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Abstract

The advent of artificial intelligence (AI) has revolutionized diagnostic procedures, promis-

ing enhanced accuracy and efficiency across various domains. This dissertation leverages

AI capabilities for diagnostic purposes, particularly focusing on the challenges posed by

noisy and incomplete data, with a specific emphasis on image and audio data modalities.

The modern diagnostic landscape often encounters datasets fraught with noise and in-

completeness, stemming from diverse sources such as sensor limitations, environmental

factors, or inherent complexities in the data collection process. Addressing these chal-

lenges necessitates the development of robust AI methodologies capable of extracting

meaningful insights despite the presence of imperfections.

This research endeavors to bridge this gap by proposing innovative AI techniques tailored

to handle noisy and incomplete image and audio data. One of the major contributions

of this dissertation is a hybrid deep learning-based framework (HYDRA) for root cause

analysis of coverage anomalies in emerging cellular networks using minimization of drive

tests (MDT) reports. A complete schematic, detailed design, and comparative analysis of

HYDRA are given in chapter II of this dissertation. The main objective of this research

was to devise novel algorithms that can effectively mitigate the adverse effects of noise and

incompleteness, thereby enhancing the reliability and accuracy of diagnostic outcomes.

Furthermore, this study adopts a multi-faceted approach, encompassing both theoretical

advancements and practical implementations of a concept framework for proactive future

pandemic prediction leveraging multi-modal biosensing data. This approach is presented

in the dissertation as a framework called iPREDICT, which leverages the power of deep

learning architectures, a plethora of biomarkers acquired using free-life biosensors avail-

able in daily life usage smart devices like smartwatches and smartphones.

Moreover, the practical significance of this research extends beyond academic realms, with

potential applications spanning diverse sectors such as healthcare diagnostics, emerging

xii



cellular networks, and biomedical signal processing. By empowering AI systems to nav-

igate through the complexities of noisy and incomplete data, this dissertation endeavors

to pave the way for more robust and dependable diagnostic tools, ultimately contributing

to improved decision-making processes and enhanced societal well-being.

In summary, this dissertation represents a significant step towards realizing the full poten-

tial of AI-enabled diagnostics in real-world scenarios characterized by noisy and incom-

plete data. Through a synergy of cutting-edge AI methodologies and practical insights,

this research aspires to catalyze advancements that will shape the future of diagnostic

technologies across multiple domains.
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CHAPTER 1

Introduction

1.1 Background and Motivation

The integration of Artificial Intelligence (AI) into diagnostic work has undeniably revo-

lutionized several industries [1, 2] including telecom and healthcare, enabling faster and

more accurate diagnoses. AI-based solutions leverage vast amounts of data to identify

patterns, predict outcomes, and aid in decision-making processes. However, the full po-

tential of AI in diagnostics remains hindered by the persistent challenge of dealing with

noisy and incomplete data [3, 4]. The accuracy and effectiveness of AI algorithms heavily

depend on the quality and quantity of data available for training. In real-world scenarios,

obtaining comprehensive and clean data can be complex and resource-intensive, leading

to limitations in the scalability and efficiency of AI-based diagnostic solutions. Address-

ing these issues is crucial to unlocking the true transformative power of AI in diagnostic

solutions.

1.2 Problem Statements and Contributions

In this section, I present the above-mentioned issues as Problem Statements (PS) and

present the outline of proposed solutions in the form of contributions (C) of this disser-

tation.

PS1: The first problem that is addressed in this dissertation is the assessment of the

health of cellular networks. There are no practical solutions in the literature to inves-

tigate the health of cellular networks using MDT-based coverage maps, because current

solutions lack: (1) Capability to operate with sparse/incomplete network coverage data.
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(2) Capability to diagnose multiple faults in multi-base station deployment scenarios.

To address these challenges, we present a tri-pronged approach as follows:

C1-A: We designed a realistic cellular network based on Brussels city map using an

RF-engineering simulator widely used in the cellular industry. The designed network

simulates the multi-fault in multiple BS network, that helps acquire practical network

data (MDT reports) that is incomplete as well as noisy.

C1-B: This dissertation propose the usage of raw MDT reports as coverage maps to

investigate the health of the network without compromising on the practicality as well as

the efficiency of the solution. To achieve this we developed custom software to leverage

our indigenous over-the-air 5G and beyond testbed (TurboRAN) for data collection and

network health investigation.

C1-C: To maximize the efficiency of this solution I proposed and analyzed a hybrid

deep learning-based solution to mitigate the challenge of data sparsity for the AI-enabled

diagnostics in cellular networks domain.

PS2: Inspired by the seminal work led by Dr. Imran on COVID-19 and other respiratory

illnesses detection through cough sounds, a significant amount of research has been con-

ducted in recent years, with some studies reporting accuracies of up to 98%. Nevertheless,

the majority of these studies have not taken into account the practical challenges posed

by background noise. Overcoming this hurdle is crucial for the practical application of

cough or acoustic-based diagnostics, including the iPredict framework and beyond.

C2: We propose a robust screening solution based on several noise removal, robustness,

and mitigation techniques. While the current solutions show higher accuracy on certain

datasets, our solution presents a more robust performance on noisy acoustic data.

PS3: Another challenge in the scalability of acoustic diagnostic solutions e.g., in the

smartphone-based screening is the hardware and software diversity of such acoustic data

collection devices. This major limitation of the existing solutions is also not fully under-
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stood in the literature.

C3: We present an analysis of several scalability issues that compromise the AI-based

screening of respiratory health conditions. We carry out case studies using various devices

to identify the variations in the acoustic data collection devices that lead to compromised

efficacy of the current solutions. This analysis highlights many future research directions

that will lead to more robust and scalable screening solutions.

PS4: Based on the current literature there is no practical solutions available for future

pandemic prediction. This is primarily due to the complex nature of the problem and also

the novelty of each pandemic based on characteristics of virus that cause the epidemic

that later turns into a pandemic.

C4: Leveraging the previous work from of our research center and building on the work

that I did as a solution to PS2 and PS3, we present a hotspot predictions framework

iPREDICT. This is a concept framework that presents the design of a proactive pandemic

prediction solution enabled by omni-present cellular networks, a plethora of biomarkers

data collected using biosensing devices like smartwatches, and advances in AI and data

analysis capabilities. iPREDICT is expected to inspire more research that will lead

towards practical solutions for the prediction of future pandemics.

1.3 Current and Planned Dissemination and Publications

Awards

A1: Awarded Gallogly College of Engineering Dissertation Excellence Award by the

University of Oklahoma, Spring 2024.

A2: Awarded 2nd position at 3-Minute Thesis Competition by University of Oklahoma,

Tulsa, Spring 2022.

Peer-Reviewed Journal Articles
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J1: M. S. Riaz, Shaukat, M., Saeed, T., Ijaz, A., Qureshi, H.N., Posokhova, I., Sadiq, I.,

Rizwan, A. and Imran, A., 2024. iPREDICT: AI enabled proactive pandemic prediction

using biosensing wearable devices. Informatics in Medicine Unlocked, p.101478.

J2: M. S. Riaz, H. N. Qureshi, U. Masood, A. Rizwan, A. Abu-Dayya and A. Imran,

”A Hybrid Deep Learning-Based (HYDRA) Framework for Multifault Diagnosis Using

Sparse MDT Reports,” IEEE Access, IEEE Access, vol. 10, pp. 67140-67151, IEEE,

June 2022.

J3: A. Imran, I. Posokhova, H. N. Qureshi, U. Masood, M. S. Riaz, K. Ali, C. N. John, I.

Hussain, and M. Nabeel, ”AI4COVID-19: AI Enabled Preliminary Diagnosis for COVID-

19 from Cough Samples via an App,”Elsevier Informatics in Medicine Unlocked, Elsevier

Informatics in Medicine Unlocked, vol. 20, pp. 100378, Elsevier, June 2020.

J4: M. S. Riaz, H. N. Qureshi, and A. Imran, ”RAISED: Towards More Reliable AI-

enabled Screening of COVID-19 from Cough” [Under Internal Review]

Peer-Reviewed Conference Papers

C1: M. S. Riaz, H. N. Qureshi, U. Masood, A. Rizwan, A. Abu-Dayya, and A. Imran,

”Deep Learning-based Framework for Multi-Fault Diagnosis in Self-Healing Cellular Net-

works,” IEEE Wireless Communications and Networking Conference (WCNC 2022), pp.

746-751, April 2022.

1.4 Organization

The rest of the dissertation is organized as follows: Chapter 2 presents the AI-enabled

health assessment i.e. fault diagnosis in cellular networks. It also addresses the chal-

lenges of incomplete network data and how to enrich the data and its respective chal-

lenges. Chapter 3 presents the statistical analysis of acoustic features for screening various

respiratory conditions from noisy acoustic data. Chapter 4 presents iPREDICT frame-

work, an outbreak or hotspot prediction framework by leveraging multi-modal data from

4



omni-present commodity biosensing devices, Chapter 5 addresses in detail the scalability

challenges in leveraging smartphone-based preliminary screening of respiratory illness.

Building on scalable and robust-to-noise diagnostic capabilities achievable via low-cost

omni present devices such as smartphones. Finally, Chapter 6 presents the conclusion

and outlines potential future work in image and acoustic analysis for anomaly diagnosis.
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CHAPTER 2

Assessing the Health of Network from Incomplete Noisy Image Data

2.1 Introduction

In this chapter, we will dive deep into the diagnostics from noisy and incomplete data for

the root cause analysis of coverage anomalies in emerging cellular networks. Management

tasks in emerging cellular networks are becoming more complex due to evolving network

architecture, rapidly increasing and diversifying network traffic, and the growing number

of network parameters [4, 5]. Among several management challenges in emerging cellular

networks, one major challenge is the timely detection and diagnosis of faults. The in-

creasing complexity of emerging cellular networks and the ultra-reliability requirements

of numerous emerging applications are intensifying the challenges of the detection and

diagnosis of faults.

Faults, that can lead to hard outages (complete coverage degradation) or soft outages

(partial service degradation) in cellular networks can occur due to several reasons. These

include poor network design, including improperly configured parameters such as the

number, types, and locations of the base stations (BS), antenna heights, sector orien-

tation, tilt, power, frequency reuse patterns, or the number of carriers, among others.

Other types of faults can occur due to hardware, software, or functionality failures (e.g.,

power supply or radio board and network connectivity failures) [6].

Traditionally, outages resulting from faults are detected by human-based monitoring of

either alarms, performance counters, or complaints filed by network subscribers [6, 7].

This can take hours and at times days to resolve outage issues. Therefore, for better

Quality of Experience (QoE) and Quality of Service (QoS), network providers spend a

lot of money, time, and resources to do coverage testing via drive tests. This helps them
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resolve problems caused by poor parameter configuration and environment change at the

cost of heavy capital and operational expenditures. Outages caused by parameter mis-

configuration or hardware or software failure that did not raise an alarm are even more

challenging to detect and diagnose. These require network experts to manually analyze

network logs which can, in turn, further slow down the outage compensation process.

Moreover, this challenge of fault detection and root cause analysis is especially aggra-

vated in emerging ultra-dense networks, where the same advances in network design that

bring advantages such as higher data rates and capacity as compared to legacy networks,

e.g., densification, also lead to the growing complexity of the network, making it difficult

to manually detect and diagnose faults. The additional burden of growing operational

and capital expenditures is making matters worse. Therefore, outage detection and fault

diagnosis through the conventional human monitoring of logs and counters or manual col-

lection of data through the drive-test is neither a practical nor viable option, particularly

in emerging complex and dynamic network environments [8, 9].

Network automation solutions, i.e., self-healing solutions are needed to automate the

process of fault detection and diagnosis. Only when the outages and their root cause are

detected promptly without drive tests and humans in the loop, will the network be able

to take actions to compensate for these outages autonomously. The automatic root cause

analysis of outage problems can save billions of dollars to network providers annually,

by replacing manual resolution of coverage-related anomalies [7]. To wake of this need,

the 3GPP has introduced minimization of drive test (MDT) reports feature [10], where

the user equipment (UE) periodically sends network coverage related key performance

indicators (such as Reference Signal Received Power and Quality, RSRP, and RSRQ

respectively) along with their geographical location to their serving base stations, thus

eliminating the need for drive tests. Following the standardization of MDT reports, the

problem of outage detection and automated fault diagnosis using MDT reports has gained

significant attention in the literature.
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2.2 Related Work and Open Challenges

Although outage detection has been studied extensively in the literature [11, 12, 13, 14, 15,

16, 17], relatively a small number of studies have focused on outage diagnosis [18, 19, 20].

Among the several studies that focus on outage detection, are works that use convolutional

neural networks (CNN) [11], deep neural networks (DNN) [13], support vector machine

(SVM) [15], and several other machine learning (ML)-based methods [21, 13, 15, 22, 23,

24]. For a thorough review of outage detection, the reader is referred to a recent survey

presented in [5]. A key insight from the extensive review presented in [5] is that almost all

existing studies on outage detection and diagnosis overlook a major practical challenge

while using MDT reports i.e., the spatial sparsity of MDT reports in the real network.

That is most studies assume that MDT reports are available from each point in the area

under concern, an assumption that does not hold in a real deployment. This is because

MDT reports can be received only from bins where users are present. This usually is a

small fraction of the area of interest. In ultra-dense deployments, small cells contain even

fewer users compared to macro cells. This makes the number of MDT reports per cell

even smaller. This poses a major practical problem for automation solutions that leverage

MDT data. However, this problem is often overlooked in the literature by assuming that

ample MDT reports are available to represent network KPIs in the whole coverage area.

In comparison to outage detection, outage diagnosis that is the focus of this research,

remains relatively under-investigated in the literature. The study in [18] is among those

few works that focus on outage diagnosis using self-organizing maps (SOM). Another

such study in [25] also present a fault diagnosis framework using SOM. However, the

solutions presented in both [18] and [25] are semi-supervised and require input from

experts for accurate labeling of the clusters (formed based on different fault classes).

Apart from that the SOMs are not robust to varying distributions of data, which makes

them nongeneralizable to use with real network MDT reports, due to the sparse nature

of MDT data.
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In [26] researchers propose an ensemble model (combining two or more classification

techniques) for fault diagnosis, which use multiple classifiers that diagnose the current

state of the network (normal or anomalous ) based on a majority vote, from given network

key performance indicators (KPIs) e.g., signal-to-interference-plus-noise ratio (SINR),

received signal received power (RSRP), etc. This solution adds cost sensitivity based on

misclassification of faults. The cost function assigns different costs for different faults

depending upon the severity of the fault. However, the MDT training data sparsity and

multi-fault in multiple BSs are not addressed in this work either.

The most relevant to this work are the studies presented in [27, 28, 29]. The researchers

in [27] and [28] present a fault diagnosis solution using neuromorphic AI and classical

ML methods, respectively. They use MDT reports to generate radio environment maps

(REMs). Their analysis shows that random forest (RF) outperforms CNN when MDT

data is available from the entire coverage area. However, as explained earlier real network

MDT data is expected to be both sparse and noisy. Also, both these studies consider

faults in a single BS, i.e., they assume a single fault at a time. Hence, while offering

a promising first set of results on fault diagnosis using only MDT data in a multi-BS

network, the aforementioned assumptions in [27, 28] render these solutions unsuitable

for real deployment. In [29] authors present a deep learning (DL)-based solution for the

multi-fault diagnosis in one BS. But the proposed solution requires the drive-test to get

the data of a key feature used in the model (throughput). The time and cost for the

drive-tests make this solution less scalable for practical deployment.

Based on the literature review summarized above there does not exist a practical fault

diagnosis solution in the literature, which has the following capabilities.

1. Capability to diagnose multiple faults in multi-base station deployment scenario.

2. Capability to operate with sparse/incomplete MDT reports.

In order to address the above-mentioned gaps in the literature, this dissertation proposes
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Hybrid Deep Learning-based Root Cause Analysis (HYDRA), which is the first solution

that includes the capabilities identified above. HYDRA can detect multiple faults in

multi-BS deployment scenarios with realistic sparse MDT data in a fully automated

fashion. To achieve these capabilities HYDRA has two key innovative components as

illustrated in Fig. 3.1. The first component solves the MDT report sparsity problem by

leveraging data enrichment techniques (explained in section 2.5). The second component

consists of a novel hybrid of CNN and XGBoost-based models to achieve reliable diagnosis

despite noise and sparsity in the enriched or raw REMs.

2.3 Major Contributions of Proposed Framework

The primary contributions of this work are summarized as follows:

1. This dissertation presents first of its kind fault diagnosis solution that can reli-

ably diagnose multiple faults in multiple BSs in the network, caused by both hard

outages(network failures leading to no coverage) or soft outages (occurring due to

inefficient configuration of network parameters) while using sparse MDT reports.

In a real network, faults can occur in different BSs, and they can be of different

types. HYDRA is robust to not only different kinds of faults and BS locations but

also to variable user densities in the network. This makes HYDRA more feasible

to implement in a real cellular network where user density and distribution, never

remain static.

2. HYDRA is designed to work with realistic raw sparse MDT reports from the net-

work. These reports are converted into REMs. The REMs are incomplete due to

the spatial sparsity of MDT reports resulting from varying user density. I present

a practical solution to complete REMs. This is done by investigating and compar-

ing state-of-the-art data enrichment techniques suitable for the problem. I perform

a multi-KPI comparative analysis of frequency selective reconstruction (FSR), Bi-
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harmonic Equations, and TELEA. Results show that FSR outperforms others and

therefore is best suited for REM completion tasks in HYDRA.

3. The inherent noise in the REMs from the sparsity of MDT reports and/or recon-

struction makes the task of fault diagnosis using REMs even more challenging. This

challenge is ignored in the literature by often assuming the availability of complete

and noise-free REMs. Therefore, classic models such as SVM[15], RF [27, 28] and

CNN[11] are often used and observed to yield adequate performance in the litera-

ture. Our analysis shows that these classic models do not attain adequate perfor-

mance when realistically sparse MDT data is used to generate REMs. I also address

this issue of data sparsity/scarcity by proposing and evaluating a hybrid deep learn-

ing model where a CNN is first used to extract the features and the features are

then fed into an XGboost model to diagnose network coverage anomalies using

raw MDT reports. It is observed that the extensive performance evaluation (using

several suitable performance metrics) with varying degrees of MDT data sparsity

shows that the proposed hybrid model performs better than both the models when

used standalone in terms of robustness to noise and variable UE density.

2.4 Network Topology and Data Acquisition

Figure 3.1 provides a holistic view of the HYDRA framework. The framework has three

major blocks: The first block is the acquisition of MDT reports from the network ex-

plained in this section. The second block is the conversion of raw MDT reports into REMs

and data enrichment using image inpainting, thoroughly explained in Section 3.3.1. The

third block is hybrid deep learning-based root cause analysis using sparse REMs data,

rigorously described with rationale and implementation details in Section 2.6.
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Fig. 2.1: Proposed HYDRA Framework for Root-Cause Analysis of Multi-Fault in Multiple BSs,
based on Image Enrichment and Hybrid Deep Learning.

2.4.1 Network Topology

The root-cause analysis framework I consider is designed for a real network but due to

the unavailability of real data, a realistic commercial RF planning and optimization tool,

Forsk Atoll[30] is used to generate and collect MDT reports. The simulated network

topology considers an area from Brussels City, Belgium as shown in Fig. 2.2. I consider

15 different clutter types based on environmental conditions and terrain profiles. Aster

propagation (advanced ray-tracing) is used as a propagation model because of its ability

to better capture the idiosyncrasies in the environment as compared to empirical prop-

agation models. I use the same locations and configuration parameters of BS used by

a real network provider for its deployment in Belgium. Table 2.1 reports these settings.

Therefore, the obtained coverage data can be assumed to be a very close representation

of the ground truth of the MDT reports in the area used in the simulation. The area of

simulation is 13.292 km2 with 24 macrocell BSs (72 cells) to generate data with multiple

fault classes in multiple BSs simultaneously.
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Fig. 2.2: Network topology and geographical clutter information used in the simulator for
generation of synthetic MDT data.

2.4.2 Data Acquisition

I acquired MDT reports with 4 highly used fault classes in the literature for root cause

analysis and self-healing frameworks: cell outage, low transmission power, excessive an-

tenna uptilt, and excessive antenna downtilt [18, 31]. Figure 2.3 presents a visualization

using SINR maps of different fault classes when induced on a selected cell in the designed

network in the simulator. Fig. 2.3a represents a normal coverage scenario and the impact

of other fault classes on cell coverage is illustrated in Fig. 2.3 (b-e). The parameter

configuration of the 4 fault classes is described as follows:

1. Cell Outage (CO): To simulate cell outage, I deactivate the transmitter on a selected

site in the simulator. This simulates a no-coverage fault scenario around that cell.

Figure 2.3b presents the CO scenario for the highlighted cell.

2. Low Transmission Power (LTP): The maximum transmission power is 43 dBm for

a normal BS in our designed network based on the recommended value by [10]. I

13



Table 2.1: Network Scenario Settings

Network parameters Values

Network layout 24 macro BSs (eNodeBs)

Sectors per BS 3 sectors/cells per BS

Carrier frequency 2100 MHz

Simulation area 13.292 km2

Bin size 30m × 30m

Antenna height Actual site heights

Propagation model Aster propagation model (ray-tracing)

Clutter types 15 classes

Maximum transmission power 43 dBm

Cell individual offset (CIO) 0 dB

Antenna tilt 0o

Antenna gain 18.3 dBi

Geographical information
Digital Terrain Model (ground heights) +

Digital Land Use Map (clutter classes)

simulate the LTP fault scenario by reducing the maximum transmit power of a cell

to 25 dBm. Figure 2.3c shows an LTP scenario.

3. Excessive Antenna Downtilt (EAD): To induce excessive antenna downtilt I change

the tilt value from 0o to 20o. Figure 2.3d presents an EAD scenario.

4. Excessive Antenna Uptilt (EAU): Normal antenna tilt is 0o. I change the tilt value

from 0o to −20o. The impact of EAU can be seen in 2.3e for a selected cell.

To ensure the practicality of the HYDRA, while generating simulated MDT reports,

I randomly select four cells out of 72 cells in total and induce a random fault in them

through a different independent random process. In this way, not only I can have different

cells (based on location in the network) in each MDT report but also different types of

fault (CO, LTP, EAD, or EAU). I have 19933 different MDT reports of the network, each
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(a) Normal Coverage Map. (b) Cell Outage. (c) Low Transmit Power.

(d) Excessive UpTilt. (e) Excessive DownTilt.

Fig. 2.3: REMs presenting different network conditions. (a) Normal (b) Cell outage (c) Low
transmission power, this image is showing when transmission power drops to 25dBm (d) Exces-

sive antenna uptilt, this is +20o tilt (e) Excessive antenna downtilt, -20o tilt.

having 4 anomalous and 68 normal cells and each anomalous cell with a different fault.

I then convert raw MDT reports into SINR REMs. The REMs built from MDT reports

are expected to be sparse by varying degrees depending on the user density, time interval

used to aggregate MDT reports in a bin, and size of the bin [32]. I model this practical

constraint by creating REMs with varying degrees of sparsity as shown in Fig. 2.4. To

overcome the errors in fault detection and diagnosis caused by the sparsity in REMs in

this report I leverage image inpainting to enrich the sparse REMs. To the best of our

knowledge image inpainting is not used in the cellular domain because there are just a few

published works, where MDT reports are used in the form of REMs. The available lit-

erature which considers REM-based outage diagnosis [27, 28], does not consider sparsity.

This study is the first to investigate the impact of data sparsity and provide a detailed

performance comparison of state-of-the-art inpainting techniques to address the practical

15



problem of sparsity in MDT data and REMs in Section 3.3.1.

Fig. 2.4: REMs with various MDT report densities (a) Complete REM (203 UEs/cell (1101
UEs per km2)). (b) 100 UEs/cell (550 UEs per km2). (c) 80 UEs/cell (440 UEs per km2). (d)
60 UEs/cell (330 UEs per km2). (e) 40 UEs/cell (220 UEs per km2). (f) 20 UEs/cell (110 UEs

per km2)

Fig. 2.5: Proposed hybrid deep learning model. CNN extracts hidden features from REMs and
XGBoost performs the classification operation.

2.5 Data Enrichment using Image Inpainting

In this section, I present intuition and implementation details of block II (data enrich-

ment) and block III (root cause analysis) of the HYDRA framework explained in Figure
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3.1. MDT reports in a real network are expected to be sparse due to reasons such as low

UE density [32]. There are various methods available to enrich sparse MDT data such

as interpolation [33], regression clustering [34], and kriging [35]. While these methods

work well for the enrichment of numerical data, our goal is to ultimately build REMs i.e.,

images. Therefore, instead of classical interpolation techniques image inpainting methods

are more suited to our purpose here. Image inpainting methods based on fast marching

methods [36], frequency selective reconstruction (FSR) [37], and Biharmonic equation

provides a good balance between accuracy and time required to reconstruct a complete

REM from a given sparse REM. Building on insights from these works, to address REM

sparsity, I use image inpainting methods to enrich data before passing it on to root cause

analysis block of Fig. 2.5. Through an extensive survey of the state-of-the-art image

inpainting techniques, I select (based on accuracy and efficiency) the following methods

to recover missing SINR values in the REMs. A comparative analysis of these methods

on a sparse dataset (100 MDT reports/call) in the cellular networks domain is given in

Table 2.2.

2.5.1 Frequency Selective Reconstruction (FSR)

FSR reconstructs missing SINR values using Fourier basis functions from available neigh-

boring SINR values in the REM. This is a computationally expensive method but is

highly parallelizable and with the use of GPUs can achieve significantly accurate results

in considerably less time [37].

2.5.2 Biharmonic Equations

This method estimates the missing pixels using fourth-order partial differential equations.

This is a computationally very expensive process due to the computation of multiple

derivatives to estimate missing SINR values. It is quite accurate on small datasets but

requires a lot of time to reconstruct bigger datasets.
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2.5.3 TELEA

TELEA uses the principles of the fast marching method [36] to reconstruct missing SINR

values in the REM using a normalized weighted sum computed from known neighborhood

SINR values.

2.5.4 Navier-Stokes

This method reconstructs the missing SINR values in the REM using the principle of

heuristic based on fluid dynamic equation (Navier-Stokes) [38]. The reconstruction pro-

cess starts on the edges and keeps on filling the missing SINR data towards the center of

the REM.

To evaluate the performance of data enrichment methods I use root mean square er-

ror (RMSE), structural similarity index measure (SSIM), and peak signal-to-noise ratio

(PSNR) as performance metrics. It is evident from Table 2.2 that FSR outperforms the

rest of the inpainting methods. In this work, RMSE is the most important metric because

that represents the difference between the estimated (inpainted) value of SINR against

the ground truth.

Table 2.2: Performance Evaluation of Data Enrichment Methods

Method RMSE (dB) SSIM (%) PSNR (dB)

FSR 8.6 90 22.81

Biharmonic Equation 9.3 87 21.23

Navier-Stokes (NS) 9.45 86 20.8

TELEA 9.7 85 20.84

2.6 Root Cause Analysis based on Hybrid Deep Learning

In this section, I elaborate on the root cause analysis block in the HYDRA framework

(right most block in Fig. 3.1). I also explain the intuition behind using a hybrid deep
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learning model, implementation, and performance metrics to compare the proposed model

against the widely used techniques for root cause analysis.

2.6.1 Why a hybrid deep learning model?

The rationale behind using a hybrid model stems mainly from the fact that in cellular

networks, the availability of training data is still a challenge even in the age of big data

[32]. For this reason, I cannot use CNN alone as it requires large training data and is

computationally more expensive as compared to classical ML models. On the other hand,

classical ML methods when used alone are less robust to noisy data (noise is induced due

to the application of image inpainting to enrich sparse MDT data) as compared to CNN.

To overcome this challenge, I use a hybrid approach where I use CNN for hidden feature

extraction from REMs to take advantage of the robustness it offers towards noisy images

[39, 40]. Then I pass the extracted features to XGBoost which is computationally efficient

as compared to the classification layer of CNN [41] and provides better accuracy when

used as a hybrid [42, 43]. XGBoost takes the extracted features and performs fault

diagnosis. Figure 2.5 provides a detailed elaboration of the proposed hybrid model.

2.6.2 Minimization of drive test reports:

MDT reports are introduced by 3GPP in release 10, these reports have several features

e.g. user location and network quality of service based on certain KPIs like RSRP,

RSRQ, and SINR to name a few [10]. In this research, I use SINR one of the available

KPIs in MDT reports. The major advantages that MDT reports offer are a reduction

of human intervention, a reduction in operational expenditure as well as the reduction

in time-inefficiency arising from offline configurations required for coverage-related faults

detection and diagnosis. These features make MDT reports a key enabler for ML-based

self-organization envisioned for emerging cellular networks.
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2.6.3 Convolutional neural network:

A CNN is a class of neural networks that specializes in processing data that has a grid-like

topology, such as an image. CNN uses a dynamic kernel, and convolutional layers instead

of fully connected layers, which reduces the number of weights in each layer and hence

requires less computation time, which makes CNN computationally more efficient. I used

CNN for feature extraction from REMs that are image representations of network coverage

maps. The CNN architecture in Figure 2.5 is our top-performing model. The loss vs epoch

graph of this model is present in Figure 2.6, this graph is based on mean loss values of

5-fold cross-validation for 50 epochs. This graph shows the lack of overfitting as well as

underfitting in the model training process as the gap between training and validation loss

converges after 50 epochs. A detailed explanation of each feature extraction function is

given as follows:

1. Convolution: convolution extracts important hidden features e.g. boundary edges

from the input coverage map. In this study, boundaries are very important to

distinguish between coverage regions of different sites. The dimensions of the output

matrix of convolution operation are defined as Equation 2.1 and 2.2.

Or =
(Ir − F + 2P )

S
+ 1 (2.1)

Oc =
(Ic − F + 2P )

S
+ 1 (2.2)

where Or , Oc , Ir and Ic represent the number of rows and columns of the output

and input matrix respectively, while F , P and S represents the size of kernel,

padding, and length of the stride.

2. Batch Normalization: To accelerate the learning of CNN and to address internal

covariate shift, batch normalization is used [44]. This transformation normalizes

the input to a layer by maintaining the mean and standard deviation close to 1 and
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0 respectively.

3. Pooling: Pooling is used for down-sampling of the feature matrix which reduces its

sensitivity and makes the feature extraction process robust to changes. I use max

pooling to ensure the presence of the most activated features.

Fig. 2.6: Mean model loss for 5-fold cross-validated HYDRA

2.6.4 Extreme gradient boosting:

XGBoost is a decision-tree-based ensemble ML algorithm that uses a gradient boosting

framework [45]. The tree-based nature and gradient boosting make XGBoost yield supe-

rior results using fewer computing resources in the shortest amount of time. Time and

computation efficiency is the reason I use XGBoost as a classification model of HYDRA

instead of other ML models like artificial neural networks (ANN) [41], RNN, MLP, or

extreme learning machines (ELM) [42, 43]. Furthermore, it gives more accurate results

as compared to SVM and random forest. A detailed performance analysis of XGBoost

against SVM and random forest is present in Section 3.4.
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2.7 Results and Comparative Analysis of Proposed Framework

2.7.1 Performance metrics:

As I propose a solution for a multi-label multi-class problem, unlike a simple classification

problem, it requires special performance measuring metrics [46, 47], due to the biased

nature of data towards normal class. Hence, I choose the following performance metrics

to evaluate the HYDRA.

1. F1-Score (F1): F1-score combines both precision and recall in one metric by taking

their harmonic mean. This provides a more realistic performance analysis because

it minimizes the chance of bias towards the majority class in the data. F1-score of

a class is defined by 2.3

F1 =
Tp

Tp+ 1
2
(Fp+ Fn)

(2.3)

where Tp is true positive (%), Fp is false positive (%), and Fn is false negative (%)

of the respective class.

2. Exact Match Ratio/Subset Accuracy (EMR): According to EMR, a diagnosis made

by the model will be correct only if the network condition of all the cells in the

network are diagnosed correctly. In this study I have a network designed with

72 cells, even if the network condition of 1 out of 72 cells for a given REM is

predicted incorrectly, that REM will be considered as an incorrect prediction. This

is considered a very strict performance metric, but to present a critical performance

analysis I include it in our results. EMR is defined by Equation 2.4.

EMR =
1

N

N∑
i=1

I(Pi = Ti) (2.4)

where I is a proposition function that returns 1 if all 72 cells are correctly diagnosed

else returns 0.
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3. Proportionally Correct Diagnosis (PCD): I present a worst-case performance anal-

ysis of HYDRA using PCD, because even if it diagnoses 2 out of 4 faults correctly

that can help compensate half of the anomalous cells in the network. So, besides

EMR I present proportionally correct results. PCD presents the percentage of cases

when 4, 3, 2, or 1 faults (out of 4) are correctly diagnosed from a given REM.

2.7.2 Results

I used a 5-fold cross-validation method [48] for the performance analysis presented in this

section, because cross-validation ensures that each sample from the original dataset has

an equal chance of appearing in the training and validation set. Which is a well-suited ap-

proach when we have limited input data. I compare the performance of HYDRA against

the state-of-the-art ML methods used for the detection and diagnosis of outages in the

literature. These include SVM [15, 49, 50], RF [27, 28], standalone XGBoost and stan-

dalone CNN [27]. I evaluate HYDRA with different UE densities to analyze its efficacy

in realistic settings (i.e., robustness to sparsity of MDT reports in a cell/area). Figure

2.10 presents the performance evaluation of state-of-the-art ML/DL models for sparse

data (considering various UE densities) and enriched data (enhanced using FSR image

inpainting as explained in Section 3.3.1). Figures 2.10b - 2.10f provide a comparative

analysis of sparse and enriched data using EMR as a metric.

Fig. 2.7: F-score comparison of ML algorithms for different network conditions on sparse training
and testing data (100 MDT reports/cell)
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Fig. 2.8: F-score comparison of ML algorithms for different network conditions on enriched
(using FSR image inpainting) training and testing data

2.7.3 Performance Analysis

The insights coming from the performance analysis of selected models on sparse and

enriched data can be summarized as follows:

1. Performance for each fault class based on F-1 score: Figure 2.7 presents a com-

parison of HYDRA based on F-1 score for each fault class against SVM, random

forest, XGBoost, and standalone CNN on sparse data. This can be seen that HY-

DRA outperforms other methods based on F-1 score with a consistent F-1 score

of above 0.90 for each network fault. Figure 2.8 provides fault diagnosis results on

enriched data. A significant improvement in F-1 score can be seen for both antenna

uptilt and antenna downtilt but there is relatively less improvement for cell outage

and low transmit power, on enriched data. The reason for no improvement in cell

outage and low transmit power is because, a cell going through a complete or partial

outage will not have much coverage even after the data enrichment process, so the

diagnosis accuracy remains almost the same.

2. Performance analysis based on confusion matrix: Figure 2.9 presents thorough

insights about the performance of HYDRA for each network fault. Two network

conditions that are not well distinguished are lower transmit power and cell outage,

both faults are confused by HYDRA as one another. That makes sense if we look

at Fig. 2.3b and Fig. 2.3c cell outage and low transmit power affect the coverage of
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Fig. 2.9: Mean confusion matrix for multi-fault diagnosis for HYDRA using 5-fold cross-
validation.

a cell in a similar fashion. Therefore, it is relatively more challenging to distinguish

between cell outage and low transmit power as compared to excessive antenna uptilt

and downtilt. Resolving the high rate of confusion between these two specific faults

i.e. low transmission power and cell outage for other reasons, can be an interesting

topic for a dedicated future study as it may have to leverage Bayesian analysis and

historical fault logs to establish priors.

3. Performance on sparse REMs: From Fig. 2.10a, we can observe that SVM and RF

perform slightly better than CNN and XGBoost on complete REMs (i.e., when the

number of users is large enough to send MDT report from each bin of the area under

consideration). This justifies the popularity of SVM for self-healing in the literature

[15]. However, a drastic drop in diagnosis performance can be seen for SVM and

RF on sparse data. i.e., EMR drops from 90.2% to 69% and from 92% to 71.3%

respectively, as the density of MDT reports drop from 203 in Fig. 2.10a to 100 per

cell in Fig. 2.10b. The downward trend in performance continues as the number of

reports decreases per cell. EMR of SVM drops to 13.5% when MDT reports per cell
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(a) EMR analysis on complete REMs (203 MDT
reports/cell)

(b) EMR analysis on sparse (100 MDT re-
ports/cell) and respective enriched REMs

(c) EMR analysis on sparse (80 MDT re-
ports/cell) and respective enriched REMs

(d) EMR analysis on sparse (60 MDT re-
ports/cell) and respective enriched REMs

(e) EMR analysis on sparse (40 MDT re-
ports/cell) and respective enriched REMs

(f ) EMR analysis on sparse (20 MDT re-
ports/cell) and respective enriched REMs

Fig. 2.10: EMR based performance analysis on sparse and respective enriched REMs. Note:
(REMs with 203 MDT reports per cell are full coverage maps, so do not require enrichment).

decrease to 20 in Fig. 2.10f. In contrast, the results show that HYDRA is relatively

robust to the REMs sparsity and can diagnose faults with an EMR of 45%, even

when REMs are extremely sparse with just 20 MDT reports/cell.

4. Performance on enriched REMs: From Fig. 2.10f HYDRA shows a promising

improvement in enriched data as compared to sparse data. Figure 2.10f, shows

that HYDRA can diagnose faults with an EMR of 67% on data enriched from

highly sparse (20 MDT reports/cell) REMs. This is a 22% improvement in EMR
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achieved using data enrichment and hybrid deep learning-based diagnosis proposed

in HYDRA.

Fig. 2.11: Performance analysis showing performance of ML algorithms for correctly diagnosing
a proportion of faults

5. Proportionally correct diagnosed faults on enriched data: Furthermore, a worst-

case performance analysis is presented in Fig 2.11, showing the proportion of cor-

rectly diagnosed faults using different MDT report densities. It can be seen from

Fig 2.11 that HYDRA can correctly diagnose at least 2 faults in the network with

100% accuracy for complete REMs and with 89% accuracy from highly sparse (20

MDT reports/cell) MDT data. Furthermore, the proposed model can reliably di-

agnose 3 of the 4 faults 76% of the time from highly sparse MDT data. It can

identify at least one fault in around 99% of the maps enriched from just 20 MDT

reports/cell sparse data.
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CHAPTER 3

Screening Various Respiratory Conditions from Noisy Acoustic Data

3.1 Introduction

In the previous chapter, HYDRA is presented, a framework for coverage anomaly de-

tection from noisy incomplete image data. In this chapter, I present diagnostics using

acoustic data. The modality of data is changed but the focus of the research remains

the same, which is diagnostics from noisy and incomplete data. I leverage the potential

benefits of cough-based AI-enabled COVID-19 screening. Its benefits are multi-fold due

to its non-invasive nature, rapidness, and cost-effectiveness. However, there are also many

challenges highlighted by recent research that must be addressed [51, 3]. One major chal-

lenge highlighted in [51, 3] results due to the lack of standardization of the cough datasets

that are being used for the training of AI models. This challenge is a superset of many

underlying challenges that result in heterogeneity of audio data at different fronts. To

name a few, 1) noise in the data due to the collection in different environmental settings

(hospital, home, outdoor, etc.), 2) different sampling rates (48kHz, 44.1kHz, 22.05kHz,

etc.) at which the data is collected that contribute to the quality of audio, and 3) different

data collection devices (smartphone, laptop, desktop, etc.). Overall, while cough-based

AI-enabled COVID-19 screening shows promise as a potential tool in the fight against

the pandemic, careful consideration must be given to these challenges in order to ensure

that it can be implemented effectively and safely.

To address these challenges, the respective research community needs to focus on two

major research and development directions, 1) highlight the potential challenges that

compromise the robustness of published solutions, and 2) quantify the impact of those

challenges on the performance of AI-based solutions. Only through quantification of
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the effects of specific challenges, reliable AI-based solutions be developed and effectively

implemented at scale.

3.1.1 Related Work

In the recent past multiple studies have been published highlighting the challenges and

future directions for reliable AI-enabled COVID-19 diagnosis [51, 3, 52]. However, the

current literature lacks to provide a comprehensive quantification of these challenges on

the performance of COVID-19 screening. This is primarily due to the unavailability of

standardized as well as adequate clinical data that can be used to quantify the impact of

these challenges.

However, researchers in [53] present an analysis of their framework on cough data collected

at different sampling rates. They considered 4 kHz, 8 kHz, and 48 kHz sampling rates,

and based on their results higher sampling rates help yield higher diagnostic accuracy for

the ML models. This is a promising insight that leads toward a more robust ML-based

solution for cough-based disease diagnostics.

3.1.2 Gaps in the Current Literature

Based on the available literature summarized above there does not exist a robust AI-

enabled solution that quantifies the following prominent challenges in cough-based COVID-

19 screening.

1. Analysis of different acoustic and statistical features used in the ML models train-

ing.

2. Analysis of different cough sampling rates, because different cough collecting

devices have different hardware and software capabilities.

3. Analysis of device heterogeneity based on the built-in hardware of the devices

from different make, model, and brand.
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Fig. 3.1: RAISED: A framework for Reliable AI-enabled COVID-19 Screening.

To address the above-mentioned prominent challenges and limitations in the literature,

I propose RAISED Reliable AI-enabled Screening of COVID-19, which quantifies the

impact of challenges mentioned above and also highlights several new research directions

for more reliable AI-enabled cough-based disease diagnostics.

3.1.3 Contributions and organization

The following are the key components and contributions of RAISED:

1. This dissertation presents RAISED, a first-of-its-kind framework that quantifies

several of the prominent challenges in AI-enabled COVID-19 screening using cough.

This includes the quantification of more than 100 acoustic and 10 statistical features

published in our previous work [54], that impact the reliability of such solutions.

2. RAISED demonstrate the impact of several commonly used cough sampling rates

(4 kHz, 8 kHz, 22.05 kHz, 44.1 kHz, and 48 kHz) on the screening performance

of RAISED to highlight the need for reliable and robust screening solutions. The

results show this is a challenge that needs to be considered while designing AI-

enabled solutions..
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3. This research provides a detailed analysis of pre-processing methods used for noise

removal and robustness. The results demonstrate that removing the environmental

noise using the traditional speech recognition methods, impacts the performance of

RAISED negatively which opens new research directions to explore, discussed in

detail in Section 3.4.

4. RAISED highlight and quantify the impact of heterogeneity in the cough data

collection devices based on the hardware components like microphone variance.

The insights from the results show some promising research questions that need to

be answered for reliable AI-enabled disease screening.

3.2 Data and Feature Acquisition Methods

3.2.1 Data Acquisition

I acquired the cough samples using our indigenous mobile and web application that I

used for our previous work [2]. Each sample is a 3-second long, uncompressed PCM

16-bit cough stream, captured at 48 kHz. Healthy and COVID-19 samples are collected

using the same app hence maintaining the same audio features and characteristics which

is essential for our analysis in this research, cough features are given in Table 3.1.

3.2.2 Cough Features for AI-enabled Screening

We published a comprehensive list of audio features that can be leveraged to build a

robust AI-enabled solution for cough-based diagnostics in our previous work [54]. Out of

the published list, I selected 14 acoustic and 10 statistical features to quantify the impact

of these features on the AI-based COVID-19 screening. I present our analysis in detail in

Section 3.4 by highlighting the impact of each feature individually as well as combined

for the sake of robustness.
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Table 3.1: Cough Data Summary

Cough Parameters Values

Total samples 792 (400 Normal, 392 COVID-19)

Sample duration 3 seconds

Sampling rate 48 kHz

Bit rate PCM 16 bits

Channels Stereo

Gender distribution Male: 622, Female: 170

Age distribution Min Age: 19 Years, Max Age: 74 Years

User consent Electronic consent

3.2.3 Cough Collection Device Heterogeneity

A wide variety of devices are used to collect the cough samples. The diversity of data

collection devices is essential for the development of RAISED because each device has

different hardware which leads to self-noise in the collected cough data. I present the

device diversity analysis in Section 3.4 considering several different smartphone and laptop

devices.

3.3 System Design of RAISED

RAISED shown in Fig. 3.1 is designed with robustness and reliability as the major

motivations. To achieve robustness RAISED has the following components explained

below:
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3.3.1 Audio Pre-processing

Recording cough using smart devices in public settings introduces environmental noise

and reverberation, which can contaminate the recordings and compromise the accuracy

of ML models for disease diagnosis. While reverberation can be characterized by sound

propagation models in indoor and outdoor environments [55], environmental noise can

vary significantly based on the surroundings. The amplitude, frequency distribution, and

signal-to-noise ratio of the noise in each recording can be unique. Furthermore, even in the

same ambient setup, variations in microphone-to-mouth positioning, such as distance and

angle, can result in noise variations in the recordings. Although filtering and smoothing

algorithms can be employed to reduce noise, this often leads to the elimination of high-

frequency components in the recordings. However, these high-frequency components are

not always noise-induced and can be crucial for accurate cough-based diagnosis, thus

they cannot be entirely removed. Additionally, ML models trained on noiseless data

or data with limited noise scenarios tend to overfit and lack generalization to real-life

settings where a multitude of environmental noises exist. Therefore, the challenge lies in

developing noise-aware machine learning models that exhibit robustness to environmental

distortions during both the training and inference stages [56].

RAISED leverages several methods to overcome the challenge of noise in the cough data.

Firstly using the traditional approaches in the speech recognition domain to remove static

environmental noise. Secondly, provided the cough sound is itself more like a noise than

speech. Therefore I use noise robustness methods that can overcome the noise as well as

the biases like age and gender in the data.

3.3.2 Feature Engineering

Building on our survey [54], I focus on acoustic and statistical feature engineering for

cough-based screening. This is a relatively unexplored direction in the literature for AI-

enabled COVID-19 diagnosis. Therefore I present a comprehensive analysis for both time
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and frequency domain features. Furthermore, I demonstrate the quantitative impact of

each feature class individually as well as when combined with other features for the model

training.

3.3.3 AI-engine for COVID-19 Screening

We use extreme gradient boosting (XGBoost) as our AI engine for RAISED, because

of its efficiency and robustness to noisy data. XGBoost is inherently reliable for the

robust classification of noisy data due to its ensemble learning approach, gradient boosting

mechanism, and regularization techniques. These features enable XGBoost to effectively

reduce the impact of noise, and improve the overall classification performance even in

challenging sparse and noisy environments [57]. Moreover, it outperforms our previously

published models for multi-class classification [2], demonstrating superior performance as

a binary classifier.

3.4 Results and Comparative Analysis

3.4.1 Evaluation of Device Diversity

The ambulatory sound-based cough diagnostic can be influenced by the hardware diver-

sity of audio recording devices across three levels. Firstly, there is variability in device

types, including cellphones, laptops, microphones, and smartwatches. Secondly, even de-

vices of the same type may differ due to various manufacturing brands such as Apple,

Google, Samsung, and variations in specifications such as frequency response, phase re-

sponse, sensitivity, noise level, sound pressure level, and signal-to-noise ratio. Thirdly,

even devices with identical specifications, belonging to the same brand and model, can

exhibit electro-acoustic variations stemming from inherent manufacturing process uncer-

tainties of microphone chips [58]. In Fig. 3.2a I present the performance analysis of

RAISED on test data collected using different devices. The results show a rapid decrease
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(a) Impact of hardware diversity (model trained
and tested on data acquired by different devices)

on COVID-19 screening.
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(b) Impact of different sampling rates (audio sam-
pling rate used to record cough data) on COVID-19

screening.
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(c) Impact of different file types (cough stored in
different file formats for efficient transmission and

manipulation) on COVID-19 screening.
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(d) Impact of different pre-processing methods
(used for sound-based data robustness and environ-
mental noise reduction) on COVID-19 screening.

Fig. 3.2: Performance analysis of RAISED based on various software and hardware related
data diversities, different (a) sampling rates (b) file types (compression rates) (c) pre-processing

methods (d) device diversity, used to acquire training data.

in accuracy which is also seen in evaluation by other researchers [58]. This brings forth

opportunities for further research, such as the development of ML models capable of

generalizing across the electro-acoustic disparities among microphones. Another avenue

involves training ML algorithms to accurately identify the diverse models and brands of

recording microphones. By achieving this identification, it becomes feasible to mitigate

the impact of microphone profiles on the recorded sounds.

3.4.2 Evaluation of Audio Sampling Rates

In addition to the hardware disparities among microphones, software characteristics, in-

cluding the sampling rate, contribute to producing sound recordings with varying sizes
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and qualities. As a result, a trade-off between ML model accuracy and speed arises, in-

volving the management of data quality versus size. I emphasize the challenge posed by

the diversity of audio sampling rates by providing a quantified assessment of the impact

of five distinct sampling rates on the performance of RAISED in Fig. 3.2b. Our findings

based on results in Fig. 3.2b show though not significant but higher sampling rates yield

higher accuracy. The results show a 10% decrease in the sensitivity and specificity of

RAISED for a 12 times lower sampling rate. This is a promising step toward reliable

screening and can be strengthened with further research in this direction.

3.4.3 Evaluation of Audio File types

In tandem with the sampling rate, file type is another software-based characteristic of the

audio data, that contributes to the size and quality of the cough samples. In Fig. 3.2c

I present the quantified impact of five different commonly used audio file types on the

performance of RAISED. A dip in performance is evident as we move from uncompressed

WAV file format to compressed file formats. This is primarily due to the quantization

error as well as the data encoding used for the compressed file formats. Both quantization

and encoding errors end up losing some latent features (MFCCs, band power, energy, etc.)

in the audio which leads to a decrease in performance. Consequently, this opens up new

avenues for research into audio compression techniques tailored specifically for cough

data.

3.4.4 Evaluation of Noise Removal and Robustness Methods

To evaluate RAISED against noisy data I present a two-pronged approach, 1) remove

the environmental noise from the cough before feeding it to the AI engine, 2) add more

noise to the training data to make the AI engine robust to learn from the noisy data.

Fig. 3.2d presents results from both approaches. I use spectral gating (SG) as a method

to remove the environmental noise from cough but the performance goes down on the
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noise-removed data. This is counter-intuitive because clean data should intuitively yield

better performance. Based on our analysis this must be due to two reasons, 1) SG is a

common method to remove noise from speech data and cough is more like a noise than

speech, so SG end up removing some cough in addition to static environmental noise 2) SG

removes high-frequency components from the speech considering them noise and cough

also has high-frequency components, which end up being removed and hence losing some

of the important features that help the AI engine learn to distinguish between healthy

and COVID-19 coughs.

In addition to the noise removal method, I also present the performance analysis of

RAISED for noise robustness techniques in Fig. 3.2d. I use time stretch (TS) and

pitch shift (PS) to add more noise to the cough samples. I train the AI engine on the

synthetic noisy data to make it learn to classify COVID-19 and healthy coughs in the

presence of noise. I select TS and PS keeping in mind this will also help mitigate the

age and gender bias in the data which will lead to the overall robustness of RAISED.

The results in Fig. 3.2d show both TS and PS improves the performance of RAISED.

PS demonstrates greater improvement compared to TS, primarily because our dataset

consists of approximately 80% male participants. Therefore, PS effectively addresses the

bias arising from gender variations. Additionally, I provide results for a cascade of TS

and PS as a pre-processing technique. While these results indicate an enhancement in

performance compared to using the raw data, the improvement is lower compared to the

individual performance achieved by TS and PS separately.

3.4.5 Evaluation of Acoustic and Statistical Features

In conjunction with several software and hardware challenges I also present a compre-

hensive analysis of cough features that are used for COVID-19 screening. The acoustic

features extracted from cough samples play a crucial role in the analysis and classifica-

tion of cough sounds. Various acoustic parameters are utilized to capture the distinctive
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Table 3.2: Performance Analysis of Acoustic Features Used Individually for COVID-19 Screening

Acoustic Features Used
Performance Metrics

Sensitivity(%) Specificity (%)

MFCC 87.59 86.91

MFCC Delta 76.93 76.13

MFCC Delta2 79.38 77.34

Melspectrogram 77.69 74.71

Zero Crossing Rate 61.14 62.18

Spectral Rolloff 62.02 64.12

Spectral Centroid 66.29 65.23

Spectral Bandwidth 64.7 63.27

RMS Energy 73.21 72.19

Chroma STFT 67.16 68.03

Chroma CQT 64.13 63.75

Chroma CENS 65.67 64.53

Spectral Contrast 65.13 62.34

Tonnetz 64.23 62.78

characteristics of cough events. Our recent survey work [54] provides a comprehensive

compilation of more than 300 features relevant to reliable AI-enabled cough-based diag-

nostics. For the development of RAISED, I specifically selected 102 features from this

extensive list, encompassing 14 distinct classes based on time and frequency domain audio

features. Table 3.2 presents an in-depth analysis of the individual performance of various

acoustic features in the context of RAISED. The findings highlight the significant role of

Mel-frequency cepstral coefficients (MFCC) in enabling an AI engine to effectively dif-

ferentiate between diseases based on cough sounds. Notably, two novel features, namely
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Table 3.3: Performance Analysis of Acoustic Features Combined for COVID-19 Screening (*
ZC Rate: Zero Crossings Rate, Melspec: Melspectrograms)

Performance Metrics
Acoustic Features Used

Sensitivity Specificity

MFCC + MFCC Delta 90.41 89.17

MFCC + MFCC Delta + MFCC Delta2 92.13 90.23

MFCC + MFCC Delta + MFCC Delta2 + Melspec 92.38 91.03

MFCC + MFCC Delta + MFCC Delta2 + Melspec + ZC Rate 91.76 90.34

MFCC + MFCC Delta + Melspec + ZC Rate + RMS Energy 92.57 90.27

MFCC + Melspec + RMS Energy + Spectral Rolloff 92.83 91.12

MFCC + Melspec + RMS Energy + Spectral Centroid 93.89 92.28

MFCC + Melspec + RMS Energy + Tonnetz 94.17 92.79

MFCC + MFCC Delta + MFCC Delta2 + RMS Energy 95.15 93.48

MFCC Delta and MFCC Delta2, which represent the first and second-order derivatives

of MFCC respectively, demonstrate substantial importance despite their limited usage

in existing COVID-19 screening literature. This underscores the potential of exploring

these related MFCC-derived features. Additionally, widely recognized features such as

Melspectrograms and RMS energy exhibit strong performance, aligning with their exten-

sive utilization in previous studies. Conversely, certain features including Spectral rolloff,

Chroma STFT, and Tonnentz, while commonly employed in the literature, demonstrate

relatively lower contributions according to our analysis.

In Table 3.3, I present the performance evaluation of a collective set of acoustic features

used for training the AI engine in RAISED. To construct this combined feature set, I

merged the top-performing individual features identified in Table 3.2. The results indicate

that the combination of MFCC, MFCC Delta, MFCC Delta 2, Melspectrograms, and

RMS Energy yields the most favorable performance. However, it is worth noting that
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Table 3.4: Performance Analysis of Statistical Features Used Individually for COVID-19 Screen-
ing

Statistical Features Used
Performance Metrics

Sensitivity Specificity

Mean 95.15 93.48

Median 94.25 93.67

Max 86.12 84.35

Min 86.37 85.19

1st Quartile 89.24 90.37

3rd Quartile 90.27 91.78

Inter Quartile range 88.17 87.67

Standard Deviation 82.46 81.76

Skewness 77.35 74.29

Kurtosis 76.21 81.3

features such as Zero Crossing Rate, Spectral Rolloff, and Tonnetz exhibit a negative

contribution when included in the feature set.

Table 3.4 presents an analysis of different statistical features used for acoustic features

aggregation. Based on the analysis and results presented in Table 3.4 Mean and Median

yield the best results for COVID-19 diagnosis, these results are aligned with our previous

paper [2] on the same subject.

3.5 Conclusion

While recent research has shown promising potential in AI-enabled COVID-19 screening.

It is important to acknowledge the numerous challenges that need to be addressed for

the successful implementation of cough-based diagnosis systems. One significant set of
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challenges lies in the software and hardware aspects of cough-based diagnostics. The

diverse range of audio recording devices and their associated hardware disparities pose

difficulties in achieving accurate and robust classification. Furthermore, variations in

software characteristics, such as sampling rates and file types, introduce complexities in

data management and machine learning model performance.

To address these challenges I present a framework named RAISED Reliable AI-enabled

Screening of COVID-19. RAISED quantify the impact of several challenges that, if ad-

dressed can pave the way towards cough-based disease diagnostics. Furthermore, it high-

lights the need for the development of noise-aware machine learning models that can

handle the unique characteristics of cough data and the environmental factors that in-

fluence it. Additionally, there is a need for research into audio compression techniques

specifically tailored for cough data, as well as effective pre-processing methods to mitigate

the impact of environmental noise and reverberation.

While it may be challenging, the advancements made in the AI domain hold immense

potential for enhancing the reliability, speed, accuracy, and accessibility of COVID-19

screening.
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CHAPTER 4

Hotspot Prediction by Leveraging Multi-modal Noisy Data from

Biosensing Devices

4.1 Introduction

The previous chapter presents RAISED, a robust framework for COVID-19 diagnosis

from noisy acoustic data. In this chapter, I present a scalable version of RAISED that is

a concept framework for proactive pandemic prediction using biosensing wearable devices.

4.1.1 Motivation and Background

While COVID-19 is not the first pandemic in the 21st century, it is one of the most dev-

astating ones taking millions of lives and annihilating trillions of dollars from the global

economy [59, 60, 61]. In the US alone, the social and economic damage of the COVID-19

pandemic has surpassed that of all the natural disasters in the last century combined

[62]. The absence of proactive and scalable outbreak detection or pandemic prediction

mechanisms is one of the core reasons why pandemics spread and thus cause greater so-

cioeconomic damage than natural disasters like hurricanes and tsunamis. Predictive or

early detection systems for calamities have helped humanity minimize human fatalities

and economic losses in the past. The prevention of the catastrophic repercussions of

potential pandemics requires establishing a similar early detection system. Such a sys-

tem needs to be scalable to allow global surveillance and detection of infectious disease

outbreaks, and thus predict pandemics at the pre-emergence or local outbreak stage.
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4.1.2 Related Work

Previous epidemiological studies of the pathogenic diseases [63, 64, 65, 66] and extensive

insights from different coping strategies for the COVID-19 pandemic [67, 68, 2], provide

evidence that the early stage detection of the pandemic when it is just a local outbreak

can be a game changer in containing the infection and preventing it from becoming a

full-blown epidemic and then pandemic. The current laboratory-based diagnostic tests,

that are often conducted after the infection has spread at the local level, do not offer the

continual screening, agility, safety, scalability, and ubiquity to serve as a fast and proactive

outbreak detection and thus a pandemic prediction and prevention system. Without such

a system, COVID-19 cannot be expected to be the last pandemic of its scale and resultant

catastrophic impact on the global health and economic system.

Based on the literature at our disposal, it is evident that the majority of infectious diseases

present symptoms that can be detected and monitored through commodity wearable or

ambient sensors. The biomarkers that can be measured to screen for these symptoms and

thus detect an infection are also identified in this table. With advances in biosensing,

nanotechnology, and wireless communications most of these biomarkers can be measured

nonintrusive at population level and analyzed centrally. This observation combined with

promising results and the impact of our seminal work [2] on screening for COVID-19, any-

time anywhere just from the cough sounds by using an app installable on any commodity

phone or watch, motivates us to propose iPREDICT (see fig. 4.1 for the schematic of the

iPREDICT) an innovative framework that can enable in-situ and continuous screening at

the population level to detect a new outbreak of an existing or a new disease at an early

stage thus serving as potential pandemic prediction and prevention system that world

direly needs.
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Fig. 4.1: iPREDICT: AI-enabled proactive pandemic prediction framework using wearable
biosensing devices. *Biomarkers: SpO2(oxygen saturation), HRV (heart rate variability), ECG
(electrocardiogram), Kcal (kilocalories burnt), EEG (electroencephalogram), UV (ultraviolet

exposure), PPG (photoplethysmography), pH (saliva pH), EDA (electrodermal activity)

4.2 iPREDICT: AI-enabled Proactive Pandemic Prediction Framework

4.2.1 Overview of iPREDICT

iPREDICT presents a comprehensive framework given in fig. 4.1 for future pandemic pre-

diction comprising four integral components. First, a personalized biosensing mesh forms

the foundation, enabling real-time data collection. Second, a curated array of biomarkers,

efficiently gathered through the biosensing mesh, facilitates intricate health assessments.

Third, the synergy of AI models leverages individual biosensor data streams to facilitate
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personalized training, enhancing predictive accuracy. Fourth, by diligently analyzing

these streams, the framework adeptly identifies burgeoning anomalies through the AI

models’ predictions, thereby enabling timely outbreak alarms, exemplifying iPREDICT’s

potential in proactive pandemic prediction. A detailed description of the individual com-

ponents of iPREDICT is provided in the following subsections.

4.2.2 Components of iPREDICT

Key components and contributions of iPREDICT can be summarized as follows:

1. iPREDICT is a novel, AI-powered proactive pandemic prediction framework that

uses wearable biosensors. The framework integrates expertise from various fields

such as AI, epidemiology, and distributed system software development, to provide

a comprehensive solution for accurate prediction of future pandemics. iPREDICT

acquires essential biomarkers from free-life biosensors, analyzes the transmission

pattern of infectious diseases based on location, and employs AI algorithms to raise

alerts and prevent the rapid spread of the disease and potential pandemic outbreaks.

2. iPREDICT proposes a method that involves using graph neural networks (GNNs) to

determine the pandemic prediction threshold, taking into account various environ-

mental, geographical, and biological parameters. As the problem is complex, with

no existing mathematical model that includes all these parameters, the proposed

approach uses historical pandemic data to build a GNN-based framework capable

of predicting epidemic thresholds at different scales and resolutions of the popula-

tion. The expertise of the authors in applying AI in different domains informs the

development of this method.

3. In the next chapter I present several crucial challenges that must be addressed in

the widespread deployment of iPREDICT. With a strong focus on the engineering

challenges within our research domain, which include AI, signal processing, and
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cellular networks. The challenges I address include the collection of audio data

(cough sounds) using various smartphone devices, at different audio sampling rates

(for the efficient storage of audio data, which is critical for large-scale systems), and

the transfer of audio data in different file sizes and formats, over cellular networks

for analysis and diagnosis.

4. I demonstrate the feasibility of iPREDICT by leveraging our previous work AI4COVID-

19 [2] as a case study and provide an analysis of the quantitative impact of four

different engineering challenges on the performance of AI4COVID-19 by considering

one biosensor (microphone) and one biomarker (cough sound) out of a massive list

of available biosensors and biomarkers in a variety of biosensing devices, see fig.

4.1.

4.3 System Design of iPREDICT

4.3.1 Personalized Biosensing Mesh

Within the iPREDICT framework, I propose the ”personalized biosensing mesh” as a

pivotal component, which capitalizes on the capabilities of diverse wearable devices such

as smartwatches and smartphones. By ingeniously integrating these commodity wear-

ables, a comprehensive biosensing ecosystem is forged, capable of capturing an array of

vital biomarkers highlighted (in green color and dotted border) in fig. 4.1 such as skin

temperature, SpO2, audio recording, heart rate variability, and cough sounds (proposed

an even detailed list of biomarkers in fig. 4.1. Moreover, a description and how these

biomarkers can be used as a symptom for the detection of various diseases is presented

in Table 4.1). These biomarkers can be acquired using readily available wearable devices

through their built-in biosensors [69, 70].

iPREDICT proposes the use of smartwatches and smartphones as wearable devices due to

their usage convenience, acceptance, and availability to the masses. These wearable de-
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vices encompass an assortment of sensors, each equipped to measure specific biomarkers.

For instance, heart rate sensors embedded in smartwatches meticulously track pulse rate

variability and resting heart rates [71]. Accelerometers, commonly featured in smart-

phones can monitor movement patterns and quantify activity levels. Also, both the

devices have microphones that can collect cough and audios that is used for respiratory

disease diagnosis with impressive results [2]. Moreover, cutting-edge wearables incorpo-

rate photoplethysmography (PPG) sensors that ascertain blood oxygen saturation, while

electrodermal activity sensors gauge stress levels. Temperature sensors integrated into

devices like smartwatches serve as sentinels, detecting fluctuations indicative of fever or

irregularities [72].

By harnessing this confluence of wearable devices and their inherent biosensors, a rich

and diverse multimodal data stream is cultivated. The cough sound data is analyzed

for the preliminary diagnosis of several respiratory diseases like Bronchitis, Pertusis, and

COVID-19 [2]. Likewise, heart rate data, culminate in a comprehensive portrayal of an in-

dividual’s activity levels and overall health. I highlighted a few of the biomarkers (cough,

audio i.e. counting, heart rate) that showed promising results in COVID-19 screening

[73, 2]. This cumulative biomarker dataset serves as the foundation for constructing a

multidimensional individual health profile, emblematic of the iPREDICT framework’s

prowess.

4.3.2 Creation of Biomarker Profiles and Respective Challenges

The next component of iPREDICT is the creation of a comprehensive database of his-

torical biomarkers of the population, I call it Healthstate database in the iPREDICT

framework presented in fig. 4.1. Table 4.1 presents a list of biomarkers and the re-

spective description of what latent information these biomarkers provide which can be

exploited for the disease diagnosis. Healthstate database consists of biomarker measure-

ments of individuals either labeled as ‘healthy/normal’ or as ‘not normal’ i.e., profiles of
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Table 4.1: Description of Different Biomarkers for Disease Diagnosis

Biomarker Description

Breath Provides latent information via sound, smell, and intensity about a person’s health.[74]

Audio Recording Carries latent features that can be used in the acoustic analysis of respiratory diseases.[2]

Step Count Provides insights about the lifestyle of a person that can relate to overall health. [75]

Burnt Kilocalories Can be associated with cachexia which can be caused due to cancer or other chronic diseases.[76]

SOS Alert Can be used in emergency cases when a person’s vital signs fall outside a normal range.[77]

Heart Rate Is a major biomarker for respiratory disease diagnosis.[74]

Sweat Can be used for cystic fibrosis that causes damage to lungs and digestive system.[78]

Sedentary Movement Can be used for cardiovascular disease diagnosis.[79]

Skin Temperature Is a major symptom of the diseases that cause fever.[80]

Skin Photos Provides information about allergic viruses.

Heart Rate Variability Is a major biomarker for cardiovascular disease diagnosis.[74]

Oxygen Saturation (SpO2) Can be used as a biomarker for respiratory disease diagnosis such as COPD.[81]

Electrocardiogram Is widely used biomarker for coronary heart disease diagnosis.[74]

Blood Pressure Is a basic biomarker used by physicians for cardiovascular disease diagnosis.[74]

Saliva pH Is used as a biomarker for stress examination and monitoring.[82]

Blood Glucose Is a commonly used biomarker for the diagnosis of diabetes.[74]

Cough Contains the signature of several respiratory diseases e.g. asthma, pertussis, bronchitis etc.[2]

Breathing Rate Can be used as a biomarker for several diseases and conditions such as asthma, COPD, and pneumonia.[74]

Retinal Images Is used as a biomarker for the diagnosis of diseases like chronic kidney problems and anemia.[74]

Electroencephalogram Is a widely used biomarker for neurodegeneration problems like epilepsy, sleep disorders, and brain injuries.[74]

Photoplethysmograph Is a biomarker used for cardiovascular disease detection.[83]

Ultraviolet Exposure Can be used as a biomarker for systemic oxidative stress.[84]

Electrodermal Activity Is used as a biomarker for the diagnosis of anxiety disorder and Parkinson’s disease.[85]

Tears Contains useful information in the fluid that can be used for the diagnosis of ocular and breast cancer.[86]

individuals that have been pre-identified to have some medical condition. These profiles

will enable the detection of anomalous data points that lie within the health data stream

of the individuals. However, biomarker profiling comes with several challenges brought

by the variability and complexity of the biomarker data. These challenges can be broadly

categorized into two categories explained below:

1. Challenge 1: Inter-person Variability: The creation of a personalized biosensing

mesh comes with a complexity challenge. One way to address this is to create the
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models on edge devices, and only send triggers along with select when anomaly is

noted for central examination by AI and or medical and public health professionals.

To cope with the low computational power of the edge devices, instead of advanced

deep learning (DL) models, simpler template matching methods can be used.

2. Challenge 2: Intra-person variability: Non-infectious diseases, seasons, lifestyle

changes, and stress can cause variations. Addressing this challenge requires not

only the fusion of multiple biomarkers that reflect a multi-system state of the human

body but also deep medical expertise. As an example, HRV is a biomarker that

drops usually with the onset of most types of sickness. However, these sicknesses

may not be the cause of concern for the iPREDICT system as they may not be

infectious. Therefore, a reliable method to detect the spread of an infection is to

have a higher-level model, that looks for patterns of anomalies among people who

have been in close proximity. For example, if HRV of multiple people who have been

in close contact starts dropping within a time window, then it can be considered

as a case for further analysis of iPREDICT system. This further analysis is carried

out in iPREDICT components described in the next sections.

4.3.3 AI-based Anomaly Detection Using Biomarker Profiles

In tandem with the challenges highlighted in the previous section, the high dimensional-

ity (multiple biosensors capturing multiple biomarkers) and the large volume of data in

an individual’s biomarker profile add to the complexity of the anomaly detection com-

ponent of iPREDICT. Due to such challenges, I propose a potential disease outbreak

to be modeled as a time series anomaly detection problem. To achieve this, I propose a

novel mechanism for identifying anomalous readings at an individual’s biomarker level for

detection of viral infections, at their onset. The biosensor time series data will be used to

train an AI model for identifying individuals with biomarker levels deviating from their

normal trend. Thus, the trained AI models will be patient-specific, mitigating the effects
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of intra as well as inter-personal variability and promoting precision medicine. Time series

anomaly detection can be achieved using several machine learning (ML) models such as

ARIMA, SARIMAX, etc. [87], and DL models (e.g., recurrent neural networks (RNNs),

long short-term memory (LSTM) [88], and autoencoders [89]). The predictive results

from these models will identify a potential disease outbreak and suspected individuals

will be further tested to verify if a cluster of such anomalous data is present in close

spatio-temporal proximity.

4.4 NAT: An Adaptive Thresholding for Disease Prevalence

iPREDICT identifies the trends of similar irregularities in the biomarker values of multiple

individuals residing in close proximity over a brief time duration. Once the cluster of

infected people is identified, iPREDICT triggers an alarm based on a disease-specific

threshold to alert the authorities about a potential outbreak. I propose a pandemic

threshold η based on several magnitude/number (N), area(A), and time(T) of infection

parameters given in fig. 4.2. The threshold η is modeled based on NAT in eq.4.1.
η(Nd, A, T ) > ηd (4.1)

Where Nd represents the number of infected individuals by the disease d, A is the area

under consideration and T represents time, while ηd represents the alarm threshold of a

specific infectious disease.

Finding the quantitative value of ηd is a challenging task for the epidemiology research

community. An even bigger challenge lies in adaptively setting this threshold to minimize

the intervention time for the authorities to take necessary measures. While we know from

the epidemiology literature [90, 91, 92] that NAT depends on a wide range of factors as

listed in fig. 4.2, we do not have a quantitative representation of NAT that includes

all the factors of fig. 4.2, and developing a quantitative understanding will take decades

of research by the epidemiology research community or we may never know its closed-

form mathematical equation. The challenge is due to the diversity of the nature of
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infectious diseases (reproduction rate, nature of spread (airborne or touch), association

with other infectious diseases, etc.) and general human behaviors (mobility pattern,

response to intervention policies, etc.). Therefore, leveraging the capability of AI to learn

such complex relationships between a large variety of parameters and the availability of

data on the recent pandemics, I propose a GNN-based framework for alarm management

as the next component of iPREDICT.
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Fig. 4.2: Qualitative representation of pandemic threshold based on NAT using associated
parameters from epidemiology.

4.4.1 Population Resolution and Scale-Agnostic Graph Neural Network

System for Alarm Management

To overcome the challenges highlighted and discussed in the previous section, I propose

an AI-enabled data-driven approach to learn pathogen and population dynamics-specific

values for ηd by learning from historical data of epidemics. I aim to take benefit from the

recent advances in DL on graphs, i.e., Graph Neural Networks [93] which learn to predict

the ηd by performing convolutions on a graphical representation of the population and

its features listed in fig. 4.2.
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Fig. 4.3: Graphical modeling of historical epidemic data and training of Graph Neural Network
to predict ηd

Extensive literature in epidemiology exists where historical epidemic data is used for

forecasting the future state of an epidemic. Firstly, compartmental models such as SIR

[94], SIERD [95], and SIRV [96], etc., comprise systems of ordinary differential equa-

tions which predict epidemic parameters and spread. Secondly, ML models like SARIMA

[97] predict future infection rates through time series forecasting on past infection rates.

Thirdly, time series forecasting is also performed via Deep Neural Networks (DNNs) such

as LSTMs [98, 99, 100]. However, these approaches rely solely on the temporal aspect of

the epidemic, i.e., historical infection rates, while not accounting for the spatial dynamics

of the population such as density, distribution, inter-mobility, and population character-

istics like hygiene, humidity, etc., which can be vital in driving an epidemic. This is

evident from [101], where integrating rainfall data with infection rates significantly im-

proved the forecast of Dengue, since humidity and stagnant water caused by rain breed

Dengue carrier mosquitoes. Similarly, [102] shows that meteorological factors like atmo-

spheric pressure positively influenced the forecast of Influenza B, and [103] examined the

influence of mobility data on Influenza spread modeling. Despite such studies advocating

for the efficacy of spatial features in epidemic prediction, an all-encompassing predic-

tive model with spatial as well as temporal features is yet to be established. Recently,

several studies [104, 105, 106, 107, 108, 109] emerged where a population is modeled as
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Fig. 4.4: Multi-hierarchy and Multi-scale modeling of Populations into graphs where ηd is
predicted from lower hierarchy graphs inform the prediction of ηd at higher hierarchy.

a knowledge graph such that it captures the temporal characteristics of the population

as graph node features and spatial dynamics as well as mobility as graph structure i.e.,

adjacency matrix. Such graphical modeling aligns with the widespread use of graphs in

epidemiology where spot maps, heat maps, and area (Patch or Choropleth) graphs are

employed to illustrate the geographical spread of outbreaks on a 2D plane [110]. However,

the representation of such maps as knowledge graphs which can train DL models, and the

DL on graphs with Graph Neural Networks are emergent research directions in AI which

have demonstrated improved prognostic capability over classical ML and DL for epidemic

forecasting [104, 105, 106, 107, 108, 109]. Therefore, based on 1) the limitation of com-

partmental, ML, and DNN models to capture population features and mobility, 2) the

conventional capability of graphs in epidemiology to encapsulate these factors effectively,

and 3) the recent advancement in DL on graphs to build predictive models from spatio-

temporal graph datasets, I suggest a GNN model that learns from the dynamic graphical

representation of populations during past epidemics to predict ηd future epidemics.
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In [109, 108, 106, 104] Graph neural networks embed graphs of US counties as low-

dimensional latent embeddings which capture the population characteristics. As graph

features (e.g, infection rates) vary against time, the embeddings of population graphs from

past time {t−d, t−d+1, t−d+2, ..., t} are treated as a time series with either Transformer

or LSTM for forecasting of future t + 1 infection rates. However, these approaches do

not take into account the resolution and scale of the population graphs as variables. As

the resolution increases from country to state to county and further, the properties of the

population graphs change and hence a GNN model trained with data exclusively at low

resolution (such as at the state level) cannot be employed at high resolution such as zip

code and vice versa. In [109] and [108], the authors acknowledge resolution as a significant

variable, but the multi-resolution nature of their model comes from the clustering of

graph nodes and making condensed graphs from the pooled features of the clustered

nodes. However, the clustering of graph nodes is data-driven therefore it disregards the

natural clustering of regions due to standard geographic divisions e.g., all counties in

one state can exhibit similar characteristics due to proximity, inter-mobility, cultural and

environmental similarities, so they should be clustered together. The clustering of regions

based on geography takes advantage of Tobler’s first law of geography [111], which states

that spatially closer regions have higher similarity than spatially distant regions. Such

geography-aware clustering, therefore, eliminates the need for training data and hyper-

parameter search required in data-driven clustering. In addition to resolution, the scale

of the graphs is a bottleneck. For instance, [108] makes a graph with all the counties in

the US as nodes. Given that there are 3,142 counties and equivalent regions in the US,

one graph will contain as many nodes and up to 4.9 million edges. Further increasing the

resolution will result in a graph of 40,000 nodes = no. of five-digit zip codes in the US

[112]. On the other hand, the lower the resolution, the smaller the graph but the crucial

early-stage infection data is lost. For instance, if all the US states are modeled as a graph

of 50 nodes (high scale, low resolution), then the pathogen breakout can be detected when

it is already epidemic across states while the goal should be early detection during spreads
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over one county. Therefore, the amount of area covered in a graph, i.e., the scale of the

graph should be inversely proportional to the resolution of the graph. Building on this

understanding, I propose a multi-resolution multi-scale hierarchical approach for modeling

populations as graphs and training an end-end resolution and scale-agnostic GNN which

learns to predict pandemic alarm threshold ηd from population features listed in fig. 4.2.

We divide the population in a nested manner based on the Standard Hierarchy of Census

Geographic Entities [113], from micro to macro-region i.e., ZIP Code Tabulation Areas

(ZCTA), county, and state. The set of all ZCTAs in one county forms a county-level

graph as shown in fig. 4.4. Similarly, all counties in a state form one state-level graph,

and so on. Therefore, the total number of spatial graphs is, Stotal ∗ Cavg ∗ Zavg where

Stotal = 50 for the states in the US, Cavg is the average number of counties in US states,

and Zavg is the average number of ZCTAs in US counties. For each geographic level,

there can be multiple temporal graphs that have the same spatial structure but vary in

node/edge features as each temporal graph consists of historical data from time t to t+T

where T is the time span of a week.

To summarize, the historical epidemic data is to be modeled into a set of graphs {Gt
h|h ∈

H, t ∈ T} where H is the spatial granularity/hierarchy such as {ZCTA, County, State}

and T is time granularity of data such as {week0, week1,...,weekT}. Each graph G in

Gt
h is represented as G = (V,E) where V is the set of nodes representing regions at

hierarchy h and E is the set of edges between nodes. Each node has a set of features

X = {x0, x1, ..., xk} which represent NAT features listed in fig. 4.2. Hence, in node

features, I combine a plethora of data sources which together affect the risk of pathogen

breakouts. Historical data of past epidemics and pandemics consisting of the number of

infected, susceptible, recovered individuals, etc., over time in a region form the dynamic

node features. Properties of the population, such as census data, population density,

death/birth rate, poverty, literacy rate, age and gender demographics, etc. along with

environmental factors that highlight the population’s limitations and resources such as
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weather, pollution, and terrain form the static features. One node thus consists of all

the relevant features to qualify the breakout within that node i.e., a population section

(such as Zip code no. 11005 or the Queens county, depending on whether the popula-

tion resolution is zipcode-level or county-level). To join nodes with edges, I determine

the geographical connectivity between regions by using spatial distance as well as road

network density and borders between the regions which are modeled as nodes. For each

edge, the weight e is a function of human mobility pattern from Facebook Data for Good

[114] which uses the location history from mobile devices to track air, road, or train travel

between two regions and also specifies normal mobility ranges of communities, cohabita-

tion and co-movement of groups. So, in summary, the graphical modeling of historical

epidemic and pandemic data is such that the node features represent all the variables that

can quantify pathogen spread within a region while edges and edge weights represent the

variables that account for the spread of a pathogen from one region to another.

The most significant aspect of this geographically nested graph dataset is that ηd from

the lower hierarchy serves as a node feature in the higher hierarchy graph as depicted in

fig. 4.4. In the training dataset, the ηd at each hierarchy level comes from the averaging

of ηd of nodes at the lower level, e.g,

ηNY State =

∑CNY State

i=1 ηi
|CNY State|

(4.2)

Where CNY State is the number of counties in the New York state. At the inference time,

however, the lower hierarchy ηd comes from the trained GNN which learns to predict ηd

at varying resolutions and scales.

This dataset of spatio-temporal graphs described above is ingested by a Graph Neural

Network (GNN) as shown in fig. 4.3, specifically Diffusion Convolution Recurrent Neural

Network (DCRNN). DCRNN, introduced by Y. Li et al. [115] is a type of GNN designed

for addressing spatio-temporal forecasting tasks. It combines diffusion convolutional lay-

ers and recurrent layers to capture spatial and temporal dependencies, respectively, and
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integrates them into a unified framework. The diffusion step captures spatial depen-

dencies by propagating information through the graph structure of the data. It allows

each node to aggregate information from its neighboring nodes. The recurrent step cap-

tures temporal dependencies by incorporating historical information from previous time

steps using a recurrent architecture, such as a Gated Recurrent Unit (GRU). The matrix

multiplication in GRU is replaced with the diffusion convolution described above, thus

integrating the diffusion, convolutional, and recurrent steps in DCRNN, i.e., effectively

modeling both the spatial dependencies among different locations in the graph and the

temporal dependencies over time. DCRNN transforms the input node features into lower

dimensional embedding in latent space. The embeddings are optimized at every train-

ing step to best capture the information from node features and node neighbors. The

latent embeddings from all the nodes are then combined by either concatenation, mean

pooling or trainable pooling layers such as hierarchical pooling [116] and Self-attention

graph pooling [117]. Then, the pooled embedding is passed through fully connected neu-

ral network layers to finally output ηd, a real number that embodies the threshold for

NAT parameters such that when η(Nd, A, T ) > ηd, the alarm is triggered in the system

as shown by fig. 4.1. As GNNs are independent of the graph structure, a GNN such

as DCRNN trained on graphs of multiple resolutions and scales, can learn features that

are resolution and scale-agnostic. Hence, the resultant trained GNN can be deployed at

ZCTA, county, or state level with the shared weights as shown in Fig 4.4.

4.4.2 Verification and Preventive Measures for iPREDICT

Once the adaptive threshold is learned and the false alarm maintenance block accurately

triggers the alarm when needed, it is essential for the respective authorities to verify the

presence of the spreading disease. Among the methods that can be used for verification

include laboratory testing of potentially infected individuals. Moreover, it is imperative

to classify if the spread is from a disease that although infectious, has no risk of escalating
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as a future pandemic, or a known/unknown disease that can break out into a pandemic.

The pathogens that have the risk of evolving into a pandemic can be either re-emerging

or newly emerging. For the re-emerging pathogens, it is crucial to inform the health

authorities at the earliest as the preventive measures required to curtail its spread are well-

defined and priorly known. Among these preventive measures include social distancing,

traveling constraints at this geolocation, promoting better personal hygiene measures,

and could also include medication based on prior experience. On the other hand, if the

alarm is triggered by a newly emerged pathogen, it becomes essential to alert experts in

the fields of pathology, virology, and epidemiology. Because as their research and input

expertise on the characteristics (spread pattern, reproduction rate, and mode of spread

i.e. airborne or using touch) of the newly emerged pathogen become the basis for our next

steps in pandemic outbreak prevention and will also populate the database of unknown

infectious diseases.
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CHAPTER 5

Addressing the Engineering Challenges in Population-Level Biosensed

Data

5.1 Introduction

In the previous chapter, I present the concept and system architecture of iPREDICT.

iPREDICT leverages population-level biomarker data that comes with several challenges

including engineering challenges. This chapter focuses on mitigation techniques for these

challenges and numerical results to verify their viability.

5.2 Engineering Challenges in Implementation of iPREDICT

A variety of challenges in the medical and engineering domains will be faced when im-

plementing iPREDICT. The challenges in engineering arise from devices used to record

a variety of biomarkers using biosensing technology, see fig. 4.1. The recording devices

involved vary in terms of their biomarker-capturing mechanisms, hardware components,

and software capabilities (operating system, middleware, etc.) that introduce variability

and randomness in the data collection process. Moreover, environmental factors such as

ambient noise can also impact the performance of iPREDICT. Therefore, in this study,

I identified and quantitatively assessed several key engineering challenges encountered in

diagnosing COVID-19 based on cough sound biomarkers, recorded using a smartphone

microphone. The following engineering challenges included questions related to audio sig-

nal processing, such as the effects of contamination of cough sound with the environmental

noise, variability of self-induced noise (by active circuitry, and Brownian movement of air

particles) by a microphone [118], variation in sampling frequencies (in order to capture
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Audio Sound Acquisition

-Smart home devices (e.g., Alexa,                

Google Home, Lenovo Smart Display, 

Apple HomePod, etc.)

-Smart phone

-Smart watch
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-Smart earphones/headset

-Car voice control system
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Server, MongoDB, Oracle, etc.)
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Environmental Noise Removal
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Machine Learning Based
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-Interpolation
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-Spectral entropy

-Spectral contrast
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coefficients (MFCCs)

-Root mean square energy

-Local Hu  moments

-Maximum frequency (MaxF)

-Zero crossing rate

-Cochleagram

-Spectral bandwidth

-Wavelet transform
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-Spectral spread (SSp)

-Chroma energy normalized 
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(SAC)

-Spectral slope (SSl)

-Spectral flux

-Spectral kurtosis coefficient 

(SKC)
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-Spectral flatness (SF)

-Spectral centroid

AI Engine

-K nearest neighbor (KNN)

-Support vector machine (SVM)

-Logistic regression (LR)

-Random forest (RF)

-Extreme gradient boosting 

(XGBoost)

-Naïve Bayes

-Principal component analysis 

(PCA)

Machine Learning Models

-Deep neural networks (DNNs)

-Convolutional neural networks 
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-Recurrent neural networks 

(RNNs)
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-Generative adversarial 

Networks (GANs)

Deep Learning Models
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-KNN + XGBoost
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Ensemble Models

-File formats (WAV, MP3,  M4A,

AAC, etc.)
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44.1kHz, 22.05kHz, 8kHz, etc.)

-Bit rates (320kbps,

192kbps,128kbps, 96kbps,etc.)

Diverse File Formats

Fig. 5.1: Engineering challenges associated with the implementation of the pandemic prediction
framework.

high-quality cough samples needed for AI-based pandemic prediction), and compression

rates for efficient storage and transmission of cough samples.

5.2.1 Environmental Noise and Noise Variations

Recording cough sounds via smartphones in a public setting induces environmental noise

and reverberation which contaminate the recording and consequently compromise the

accuracy of the ML models for disease diagnosis. While reverberation can be charac-

terized by sound propagation models in indoor and outdoor settings, [55] environmental

noise can vary greatly based on the surroundings. The noise amplitude and frequency

distribution along with the signal-to-noise ratio in each sound recording can be unique.

Moreover, even in the same ambient setup, the microphone-to-mouth positioning in terms

of distance and angle causes noise variations in recordings. Although noise can be re-

duced by leveraging filtering and smoothing algorithms, this results in the elimination of

high-frequency components in the recording. However, these high-frequency components
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are not always noise-induced and can be crucial for accurate cough-based diagnosis and

hence, can not be completely removed. Moreover, ML models trained on noiseless data

or data with limited noise scenarios tend to overfit and cannot be generalized to real-life

settings where infinite types of environmental noises exist. Therefore, the challenge is

to build noise-aware ML models that are robust to environmental distortions at training

and inference [56].

5.2.2 Heterogeneity of Microphones

Another factor that complicates ambulatory sound-based cough diagnostics is the het-

erogeneity of recording devices at three levels: 1) varying device types (e.g., cellphones,

laptops, lapel microphones, and smartwatches); 2) devices of the same type from different

manufacturers (Apple, Google, and Samsung, etc.) with varying specifications (frequency

response, phase response, sensitivity, noise level, sound pressure level, signal to noise ra-

tio, and; 3) devices with the same specifications (same brand and same model) that

exhibit electro-acoustic variations due to inherent manufacturing process uncertainties of

microphone chips [118], [58]. Our focus is on the differences in recording microphones

from the same or different manufacturers. Sound recorded via different microphones is

not identical and hence affects the performance of iPREDICT. Therefore, the challenge

is to generalize the ML models beyond the electro-acoustic differences in microphones.

5.2.3 Diversity in Audio Sampling Rate

In conjunction with the hardware dissimilarities of the microphones presented in the

previous section, software characteristics such as the sampling rate (at which the audio is

recorded) generate sound recordings with variable size and quality. Thus, poses the caveat

of the trade-off between ML model accuracy and speed (audio with a higher sampling rate

will take more time to process, which will compromise on efficiency of the ML model but

yield more accurate results). I highlight the audio sampling rate diversity challenge by
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presenting the quantified impact of 4 different sampling rates in Section. 5.3. The results

present a comparative analysis of different sampling rates on the diagnosis of COVID-

19 using cough audio data. The cough sounds can have frequency components up to

20kHz [119]. Therefore I highlight the impact of 8kHz, 22.05kHz, 44.1kHz, and 48kHz

sampling rates in the case study observing the Shannon-Nyquist sampling theorem (i.e.,

the sampling frequency must be more than double the highest frequency component)

[120].

5.2.4 Diversity in Audio File Format

In addition to the sampling rate, the data is lost from the sound recordings through com-

pression as they are stored on the recording devices using different file formats. Although

lossless audio formats such as WAV, AIFF, ALAC, and FLAC exist, their larger storage

size renders them inefficient for mobile transmission over the network, storage in recording

devices and cloud, and consumption by the ML models at scale. Therefore, compression

formats such as 3GP, WMA, AAC, M4A, and MP3, with MP3 being the most common

[121] reduce the size of the audio file. Furthermore, the reduced file size is efficient for

storing as well as transmitting over the network, to process the audio file on the cloud for

biomarker profile signature creation and matching for the potential pandemic prediction.

However, file compression does not only lose data but also, does so in favor of keeping

human audibility while discarding human indiscernible components. Moreover, to dis-

criminate the nuances of cough originating through closely related respiratory disorders,

the frequency components beyond human audible interest can be significant. In addition

to the data loss, compression formats also engender the challenge of portability over many

codecs used by different recording software. A generalized cough-based diagnosis system

must therefore be able to process different codecs or re-encode variable formats into one

while being robust to the compression rates and mechanisms of varying formats. This

challenge is further highlighted and quantified in Section 5.3.
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Fig. 5.2: Performance analysis of AI4COVID-19 based on various software and hardware related
data diversities, different (a) sampling rates (b) bit rates (compression rates) (c) pre-processing

methods (d) device diversity, used to acquire training data.

5.3 Case Study: Showing Feasibility of Smartphone-Based Biosensing

We leverage our seminal work AI4COVID-19 [2] as a case study to show the feasibility

of iPREDICT. By exploiting one biomarker (cough sound) and one biosensing device

(smartphone microphone) I analyze and quantify the engineering challenges discussed in

Sec. 5.2. These challenges come from: 1) audio data acquisition, 2) data transfer over the

wireless network, 3) data pre-processing for noise removal and noise robustness, and, 4)

the diversity of data acquisition devices. Interested readers can refer to [2] for the details

regarding the multi-pronged data-driven AI model, cough sound features, and dataset

used in AI4COVID-19.

The first challenge is in the audio data acquisition phase due to the variable sampling rates
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discussed in Sec. 5.2 and highlighted in fig. 5.1. I present an analysis of AI-based COVID-

19 diagnosis using cough data acquired at 4 different sampling rates 48kHz, 44.1kHz,

20.05kHz, and 8kHz. Fig. 5.2a presents a comparison of COVID-19 diagnosis performance

using a variation in true positive and true negative rates (sensitivity and specificity). The

results in fig. 5.2a show that the sensitivity of COVID-19 diagnosis decreases from 0.765

to 0.721 when the sampling rate of cough sounds used for investigation is decreased from

48kHz to 8kHz. Moreover, the specificity is also reduced from 0.847 to 0.844, 0.827, and

0.782 for the respective sampling rates. The drop in performance is a function of 3 factors

that are involved in the process of up and downsampling of cough data. These factors

include interpolation, anti-aliasing, and decimation [122]. This challenge can be further

investigated as future work, as an optimization problem between diagnosis performance

(diagnosis accuracy of the ML model) and efficiency (time taken by ML model for the

inference) of the proposed framework.

Once the audio data is acquired by a biosensor, it needs to be transmitted over a wire-

less network that has different transmission capabilities. This requires audio data to be

compressed, which has several compression formats and bit rates highlighted in Sec. 5.2

and fig. 5.1. To further highlight this challenge I present MP3 file format compressed at

320kbps, 192kbps, 128kbps, and 96kbps bit rates, to see the effect of cough data com-

pression on the COVID-19 diagnosis. Fig. 5.2b shows a performance deterioration in

sensitivity from 0.751 to 0.714 when the compression bitrate of MP3 is changed from

320kbps to 96kbps. Also, the specificity is reduced from 0.842 to 0.79 for the respective

bitrates. The drop in performance is a function of quantization error, as well as data

encoding[123]. Both, the quantization error and data encoding compromise the quality

of audio, which leads to losing some latent features such as MFCCs, band power, and

energy, (a comprehensive list is given in fig. 5.1) that are important for COVID-19 diag-

nosis. The detrimental impact of file compression can be further investigated using more

sophisticated ensemble methods (e.g. CNN+XGBoost, CNN+LSTM, and CNN+SVM)

that are robust to noise caused by data compression[57].

64



The third challenge arises before transferring the audio data to the ML model, due to

the use of pre-processing methods to mitigate the impact of environmental noise in sound

recording. There can be two approaches to reduce the effect of environmental noise on

the efficiency of the ML method: 1) remove the environmental noise, 2) add more noise

to the training data to make the ML model robust to learning from the noisy data. I

present the results of spectral gating (SG) as a noise removal method and time stretch

(TS) and pitch shift (PS) as noise robustness methods for this case study in fig. 5.2c,

while more methods can be found in fig. 5.1. Fig. 5.2c shows that TS and PS improve

the sensitivity from 0.765 to 0.793 and 0.812 respectively, and also achieve an enhanced

specificity for both TS and PS. In contrast, the noise reduction technique SG brings the

sensitivity down to 0.746 from 0.765, the specificity is also decreased slightly. A major

reason for the drop in performance can be the nature of cough data which is more like

noise itself, and when a static noise removal technique like SG is applied it removes some

of the latent frequency features that contribute towards the COVID-19 diagnosis, which

leads to slightly poor performance. The slight change in the performance of the ML

models can be attributed to the lack of variation in the environmental noise due to the

controlled nature of the environment setting (hospital setting) used for the data collection

for this feasibility of the case. With more diverse data gathering settings, it is expected to

have more noise variations, and hence it remains crucial to further investigate the impact

of noise on the performance of the ML models.

The fourth challenge results from the variance in audio data recording devices. The

devices can have different hardware (microphone, speakers, etc.) and software (operating

system, middle-ware, etc.) based on brand, make, and model. In this case study, I focus

on diversity based on the microphone because that is used to record the audio data. I

present an analysis of a diverse set of devices consisting of an iPhone XR, Huawei Y7,

and Samsung C5. I trained the AI4COVID-19 framework on data acquired using an

Android device and tested on data from iPhone XR, Huawei Y7, and Samsung C5. The

results in fig. 5.2d, show a decrease in sensitivity from 0.765 to 0.718 and specificity from
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0.847 to 0.784, for the cough data that has an added noise signature of iPhone XR. In

contrast, for the Android devices (Huawei Y7 and Samsung C5) the dip in performance is

relatively lesser. The potential reasons can be 1) the software of Android devices differs

from an iPhone device, and 2) the microphone chips differ for different mobile phone

brands. These diversities contribute to the self-noise profiles of each device which leads

to variation in the diagnosis performance.
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CHAPTER 6

Conclusion and Future Work

6.1 Conclusion

We are living in a transformative era where the convergence of artificial intelligence (AI),

wireless networks, and biosensing technologies is reshaping the landscape in various do-

mains starting from fault diagnosis in cellular networks to disease screening in humans,

with far reaching impact all the way to management of future pandemics. In this thesis,

I have embarked on a journey to harness the potential of AI-enabled diagnostics, par-

ticularly amidst the challenges posed by noisy and incomplete data in image and audio

modalities.

The introduction of HYDRA in this thesis—a novel framework for root cause analysis of

coverage-related anomalies—demonstrates a paradigm shift in fault diagnosis methodolo-

gies. By enriching sparse minimization of drive tests (MDT) data through image inpaint-

ing methods and leveraging a hybrid deep learning model, HYDRA exhibits unparalleled

robustness in fault diagnosis, even amidst noisy data environments. Through rigorous

evaluation against varying levels of data sparsity and comparison with state-of-the-art

approaches, HYDRA emerges as a beacon of reliability and efficiency in diagnosing faults

within complex cellular networks.

Moreover, our exploration extends beyond the realm of telecom network health assessment

to address critical challenges in scalable anytime, anywhere respiratory disease screening

using ordinary smartphones through cough sounds and other biomarkers. Our investiga-

tion has unveiled promising avenues toward the realization of AI-enabled diagnostics for

scalable respiratory disease screening and pandemic management. By leveraging crowd-

sourced biomarkers from biosensing wearable devices and employing real-time anomaly

67



detection techniques within a spatio-temporal framework, our proposed concept frame-

work, iPREDICT, offers a beacon of hope in the battle against emerging epidemics.

Through the integration of graph neural networks (GNNs) for threshold prediction and

the lessons learned from our previous endeavor, AI4COVID-19, I present a promising

strategy to mitigate the devastating impact of future pandemics. The practical feasibility

and engineering challenges associated with pandemic prediction based on sound analysis

further underscore the urgency and significance of our proposed framework.

In essence, this thesis presents the transformative potential of AI and emerging tech-

nologies in revolutionizing diagnostic procedures across diverse domains. By addressing

the inherent challenges of noisy and incomplete data through innovative methodologies

and practical implementations, it aspires to usher in a future where accurate and timely

diagnostics pave the way for improved decision-making and enhanced societal well-being.

Through iPREDICT and HYDRA, it paves the path toward a future where the specter

of pandemics and network anomalies is met with proactive intelligence and resilient so-

lutions.

6.2 Future Work

In the realm of AI-enabled diagnostics and fault diagnosis, future research must navigate

critical frontiers to realize the full potential of these technologies. One pressing concern is

the intricate challenge of data privacy in population-level frameworks, demanding novel

methodologies to ensure ethical data handling while preserving individual privacy rights.

Simultaneously, the quest for enhanced data quality and standardization looms large,

necessitating the refinement of assessment techniques and the establishment of robust

protocols to counter the adverse effects of low-quality data, especially evident in our

exploration of audio data degradation. Fostering engagement and participation across

diverse stakeholders is equally vital, prompting the development of strategies to promote

collaboration and data sharing among healthcare professionals, researchers, policymakers,
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and the public.

On the technical front, research endeavors must venture into innovative fault delineation

techniques, particularly to disentangle confounding faults like low transmitter power and

cell outages. Leveraging Bayesian or other conditional classifiers informed by historical

fault data holds promise for more accurate fault diagnosis. Expanding the diagnostic

scope to encompass additional coverage anomalies such as cell individual offset (CIO) and

exploring alternative Key Performance Indicators (KPIs) like Reference Signal Received

Power (RSRP) offer avenues for improved fault detection. Moreover, tailoring machine

learning (ML) algorithms and data enrichment methods to problem-specific contexts is

paramount. Future research should focus on optimizing ML models and enrichment

techniques for the unique challenges posed by diagnostic tasks, ensuring their efficacy in

domains ranging from pandemic prediction to cellular network fault diagnosis.
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