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Abstract
Our understanding and ability to manipulate quantum correlations in non-classical states of light
will be a determining factor in realizing the next generation of quantum technologies. Over the
last several decades, we witnessed the wide-scale use of sensing and communication technologies,
such as RADAR/LiDAR, radio, and fiber-optics telecommunications, that were based on classical
conceptions of electromagnetic fields. Harnessing the power of the counter-intuitive phenomenon of
quantum superposition and entanglement, quantum theory promises a transformative leap in capa-
bilities that lies beyond such classical approaches. The early success of quantum secure communi-
cation, quantum computers, advanced gravitational-wave detectors, and quantum random number
generators offer a glimpse into the immense potential offered by quantum mechanics. This disser-
tation investigates the manipulation of quantum correlations in light, particularly focusing on the
spatial degrees of freedom, to propel the development of next-generation quantum technologies.

Quantum states of light, known as twin beams, intrinsically linked through quantum correlations,
form the cornerstone of this exploration. These bipartite entangled beams of light are at the heart of
several quantum sensing applications and are natural candidates to encode and exchange quantum
information. Their generation via the nonlinear parametric process of four-wave mixing leads to
temporal (energy conservation) and spatial (momentum conservation) correlations in the quantum
regime. Notably, the conservation of transverse momentum in the fields during the process implies
that the spatial properties of the input photons determine the distribution of spatial correlations in
the generated entangled photons, thus providing a practical way to engineer the correlated spatial
modes. After characterizing the entanglement within the spatial as well as spatio-temporal degrees
of freedom of the twin beams via a direct imaging technique, this dissertation delves into the
extensive engineering of spatial correlations of the fields generated through four-wave mixing.

Our approach of using a deliberately phase-structured input field to drive the four-wave mixing
leads to the creation of spatially structured quantum states. The degree of control demonstrated
via the phase manipulation implies that this approach can be tailored to the specific requirements
of quantum sensing and imaging applications. The abundance of spatial modes in the multimode
twin beams that utilize the vastness of the Hilbert space associated with spatial modes, coupled
with precise control over their correlations, unlocks possibilities for high-dimensional quantum com-
munication protocols, leading to ultra-secure and high-capacity quantum teleportation and commu-
nication.
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CHAPTER1
Introduction

Spatial information is all around us. From traffic signs to QR codes, and from emojis to camera
pictures, humans as a species find it very useful to organize, convey, and distribute information
using spatial patterns. The effectiveness of spatial patterns lies in their inherent ability to bypass
the limitations of language and transmit/encode large amounts of information. A complex set of
instructions can be condensed into a simple map, allowing for quick and clear navigation. Similarly,
we often visualize complex data sets through charts and graphs, which gives us insight that might
be concealed in raw numbers. The widespread usefulness of spatial information is aptly summarized
in the proverb: "A picture is worth a thousand words". Upon analyzing an image or a pattern on
a micro scale, one may however conclude that each individual part (i.e. dot or pixel) of an image
shares a relation to nearby ones. It is this relation between different neighboring parts of an image
where the information is truly present.

Such an identification of ‘what and where’ information is, seems necessary [1] if we wish to
store and share it as efficiently as possible. This is ultimately reflected as an important aspect
of our everyday life in the current information age, where we need to process and communicate
increasingly larger and larger amounts of information efficiently. To do so, some of the key tools and
techniques that we have developed rely on the unique properties of light. LASERs, CCD cameras,
holographic displays and light modulators, optical fibers, and free space optical communication, all
are engineered to harness the beneficial properties of light, which for us has become an indispensable
medium to collect, display, and distribute information.

A unification of novel properties of light with spatial information in the quantum regime reflects
one of the main themes of this dissertation. Here, we describe at length our experimental and
theoretical studies of the generation, characterization and manipulation of spatial correlations in
quantum optical states of light suitable for emerging applications in quantum communication and
sensing.

1.1 Why Study Spatial Correlations in Quantum States

The usefulness of certain quantum states can be understood by their ability to produce patterns or
correlations that cannot be reproduced by a classical state. To see the utility of the non-classical
behavior of these correlations, let us consider an example of their applicability. Using a certain
bipartite (two-part) quantum state, Alice and Bob can individually generate a string of numbers
based on the measurements on their part of the state. These strings of numbers have the form
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1.1 Why Study Spatial Correlations in Quantum States

{01000101010010100110...} for Alice and {01000101010010100110...} for Bob1. Upon comparing
their strings, Alice and Bob find that while each string is completely random, they are also perfectly
correlated. Additionally, if they repeat their experiment with measurements in a different basis,
they find the same pattern even if they are at long distance apart from each other. In other words,
they have stumbled upon a physical phenomenon in which there is no way to predict the next
individual realization while being completely certain that it is going to be same for both regardless
of their separation. This phenomenon highlights the inherent unpredictable nature combined with
‘entangledness’ afforded by the quantum theory.

Based on the use of an entangled state, the ability of two distant parties to produce random
yet correlated sequence of numbers has been put to use in the field of quantum cryptography. For
example, using clever adaptations of the phenomenon outlined above, quantum key distribution
protocols (such as the BB84 [2] or Ekert [3] protocol) can establish secret keys (sequence of random
numbers) between two parties for exchanging encrypted messages in a way that is mathematically
proven to be secure [4]. Even in the absence of entanglement, the randomness offered by quantum
theory via quantum superposition or vacuum noise is useful towards generating true random numbers
using devices known as quantum random number generators (QRNGs) [5]. Currently, QRNG devices
are being actively developed for applications in quantum Monte-Carlo simulations, cryptography
and quantum computation.

Given the unique benefits of quantum correlations in quantum states, there are a number of
reasons to study them in terms of spatial variables. Here we highlight two of them.
Quantum Communication in Higher Dimensions: Consider an entangled state, known as the
Einstein-Podolsky-Rosen (EPR) state, given by

|EPR〉 =

∫
dx |x,x〉 =

∫
dp |p,−p〉 . (1.1)

Such an EPR state describes an ideal bipartite system which displays perfect correlations/anti-
correlations in terms of the position/momentum continuous variables of the system. An optical
implementation of the EPR state utilizing position and momentum 2 correlations in photons would
allow Alice and Bob to exchange information much more efficiently and securely [6–8]. This can
be seen via a visualization of the properties of an ideal optical EPR state shown in figure 1.1.
Here, Alice and Bob make measurements on the EPR state by capturing image 1 and image 2,
respectively. While comparing these two images, they find that the intensity of a point in image
1 is correlated with the intensity of a corresponding point located at the same spatial position in
image 2 (see figure 1.1). Moreover, they also find that the intensity distribution in each image is a
uniformly distributed random distribution. In other words, a spatially entangled EPR state can be
thought of as composed of a large number of quantum correlated pairs with each pair localized to
an independent spatial region and thus, providing a multi-dimensional quantum system to exchange
information. This dissertation will give details on the practical implementation of an optical EPR
source in the lab along with its characterization by measuring position and momentum correlations
in the quantum regime.
Quantum Imaging and Sensing: Bipartite or two-part quantum optical states (such as the EPR
state described above) with a large number of spatial modes, are also immensely beneficial in the

1We are referring to the entangled Bell state of the form |HH + VV〉 /
√

2, where ‘H’ and ‘V’ denote horizontal and
vertical polarization of entangled photons. Here, the notation |HH〉 ≡ |H〉Alice ⊗ |H〉Bob.

2For the optical state, we are referring to transverse spatial variables which are the position and momentum
degrees of freedom of the photons in the plane perpendicular to the propagation direction.
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1.1 Why Study Spatial Correlations in Quantum States

Figure 1.1: An ideal (optical) EPR state with correlations in spatial variables. An EPR source emits two quantum
correlated optical beams, one for Alice and one for Bob. They independently take images of their portion of the EPR
state and find the resulting images to be point-to-point correlated in terms of the intensity distribution. Also, the
spatial intensity distribution in each image is found to be completely random.

fields of quantum imaging and sensing [9,10], in addition to their applicability in higher-dimensional
quantum communication. Due to correlated photon statistics in the paired spatial modes between
the two parts, one part of the state can be used for detection while the other acts as a reference.
A comparison in the detection of the two parts, labeled as detection A and B in figure 1.2, can
provide more information in the presence of quantum correlations than by using an equivalent
classical state [11]. Additionally, different spatial modes of the quantum state may not interact

Figure 1.2: Use of spatially correlated quantum states in quantum imaging and sensing. For a bipartite spatially
correlated quantum state, one part of the state acts as a reference while the other part interacts with (A) an object
or (B) a complex medium. After detection, a comparison between the results of detection A and B can provide more
information than an equivalent classical state based detection due to the photon correlations present in the spatial
modes. Depending on the nature of the interaction, some of the spatial modes can be transformed into other spatial
modes or are irreversibly lost to the environment. This can lead to changes in the spatial composition of the quantum
state. This can be seen in (B) where the composition of the spatial modes in detection A has changed due to an
interaction with the complex medium. One may achieve a more efficient detection in such scenarios using a quantum
state with selectively correlated spatial modes.

equally with the object to be imaged [12], or in the case of sensing in a complex environment, the
information contained in certain spatial modes may be transferred to other spatial modes [13]. A
prior characterization along with the engineering of the spatial modes can be a useful approach in
such scenarios that would allow one to extract information more efficiently with the use of specific
spatial modes based on the interaction. Later chapters of this dissertation describe this approach
of modifying quantum correlated spatial modes in a bipartite quantum optical state.

At present, we see a rise in real-world applications based on quintessential quantum phenomena,
such as quantum superposition and entanglement, which is often regarded as the advent of a second
quantum revolution. Building on it, our scientific and technical community has increasingly focused
on certain key areas that are poised to greatly benefit from the ongoing quantum revolution within

3



1.2 Summary of the Dissertation

the next two to three decades. These are broadly categorized as quantum computing, quantum
sensing (including quantum imaging), and quantum communication [14]. Although quantum com-
puters could be the most fruitful area in the scope of impactful applications, they will certainly have
a longer timeline to reach maturity for the first real-life applications [15,16]. On the other hand, we
are already witnessing the deployment of real-world quantum technologies in the areas of communi-
cation and sensing including but not limited to discrete [17] and continuous-variable [18] quantum key
distribution, quantum satellite communication [19], space and terrestrial atomic clocks [20,21], quan-
tum imaging of biological cells [22] and quantum-enhanced gravitational wave detectors [23,24]. We
anticipate that our exploration of spatial correlations in quantum optical states presented in this
dissertation will be fruitful towards the practical use of spatial quantum correlations in emerging
quantum communication and sensing applications.

1.2 Summary of the Dissertation

This dissertation is subdivided into seven chapters. The first few chapters provide the motiva-
tion and necessary background to discuss spatial correlations in two-mode squeezed states of light
followed by details of their theoretical and experimental studies leading to this dissertation. To-
ward the end, we summarize our ongoing and possible future works followed by some supplemental
material in appendices.

Chapter 1 gives a broad motivation for the relevance of the research work discussed in this dis-
sertation. In chapter 2, we first provide the theoretical framework necessary to understand squeezed
states of light. Beginning with the classical description of light, we introduce the quantum picture
with the quantization of a multimode electromagnetic field in a confined volume. Building upon the
concepts of vacuum fluctuations, coherent states, and number states, we describe the reduced noise
properties of single-mode and two-mode squeezed states using a phase space description of light.

Chapter 3 details the generation of squeezed states of light using non-linear interactions such as
spontaneous parametric down-conversion (SPDC) and four-wave mixing (FWM). We also provide
a connection between the two-mode squeezing operation and the non-linear generation process.
Focusing on the FWM process in Rb vapor, we discuss the generation of probe and conjugate twin
beams in a stimulated non-collinear FWM setup along with a general overview of the phase-matching
condition. Finally, we introduce the intensity-difference (ID) measurement and how it characterizes
the temporal quantum correlations between the probe and the conjugate photons by measuring ID
squeezing. We also provide relevant details of homodyne detection for later reference.

Chapter 4 lays out an intuitive picture for understanding the position (near field) and momentum
(far field) correlations in the twin beams as dictated by the phase matching along the propagation
direction and momentum conservation in the transverse plane, respectively. We further support our
arguments by subsequently developing a quantitative description of the spatial correlations using
a suitable interaction Hamiltonian describing the FWM process. In the end, using appropriately
derived theoretical expressions, a concise argument on why spatial Einstein-Podolsky-Rosen (EPR)
entanglement is expected in the FWM process is provided.

Chapter 5 details the experimental measurement of near and far field correlations in the twin
beams using a specialized low-noise CCD camera. We describe how the acquired data is processed
to extract position and momentum correlations and obtain a verification of EPR entanglement.
We also report on the measurements of spatial squeezing in the near and the far field which are
used to show inseparability (and hence, entanglement) in terms of the spatial degrees of freedom.

4



1.2 Summary of the Dissertation

Collectively, our results indicate a generation of hyperentanglement (involving temporal and spatial
variables) in the FWM process. The results discussed in this chapter are part of our publication in
the IOP Quantum Science and Technology Journal.

Chapter 6 focuses on our latest experiment towards the control of spatial correlations in twin
beams generated in FWM. Here, we develop a more detailed understanding of how the pump
angular spectrum affects the distribution of spatial correlations in the far field and provide details
of our experimental implementation in which we systematically modify the pump momentum using a
hologram (to engineer correlations in a desired way). We discuss the experimental results comparing
them to the corresponding simulations and highlight the fact that such an engineering of the spatial
correlations can be seen as a novel way to securely encode information in the twin beams. Based
on the phenomenon of phase-conjugation in the FWM process, we also discuss our results in which
we are able to vary how strongly the probe and conjugate beams appear to be correlated in the
measurements. Toward the end of the chapter, we comment on the security aspects of the encoded
information based on the experimental data and how it can be improved further based on certain
experimental parameters. The results presented here are part of our publication in the Journal of
Science Advances.

Finally, in chapter 7, we provide a broader framework of fundamental or Schmidt modes of a
non-linear process. We discuss our preliminary work in identifying spatial Schmidt modes in the
FWM process for a Gaussian input pump field and verify their validity using previous experimental
data. After highlighting their importance for better quantum communication and sensing, we give
a future outlook along with concluding remarks.

5



CHAPTER2
Quantum Mechanical Description of Light

Light is an electromagnetic phenomenon. A vast majority of optical phenomena, such as the diffrac-
tion and interference of light, propagation of light in waveguides as well as the interaction of lasers
with prisms, lenses, and mirrors, are adequately explained by Maxwell’s theory of electromagnetism.
However, this classical description of light fails to provide a satisfactory explanation of, for example,
the black-body radiation or the noise characteristics of optical states generated via specific nonlinear
interactions. The quantum theory of light requires the introduction of photons as the quanta of
electromagnetic fields. The idea of quantization, put forward by Planck and Einstein, eventually led
to the birth of quantum mechanics during the first half of the 19th century [25]. The modern theory
of quantum coherence was developed around the 1960s by Glauber, Sudarshan, Wolf, Mandel, and
others. Concepts related to the coherent states, photon number states, and quasiprobability distri-
butions developed during this period and combined with the invention of the laser by Maiman [26]

eventually led to several pioneering quantum optics experiments in the 1970s. Observation of anti-
bunching of photons in resonance fluorescence [27,28] and detection of sub-Poissonian statistics with
newly generated squeezed states of light [29] firmly established quantum optics as an area of study we
know today. This chapter introduces all the necessary concepts to appreciate the quantum nature
of squeezed states of light. A theoretical description of single and two-mode squeezed states of light
is then provided towards the end of the chapter.

2.1 Classical Picture

We begin by solving Maxwell’s equations in a finite volume with the appropriate boundary condi-
tions. In the absence of sources (charges and currents), Maxwell’s equations take the form [30]

∇∇∇ ·D = 0, ∇∇∇ ·B = 0, (2.1)

∇∇∇×E +
∂B

∂t
= 0, ∇∇∇×H− ∂D

∂t
= 0, (2.2)

where the fields are dependent on position and time, i.e. (r, t), variables1. In the case of uniform
isotropic linear media, we can write D = εE and B = µH where ε and µ are the permittivity and
permeability of the medium respectively. Assuming the E(r, t) and B(r, t) fields have harmonic

1Boldface notation is used throughout this dissertation to represent vectors.
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2.1 Classical Picture

dependence in time, these can be expanded as

E(r, t) =
1√
2π

∫
dω E(r, ω) e−iωt

B(r, t) =
1√
2π

∫
dω B(r, ω) e−iωt. (2.3)

Using (2.2) and (2.3), the frequency dependent E(r, ω) and B(r, ω) amplitudes satisfy the following
equations

∇×E(r, ω)− iωB(r, ω) = 0, ∇∇∇×B(r, ω) + iεµωE(r, ω) = 0. (2.4)

Here, the zero divergence equations in (2.1) can be obtained by applying the divergence operator
on (2.4). Combining the above two equations into one by the method of elimination, we get the
Helmholtz wave equation

(∇∇∇2 + εµω2)

[
E(r, ω)
B(r, ω)

]
= 0. (2.5)

A solution to the Helmholtz wave equation can be obtained as the electromagnetic plane waves of
the form

E(r, t) = ε̃ Ekei(k·r−ωt) + c.c. and B(r, t) =
k × ε̃
k
Bkei(k·r−ωt) + c.c., (2.6)

where the wave vector k points in the direction of wave propagation with magnitude |k| =
√
µεω2

and ε̃ is the polarization unit vector. The wave amplitudes E and B are complex numbers (c-
numbers) in general. The phrase ‘c.c.’ stands for complex conjugate of the previous term which is
added to represent the measured values of electric and magnetic fields (real quantities). The phase
velocity, v, of the wave is

v =
ω

k
=

1
√
εµ

, (2.7)

where k = |k|. The factor √εµ is related to the speed of light, c (= 1√
ε0µ0

), as

√
εµ = c/n , (2.8)

where n is the refractive index of the medium. Using (2.4) and (2.6), one can show that the electric
and magnetic field amplitude are related as Bk = Ek/c in vacuum. A general free-space solution Ψ
for E and B fields can be constructed using a Fourier superposition of the plane waves in (2.6), i.e.,

ΨE(r, t) =

(
1√
2π

)3/2 ∫
dk E(k) ε̃k e

i(k·r−ω(k)t) + c.c.

ΨB(r, t) =

(
1√
2π

)3/2 ∫
dk B(k) (k̃ × ε̃k) ei(k·r−ω(k)t) + c.c., (2.9)

where k̃ is the wave unit vector and ω(k) is evaluated using (2.7).

7



2.2 Classical Picture

The energy density for the electromagnetic field is

u =
1

2

(
εE ·E +

1

µ
B ·B

)
, (2.10)

and the corresponding Hamiltonian H, or classical field energy within a box of volume V has the
form [31,32]

H =
1

2

∫
V
dV

(
εE ·E +

1

µ
B ·B

)
. (2.11)

For a single mode field at frequency ω given in (2.6), it can be shown that the expression for H can
be simplified to

H = εV (EkE∗k + E∗kEk) (2.12)

= ω2 (aka
∗
k + a∗kak) (2.13)

= 2ω2|ak|2, (2.14)

where Ek = ωak/
√
εV . Here, we assume the volume V to be a rectangular box with perfectly

reflective walls which leads to periodic boundary conditions on k and therefore,
∫
V dV e

±i(k−k′)·r =
δkk′V . The amplitude E (and hence, B, a) are c-numbers and therefore commute. The equation
(2.14) accounts for the energy of a single mode field. A general solution for multimode field can be
obtained as [31,32]

H =
∑
k

2ω2
k|ak|2. (2.15)

The conversion of integral to summation is due to the discreteness of k-modes. In the expressions
(2.14) and (2.15), we have suppressed a summation over the polarization degrees of freedom for
simplicity. We now introduce a pair of real canonical variables, qk and pk, defined as

qk = ak + a∗k

pk = ωk(ak − a∗k)/i. (2.16)

Rewriting H in terms of q and p variables gives

H =
1

2

∑
k

(
p2
k + ω2

kq
2
k

)
. (2.17)

Hence, the total energy of the electromagnetic field is the sum of many independent oscillators one
for each k-mode (equivalent to harmonic oscillator with unit mass). It is also worth noting that,
apart from some scale factors, electric and magnetic fields play the roles of canonical position and
momentum variables [33]. Using (2.6) and (2.16), a classical expression for the multimode E and B
fields, confined to volume V , in terms of the q and p variables can be given as

E(r, t) =
1√
εV

∑
k

ωkak ε̃k e
i(k·r−ωt) + c.c.

=
1

2
√
εV

∑
k

(ωkqk + ipk) ε̃k e
i(k·r−ωt) + c.c.

B(r, t) =
1

2
√
εV

∑
k

(
qk + i

pk
ωk

)
(k × ε̃k) ei(k·r−ωt) + c.c.. (2.18)

8



2.2 Quantum Picture

In the above expression of E and B fields, we see that q and p variables are related to real and
imaginary (or in-phase and out-of-phase) components of the corresponding field amplitudes.

2.2 Quantum Picture

In the quantum mechanical description of electromagnetic fields, we assign the q and p variables to
corresponding Hilbert space operators, q̂ and p̂, which do not commute. The traditional hat or caret
(‘̂ ’) notation is used to distinguish them from the classical equivalent variables. These operators
must satisfy the canonical commutation relations [34]

[q̂k, p̂k′ ] = i~δkk′ Î, (2.19)
[q̂k, q̂k′ ] = 0, (2.20)
[p̂k, p̂k′ ] = 0, (2.21)

where I is the identity operator. The corresponding Hamiltonian of the electromagnetic field confined
to a volume V is

Ĥ =
1

2

∑
k

(
p̂2
k + ω2

kq̂
2
k

)
. (2.22)

The energy of the field is the eigenspectrum of the Ĥ operator and is discrete. The eigenvalues of
the q̂ and p̂ Hermitian operators are, however, continuous. Algebraically, it easier to deal with the
set of non-Hermitian operators, similar to classical c-number analogues a and a∗, defined as

âk =
1√

2~ωk
(ωkq̂k + ip̂k) , (2.23)

â†k =
1√

2~ωk
(ωkq̂k − ip̂k) . (2.24)

These are known as the ‘creation’ and ‘annihilation’ operators of the field, respectively. The ‘†’
symbol represents the Hermitian conjugate of the corresponding operator. Inverting (2.23) and
(2.24) for the q̂ and p̂ operators, we get

q̂k =

√
~
ωk

(
âk + â†k√

2

)
, (2.25)

p̂k =
√
~ωk

(
âk − â

†
k

i
√

2

)
. (2.26)

Using (2.19-2.21), âk and â†k satisfy the following commutation relations

[âk, â
†
k′ ] = δkk′ Î, (2.27)

[âk, âk′ ] = 0, (2.28)

[â†k, â
†
k′ ] = 0. (2.29)

9



2.2 Quantum Picture

Operator Ĥ can also be rewritten in terms of â and â† operators as

Ĥ =
∑
k

~ωk
2

(
âkâ

†
k + â†kâk

)
(2.30)

=
∑
k

~ωk
(
â†kâk +

1

2

)
. (2.31)

Comparing (2.31) with (2.17), we see an additional contribution of ~ω/2 for each k-mode. This
is often referred to as the zero-point energy of a quantum mechanical mode. Since, even in the
ground state, a quantum mechanical oscillator does not come to a complete rest, non-zero energy
contributions from all modes are expected. This represents a fundamental problem in quantum
electromagnetic theories resulting in an infinite energy contribution due to the unbounded set of
modes [35].

To obtain time evolution of various operators, we use the Heisenberg picture to determine the
operator evolution that reads

dÔ

dt
=
i

~
[Ĥ, Ô], (2.32)

where is Ô is an arbitrary operator. For the annihilation operator âk, this becomes

dâk
dt

=
i

~
[Ĥ, âk] (2.33)

=

[∑
l

iωlâ
†
l âl, âk

]
(2.34)

= −iωkâk. (2.35)

The above equation has a solution of the form

âk(t) = âke
−iωkt, (2.36)

where âk ≡ âk(0). Similarly, one can evaluate the time evolution of the creation operator as
â†k(t) = â†k e

iωkt. Using the expressions of q̂k and p̂k from (2.25, 2.26) in the (2.18), we get the
following expressions for the field operators in the quantum picture,

Ê(r, t) =
∑
k

√
~ωk
2εV

âk ε̃k e
i(k·r−ωkt) + H.c. , (2.37)

B̂(r, t) =
∑
k

√
~

2ωkεV
âk (k × ε̃k) ei(k·r−ωkt) + H.c. , (2.38)

where the term H.c. stands for Hermitian conjugate. For a rectangular volume V , the above
expression can be seen as the superposition of plane waves (one for each k-mode). The Hermitian
field operator Ê is often written as

Ê(r, t) = Ê(+)(r, t) + Ê(−)(r, t) (2.39)

10



2.3 Number Operator and Fock States

where Ê(−)(r, t) = [Ê(+)(r, t)]†. The Ê(+)(r, t) part is called the positive frequency part of the
field (i.e. it oscillates as e−iωt for ω > 0) and consists of only the annihilation operators. This
decomposition is related to how photon detectors interact with the electromagnetic field and to
the fact that the Ê(+) part of the field operator contains the annihilation operator. As we will see
in the following section, the annihilation operator is associated with the removal of a photon and,
therefore, corresponds to absorption of photons by a photodetector. This was first put forward by
Glauber in the quantum theory of optical coherence [36,37].

2.3 Number Operator and Fock States

The creation (â†k) and annihilation (âk) operators introduced in section 2.2 are non-Hermitian op-
erators. However, these appear together in the Hamiltonian as â†â. This new operator is Hermitian
and is known as the number operator n̂k, i.e.,

n̂k = â†kâk. (2.40)

Consider the Hamiltonian of the kth-mode (for a given k) in terms of the number operator as

Ĥk = ~ωk
(
n̂k +

1

2

)
. (2.41)

From (2.41), one can see that the eigenstates of the number operator are the same as the energy
eigenstates of the Hamiltonian. Therefore, one can define

n̂k |nk〉 = nk |nk〉 , (2.42)

with the corresponding eigenvalues as nk. Using the Hamiltonian Ĥk, we have

Ĥk |nk〉 = ~ωk
(
nk +

1

2

)
|nk〉 . (2.43)

The energy eigenstate |nk〉 is known as the photon number state or the Fock state with the corre-
sponding energy eigenvalue given by (2.43).

With respect to the number state, the âk and â†k have the following relations

âk |nk〉 =
√
n̂k |nk − 1〉

â†k |nk〉 =
√
n̂k + 1 |nk + 1〉 , (2.44)

which justifies their corresponding nomenclature as they lower or raise the photon number occupa-
tion nk by 1. If we now define the ground state according to

âk |0k〉 = 0, (2.45)

then using the commutation relation [âk, â
†
k] = Î, we have

â†k |0k〉 = |1k〉 , (2.46)

11



2.3 Number Operator and Fock States

that is, addition of a single photon into the kth-mode. We can continue this process to obtain a
n-photon state in the same mode as

|nk〉 =
(â†k)nk
√
nk
|0k〉 . (2.47)

We see that the number of photons in a given kth-mode is unbounded. Since photons are spin-1
bosons and obey Bose-Einstein statistics, an arbitrary large number of photons can occupy the same
quantum state.

We use the following notation for a multimode photon number state

|{n}k〉 ≡ |n1, n2, n3 . . .〉
= |n1〉 |n2〉 |n3〉 . . .

=
∏
k

|nk〉 . (2.48)

Similarly, multimode vacuum and single photon states are represented as |{0}k〉 and |{1}k〉 which
contain 0 and 1 photon in all the modes, respectively. The multimode number states have the
following completeness and orthogonality relations

Î =
∏
k

〈{n}k|{n}k〉 , (2.49)

〈{n}k|{m}k〉 =
∏
k

δnkmk . (2.50)

Using the Hamiltonian in (2.41), one calculate the energy of a multimode Fock state as

Ĥ |{n}k〉 = E |{n}k〉 , (2.51)

where

E =
∑
k

~ωk
(
nk +

1

2

)
. (2.52)

All multimode Fock states can be generated by applying the creation operators on the multimode
vacuum state, i.e.

|{n}k〉 =
∏
k

(â†k)nk
√
nk
|{0}k〉 . (2.53)

At this point, we introduce variance of an observable, O, which measures the fluctuations or
noise in the observable around the mean for a given quantum state. It is defined as

〈(∆Ô)2〉 ≡ 〈Ô2〉 − 〈Ô〉2

= 〈∆2Ô〉 (2.54)

where Ô is the corresponding operator and 〈Ô〉 = 〈ψ|Ô|ψ〉 is the mean value, which implies that
the variance is a state dependent quantity. A related and useful noise operator is often defined as

δÔ = Ô − 〈Ô〉. (2.55)
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2.3 Number Operator and Fock States

The photon number fluctuations in an electromagnetic field (or optical state) are crucial to distin-
guish between the classical and quantum optical fields. Mandel introduced [38] a useful parameter

QM =
〈∆2n̂〉 − 〈n̂〉
〈n̂〉

(2.56)

to characterize2 the non-classicality of a quantum state, known as Mandel Q-parameter (QM). Since
Fock states are the eigenstates of the number operator, the variance of the number operator vanishes
for Fock states which leads to QM = −1 for the Fock states. The importance of negative QM values
will become clear in the later sections when we discuss coherent and squeezed states of light.

Apart from the energy fluctuations of a given state, one can also study the variance (or noise) of
q̂k and p̂k operators. Since these operators do not commute for any given k-mode, their variances
are related by the Heisenberg uncertainty principle. In order to show this, we first note that the
expectation values of âk and â†k vanish for the Fock states. Thus,

〈{n}l|âk|{n}l〉 = 〈{n}l|âk|{n}l〉 = 0 for all k. (2.57)

Using (2.23) and (2.24), the q̂k and p̂k operators are obtained as addition and subtraction of the âk
and â†k which implies that

〈{n}l|q̂k|{n}l〉 = 〈{n}l|p̂k|{n}l〉 = 0 for all k. (2.58)

This means that the observed eigenvalues of q̂k and p̂k operators are both positive and negative
with equal probability for a Fock state. However, the second order moments of these operators do
not vanish for a Fock state and are equal to

〈{n}l|q̂2
k|{n}l〉 =

~
ωk

(
nk +

1

2

)
(2.59)

and

〈{n}l|p̂2
k|{n}l〉 = ~ωk

(
nk +

1

2

)
. (2.60)

From (2.54, 2.58-2.60), one can conclude that〈
∆2q̂k

〉 〈
∆2p̂k

〉
=

~2

4

(
nk +

1

2

)2

. (2.61)

This is consistent with the general uncertainty relation for any two Hermitian operators Â and
B̂, which states [39] that the following relation must be satisfied,

〈∆2Â〉〈∆2B̂〉 ≥
(

1

2i

〈
[Â, B̂]

〉)2

, (2.62)

where the equality sign holds for certain states that are known as the ‘minimum uncertainty states’
for the canonical position and momentum variables. Using (2.19), one can further simplify (2.62)
for the q̂k and p̂k operators as 〈

∆2q̂k
〉 〈

∆2p̂k
〉
≥ ~2

4
. (2.63)

2Here the multimode notation is suppressed for clarity. In general, for a multimode state, QM will be mode
dependent.
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2.4 Field Quadratures, Coherent States and Shot Noise Limit

The relation (2.63) is known as the Heisenberg uncertainty relation [34]. A comparison between
(2.61) and (2.63) reveals that the multimode vacuum state |{0}k〉 (i.e. nk = 0 for all k) is the only
Fock state that is a minimum uncertainty state. For multimode states, it may be more useful to
think of ‘minimum uncertainty modes’ defined as modes for which the equality sign in (2.63) holds.

2.4 Field Quadratures, Coherent States and Shot Noise Limit

The Hermitian q̂k and p̂k operators defined in section 2.2 have unequal dimensions. These are often
replaced with the X̂k and Ŷk operators which are defined as

X̂k ≡
âk + â†k√

2
=

√
ωk
~
q̂k, (2.64)

Ŷk ≡
âk − â

†
k

i
√

2
=

1√
~ωk

p̂k. (2.65)

As one can see from the above definitions, the two Hermitian quadrature operators are essentially the
same as q̂k and p̂k but are scaled to be dimensionless. Using the commutation relations (2.27-2.29),
we get

[X̂k, Ŷk′ ] = iδkk′ Î, (2.66)

[X̂k, X̂k′ ] = 0, (2.67)

[ Ŷk, Ŷk′ ] = 0. (2.68)

Since X̂ and Ŷ do not commute, the Heisenberg uncertainty relation for these quadrature operators
is

〈∆2X̂k〉〈∆2Ŷk〉 ≥
1

4
. (2.69)

It may be useful now to represent a single mode electric field operator using the quadrature
operators as

Êk(r, t) =

√
~ωk
2εV

(
âk e

i(k·r−ωkt) + â†k e
−i(k·r−ωkt)

)
(2.70)

= Ek
(
X̂k cos(ωkt− φ) + Ŷk sin(ωkt− φ)

)
, (2.71)

where Ek =
√

~ωk/εV and φ = k·r. For brevity, we have assumed a fixed polarization and omitted
the unit polarization vector. In (2.71), the presence of cos and sin terms tells us that the X̂k and
Ŷk associated field components are oscillating out of phase by 90◦ with respect to each other (and,
hence, the name ‘quadratures’). Depending on the phase reference, these are also sometimes referred
to as the ‘in-phase’ and ‘out-of-phase’ quadrature operators and are very useful in extracting phase
dependent information of the field. Applying these operators on a Fock state, however, reveals

〈nk|X̂k|nk〉 = 〈nk|Ŷk|nk〉 = 0, (2.72)

〈nk|X̂2
k|nk〉 = 〈nk|Ŷ 2

k |nk〉 = nk +
1

2
, (2.73)
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2.4 Field Quadratures, Coherent States and Shot Noise Limit

which points to the fact that Fock states represent electromagnetic fields that do not have a phase
dependent behavior. In the classical picture, the electromagnetic field has a well-defined amplitude
and phase. Also, the field produced by a monochromatic single mode laser seems to be ‘coherent’
(i.e. well-defined phase and amplitude). Therefore, one may look for appropriate corresponding
quantum states of such fields.

Glauber [40] put forward a new class of states, known as coherent states and denoted by |α〉,
which are defined using the following eigenvalue equation3

â |α〉 = α |α〉 , (2.74)

where α is a complex number. Assuming that a normalized solution exists for the above equation,
the coherent state can be represented in terms of the Fock basis as [40]

|α〉 = e−
1
2
|α|2

∞∑
n=0

|α|n√
n!
|n〉 . (2.75)

To look for the phase behavior of a coherent state, we calculate the mean values of the quadrature
operators as

〈α|X̂|α〉 =
√

2 Re[α], (2.76)

〈α|Ŷ |α〉 =
√

2 Im[α]. (2.77)

For α = |α|eiθ, we have

α = Re[α] + i Im[α] (2.78)

=
1√
2

(
〈X̂〉|α〉 + i 〈Ŷ 〉|α〉

)
, (2.79)

where the subscript |α〉 denotes expectation value with respect to the coherent state and Re/Im
denotes the real/imaginary part of a complex number. In other words, the quadrature expectation
values give information about the real and imaginary parts of the complex amplitude of the field.
Therefore, we can estimate the phase of a coherent state as

θ = tan−1

(
〈Ŷ 〉|α〉
〈X̂〉|α〉

)
. (2.80)

The intensity of the state, that is, the average photon occupation is given by

n̄ = 〈α|n̂|α〉 (2.81)

= |α|2. (2.82)

This is like a classical field where the intensity is given by the square of amplitude |α| of the field.
Here in (2.81), we have assumed ergodicity to replace the time average with the ensemble average.
One can also evaluate the photon number variance as

〈∆2n̂〉|α〉 = 〈n̂2〉|α〉 − 〈n̂〉2|α〉 (2.83)

= (|α|4 + |α|2)− |α|4 (2.84)

= |α|2, (2.85)
3As we will be mostly discussing fields and operators corresponding to a particular k-mode, we will be dropping

the subscript k for the rest of the chapter to simplify notation.
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2.4 Field Quadratures, Coherent States and Shot Noise Limit

which implies that the fractional photon number uncertainty (∆n ≡
√
〈∆2n̂〉 ) decreases with

average photon number as

∆n

n̄
=

1√
n̄
. (2.86)

Based on the properties of the bright coherent states (i.e. large n̄), one might say that they are
just like classical states as (i) their expectation values for amplitude and phase match with that of
a classical electric field, and (ii) the fractional uncertainty in photon number decreases with higher
intensity. Indeed, bright coherent states are often approximated with classical fields in order to
simplify calculations.

However, despite their near classical behavior, they represent a quantum description of classical
states. Exploring their quadrature noise behavior, we find

〈∆2X̂〉|α〉 = 〈∆2Ŷ 〉|α〉 =
1

2
, (2.87)

for all α. Therefore, coherent states are minimum uncertainty states with fluctuation properties
identical to the vacuum state |0〉 (which is itself a coherent state with zero amplitude). In contrast
to the behavior of number states whose quadrature noise scale linearly with amplitude as shown in
(2.59) and (2.60), coherent states can have arbitrary large values of |α| without any noise penalty
in the quadratures. As evident from (2.75), a coherent state is a superposition of Fock states and
the probability of finding n photons in the field is

pn = |〈n|α〉|2 (2.88)

= e−|α|
2
∞∑
n=0

|α|2n

n!
(2.89)

= e−n̄
n̄n

n!
, (2.90)

which is a Poisson distribution with a mean and corresponding photon number variance 〈∆2n̂〉 of
n̄. This essentially implies that during the detection of a coherent state using a photodetector, the
arrival of photons is randomly distributed [41] in time or, in other words, the distribution of photons
in a coherent state is uniform. The value of the Mandel parameter QM for the coherent state is

QM =
〈∆2n̂〉|α〉 − 〈n̂〉|α〉

〈n̂〉|α〉
(2.91)

= 0, (2.92)

which places them at the boundary of classical and quantum regime in terms of the quantum
coherence and photon statistics behavior [38,42]. A related parameter is the Fano factor (F) defined,
for a given optical state |Ψ〉, as [43]

F =
〈∆2n̂〉|Ψ〉
〈∆2n̂〉|α〉

(2.93)

=
〈∆2n̂〉|Ψ〉

n̄
, (2.94)
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2.5 Phase Space Description of Light

where n̄ = 〈α|n̂|α〉 = 〈Ψ|n̂|Ψ〉. Thus, it is a ratio quantifying super- or sub-Poissonian behavior [44]

in the photon distributions. The photon number states |n〉 have a Fano factor equal to zero (and
QM = −1) due to vanishing photon number variance. These states display extreme sub-Poissonian
behavior and, therefore, are non-classical [38].

From our discussion of the Heisenberg Uncertainty principle and quadrature variance of various
optical states, it seems clear that all states of light display some minimal noise features in the
quantum theory of light. We also defined a class of ‘minimum uncertainty states’ with minimal
quadrature noise that reach the lower bound of uncertainty principle. Given a equal distribution of
noise or uncertainty in the two quadratures, the vacuum and the coherent states saturate this lower
bound with their quadrature variance equal to

〈∆2X̂〉 = 〈∆2Ŷ 〉 =
1

2
. (2.95)

We find that this is the minimum amount of noise an optical state is allowed to have without
requiring a description based on non-classical probability distributions. Therefore, this lower limit
on quadrature variances is known as the quantum noise limit (QNL) or the shot noise limit (SNL).

2.5 Phase Space Description of Light

In our discussion of coherent states, we pointed out that they have the same noise properties as a
vacuum state. In fact, the vacuum state is a coherent state with α = 0. For non-zero values of α, the
coherent state is essentially a displaced vacuum state with non-zero quadrature expectation values
given by (2.76) and (2.77). Taking note of the form of a coherent state in (2.79), one can graphically
visualize it in a corresponding optical phase space diagram with the two quadratures as the position
and momentum axes. Figure 2.1A depicts a coherent state |α〉 with α = |α|eiθ in phase space. The
fuzzy disc represents the uncertainty region of phase space that gives the probable values of the
X and Y quadratures. The uncertainties are symmetric along all directions represented by radial
symmetry around the center of the disc with the center given by the average and most probable
values of the two quadratures [43]. This fuzzy disk representation can be viewed as a projection of
the Wigner quasiprobability distribution which is a 2D Gaussian distribution in phase space for the
coherent states. The variance in the two quadratures is equal to 1/2 (the direction in which variance
is evaluated is indicated using small arrows). Since, the variance is the same in all directions, we
draw a dashed circle (representing σ2 of the Gaussian distribution) with a radius of 1/2. The disc
is located at a distance of

√
2 |α| from the origin4 and subtends a positive angle of θ with respect to

the X-axis. The angle uncertainty ∆θ diminishes with large values of |α|, therefore, increasing the
phase stability of the state. The noise behavior of the vacuum state, shown in figure 2.1B, is the
same as the coherent state but has zero displacement with respect to the origin in phase space. The
radial symmetry combined with no displacement lead to complete phase uncertainty of a vacuum
state, i.e. ∆θ = 2π.

4The distance is a different value than |α| because the real and imaginary parts of α are scaled up by
√

2 to get
the corresponding quadrature expectation values. To be precise, let 〈X̂〉|α〉 = c and 〈Ŷ 〉|α〉 = d, then using (2.76) and
(2.77), we get

(c2 + d2)1/2 =
√

2
(
[Re{α}]2 + [Im{α}]2

)1/2
=
√

2 |α|. (2.96)
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2.5 Phase Space Description of Light

Figure 2.1: Phase space depiction of optical states in terms of the X and Y quadratures. (A) A coherent state |α〉
with α = |α|eiθ is portrayed as a blurry disc with radial symmetry. The two quadratures have the same variance
of 1/2 which is the same in all directions and is highlighted using a dashed circle. The phase uncertainty (∆θ) of a
coherent state decreases as 1/

√
|α|. (B) The vacuum state is essentially a coherent state with zero amplitude and

is depicted as a the blurry disc at the origin in phase space. Being at the origin, the phase of a vacuum state is
undefined and the phase uncertainty is 2π. The blurry disk portrayal of the coherent and vacuum states can be
seen as projections of the corresponding Wigner functions [43]. (C) A classical state is portrayed using a single dot in
phase space. Since classical states are not constrained by the Heisenberg uncertainty principle, they do not have any
fundamental noise associate with them, and hence, are unphysical. (D) A number state in phase space as a simplified
version of the Husimi Q-function quasiprobability distribution. The phase of a number state is random due to the
radially symmetric distribution around the origin.

Similar to the form of the electric field operator given in (2.70), one can write an equivalent
expression for a single mode classical field by replacing various operators with corresponding c-
numbers as [41]

E(r, t) =
Ec√

2

(
a ei(k·r−ωt) + a∗ e−i(k·r−ωt)

)
(2.97)

= Ec cosφ0X(t) + Ec sinφ0 Y (t), (2.98)

where

X(t) =
ae−iωt + a∗eiωt√

2
, (2.99)

Y (t) =
ae−iωt − a∗eiωt

i
√

2
(2.100)

and φ0 = −k·r. Here, Ec is a real constant that denotes the amplitude of the classical field in phase
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2.5 Phase Space Description of Light

space. In other words, the time varying electric field can be decomposed into in-phase X(t) and out-
of-phase Y (t) frequency components [45]. The decomposition is similar to the I/Q representation of a
time-varying periodic signal and is well-known in electrical signal analysis literature. One can depict
the classical expression of the electric field in (2.98) with respect to the quadrature components as
shown in figure 2.1C. The state of the field is given by a single point in phase space and has no
fundamental quadrature noise associated with it.

A number state |n〉 can be represented in phase space using a circle [43] since the number state
has no phase information. The radius of the circle is given by the amplitude of the state and is
proportional to

√
n. In figure 2.1D, we show a simplified phase space representation of the Q-

function for state |n〉 which is a Gaussian distribution in radial direction with a mean equal to the
amplitude of the state [43,46] (hence, a finite width ring).

The phase space representation of optical states given here is very useful for visualizing their
distribution. However, for quantum states of light, such a representation must be seen as only de-
scribing the qualitative behavior of these states in phase space. Mathematically rigorous representa-
tions of quantum states have been developed in the form of various quasiprobability distributions [47]

dependent on suitable quadrature variables. For a given quantum state, the phase space behav-
ior of certain quasiprobability distributions can be more well-behaved than the rest. For further
details on the use of quasiprobability distributions in quantum mechanics, one may consult these
references [46,48–51].

In addition to the visualization of the distribution of a state, one can also study the evolution of
optical states using the phase space picture. For the time evolution of the quadrature expectation
values of a coherent state, we have

〈X̂〉|α〉(t) =
αe−iωt + α∗eiωt√

2
(2.101)

=
α(cosωt− i sinωt) + α∗(cosωt+ i sinωt)√

2

= 〈X̂〉|α〉 cosωt+ 〈Ŷ 〉|α〉 sinωt, (2.102)

and similarly,

〈Ŷ 〉|α〉(t) =
αe−iωt − α∗eiωt

i
√

2
(2.103)

= 〈Ŷ 〉|α〉 cosωt− 〈X̂〉|α〉 sinωt, (2.104)

where

〈X̂〉|α〉 ≡ 〈X̂〉|α〉(t = 0) =
α+ α∗√

2
, (2.105)

〈X̂〉|α〉 ≡ 〈X̂〉|α〉(t = 0) =
α− α∗

i
√

2
. (2.106)

The expressions for time evolution in (2.102) and (2.104) can be neatly conveyed in the matrix from
as [

〈X̂〉|α〉(t)
〈Ŷ 〉|α〉(t)

]
=

[
cosωt sinωt

− sinωt cosωt

][
〈X̂〉|α〉
〈Ŷ 〉|α〉

]
. (2.107)
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2.5 Phase Space Description of Light

Such an evolution of quadrature expectations is equivalent to the time evolution of the correspond-
ing coherent state as |α(t)〉 =

∣∣α(0)e−iωt
〉
which represents a clockwise rotation in phase space5.

Figure 2.2A shows the time evolution of a coherent state in phase space. The fuzzy disk revolves

Figure 2.2: Time evolution of a coherent and a classical state. (A) The coherent state rotates clockwise in phase
phase with time according to |α(t)〉 =

∣∣α(0)e−iωt
〉
. Changes in the value of electric field along the X quadrature with

respect to time (or equivalently phase) are shown in the bottom figure. (B) A similar time evolution can be seen
for a classical state that has angular frequency ω. In the absence of any inherent noise, the amplitude of the state
oscillates between a maximum and a minimum value. For both the figures (A) and (B), we assume that the phase of
the initial state is zero with respect to the X-axis.

at a constant distance around the origin with an angular velocity ω. The electric field (and its
fluctuations) of the coherent state along the X quadrature is given by the projection of the disk
onto the X-axis (see figure 2.2A bottom). At time t = 0, we take the amplitude of the state to be
aligned with the X-axis (i.e. zero initial phase). Therefore, the amplitude noise of the electric field
is the same as the X quadrature noise. After time t = π/2ω, equivalent to a clockwise π/2 phase
rotation of the state in phase space, the projection of the amplitude of coherent state goes to zero
and we observe the noise in the (initial) Y quadrature of the state. At t = π/ω, we again see the

5A counter-clockwise rotation of quadrature axes is equivalent to clockwise rotation of the state. For phase space
description of time evolution using quadrature axes rotation, see reference [52,53]
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2.5 Phase Space Description of Light

X quadrature noise and the negative amplitude of the electric field before restoring back to initial
state at t = 2π/ω.

In the figure 2.2B, the time evolution of a classical state is shown with the same initial condition
and the angular velocity ω. Once again we see the similarities in the behaviors of a coherent and
a classical state as the amplitude of the classical field changes periodically between maximum and
minimum values, however, without being accompanied by quadrature or field fluctuations. The
time evolution of the classical field is essentially the same as that of the coherent state which is
expected due to the similarities of the classical quadrature expressions (2.99) and (2.100) with the
quadrature expectation values (2.101) and (2.103) in the quantum picture.

Based on our discussion of the phase space description, we saw that one can create a coherent
state starting from a vacuum state and displacing it from the origin by α. A relevant operator
corresponding to such a transformation is known as the displacement operator D̂(α) and, can be
defined as

D̂(α) = e(αâ†−α∗â) (2.108)

= e−
1
2
|α|2 eαâ

†
e−α

∗â (2.109)

= e
1
2
|α|2 e−α

∗â eαâ
†
, (2.110)

where we have used the Baker-Campbell-Hausdorff (BCH) theorem [32] to derive (2.109) and (2.110).
Applying the displacement operator on the vacuum state, we get

D̂(α)|0〉 = e−
1
2
|α|2 eαâ

†
e−α

∗â |0〉 (2.111)

= e−
1
2
|α|2 eαâ

† |0〉

= e−
1
2
|α|2

∞∑
n=0

αn

n!
(â†)n |0〉

= |α〉 . (2.112)

For the displacement of any general coherent state |β〉, we have

D̂(α) |β〉 = |α+ β〉 e
1
2

(αβ∗−α∗β) (2.113)

= |α+ β〉 ei Im[α∗β]. (2.114)

Some of the other useful properties of the displacement operator are

â+ α = D̂†(α)âD̂(α) (2.115)

D̂†(α) = D̂(−α) = D̂−1(α). (2.116)

Before moving on to a discussion of the squeezed state of light in the next section, we introduce
a useful terminology of generalized quadratures Xθ and Yθ as

X̂θ =
âe−iθ + â†eiθ√

2
, (2.117)

Ŷθ = X̂θ+π
2

=
âe−iθ − â†eiθ

i
√

2
. (2.118)
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2.6 Squeezed States of Light

Again, one may notice the similarities of expressions (2.99) and (2.100) with (2.117) and (2.118),
respectively. Fundamentally, these expression are based on the separation of positive Ê(+) and
negative Ê(−) frequency parts of the field. Although, such a separation has no physical motivation
in the classical picture (it is used for the mathematical convenience of exponential functions); in
the quantum picture, the detection mechanism of photons via photo-absorption at the detector
exclusively deals with the annihilation operator built into the positive frequency component [37].

2.6 Squeezed States of Light

As we mentioned in section 2.4, the vacuum and the coherent states have the same fixed amount of
variance in any given quadrature. This leads to the definition of the SNL due to their minimum noise
property following the Heisenberg uncertainty principle. However, it is possible to have quantum
optical states with one quadrature noise lower than the SNL at the expense of excess noise in the
other quadrature, e.g.

〈∆2X̂〉 < 1

2
and 〈∆2Ŷ 〉 > 1

2
, (2.119)

These states are known as squeezed states of light and, in general, need not be minimum uncertainty
states. Figure 2.3 provides a phase space depiction of a few squeezed states of light. A ‘zero-mean’
vacuum squeezed state that has less uncertainty in the X quadrature is shown in figure 2.3A. The
distribution is a fuzzy elliptical disk, commonly referred to as the ‘noise ellipse’, which is a simplified
representation of the Wigner distribution of the squeezed state. Since the Wigner distribution of
the squeezed states is also a 2D Gaussian distribution, it can be used to evaluate the variance along
any given axis and is shown using a dashed ellipse. The angle of lowest variance below the SNL with

Figure 2.3: Phase space representations of various squeezed states of light. (A) A vacuum squeezed state with lower
noise (than SNL) in the X quadrature at the expense of higher noise in the Y quadrature. A dashed ellipse is drawn
to represent the variance of the given squeezed state. A dashed circle in the background represents the variance of
the vacuum state (i.e. SNL). Since the X quadrature is the squeezing quadrature, the squeezing angle is zero. (B)
A vacuum squeezed state that has squeezing along the Xθ quadrature in phase space. Angle θ is equal to half the
squeezing phase ϕ as described in the main text.

respect to the X-axis is known as the squeezing angle (denoted here with θs) and the corresponding
quadrature, oriented along the minor axis of the noise ellipse, is known as the squeezing quadrature.
The amount of squeezing in the squeezing quadrature, which is simply referred as squeezing and
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2.6 Squeezed States of Light

denoted here by ‘s’, is given as

s =
〈∆2X̂θs〉
〈∆2X̂〉|α〉

, (2.120)

where 〈∆2X̂〉|α〉 denotes the variance of an equivalent (amplitude) coherent state and the expectation
value in the numerator is evaluated with respect to the squeezed state. The amount of squeezing is
often reported on the decibel logscale and is defined as

sdB = −10 log10 s. (2.121)

Hence, squeezing is positive on the dB scale. A related parameter to squeezing is the squeeze
parameter r, defined using the following relation

e−2r = s. (2.122)

Given the 〈∆2X̂〉|α〉 = 1/2, we get

〈∆2X̂θs〉 =
1

2
e−2r and 〈∆2Ŷθs〉 =

1

2
e2r (2.123)

for a vacuum squeezed state (see figure 2.3A).
Earlier we saw that a coherent state |α〉 can be generated from a vacuum state using the

displacement operator D(α). Similarly, a vacuum squeezed state |ξ〉 can be generated using a
squeezing operator Ŝ(ξ) as

Ŝ(ξ) |0〉 = |ξ〉 , ξ = reiϕ, (2.124)

where the additional parameter ϕ is known as squeezing phase which determines the squeezing and
anti-squeezing directions in phase space. The squeezing operator is a unitary operator and can be
defined as

Ŝ(ξ) = exp

(
1

2
ξ∗â2 − 1

2
ξ â†2

)
(2.125)

Using the above form of Ŝ(ξ), we can solve for |ξ〉 as

|ξ〉 = exp

(
1

2
ξ∗â2 − 1

2
ξ â†2

)
|0〉 (2.126)

=
1√

cosh r

∞∑
n=0

(−1)neinϕ(tanh r)n
√

(2n)!

2nn!
|2n〉 . (2.127)

Notice that the odd numbered states are absent. The probability of finding the field in a specific
|2m〉 number state is given by

p2m = |〈2m|ξ〉|2 =
(tanh r)2m

cosh r

(2m)!

22mm!
. (2.128)
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2.6 Squeezed States of Light

Therefore, despite the zero mean, a vacuum squeezed state ‘contains’ photons with an average
photon occupancy

〈n̂〉|ξ〉 = sinh2 r, (2.129)

which is non-zero for r > 0. Looking further into the photon statistics properties of the variance
and QM are

〈∆2n̂〉|ξ〉 = 2(sinh2 r + sinh4 r), (2.130)

QM = 1 + 2 sinh2 r. (2.131)

Both of these quantities point toward a super-Poisson or thermal behavior of these states. There-
fore, it is not clear if the squeezed states are non-classical in nature. However, explaining certain
characteristics of these states in terms of the Glauber-Sudarshan P -distribution, such as the nor-
malized variance along the squeezed quadrature, requires non-positiveness of the distribution and
points to the non-classical behavior of squeezed states [54,55].

We can now connect the squeezing angle θs with the squeezing phase ϕ of |ξ〉 by calculating
the quadrature variances 〈∆2X̂〉|ξ〉 and 〈∆2Ŷ 〉|ξ〉. To evaluate these variances, we consider how the
squeezing operator transforms the creation and annihilation operators

Ŝ†(ξ) â Ŝ(ξ) = â cosh r − â† eiϕ sinh r, (2.132)

Ŝ†(ξ) â† Ŝ(ξ) = â† cosh r − â e−iϕ sinh r. (2.133)

These transformations are known as the Bogoliubov transformations [56] and preserve the commu-
tation relation between the creation and annihilation operators. Using these transformations and
the unitarity of Ŝ(ξ), one can evaluate

〈ξ| â |ξ〉 = 〈0|Ŝ†(ξ) â Ŝ(ξ)|0〉 (2.134)

〈ξ| â2 |ξ〉 = 〈0|Ŝ†(ξ) â Ŝ(ξ) Ŝ†(ξ) â Ŝ(ξ)|0〉. (2.135)

Using (2.132-2.135), the quadrature variances have the form

〈∆2X̂〉|ξ〉 =
1

2

(
cosh2 r + sinh2 r − 2 sinh r cosh r cosϕ

)
(2.136)

〈∆2Ŷ 〉|ξ〉 =
1

2

(
cosh2 r + sinh2 r + 2 sinh r cosh r cosϕ

)
. (2.137)

For ϕ = 0, we get squeezing along the X quadrature and anti-squeezing along the Y quadrature
which is the vacuum squeezed state shown in figure 2.3A. For values of ϕ 6= 0 or π, the squeezing
quadrature Xθs is neither along X or Y . It can be shown that if we rotate the quadratures by an
angle of θ = ϕ/2 (counter-clockwise, assuming ϕ >0) in phase space, we get

〈∆2X̂θ=ϕ/2〉|ξ〉 =
1

2
e−2r, (2.138)

〈∆2Ŷθ=ϕ/2〉|ξ〉 =
1

2
e2r. (2.139)

This implies θs = ϕ/2. With respect to θs, we can rewrite the generalized quadrature variance as

〈∆2X̂θ〉|ξ〉 =
1

2
e−2r cos2(θ − θs) +

1

2
e2r sin2(θ − θs). (2.140)
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2.6 Squeezed States of Light

Figure 2.3B depicts the corresponding vacuum squeezed state |ξ〉 with ξ = reiϕ, that is rotated at
an angle in phase space. The angle θ of the generalized quadrature Xθ is taken to be θs.

A more general class of states with non-zero amplitudes are the squeezed coherent states. These
states can be obtained by displacing the squeezed state |ξ〉 in phase space with the displacement
operator, i.e.

|α, ξ〉 = D̂(α)Ŝ(ξ) |0〉 , (2.141)

where |α, ξ〉 is the squeezed coherent state with α = |α|eiφ and ξ = reiϕ. Some of the relevant
operator expectation values and properties are

〈â〉|α,ξ〉 = α, 〈â2〉|α,ξ〉 = α2 − eiϕ cosh r sinh r (2.142)

〈n̂〉|α,ξ〉 = |α|2 + sinh2 r, 〈X̂θ〉|α,ξ〉 =
αe−iθ + α∗eiθ√

2
(2.143)

〈∆2X̂ϕ
2
〉|α,ξ〉 =

1

2
e−2r, 〈∆2X̂ϕ

2
+π

2
〉|α,ξ〉 =

1

2
e2r, 〈∆2X̂ϕ

2
〉|α,ξ〉〈∆2X̂ϕ

2
+π

2
〉|α,ξ〉 =

1

4
. (2.144)

Based on these properties, one would expect the photon statistics of the squeezed coherent states
to be the same as the squeezed vacuum states, as the displacement operator does not alter the
noise ellipse in phase space. However, the Mandel parameter QM can be negative. It can be shown
that for {φ, ϕ} ≈ 0, QM is negative for large amplitude coherent squeezed states [55]. In other
words, there are values of {α, ξ} for which the photon statistics of a squeezed coherent state is sub-
Poissonian. This also implies that squeezing as a quantum mechanical effect can be obtained with
large number of photons in the field and is, therefore, suitable for showing macroscopic quantum
mechanical effects [54].

Figures 2.4A and 2.4B show the phase space distribution of two squeezed coherent states that
are squeezed along the X and Y quadrature, i.e. |α| 6= 0 and ϕ equal to 0 and π, respectively. The
electric field corresponding to the X and Y quadratures can be evaluated via projections along the
X and Y -axes. The time-evolution of these states in phase space can be visualized by a clockwise
rotation of the noise ellipse around the origin with angular velocity ω as shown in the figure. During
such a rotation, the relative angle between the displacement vector and the minor axis of the noise
ellipse remains constant. This can be seen from the fact that time evolution of the squeezed coherent
state |α(t), ξ(t)〉 has the form [57]

|α(t), ξ(t)〉 = e−
1
2
iωt
∣∣α(0)e−iωt, ξ(0)e−2iωt

〉
. (2.145)

Since ϕ(t) evolves as ϕ − 2ωt, the minor/major axes rotate as e−iωt which is the same rate as the
amplitude rotation. The time evolution of the electric field in the X quadrature is shown at the
bottom of figure 2.4 for both states. Since |α| 6= 0, the mean electric field also oscillates between
a maximum and a minimum along with its variance. Here we take the amplitude of the coherent
squeezed states to be aligned with the X quadrature at t = 0. For the optical state in figure 2.4A,
the minor axis of the noise ellipse is in the direction of the amplitude. It leads to a lower amplitude
noise and a higher phase noise in the electric field during time evolution. The condition is reversed
for the state shown in 2.4B as the minor axis in now aligned with the out-of-phase Y quadrature. For
this reason, these states are often referred to as amplitude-squeezed and phase-squeezed coherent
states, respectively.

We now introduce the two-mode squeezed states (TMSS) of light that are generated, like the
single mode squeezed states discussed above, via non-linear interactions between light and matter. In
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2.6 Squeezed States of Light

Figure 2.4: Phase space representations of squeezed coherent states and their time evolution. (A) A squeezed
coherent state with non-zero amplitude and squeezing along the X quadrature. The electric field along the X
quadrature is shown in the bottom figure. During the time evolution, the noise ellipse rotates around the origin while
maintaining its orientation with respect to the displacement vector (represented using a dashed line). Since the minor
axis of the ellipse is aligned with the amplitude direction, we see less amplitude noise in the electric field. (B) Phase
space distribution of a squeezed coherent state with squeezing along the Y quadrature. Although, the time evolution
is similar to the state in (A), the orientation of the noise ellipse leads to higher amplitude noise and lower phase noise
in the electric field (compared to a coherent state with the same amplitude). A dashed circle in the background in
(A) and (B) represents a variance equal to the vacuum state (i.e. SNL).

the case of non-degenerate spontaneous parametric down-conversion (SPDC) and FWM, a discussion
of TMSS naturally leads to the idea of entanglement between the two modes of light involved in the
non-linear process. In this dissertation, we denote these modes as ‘a’ and ‘b’ with the commutation
relations between corresponding operators given as

[â, â†] = [b̂, b̂†] = Î, (2.146)

[â, b̂] = [â, b̂†] = 0. (2.147)

The non-degeneracy in the modes can be either in terms of frequency (the signal and idler modes
in type-I SPDC or the probe and conjugate modes in FWM) or polarization (as in type-II SPDC).
Mathematically, a two-mode squeezed state |ξab〉 is generated by applying the two mode squeezing
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2.6 Squeezed States of Light

operator Ŝab(ξ) on a two-mode vacuum state |0a〉 |0b〉 as

|ξab〉 = Ŝab(ξ) |0, 0〉 (2.148)

= e(ξâ†b̂†−ξ∗âb̂) |0, 0〉 , (2.149)

where |0, 0〉 ≡ |0a〉 |0b〉. As before, we solve for |ξab〉

|ξab〉 = Ŝab(ξ) |0, 0〉 (2.150)

= exp
(
eiϕ tanh r â†b̂†

)
exp
[
−(ln cosh r)(â†â+ b̂†b̂+ Î)

]
exp
(
−eiϕ tanh r âb̂

)
|0, 0〉 (2.151)

=
1

cosh r
exp
(
eiϕ tanh r â†b̂†

)
(2.152)

=
1

cosh r

∞∑
n=0

einϕ tanhn r |n, n〉 , (2.153)

where we have used the BCH-theorem for the SU(1,1) group [58,59] in (2.151). The probability pmn
of finding m photons in mode a and n photons in mode b is

pmn = δnm
tanh2n r

cosh2 r
. (2.154)

This implies that if we find k photons in one of the modes then the other mode also must have k
photons and points to perfect photon correlations between the two modes. The photon correlations
can be used for ‘heralding’ specific number of photons in one of the modes based on the detection
of photons in the other mode. In practice, two-mode squeezed states, with an optimized generation
of the two-photon state |1, 1〉, have been used as heralded single-photon sources [60,61].

To see the photon statistics of the individual modes and the amount of correlation between
them, we consider how â and b̂ change under the action of the two mode squeezing operator (via
the two-mode Bogoliubov transformations). For the sake of clarity, we define

â(ξ) ≡ Ŝ†ab(ξ) â Ŝab(ξ), b̂(ξ) ≡ Ŝ†ab(ξ) b̂ Ŝab(ξ), (2.155)

â†(ξ) ≡ Ŝ†ab(ξ) â
† Ŝab(ξ), b̂†(ξ) ≡ Ŝ†ab(ξ) b̂

† Ŝab(ξ). (2.156)

The two-mode Bogoliubov transformations for these operators are

â(ξ) = â cosh r + b̂† eiϕ sinh r, (2.157)

â†(ξ) = â† cosh r + b̂ e−iϕ sinh r, (2.158)

b̂(ξ) = b̂ cosh r + â† eiϕ sinh r, (2.159)

b̂†(ξ) = b̂† cosh r + â e−iϕ sinh r. (2.160)

As a result of the two-mode squeezing interaction, the mean photon number in both the modes is
non-zero as

〈â†â〉|ξab〉 = 〈b̂†b̂〉|ξab〉 = sinh2 r. (2.161)
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However, the mean values of the X and Y quadrature of each mode are zero6, i.e.

〈X̂a〉|ξab〉 = 〈Ŷa〉|ξab〉 = 0. (2.162)

The quadrature variances in each mode are larger than the SNL, i.e.

〈∆2X̂a/b〉|ξab〉 = 〈∆2Ŷa/b〉|ξab〉 =
1

2
+ sinh2 r. (2.163)

The amount of correlation between the modes a and b is

〈âb̂〉|ξab〉 = cosh r sinh r eiϕ, (2.164)

which is non-zero for r > 0. This non-zero correlation leads to non-classical properties of the TMSS
as well as entanglement between the two modes [55]. To show the squeezing behavior of the TMSS,
we begin by considering joint quadratures between modes a and b. We define

X̂± =
X̂a ± X̂b√

2
, (2.165)

Ŷ± =
Ŷa ± Ŷb√

2
. (2.166)

and evaluate the change in the variance of these quadratures as a result of the two-mode squeezing.
Prior to squeezing, the joint state was a two-mode vacuum state |0, 0〉. Hence,

〈∆2X̂±〉|0,0〉 = 〈∆2Ŷ±〉|0,0〉 =
1

2
, (2.167)

which is expected. We now evaluate the joint quadrature variances for a two-mode squeezed state.
In order to simplify the calculations, we assume the phase ϕ = 0 which makes ξ a real number.

However, this assumption does not change the nature of quantum correlation between the two
modes. First, we evaluate

〈∆2X̂−〉|ξab〉 = 〈ξab|X̂2
−|ξab〉 − 〈ξab|X̂a|ξab〉2 (2.168)

= 〈Ŝ†ab(ξ) X̂
2
− Ŝab(ξ)〉|0,0〉 (2.169)

=

〈(
Ŝ†ab(ξ) X̂− Ŝab(ξ)

)2
〉
|0,0〉

(2.170)

= 〈X̂2
−(ξ)〉|0,0〉, (2.171)

where X̂−(ξ) = Ŝ†ab(ξ) X̂− Ŝab(ξ). In (2.170), we used the fact that Ŝab(ξ) is a unitary operator. To

6Notice that we evolve the operators using the Heisenberg picture to simplify calculations, i.e.

〈X̂a〉|ξab〉 = 〈ξab|X̂a|ξab〉 = 〈0, 0|X̂a(ξ)|0, 0〉 = 〈X̂a(ξ)〉|0,0〉,

where X̂(ξab) = Ŝ†ab(ξ) X̂ Ŝab(ξ).
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evaluate X̂−(ξab), we use the two-mode Bogoliubov transformations (2.157-2.160) as

X̂−(ξ) = Ŝ†ab(ξ)

(
X̂a − X̂b√

2

)
Ŝab(ξ), (2.172)

= Ŝ†ab(ξ)

(
â+ â† − b̂− b̂†

2

)
Ŝab(ξ) (2.173)

=
â(ξ) + â†(ξ)− b̂(ξ)− b̂†(ξ)

2
(2.174)

=
1

2

[
cosh r (â+ â†) + sinh r (b̂+ b̂†)− cosh r (b̂+ b̂†)− sinh r (â+ â†)

]
(2.175)

=
1

2

[
e−r (â+ â†)− e−r (b̂+ b̂†)

]
(2.176)

= e−r

[
â+ â† − b̂+ b̂†

2

]
(2.177)

= e−rX̂−. (2.178)

Using the above result in (2.171), we get

〈∆2X̂−〉|ξab〉 = e−2r〈X̂2
−〉|0,0〉 (2.179)

=
1

2
e−2r, (2.180)

which implies that the joint quadrature X− in |ξab〉 is squeezed. This result along with the variances
of the all other joint quadratures can be summarized as

〈∆2X̂±〉|ξab〉 =
1

2
e±2r, 〈∆2Ŷ±〉|ξab〉 =

1

2
e∓2r. (2.181)

Therefore, for ϕ = 0, a TMSS exhibits squeezing in ‘amplitude-difference’ and ‘phase-sum’ quadra-
tures while the ‘amplitude-sum’ and ‘phase-difference’ quadratures are anti-squeezed. Figure 2.5
shows the phase space representation of a two mode squeezed state corresponding to ϕ = 0. The
individual a and b modes, shown in figures 2.5A and 2.5B, respectively, are thermal (and have
QM > 1) with quadrature variances greater than the SNL. However, in phase space of joint X and
Y quadratures, we see variance below the SNL in X− and Y+ as shown in figures 2.5C and 2.5D.
Such a reduction of noise in the joint quadratures is also sufficient to show EPR entanglement [62–64]

(for a pure state) and inseparability [65] (via DGCZ criterion) between the quadratures of modes a
and b. We provide a detailed discussion on the EPR entanglement criterion in chapter 4 that relies
on reduced variances in the joint variables.

The fundamental nature of two-mode squeezing remains the same for non-zero values of ϕ. This
can be seen if we rewrite the Ŝab as

Ŝab(ξ) = exp
(
ξâ†b̂† − ξ∗âb̂

)
(2.182)

= exp

(
ξ∗

2
ĉ2 − ξ

2
ĉ†2
)

exp

(
−ξ
∗

2
d̂2 +

ξ

2
d̂†2
)
, (2.183)
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Figure 2.5: Phase space representations of a two-mode squeezed state with ϕ = 0. (A) and (B) show the distribution
of modes a and b in their corresponding phase space. Both modes individually have higher variance in quadratures
than the vacuum state. The noise distribution, however, is the same in all directions (radially symmetric). (C)
and (D) show the same state in phase space corresponding to joint quadratures of X and Y , respectively. In this
representation, we find |ξab〉 to be squeezed along the amplitude-difference (X−) and phase-sum (Y+) quadratures.
A dashed circle in the background in all figures represents variance equal to the SNL.

where ξ = reiϕ, ĉ = (â− b̂)/2 and d̂ = (â+ b̂)/2. One can show that the first and second operators
in (2.183) lead to squeezing (anti-squeezing) along X−,θs(Y−,θs) and Y+,θs(X+,θs) quadratures where
θs = ϕ/2.

One can also generate two-mode squeezed states in which the mean amplitude of each mode
is non-zero. These two-mode squeezed coherent states, denoted as |α, β; ξab〉, can be generated by
displacing the two-mode squeezed state as

|α, β; ξab〉 = D̂a(α)D̂b(β) |ξab〉 (2.184)

= D̂a(α)D̂b(β)Ŝab |0, 0〉 , (2.185)
(2.186)

where D̂a(α) and D̂b(β) are the displacement operators acing on modes a and b, respectively. Some
of the relevant expectation values and properties of |α, β; ξab〉 are

〈â〉 = α, 〈b̂〉 = β, (2.187)

〈â†â〉 = |α|2 + sinh2 r, 〈b̂†b̂〉 = |β|2 + sinh2 r, (2.188)

〈â2〉 = α2, 〈b̂2〉 = β2. (2.189)

If modes a and b contain large number of photons, the state |α, β; ξab〉 is often referred as the
bright two-mode squeezed state (BTMSS). The relevant correlation properties between the bright
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2.6 Squeezed States of Light

two modes are

〈â†b̂〉 = α∗β, 〈b̂†â〉 = β∗α, (2.190)

〈âb̂〉 = 〈b̂â〉 = αβ + eiϕ sinh r cosh r. (2.191)

Here all the expectation values in (2.187-2.191) are taken with respect to the |α, β; ξab〉 state.
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CHAPTER3
Generation and Measurement of Squeezed

Light
The generation as well as characterization of squeezed states of light is, at present, of high interest
because of their low noise and entanglement properties. A most notable use of the low noise aspects
of vacuum squeezed states is in the gravitational interferometers [52] such as the Advanced-LIGO
interferometers [23], VIRGO [66] and Geo600 [24]. Similarly, the shared quantum correlations between
the modes of a TMSS are being utilised in upcoming technological applications such as quantum
sensing [67–69], quantum communication [6,70,71] and quantum computation [72,73]. Historically, after
the development of the quantum theory of optical coherence in the 1960s by Glauber, Cahill,
Sudarshan and others [37], a detailed mathematical formalism of the squeezed states of light as
‘an equivalence class of minimum-uncertainty states’ was given by Stoler [74,75]. Later, Yuen [76]

and Caves [77] realized their potential for useful applications such as noiseless amplification and
quantum-enhanced interferometry.

The first experimental observation of squeezed states of light was by Slusher et al. [27] at AT&T
Bell Labs in 1985. They used a sodium atomic vapor as a non-linear medium to implement a
non-degenerate FWM process. This was followed by the generation of single mode squeezed light
using a non-linear MgO:LiNbO3 crystal in an optical parametric oscillator (OPO) by Wu et al. [78]

in 1986. Since then, continuous improvements in efficient detectors with low-noise electronics and
higher quality optics has led to observation of squeezing up to 9 dB using atomic vapors, 7 dB using
non-linear optical fibers [79] and 15 dB using non-linear crystals [80]. The two-mode squeezed states
discussed in this dissertation, are generated using the non-linearity in atomic 85Rb vapor. This
chapter will provide the essential details of the non-linear FWM process that is used to generate
a BTMSS consisting of bright probe and conjugate ‘twin beams’, followed by the measurement
techniques used to help verify and optimize the quantum correlations in these twin beams.

3.1 Non-linear Optical Processes

In chapter 2, we mentioned that the two-mode squeezed states of light are generated via certain
non-linear interactions between light and matter that lead to pairwise photon creation as well as
entanglement in the two modes. In order to see how a non-linear interaction may lead to photon
generation at new frequencies, we first study the electric response of a medium in the presence of
external electric fields within the framework of classical optics.

When an external electric field is applied on a medium, the charge distribution inside becomes
distorted, i.e. the medium acquires an electric dipole moment. This electric response or polarization
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3.1 Non-linear Optical Processes

P (r, t) of a medium, defined as the amount of dipole moment per unit volume, can expanded as a
power series in terms of the electric field

P (r, t) = ε0

[
χ(1)E(r, t) + χ(2)E2(r, t) + χ(3)E3(r, t) + . . .

]
, (3.1)

= P (1)(r, t) + P (2)(r, t) + P (3)(r, t) + . . . (3.2)

= P (1)(r, t) + P (NL)(r, t) , (3.3)

where χ(n) is the nth order non-linear susceptibility of the medium. P (1)(r) = ε0χ
(1)E(r, t) is the

linear response of the medium and is responsible for absorption, refraction and transmission of the
medium and P (NL)(r, t) refers to the higher order terms that are dependent on the quadratic or
higher powers of the electric field. Working with Maxwell’s equations in media, one can obtain the
following wave equation [81]

∇2E(r, t)− 1

c2

∂2E(r, t)

∂t2
=

1

ε0c2

∂2P (r, t)

∂t2
. (3.4)

Substituting (3.3) in (3.4), we get

∇2E(r, t)− 1

c2

∂2E(r, t)

∂t2
=

1

ε0c2

∂2

∂t2

(
P (1)(r, t) + P (NL)(r, t)

)
(3.5)

⇒ ∇2E(r, t)− (1 + χ(1))

c2

∂2E(r, t)

∂t2
=

1

ε0c2

∂2P (NL)(r, t)

∂t2
(3.6)

⇒ ∇2E(r, t)− n2

c2

∂2E(r, t)

∂t2
=

1

ε0c2

∂2P (NL)(r, t)

∂t2
, (3.7)

where εr = (1 +χ(1)) and n2 = εrµr. Here, we have assumed the magnetic response of the medium
to be the same as vacuum, i.e. µr = 1. The final differential equation obtained in (3.7), is an
inhomogeneous wave equation with the right hand side term given by P (NL)(r, t) acting as source
term. Since P (NL) contains higher order electric field terms, it can generate new frequencies via
the non-linear interaction depending on the input frequencies and the non-linear response of the
medium.

For example, consider an input electric field that is the sum of electric fields at two different
frequencies, incident on a χ(2) medium as

E(t) = (Ep e
−iωpt + c.c.) + (Es e

−iωst + c.c.), (3.8)

where Ep and Es are the complex amplitudes of the fields at frequencies ωp and ωs, respectively.
Here, we ignore the spatial dependence of the fields for simplicity. Considering χ(2) non-linearity of
the medium, the second order non-linear response P (2)(t) has the form

P (2)(t) = χ(2)E2(t) (3.9)

= ε0χ
(2)
[
E2
p e
−2iωpt + E2

s e
−2iωst + 2EpEse

−i(ωp+ωs)t + 2EpE
∗
se
−i(ωp−ωs)t + c.c.

]
+ 2ε0χ

(2)
[
|Ep|2 + |Es|2

]
, (3.10)

where the term c.c. in (3.10) implies complex conjugate of all the previous terms. All the terms in
the expression for P (2)(t) describe a physical process including the second harmonic generation at
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2ωp and 2ωs, and sum frequency generation at ωp + ωs. The underlined term in (3.10) represents
the down-conversion process in which the field at the difference frequency ωi = ωp−ωs is generated.
As the Ep field propagates through the non-linear medium, it can then amplify the field at ωs
in the presence of generated frequency ωi. In other words, a χ(2) medium can generate a field
at a new frequency as well as amplify an input ‘seed’ at ωs in the presence of a third (Ep) field
at ωp. Such frequency down-conversion (ωi, ωs < ωp) process is known stimulated parametric
down-conversion (PDC). Here, we see that even from the perspective of classical optics, non-linear
interactions are valuable as they can generate optical fields at new frequencies. The down-conversion
process, however, can still occur even in the absence of any seed field at ωs. From the quantum
description of light given in chapter 2, we concluded that even in the absence of any field excitations
(i.e. photons), the vacuum field fluctuations are present at all the frequencies. These fluctuating
fields can themselves act as seed to generate photons at new frequencies [82,83]. Such a ‘vacuum
stimulated’ process is known spontaneous parametric down-conversion (SPDC). The PDC process
is often implemented in non-centrosymmetric crystals (no inversion symmetry) that have a non-zero
χ(2) susceptibility. Some of the non-linear crystals with a large χ(2) are β-barium borate (BBO),
potassium titanyl phosphate (KTP) and lithium niobate (LiNbO3).

After reviewing how non-linear interactions generate new fields by frequency- or wave-mixing
in classical non-linear optics, we can now connect them to the generation of photon pairs in the
quantum picture. Recall that the two-mode squeezing operator we introduced in chapter 2 has the
form

Ŝ(ξ) = exp
(
ξ â†b̂† − ξ∗âb̂

)
, (3.11)

where ξ = reiϕ is a complex parameter, â, b̂ are the annihilation operators for modes a and b,
respectively. Since the squeezing operator is unitary, it can be recast in the following form as a time
evolution operator

Ŝ(ξ) = exp

(
− i
~
Ĥ t
)
, (3.12)

where

Ĥ = i~g (eiϕâ†b̂†) +H.c. and gt = r. (3.13)

In other words, the squeezing operation Ŝ(ξ) can be realized by the Hamiltonian given in (3.13).
As can be seen via the form of the Hamiltonian, it denotes a non-linear interaction which leads
to photon pair generation (and annihilation) for the modes a and b. For the process of SPDC
mentioned above, the constant g which denotes the strength of the interaction, is proportional to [31]

g ∝ χ(2)Ep, (3.14)

which is in agreement with the classical picture described in (3.10). Here, Ep denotes the amplitude
of the pump beam, from which the pair of photons are generated (or decay into). Figure 3.1A
depicts the quantum picture of the SPDC process in a χ(2) medium along with the corresponding
energy conversion in the optical fields, shown in figures 3.1B. In SPDC, a pump photon at frequency
ωp interacting with the χ(2) non-linear medium splits into two photons at much lower frequencies,
and hence, the name ‘down-conversion’. These new photons, known as signal and idler photons,
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3.2 Two-mode Squeezing via Four-wave Mixing

Figure 3.1: Physical processes involving χ(2) and χ(3) non-linear susceptibilities. (A) and (B) give schematic
diagrams representing SPDC and FWM processes with (B) and (D) as their corresponding energy level diagrams,
respectively. During SPDC, a χ(2) process, a photon at pump frequency ωp is converted into a pair of photons at
frequencies ωs and ωi while, in FWM, two pump photons are simultaneously converted into a pair of photons at ωpr
and ωc via the χ(3) non-linearity of the medium. Both, SPDC and FWM are parametric processes which implies that
total energy in the optical field before and after the process is conserved.

have frequencies ωs and ωi, respectively, such that ~ωp = ~ωs+~ωi. This is similar to the process of
FWM, shown in figure 3.1C and 3.1D, where two pump photons at ωp are simultaneously converted
into a pair of probe and conjugate photons at ωpr and ωc, respectively, inside a χ(3) non-linear
medium such that 2~ωp = ~ωpr + ~ωc. For the FWM process, the interaction Hamiltonian has the
same form given in (3.13) with g proportional to [81]

g ∝ χ(3)E2
p . (3.15)

For a high-intensity coherent pump field, the intensity of the pump remain unchanged during the
propagation through the non-linear media. Therefore, the pump field acts as a reservoir of photons
and can be treated as a classical field in the interaction Hamiltonian.

3.2 Two-mode Squeezing via Four-wave Mixing

The two-mode squeezed states of light, which are central to the main theme of this dissertation,
are generated using FWM in hot atomic Rb vapor. In general, atomic vapors as non-linear media,
unlike certain crystals, are fundamentally centrosymmetric (i.e. have inversion symmetry). As a
result of which, all the even order susceptibilities χ(2n) are zero. This can be seen using (3.9), as
under inversion symmetry we have

−P (2)(t) = χ(2)[−E(t)]2 (3.16)

= χ(2)[E(t)]2 (3.17)

= P (2)(t), (3.18)

which implies χ(2) = 0. Hence, atomic vapors have the lowest order of non-linearity given by the
χ(3) susceptibility. As we mentioned in the previous section, the χ(3) susceptibility is responsible
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3.2 Two-mode Squeezing via Four-wave Mixing

for the FWM process inside a non-linear media. In this section, we will describe why the field
interactions during the FWM process, mediated via χ(3), have an interaction Hamiltonian given by
(3.13).

The pump, probe and conjugate electric fields inside the atomic non-linear medium must satisfy
the wave equation derived in the previous section

∇2E(r, t)− n2

c2

∂2E(r, t)

∂t2
=

1

ε0c2

∂2P (NL)(r, t)

∂t2
, (3.19)

To look at the behavior of each (pump, probe and conjugate) frequency component, we write the
respective electric field as

En(r, t) = An(z)eiknze−iωnt (3.20)

where the subscript n = {p, pr, c} for the pump, probe and conjugate fields, respectively. Here, we
take the fields to be propagating along the z-direction inside the non-linear medium with An as the
complex amplitude. Under the slowly varying amplitude approximation∣∣∣∣ d2

dz2
An(z)

∣∣∣∣� ∣∣∣∣kndAn(z)

dz

∣∣∣∣ , for all n, (3.21)

which implies that the fractional change in An over a λ distance is much smaller than unity, the
wave equation for the field at ωn takes the following simpler form

d

dz
An(z) = i

ωn
2ε0nnc

Pne
−iknz. (3.22)

where Pn is the non-linear response of the medium at frequency ωn. For the FWM process, Pn has
the form [81]

Pn ≡ P (ωn = ωi + ωj − ωk) = 6χ(3)(ωn = ωi + ωj − ωk)Ai(z)Aj(z)A∗k(z) ei(ki+kj−kk)z. (3.23)

Here, the pump field is accounted twice which is expected as the FWM process involves two pump
photons1. Using (3.23) in (3.22) with the condition of co-propagating beams, the probe and the
conjugate fields in FWM are characterized by the following coupled first-order differential equations

d

dz
Apr(z) = i

3ωprχ
(3)
pr

ε0nprc
A2
pA
∗
c(z) e

i∆kz, (3.28)

d

dz
Ac(z) = i

3ωcχ
(3)
c

ε0ncc
A2
pA
∗
pr(z) e

i∆kz. (3.29)

1Explicitly, the four cases of ωn are

ωp1 = ωpr + ωc − ωp2 (3.24)
ωp2 = ωpr + ωc − ωp1 (3.25)
ωpr = ωp1 + ωp2 − ωc (3.26)
ωc = ωp1 + ωp2 − ωpr. (3.27)

In the case where the two pump photons are degenerate, we have ωp1 = ωp2 = ωp.
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3.2 Two-mode Squeezing via Four-wave Mixing

Here we have assumed the pump field to remain undepleted which implies d
dzAp(z) = 0. The

quantity ∆k is the wave vector mismatch or the phase mismatch in the fields. For an efficient
generation of fields at new frequencies in the non-linear process, the phase matching condition,
∆k = 0, must be satisfied. We can now introduce the quantum picture in a phenomenological way
by replacing the probe and conjugate amplitudes with the corresponding operators [84] as

Apr(z)→ â(z), (3.30)

Ac(z)→ b̂(z). (3.31)

Using the above substitutions in (3.28) and (3.29), we get

d

dz
â(z) = iηpr b̂

†(z), (3.32)

d

dz
b̂(z) = iηc â

†(z), (3.33)

where

ηpr =
3ωprχ

(3)
pr

ε0nprc
A2
p e

i∆kz, (3.34)

ηc =
3ωcχ

(3)
c

ε0ncc
A2
p e

i∆kz. (3.35)

In the limit of ηpr = ηc = η, the solution to (3.32) and (3.33) has the familiar form of

â(z) = â cosh(|η|z) + b̂† eiζ sinh(|η|z) = Ŝ†ab(ηz) â Ŝab(ηz), (3.36)

b̂(z) = b̂ cosh(|η|z) + â† eiζ sinh(|η|z) = Ŝ†ab(ηz) b̂ Ŝab(ηz), (3.37)

where η = |η|eiζ , â ≡ â(0) and b̂ ≡ b̂(0). These are the Bogoliubov transformations introduced

Figure 3.2: Generation of quantum-correlated probe and conjugate fields via FWM in Rb vapor. (A) The probe
(â) and conjugate (b̂) modes, which can be vacuum modes before the medium (represented with dashed lines), are
transformed into a two-mode squeezed state via the process of FWM inside the Rb vapor cell. (B) The χ(3) non-
linearity is achieved by tuning the relevant optical fields (in a stimulated FWM process, input probe and conjugate
fields can have non-zero amplitudes) near the D1 line in 85Rb. Due to the parametric nature of the process, the
total energy of the optical fields is conserved which can be seen using the closed form of the double-Λ configuration.
The detuning of the pump from the F=2 → F ′=3 transition is the single photon detuning (∆) and the two-photon
detuning (δ) is given by δ = ωp − ωpr − ωHF, where ωHF = 3.036 GHz is the hyperfine splitting of the ground state
in 85Rb.
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3.2 Two-mode Squeezing via Four-wave Mixing

in chapter 2 for two-mode squeezed states with corresponding two-mode squeezing operator and
Hamiltonian as

Ŝab(ξ) = exp
(
zη â†b̂† − zη∗âb̂

)
, (3.38)

Ĥ = i~g′ (eiζ â†b̂†) +H.c., (3.39)

where g′t = |η|z. With the substitution of ηz = ξ, these operators are the same as (3.11) and (3.13),
respectively. Also, the strength of the interaction g′ for the Hamiltonian in (3.39) has the form

g′ ∝ η ∝ χ(3)A2
p. (3.40)

The form of the Hamiltonian implies that, via the χ(3) non-linearity, the FWM process generates
two-mode squeezing and entanglement between the probe (â) and conjugate (b̂) modes. Figure 3.2A
depicts the generation of quantum-correlated probe and conjugate modes at the frequencies ωpr and
ωc respectively, using a hot 85Rb vapor as a χ(3) non-linear medium. The χ(3) non-linearity of Rb
vapor is due to the interaction of optical fields with the D1-transition shown in figure 3.2B. The
double-Λ configuration of the optical fields conserves the total energy in the optical fields and the
destruction of two pump photons is related to a simultaneous creation of a probe and a conjugate
photons as a quantum-correlated pair. In this double-Λ configuration, the single photon detuning
(∆) is the detuning of the pump from the F=2→ F ′=3 transition while the two-photon detuning
(δ) is given by δ = ωp−ωpr −ωHF, where ωHF is the hyperfine splitting of the ground state in 85Rb
as shown in figure 3.2B.

The configuration shown in figure 3.2 is a non-collinear FWM configuration, which implies that
the emission of probe and conjugate happens at an angle with respect to the pump beam. This is
due to a change in the effective phase-matching condition between the optical field in the presence of
a dispersive medium. In the absence of any dispersive effects or refractive index changes, the phase-

Figure 3.3: Phase-matching condition in the optical fields during a FWM process. (A) The phase-matching for the
pump, probe and conjugate fields in free-space. (B) The dispersive effects of the Rb vapor leads to a phase-mismatch
between the k-vectors of the fields for the collinear configuration. The effective refractive index npr for the probe
field is larger than 1 for experimentally relevant single and two-photon detunings. The k-vectors of the other fields
remain unaffected. (C) The phase-matching condition is restored in the non-collinear configuration of FWM, for a
small angle (θ ' 0.4◦) between the pump and probe k-vectors.

matching condition of the pump, probe and conjugate fields (propagating along the z-direction) is
the same as in free space or vacuum which satisfies ∆kv = 2kvp − kvpr − kvc = 0 with kv = |k|v, as
shown in figure 3.3A. Here the superscript ‘v’ stands for vacuum. In the presence of Rb vapor, the
probe field experiences an effective change in the index of refraction with npr > 1 near the optimal
two-photon detunings [85]. This leads to a phase-mismatch between the collinearly propagating fields
(see figure 3.3B). However, the phase-matching condition is satisfied for a non-collinear configuration
shown in figure 3.3C. We use this non-collinear configure with a pump-probe relative angle θ ' 0.4◦

which has the natural advantage of physical separation between probe and conjugate photons after
the cell (due to the slightly different propagation directions). On a microscopic level, i.e. ignoring
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the phase accumulation due to propagation through the non-linear medium, the phase-matching
condition can be seen as momentum conservation in the optical fields. Due to the parametric nature
of the FWM process, the momentum of the pump, probe and conjugate photons must satisfy

2~kp = ~kpr + ~kc, (3.41)

inside the non-linear medium. Changes in the effective k-vectors due to refractive index changes,
therefore, lead to the open-angle (non-collinear) configuration shown in figure 3.3C. Depending
on the overall phase-matching over the length of the medium (i.e. Rb vapor cell), the FWM
process generates probe and conjugate field within a narrow angular width (δθ) which defines the
emission angular bandwidth of the process. Hence, the phase-matching condition also governs the
spatial distribution of the generated photons for the probe and the conjugate fields. We provide
a detailed discussion of the connection between the phase-matching condition and the transverse
spatial correlations of photons generated in FWM in chapter 4.

3.3 Measurement of Noise Properties

For an accurate characterization, entanglement verification as well as optimization of the squeezed
states generated in FWM, we also need measurement techniques to assess the relevant noise proper-
ties. Based on our discussion of the TMSS so far, we saw that individually the probe and conjugate
fields have thermal photon statistics, and certain joint quadratures (amplitude difference X− and
phase sum Y+) have reduced noise. Additionally, due to the pairwise photon generation in the
probe and conjugate fields, observables related to the intensity correlations between the two fields
can reveal non-classical noise statistics. The measurement reduced noise in the intensity-difference
(ID) photocurrent is one of the simplest yet useful method to verify quantum-correlations in twin
beams. In this section, we provide details on the ID measurement followed by a brief discussion of
the homodyne technique for quadrature noise measurements using bright coherent states as local
oscillators.

In our experiments, we work in the bright regime of the FWM process in which the generated
bright probe and conjugate beams contain large numbers of correlated photons. To achieve this,
we align a weak coherent seed beam with a strong (high intensity) pump beam in the non-collinear
configuration shown in figure 3.4. The FWM process amplifies the seed beam into a bright probe
beam in addition to generating a bright correlated conjugate beam. We refer to these bright probe
and conjugate beams as the ‘bright twin beams’. To detect the intensity correlations using an ID

Figure 3.4: ID measurement for the bright twin beams. We seed the probe field to generate bright probe and
conjugate twin beams in the FWM process. To measure quantum-correlations between the probe and conjugate
photons, we detect each beam with a photodetector and subtract the resulting photocurrents. The noise of the
subtracted photocurrent is proportional to the intensity difference noise between the two beams. With the subtracted
photocurrent as input to the spectrum analyzer, a noise power spectrum lower than the SNL verifies the non-classical
nature of bright twin beams.
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measurement (see figure 3.4), each bright beam is detected using an independent photodetector
after the Rb vapor cell. Each photodetector produces a photocurrent proportional to the intensity
of the detected field and the resulting photocurrents are then electronically subtracted. The ID
photocurrent is fed into a spectrum analyzer which gives a real-time noise power spectrum of the
input signal. For an ideal measurement (no losses, ideal detection bandwidth and linear response),
the observable corresponding to the ID photocurrent has the form

i− ∝ 〈n̂pr − n̂c〉, (3.42)

∆2i− ∝ 〈∆2(n̂pr − n̂c)〉. (3.43)

To calculate these expectation values, we first note that for a bright twin beam state |ξab;αa, βb〉,
we have

|ξab;αa, βb〉 = Ŝab(ξ)D̂a(α)D̂b(β) |0, 0〉 , (3.44)

〈ξab;αa, βb| Ô |ξab;αa, βb〉 = 〈0, 0| D̂†b(β)D̂†a(α)Ŝ†ab(ξ) Ô Ŝab(ξ)D̂a(α)D̂b(β) |0, 0〉 , (3.45)

where Ô is an arbitrary operator. For the configuration of the FWM in which seeding happens only
at the probe frequency, we have αa = α and βb = 0. Using these parameters, the photon occupancy
in the probe and the conjugate bright beams and corresponding variances can be evaluated to be

〈n̂pr〉 = |α|2 cosh2 r + sinh2 r (3.46)

〈n̂c〉 = |α|2 sinh2 r + sinh2 r, (3.47)

〈∆2n̂pr〉 = |α|2 cosh2 r
[
cosh2 r + sinh2 r

]
+ sinh2 r cosh2 r, (3.48)

〈∆2n̂c〉 = |α|2 sinh2 r
[
cosh2 r + sinh2 r

]
+ sinh2 r cosh2 r (3.49)

where all the expectation values are taken with respect to the |ξab;α, 0〉 state. In our experiments,
the number of photons in the seed beam is much larger than the spontaneously generated photons,
i.e. |α|2 � sinh2 r. Therefore, we can omit the second terms in all (3.46-3.49) expressions. Similarly,
one can evaluate the covariance between n̂pr and n̂c for the bright twin beam state as

Cov(n̂pr, n̂c) = 〈n̂prn̂c〉|ξab;α,0〉 − 〈n̂pr〉|ξab;α,0〉〈n̂c〉|ξab;α,0〉 (3.50)

= 2 |α|2 cosh2 r sinh2 r. (3.51)

Using the expressions (3.46-3.51) in (3.43), we get

∆2i− ∝ 〈∆2(n̂pr − n̂c)〉|ξab;α,0〉 (3.52)

= 〈∆2n̂pr〉|ξab;α,0〉 + 〈∆2n̂c〉|ξab;α,0〉 − 2Cov(n̂pr, n̂c) (3.53)

= |α|2. (3.54)

This implies that the noise present in the intensity difference of the bright twin beams only comes
from the input seed beam. To see that such a behavior points to quantum-correlations between
the twin beam photons, we replace the bright twin beams with equivalent power coherent states
and repeat the ID measurement. For the corresponding coherent state, the variance is equal to the
average number of photons. Therefore, we have(

∆2i−
)

CS
∝ 〈n̂pr〉+ 〈n̂c〉 (3.55)

= |α|2(cosh2 r + sinh2 r). (3.56)
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3.3 Measurement of Noise Properties

Taking the ratio of the two ID measurements, we get

sID ≡
∆2i−

(∆2i−)CS

(3.57)

=
1

cosh2 r + sinh2 r
, (3.58)

where the subscript CS stands for equivalent coherent state. In other words, the intensity difference
squeezing sID (< 1, for r > 0) is related to the joint-quadrature squeezing (s = 1

2e
−2r) for an

ideal FWM process (no losses) via the squeeze parameter r. By monitoring ∆2i− with a spectrum
analyzer, we optimized the FWM process as well as verify quantum correlations in the bright
twin beams while the noise power spectrum for

(
∆2i−

)
CS

measurement provides the SNL. Another
parameter we monitor to characterize the FWM is the gain G (defined as the ratio of output and
input optical powers) of the probe beam which is equal to cosh2 r. In terms of the G parameter, we
have

sID =
1

2G− 1
, (3.59)

which is less than one for G > 1.
An ID measurement is relatively simple to implement in the lab but is unable to select between

different quadratures of the state due to its phase-insensitivity. In order to obtain more detailed
information on a given quantum state, such as quadrature entanglement, one of the standard tech-
nique is the homodyne detection (HD). It is a phase-sensitive technique that is able to measure noise
in any given quadrature and, therefore, is sufficient for full state tomography in most cases [86–88].
In a typical balanced HD setup, the quantum optical state Êin is combined with a high intensity
coherent state, commonly referred to as the local oscillator ÊLO, using a 50-50 beam splitter. The
two output fields from the beam splitter are then detected using separate photodetectors. We can
express the field operators for the incident fields (see figure 3.5B) as

Êin(t) = Ein(âin e
−iωt + â†in e

iωt), (3.60)

ÊLO(t) = ELO(âLO e
−iωteiφ + â†LO e

iωte−iφ). (3.61)

Here φ is the phase of the local oscillator which can be controlled independent of the input quantum
state to be measured. Note that in a homodyne measurement, the frequency of the local oscillator
is matched with the frequency of the input optical state. In order to see what is measured using
the detectors at the output ports, we first look at how a beam splitter transforms the input fields.

In the quantum mechanical description of a beam splitter, the input field operators û1 and û2

are transformed as (
v̂1

v̂2

)
= UBS

(
û1

û2

)
(3.62)

=

(
t1 r2

r1 t2

)(
û1

û2

)
, (3.63)

where v̂1, v̂2 are the operator corresponding to the output fields (see figure 3.5A). The transmission
and reflection amplitudes of the two sides of the beam splitter are denoted by ti and ri, i = {1, 2}
respectively. The matrix U is a unitary matrix which is equivalent to

|t1|2 + |r1|2 = |t2|2 + |r2|2 = 1 and t∗1r2 + r∗1t2 = 0. (3.64)
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3.3 Measurement of Noise Properties

Figure 3.5: Beam splitter in the quantum picture and HD for a quantum optical state. (A) In the quantum picture,
a beam splitter transforms the input field operators û1 and û2 into output field operators v̂1 and v̂2 via a unitary
matrix. In the classical picture, beam splitter transformations do not always preserve commutation relations in the
field operators. (B) In balanced HD, the input optical state is combined with a strong local oscillator using a 50-
50 beam splitter. The two output fields are detected with photodetectors and the subtracted photocurrent iHD is
analyzed in terms of spectral noise power. The variance of the iHD is proportional to the variance in the input state
quadrature selected using local oscillator phase φ.

For a 50-50 beam splitter, UBS has a form equivalent to

UBS =
1√
2

(
1 i
i 1

)
, (3.65)

which gives

v̂1 = û1 + iû2 and v̂1 = û2 + iû1. (3.66)

Using these relations, we evaluate the operators d̂1 and d̂2 corresponding to the field incident
on detectors D1 and D2 as

d̂1(t) = Ê+
in(t) + iÊ+

LO(t) (3.67)

= (Einâin + i ELOâLOe
iφ)e−iωt, (3.68)

d̂2(t) = Ê+
LO(t) + iÊ+

in(t) (3.69)

= (ELOâLO + i Einâine
iφ)e−iωt. (3.70)

Here we only focus on the positive frequency parts of the field operators because only they take
part in the detection at the photodetector [36]. After the detection of these fields, we subtract the
resulting photocurrents electronically to get iHD, which is proportional to the intensity difference of
the two output arms (see figure 3.5B). Using the expressions (3.67-3.70), the iHD has the form

iHD ∝ 〈n̂D1 − n̂D2〉 (3.71)

= 〈d̂†1d̂1 − d̂
†
2d̂2〉 (3.72)

= i
〈
Ê+†
in Ê

+
LO − Ê

+†
LOÊ

+
in

〉
(3.73)

= −i
〈
Einâin e

−iφ ELOâ
†
LO − Einâ

†
in e

iφ ELOâLO

〉
(3.74)

= −i |αLO| Ein〈âin e−iφ − â†in e
iφ〉 (3.75)

=
√

2 |αLO| Ein〈Ŷφ〉, (3.76)

42



3.3 Measurement of Noise Properties

where Yφ is a generalized quadrature of the input quantum state. Here, we take the local oscillator
to be classical, i.e. ELOâLO e

−iφ = αLO, in the limit of a high intensity field ELO � Ein. Similarly,
we have

∆2iHD ∝ 〈∆2(n̂D1 − n̂D2)〉 (3.77)

= 2 |αLO|2 E2
in〈∆2Ŷφ〉. (3.78)

Since Yφ is a generalized quadrature, one can access all other quadratures via a suitable change in
the local oscillator phase φ. The above expression shows that the variance of iHD photocurrent in
a balanced homodyne detection gives the variance of Yφ quadrature and, therefore, is usually fed
to a spectrum analyser for the noise power spectrum as shown in figure 3.5B. For the shot noise
calibration, the input quantum state is replaced with an equivalent power coherent state.

From the discussion above, we see that the balanced HD will be sufficient for experimental
characterization of a single mode squeezed state. In order to see joint quadrature squeezing in twin
beam states where the probe and conjugate modes are at different frequencies, one can use the
HD detection method with bichromatic local oscillators. In this detection scheme, individual probe
and conjugate field quadratures are measured simultaneously with two separate local oscillators (at
matching frequencies) via balanced HD. The resulting photocurrents iHD,pr and iHD,c are subtracted
and the noise in the resulting photocurrent gives information regarding the variance in the joint
quadratures. The formal analysis of this method as well as the experimental implementation can
be found in refs [89–91].
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CHAPTER4
Spatial Properties of Twin Beams Generated in

FWM
The FWM process conserves the energy and momentum between the input and output fields given
the parametric nature of the non-linear process. The energy conservation leads to temporal cor-
relations between the probe and conjugate field quadratures (i.e. joint quadrature squeezing).
Equivalently, the temporal correlations are also manifested in the generation of photon pairs at the
probe and conjugate frequencies1. In addition to the quantum correlations in the temporal domain,
the twin beams also exhibit spatial quantum correlations in the position and momentum variables
of the probe and conjugate photons. An exploration of these spatial correlations is the main theme
of this dissertation. As we mentioned in chapter 1, the use of spatial quantum correlations can
lead to advancements in quantum imaging [9] (including recording and read-out of spatial patterns
beyond the limits set by the shot noise) as well as an increase in sensing and information sharing
capacity of quantum networks via spatial mode multiplexing [92].

In this chapter, we will lay out the main concepts to understand and analyze these spatial
correlations. We will start with a more detailed discussion on the phase-matching condition along
the z-direction as well as the momentum conservation in the transverse plane (plane ⊥ to the beam
propagation) between the input and output optical fields. After developing a simple physical picture

Figure 4.1: Schematic setup for the FWM process. The input pump beam interacts with a χ(3) non-linear medium
composed of Rb atoms to generate probe and conjugate fields. As the probe and conjugate photons are generated
together at the same spatial location in the cell, the corresponding fields share position correlations that are revealed in
the near field measurements. The generated fields also share momentum correlations due to momentum conservation
that are then converted into position (anti-)correlations in the far field via field propagation. In the regime of a large
pump size (specifically, Rayleigh range much larger than the Rb cell length), the far field correlations mainly depend
on the pump properties while the near field correlations are dominated by spatial bandwidth of the FWM process
(related to the inverse of the range of angles over which probe and conjugate photons are emitted).

1Similar conclusions are valid for the signal and idler fields generated in a SPDC process (see chapter 3).
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4.1 Pump Momentum and Far Field Correlations

regarding the origin of the transverse position and momentum correlations between the generated
fields in the near and the far field (see figure 4.1), respectively, along with their dependence on
various parameters in a FWM process, we provide a detailed derivation of algebraic expressions
for the interaction Hamiltonian and the corresponding FWM two-photon amplitude in the later
sections.

4.1 Pump Momentum and Far Field Correlations

During the FWM process, the sum of two input pump photon momenta is equal to the combined
momentum of the probe and the conjugate photons following the momentum conservation. In
our experiments, the configuration of the FWM process is such that the two pump photons come
from a single pump field. Inside the non-linear medium, a field photon with k-vector given as k
has momentum equal to ~k. Expressing the momentum conservation in terms of k-vectors gives
2kp = kpr + kc, where the subscripts p, pr and c stand for the pump, probe and conjugate fields,
respectively. To intuitively understand the connection between pump momentum and the nature

Figure 4.2: Effect of the pump momentum distribution on the far field correlations. (A) For a plane-wave pump
(δ-function k-distribution), a given k-vector for the probe is correlated to a single k-vector in the conjugate beam.
This leads to point-to-point correlations (B) in the far field. The correlated points are diametrically opposite in the
transverse plane (i.e. the plane ⊥ to pump propagation or the z-direction). This is due to the fact that at the time
of generation (in the near field), the probe and conjugate transverse k-vectors are anti-parallel. (C) A broadening
in the pump angular spectrum, i.e. a Gaussian distribution, results in one probe k-vector to be correlated with
many conjugate k-vectors that give a point-to-area correlation (D) in the far field. Since the conjugate photon can
be present anywhere inside the coherence area, the corresponding (conditional) transverse momentum variance is
denoted as ∆2p.

of far field spatial correlations, first assume a plane-wave pump with δ-function angular spectrum.
The angular spectrum of an optical field is given by its transverse k-vector content which ultimately
affects the field’s angular spread (with respect to the propagation direction) during propagation2.
Momentum conservation dictates that a pair of pump photons with precisely known k-vectors (δ-
function angular spectrum) would generate a pair of probe and conjugate photons with a narrow

2We will provide a precise mathematical definition of angular spectrum in section 4.3.
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4.2 Longitudinal Phase Matching and Near Field Correlations

relative angular spectrum. In other words, for a conditional measurement, a given k-vector in the
probe will be correlated with only one conjugate k-vector as shown in figure 4.2A. In the case of a
non-collinear FWM, the corresponding probe and conjugate photons will then propagate away from
the pump beam with their transverse k-vectors oriented in opposite directions (see figure 4.2A).
As the generated probe and conjugate fields propagate from the cell position (near field) to the far
field, the momentum distribution is mapped to the equivalent position distribution in which a single
(transverse) k-vector corresponds to a single point in the far field. Therefore, a point in the probe
beam will be correlated to only a single point in the conjugate beam in the far field for a δ-function
angular spectrum pump (figure 4.2B). Following this argument, one can subsequently infer that any
broadening in the pump angular spectrum (e.g. a Gaussian beam) would lead to a similar spread
in far field spatial correlations changing it from a point-to-point to a point-to-area correlation as
shown in figures 4.2C and 4.2D. In terms of conditional measurements, the distribution of spatial
correlations in the far field gives information about the relative momentum distribution of photons
in one of the beams conditioned upon measuring photons with a specific momentum value in the
other beam. For a Gaussian pump beam, spatial correlations between the twin beams in the far
field have been experimentally shown to exhibit quantum statistics [93,94] within a finite localized
region that is often referred to as the ‘coherence area’.

4.2 Longitudinal Phase Matching and Near Field Correlations

The position or near field correlations (see figure 4.1) between the probe and the conjugate fields
are dependent on the FWM process happening at the Rb vapor cell. Here, the probe and the
conjugate photons are generated in close vicinity of each other, and therefore, if the probe photon
is detected at a specific location in the near field, the correlated conjugate photon must be present
within a small region, known as the ‘near field coherence area’, around it. An analogous term is
the ‘biphoton birth zone’, defined as the small region inside which twin beam photons are likely to
be found (hence, defined in terms of the coincident photon measurements), and is related to the
conditional measurement concept of coherence area [95].

To further comment on what determines the size of the coherence area in the near field, we
explore the range of angles (between pump-probe k-vectors) over which the phase matching condition
is satisfied. For a set of given (fixed) k-vectors for the pump, probe and conjugate fields, a specific
angle between the pump and the probe k-vectors leads to an optimal phase matching condition,
i.e. ∆k = 2kp − kpr − kc = 0 (see figure 4.2A). This condition is known as the perfect phase
matching condition during which the generated probe and conjugate fields maintain a fixed phase
relation with respect to the pump field (or, equivalently, the non-linear polarization of the medium)
and their intensities increase exponentially with the propagation distance [81]. However, the FWM
process can also occur with slightly lower efficiency for different pump-probe angles such that∣∣∣ei∆kzL∣∣∣ ∼ 1. (4.1)

where L is the length of the non-linear medium. This implies that there is a finite range of angles
for which the FWM phase matching condition is approximately satisfied. Figure 4.3A shows such
a scenario where probe k-vectors with different pump-probe angles can participate in the FWM
process. The angular bandwidth (or the range of angles) is directly proportional to the range of
allowed transverse k-vectors and, as we will show in the following section 4.3, can be quantified using
phase mismatch ∆kz along the longitudinal direction. In terms of the conditional measurements,
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4.3 FWM Hamiltonian in Spatial Variables

Figure 4.3: Effect of the angular bandwidth of phase matching condition on the near field correlations. (A) The
correlated probe and conjugate fields can be generated for a range of pump-probe angles for which the phase matching
condition is approximately satisfied. The range of angles corresponds to the uncertainty in the transverse k-vectors
(for the probe field) allowed by the process. (B) As the photons are generated in close vicinity, the near field
correlations are present in the same part of the probe and conjugate beams. The detection of probe at one point in
the near field is correlated with arrival of a conjugate photon over a large area. Here, in the near field, the probe and
conjugate beams are shown to be separate for clarity but in experiment, these beams overlap with each other.

we see that a measurement of multiple transverse k-vectors (transverse momentum uncertainty) in
the probe field is correlated with the measurement of a single transverse k-vector in the conjugate
field. Since the transverse momentum and position variables are related by a Fourier transform, the
detection of a probe photon at a given location (hence, large transverse momentum uncertainty) is
correlated to the arrival of conjugate photon over a wider area (rather precise k-vector) as shown
in figure 4.3B.

4.3 FWM Hamiltonian in Spatial Variables

To develop an analytical expression for the dependence of the spatial correlations between the twin
beams on the angular spectrum of the pump as well as the longitudinal phase-matching bandwidth,
we need to work with the interaction Hamiltonian of the FWM process expressed in terms of the
spatial variables. Here, we start with the following interaction Hamiltonian [31,96],

Ĥ = i~
∫
dr χ(3)(r)Ê(+)

p (r, t)Ê(+)
p (r, t)Ê(−)

pr (r, t)Ê(−)
c (r, t) +H.c. , (4.2)

where χ(3) is the third-order susceptibility of the atomic media and Ê(+)/Ê(−) are the posi-
tive/negative frequency parts of the electric field operator (see chapter 2 and 3). We here assume
that the two required pump photons originate from a single pump field as mentioned earlier. Using
the undepleted pump approximation [95], the pump field can be treated as a classical field. This
assumption is valid for our experiments as the pump beam with high optical power (∼ 2W) es-
sentially acts as a reservoir for probe and conjugate photons (∼ µW). As a very small number of
pump photons are converted into probe and conjugate photons, the FWM process does not affect
the statistics of the pump beam.

If we take the pump to be propagating along the (longitudinal) z-direction, it can be written as

E+
p (r, t) = Eo(ρ, z)e

i(kzpz−ωpt), (4.3)

where kzp denotes the z-component of the pump’s k-vector, ωp is the pump frequency and ρ is the
two-dimensional position in the transverse plane at the center of the nonlinear medium. Eo(ρ, z)
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4.3 FWM Hamiltonian in Spatial Variables

is a complex function representing the slowly varying envelope3 of the pump’s electric field. The
waist of the pump is placed at the center of the χ(3) nonlinear medium (atomic vapor cell) and
its transverse spatial distribution is assumed to remain unchanged throughout the length of the
nonlinear medium. This assumption is also valid for our experiment, since the Rayleigh range of
the pump beam (∼20 m) used is much larger than the length of the Rb cell (12.7 cm). As a result,
the slowly varying field envelope is assumed to be independent of z, i.e. Eo(ρ, z) = Eo(ρ).

A momentum space (k-space) representation of the field probe and conjugate operators has the
form [97]

Ê−pr(r, t) =

(
1

2π

)3/2 ∫
dkpr e

−i(kpr·r−ωprt)â†kpr , (4.4)

Ê−c (r, t) =

(
1

2π

)3/2 ∫
dkc e

−i(kc·r−ωct)b̂†kc , (4.5)

where â†kpr (b̂
†
kc
) is the creation operator for a probe (conjugate) photon with a spatial profile given

by a plane wave with ~k momentum. Using (4.3), (4.4) and (4.5), the FWM interaction Hamiltonian
can be rewritten as

Ĥ = i~
(

1

2π

)3 ∫∫∫
dr dkpr dkc χ

(3)(r)E2
o(ρ)e2i(kzpz−ωpt)e−i(kpr·r−ωprt)e−i(kc·r−ωct)â†kpr b̂

†
kc

+H.c.

= i~
(

1

2π

)3 ∫∫∫
dr dkpr dkc χ

(3)(r)E2
o(ρ) ei(2kzpz−kpr·r−kc·r)e−i(2ωp−ωpr−ωc)t â†kpr b̂

†
kc

+H.c.

= i~Γ

∫∫∫
dr dkpr dkcE

2
o(ρ) e−i(qpr+qc)·ρei∆kzzâ†kpr b̂

†
kc

+H.c. , (4.6)

where we have assumed that χ(3) is spatially independent so that it can be taken outside the
integral and absorbed into Γ along with the constant factor (2π)−3, ∆kz = 2kzp − kzpr − kzc denotes
the longitudinal phase-mismatch, and qpr (qc) is the probe (conjugate) k-vector in the transverse
plane. In obtaining (4.6), we have assumed the conservation of energy in the optical fields and
hence, the angular frequency mismatch (∆ω = 2ωp − ωpr − ωc) is zero.

Highlighting the dependence of the FWM on the transverse spatial profile of the pump, one can
rewrite the interaction Hamiltonian as

Ĥ = i~ 2πΓ

∫∫∫
dz dkpr dkc

[
1

2π

∫
dρE2

o(ρ)e−i(qpr+qc)·ρ
]
ei∆kzzâ†kpr b̂

†
kc

+H.c. (4.7)

= i~ 2πΓ

∫∫∫
dz dkpr dkcK(qpr + qc)e

i∆kzzâ†kpr b̂
†
kc

+H.c. , (4.8)

where we have introduced the function K defined as

K(qpr + qc) ≡
1

2π

∫
dρE2

o(ρ)e−i(qpr+qc)·ρ, (4.9)

which contains all the information of the pump transverse spatial profile and represents the trans-
verse Fourier transform of E2

o(ρ). We further simply this expression by writing the pump’s transverse
3A slowly varying envelope is the part of the complex amplitude whose variations are small with respect to r and

t. More explicitly, the fractional change in amplitude over a time period and distance λ are much smaller than 1.
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spatial distribution in momentum space, such that

Eo(ρ) =
1

2π

∫
dqp Eo(qp)ei(qp·ρ), (4.10)

where Eo(qp) represents the angular spectrum of the pump, i.e. F [Eo(ρ)]. We substitute (4.10) in
the expression for K in (4.9) to rewrite it as

K(qpr + qc) =
1

(2π)3

∫
dρ

(∫
dqp Eo(qp)ei(qp·ρ)

∫
dq′p Eo(q′p)ei(q

′
p·ρ)
)
e−i(qpr+qc)·ρ

=
1

(2π)3

∫∫
dqp dq

′
p Eo(qp)Eo(q′p)

∫
dρ ei(qp+q′p−qpr−qc)·ρ

=
1

2π

∫∫
dqp dq

′
p Eo(qp) Eo(q′p) δ(q′p − (qpr + qc − qp))

=
1

2π

∫
dqp Eo(qp) Eo(qpr + qc − qp)

=
1

2π
Φ(qpr + qc), (4.11)

where Φ(qpr + qc) ≡
∫
dqp Eo(qp) Eo(qpr + qc − qp) is the convolution of the angular spectra of the

two pump photons involved in the FWM process. Equation (4.11) shows that transverse spatial
information regarding probe and conjugate fields, represented here by K(qpr+qc), is directly related
to the convolution function Φ. Substituting the expression of K in (4.11) back into (4.8) and
integrating over the length L of the media (from −L/2 to L/2) allows us to write the interaction
Hamiltonian as

Ĥ = i~Γ

∫∫
dkpr dkc Φ(qpr + qc)

L/2∫
−L/2

dz ei∆kzzâ†kpr b̂
†
kc

+H.c. (4.12)

= i~LΓ

∫∫
dkpr dkc Φ(qpr + qc) sinc(∆kzL/2) â†kpr b̂

†
kc

+H.c. (4.13)

= i~LΓ

∫∫
dkpr dkc F(kpr,kc)â

†
kpr
b̂†kc +H.c. . (4.14)

Here, the two-photon amplitude function

F(kpr,kc) ≡ Φ(qpr + qc) sinc(∆kzL/2) (4.15)

takes into account the angular spectrum of the pump through function Φ and the phase matching
condition through the sinc function. Note that the form of interaction Hamiltonian in (6.6) is very
similar to the one for parametric down-conversion (PDC) [95,98,99]. However, in PDC, the function Φ
is directly given by the angular spectrum of the single pump photon involved in the process instead
of the convolution of the angular spectra of the two pump photons involved in FWM.

The term ∆kz in the argument of the sinc denotes the longitudinal phase-mismatch as shown in
figure 4.3A. As we briefly mentioned in section 4.2, ∆kz is related to the allowed range of transverse
k-vectors for the probe and conjugate fields. We now develop a more explicit expression of the sinc
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function for our non-collinear FWM process in the terms of qpr and qc vectors. We begin with

∆kz = 2kzp − kzpr − kzc (4.16)

= 2
√
k2
p − q2

p −
√
k2
pr − q2

pr −
√
k2
c − q2

c (4.17)

' 2kp −
q2
p

kp
− kpr +

q2
pr

2kpr
− kc +

q2
c

2kc
(4.18)

=
q2
c

2kc
+

q2
pr

2kpr
−
q2
p

kp
− ϕ, (4.19)

where q = |q| and ϕ (= kpr + kc− 2kp) is greater than zero for a non-collinear configuration. In our
experiments, the pump-probe angle θ is very small (∼0.4◦), hence qc

kc
' qc

kp
and qpr

kpr
' qpr

kp
. Using

momentum conservation in the transverse plane, 2qp = qpr + qc, we have

∆kz '
q2
c

2kp
+
q2
pr

2kp
− 1

kp

∣∣∣∣qpr + qc
2

∣∣∣∣2 − ϕ (4.20)

=
|qpr − qc|2

4kp
− ϕ. (4.21)

To evaluate ϕ, one can use the fact that for perfect matching, ∆kz = 0, which implies

ϕ =
|qpr − qc|2

4kp
. (4.22)

Also, using the triangle geometry of the figure 4.2A, we have

2kp sin θ = |qpr − qc| (4.23)

⇒ kp sin2 θ =
|qpr − qc|2

4kp
. (4.24)

Using (4.22) and (4.24), we get the following expression

ϕ = kp sin2 θ. (4.25)

This gives the final form of the sinc function as

sinc

(
∆kzL

2

)
= sinc

([
|qpr − qc|2

4kp
− ϕ

]
L

2

)
. (4.26)

In the present experiment, θ ∼ 0.4◦ which is used to set the value of ϕ. Using (4.15) and (4.26) in
(6.6), we write the full interaction Hamiltonian in terms of the transverse spatial coordinates as

Ĥ = i~LΓ

∫∫
dkpr dkc Φ(qpr + qc) sinc

([
|qpr − qc|2

4kp
− ϕ

]
L

2

)
â†kpr b̂

†
kc

+H.c. . (4.27)

Here, we note that the spatial variables appear as the sum and difference in the arguments of
two different functions. This is analogous to a system of two massive entangled particles when
expressed in terms of the corresponding center of mass and relative coordinates [100]. It is also worth
mentioning that a factorization of the two photon amplitude F into two functions that depend only
on qpr and qc respectively would imply separability of the interaction Hamiltonian and, hence, no
spatial entanglement.
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4.4 FWM Biphoton Wavefunction

4.4 FWM Biphoton Wavefunction

With the final form of interaction Hamiltonian given in (6.6), we derive an expression for the
biphoton wavefunction for the generated twin beams using a first order perturbation theory. The
combined twin beam state (TBS) of probe and conjugate fields can be written as

|ΨTBS〉 = e−
iĤt
~ |Ψ0〉 (4.28)

'

(
1− iĤt

~

)
|Ψ0〉 (4.29)

= |Ψ0〉+ C

∫ ∫
dkpr dkc

[
F(kpr,kc) â

†
kpr

b̂†kc − F∗(kpr,kc) âkpr b̂kc
]
|Ψ0〉 (4.30)

= |Ψ0〉+ C

∫ ∫
dkpr dkc F(kpr,kc) â

†
kpr

b̂†kc |Ψ0〉 (4.31)

= |Ψ0〉+ C

∫ ∫
dkpr dkc F(kpr,kc) |1′kpr〉|1

′
kc〉 . (4.32)

Here |Ψ0〉 =
∣∣{0}kpr , {0}kc〉 is the multimode vacuum state, t is the interaction time and C = tLΓ.

The notation
∣∣1′ko〉 = |1ko〉

∏
k 6=ko |0k〉 implies that the single photon occupies only the ko-mode

and the rest of the modes remain unoccupied. The form of |ΨTBS〉 obtained in (4.32) is the same
as the type-I SPDC wavefunction [95,98,99,101–104] with appropriate replacement of the convolution
function with the angular spectrum of the pump field. The second term in (4.32) provides relevant
information regarding the correlations between probe and conjugate photons as the detection of a
probe photon with a fixed momentum (kpr) is correlated with the conjugate photons with k-vectors
dictated by the convolution and phase-matching functions.

One can get further insight into the probe and conjugate photon emission behavior by examining
the ideal scenario where the input pump beam is a plane wave. For a plane wave pump, the
transverse spatial profile Eo(ρ) is independent of the spatial location, i.e. Eo(ρ) = Ao, where Ao is
constant. Using the plane wave pump profile in (4.9), we get4

Φ(qpr + qc) = 2πK(qpr + qc) (4.33)

=

∫
dρA2

o e
−i(qpr+qc)·ρ (4.34)

= (2π)2A2
o δ(qpr + qc). (4.35)

Since the a plane wave pump has a precise propagation direction and k-vector (i.e. no momentum
uncertainty), the F function becomes dependent only on the qpr and qc variables. Using (4.35),

4Following the definition of the Fourier transform used here

f(x) =
1√
2π

∫
dkeikxg(k)

⇒
∫
dx′ δ(x− x′)f(x′) =

1

2π

∫∫
dk dx′ eik(x−x

′)f(x′)

⇒ δ(x− x′) =
1

2π

∫
dk eik(x−x

′).

51
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we can now calculate the marginal probability amplitude for the probe photons by considering the
following expression∫

dqc F(qpr, qc) = (2π)2A2
o δ(qpr + qc) sinc

([
|qpr − qc|2

4kp
− ϕ

]
L

2

)
(4.36)

= (2π)2A2
o sinc

([
|qpr|2

kp
− ϕ

]
L

2

)
. (4.37)

The sinc expression in (4.37) provides information about the probability amplitude for the probe

Figure 4.4: Marginal probability amplitude in a far field plane for the probe and conjugate photons. The probe
and the conjugate arrive mostly over the bright (yellow) annular region due to optimal phase matching. For a plane
wave pump, following momentum conservation in the transverse plane, one can expect point-to-point correlations at
diagonally opposite locations indicated via black arrows.

photons as a function of transverse momentum. An identical expression can also be obtained for
the conjugate photons as the function is symmetric with respect to transverse momentum variables.
Figure 4.4 shows a two-dimensional distribution of the sinc as a function of the horizontal and vertical
transverse momentum (of probe/conjugate photons). Since the far field position coordinates scale
linearly with the transverse momentum [105], i.e. xfar ∝ q/k, figure 4.4 provides information about
the probe or conjugate probability distribution in a far field plane. As we mentioned earlier, for
a plane wave pump, the probe and conjugate far field correlations are point-to-point. Therefore,
one can expect point-to-point correlations at diagonally opposite regions of the sinc distribution
(shown using arrows in figure 4.4). In other words, the arrival of a probe photon at one end of the
arrow is correlated with the arrival of a conjugate photon at the other end. The finite width of the
annular region points to the fact that the angular phase matching bandwidth for our experimental
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parameters is finite and, hence, we expect a finite near field coherence area. In fact, in order
to achieve point-to-point correlations in the near field would require a very large spread for the
corresponding sinc function in the far field which is in-principle possible in the limit of L→ 0.

4.5 Einstein-Podolsky-Rosen Correlations in the Spatial Domain

In general, the non-separability of |ΨTBS〉 in terms of the probe and conjugate spatial variables would
indicate the presence of spatial entanglement in the twin beam state. However, in order to develop
applications that can take the advantage of the spatial entanglement, a further quantification on
the level of entanglement would be necessary. One of the ways to quantify entanglement is via the
detection of EPR-type correlations in a given quantum system [106–109]. Here in this section, we
provide a brief overview of EPR correlations and why they be should be expected in the transverse
spatial degrees of freedom of the photons generated via a FWM process.

The presence of EPR correlations in the position-momentum (spatial) variables was crucial to
the original EPR gedanken experiment put forward by Albert Einstein, Boris Podolsky and Nathan
Rosen in a 1935 paper [110]. Since then, it has become one of the most highly cited and influential
papers aimed toward the foundational issues in quantum mechanics as it eventually led to the
conception and experimental exploration of entanglement as well as the discovery of non-locality
in quantum theory. The proposed thought experiment in this paper considers a pair of particles
entangled in terms of the position and momentum eigenstates. An idealized EPR entangled state
can be written as

|ΨEPR〉 =

∫
dx |x, x〉 =

∫
dp |p,−p〉 , (4.38)

where |x〉 (|p〉) is the position (momentum) eigenstates of the position x̂ (momentum p̂) operator.
The state in (4.38) describes a pair of particles with perfect position correlations and momentum
anti-correlations. EPR therefore argued that, given that the two entangled particles no longer
interact, a measurement of the position for the first particle allows one to precisely infer the position
of the second particle. Alternatively, by measuring the momentum of the first particle, one can also
predict the precise value of momentum for the second particle. Based on a specific definition of
reality5 for physical variables, they showed that position and momentum variables simultaneously
exist for the second particle (which is not directly measured). Since in quantum mechanics, the
position and momentum operators do not commute with each other, one can not know the position
and momentum of a given particle simultaneously with arbitrary precision. After arriving on a
result that was contradictory to quantum mechanics in their analysis, they concluded that “... the
quantum mechanical description of the physical reality given by wave functions is not complete”.

A critical component of the EPR argument was the principle of ‘locality’ or ‘local realism’ which
implies that distant particles can not influence each other and, therefore, measurements affect only
the immediate surroundings. Combined with the work of J. S. Bell [111] (Bell’s inequality published
in 1964), numerous experiments have shown [112,113] that the assumption of local realism is not valid
for entangled systems. Any measurement performed on the first particle instantaneously affects
the state of second particle via the collapse of joint wavefunction regardless of their separation

5EPR defined physical reality as [110]

“If, without in any way disturbing a system, we can predict with certainty (i.e., with probability equal to unity) the
value of a physical quantity, then there exists an element of physical reality corresponding lo this physical quantity.”
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(including space-like separation [113,114]). A subsequent measurement made on the second particle
gives an outcome that is consistent with the result of the first measurement. In the context of the
original EPR article [110], it means that the position or momentum of the second particle becomes
precise immediately after the corresponding quantity is measured for the first particle and, since
position and momentum are not measured simultaneously, they need not be simultaneous realities
for the unmeasured particle.

The existence of an EPR entangled state can be experimentally verified by measuring correlations
between the two entangled particles or subsystems. For the ideal EPR state given in (4.38), quantum
mechanics predicts the following relations

∆2(x1 − x2) = ∆2(p1 + p2) = 0, (4.39)

where the subscript 1 and 2 denote the first and second particles, respectively and x/p is the
measurement outcome of the position/momentum operator. In general, 1 and 2 can be the two
subsystems of the entangled state (based on a partition), between which EPR correlations are
measured. The difference/sum measurement of position/momentum outcomes does not show any
uncertainty and the EPR correlations lead to an ‘apparent’ violation of the following Heisenberg
inequality

∆2
inf(x2 |x1) ∆2

inf(p2 | p1) ≥ ~2

4
, (4.40)

where ∆2
inf(x2 |x1) denotes the inferred variance in the position of the second particle conditioned

upon position measurements for first particle6 (and a similar explanation for the inferred momentum
variance). For this reason, a violation of the above inequality is also sometimes referred as the EPR
criterion for entanglement.

In the terms of an EPR entangled source of light, one can measure the position and momentum
properties of the entangled photons in the transverse plane and a violation of (5.8) using inferred
position and momentum variances will certify the presence of EPR correlations. For the FWM
process considered in our experiments, the transverse position and momentum properties of the
generated probe and conjugate photons are given by the two photon amplitude function F which,
in the terms of transverse momenta, has the following form for a plane wave pump

F(qpr, qc) = (2π)2A2
o δ(qpr + qc) sinc

([
|qpr − qc|2

4kp
− ϕ

]
L

2

)
. (4.42)

The presence of the momentum δ-function immediately tell us about the possibility of spatial EPR
correlations in the corresponding FWM twin beam state. As the delta function implies that the
knowledge of transverse momentum of one beam will give us the transverse momentum of the other
beam precisely. This would result in a zero inferred variance and a violation of (5.8). Although the
momentum eigenstates, such as the plane wave mentioned here, are non-normalizable and can not

6A precise mathematical definition of the inferred variance can be given as

∆2
inf (x2|x1) =

∫
dx2 P (x2|x1)x22 −

(∫
dx2 P (x2|x1)x2

)2

, (4.41)

where P (x2|x1) is the conditional probability distribution for variable x2. From this definition, it is clear that
∆2

inf (x2|x1) is also a function of x1. However, if the function P (x2|x1) is independent of the specific values taken by
variable x1 then ∆2

inf (x2|x1) is a single-valued function and one can evaluate it by using a fixed value of x1.
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be realized in practice, by using a Gaussian pump with large enough waist (depending on the width
of the sinc function), one should be able to provide a violation of (5.8). More explicitly, using the
transverse electric field profile Eo(ρ) = A1 exp

(
−ρ2/2σ2

p

)
for the pump beam in (4.33), we get

Φ(qpr + qc) =

∫
dρA2

1 e
−(ρ2/σ2

p) e−i(qpr+qc)·ρ (4.43)

= A2
1 σ

2
p π e

−σ2
p|qpr+qc|2/4 , (4.44)

where σp is the width of the pump electric field distribution at the non-linear medium (vapor cell)
and |ρ| = ρ. We see that for a large pump waist, the inferred transverse momentum variance
will scale as ∼ 1/σ2

p (also see ref [115]). Using this approach, in the next chapter, we will provide
experimental proof of EPR correlations between the probe and conjugate beams in the spatial
domain.
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CHAPTER5
Measurement of Spatial Properties and EPR

Correlations
In chapter 4, we mentioned that using the FWM non-linear process in the double-Λ configuration,
the generation of spatial EPR correlated probe and conjugate photons is possible in the regime
of a narrow pump angular spectrum (large waist at the Rb cell). This leads to a reduced size
of the coherence area in the far field and can help achieve an apparent violation of the Heisenberg
uncertainty principle, i.e., the EPR criterion, in the spatial domain. The degree to which the overall
product of conditional position and momentum uncertainties is lowered (which can, in principle, be
zero for an ideal EPR state) serves as a quantification benchmark for the level of spatial entanglement
between the twin beams. To take advantage of the spatial degrees of freedom for optics based
quantum sensing and communication such a prior certification on the level of entanglement is often
necessary [116–118].

In this chapter, we will provide details of our twin beam imaging experiment which led to
verification of EPR correlations in the transverse position-momentum variables between the probe
and conjugate beams [94]. The images of twin beams were acquired using an electron-multiplying
CCD (EMCCD) camera and our analysis based on the image intensity correlations led to a direct
violation of the EPR criterion for the spatial variables. Moreover, by obtaining spatial quantum
squeezing (i.e. temporal squeezing as a function of spatial variables) in both the near and far
field, we provide additional evidence towards the presence of hyperentanglement in the spatial and
temporal degrees of freedom. Our experimental approach combines the use of bright twin beams to
amplify correlated fluctuations with fast image acquisition on the EMCCD camera and is able to
show the presence of EPR spatial entanglement with a record low number images (acquired within
a small exposure time).

5.1 Role of Bright Beams in Spatial Correlation Measurement

In the quantum picture of FWM discussed in chapter 3, we saw that the FWM process generates a
pair of probe and conjugate photons even in the absence of a seed beam. One can also think of these
photons as the excitations on the underlying quantum correlated probe and conjugate fields gener-
ated in a spontaneous FWM process. In the non-collinear configuration of the FWM, the generated
fields are emitted in a (hollow) cone due to the rotational symmetry of the phase-matching condition
about the pump propagation direction (see figures 5.1A and 4.4). The correlation properties of these
underlying fields were presented in detail in chapter 4. The use of a Gaussian seed beam at the
probe frequency then stimulates the FWM process in certain spatial regions inside the emission cone
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5.1 Role of Bright Beams in Spatial Correlation Measurement

and generates bright Gaussian probe and conjugate beams (see figure 5.1B), collectively referred to
here as the bright twin beams. The overlap of these bright beams with the spatial modes of the
underlying spontaneous FWM process can be visualized as the amplification of the spontaneous
probe and conjugate fields via bright bichromatic local oscillators [89,90]. It is important to note here

Figure 5.1: Schematic diagrams for (A) spontaneous and (B) stimulated FWM process. In spontaneous FWM,
vacuum fields at the probe and conjugate frequency act as seed. The optimal phase matching angle is close to ∼ 0.4◦

resulting in a non-collinear emission of probe and conjugate photons generated at the Rb vapor cell. Due to the
rotational symmetry along pump propagation direction, the generated photons are emitted in an hollow cone and
the far field distribution (transverse cross section of the conical emission) is an annular ring shown in orange (A and
B). Due to having almost same wavelengths, the probe and conjugate emission cones, and hence, their corresponding
annular rings spatially overlap. Any individual probe and conjugate photon pair, however, occupy diametrically
opposite parts on the annular ring satisfying momentum conservation in the transverse plane (see figure 4.4). (B)
In the presence of a seed beam, certain regions of the emission cone become bright via FWM amplification. The
photon correlations within these bright regions can be used to study position and momentum correlations of the
spontaneously generated fields in the near and far field, respectively.

that by choosing suitable bichromatic local oscillators (i.e. spatial profile and frequency), one can
effectively measure the spatial coherence and correlation properties of the spontaneously generated
probe and conjugate fields [119,120]. Specifically, in the context of our experiment, the presence of
bright beams in the overlap regions effectively acts as a local oscillator and converts the amplitude
quadrature fluctuations of the underlying field into the intensity fluctuations.

To see this, we write the field operator as â(x) = |α(x)|+δâ(x), i.e. mean value plus fluctuations,
and substitute in the intensity fluctuation operator as

δN̂(x) = N̂(x)− 〈N̂(x)〉 (5.1)

= (|α(x)|+ δâ(x))† (|α(x)|+ δâ(x))− |α(x)|2 (5.2)

= |α(x)|
(
δâ†(x) + δâ(x)

)
+ δâ†(x)δâ(x) (5.3)

'
√

2|α(x)|δX̂(x), (5.4)

where x is the location of the transverse plane in the near or far field. By ignoring the contribution
of the quadratic fluctuation term in the limit of bright beams (|δâ|/|α| � 1) in (5.4), we see that
amplitude fluctuations in the field are proportional to the photon number/intensity fluctuations.
This allows us to measure spatial properties of the correlated field quadratures using the intensity
measurements on a CCD camera. For Gaussian bright twin beams with large waist, we can also
assume the mean field amplitude to be position independent by restricting the position variable x
near the center of the Gaussian. To ensure this, the size of the seed beams is carefully selected for
the near and far field measurements. The generation of spatially wide bright beams is also necessary
to cover a large number of coherence areas in order to provide a reliable measurement of the spatial
correlations [121].
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By changing the input power of the seed beam, we are also able to obtain variable control over
the optical power of the bright probe and conjugate beams which provides a better to signal-to-noise
ratio (SNR) and helps eliminate certain measurement problems for vacuum squeezed states [122,123].
The use of a seed beam facilitates the generation of tunable macroscopic entangled states that have
unique applications, such as imaging of biological samples [22,124], Bose-Einstein condensates [125,126]

and trapped ions/atoms [127–129] that require better imaging methods with low-intensity thresholds.

5.2 Imaging Setup for Spatial Correlation Measurements

To measure position and momentum spatial correlations, we take images of bright probe and con-
jugate beams using a high-efficiency electron-multiplying charge-coupled-device (EMCCD) in the
near and far field. The experimental setup used for the near and far field measurements is shown in
figure 5.2A and 5.2B, respectively. To generate these bright probe and conjugate beams, we use a
532 nm pumped Ti:Sapphire laser to generate a narrow-band pump and a probe (seed) beam close
to the D1 transition of 85Rb isotope (∼795 nm). The frequency of pump is blue-detuned from the
5 2S1/2, F=2 −→ 5 2P1/2, F

′=3 transition at a single photon detuning (∆) of 1.18 GHz as shown in
figure 5.2 (inset, left). The pump detuning is actively maintained using a saturation-absorption-lock
(see appendix C) signal from a separate Rb cell. Using an acousto-optic modulator (AOM), a small
portion from the pump beam is red-detuned by 3.04 GHz to generate the input seed probe. This
results in an overall two-photon detuning (δ) of 4.27 MHz. The pump and seed probe beams are
aligned to intersect at an angle of ∼ 0.4◦ at the center of a 12.7 mm (1/2-inch) long hot Rb vapor
cell which acts as a non-linear medium for the FWM process. The temperature of the Rb vapor
is stabilized to (106.0 ± 0.1)◦C using a proportional-integral (PI) temperature controller (Arroyo
TECPak 585). The diameter at the waist of the pump beam is set to be 4.4 mm1 at the cell center
for both the near and far field configurations while the waist of the seed probe beam is 2.0 mm
(0.4 mm) for the near (far) field configuration. In the far field setup, a smaller diameter (at the
cell) seed beam provides a large bright Gaussian beam in the far field suitable for the corresponding
measurements. The pump beam is filtered after the vapor cell using a polarization filter (Semrock
BrightLine FF01-842/SP-25) to avoid excessive noise at detectors due to uncorrelated photons. To
measure the position correlations between the probe and conjugate beams, we image the cell center
(near field) onto the EMCCD sensor by placing 400 mm lenses for both the probe and conjugate
beam paths after the cell (figure 5.2A). This leads to a magnification factor of 0.65 which is taken
into account during the near field image analysis. For the momentum correlation measurements,
we use a 500 mm lens in the probe and conjugate arms which maps the Fourier transform of the
cell center at a distance of 2f via a f -to-f mapping where the EMCCD is then placed (far field,
see figure 5.2B). The f -to-f optical system maps the transverse momentum properties of fields into
position ones according to the relation x = fq/k, where x is the transverse position at the EMCCD
location, f is the focal length of the lens and q is the transverse momentum of the optical field at
the cell center.

The EMCCD unit (Princeton Instruments ProEM-HS:512 BX3) has a 16-bit CCD sensor with
an active area of 1024 × 512 pixels with a pixel size of 16 × 16 µm2. The active sensor is further
subdivided into two regions (each 512×512 pixels) with the first one acting as an image acquisition
region and the second as a buffer region for charge storage. The buffer region is never exposed to the
incoming photons, which helps reduce unwanted background contributions to the acquired images.

11/e2 diameter or 4σ of the intensity Gaussian profile (for all reported beam diameters in this dissertation).
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Figure 5.2: Experimental (A) near field and (B) far field setup to measure transverse position and momentum
correlations, respectively, in the twin beams. To measure position correlations, the near field (cell center) is mapped
to the EMCCD location using a 400 mm lens and, for momentum correlations, a 500 mm lens f -to-f mapping converts
the transverse field momentum into transverse position at the EMCCD location (2f distance). The inset on left shows
frequencies of the various optical fields near the 85Rb D1 transition in double-Λ configuration. The insets on the right
give pictorial representation of relative position and momentum correlations measured in terms of EMCCD pixels of
the bright probe and conjugate beam images. Figure adapted from ref [94]. Reproduced with permission.

During our experiments, the temperature of the camera sensor is maintained below -45◦C via an
in-built thermo-electric Peltier cooler. This significantly reduces the electronic noise of the pixels
due to thermal electrons [130]. The quantum efficiency of the EMCCD sensor is ∼ 70%. Although
the EMCCD unit has an electron multiplier mode, we instead use the low-noise mode more suited
for working with bright beams.

To verify spatial EPR correlations as well as hyperentanglement in the spatial temporal degrees
of freedom for the spontaneously generated probe and conjugate fields, we must ensure an identical
generation of these fields between the near and far field measurements. To achieve this, the pump
beam parameters, various frequency detunings and cell temperature remain unchanged during the
near and far field measurements. We only vary the seed probe beam waist to overlap bright beams
with large number of coherence areas in the near and far field. Since the source cannot be separately
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modified for the near and far field measurements, we a prori optimize our source with respect to
the intensity difference squeezing using single (∆) and two-photon (δ) detunings. As shown in
figure 5.3A and 5.3B, we have an intensity difference squeezing (normalized to the shot noise) of
5.07 dB and 5.75 dB (at ∼200 kHz) in the near and the far field configurations, respectively. It
proves that we are able to observe quantum correlations between probe and conjugate beams in the
near and far field for our choice of seed beams. The intensity difference squeezing observed here is

Figure 5.3: Experimental plot of normalized power spectra of the intensity difference noise between bright probe
and conjugate beams (iv) in the (A) near and (B) far field configurations which shows temporal squeezing of ∼ 5
dB below shot noise (iii). This represents close to 68% noise reduction compared to coherent (uncorrelated) beams.
Individual probe (i) and conjugate (ii) noise power spectra show thermal (super Poisson) behavior. Trace (v) is from
the electronic noise of our balanced detector (Thorlabs PDB450A). Figure adapted from ref [94]. Reproduced with
permission.

prerequisite for the spatial squeezing (i.e. temporal squeezing confined to certain spatial regions or
modes) since it is an average over all spatial regions/pixels overlapping with the bright twin beams.
For a more detailed discussion about the relationship between temporal and spatial squeezing see
appendix A in ref [94]. The intensity difference squeezing shown here is lower than reported in similar
experiments [67,131] in our lab. This is due to the unusually large size of the pump waist at the cell
center, which results in lower intensity and, hence, a lower gain [93] for the FWM.

5.3 Frame Acquisition and Image Processing

The spatial correlation properties of the probe and conjugate fields can be characterized via the
spatial analysis of field amplitude fluctuations that are converted into intensity fluctuations in the
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overlapping bright portions of the probe and conjugate beams as shown in (5.4). For bright probe
and conjugate beams, the photon flux can be as high as ∼ 1014 photons per second limited only by
the saturation of the EMCCD device used. This is in contrast with the traditional photon coinci-
dence measurement approach used for SPDC [106,107,132,133] and atomic ensemble based spontaneous
FWM [134,135] sources. For bright twin beams, however, the intensity fluctuations are contaminated
with classical noise from the laser and other technical noise due to the use of a seed beam. There-
fore, in order to extract intensity fluctuations that are quantum correlated, we perform subtraction
of consecutive frames containing bright twin beam images acquired via pulsed measurements which
helps in classical/technical noise cancellation. The maximum bandwidth of time-frequency correla-
tions generated in our FWM process source is close to 20 MHz [136]. Therefore, a subtraction of two
consecutive frame that are separated more than 50 ns in time does impact the quantum correlations.

Figure 5.4: Schematic diagram for bright probe and conjugate image acquisition to obtain spatial intensity fluc-
tuations. (A) The pulse timing for the pump and probe, obtained by turning AOMs on and off. (B) Simultaneous
measurement of probe and conjugate images in (consecutive) frames 1 and 2 with peak photocounts ∼ 104. Acqui-
sition of Frame 1 and 2 is synchronized with the corresponding pump-probe pulses in (A). (C) Intensity fluctuation
images for the probe (left) and conjugate (right) beams obtained from the subtraction Frame 1 - Frame 2. Figure
adapted from ref [94]. Reproduced with permission.

Using the kinetic mode feature on our EMCCD device, multiple frames with probe and conjugate
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images can be obtained in rapid succession while simultaneously pulsing the pump and seed probe
beams. The kinetic mode stores accumulated charges during detection on the CCD sensor providing
fast acquisition of two frames within ∼ µs time differences. In our implementation of the kinetic
mode, the camera sensor (1024× 512 pixels) is divided into 6 frames with each frame (∼ 170× 512
pixels) containing one exposure for bright probe and conjugate beams. After the acquisition of
the first frame, the charge accumulated is shifted at a rate of 300 ns/row. Therefore, to shift the
whole frame, the minimum possible time difference between frames is 170× 300 ns = 51 µs (hence,
much higher than 50 ns). This process is repeated 6 times to obtain six images for the probe and
conjugate beams on all the frames. As mentioned earlier, we pulse the input beams to intermittently
expose the camera sensor to bright twin beams during each frame. The pulsing of inputs is achieved
by electronically switching on the probe and the pump AOM for a duration of 1 µs and 10 µs,
respectively, using a signal generator. A probe pulse delay of 6 µs after switching on the pump
pulse is found to be optimum for to avoid any transient effects in FWM [137]. The timing sequence
for two consecutive pump-(seed) probe pulses is shown in figure 5.4A along with the corresponding
frames in figure 5.4B. The electronic pulses for probe and pump AOMs are synchronized with the
frame acquisition at EMCCD in such a way that the EMCCD acts as a master device and the signal
generator for AOMs as a slave. For our experiments, the camera exposure time set to 12 µs (for each
frame) and the average time separation between two consecutive frames is ∼ 60 µs. One can get an
idea of ‘macroscopicity’ of these measurements by examining the probe and conjugate beams images
in figure 5.4B where a pixel near the peak region of the probe (conjugate) has ∼ 5×104 (∼ 3.5×104)
photocounts.

Once all the frames are acquired, they are imported to MATLAB as matrices for further analysis.
We first calculate any change in optical power between the frame 2 and 32. For an ideal measurement,
the total number of counts (summation over all pixels in the bright regions) in these two frames
would be same. Experimentally, however, the output of the Ti:Sapphire laser and coupling efficiency
to various optical fiber varies over time and leads to a small but measurable change in twin beam
intensity between the two frames. We quantify this change by calculating a ‘gain factor’ from frame
2 to frame 3 as

gain factor =

∑′
frame 3 pixel count∑′
frame 2 pixel count

, (5.5)

where summation of pixel values for a given frame is performed over a ∼ 51 × 51 region around
the maxima of the Gaussian profile (indicated with a prime over the summation symbol). The gain
factor is calculated for both the probe and conjugate regions and is averaged. Frame 2 is then scaled
accordingly by multiplying each pixel value with the average gain factor. To account for any frame-
to-frame position drift in the probe and/or conjugate images, we crop a larger region (∼ 121× 121
pixel) around the maximum brightness pixel and align the images between frame 2 and frame 3
using an image registration algorithm in MATLAB with translation as the only allowed degree of
freedom [137]. This takes into account the possibility that, from one frame to another, probe and/or
conjugate images may drift in the transverse directions due any transient air currents in the beam
path. After the translation alignment is preformed, individually for probe and conjugate images,
a subtraction between frames yields intensity fluctuations (with minimal DC contribution) for the

2We use intensity fluctuations from a subtraction between the second and third frames for all the spatial squeez-
ing as well as correlation analysis reported in this thesis. These frames have the least amount of residual optical
background noise and, therefore, give optimal results [137]. It also implies that we get one probe/conjugate intensity
fluctuation image per acquisition (6 frames).
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5.4 Near and Far Field Spatial Squeezing

probe and conjugate beams as shown in figure 5.4C. These spatial intensity fluctuations provide
information about the spatial properties of underlying quantum-correlated probe and conjugate
fields while minimizing contamination from classical and technical sources of noise. We also account
for any position dependent electronic offset present on the camera sensor by acquiring background
images while the camera shutter is closed. The calculated average of these background images is
subtracted from all probe and conjugate images prior to the gain factor calculation.

5.4 Near and Far Field Spatial Squeezing

In chapter 4, while explaining the origin of the position correlations in the near field, we mentioned
that during the FWM process, the probe and conjugate photons are generated together within a
finite volume following energy conservation. This finite generation region for a pair of correlated
photons is often termed as the ‘biphoton birth zone’ [95]. The photon correlation properties in the
near field then imply that one can achieve a noise reduction (compared to coherent states) by making
intensity difference measurements for the probe and the conjugate fields over spatial regions that
were essentially overlapping inside the non-linear medium. In terms of the field quadratures, it was
shown in chapter 2 that the amplitude difference quadrature (X−) is squeezed in the twin beam state
which implies correlation between the probe and the conjugate field quadratures. The amplification
of these correlated quadratures would lead to intensity correlations, and hence, relative intensity
squeezing in the spatially overlapping regions in the near field.

In order to quantify the spatial quantum noise reduction in twin beams (both in the near and
far field), we define a noise ratio (NR) as [94]

NR =

〈
∆2(δP − δC)

〉
〈P1 + P2 + C1 + C2〉

, (5.6)

where (P1, C1) and (P2, C2) are 80× 80 pixel size probe and conjugate images from the consecutive
frame 2 and 3, respectively, and have been processed through steps outlined in the previous section.
δP and δC represents the subtraction matrices resulting from the (P1−P2) and (C1−C2) operations
containing intensity fluctuation information for the probe and conjugate bright beams, respectively
(see figure 5.4C). The variance ∆2(δP − δC) is calculated over all the pixel values in a twin beam
subtraction image (δP − δC) and averaged over many acquisitions. This justifies choosing a smaller
region (80× 80) near the center of the bright regions as the variance is spatially calculated and any
contribution due to a change in the spatial profiles of Gaussian bright beams should be minimized.
The NR for a coherent state has a value of one as photons do not share temporal correlations
following the Poisson distribution [31] and hence, no spatial correlation between δP and δC over
a uniform intensity region as well. For a spatially squeezed twin beam state, NR < 1 shows
the presence of (relative) sub-Poissonian behavior, i.e. reduced spatial variance due to quantum-
correlated fluctuations present within a finite region, in the near and/or the far field. The NR
introduced here can be seen as an extension of the Mandel parameter (QM) in the spatial domain
for two modes.

Figure 5.5A shows the experimentally measured NR for twin beams as well as for the equivalent
(same optical power) coherent states with respect to the size of superpixel made by grouping (or
‘binning’) all pixels within a square region. Due to a finite spatial bandwidth of the FWM process
(finite ∆kz, see Chapter 4), we do not expect point-to-point correlations in the near field3. Given

3One can, in-principal, approach such a scenario by using a vapor cell of very small length as the size of near field
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5.4 Near and Far Field Spatial Squeezing

Figure 5.5: Experimental results for the near (A) and far (B) spatial squeezing measurements. We plot the measured
noise ratio versus the number of combined pixels (superpixel size) and observe a spatial noise reduction of 0.84±0.02
(0.83±0.02) for the near (far) field for a superpixel size of 15. These results point to the existence of quantum spatial
correlations in the twin beams for the transverse position and momentum degrees of freedom. The mean and the
standard deviation of mean is calculated over the NR of 200 acquisitions (200 frame pairs). Figure adapted from
ref [94]. Reproduced with permission.

that the correlated probe and conjugate fluctuations are spread over an area larger than a pixel,
we group the individual pixels into a superpixel and assign it the sum of all individual pixel values.
This effectively accounts for the spread in correlations for finite size coherence area and provides a
measure of spatial noise reduction as a function of measurements over differently sized regions [141].
From the experimental results shown in figure 5.5A, we see an increasing reduction of the NR for
twin beams with respect to the superpixel size until it saturates to a value of ∼ 0.82. The 12× 12
size of superpixel where NR saturates is slightly bigger larger than the near field coherence area in
our experiment (see the next section). The NR for the equivalent coherent states, generated via
splitting the seed beam on a 50/50 beamsplitter, stays constant at 1 within the error bars.

We see a similar behavior of the NR for the far field as shown in figure 5.5B. The expected
spatial correlations here are due to the momentum correlations between the probe and the conjugate
photons during the pair generation process, i.e. conservation of momentum in the transverse plane.
Since the width of the pump beam is large, the transverse momentum uncertainty is relatively
small. By using the momentum conservation, one can see that the twin beam momenta are oriented
in the opposite direction in the transverse plane (see figure 4.2). As the transverse momentum
is mapped to transverse position at the camera in the far field (see section 5.3), the correlated
regions, and hence the intensity fluctuation lie in opposite sides of the twin beams with respect to
the center (or the pump beam center) as shown in figure 5.2. To see the spatial noise reduction in
this scenario, we rotate the conjugate intensity fluctuation (δC) image by 180◦ before subtracting
is from the corresponding probe image (δP ) which spatially aligns the correlated fluctuations in the
two images. As mentioned the section 4.5, due to the finite waist of the pump beam at the nonlinear
medium, the coherence area in the far field also has a finite size and, therefore, we do not expect
point-to-point correlations in the corresponding far field (momentum) imaging. The corresponding
NR in figure 5.5B for twin beams shows a gradual reduction of the spatial intensity noise in the
subtraction image (δP −δC) at higher superpixel sizes. The NR saturates to a value of ∼0.83 below
the classical limit at 13×13 superpixel size while the coherent state NR stays at the classical limit.

Although we will discuss the existence of spatial EPR entanglement in the next section, an

coherence area is proportional to L1/2, where L is the length of non-linear medium [132,138–140] (see chapter 4).
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5.5 Certification of EPR Correlations using Bright Beams

alternative way to show the entanglement in the spatial correlations is using the inseparability
criterion, which is based on the total (and unconditional) noise properties of the non-commuting
position and momentum degrees of freedom. This criterion states that the addition of position-sum
and momentum-difference variances must be bounded below by a certain value for separable states.
Specifically, the inseparability parameter I must satisfy the the following relation [65]

I = 〈∆2R̂〉+ 〈∆2P̂ 〉 ≥ 2, (5.7)

where R̂ = (r̂pr − r̂c) and P̂ = (p̂pr − p̂c). The r̂ and p̂ are the photon transverse position and
momentum operators for the bright twin beams, respectively and all variances are normalized to the
corresponding shot noise. A violation of the above inequality indicates the presence of entanglement
in the spatial degrees of freedom due to the inseparability of the joint quantum state in terms of
position and momentum variables. When the analysis is performed in the near and far field, the two
NRs correspond to 〈∆2R̂〉 and 〈∆2P̂ 〉, respectively. Based on our near and far field measurements,
we find that a minimum value of I (the sum of the two NRs) is 1.67 ± 0.03, which verifies the
presence of spatial entanglement in the bright twin beams.

5.5 Certification of EPR Correlations using Bright Beams

The EPR criterion introduced in chapter 4 is based on the measurement of relative uncertainties in
the transverse position and momentum variables that show an apparent violation of the Heisenberg
Uncertainty principle. For the simplicity of notation, we rewrite the EPR criterion in the vector
form as

∆2
inf(rc | rpr) ∆2

inf(pc |ppr) ≥
~2

4
, (5.8)

where ∆2
inf(rc | rpr) (∆2

inf(pc |ppr)) is the inferred variance of the conjugate photon position rc (mo-
mentum pc) conditioned upon the measurement of the probe photon position rpr (momentum ppr)
in the near (far) field transverse plane. To calculate these position and momentum uncertainties, we
first evaluate the spatial cross-correlation4 between the probe and conjugate intensity fluctuation
images using the following matrix expression

Corr(i, j) =

∑
m,n

δPmn δC(m−i)(n−j)√√√√(∑
m,n

δP 2
mn

)(∑
m,n

δC2
mn

) , (5.9)

where δP and δC are 80×80 pixel regions cropped around the maximum intensity region in the probe
and conjugate fluctuation images, respectively. The summation is done over all the values of the
δP/δC matrix elements, i.e. 1 ≤ m,n ≤ 80. This approach to evaluate the spatial cross-correction
is similar to overlaying one image over the other and evaluating the sum of all overlapping pixel
correlations5 and repeating the process again with a different amount of offset between the images.

4Instead of referring to the correlation between probe and conjugate beams simply as ‘correlation’, we prefer using
the term ‘cross-correlation’ in order to distinguish it from the self or auto-correlations of the probe/conjugate beam
with itself.

5A correlation between two pixels is just multiplication of the corresponding pixel values.
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5.5 Certification of EPR Correlations using Bright Beams

Similar to the evaluation of NR for the far field, the conjugate fluctuation images are rotated by
180◦, prior to the evaluation of (5.9) for far field measurements, in order to account for momentum
anti-correlation between the twin beams resulting from the phase matching condition.

Figure 5.6: Experimental results showing the distribution of the spatial cross-correlation, evaluated using (5.9),
between probe and conjugate intensity fluctuation images in the (A) near and the (B) far fields. The distributions
are approximately Gaussian with peak a located at the zero offset. The standard deviation of these distributions are
related to relative position and momentum uncertainties of the twin beams in the near and far field, respectively.
Together these results point to the existence of EPR spatial correlations in the twin beams for the transverse position
and momentum degrees of freedom. The plots shown here for spatial correlations are averaged over 200 acquisitions
(frame pairs) both for the near and the far field. Figure adapted from ref [94]. Reproduced with permission.

The evaluated spatial cross-correlations between probe and conjugate beams, according to (5.9),
are shown in figure 5.6. Both the near and far field spatial cross-correlations are roughly 2D Gaussian
distributions with a central peak and a finite width. An approximately Gaussian nature of the cross-
correlations implies that the region over which the spatial cross-correlation are distributed, i.e. the
coherence area, is finite with a higher level of correlation at smaller offsets between the probe and
conjugate images (see also chapter 4). For brevity, in the following description we also define the
conditional uncertainty of a variable in terms of the standard deviation, i.e. ∆r =

√
∆2(rc | rpr) and

∆p =
√

∆2(pc |ppr). The distribution of the near and far field spatial correlations shown in figure
5.6 is proportional the conditional probability distributions P (rc | rpr) and P (pc |ppr), respectively.
Their widths, given by the standard deviation σ of the Gaussian distributions (figure 5.6A and
5.6B), provide information about the conditional uncertainties in the transverse position ∆r and
the transverse momentum ∆p degrees of freedom. To check the validity of these results, we also
repeat this experiment with equivalent optical power coherent beams and perform the same data
processing steps. The spatial cross-correlation plot for fluctuation images obtained using coherent
pulses result in a distribution that is uniformly zero with no correlation peak, similar to the one
shown in ref [93].

To extract the value of ∆r and ∆p from the distribution shown in figure 5.6, we use a 2D
Gaussian function of the form Ae−[(x−x0)2/2σ2

x+(y−y0)2/2σ2
y], where A is constant, and fit the exper-

imental plots using A, x0, y0, σx, and σy as parameters. From the fitting, we get the values of
σx = (4.27 ± 0.10) pixels and σy = (3.52 ± 0.08) pixels for the near field, and σx = (4.78 ± 0.13)
pixels and σy = (4.90± 0.13) pixels for the far field within the 95% confidence intervals of the fits.
To calculate ∆r and ∆p from these standard deviations, we need to factor in the transformation
performed by the optical elements for the near and far field imaging (see section 5.2). For the near
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5.5 Certification of EPR Correlations using Bright Beams

field, we take into account the magnification factor (M) of 0.65 which gives ∆r = σs/M , where
σ = {σx, σy} and s = 16µm is the linear pixel size of camera sensor. Similarly, for the far field we
have the relation ∆p = ~∆q = ~k

f σs, where λ = 795 nm and f = 500 mm is the focal length of
the lens used to perform the f -to-f optical transformation. After taking these transformation into
account, we calculate the R.H.S. of (5.8) along the x and y-directions as

(∆rx)2(∆px)2 = (1.62± 0.12)× 10−2~2 < ~2/4,

(∆ry)
2(∆py)

2 = (1.15± 0.08)× 10−2~2 < ~2/4. (5.10)

These results provide an experimental violation of the EPR criterion by more than an order of
magnitude and verify the existence of spatial correlations in the bright twin beams with macroscopic
number of photons. The results shown in (5.10) are obtained using the fits of the plots shown in
figure 5.6 (average of 200 acquisitions).

As mentioned earlier, one advantage of bright beams is to be able to provide better signal-to-
noise ratio in our measurements. Therefore, it should be possible to achieve an EPR certification
via a statistically significant violation of the EPR criterion using fewer images. In order to analyze
the scaling of the EPR violation with the number of images/acquisitions in the experiment, we use
a confidence level parameter (C) [142] defined as

Ci =

∣∣∣∣1/4− (∆ri)
2(∆pi)

2

δi

∣∣∣∣ , (5.11)

where i = {x, y} and δi is the standard deviation in the estimation of the product (∆ri)
2(∆pi)

2. In
the following analysis, a violation of EPR criterion by more than 5 standard deviations, i.e. C > 5,
is considered to be statistically significant. To calculate C, we calculate the near and far field spatial
correlation, shown in figure 5.6, overN acquisitions and obtain the product (∆ri)

2(∆pi)
2. Therefore,

for a total of 200 acquisitions, we have 200/N values of C corresponding to N acquisitions. That
is, for N = 5, we have 40 different values of C, for N = 10, 20 different values of C, and so on. For
each N , all the C values are averaged over to obtain a more accurate value. For δ, we use the 68%
confidence interval from the 2D Gaussian fit and use error propagation to account for averaging.
Figure 5.7A shows the scaling of confidence parameter C with the number of acquisitions N . The
blue and green data points represent the values of C along the x and y axis, respectively. The
dashed line represents the fit of function C = b

√
N , where b is a constant. Using the fit, we observe

that C indeed scales as
√
N which is expected. As shown in figure 5.7A, we have a statistically

significant violation of EPR criterion even for 5 acquisitions. The variance product (∆ri)
2(∆pi)

2 is
essentially constant as a function of N with a slight increase for low values (see figure 5.7B) of N
due to noise in the spatial cross-correlations affecting the quality of the Gaussian fits. Here again we
see the presence of EPR entanglement for N = 5. From the behavior of C with respect to

√
N , it is

clear that a statistically violation of the EPR criterion is, in principle, possible with even with one
acquisition. This is relatively novel when compared to ≥ 104 images [132,142] or about three order of
magnitude longer integration time [143] needed for photon pair experiments.

In the last two sections, we verified the presence of spatial entanglement in the twin beams
using two distinct entanglement criterion. We saw a significantly larger violation of the EPR
criterion even though it is more stringent than the inseparability criterion. This is because EPR
correlations are purely spatial in nature and directly quantify the spatial quantum entanglement in
our source. The inseparability criterion, on the other hand, quantifies quantum correlations that are
dependent on both temporal and spatial degrees of freedom. We provide a more detailed discussion
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Figure 5.7: Behavior of confidence level parameter and the product (∆ri)
2(∆pi)

2 with respect to the number of
acquisitions (N) used to get one variance product (∆ri)

2(∆pi)
2. The blue squares and green circles represent the

analysis along x and y axis, respectively. (A)
√
N scaling of confidence level expected from the dependence of signal-

to-noise ratio on number of data points. The dashed lines represent the fit to curve b
√
N , with b as a fit parameter.

The region above the red dotted line (near the bottom) corresponds to statistically significant violation of the EPR
criterion. Based on the behavior of the fits, we see that it is possible to obtain EPR certification even with a single
acquisition. (B) The position and momentum variance product (∆ri)

2(∆pi)
2 stays almost constant with respect N .

The inset shows a zoom-in near the region of N < 50. Figure adapted from ref [94]. Reproduced with permission.

on the interplay between spatial and temporal squeezing in the appendix A in ref [94]. While the
inseparability criterion does not provide a pure measure of the spatial degrees of freedom, it does
point to the presence of entanglement in multiple degrees of freedom. The results discussed in
this chapter, combined with previously reported results of quadrature entanglement [91,144] using the
same FWM source, point to the presence of hyperentanglement in the spatial and temporal degrees
of freedom in the generated twin beams.
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CHAPTER6
Information Encoding in Twin Beams

The generation of a large number of quantum-correlated photons with the ability to tune their
spatio-temporal properties can be crucial for technologies utilizing spatial modes of light to encode
information. The infinite dimensionality of the Hilbert space corresponding to the spatial degree
of freedom promises to have a substantial impact on quantum information science by enabling
protocols that provide higher density and better security of the information encoded [6,7,92,145,146].
Additionally, a high degree of control of the spatial properties of quantum-correlated photons would
pave the way for real-world applications of quantum-enhanced spatial sensing, imaging [12,147] as
well as direct encoding and transmission of secure information [148,149]. In this chapter, we describe
and implement a scheme to control and engineer the spatial correlations in twin beams by taking
advantage of their dependence on the momentum distribution of the input pump beam. By suitably
modifying the momentum distribution of the input photons required for the non-linear process of
four-wave mixing, we show [71] that it is possible to achieve an on-demand distribution of the spatial
correlations for the generated twin beams. We later expand on this scheme and use it as a novel
way to securely encode information in the twin beams such that it is only accessible via the joint
measurements of the twin beams.

6.1 Effect of Pump Momentum on Spatial Correlations

We introduced the non-linear process of FWM in the earlier chapters and showed that two photons
from the input pump field are simultaneously converted into a pair of correlated probe and conjugate
photons. As a result of conservation of momentum between the input and output fields in the
transverse plane, the momentum (far field) correlations between the probe and conjugate photons
are dictated by the momentum distribution of the pump field. It is, therefore, natural to ask if one
can modify the distribution of the far field correlations in a controlled way by modifying the pump
momentum. In chapter 4, we derived an expression proving that, in the limit of weak focusing of
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the pump beam1, any broadening of the pump angular spectrum2 leads to a corresponding spread
in the relative transverse momentum correlations between the twin beams that are mapped to
relative position correlations in the far field. Our preliminary experiments [151,152] indicated that
going beyond such a spread requires additional modifications of the angular spectrum of the pump.

However, in order to further distribute these correlations in a desired way, one requires the
knowledge of the exact dependence of the twin beam cross-correlation function on the pump mo-
mentum distribution in the FWM process. In other words, how the angular spectrum of the input
pump beam (given by E(qp) = F [Eo(ρ)], where Eo(ρ) is the spatial profile of pump beam at the
non-linear medium) affects the cross-correlation distribution function defined as

ccross(x1,x2) ≡
〈
δN̂pr(x1; zf ) δN̂c(x2; zf )

〉
. (6.5)

Here x1 and x2 are the position coordinates in the far field transverse plane which is located at a
distance of zf along the z-axis. The function ccross, which can be measured using spatial imaging of
the twin beams in the far field, effectively captures the transverse momentum correlations between
them. In order to derive the required connection between ccross and E(qp), we take the interaction
Hamiltonian of FWM as a starting point. By making some reasonable approximations in chapter
4, we showed that the interaction Hamiltonian has the form

Ĥ = i~LΓ

∫∫
dkpr dkc F(kpr,kc)â

†
kpr
b̂†kc +H.c. . (6.6)

Using this interaction Hamiltonian and applying a first order perturbative expansion, we had also
shown that the twin beam state |ΨTBS〉 for the probe and conjugate fields can be written as

|ΨTBS〉 = e−
iĤt
~ |Ψ0〉 (6.7)

' |Ψ0〉+ C

∫∫
dkpr dkc F(kpr,kc) â

†
kpr

b̂†kc |Ψ0〉 , (6.8)

where |Ψ0〉 =
∣∣{0}kpr , {0}kc〉 is the multimode vacuum state and C is constant (see section 4.4).

The two-photon amplitude function F(kpr,kc) ≡ Φ(qpr + qc) sinc(∆kzL/2) dictates the spatial
correlations between the probe and conjugate photons (the expression for |ΨTBS〉 in (6.8) can also
be written in the single photon Fock basis, see chapter 4).

1The weak focusing limit [150] of a Gaussian beam in the context of a non-linear process can be defined as zR � L,
where zR is the Rayleigh range of the beam and L is the length of the non-linear medium.

2The width of the pump angular spectrum is inversely proportional to width of the pump at the non-linear medium
as

g(k) ≡ F [f(x)] (6.1)

=
1√
2π

∫
dx e−ikxf(x) (6.2)

=
1√
2π

∫
dx e−ikxA0 e

−x2/2σ2

(6.3)

=
A0

σ′
e−k

2/2σ′2
(6.4)

where σ′ = 1/σ. Here we see that for a Gaussian beams of width σ, the angular spectrum is also a Gaussian with a
width 1/σ.
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Using |ΨTBS〉, we can now calculate the expectation value of any near or far field observable. In
general, for any observable A, the expectation value of the corresponding operator Â is (up to first
order expansion)

〈ΨTBS|Â|ΨTBS〉 ' 〈Ψ0| Â |Ψ0〉+ C

∫∫
dkpr dkc F(kpr,kc)〈Ψ0| Â â†kpr b̂

†
kc
|Ψ0〉

+ C∗
∫∫

dkpr dkc F∗(kpr,kc)〈Ψ0| b̂kc âkpr Â |Ψ0〉

+ |C|2
∫∫

dkpr dkc

∫∫
dk′pr dk

′
c F(kpr,kc) F∗(k′pr,k′c)〈Ψ0| b̂k′c âk′prÂ â†kpr b̂

†
kc
|Ψ0〉

= 〈Ψ0| Â |Ψ0〉+ 2

∫∫
dkpr dkc Re

[
C F(kpr,kc)〈Ψ0|Â â†kpr b̂

†
kc
|Ψ0〉

]
+ |C|2

∫∫
dkpr dkc

∫∫
dk′pr dk

′
c F(kpr,kc)F∗(k′pr,k′c)〈Ψ0| b̂k′c âk′pr Â â

†
kpr

b̂†kc |Ψ0〉.

(6.9)

As expected, we get three terms in our expansion that are independent, linear and quadratic with
respect to the function F.

Since we measure spatial intensity fluctuations of the bright images acquired by the EMCCD,
a relevant observable is the cross-correlation between the spatial intensity fluctuations. The far
field spatial cross-correlation function ccross defined earlier is related to the transverse momentum
correlations as

ccross(x1,x2) ≡
〈
δN̂pr(x1; zf ) δN̂c(x2; zf )

〉
(6.10)

f−to−f
=

optical system

〈
δN̂pr(q1; zo) δN̂c(q2; zo)

〉
(6.11)

=
〈
δN̂pr(q1, k

z
1) δN̂c(q2, k

z
2)
〉∣∣∣
z=z0

, (6.12)

where x1 and x2 are the transverse measurement positions in the far field, zf and zo indicate the
far field and near field (Rb cell center) locations along the z-axis, respectively and δN̂ = N̂ −〈N̂〉 is
the photon number fluctuation operator. To arrive at (6.11), we use the fact that an f -to-f optical
system maps the transverse momentum distribution at the cell center to a position distribution in
the far field plane at zf where measurements are performed. Therefore, a photon with transverse
momentum q is mapped to spatial location x = fq/k in the far field. In the last expression
(6.12), the z-component of the corresponding k-vector is given by kz =

√
k − |q|. As we explained

in chapter 5, in the limit of bright optical fields, the photon number/intensity fluctuations and
amplitude quadrature fluctuations are related by

δN̂(x) '
√

2 |α|δX̂(x), (6.13)

where |α| =
√
〈N̂〉. Using (6.13), we can write the spatial cross-correlation in terms of the quadra-
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ture operators as

ccross(x1,x2)
bright limit
∝

〈
δX̂pr(x1; zf ) δX̂c(x2; zf )

〉
(6.14)

f−to−f
=

optical system

〈
δX̂pr(q1; zo) δX̂c(q2; zo)

〉
(6.15)

=
〈
δX̂pr(q1, k

z
1) δX̂c(q2, k

z
2)
〉∣∣∣
z=z0

(6.16)

=
〈
δX̂pr(k1) δX̂c(k2)

〉∣∣∣
z=z0

, (6.17)

Using (6.12), we can choose a suitable observable ‘A’ for the present experiment as

Â ≡ δX̂pr(k1)δX̂c(k2). (6.18)

where k1, k2 are the k-vectors mapped to measurement positions x1,x2 in the far field location
z = zf , respectively. Suppressing the k-vector dependence of the quadrature operators for clarity
and using 〈ΨTBS|Â|ΨTBS〉 = 〈Â〉, the expectation value of Â can be simplified as

〈Â〉 = 〈δX̂pr δX̂c〉 (6.19)

=
〈
X̂prX̂c − X̂pr〈X̂c〉 − X̂c〈X̂pr〉+ 〈X̂pr〉〈X̂c〉

〉
(6.20)

= 〈X̂pr X̂c〉. (6.21)

Here we used the fact that 〈X̂〉 = 〈(â+ â†)〉/
√

2 vanishes for |ΨTBS〉 in (6.20). Finally, substituting
the final expression of 〈Â〉 above in (6.9) with corresponding k-vectors, we get

〈Â〉 ' 〈Ψ0| X̂pr(k1)X̂c(k2) |Ψ0〉+ 2

∫∫
dkpr dkc Re

[
C F(kpr,kc)〈Ψ0|X̂pr(k1)X̂c(k2) â†kpr b̂

†
kc
|Ψ0〉

]
+ |C|2

∫∫
dkpr dkc

∫∫
dk′pr dk

′
c F(kpr,kc)F∗(k′pr,k′c)〈Ψ0| b̂k′c âk′prX̂pr(k1)X̂c(k2) â†kpr b̂

†
kc
|Ψ0〉

(6.22)

=

∫∫
dkpr dkc Re

[
C F(kpr,kc)〈Ψ0| (âk1 b̂k2 + âk1 b̂

†
k2

+ â†k1
b̂k2 + â†k1

b̂†k2) â†kpr b̂
†
kc
|Ψ0〉

]
(6.23)

=

∫∫
dkpr dkc Re

[
C F(kpr,kc)〈Ψ0| âk1 âk2 â

†
kpr

â†kc |Ψ0〉
]

(6.24)

=

∫∫
dkpr dkc Re [C F(kpr,kc)] δk1,kprδk2,kc (6.25)

= Re [C Φ(q1 + q2)] sinc(∆kzL/2). (6.26)

Note that in (6.22), only the second term is non-zero. Referring to the expression in (6.26), if
correlations are measured within a small region around the optimal direction inside the emission
cone of the FWM process then the phase-mismatch (∆kz) is close to zero and the sinc function can
be taken as unity [153,154]. In our experiments, the measurement regions in the far field lie within the
bright region of the probe and conjugate beams (acting as effective LOs for quadrature amplitude
fluctuations) and represent a smaller region in the full FWM spatial bandwidth (see figure 4.4).
This implies that the sinc function can be uniformly taken to be unity for the corresponding spatial
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6.2 FWM with Modified Pump and Correlation Measurement

measurements in the far field. The function Φ depends on the convolution of the angular spectrum
of the two pump photons involved in FWM, and has the form (see (4.11))

Φ(q1 + q2) ≡
∫
dqp Eo(qp) Eo(q1 + q2 − qp), (6.27)

where Eo(qp) is the angular spectrum of the pump beam.
Expressing (6.26) in terms of far field position coordinates (x1,x2), we get

ccross(x1,x2)
bright limit
∝

〈
δX̂pr(x1)δX̂c(x2)

〉
∝ Re [Φ(x1 + x2)] , (6.28)

where we have taken the constant C (∝ χ(3)L t) to be real without the loss of generality, as the
phase of the non-linear response χ(3) of the atomic Rb vapor can be taken as zero and serve as
a phase reference to the optical fields involved in the FWM process. We can now conclude that
far field correlations between probe and conjugate photons depend on the angular spectrum of the
pump beam with the exact functional dependence outlined in (6.28). One can, therefore, control
the way correlations are distributed in the far field via a suitable modification of the pump beam.
Recall that for a plane wave pump, a non-zero correlation between probe and conjugate photons
is possible only if −x1 = x2 (or q1 + q2 = 0) which implies a strict conservation of transverse
momentum. However, for a finite size pump beam, a non-zero correlation is possible for −x1 ≈ x2

(up to the uncertainty in transverse momentum). Hence, we define ξ+ = x1 + x2 and x1 = x to
rewrite (6.28) as,

ccross(x1,x2)
bright limit
∝

〈
δX̂pr(−x)δX̂c(x+ ξ+)

〉
∝ Re [Φ(ξ+)] . (6.29)

Equation (6.29), highlights an important aspect of the correlation function ccross which is that it
is translationally invariant with respect to x and that the cross-correlation depends only on the
relative distance ξ+. The value x = 0 (i.e. q = 0) is located at the center of the sinc ring (see
figure 4.4) which is also the geometric center of the pump beam in the far field. We take advantage
of this translation symmetry in our data analysis by averaging the ccross over all the experimentally
available values of x. This averaging leads to a significant improvement in the signal-to-noise ratio
for the measured correlation functions.

6.2 FWM with Modified Pump and Correlation Measurement

To control the distribution of the spatial correlations in the far field, we spatially structure the high
power pump beam prior to the FWM process to achieve a desired angular spectrum. The angular
spectrum of pump can be modified via both amplitude and/or phase changes in the input pump
electric field. However, in our experiment, we restrict to only phase changes to modify the pump’s
angular spectrum. We use a spatial light modulator (SLM) device to implement relevant phase
changes in the pump electric field. The use of SLM in a phase-only configuration has the advantage
of not reducing the power of the pump significantly, as the gain of the FWM and thus the temporal
quantum correlations of the twin beams are limited by the pump intensity.

Given a predefined pattern for the cross-correlations, referred to here as ‘target’, we imprint
the required phase distribution on the pump beam in the form of a phase-only computer-generated
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6.2 FWM with Modified Pump and Correlation Measurement

hologram (CGH) using the SLM. As shown in figure 6.1, for the chosen target pattern of the Uni-
versity of Oklahoma (OU) logo, we calculate a CGH which is transferred to the SLM device. A 4f
imaging system, constructed using two identical achromatic 300 mm (Thorlabs AC254-300-B-ML)
lenses, maps the SLM plane to the Rb cell location with magnification of 1. Given that the angular
spectrum of the pump is a complex quantity, the implemented phase-only CGH has to be designed
to produce the calculated amplitude and phase for the pump’s angular spectrum. Any deviation will
affect the real part of the convolution function and hence the fidelity of the information encoded
in the far field spatial correlations. To minimize such deviations, we implement a mixed-region-
amplitude-freedom (MRAF) algorithm coupled with conjugate-gradient optimization to calculate
the required CGH [155].

For a input Gaussian electric field pump beam with a flat wavefront, the angular spectrum has
the form

Eo(qp) =
1

2π

∫
dqpEo(ρ)e−iqp·ρ, (6.30)

where ρ is the 2D position vector in the transverse plane, Eo(ρ) is the Gaussian amplitude of the
input pump electric field. After a reflection from SLM, the pump field can be written as

Eo(qp) =
1

2π

∫
dqpEo(ρ)eiφ(ρ)e−iqp·ρ, (6.31)

where φ(ρ) is the position dependent phase pattern imparted during reflection and hence, the
information to modify the angular spectrum is encoded in φ(ρ) by the SLM. Using the convolution
theorem, we can drive an alternate form of Φ(ξ+) that is more useful in the context of a phase
pattern

Φ = (Eo ? Eo) (6.32)

= Ff
[
Eo(ρ)eiφ(ρ)

]
? Ff

[
Eo(ρ)eiφ(ρ)

]
(6.33)

= Ff
[(
Eo(ρ)eiφ(ρ)

)2
]

= T, (6.34)

where Ff is the Fourier transform3 and ? denotes the convolution operation. Here, T is the target
distribution related to the electric field of pump by above expressions. In (6.34) , we see that the
phase imparted to the pump electric should be such that the Fourier transform of the square of the
field should be equal to the target distribution. The chosen target distribution of OU logo is a real
valued distribution and therefore, the corresponding imaginary part is zero. A detailed account of
the implemented algorithm for the phase-only CGH calculation, optimized with respect to the SLM
device (Hamamatsu LCOS-SLM X13138), is given in appendix A.

To generate bright twin beams via a stimulated FWM process, for a higher signal-to-noise ratio in
the intensity fluctuation measurements, we use a weak probe beam as a seed (see figure 6.1). When

3The Fourier transform g(x) of an optical field f(ρ) can be given as [105,156]

g(x) = Ff [f(ρ)](x) (6.35)

=
1

2π

∫
dρ f(ρ) e

−i 2π
λf
x·ρ
, (6.36)

where λ is the wavelength of the optical field and f is focal length of the lens.
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Figure 6.1: Experimental setup for encoding a target pattern in the distribution of the spatial correlations of
twin beams. A hot Rb vapor cell is used as the nonlinear medium needed for the FWM process that generates
quantum-correlated twin beams. The FWM is based on a double-Λ configuration in the D1 transition of 85Rb atoms,
as shown on the top inset. The pump beam, after reflection from the SLM device, acquires a phase which imparts
it with the necessary momentum distribution (angular spectrum) for the desired correlation distribution in the far
field. From the SLM, the phase-structured pump is then imaged to the center of the cell via a 4f optical system. In
order to generate bright twin beams, we seed the FWM with an input probe beam to achieve a photon flux of ∼ 1014

photons/s per output beam, which is limited by saturation of the EMCCD. Finally, the momentum distribution of the
probe and the conjugate beams is mapped to a position distribution onto the EMCCD camera in the far field using a
f -to-f imaging system. Images acquired by the EMCCD are then used to measure the spatial intensity fluctuations
and extract the cross-correlation between the twin beams. The inset at bottom shows the phase-matching for the
non-linear geometry used in this experiment which needs to be satisfied for an efficient FWM process. Figure adapted
from [71]. Reproduced with permission.

seeded, the FWM amplifies the input probe beam and generates a bright conjugate beam to produce
bright twin beams. Tuning the number of photons in the input seed allows us to have a control
over the number of correlated photons in the bright twin beams. For the present experiment [71],
our non-linear medium is a natural abundance Rb vapor cell (1 inch diameter and 12.7 mm length)
which is placed at the intersection of orthogonally polarized pump and probe beams with their
beam-waist overlapping at the center of the cell. The 1/e2 waist diameter is 4.4 mm for the pump
and 0.4 mm for the probe. In the non-collinear geometry, the pump and the probe beams are then
made to intersect at an angle of 0.4 degrees inside the cell which is held at a temperature of 114◦C.
With this configuration, we obtain a gain of ∼ 2.6, which is limited by the maximum optical power
available for the pump beam.

We implement FWM in a double-Λ configuration in D1 transition of 85Rb and blue-shift the
pump frequency to avoid absorption. The pump beam has ∼2 W intensity and is blue-detuned
by 1.38 GHz from the F = 2 → F ′ = 3 transition (see figure 6.1, top inset). Similar to our
previous experiments, the input pump field is at much higher intensity than the generated probe and
conjugate fields and is essentially acting as a reservoir of photons. It does not share correlations with
the probe and conjugate beams within the experimental range of gain values. A small portion of the
pump is red-shifted by 3.04 GHz to generate the input seed probe using an acousto-optic modulator.
After the Rb vapor cell, a polarization filter is used to filter out the uncorrelated pump beam.
However, the phase manipulation of the pump using the SLM results in scattering of a relatively
high number of pump photons past the polarization filter and thus reaching our EMCCD sensor. In
order to absorb these unwanted pump photons selectively, we place an additional isotopically pure
87Rb 3-inch cell heated to 97◦C before the EMCCD camera. We also use a higher than usual one-
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photon detuning (∆ =1.38 GHz mentioned above) which lowers the pump transmission to ∼10%
through the 87Rb cell. The pump photons are absorbed via the F=1→ F ′ transition in 87Rb while
transmission of probe and conjugate beams remains at ≥ 90%.

Figure 6.2: Image acquisition for intensity fluctuation measurement in the bright beams and cross-correlation of the
corresponding spatial fluctuations. (A) Images of bright probe and conjugate beams in two consecutive frames. The
images are acquired using a pump beam modified with the OU logo phase-pattern. The pump-probe pulse sequence
which is the same as the one used for EPR experiment, (shown on the left) is synchronized with the acquisition
of two consecutive frames of the EMCCD. The separation between two seed probe pulses is ∼60µs. (B) Intensity
fluctuation images for the probe (left) and conjugate (right) beams obtained after a pixel to pixel subtraction between
frames 1 and 2. (C) After rotation of one of the fluctuation images, the evaluation of the 2D spatial correlation gives
the distribution of the ccross correlation function. The plot of ccross function is in the EMCCD camera pixel basis
(pixel size = 16×16 µm2). The final result shown here is averaged over 2000 acquisitions. Figure adapted from [71].
Reproduced with permission.

In order to measure the momentum correlations as determined by Φ(ξ+), the optical Fourier
transform mentioned in (6.11) is realized by placing two 500 mm lenses in a f -to-f configuration,
one each for the probe and the conjugate beam paths, between the cell and EMCCD as shown in
figure 6.1. This configuration maps the transverse momentum correlations at the cell center (z = z0)
to transverse position correlations at the EMCCD location (z = zf ). The procedure to extract the
spatial intensity fluctuations from bright probe and conjugate images is similar to the one used in
the EPR-correlation experiment [94] (see chapter 5). We take two frames, each with bright probe
and conjugate images, in a rapid succession using the kinetics mode of the EMCCD. The timing
sequence for the pump and probe pulses as well as the delay of ∼60 µs between the frames are
shown in figure 6.2A. A probe pulse delay of 6 µs with respect to the pump pulse is used to avoid
transient effects in the FWM. The active acquisition area on the EMCCD sensor is divided into six
frames each with 170 rows × 512 columns. The two successive frames, frame 1 and 2 in figure 6.2A,
provide images of the spatial intensity fluctuations in each beam after subtraction (figure 6.2B).
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Given that the two consecutive frames are taken with a time difference longer than the inverse of
the bandwidth of the FWM process (∼ 1/20 MHz = 50 ns), the subtraction does not impact the
quantum correlations between the twin beam images. The peak intensity region of the probe beam
has ∼5 × 104 photocounts per pixel with a corresponding magnitude of intensity fluctuations as
∼1000. Before calculating the cross-correlation between the intensity fluctuation images, we rotate
one of the image by 180◦ to account for the transverse momentum anti-correlations between the
probe and conjugate beams expressed in the form of a negative position argument in (6.29).

For each acquisition (pair of frames), the cross-correlation evaluation gives the distribution of
ccross as a function of the relative distance ξ+ between the fluctuation images. The final result,
shown in figure 6.2C is then averaged over many acquisitions for a better signal-to-noise ratio. In
principle, one can also directly calculate the convolution between images, without performing any
rotations, to arrive at the same result as the two methods are equivalent4.

6.3 Information Encoding with Engineered Correlations

The entangled twin beams are at the heart of a number of applications in quantum information
science and quantum sensing as they provide a natural bipartite system with quantum correlations
in multiple degrees of freedom [157]. In particular, the use of spatial quantum correlations is expected
to have a substantial impact on emerging quantum information applications, such as the quantum
internet [158] and quantum computation [159], due to the infinite dimensionality of the corresponding
Hilbert space. In the previous section, we showed that by using a spatially structured pump we
can experimentally achieve a desired distribution of spatial correlations in the quantum-correlated
twin beams. Our result shows a high degree of control over the spatial properties of the twin beams
that can be potentially used as a novel way to encode quantum information in the system. In
this section, we further explore the capability of our system to encode information by providing a
systematic comparison between target, simulated and experimentally obtained cross-correlations.

To provide these comparisons, we choose two target patterns, more specifically the OU logo
and è (Planck’s constant), to be encoded as far field spatial correlations between the twin beams,
as shown in figures 6.3A and 6.3E, respectively. Using the MRAF algorithm, we calculate the
optimized 1024×1024 pixels phase holograms (figures 6.3B and 6.3F, see appendix A for algorithm
and optimization details). The CGH or phase hologram is the discrete pattern corresponding to
continuous phase pattern φ(ρ) mentioned in (6.31). During the CGH calculation, the limited size
and resolution of the SLM device are taken into account. Substituting the calculated CGH in
expression (6.32), we plot the simulation patterns (in EMCCD pixel basis) taking into account the
limited spatial and phase resolution (8-bit) of the SLM as well as finite spatial resolution of the
EMCCD. The plots of the simulated patterns (figures 6.3C and 6.3G) are in excellent agreement
with the measured cross-correlations (figures 6.3D and 6.3H). Therefore, our results show that by
using the present approach of pump modification one can achieve arbitrary distributions in the
twin beam spatial correlations. In the past, a similar approach to modify the spatial correlations in
the twin beams by exploring the relationship between the spatial properties of the pump and the
twin beams has been studied theoretically [160]. In addition, a few SPDC experiments [161,162] have

4For functions f(x) and g(x),

[f(x) ? g(x)](x) = [f(−x) ∗ g(x)](x), (6.37)

where ? denotes convolution and ∗ denotes cross-correlation operation.
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Figure 6.3: Information encoding via control of the spatial correlations in the twin beams along with a comparison
of the target patterns (OU logo and è) with simulated and experimental results. All figures, except for the CGH,
are in the EMCCD pixel basis (pixel size = 16×16 µm2) in the far field. (A and E) Target patterns according
to which the corresponding holograms (B and F) are developed using a MRAF algorithm. The color bar for the
CGH figures corresponds to the 8-bit (28 = 256) phase values from 0 to 2π. The dimensions of the SLM pixels
(12.5×12.5 µm2), its 8-bit phase resolution, the f -to-f mapping and finite resolution of the EMCCD sensor are taken
into account while calculating the simulated correlations (C and G) which represent real part of the Φ(ξ+) function.
The spatial cross-correlations between the probe and conjugate intensity fluctuations show the experimental ccross
distributions (D and H). All cross-correlation plots are normalized by the sum of squared-amplitude of all pixel values
to provide a better comparison between target and simulation/experimental results. The maximum pixel values are
larger in the experimental and simulated correlations compared to the target pattern because of the non-uniform
distribution resulting from the non-ideal setup and CGH phase values. One may notice a small rotation (∼5◦) in the
experimental ccross distributions that is due to optical alignment imperfections. Figure adapted from [71]. Reproduced
with permission.

shown that a modification of pump spatial structure leads to a change of the spatial correlation
between twin beam photons. In case of the FWM process, similar results with limited modification
in spatial correlations have also been observed [141,163–166]. However, the results presented here go
beyond these proof-of-principle demonstrations and provide a path towards the redistribution of
twin beam spatial correlations as a viable approach for information encoding.

The maximum allowed resolution of a spatial pattern in the spatial correlations for the twin
beams is limited by the number of correlated spatial modes supported by the non-linear process.
Along with the results achieved in the past [91,119,167], our present findings [71,94] point towards the
highly spatially multimode nature of the FWM process. In the context of the present experiment,
the resolution of a far field cross-correlation pattern is limited by the size of the far field coherence
area which also gives a practical way to estimate the number of independently correlated spatial
regions [119]. In chapter 4, we showed that the size of the far field coherence area is inversely
proportional to the size of the pump waist at the cell center5, as shown in section 4.5. In our

5The size of the far field coherence area denotes the relative uncertainty in the transverse momentum between
the twin beams and, therefore, is equal to the square root of the relative transverse momentum variance (i.e. the
standard deviation).
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experiments, the size of the pump beam is limited by the maximum output power of the Ti:Sapphire
laser used. In addition to these limitations, a significant deviation from the target pattern occurs
due to a non-ideal optimization of the CGH. Consequently, we see a degradation of the resolution in
the simulated patterns in comparison to the corresponding targets. While comparing the simulated
and experimental cross-correlations, there are several factors that lead to additional discrepancies.
First, there is a typical decrease in the efficiency of the SLM at higher spatial frequencies [168,169]

that limits the spatial bandwidth of the angular spectrum imparted to the pump beam. Second,
for a given phase encoding on the pump beam, our simulated pattern based on (6.29) only accounts
for the leading order contributions in the FWM process while the experimental cross correlations
contain contributions from all the higher order terms. However, despite all these limitations (most
of which are technical), we have enough resolution in the present configuration to manipulate a
12× 12 superpixel grid (each superpixel with 10× 10 pixels) with individual superpixel control. If
we now consider a simple binary encoding of 0 and 1 (i.e. low and high) for each superpixel, we
would be able to encode 144 bits of information in a single pattern. By coupling this scheme with
novel spatial light modulators with GHz modulation rates [170], encoding rates exceeding Gbps can
be achieved. This point illustrates potential use of engineered correlations in twin beams in the field
of continuous variable quantum secure communication [148,149].

The spatial modes of light, as a classical system, have been already used to establish free-space as
well as fiber based communication channels [171–173] for high-capacity transmission. However, in the
quantum regime, this has been an elusive task due to the limited control and manipulation of spatial
correlations. Therefore, an ability to encode and share information using engineered correlations in
the spatio-temporal modes of quantum states of light is crucial for emerging applications in quantum
communication. For quantum-enhanced imaging and sensing applications, in which the presence
of multiple spatial modes can lead to enhanced resolution and sensitivity [68,174,175], engineering of
spatial modes can give rise to structured quantum states of light with a mode structure that can be
optimized for specific applications [9,176]. At the fundamental level, changes in of spatial correlations
via the manipulation of the pump provides a systematic way to study and understand how quantum
correlations between various spatial modes of light are generated as a result of a non-linear optical
process. This knowledge can be useful in exploring new applications towards quantum information
and scalable quantum computation [159]. Our present approach and results show that, by taking
advantage of the dependence on pump for such a multimode process, we can effectively introduce
quantum correlations between specific spatial modes of the twin beam photons.

6.4 Control of the Degree of Correlation via Quadrature Selection

During the spontaneous (non-collinear) FWM process, the correlated probe and conjugate fields lie
within an emission cone similar to the non-collinear type-1 PDC [150]. As we described in detail
in chapter 5, the overlapping probe and conjugate emission cones are centered around the pump
beam (see figure 5.1) with their angular bandwidth limited by the phase matching condition (see
chapter 4). In the far field, a cross-section of the emission cone with the transverse plane is an
annular ring with the pump beam at the center. With the use of a coherent seed (probe) beam,
in addition to the spontaneously generated probe and conjugate photons, the FWM generates
bright probe and conjugate beams. These bright twin beams, localized within a sub-portion of
the spontaneous emission region, can be effectively seen as local oscillators (LOs) at mentioned in
chapter 5. The generation of these LOs, one for each field, amplifies the corresponding spontaneous
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field fluctuations at the overlap regions in the far field, as discussed in (6.13). Since the input seed
is a Gaussian beam, the generated bright probe and conjugate beams also have Gaussian profiles.
As we modify the angular spectrum of the input pump beam, the (spontaneous) correlated spatial
modes in FWM are also modified which leads to a change in the spatial cross-correlation. To clearly
see this behaviour, it is important that the Gaussian profiles of bright twin beams do not change
with the pump modifications.

In order to achieve this in our experimental setup, we add a constant-phase circular region
at the center of the CGH that is large enough for the seed (probe) beam to pass through (see
figures 6.3A, 6.3E and 6.4A). Due to a low probe-pump angle (0.4◦) and the small (1/2-inch) length
of the Rb cell, the bright twin beams remain undistorted while propagating almost collinearly with
the pump inside the constant-phase region. Therefore, using a relatively small (compared to the
overall CGH) constant phase region, we are able to generate bright Gaussian probe and conjugate
beams in the far field with uniform phase. The radius of the constant-phase circular region is kept

Figure 6.4: Control of the degree of correlations in the far field. All figures except the CGH are in the EMCCD pixel
basis. The results show the effect of a phase change of the central circular region on the far field correlations. (A) A
CGH to encode information in the form of the OU logo with a zero phase circular region at the center. By choosing
suitable phase values for the central region and keeping the rest of CGH same, one can measure spatial correlations
between the probe and conjugate quadratures that are (B) positively correlated (δφ = 0), (C) uncorrelated (δφ = π/4)
and (D) negatively correlated (δφ = π/2). Figures (B), (C) and (D) are not normalized. A small clockwise rotation
(∼5◦) of the experimental plots is due to optical alignment imperfections. Figure adapted from [71]. Reproduced with
permission.

to the smallest possible value such that resulting distortion in the CGH and therefore, in the desired
angular distribution for the pump is minimum. An additional advantage of this circular region is
the ability to control the relative phase between the probe and conjugate bright beams, which are
acting as LOs for the respective field. The relation between the specific phase value of the circular
region and the relative phase between the two LOs can be seen using the optical phase-conjugation
condition, well known from classical wave optics [81,177–179]. For pump, probe and conjugate fields
that are phase matched in a FWM process, the phase-conjugation condition implies

2φp = φpr + φc, (6.38)

where φ denotes phase of the respective fields. For example, from the classical picture of FWM
with φp = 0 (pump with flat wavefront), phase conjugation leads to the generation of a conjugate
field such that,

Ec(ρ) = E∗pr(ρ), (6.39)
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in the near field [119]. If we take φpr to be the reference phase for the subsequent analysis and
set it to zero, the condition (6.38) then implies that φc = 0. Therefore, measurement of intensity
correlations in the bright region gives amplitude quadrature correlations for the overlapping probe
and conjugate spontaneous fields as shown in (6.29). A modification of the pump phase via CGH
implementation while keeping the phase of center region to be zero (i.e no change in LOs relative
phase) gives encoded information in the amplitude quadrature correlation as shown in figures 6.3B,
6.3F and 6.2B.

For a local change the phase value of the center region as φp = δφ (and no change in rest of
the CGH), the bight conjugate will undergo a phase change of φc = 2 δφ with respect to the bright
probe as given by (6.38). This will effectively changes the conjugate field quadrature to be measured
by the bright conjugate to

X̂φc
c =

eiφc b̂† + e−iφc b̂√
2

, (6.40)

where b̂ is the creation operator for conjugate mode. Taking advantage of the relative phase change
φc via introducing δφ at the center of the pump beam, we can now control the degree of correlations
in the far field as well. For the CGH corresponding to the OU logo, a change by δφ = π/4 gives〈

δX̂pr(−x) δX̂π/2
c (x+ ξ)

〉
=
〈
δX̂pr(−x) δŶc(x+ ξ)

〉
. (6.41)

Since this is a measurement of uncorrelated quadratures of the twin beams, the corresponding
cross-correlation should ideally be zero. Similarly for δφ = π/2, we get〈

δX̂pr(−x)δX̂π
c (x+ ξ)

〉
= −

〈
δX̂pr(−x)δX̂c(x+ ξ)

〉
(6.42)

∝ −Re [Φ(ξ)] , (6.43)

which is the negative of the correlations between the probe and conjugate amplitude quadratures.
Figures 6.4C and 6.4D show the experimentally measured results of cross-correlation for δφ equal to
π/4 and π/2, respectively. Due to discretization the phase value at the SLM and the center region,
we were unable to get uniformly zero cross-correlations in figure 6.4C.

6.5 Spatial Auto-Correlation in Twin Beams

In this chapter so far, we have discussed in detail our approach to encode information in the twin
beams generated in the FWM by manipulating the angular spectrum of the pump beam. In terms
of experimental execution, precise phase structuring of the pump beam has allowed us to control
the distribution as well as the level of cross-correlation between the twin beams. We also expect this
approach, that is, encoding information in the form of engineered spatial quantum correlations, to
be useful for emerging applications in quantum sensing and computation. However, for the spatial
correlations to be a viable solution for the secure transfer of information, we need to further explore
if the encoded information is only accessible via a joint measurement of the twin beams, and not
from the individual measurements of either beam. While the spatial profiles of the bright twin
beams, in principle, should be affected by the phase changes made to the pump beam, we avoid
this scenario by passing the seed probe through a constant phase center region as mentioned in the
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previous section. This fact is further reflected in the experimental Gaussian images of the bright
twin beams, as shown in figure 6.2A.

Considering the spatial properties of the spontaneously generated fields, the spatial modes of the
probe and conjugate beams supported by the FWM process are determined by the spatial profile
of the pump beam along with the phase matching condition. Therefore, a change in the angular
spectrum of the pump, in theory, should affect the spatial correlation of each beam with itself,
referred to as the auto-correlation distribution. To further comment on whether one can recover
the encoded cross-correlation pattern or any information regarding the pump angular spectrum
using the auto-correlations of the probe and/or conjugate beams, we start by deriving an explicit
expression for it. In analogy to the definition of the cross-correlation function given in (6.10) and
the subsequent derivation, the auto-correlation function c(x1,x2)auto for the probe beam can be
defined as

cauto(x1,x2) ≡
〈
δN̂pr(x1; zf ) δN̂pr(x2; zf )

〉
(6.44)

bright limit
∝

〈
δX̂pr(x1; zf ) δX̂pr(x2; zf )

〉
(6.45)

f−to−f
=

optical system

〈
δX̂pr(k1) δX̂pr(k2)

〉∣∣∣
z=z0

. (6.46)

Earlier in section 6.1, we calculated the expectation value for any general operator Â (see
expression 6.9) for |ΨTBS〉. We can now set Â = δX̂pr(k1) δX̂pr(k2) and determine its explicit
dependence on the pump angular momentum as

〈Â〉 = 〈δX̂pr(k1) δX̂pr(k2)〉 (6.47)

= 〈X̂pr(k1) X̂pr(k2)〉 (6.48)

= 〈Ψ0|X̂pr(k1)X̂pr(k2)|Ψ0〉+ 2

∫∫
dkprdkc Re

[
C F(kpr,kc)〈Ψ0|X̂pr(k1)X̂pr(k2) â†kpr b̂

†
kc
|Ψ0〉

]
+ |C|2

∫∫
dkprdkc

∫∫
dk′prdk

′
c F(kpr,kc)F∗(k′pr,k′c)〈Ψ0|b̂k′c âk′prX̂pr(k1)X̂pr(k2) â†kpr b̂

†
kc
|Ψ0〉

=
1

2
〈Ψ0|(âk1 â

†
k2

+ â†k1 âk2)|Ψ0〉

+
|C|
2

2∫∫
dkprdkc

∫∫
dk′prdk

′
c F(kpr,kc)F∗(k′pr,k′c)〈Ψ0|b̂k′c âk′pr(âk1 â

†
k2

+ â†k1 âk2)â†kpr b̂
†
kc
|Ψ0〉

=
δ(k1 − k2)

2
+
|C|
2

2∫∫
dkprdkc

∫∫
dk′prdk

′
c F(kpr,kc)F∗(k′pr,k′c)δ(kc − k′c)

×
[
δ(kpr − k′pr)δ(k1 − k2) + δ(k′pr − k2)δ(kpr − k1) + δ(k′pr − k1)δ(kpr − k2)

]
=
δ(k1 − k2)

2
+
|C|
2

2

B δ(k1 − k2) + |C|2
∫
dkc Re [F(k1,kc)F∗(k2,kc)] (6.49)

=
1

2
(1 + |C|2B)δ(k1 − k2) + |C|2

∫
dkc Re [F(k1,kc)F∗(k2,kc)] , (6.50)

where B =
∫∫

dkprdkc |F(kpr,kc)|2 is a constant. The first and second delta function terms in
(6.49) are due to the pointwise self-correlation of the probe vacuum and the one photon Fock state,
respectively, in the far field transverse plane. Since these delta functions do not contain any spatial
information, they can be omitted in further analysis. The last term in (6.50) depends on the angular
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6.5 Spatial Auto-Correlation in Twin Beams

spectrum of the pump beam, and hence, may provide information regarding the encoded pattern. As
mentioned earlier, the measurements are made within the bright region of the probe and conjugate
beams and, therefore, we can assume the sinc function is uniformly equal to 1. Using (6.46), (6.50)
and the far field mapping of k-vectors, the auto-correlation function cauto(x1,x2) for probe beam
can be written as

cauto(x1,x2)
bright limit
∝

∫
dxc Re [Φ(x1 + xc) Φ∗(x2 + xc)] , (6.51)

where xc is the position coordinate for conjugate in the far field transverse plane. A derivation of
the auto-correlation function for the conjugate beam gives an expression similar to (6.51) with xc
replace by xpr. However, the distribution of cauto is independent of these field variables as they are
being integrated over.

Since for the auto-correlation, as opposed to the cross-correlation, one should expect correlations
between nearby points (i.e. x2 ≈ x1), expression (6.51) can be recast into a more relevant form by
defining ξ− = x2 − x1, ξ′ = x1 + xc. With these new variables, we rewrite the auto-correlation
function as

cauto(ξ−)
bright limit
∝

∫
dξ′ Re

[
Φ(ξ′) Φ∗(ξ− + ξ′)

]
. (6.52)

This equation gives us explicit dependence of the distribution of auto-correlation function on the
pump angular spectrum via the function Φ. However, the mapping from Φ to cauto is essentially non-
invertible, which makes it impossible, in-general, to reconstruct the the encoded cross-correlation
pattern. Figures 6.5A and 6.5B show the plots for the auto-correlation distributions from the

Figure 6.5: Experimental and simulation results for the auto-correlation. Self-correlations in the intensity fluctua-
tions measurements of individual beams provide the auto-correlation distributions for (A) probe and (B) conjugate
beams while input pump beam has the phase pattern corresponding to the OU logo. These approximately Gaussian
auto-correlations do not reveal any information of the encoded pattern and are in good agreement with simulation
of the auto-correlation (C). The small portion at the center of measured auto-correlations is removed as it contains
an artificial peak due to prefect correlation of identical images. All figures are in the EMCCD pixel basis. Figure
adapted from [71]. Reproduced with permission.

experimental measurements of probe and conjugate intensity fluctuations, respectively, for the case
of a structured pump beam with the OU logo phase pattern. It can be seen from these plots
that the auto-correlations are very narrow and have an approximately Gaussian distribution that
can not be used to recover the encoded information. Using the theoretical derivations developed
in the present section, the simulated auto-correlation distribution based on (6.52) and shown in
figure 6.5C, closely matches the experimental plots. This proves the validity of our analysis in the
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present experiment. Also, the results in figure 6.5 are almost identical to the auto-correlations
obtained in the case of no pump beam modification, i.e. no encoded information as discussed
in the next section 6.6. Furthermore, in the limit of equally contributing large number of spatial
modes, the auto-correlation distribution approaches a delta function, and hence, effectively becomes
independent of pump angular spectrum. The detailed derivation of this result is provided in the
supplemental material section S4 of ref [71].

A relevant concern here may be regarding what information can be gained about the correlated
spatial modes in FWM if measurement are made only one of the beams. With the assumption that
overall entangled state is pure, one can estimate the total number of pairwise-correlated spatial
modes, known as the Schmidt number, via the coherent mode analysis of one of the beams [180–183].

6.6 Security of Encoded Information

For a highly spatially-multimode twin beam state, the fact that the auto-correlation measurements
made on one of the beams do not reveal any information regarding the encoded pattern also implies
that the shape of the auto-correlation distribution is relatively insensitive to the exact details of
the pump angular spectrum. In other words, by only analyzing correlations in one of the beams,
one can not say if a structured pump has been used to generate twin beams with specific encoded
information. This is an additional security feature of a secure quantum network utilizing a Hilbert
space corresponding to a large number of spatial modes, in which, it becomes difficult for an eaves-
dropper to figure out when the information is being actively sent. In order to check the uniformity
of the auto-correlation distributions against changes in the pump angular spectrum in our FWM
process, we plot and compare the auto-correlations for the probe and conjugate beams generated
using three different pump angular spectrum. Figure 6.6 shows the CGH phase-patterns, encoded
information and corresponding auto-correlations for the cases when the input pump has phase pat-
terns performing no encoding (first row), OU logo encoding (second row) and è encoding (last
row). While the phase patterns (CGH, first column), hence, the pump angular spectrum and the
encoded information (cross-correlation, second column) are quite different for all three cases, the
auto-correlations remain narrow Gaussian distributions.

To further quantify, for example, the similarity between auto-correlations in various cases or
the amount of information leaked into the auto-correlations, we compare two given correlation
distributions using a correlation-coefficient, r, defined as

r(A,B) =

∑
m,n(Amn − Ā) (Bmn − B̄)√[∑

m,n(Amn − Ā)2
] [∑

m,n(Bmn − B̄)2
] , (6.53)

where Amn and Bmn are the matrix elements of the cross/auto-correlation distributions being con-
sidered and Ā and B̄ are the mean pixel values of the corresponding matrices. For two given images,
A and B, the correlation-coefficient provides a measure of similarity between them with values rang-
ing from -1 to 1. For two uncorrelated random images/matrices r has a values close to zero and
for identical images r = 1. For two similar but anti-correlated images, r has negative values. To
compute the values of r, we take the size of the A and B matrices to be 121×121 and centered
around the center of the respective correlation distributions.

The results of these comparisons are tabulated in figure 6.7A. The lower half (lower triangle) is
removed as r is symmetric with respect to the order of the images. Also, for clarity, we only show the
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Figure 6.6: Twin beam spatial correlations generated for three different pump angular spectra. Spatial cross-
correlations and auto-correlations for the probe and conjugate beams when no pattern is encoded (1st row), the OU
logo is encoded (2nd row), and è is encoded (3rd row) on the input pump. The corresponding CGH phase patterns
are shown in subfigures (A), (D) and (G), respectively. The encoded information, extracted in the form of the
cross-correlation (2nd column), is very distinct in all three cases. However, the auto-correlations in (C), (F), and (I)
remain unchanged, independent of what information is encoded. The experimental results are also consistent with
the corresponding simulations in all three cases. These results demonstrate that each beam by itself does not contain
any substantial encoded information, and that one needs a joint measurement on both beams to be able to extract
the encoded information. All correlation subfigures are in plotted in the EMCCD basis. The center portion of the
measured auto-correlations was removed as it contains an artificial maximum due to the use of the same images to
calculate it. Figure adapted from [71]. Reproduced with permission.

relevant comparisons here. Comparing the measured auto-correlations of the probe and conjugate
beams in various cases, we find consistently high values of r (≥ 0.78). A large part of the degradation
here comes from the removal of the central artificial peak. Given that probe and conjugate auto-
correlation are identical in theory, we find a high r-value between them for each individual case.
The similarity between the auto-correlation and cross-correlation distributions remains low except
when no information is encoded. This is due to the fact that, for the an unmodified pump, all
the correlations are approximately Gaussian, which further shows that the Gaussian peak at the
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Figure 6.7: Similarity between various auto- and cross-correlation distributions. The correlation-coefficients (r-
values) are calculated over a region of 121x121 pixels, which is roughly the size of the region where information
is encoded in the form of a spatial pattern. The r values in (A) mainly show the similarity between the different
auto-correlation distributions, while the ones on the right (B) show the degree to which information is leaked into the
background of the auto-correlations, and is calculated after setting the pixels within a circular region of 10 pixels at
the center to zero for the relevant correlation distributions. Figure adapted from [71]. Reproduced with permission.

center of the auto-correlations does not contain any significant information. Additionally, we also
provide a comparison between the simulated and experimental cross-correlations for the different
pump angular spectra. The relatively low values of r (∼0.6), for the case of OU logo and è, is likely
from degradation of measured the cross-correlations due loss of higher order spatial frequencies in
the phase pattern at the SLM. To see if there might be some information present in the background
of the measured the auto-correlations related to the encoded pattern (OU logo or è), we take a
circular region with a radius of 10 pixels around the center and set it to zero. This effectively
removes the central peak at the center of these correlations. Also, to provide a fair comparison with
the corresponding cross-correlation, the OU logo and è are also modified using the same procedure.
The r-value for the relevant comparisons are tabulated in figure 6.7B. We now find very low r-values
between cross-correlation and auto-correlation for these two cases, which experimentally verifies the
fact that no relevant encoded information (OU logo or è) is present in the corresponding auto-
correlation background.

A crucial prerequisite to achieve a practical implementation of a secure quantum network using
the twin beams is the presence of temporal quantum correlations between the two modes. Here,
referring back to the energy conservation in the optical fields during the FWM process, the inten-
sity fluctuations of the probe and conjugate beams are quantum correlated due to the generation
of probe-conjugate photon pairs. As mentioned in the chapter 5, we perform temporal intensity
difference measurements to verify the presence of temporal quantum correlations in the twin beams.
However, for our present approach to be compatible with current secure quantum communication
techniques, the temporal quantum correlation should be preserved [70,184] as we modify the spatial
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degrees of freedom to encode information. To confirm this in our experimental setup, we bypass
the EMCCD camera and detect bright probe and conjugate beams with a balanced photodiode
detector and measure intensity difference squeezing with a spectrum analyzer. Figure 6.8 shows
the presence of temporal squeezing with a level of ∼4.5 dB below the shot noise limit. We find
similar temporal noise spectra for all three case (i.e no pattern, OU logo and è), which shows that
the degree of temporal correlations is not affected by the information encoded via manipulation
of spatial degrees of freedom. In order to obtain the same level of temporal squeezing, we had to
subtract the additional background noise due to scattered pump photons, which becomes significant
in the presence of a CGH phase pattern.

Figure 6.8: Temporal squeezing with a modified pump beam. Quantum correlations in the temporal domain are
verified through the presence of intensity difference squeezing. We measure the same level of squeezing, after the
subtraction of noise from the scattered pump noise, in all three cases, which shows that it is independent of the
spatial modes manipulation. The black trace shows the shot noise level, while the other traces show the intensity
difference noise when no information is encoded (red), the OU logo is encoded (green), and è is encoded (blue). If
we place an additional 87Rb absorption cell before the photodiodes to absorb the scattered pump, we get the same
levels of temporal squeezing again without the need to subtract the scattered pump noise, independent of the encoded
information. Figure adapted from [71]. Reproduced with permission.

The temporal correlations provide a primary layer of security against any attempt to gain infor-
mation by an eavesdropper, as such an attempt would inevitably lead to a reduction of the degree
of temporal correlations, and hence, the level of intensity difference squeezing [185]. As a result, the
presence of an eavesdropper in a quantum communication channel can be checked by monitoring
the intensity difference squeezing. More concretely, in the context of CV quantum-key-distribution
(QKD), the security of a quantum exchange between two parties, say A and B, depends on the
amount of mutual information, IAB, between the two parties [186]. It can then be shown that, for
a twin beam purely temporal EPR state, IAB is proportional to the amount of squeezing (logscale,
see chapters 2 and 3) in the joint quadratures of the twin beams [187]. The additional advantage of
a spatially multimode twin beam state is then to enhance the information capacity and security in
a quantum communication channel. The multiple independently correlated spatial modes between
the twin beams generated in FWM process [188] can be used to execute a higher dimensional QKD
protocol. In this case the mutual information, and hence the security, in a d-dimensional protocol
will have an additional scaling of log2 d

[6,146], where d is directly proportional to the number of
spatial modes. As we can see here, for d > 2, the higher dimensional protocol will provide better
security than a traditional 2-dimensional protocol. A practical way to measure the number of in-
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dependent spatial modes is by taking the ratio of the pump size to the size of the independently
correlated regions at the center of the cell [95,119] (near-field). The mutual information in our present
implementation, therefore, is expected to increase as ∼2 log2(σp) where σp is the pump width at
the cell center.

In summary, the results presented in this chapter show that we are able to control the distribution
of spatial correlations and use it in a novel way to encode information. The degree of control of
the spatial correlations in our FWM setup, using a structured pump beam, conveys a substantial
advancement over previous experiments with the PDC process [161,162]. Furthermore, the capability
to engineer the distribution of the spatial correlations directly at the source can be extended to
providing on-demand entanglement between any arbitrary superposition of spatial modes. To date,
a similar approach of mode engineering has been used in the time-frequency domain towards the
development of devices such as the quantum pulse gate [189] and designing of a single photon source
for any given temporal mode [190].
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CHAPTER7
Future Directions and Conclusions

In this dissertation, based on the discussion of spatial correlations in twin beams, we see that our
FWM source generates multimode squeezed state of light composed of a large number of spatial
modes. We find signatures of it in terms of localized auto-correlations in the probe and conju-
gate fields as well as in the ability of the FWM process to support relatively complex patterns in
their cross-correlations. However, all the correlation information acquired so far is based on and
targeted towards conditional measurements (which seems natural because the verification of EPR
entanglement require conditional variances). These conditional measurements tell us how a photon
is spatially distributed in the transverse plane of the conjugate beam given that the corresponding
photon in the probe beam is measured at a specific location.

One may then ask: what is the unconditional distribution of photons in the twin beams? When
the pump photons decay into the probe and conjugate photons, are there any preferred spatial
modes (or a combination of them)? Given that these spatial modes do exist, what is the nature
of the correlations between them and which conservation rules or physical parameters affect them?
We aim to provide answers to some of these questions here. The main idea revolves around the
(spatial) eigenmode structure, commonly referred to as the Schmidt modes, underlying the FWM
process. In this chapter, we provide our preliminary simulation results of their calculation and point
to their importance in quantum communication in the first section. Later, we discuss some of the
possible future directions and end with our concluding remarks on this dissertation.

7.1 Spatial Eigenmodes of FWM

For a given non-linear process (involved in photon pair generation), the characterization of Schmidt
modes is a natural way to identify modes that are pairwise correlated (in a given degree of free-
dom). More explicitly, in the context of the twin beam wavefunction, the joint probability dis-
tribution of one of its relevant (frequency, temporal, or spatial) properties is determined through
the (probability) amplitude function F. This function can be decomposed in the form of following
summation [140,189,191]

F(xa, xb) =
∑
i

λi ui(xa) vi(xb), (7.1)

where x is a frequency, time, or space variable. The complex functions u and v, corresponding
to the modes of ‘a’ and ‘b’, respectively, are known as the Schmidt modes of the process (often
also referred as the principal [92] modes or the eigenmodes) and the real, positive factor λi’s in the
summation are the Schmidt values. The single summation index i tells us that the distribution um
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(in mode a) is only paired with the distribution vm (in mode b). Therefore, one can visualize this
decomposition as an effective diagonalization in the space of all pairwise combinations of the form
ui(xa)vj(xb). Since F is the probability amplitude of a joint probability distribution, we have∫∫

dxadxb F(xa, xb) = 1 (7.2)

⇒
∑
i

λ2
i = 1, (7.3)

which implies that the probability of finding the twin beam photons in the ui(xa)vi(xb) Schmidt
pair is given by λ2

i . Here, we use the orthonormality of Schmidt modes to derive expression (7.3).
Focusing on twin beam correlations in the far field, we can now apply this formalism to the FWM

process. Following the expression 4.15 in chapter 4, if we restrict our analysis domain to be within
the maximum gain region (see figure 4.4), the sinc function can be taken to be unity. Therefore, for
the photon pair generated in the probe and conjugate fields, the two-photon amplitude function F
has the form

F(qpr, qc) = Φ(qpr + qc) (7.4)

=

∫
dqp E(qp) E(qpr + qc − qp), (7.5)

where qpr, qc and qp denote the transverse momentum of the probe, conjugate, and pump fields,
respectively, E(qp) denotes the angular spectrum of pump and Φ represents the convolution of the
angular spectra of the two pump photons. In chapter 4, we calculated the explicit form of the
function Φ(qpr + qc) for a Gaussian pump beam to be

Φ(qpr + qc) = A2
1 σ

2
p π e

−σ2
p|qpr+qc|2/4 , (7.6)

where A1 is a constant and σp is the waist of the pump beam inside the non-linear medium (near
field).

According to the formalism of Schmidt modes given in (7.1), F(qpr, qc) can be recast into the
form

F(qpr, qc) =
∑
i

λi ui(qpr) vi(qc), (7.7)

where u(qpr) and v(qc) are the Schmidt modes corresponding to the generated probe and conjugate
fields, respectively. Using (7.4), (7.6) and (7.7), we get

A2
1 σ

2
p π e

−σ2
p|qpr+qc|2/4 =

∑
i

λi ui(qpr) vi(qc). (7.8)

A solution of the above equation for ui and vi Schmidt modes will give us information about how
exactly the spatial modes of the probe and conjugate photons are paired (for a Gaussian pump
beam) and that the overall FWM wavefunction can be seen as a superposition of all such pairwise
combinations of Schmidt modes. In addition to this, the Schmidt spectrum (composed of various
Schmidt values sorted with respect to their magnitude) gives information about the total number
of modes as well as the dominant Schmidt modes in the generated fields. Using the method of
singular value decomposition (SVD) for complex symmetric matrices [192], the Schmidt modes for
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Figure 7.1: Spatial Schmidt mode characterization for a Gaussian input pump field. Based on the computational
SVD implementation, the absolute amplitude distribution of the first 16 probe Schmidt modes is shown in decreasing
order probability of occurrence. Each mode is normalized such that

∫
dqpru

∗(qpr) u(qpr) = 1 over the displayed
region of 71×71 pixels (with each pixel linear size equivalent to ∼0.2 rad/mm). The amplitude distributions of the
conjugate Schmidt modes are the same as the corresponding ones for the probe.

(7.8) can be obtained. Notice that the function Φ is symmetric with respect to the qpr and qc
variables. Therefore, we write it as a symmetric matrix by discretizing the qpr and qc variables and
calculating the ui and vi Schmidt modes by implementing SVD in MATLAB.

Based on our computational results, spatial profiles of the absolute amplitude of the first 16
Schmidt modes are shown in figure 7.1 in the order of decreasing Schmidt values. We find that
amplitude of a probe (ui) Schmidt mode is the same as the corresponding conjugate (vi) Schmidt
mode. The phase distribution of the first 8 Schmidt modes for the probe and conjugate fields are
shown in figure 7.2A and figure 7.2B, respectively. Some of these modes resemble the distribution of
2D Hermite-Gauss (HG) or Laguerre-Gauss (LG) modes which is expected based on the known lit-
erature [150,193]. However, due to the limitation of our SVD implementation, the computed solutions
behave differently than HG/LG modes near the boundary.
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Figure 7.2: Phase distribution of probe and conjugate Schmidt modes for a Gaussian pump field. (A) Phase
distribution of the first 8 Schmidt modes for the probe field are shown in decreasing order of probabilities. (B) The
phase distribution of the corresponding conjugate Schmidt modes. The phase values in these simulated results are
noisy in the regions of small amplitudes. All phase distributions are displayed over a region of 71×71 pixels with the
linear size of each pixel equivalent to ∼0.2 rad/mm.

In order to check the validity of these simulated Schmidt mode results, we use our experimen-
tal cross-correlation data which provides the real part of Φ(qpr, qc). Since the Im[Φ] is zero for a
Gaussian pump, as can be seen from (7.6), the measured cross-correlation has complete informa-
tion of the required (experimental) two-photon amplitude distribution Fexp(qpr, qc). To see if our
calculated Schmidt modes represent a valid eigenbasis for Fexp, we use the following projection

(λexp)ij =

∣∣∣∣∫ Fexp(qpr, qc) u
∗
i (qpr)v

∗
j (qc) dqpr dqc

∣∣∣∣ , (7.9)

where λexp are experimental Schmidt values resulting from the above projection and u(qpr) and v(qc)
are the theoretically calculated Schmidt modes. Figure 7.3A shows the diagonal behavior of the
Schmidt values λexp, which indicates a good match between the simulated and experimental Schmidt
modes. We also see a participation of a large number of Schmidt modes (>80) with significant
occupation probabilities. To estimate how many spatial modes are expected to participate in an

92



7.2 Outlook and Conclusions

Figure 7.3: Unambiguous verification of the large number of pairwise correlated spatial modes in FWM. (A) The
experimental two-photon amplitude Fexp(qpr, qc) distribution is projected on the calculated Schmidt basis using
expression (7.9). The projected Schmidt values are mostly diagonal which indicates a good match between the
simulation and the experiment. We also confirm a large number of Schmidt modes in our experimental data with
significant probability of occupation. (B) Exponential decrease in the occupation probability for Schmidt pairs (based
on the simulation results). This shows that a large number of Schmidt pairs ui(qpr)vi(qc) are expected to participate
in the FWM process in the presence of a Gaussian pump with large waist [150].

ideal FWM process, we also calculate the probability of each Schmidt pair (i.e. pi = λ2
i ) based on

our simulation results. Figure 7.3 plots the distribution of the probability for 600 Schmidt pairs in
descending order (of λexp) and we see an exponential decrease in the occupation probabilities for
Schmidt pairs. This is similar to the observed behavior for an SPDC process which has a similar
two-photon amplitude function [140,194,195]. These simulation results with supporting experimental
evidence provide a direct verification of the fact that FWM is a highly spatially multimode process
that generates a large number of quantum-correlated spatial modes. An additional advantage of the
Schmidt mode analysis is that one can quantify the amount of entanglement as well as information
contained in the correlated spatial modes using the measures of Schmidt number [140] and mutual
information via the quantification of the von Neumann entropy [194].

In summary, using the Schmidt mode analysis, we show that the FWM process generates a
highly multimode quantum state taking advantage of the infinite dimensional Hilbert space of
spatial modes. The generation of a large number pairwise quantum-correlated spatial modes is
especially well suited for higher dimensional quantum key distribution (QKD) protocols [6] where
the security of a d-dimensional protocol scales as log(d), where d is proportional to the number
of Schmidt modes (assuming the participating modes are equally probable). Additionally, these
pairwise correlated spatially entangled states are useful in applications towards the broader field of
quantum communication [8] and quantum sensing [196].

7.2 Outlook and Conclusions

With a better understanding of spatial correlations in the twin beams based on the research leading
to this dissertation, future research projects may explore the following advanced topics:

• Engineering of Spatial Schmidt Modes in FWM
In chapter 6, we showed that one can control the distribution of the cross-correlation in the
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twin beams using a pump beam with a pre-determined angular spectrum. We also discussed
that, within the maximum gain region, the two-photon amplitude function F(qpr, qc) depends
mainly on the properties of the pump beam. Therefore, a change in the angular spectrum of
the pump field alters the Schmidt spectrum (obtained from the Schmidt decomposition of the
corresponding F function). Our analysis of the experimental cross-correlation data acquired
with a modified pump provides an early verification of this fact as shown in figure 7.4. A
more detailed analysis with additional results can be found in the ref [188]. A key advantage
of using a structured pump lies in the fact that the corresponding Schmidt spectrum can be
tailored towards making the process more efficient if correlations are measured only in certain
modes. It is well known that various spatial modes behave differently while propagating in
the presence of environmental noise (such as turbulence [197]) or while propagating through
multimode fibers [198]. Hence, a structured pump beam can be used to generate correlations
between spatial modes with a distribution that is beneficial for a specific application. The
modification of Schmidt modes in the time domain is already an active area of research to
realize devices like quantum pulse gates [189] and heralded generation of photons with desired
temporal properties [190].

Figure 7.4: Modification of Schmidt modes using the pump angular spectrum. The fundamental eigenmode
structure is different when the pump angular spectrum is modified, as evident from the non-diagonal behavior
of λOU

exp (using Fexp measured for the case of the OU logo) when projected onto the Schmidt basis calculated
for the input Gaussian pump beam. One can therefore aim to populate specific Schmidt mode pairs using a
modified pump field and effectively engineer Schmidt modes in the spatial domain.

• Schmidt Mode Decomposition for Non-collinear FWM
In our Schmidt mode analysis in section 7.1, we ignored the contribution of the sinc function
that accounts for phase-mismatch along the propagation direction and is effectively responsible
for the open-angle or non-collinear configuration of the FWM (see chapters 3 and 4). Although
the sinc function has a negligible effect on the distribution of the Schmidt modes at the center
of the gain region, it dictates their decay behaviors by setting appropriate boundary conditions
outside the maximum gain region. In fact, in the absence of a phase-matching function, the
resulting Schmidt modes are unbounded along the qpr = −qc manifold [140]. One can apply
the method of SVD to evaluate Schmidt modes of the full Fexp(qpr, qc) distribution since it
is also a symmetric function with respect to the qpr and qc variables as shown in section
4.3. However, while maintaining a good resolution in the qpr and qc variables, it may require
decomposition of a matrix of size ∼106 using a brute force approach. Further insights from
the theoretical analysis of the problem may offer a simpler approach.
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7.2 Outlook and Conclusions

• Higher Order Corrections to Cross-correlations
In our calculation of the far field correlations in chapter 6, we perturbatively expand the wave-
function |ΨTBS〉 in terms of the interaction Hamiltonian and account only for the zero and
first order contributions (see section 6.1). However, there can be contributions to the cross-
correlations from higher order terms that can improve the fidelity between the simulated and
experimental results (which is ∼0.6 for our current analysis, as shown in chapter 6). In our pre-
liminary work [199], we find that while there is no second-order contribution, there is a non-zero
third-order contribution. Improving the fidelity between expected and encoded information
is useful for applications such as the quantum secure direct communication [148] with spatial
variables. Using the Schmidt mode approach which effectively diagonalizes the interaction
Hamiltonian, one could simplify the calculation of the third- or higher order contributions.

In conclusion, we have given a detailed account of our experimental studies of spatial correlations
in twin beams generated using the χ(3) non-linearity in 85Rb vapor. After providing the necessary
background, we began by understanding the interaction FWM Hamiltonian expressed in terms of
the spatial variables. Based on what was expected from our intuitive picture, for a large size pump
beam and a small length Rb cell1, behavior of the near field correlations in the twin beams is
governed by the phase-matching along the propagation direction; while the far field correlations are
dependent on the pump angular spectrum following momentum conservation. We showed that for
the probe and conjugate transverse position-momentum degrees of freedom, one can expect EPR
entanglement. We discussed the details and results of our EPR experiment in which we verify the
existence of EPR correlations as well as the inseparability in the spatial variables. Going beyond
entanglement verification, we analyzed the exact dependence of far field correlations on the pump
angular spectrum and implemented this understanding in our final experiment. We phase-structured
the input pump beam to have specific angular spectrum that resulted in encoding of pre-determined
spatial patterns in the relative momentum distribution of the twin beams. We also showed that the
encoded information is only available via joint measurements and the temporal correlations are also
preserved. Towards the end, we introduced the Schmidt modes as the spatial eigenmodes of the
FWM process which provide a better understanding of correlated spatial modes in the twin beams.

1Explicitly, zR � L or what is known as the weak focusing limit [150].
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APPENDIXA
Hologram preparation for spatial light

modulator
One of the main results described in this dissertation is achieving desired target patterns in the far
field spatial correlations of the twin beam using a structured pump beam approach. For a given
angular spectrum distribution Eo of the pump beam, the far field spatial correlation function ccross
is dictated by the convolution function Φ as outlined in the following expressions (see chapter 6),

ccross (ξ+) ≡
〈
δN̂pr(−x)δN̂c (x+ ξ+)

〉
(A.1)

bright limit
∝

〈
δX̂pr(−x)δX̂c (x+ ξ+)

〉
(A.2)

∝ Re[Φ(ξ+)], (A.3)

where Φ = Eo?Eo denotes the convolution of angular of spectrum (Eo) of two pump photons involved
in the FWM process. For a predefined target pattern (such as OU logo or è) corresponding to the
ccross distribution, the goal is to impart the pump beam suitable angular spectrum implied by
(A.3). Achieving this desired angular spectrum in the pump field involves applying a suitable phase
pattern φ at the spatial light modulator (SLM) that is transferred to the pump field upon reflection.
Subsequently, the reflected pump beam undergoes a 4f imaging system, accurately mapping the
field distribution with the phase pattern to the Rb cell center.

The primary objective of hologram preparation is to compute the 2-dimensional phase profile
φ(ρ) for the pump electric field to ensure that Eout (equivalent to the function Φ) given as,

Eout = Eo
(
fqp
k

)
? Eo

(
fqp
k

)
(A.4)

= Ff
[
Eo(ρ)eiφ(ρ)

]
? Ff

[
Eo(ρ)eiφ(ρ)

]
(A.5)

= Ff
[(
Eo(ρ)eiφ(ρ)

)2
]

= T, (A.6)

matches with the target field pattern T (see figure A.1). Here, qp represents the pump’s transverse
momentum vector and ρ = (ρ1, ρ2) denotes the 2D coordinate in the transverse plane at the cell
center. Figure A.1 shows a flowchart to compute an discrete phase matrix or computer generated
hologram (CGH) that is iteratively optimized using a cost function. After calculating Eout for an
initial guess phase using Ein, subsequent better values for φ can be realized by assigning a cost
function to any deviations from the target pattern T and then using a minimization algorithm to
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Hologram preparation for spatial light modulator

initialization

of parameters

SLM plane

output plane

(far field)

feedback

& export

minimization

(  th iteration)

Figure A.1: The flowchart of the computational algorithm used to calculate phase pattern φ(ρ) for given target
pattern T . The goal to achieve maximum overlap between Eout and T while optimizing φ using the conjugate gradient
minimization coupled with MRAF algorithm. Beginning with an initial guess phase φ and the corresponding Eout

is compared with T to estimate an initial cost using the cost function C which is then iteratively minimized along
various conjugate directions (d) until its value stagnates. After an additional phase-compression step to reduce the
zero order contribution during SLM reflection, the final phase pattern is converted into bitmap and is applied to the
SLM. In the case of an ideal implementation, Eout at the far-field plane matches the desired target field T . Figure
adapted from [71]. Reproduced with permission.
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Hologram preparation for spatial light modulator

reduce the cost. A low cost value gives high degree of match between Eout and T , and ensures an
optimal angular spectrum for the pump field is present at the Rb cell center.

We use a conjugate minimization algorithm [155] coupled with the mixed-region-amplitude-freedom
(MRAF) approach to iteratively improve Eout matrix values. In MRAF, the transverse plane of
target field is divided into a signal and a noise region and the cost function is only evaluated over
the signal region while allowing the Eout to take any values outside this region. Therefore, any
discrepancy between T and Eout values in the noise region doesn’t affect the cost values. In our
implementation of the conjugate gradient minimization algorithm, the cost function (C) has the
form

C = 10n

1−
∗∑

pixels

Re
(
T · Eout

)2

, (A.7)

where n = 10, T represents complex conjugate of the target field, and (·) operation denotes point-
wise multiplication. The cost function in (A.7) is evaluated only over the signal region as indicated
by an asterisk over the summation. Based on the spatial discretization of ρ as well as the size of the
grid (min/max ρ values) over which phase φ is defined, the cost function represents aN2-dimensional
surface for a N ×N grid size. In our implementation, we use a grid size of 512× 512.

To achieve a minimization of the cost function with respect to N2 independent phase values,
the gradient of cost function ∂C/∂φ is calculated which provides the direction of steepest descent
g along the multidimensional cost surface. Based on g, a conjugate direction d is determined (see
figure A.1). While descending along the conjugate direction d, the cost function is reduced in finite
size steps until a minimum is reached. We use the final phase value(s) φmin to calculate a new
gradient and a corresponding conjugate direction and further minimize the cost function C until it
stagnates. The large pre-factor of 10d (n ∼ 10) in the cost function gives faster optimizations while
avoiding local minima [155]. Due to the limited efficiency of our SLM device (especially for higher
spatial frequencies), a fraction of the field remains unaltered during reflection and presents itself as
a zero-order diffraction in the Fourier plane of the SLM. The phase values in the calculated CGH
can be adjusted to suppress contribution from the zero-order. For this, we compress the final φmin
matrix to reduce the zero-order contribution in the far field [200]. Lastly, the compressed phase value
is converted to 8-bit BMP format CGH and is applied to the SLM device. As mentioned in the main
text (see chapter 6), the advantage of using phase-only hologram is that it doesn’t significantly alter
the pump intensity distribution, and therefore, provides a relatively better gain for the FWM process
in our experiment. In addition to this, a spatially amplitude-modulated pump would amount to a
substantially higher pump background in both the spatial and temporal detection.
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APPENDIXB
Fourier transform using MATLAB

MATLAB uses the following definition of Fourier transform (FT) to perform a fast Fourier transform
(FFT). The forward FT is

F (ξ) =

∫
ξ
e−i2πξxf(x) dξ , (B.1)

with the corresponding inverse Fourier transform as

f(x) =

∫
x
ei2πξxF (ξ) dx . (B.2)

Here, a real space f(x) is transformed into a function F (ξ) in the space of spatial frequencies.
Another common definition of a Fourier transform, which is the one used in this dissertation, is

F1(ξ) =
1√
2π

∫
ξ
e−iξxf(x) dξ (B.3)

f1(x) =
1√
2π

∫
x
eiξxF (ξ) dx . (B.4)

The variable ξ above is equivalent to spatial angular frequency or k-vector. From (B.1) and (B.3),
we get

F (ξ) =
√

2πF1(2πξ). (B.5)

In other words, the value of F (1) is assigned to F1(2π) (apart from
√

2π multiplication) and so on.
Since MATLAB uses expression in (B.1), the transformation

F (ξ)→ F1(ξ) (B.6)

requires stretching the underlying grid by a factor of 2π, i.e.

ξmin : dξ : ξmax → (ξmin : dξ : ξmax)× 2π . (B.7)
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APPENDIXC
Saturation absorption spectroscopy layout

In our experiments, the single photon detuning of the pump and seed (probe) beams is actively
maintained using a PID servo lock based on the saturation absorption (SatAbs) spectroscopy of 85Rb
atoms. The overall locking mechanism works by creating upper and lower frequency sidebands (using
a electro-optic modulator) on a portion of field and locking one of these sidebands to a fixed 85Rb
transition which gives a red or blue detuned locking on the laser frequency. In our implementation,
we create the upper and lower sidebands with a specific frequency f (∼ 1.1 GHz, see figure C.1)
on a portion of the field at the laser frequency. The lower sideband is then locked to the 85Rb
5 2S1/2, F=2 −→ 5 2P1/2, F

′=3 transition. This effectively locks the laser frequency on the blue side
of the aforementioned transition with a frequency separation f .
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Saturation absorption spectroscopy layout

Figure C.1: Ti:Sapphire LASER frequency stabilization using 85Rb spectroscopy.
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