar amplitude results as well.

Analysis of magnetic flux density over time showed interesting results. The first and main

result was that under simplifying assumptions of Faraday’s Law of Induction and, thus, ap-

plying a basic modeling of a non-uniform magnetic field, the magnetic flux density over

time for a 0.05 second-long magnetic pickup signal whose pickup position was in the bottom

right diagonal or right horizontal position (non-exclusive list) exhibited a sawtooth wave-

form which most likely arose from the displacement of Helmholtz motion of the horizontal

transverse string displacement of the bowed string. Connected to the main result concerns

the results from the main experiment repetitions. For these 0.5 second long signals, mag-

netic flux density over time for signals of a magnetic pickup in either horizontal or diagonal

positions exhibited sawtooth wave patterns locally. These waveforms exhibited local weak

quasi-periodicity, while the plot in totality displayed global non-periodicity. The potential

causes of those specific results likely are that the approximations made for Faraday’s Law of

Induction and the magnetic field are insufficient and that magnetic flux density is influenced

by string displacement but not enough to be dominated by it. Depending on if the horizontal

components of the pickup’s direction pointed in the bowing direction or not, the sawtooth

pattern would “travel” left or right, respectively. Another result obtained is that over time,

magnetic flux density stayed relatively within the expected Tesla output range.

For the results from a bowed string of subjective downward bow force and bow velocity,

the results for the pickup in the bottom vertical, bottom right diagonal, and right horizontal

positions were very similar to those of the main experiment. With the author’s two decade

138



experience as a violinist, a bow stroke of force to produce a medium loudness was made and

the voltage outputs were about half of those of the experiment. In addition, for the right

horizontal position, the pickup’s magnetic flux density over time also exhibited a sawtooth

waveform indicative of displacement from Helmholtz motion.

For the results from a plucked string of subjective excitation force, there were sufficiently

high voltage outputs. The frequency spectra, however, featured less harmonic presence and

low amplitude for lower harmonics. Another key difference was that the magnetic flux over

time plots were sinusoidal and did not indicate any form of Helmholtz motion displacement

or sawtooth wave patterns. But this was expected because the string was not continuously

excited by a bow.

From analysis of voltage outputs, polarization types, and linear frequency amplitudes,

it becomes more justifiable to explicitly account for the damping effect for a bowed string’s

vertical transverse string displacement in Eq. 2.1.14 which is observed in all of these result

types. This could come potentially in the form of a modified damping factor or an external

force for the vertical transverse bowed string equation. The problem lies in the interaction

between the vertical oscillation of the bow hair of the bow and of the vertical oscillations of

the string.

Magnetic pickups for bowed instruments are not common. To the knowledge of the

author, in the last ninety years there have been very few patents for them and only a few

luthiers who have made electric violins with this feature. Of these patents, many do not

focus on magnetizing the strings. To the best of the author’s knowledge and research into

the topics, there has not been academic work on the behaviors of a bowed string-magnetic

pickup system, theoretical or experimental. This work utilized key analysis techniques for

acoustics and electromagnetism to provide results for the behaviors of this system. It provides

key types of results, crucial to designing a magnetic pickup for a bowed instrument.

It was hypothesized that when the magnetic pickup was in either horizontal position, the

maximum and average voltage outputs would be the greatest in comparison to the pickup in
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other positions. However, this hypothesis was found to be incorrect, based on experimental

evidence. Instead, maximum and average voltage outputs were greatest when the magnetic

pickup was in the bottom right diagonal position. But it was determined this was due to

the downward bow force moving the string’s equilibrium closer to the magnet pole face,

generating a more powerful signal. Though, the outputs from the horizontal positions were

still optimal, not to exclude the results from the pickup in the bottom right diagonal position.

Frequency distributions, spectrograms, and magnetic flux density over time for the horizontal

positions produced good results. Though, after experimentation and analysis, with creating

a design for a violin magnetic pickup, the bottom right diagonal position proves to be the

best in all result types. Not only this, but from a design perspective, the magnetic pickup

in this position avoids lack of signal for amplification like that of it in the vertical positions

and it avoids the spatial limitations, imposed by the bow and location of bowing, of the

horizontal positions. The magnetic pickup signals from this position, 7π
4
, provide excellent

results, indicating it is viable musically and electrically for producing a sound faithful to what

the player plays with unique tones unavailable to different types of amplification techniques

and for producing a signal that can be amplified in general.

The magnetic pickup has certain advantages over other types of amplification methods.

For a violin, a microphone is susceptible to background noise, stage noise, and even sounds

from the player like speech. A piezoelectric pickup for a violin produces a sound that

usually necessitates the use of an equalizer or pre-amplifier, which creates a greater financial

investment by for the player. But a magnetic pickup avoids these disadvantages. Though

both methods of amplification are good, consider what revolutionized the guitar. It was

the magnetic pickup not only for its type of sound and for amplification purposes, but as

people began to figure out, it was also that the influence of the body design of the guitar

was greatly reduced from a tonal and loudness perspective. If one were to create a guitar

with the neck, strings, middle sliver of the body, and a magnetic pickup, it will sound like a

guitar. The advent of the magnetic pickup in the musical world of guitars made guitars more
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affordable and more accessible to anyone, without sacrificing tonal quality or amplification.

The same could be true for the violin. Many luthiers and companies take this approach for

the violin but with merely different signal capturing techniques. And they do not enjoy the

tonal benefits of the magnetic pickup. The development of a magnetic pickup for a violin

could produce many commercial and musical benefits.

8.2 Suggestions for Improvement

For the experiment of this work, further improvements can be made. Most improvements

concern precision for specific dimensions and data collection. The first improvement that

could be made for future extensions of research is utilizing a higher quality oscilloscope.

More information and accuracy can be gained with a better oscilloscope. This is because

signals could have higher resolutions, or larger discretization of the data, allowing for more

wave information to be preserved. Longer signals would also enjoy higher precision as a

result.

Through the experimentation, particularly through consistent voltage outputs across all

experiment repetitions for each measurement tool, the bow stroke mechanism shows itself

to be reliably consistent. Though, as it was briefly discussed in Sec. 6.1, a modern version

of Cronhjort’s MUMS bowing machine can be made with the basis of the model being a

belt-driven linear actuator typically found in a 3-D printer [5]. This would allow for even

more precision in downward bow force and bow velocity. Another improvement that could

be made would be to control the number of bow hairs and if the hairs interact with one

another or not. This can be done in a way similar to the one seen in Ricca, where the bow

would be replaced with a simpler design akin to a bow but allow for fastening of bow hairs

as in Ricca’s design [28].

Another area of improvement, particularly with future research in mind, is to create the

monochord out of fewer pieces of more stable material like aluminum or acrylic plastic that
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can be machined with higher precision. Being able to use a CNC mill and G-code would

allow for greater precision when constructing the monochord. Ideally, fewer pieces could

be used to prevent additional points of marginal errors in dimensions. Acrylic would be

significantly more cost-effective than aluminum. With the use of a CNC mill, the bridge and

nut positions can be better calibrated and the positioning of the measurement tool position

pieces can be relative to the whole body and bridge and nut or relative to peg holes milled

out in the monochord base.

Improvements can be made through taking a different approach would be to attempt

to have radial symmetry for the distance between the magnetic pickup’s pole face and the

string with the influence of downward bow force on string equilibrium displacement. When

the string is at rest, treating the bow as a third class lever and having a weight attached

to the tip, it is possible to approximate the downward displacement of the string when

considering this and the tension of the string tuned at a specific note. This influence was

not considered in this work, but it did reveal the importance of downward bow force as a

design factor for a violin magnetic pickup.

The experiment and work in general could benefit from applying more advanced mod-

eling of the non-uniform magnetic field of the magnetic pickup in order to better calculate

magnetic flux density over time. This would provide more insight in those result types and

allow for more exploration in the already interesting results found using simpler methods of

calculation.

8.3 Future Work

Through this work, there have been numerous allusions to potential future areas of research

to explore. As it was mentioned in the introduction, study of a bowed string-magnetic pickup

system is a new area of research. There are many sub areas of research that can be explored.

The goal of Sec. 8.3 is to itemize the various potential areas of future work inspired by the
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work conducted in this thesis.

One area of future research is conducting an experiment or modeling of various bow

velocities and downward bow forces with a bow stroke machine for a bowed string-magnetic

pickup system. For this experiment, simplicity and reduction was sought after. But, a

parameter study, experimental or through simulation, on the bowed string-magnetic pickup

system including bowing velocity and downward bow force would prove to be a worthwhile

endeavor.

Again concerning the bow, a parameter study or simple modeling of bow inclination, the

angle between the positive y-axis and the bow itself, in relation to an angled magnetic pickup

is another potential area of future research [33]. The angle of bowing is critical to changing

strings while playing, playing two strings at a time, and general musical expression. Given

the magnet’s magnetic field is directionally dependent and the oscillations of the string occur

transversely in two planes relative to the direction of transverse excitation, bowing inclination

is an important variable to consider.

Concerning wave polarization for plucked and bowed strings, this work was unable to

reproduce elliptical polarization of a plucked string. Investigating potential material or

structural influences from a monochord or maybe only the bridge and nut materials is a

potential area of future research.

From the results of the main experiment, there are many areas of potential future work.

Many of these come from the frequency analysis. One observation was that for some magnetic

pickup signals generated by a bowed string, the associated frequency distribution had peaks

in amplitudes at frequencies near harmonics, but only roughly 1% higher, indicating possible

continuous pitch glide. Exploring the continuous nature of the bow force on the string and

pitch glide at initial attacks on a string is an interesting topic to explore further. Given this

concerns tonal quality for a magnetic pickup signal, there is application for this topic.

Another area of potential research is deriving the source of “twin peaks” in frequency

spectra, where a harmonic is amplified, then a higher frequency near the harmonic is also
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amplified. This occurred for certain magnetic pickup signals and even for some horizontal

optical switch signals.

For spectrograms, there is future work to be done for longer time signals with a more

precise oscilloscope. Music is partially time-dependent with time signatures, various tempos,

and different length notes. Being able to design a magnetic pickup for a bowed instrument

must include steady, consistent frequency distributions over time.

For magnetic flux density over time for the signals of the bowed string-magnetic pickup

system, varying bow velocity and downward bow force can provide more insight into the

magnetic flux density outputs. A potential area of future work is investigating multiple slip

motion displacement, Helmholtz motion displacement, and non-period motion displacement

appearing in magnetic flux density over time plots, derived from the signals of the bowed

string-magnetic pickup system. Using other authors’ models for magnetic pickups and further

optimizing the simple approximations used in this work can provide more insight into the

structure of magnetic flux density over time for a bowed string. Given this is one of the most

interesting results of this work and experimentation, these related areas have potential to be

a very fruitful research topics for further investigation.

There are more general areas of future research which extend what has already been

done in this work. Based on observations made in the experimentation, different bowed

string simulation can be modeled with more interest in the damping effects of the bow on

the string. A fuller parameter study can be done for magnetic pickup rotational positions

and even distances from the string for each position. Other extensions of this work have

already been mentioned, like different bowing inclination, bowing velocity, downward bow

force, and longer signals.

For the bowed string-magnetic pickup system, there is great potential for modeling var-

ious outputs through machine learning. This can be done in the frequency domain or even

the time domain. There is certainly room for future work in predicting waveforms and fre-

quency distributions based on bowing inclination, downward bow force, bowing velocity, and
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magnetic pickup position.

Regarding additional theoretical work, further investigating the dampening effects of

the bow onto the string as it vertically oscillates would be a potential route for future

research. Much experimental evidence was put forward in this work showing the prominence

of this form of dampening. Accurately defining it would further benefit the development of

a magnetic pickup for a bowed instrument. It would better aid modeling and simulation for

a bowed string-magnetic pickup system.
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