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ABSTRACT 

Nonperennial streams are widespread and abundant around the globe. Although these 

streams are societally and ecologically important, they are understudied relative to those that 

flow continuously. Because of this, we lack fundamental knowledge of nonperennial streams, 

such as when and where they dry and the consequences of those drying patterns. Drying patterns 

largely determine stream network connectivity in nonperennial systems. Stream drying and 

network connectivity patterns are driven by processes that act at global, regional, and local 

spatial scales. The goal of this dissertation is to explore the patterns and drivers of stream drying 

and connectivity. Chapter One explores the impact of global climate change on network 

connectivity in the Blue River, Oklahoma. The findings from this research suggest that stream 

drying is likely to increase in the future. This research also identified a threshold around which a 

small change in stream drying leads to a large change in connectivity. Chapter Two investigates 

how the influence of stream drying on network connectivity varies in relation to network-scale 

properties. This work found that the rate of connectivity loss is faster for larger stream networks 

and when drying occurs in mainstem reaches. As stream drying is expected to become more 

extensive due to changes in climate, this research underscores the need for managers to be 

vigilant about fragmentation when managing at large spatial scales and when managing systems 

where drying occurs in mainstem reaches. Chapter Three investigates how streamflow and 

connectivity are influenced by cross-scale interactions between global-scale climate change and 

regional-scale aridity. This analysis suggests that changes in connectivity due to climate change 

vary predictably in relation to aridity. Stream networks in arid regions will have more high 

connectivity days in the future while stream networks in wetter regions will experience increases 

in the number of low connectivity days in the future. The ability to predict future changes in 

network connectivity allows for better anticipation of and improved ability to manage for the 

consequences of climate change. Overall, this dissertation demonstrates how complex patterns of 

stream drying and connectivity vary predictably in relation to network scale, regional scale, and 

global scale processes.  
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INTRODUCTION 

 

Nonperennial streams are societally and ecologically important  

Nonperennial streams, or streams that stop flowing at some point in time and space 

(Busch et al. 2020), are widespread and abundant (Datry et al. 2014). Recent estimates suggest 

that more than half of streams worldwide are nonperennial, existing in all continents, ecoregions, 

and climate types (Messager et al., 2021). Nonperennial streams, like all rivers and streams, 

provide important ecosystem services. These services include provisioning (i.e. freshwater, 

food), regulating (i.e. climate regulation, water purification), supporting (i.e. nutrient cycling), 

and cultural (i.e. recreation) services. The ecosystem services provided by nonperennial streams 

differ from those provided by perennial streams in two key ways. First, in many cases, 

nonperennial streams are located in the headwaters of stream networks. Due to the 

unidirectionality of streamflow, this means that nonperennial streams have a major impact on the 

entirety of the stream network (Datry et al. 2023). The services provided by these nonperennial 

headwaters impact downstream reaches. For example, rewetting events in headwaters can send 

pulses of nutrients downstream, affecting downstream water quality and ecosystem functioning 

(Hladyz et al. 2011, Leigh et al. 2010). Second, ecosystem services are likely enhanced when 

nonperennial and perennial reaches intersect, due to the resulting diversity and heterogeneity of 

environmental conditions (Koundouri et al. 2017). For example, certain species of fish thrive 

when they have access to both nonperennial and perennial streams (Wigington et al. 2006).  

Despite their prevalence and importance, nonperennial streams are understudied. 

Historically, nonperennial streams have been overlooked by researchers and, therefore, are not 

integrated into stream ecosystem theory (Allen et al. 2020). The limited research on nonperennial 

streams can be attributed to practical challenges associated with studying streams that may not 

flow reliably, the bias of gauge networks toward large and perennial rivers (Zimmer et al. 2020), 

and the omission of nonperennial streams from common conceptual models of river ecosystems 

(Datry et al. 2014, Allen et al. 2020). As a result, we have a limited understanding of the 

structure and function of nonperennial streams. Information such as current patterns of stream 

drying and the impacts of drying on important ecosystem attributes, including habitat availability 

and connectivity, is largely lacking (Datry et al. 2017).  
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Connectivity is dynamic and consequential in nonperennial stream networks 

Hydrological connectivity is defined as the “water-mediated transfer of matter, energy, or 

organisms within and/or between elements of the hydrologic cycle” (Pringle 2001). Hydrologic 

connections are integral to physical, chemical, and biological processes. An extensive body of 

literature is dedicated to connectivity in perennial streams, especially human alteration of 

connectivity and its consequences. The construction of barriers, such as dams or culverts, 

prevents or alters the movement of organisms, nutrients, and sediments through the stream 

network. Impacts of barriers vary based on permeability, permanence, location, and abundance of 

those barriers (Fuller et al. 2015).  

Effects of fragmentation on ecological populations and communities can alter 

biodiversity. At the population level, fragmentation has been associated with reduced gene flow 

(Junge et al. 2014), decreased population size (Bender et al. 1998, Wiegand et al. 2005), and 

increased extinction risk (Campbell Grant 2011). Fragmentation may also inhibit re-colonization 

and prevent populations from recovering after a disturbance event (Magoulick and Kobza 2003). 

At the community level, fragmentation has been shown to reduce species richness (Perkin and 

Gido 2012) and contribute to spatial shifts in fish communities (Perkin et al. 2015a). Similar 

patterns have been documented in freshwater mussel assemblages (Hamstead et al. 2019) and 

other macroinvertebrate communities (Liu et al. 2018). Alternatively, fragmentation can 

fundamentally alter river reaches and create new habitats, such as through the creation of 

reservoirs upstream of dams. This process can increase habitat heterogeneity, which itself can 

lead to increased biodiversity (Fuller et al. 2015).  

Connectivity in nonperennial streams is dynamic. In nonperennial stream networks, dry 

stream reaches act as barriers. Connectivity is therefore driven by patterns of when and where 

streams flow. As a result, connectivity in nonperennial stream networks tends to be more variable 

than in perennial streams (Boulton et al. 2017). Temporal and spatial patterns of drying have 

important consequences. Variations in flow and connectivity have a strong impact on water 

quality and physico-chemistry (Gómez et al. 2017). Flow, connectivity, and physico-chemistry 

influence biota and ecological processes within these systems. When stream segments dry, 

habitat is also lost or fragmented (Perkin et al. 2015b, Crabot et al. 2020). As a result, the 

biodiversity of nonperennial stream ecosystems tends to be spatially and temporally variable 

(Stubbington et al. 2017). 
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Connectivity is driven by processes that act at multiple spatial scales 

Streamflow regime is closely linked to global climate, especially precipitation and 

temperature. As the global climate changes, flow regimes around the world will also change. In 

the continental United States, changes in flow intermittency are already occurring due to global-

scale climate change. General trends indicate increased duration of drying in nonperennial 

streams in the past several decades (Zipper et al. 2021a). Changes in stream drying patterns are 

likely to continue under future climates (Chiu et al. 2017).  How flow regimes change as a result 

of climate change will vary based on interactions of global climate with regional and local 

factors.  

Important regional factors that influence flow regimes include topology, geology, and 

land cover (Costigan et al. 2016). Watershed shape can impact flow permanence, with steeper 

slopes more likely to have intermittent flows. Slope can influence relationships between stream 

water and groundwater. Reaches that drive groundwater to the river tend to have more permanent 

flows, whereas those that lose water to the aquifer are more likely to dry (Mayer and Naman 

2011). More permeable soils contribute to faster movement of water, which can contribute to 

more rapid wetting and drying cycles (Shanafield et al. 2021). Alternatively, permeability can be 

associated with increased storage and consequently increased flow permanence. Land cover is 

related to vegetation cover, which affects evapotranspiration rates. Streams in biomes like 

deserts, grasslands, and tundras are more likely to be intermittent (Poff 1996, Dodds 1997). 

Impervious surfaces associated with urban land uses reduce infiltration, and ultimately reduce 

groundwater recharge. This can contribute to increasing intermittence and more rapid wetting 

and drying cycles. More localized factors, such as the location and management of dams and 

human water use, also exert a strong influence on flow regimes (Smakhtin 2001). As a result, 

shifts in drying vary at regional (Beaufort et al. 2018, Allen et al. 2019), continental (Zipper et al. 

2021b), and global scales (Sauquet et al. 2021).  

 

Dissertation overview  

The goal of this research is to improve understanding of the patterns and drivers of 

stream drying and connectivity in nonperennial stream networks. This research combines 

analyses that consider drivers of connectivity that act across spatial scales. In Chapter One, I ask 

how stream drying and connectivity patterns will change in the Blue River, Oklahoma under 
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multiple future climate scenarios. In Chapter Two, I investigate how stream network properties 

influence network connectivity. In Chapter Three, I analyze how interactions between regional-

scale aridity and global-scale climate change influence changes in stream network connectivity.  

Finally, I provide a synthesis and discussion of findings from Chapters One, Two, and Three.  

 Chapter One was carried out with co-authors Shang Gao, Darin Kopp, Yang Hong, 

Daniel Allen, and Thomas Neeson. Chapters Two and Three were conducted with co-authors 

Shang Gao, Daniel Allen, and Thomas Neeson. 
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CHAPTER ONE  
SMALL INCREASES IN STREAM DRYING CAN DRAMATICALLY REDUCE 

ECOSYSTEM CONNECTIVITY 
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ABSTRACT 

 Habitat fragmentation drives biodiversity loss in rivers around the world. Although the 

effects of anthropogenic barriers on river connectivity are well known, there has been little 

research on the ways in which stream drying may alter connections among habitats and 

resources. Given that stream drying is increasing in many regions, there is a pressing need to 

understand the effects of drying on habitat fragmentation. Here, we quantify spatiotemporal 

drying patterns under current and future climate scenarios in the Upper Blue River Basin, 

Oklahoma. We used a hydrologic model to simulate daily streamflow for nine climate scenarios. 

For each scenario, we calculated metrics of streamflow temporal continuity (dry days, dry 

periods, and dry period duration) and spatial connectivity (wetted length, number of dry stream 

fragments, length of dry stream fragments, and dendritic connectivity index) from simulated 

daily streamflow. We found that stream drying is likely to increase in all future climate scenarios 

and that increases in stream drying reduce connectivity. However, the effects of stream drying on 

connectivity were highly nonlinear. Specifically, we observed a threshold around which a small 

increase in stream drying led to a rapid drop in connectivity. We also found that the greatest 

increases in stream drying were not associated with the highest emissions scenarios, 

underscoring the complex linkages among climate, water availability, and connectivity. Given 

that connectivity is essential to ecosystem structure and function, we discuss water management 

strategies informed by impacts of stream drying. 
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INTRODUCTION  

Drying has an important, but understudied, role in stream ecosystems. Recent estimates 

suggest that more than half of streams worldwide are nonperennial (i.e., they stop flowing at 

some point in time and space; Busch et al., 2020; Datry et al., 2014; Messager et al., 2021). 

Nonperennial streams exist in all continents, ecoregions, and climate types (Messager et al., 

2021). Despite their prevalence, nonperennial streams have historically received less attention 

from researchers. The relative lack of research on nonperennial streams can be attributed to 

practical challenges associated with studying streams that may not flow reliably, the bias of 

gauge networks toward large and perennial rivers (Zimmer et al. 2020), and the omission of 

nonperennial streams from common conceptual models of river ecosystems (Datry et al. 2014; 

Allen et al. 2020). The paucity of research on nonperennial streams has led to a poor 

understanding of their structure and function and, therefore, the biological communities that rely 

on them. 

Widespread changes in stream drying patterns are already being observed. Flow regimes, 

and specifically stream drying, are closely linked to precipitation and temperature. As a result, 

shifts in drying vary geographically at regional (Beaufort et al. 2018; Allen et al. 2019), 

continental (Zipper et al. 2021), and global scales (Sauquet et al. 2021). For example, decreased 

drying has been identified in the Northern Plains region of the United States (Sauquet et al. 

2021), while increased drying has been widespread in the southern continental United States 

(Zipper et al. 2021) and throughout Australia (Sauquet et al. 2021). Changes in stream drying 

patterns are likely to continue under future climates (Chiu et al. 2017).   

Temporal and spatial patterns of drying have important consequences. Increases in stream 

drying are associated with reductions in biodiversity of macroinvertebrates (Bogan et al. 2013; 

Leigh and Datry 2017), fish (Perkin et al. 2015a), and algae (Tornés and Ruhí 2013). The 

decreases in biodiversity that result from drying have been attributed to loss of habitat (Bogan et 

al. 2013), loss of food resources (Arias-Real et al. 2021), interruptions in the reproductive cycle 

(Perkin et al. 2015b), and elimination of disturbance sensitive taxa (Tornés and Ruhí 2013; 

Stubbington et al. 2017). Further, the spatial arrangement of wet and dry river reaches can have 

important consequences for the hydrological connectivity of streams and rivers, otherwise 

referred to as riverine connectivity (Freeman et al. 2007) or ecological connectivity (Allan et al. 

2021). Longitudinal hydrological connectivity (connectivity in the upstream-downstream 
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dimension; here-after ‘connectivity’; Ward 1989) impacts geomorphology, hydrology, water 

chemistry, and ecology (Boulton et al. 2017). 

Despite increased research on nonperennial streams (Datry et al. 2011) and an extensive 

body of literature dedicated to connectivity, little research has been conducted examining the 

impacts of changes in stream drying patterns on connectivity. Human alteration of connectivity 

and its consequences are well documented. The construction of barriers, such as dams or 

culverts, prevents or alters the movement of organisms, nutrients, and sediments through the 

stream network. Impacts of barriers vary based on permeability, permanence, location, and 

abundance (Fuller et al. 2015). Habitat fragmentation in streams is associated with decreased 

biodiversity (Liermann et al. 2012), decreased population size (Perkin et al. 2015b), decreased 

population connectivity (Junge et al. 2014), and reduced dispersal ability (Perkin et al. 2013). In 

nonperennial stream networks, dry stream reaches act as barriers. Although some degree of 

fragmentation is natural in nonperennial stream systems, increased fragmentation resulting from 

increased drying is expected to have widespread consequences. However, little research is 

dedicated to understanding these consequences. Jaeger et al. (2014) showed that reduced 

connectivity resulting from increased stream drying will threaten movement and reproduction 

abilities of fishes in a naturally nonperennial watershed located in the southwest United States. 

More research is needed to examine how consequences of reduced connectivity in nonperennial 

stream networks vary geographically and among taxa. Understanding patterns of stream drying, 

how they may change, and associated impacts on connectivity is critical for effective ecosystem 

management (Allen et al. 2019). 

Here, we investigated how changes in spatiotemporal patterns of stream drying may 

impact connectivity under future climate scenarios in the Upper Blue River Basin of Oklahoma. 

We used a hydrologic model to predict changes in stream drying under nine climate scenarios. 

Using several metrics to quantify stream drying, we compared streamflow continuity and 

connectivity in current and future climate scenarios.  

 

METHODS 

Study location  

The Upper Blue River Basin is located in southern Oklahoma, USA (Figure 1-1). The 

region is characterized by temperature and precipitation extremes, resulting in periods of drought 
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and flood (Dodds et al. 2004). The average temperature is 16.9°C, with an average of 73 days per 

year above 32.2°C. Average annual rainfall is 1080 mm, with monthly rainfall ranging 55 mm in 

January to 141 mm in May (Oklahoma Climatological Survey n.d.). Land cover in the basin is 

predominantly grassland and pasture/hay, with deciduous forest bordering the stream network 

(Dewitz 2019). The basin is hilly, with elevation ranging from 180 to 409 m above sea level 

(Figure S1-1; Gesch et al. 2018). The drainage area of the Upper Blue River Basin is 483 km2. 

Perennial reaches of the river are sustained by the Arbuckle-Simpson aquifer. Portions of the 

basin are nonperennial, with temporal and spatial distribution of these reaches dependent on 

groundwater level and meteorology (Fabian 2008). The probability of water occurrence is 

greatest in the main stems with drying tending to occur in the headwaters (Figures S1-2 and S1-

3; Gao et al. 2021). Central Oklahoma is expected to experience increased temperatures and 

decreased precipitation due to climate change (Zhang and Nearing 2005) which will make the 

basin increasingly vulnerable to drought (The Choctaw and Chickasaw Nations et al. 2017; 

Bertrand and McPherson 2018) and may potentially alter stream drying patterns.  

The Upper Blue River Basin is a good model system for studying the effects of stream 

drying on connectivity because it is unregulated. As a result, changes in streamflow and drying 

are due solely to changes in water availability rather than water storage and release decisions by 

reservoir managers. Human consumption of water from the Arbuckle-Simpson aquifer is 

primarily used for municipal and industrial purposes. Recent periods of drought have depleted 

surface water resources in the region. High water demand for residential and agricultural water 

usage has led to water emergencies and unprecedented measures to maintain water availability, 

including the establishment of connections to other surface and groundwater sources (The 

Choctaw and Chickasaw Nations et al. 2017). 

 

Hydrologic modeling 

We used the Couple Routing and Excess Storage (CREST) model to simulate current and 

future streamflow. CREST is a distributed hydrologic model that simulates surface and 

subsurface flow (Wang et al. 2011). The model setup and parameterization for the Upper Blue 

River Basin were previously established in Gao et al. (2021), where extensive calibration and 

validation work was conducted using stream gauges, satellite imagery, and in situ water status 

loggers. Calibration and validation focused on capturing the low flow conditions and stream 
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intermittency in numerous small headwater streams. As a result, this model has been shown to be 

capable of estimating daily water occurrence at various stream orders in the study area. 

Outputs were simulated at a 10 m grid spatial resolution at a daily timestep. Using 10 m 

elevation grids, we delineated 2510 stream reaches on a confluence-to-confluence basis. Reaches 

had a mean length of 456.7 m (SD = 352.1 m). Streamflow grids were spatially averaged over 

each reach to calculate mean daily flow. We then converted the daily streamflow to binary 

wet/dry status using 0 m3/day as the threshold. We modeled streamflow for the years 2010-2088. 

We considered output from 2010 to 2029 to represent current streamflow and output from 2060 

to 2079 to represent future streamflow for our analyses. 

 

Climate models 

We used statistically downscaled climate projections of daily temperature and 

precipitation as hydrologic model forcing data (Bertrand and McPherson 2019). Nine 

downscaled climate scenarios are available, which are the result of all combinations of three 

general circulation models (GCMs; CCSM4, MIROC5, and MPI_ESM_LR) and three 

representative concentration pathways (RCPs; 2.6, 4.5, and 8.5 W/m2). Using three GCMs 

allowed us to represent a range of uncertainty. For example, MIROC5 tends to predict warmer 

temperatures and moderate precipitation, MPI_ESM_LR tends to predict cooler temperatures 

and wet summers, and CCSM4 tends to predict moderate temperatures, wet winters, and dry 

summers (Bertrand and McPherson 2019). Together, these three GCMs captured a range of 

potential climate futures. The RCPs are scenarios of anthropogenic greenhouse gas emissions 

and changes in land cover. RCP 2.6 represents a scenario where the concentration of greenhouse 

gases reaches 490 ppm by the year 2100, RCP 4.5 stabilizes around 650 ppm by 2100, while 

RCP 8.5 represents a scenario where greenhouse gas concentration exceeds 1370 ppm by 2100 

(Moss et al. 2010). 

We used downscaled temperature and precipitation data from each of the above nine 

climate scenarios to force the hydrologic model, resulting in nine hydrologic models. To produce 

the forcing input for the CREST model, the daily maximum and minimum temperature grids in 

the nine GCMs were converted to potential evapotranspiration (PET) using the scheme in Oudin 

et al. (2005). We then resampled the 0.125° precipitation and PET grids at 10 m resolution using 
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bilinear interpolation. We analyzed each of the nine hydrologic models for patterns of spatial and 

temporal drying. 

 

Streamflow temporal continuity   

To understand the temporal continuity of streamflow within each reach, we used three 

metrics. Following Jaeger et al. (2014), we calculated the annual number of dry days, annual 

number of dry periods, and duration of dry periods for each stream reach. These metrics are 

useful for quantifying habitat loss for aquatic organisms, especially those with limited dispersal 

abilities (Matthews and Marsh‐Matthews 2003; Vaughn et al. 2015). For each metric, we looked 

at the difference between the current (2010-2029) and future (2060-2079) study periods for each 

of the nine climate scenarios. 

 

Streamflow spatial connectivity  

To calculate the extent of stream drying across the river network, we calculated the 

percent of the network that was wet, the number of dry fragments, and the average length of dry 

fragments. Fragments were defined as consecutive reaches of the stream that had the same wet or 

dry status. These metrics are useful for understanding patterns of connectivity through space, 

which can have an important influence on ecosystem structure and function. For example, 

connectivity has been shown to impact macroinvertebrate and fish diversity (Datry et al. 2007; 

Beesley and Prince 2010). 

To calculate how stream drying might change connectivity among wet reaches, we used a 

modified version of the dendritic connectivity index (DCI). The DCI was originally developed to 

measure the impact of point barriers (e.g., road culverts and dams) on fish passability (Cote et al. 

2009). We used a modified version of the original formulation in which we consider dry stream 

reaches to be barriers. For all stream reaches i and j, DCI was calculated as: 

𝐷𝐷𝐷𝐷𝐷𝐷 = ��𝑐𝑐𝑖𝑖𝑖𝑖
𝑙𝑙𝑖𝑖
𝐿𝐿
𝑙𝑙𝑖𝑖
𝐿𝐿
∗ 100

𝑛𝑛

𝑖𝑖=1

𝑛𝑛

𝑖𝑖=1

 

where cij is a Boolean variable that takes the value 1 if reach i is connected to reach j, or 0 if not. 

Two reaches were considered connected if there was a path between them made entirely of wet 

reaches. The lengths of stream reaches i and j are identified as li and lj, with L representing the 
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total length of the drainage network. We calculated these metrics at a daily timestep for current 

and future time periods in each of the nine climate scenarios.  

Finally, we examined DCI in relation to daily streamflow at the outlet of the watershed to 

understand how water quantity is related to fragmentation. We used t-tests to compare daily 

streamflow of the current and future time periods for each of the hydrologic models. We fit 

smoothing splines to model the relationship between DCI and streamflow using the cobs package 

(Ng and Maechler 2007, 2020) in R (v4.1.1; R Core Team 2021).  

 

RESULTS 

We found that the number of dry days is projected to increase in most future climate 

scenarios (Figure 1-2, S1-4). For eight of the nine climate scenarios, models showed an increase 

in the average number of dry days for the future period when values for all reaches within the 

watershed are averaged. However, changes in stream drying were highly variable across space, 

and the change in the average annual number of dry days for individual reaches ranged from -19 

days (MPI_ESM_LR and RCP 2.6) to 46 days (MPI_ESM_LR and RCP 8.5). Overall, larger 

increases in the number of dry days were associated with more extreme RCPs for GCMs 

MIROC5 and MPI_ESM_LR. 

We also found that while the number of dry periods varied among climate scenarios 

(Figures 1-3 and S1-5), dry periods were projected to become longer in most future climate 

scenarios (Figures 1-4, 1-5, and S1-6). Less clear relationships existed between RCPs and both 

the average annual number of dry periods and the average duration of dry periods (Figures 1-3 

and 1-4). Change in the average number of dry periods for an individual reach ranged from  

-2.45 periods (MIROC5 and RCP 4.5) to 2.65 periods (MPI_ESM_LR and RCP 2.6). Change in 

the average duration of dry periods for an individual reach ranged from -32.67 days (CCSM4 and 

RCP 8.5) to 60 days (CCSM4 and RCP 2.6). Four climate scenarios showed an increase in the 

average number of dry periods (Figures 1-3 and 1-5). Seven climate scenarios showed an 

average increase in the duration of dry periods (Figures 1-4 and 1-5). Two climate scenarios 

exhibited an increase in both the number of dry periods and the duration of dry periods. No 

climate scenarios had a decrease in both the number of dry periods and the duration of dry 

periods. 
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These changes in stream drying drove increases in habitat fragmentation in the Upper 

Blue River watershed in future climate scenarios (Figures 1-6, S1-7 – S1-15). Increases in the 

number of dry fragments and the average length of dry fragments were associated with decreases 

in connectivity metrics. Percent wetted length and DCI were correlated (r = 0.99, p < 0.05; 

Figure S1-16). Increases in stream drying and associated decreases in connectivity were 

especially evident during summer months.   

In all climate scenarios, small declines in daily streamflow could lead to large decreases 

in watershed connectivity. Modeled relationships between daily streamflow and connectivity for 

the study periods indicated the presence of a streamflow threshold around which small decreases 

in daily streamflow were associated with a dramatic decrease in connectivity (Figure 1-7). Away 

from this threshold, low streamflow values were consistently associated with low DCI values and 

high streamflow values were consistently associated with high DCI values. Additionally, daily 

streamflow values were lower in the future period than the current period in seven of the nine 

climate scenarios (p < 0.05; Figures 1-7, S1-17 – S1-24). 

 

DISCUSSION  

Future stream drying patterns 

Our analysis of streamflow continuity under nine future climate scenarios shows a trend 

of increased drying in the Upper Blue River Basin (Figures 1-2 and 1-5). Specifically, our 

findings tend to indicate prolonged dry periods in the future, observed in seven of the nine 

climate scenarios (Figure 1-4). Additionally, we found that the Upper Blue River Basin is 

projected to be more fragmented in future climate scenarios, especially during the summer 

months (Figure 1-6).  

There were clear trends in changes in drying patterns among the GCMs. All three 

hydrologic models driven by the MPI_ESM_LR (lower temperatures and wetter summers) 

temperature and precipitation data projected a decrease in the annual number of dry periods 

(Figure 1-3). The three hydrologic models driven by MIROC5 (warmer temperatures and 

moderate precipitation) projected an increase in the number of dry periods. Hydrologic models 

driven by CCSM4 (moderate temperatures, wet winters, and dry summers) represented more 

moderate scenarios, with change in annual number of dry days projected to be near zero. The 

mean number of dry days of models driven by CCSM4 decreased for RCPs 2.6 and 4.5 and 
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increased for RCP 8.5. Similarly, we also observed patterns between the projected change in 

length of dry periods and GCMs (Figure 1-4). All hydrologic models driven by CCSM4 and 

MPI_ESM_LR data projected an increase in the duration of dry periods. Hydrologic models 

driven MIROC5 projected an increase in the duration of dry periods for RCP 2.6 and decreases 

in length of dry periods for RCPs 4.5 and 8.5. Changes in drying predominately occurred in the 

headwaters (Figures 1-2 – 1-4). 

Patterns in connectivity were also evident among the GCMs. The CCSM4 GCM is 

characterized by dry summers. This tendency was evident in the connectivity metrics for the 

hydrologic models. Hydrologic models driven by CCSM4 climate data tended to have larger 

differences in connectivity metrics between current and future time periods, where future time 

periods were less connected (Figures 1-6, S1-7, and S1-8). Models driven by MPI_ESM_LR data 

showed similar patterns of decreased connectivity, especially for the more extreme RCPs 

(Figures S1-12 – S1-14). Models that were driven by MIROC5 data followed a similar pattern 

during early summer months. However, during the late summer months, connectivity tended to 

be higher during the future time period (Figures S1-9 – S1-11). Across models, there was a 

tendency for longer dry fragments during the future scenario (Figure S1-15). 

Modeled differences in drying patterns between current and future climate scenarios were 

driven solely by changes in precipitation and temperature. Changes in precipitation affect 

watershed inputs (i.e., water entering the watershed) while changes in temperature directly affect 

evapotranspiration and thus watershed output. All else held constant, increased 

evapotranspiration will result in decreased streamflow. Evapotranspiration has the potential to 

change due to factors that are not explicitly included in our hydrologic model. For example, land 

use change may alter vegetation composition and thus transpiration. Additionally, water use 

efficiency of plants has been shown to improve with increased atmospheric CO2 concentrations 

for individuals (Farquhar 1997), which has been associated with increased foliage in water 

limited regions (Donohue et al. 2013). The relationship between CO2 concentrations and 

evapotranspiration is not fully understood at the landscape scale. Despite the uncertainty 

associated with these factors, evapotranspiration in drylands is generally expected to increase 

with climate change (Huang et al. 2017). 

Streamflow in nonperennial streams is largely driven by precipitation. Surface flow can 

occur when the rate of rainfall exceeds the rate of infiltration into the soil (when the soil is 
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unsaturated) or when the soil becomes saturated (Shanafield et al. 2021). Thus, antecedent soil 

moisture conditions as well as interactions between the surface and subsurface can influence 

stream drying patterns. Climate change may alter soil conditions, and soil conditions may in turn 

alter surface-subsurface interactions, ultimately influencing stream drying patterns. 

In addition to surface-subsurface interactions, there are also important relationships 

between streamflow and the Arbuckle-Simpson aquifer that occur in the Upper Blue River Basin. 

Groundwater was not explicitly included in our hydrologic model. However, groundwater 

interactions likely play an important role in determining stream drying patterns. Groundwater 

outflow, called baseflow, contributes to streamflow. Increasingly dry conditions resulting from 

climate change and human extraction of groundwater have the potential to reduce groundwater 

levels. Groundwater demand in this region is largely driven by irrigation (Oklahoma Water 

Resources Board 2020). Demand for groundwater increases during periods of low precipitation 

to sustain crops. Additionally, during a recent drought in the Upper Blue River Basin, at least one 

municipality was forced to drill a well to maintain sufficient supply (The Choctaw and 

Chickasaw Nations et al. 2017). Increased demand for groundwater could reduce groundwater 

contributions to streamflow, thereby altering patterns of stream drying. 

We observed that connectivity can decrease drastically with only small changes in daily 

streamflow. The slope of the modeled relationship between streamflow and DCI indicates the 

presence of a threshold in the Upper Blue River Basin between daily streamflow values of 105 

and 106 m3/day. The watershed tended to be well connected when the daily streamflow was 

above this threshold and more poorly connected when the daily streamflow was below the 

threshold. In some future scenarios, the threshold shifted so that higher daily streamflow values 

are required to maintain equivalent watershed connectivity. Simultaneously, daily streamflow 

values were, on average, lower in the future period than in the current period. The drying that 

takes place in the modeled future scenarios resulted in daily streamflow values that were more 

frequently below the threshold, which resulted in a system that was more fragmented more often. 

While we observed this general trend, we also observed variability in DCI values at the same or 

similar streamflow values.  

Stream drying thresholds have been observed in other watersheds. For example, Ward et 

al. (2018) documented threshold behavior exhibited by network expansion and contraction in a 

watershed in the Pacific Northwest, USA. In this watershed, during high streamflow conditions, 
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the wetted length and connectivity are nearly constant. When streamflow drops below a 

threshold, the wetted length and connectivity are more variable, expanding and contracting in 

response to precipitation. Threshold behavior in mountainous watersheds has been attributed to 

interactions between geology and precipitation, and is thus sensitive to climate change 

(Prancevic and Kirchner 2019; Ward et al. 2020). Understanding controls on the connectivity 

threshold in the Upper Blue River Basin, a dryland watershed, has critical management 

implications (see Implications for ecology and management). 

While drying patterns differed among the nine scenarios, drying increased by some 

metric in every scenario. The nine hydrologic models here represent a range of potential future 

scenarios. This indicates that increases in spatial and temporal drying will likely occur in the 

Upper Blue River Basin as a result of climate change. How changes in drying patterns manifest, 

whether via more frequent dry periods, longer dry periods, or a more fragmented watershed, has 

ecological and management consequences. 

 

Implications for ecology and management 

A projected increase in the duration of dry periods can affect stream ecosystems in many 

ways. It has been hypothesized that prolonged dry periods can lead to the development of 

hydrophobic soils, contributing to increased surface flow during precipitation events (Dahm and 

Molles 1992; Molles Jr. et al. 1992). By this logic, increased dry periods in the Upper Blue River 

Basin could contribute to a flashier flow regime with more dynamic physicochemical processes. 

Rapid rewetting after long periods of zero flow has been associated with high rates of 

metabolism which quickly results in hypoxic events (Hladyz et al. 2011; Whitworth et al. 2012). 

Prolonged drying can directly affect the ecological composition of streams. Many 

organisms have strategies of resistance and resilience to stream drying, but longer dry periods 

may be detrimental (Perkin et al. 2015; Vaughn 1997). Bacteria community composition in a 

nonperennial stream has been shown to vary temporally based on physical and chemical 

processes, with richness and diversity declining during drying phases (Rees et al. 2006; Portillo 

et al. 2012; Febria et al. 2012; Timoner et al. 2014; Freixa et al. 2016). Longer drying phases can 

eliminate sensitive algae species, reducing immediate and long-term biodiversity, as there are 

fewer species able to recolonize when flow returns (Tornés and Ruhí 2013). The same is true for 

aquatic macrophytes (Brock and Casanova 1997). For aquatic invertebrate communities, 
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prolonged dry periods can cause diversity to decline as specialist taxa dominate (Datry et al. 

2014). Some invertebrates stabilize substrate and prevent erosion, an ecosystem service that may 

be lost if species are eradicated due to increased drying (Johnson et al. 2009, Vaughn 2018). 

Prolonged drying can also act as a bottle neck, decreasing genetic diversity (Zickovich and 

Bohonak 2007). In fishes, prolonged dry periods may temporarily reduce diversity. However, 

populations that are adapted to frequent droughts may recover relatively quickly following 

rewetting events (Matthews and Marsh‐Matthews 2003).  

In climate scenarios where dry periods decreased in length, we observed an increase in 

the number of dry periods (Figure 1-5). An increase in the number of dry periods indicates more 

frequent switching between wet and dry status. The effect of the drying and rewetting cycle in 

nonperennial streams on physicochemical processes is highly variable, which contributes to 

variability in these processes even throughout reaches of the same watershed (Gómez et al. 

2017). As a result, water quality can be highly variable, both spatially and temporally. For 

example, a rewetting event can transport high concentrations of detritus and nutrients 

downstream causing rapid changes in water quality (Datry et al. 2014). Flow pulses may then 

provide nutrients and resources, stimulating primary production and consumers (Corti and Datry 

2012; Rosado et al. 2015). An increase in the number of transitions between flow status may alter 

diversity of invertebrate communities (Bêche et al. 2006). More frequent drying is also 

consistently associated with reductions in food chain length, typically due to the loss of top 

predators (Closs and Lake 1994; Sabo et al. 2010; Woodward et al; 2012, McHugh et al. 2015).  

Our results indicated that that Upper Blue River Basin will become more fragmented in 

the future. The increase in fragmentation was especially pronounced in the summer months 

(June–August). Stream network fragmentation can have especially large impacts on species that 

require the presence of water for dispersal. For example, dry stream reaches act as barriers to fish 

movement. Perkin and Gido (2012) showed that reduced species richness of Great Plains fish 

communities may result from fragmented stream networks. Fragmentation can contribute to 

spatial shifts in fish communities (Perkin et al. 2015a) and local extirpations throughout the 

Great Plains (Perkin and Gido 2011). Because fish ecology is driven by source-sink dynamics in 

nonperennial streams and fragmentation prevents recolonization, increased drying can inhibit the 

ability of fish communities to recover following disturbance events (Magoulick and Kobza 

2003). Timing of drying events can also have implications for ecosystem recovery (Heim et al. 
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2016). In fragmented systems, fish may no longer be able to migrate to cooler waters during 

summer months (Schaefer 2001). If drying occurs during spawning periods, spawning habitat 

may be lost or inaccessible, which may have potential long-term effects on ecosystem structure 

(Detenbeck et al. 1992). Most riverine fish disperse moderate distances (on the order of 10 km), 

though some species and individuals can move much further, exceeding 1000 km (Comte and 

Olden 2018). Individuals that disperse long distances can have a disproportionate impact on 

populations, as they may be more likely to contribute to reestablishment following disturbances 

and the maintenance of genetic connectivity (Trakhtenbrot et al. 2005). The Upper Blue River 

Basin drains an area of approximately 400 km2. Thus, given the degree of increased 

fragmentation modeled for the Upper Blue River Basin under future climate scenarios, even 

species that routinely disperse only short distances may be affected.  

Species with minimal dispersal abilities are likely to also be affected by increased 

fragmentation. Although freshwater mussels themselves are largely sedentary, they rely on host 

fish for reproduction and dispersal. The Blue River was historically known for its rich mussel 

assemblages, though they have now been extirpated from much of the river (Vaughn 1997). This 

decline is likely linked to factors including habitat degradation, flow regime alteration, heat 

stress, and restricted movement of host fish (Vaughn et al. 2015). Mussel abundance can be 

directly affected by stream drying (Gough et al. 2012), with secondary stressors, such as high 

water temperatures and high oxygen demand, also having detrimental impacts (Haag and Warren 

Jr. 2008). 

 Our analysis of projected stream drying resulting from future climate scenarios indicates 

the importance of water management decisions on watershed integrity. Importantly, we observed 

that small decreases in daily streamflow can drastically reduce connectivity. This suggests that 

even small alterations of hydrologic regimes can have significant ecological consequences. Water 

management strategies that aim to incentivize reductions in water usage (Zamani Sabzi et al., 

2019) or set targets for environmental flows (Wineland et al. 2021a; Sandoval-Solis et al. 2022) 

should carefully consider the potential for nonlinear impacts of stream drying. In our study, 

stream drying is associated solely with climatic changes, and water managers should seek to 

identify water sustainability strategies that are robust to future climate uncertainty (Wineland et 

al. 2021b; Fovargue et al. 2021; Farzaneh et al. 2021). Independent of climate, humans can 

exacerbate drying further via consumptive water use and land use change (Bond et al. 2008; Jung 
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and Kim 2017), raising the potential for hotspots of declining water availability due to 

groundwater pumping (Perkin et al. 2017) or other societal uses (Guo et al. 2019; Zamani Sabzi 

et al. 2019a). As decisions are made about watershed management, it is important to be aware 

that small changes can have big impacts.  

 

Conclusion 

In our analysis of the Upper Blue River Basin, drying increased, by some metric, in all 

climate scenarios. The climate models selected to drive the hydrologic models represent a wide 

range of temperature and precipitation variability. Of the nine hydrologic models, the RCPs 

associated with lower carbon emissions were not clearly associated with smaller increases in 

stream drying, highlighting the complex challenges associated with predicting the impacts of 

climate change on connectivity. Further, we have shown that relatively small increases in drying 

can be associated with a significant loss of connectivity. Given that small hydrological alterations 

can have major cascading effects in nonperennial streams, our work underscores the need for 

careful consideration of the impacts of water management strategies on connectivity. 
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FIGURES 

 

Figure 1-1. The study region of the Upper Blue River Basin in Oklahoma, USA.  
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Figure 1-2. Change in the average annual number of dry days from the current (2010-2029) to 
future (2060-2079) study period for the nine modeled climate scenarios. Values are calculated 
for each of 2510 stream reaches. 
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Figure 1-3. Change in the average annual number of dry periods from the current (2010-2029) to 
future (2060-2079) study period for the nine modeled climate scenarios. Values are calculated 
for each of 2510 stream reaches. 
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Figure 1-4. Change in the average duration of dry periods from the current (2010-2029) to future 
(2060-2079) study period for the nine modeled climate scenarios. Duration is measured in 
number of days. Values are calculated for each of 2510 stream reaches. 
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Figure 1-5. Mean and standard deviations of the change in annual number of dry periods and the 
change in duration of dry periods. Values are calculated as the differences between current 
(2010-2029) and future (2060-2079) study periods for the nine climate scenarios. Points 
represent the mean of the 2510 stream reach values shown in Figures 1-3 and 1-4. 
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Figure 1-6. Daily percent wetted length (A), number of dry fragments (B), average length of dry 
fragments (C), and dendritic connectivity index (DCI; D) for current (2010-2029) and future 
(2060-2079) periods from hydrologic model driven by CCSM4 GCM for RCP 4.5. Plots show 
mean (line) and IQR (shaded). 
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Figure 1-7. Relationship between watershed daily streamflow (m3/day) and dendritic 
connectivity index (DCI) for the hydrologic model driven by CCSM4 GCM for RCP 4.5 for 
current and future study periods. Points represent days and solid lines represent relationship 
modeled using smoothing splines. Dashed lines represent mean daily streamflow for current and 
future study periods. 
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CHAPTER TWO  

IMPACTS OF STREAM DRYING DEPEND ON STREAM NETWORK SIZE AND 
LOCATION OF DRYING 
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ABSTRACT 

Stream drying is increasing globally, with widespread impacts on stream ecosystems. 

Here, we investigated how the impacts of drying on stream ecosystem connectivity might depend 

on stream network size and the location of drying within the stream network. Using eleven 

stream networks from across the United States, we simulated drying scenarios in which we 

varied the location and spatial extent of drying. We found that the rate of connectivity loss varied 

with stream network size, such that larger stream networks lost connectivity more rapidly than 

smaller stream networks. We also found that the rate of connectivity loss varied with the location 

of drying. When drying occurred in the mainstem, even small amounts of drying resulted in rapid 

losses in ecosystem connectivity. When drying occurred in headwater reaches, small amounts of 

drying had little impact on connectivity. Beyond a certain threshold, however, connectivity 

declined rapidly with further increases in drying. Given trends in stream drying worldwide, our 

findings underscore the need for managers to be particularly vigilant about fragmentation when 

managing at large spatial scales and when stream drying occurs in mainstem reaches.   
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INTRODUCTION 

Stream drying occurs in more than half the world’s streams (Messager et al. 2021) and 

flow intermittency is increasing in many places. Drying duration and extent are increasing in 

naturally nonperennial streams, while many formerly perennial streams are now becoming 

intermittent (Larned et al. 2010, Zipper et al. 2021). These changes are due to human impacts on 

climate, land use (Zipper et al. 2021), and consumption (Datry et al. 2014). The timing and 

location of stream drying within a stream network can alter habitat fragmentation and 

connectivity, a key structural property of that network. 

Structural properties of stream networks (e.g., network connectivity) can exert strong 

control on spatial patterns of biodiversity. Stream network properties such as size, complexity, 

centrality, and drainage density can influence the flow regime (Pallard et al. 2009, Godsey and 

Kirchner 2014), habitat heterogeneity (Benda et al. 2004), primary production (Istvánovics et al. 

2014), movement of organisms (Brown and Swan 2010), and ecosystem services (Helton et al. 

2018, Karki et al. 2021). Each of these have direct and indirect impacts on biodiversity patterns 

(Poff 1997, Compin and Céréghino 2007, Chaput-Bardy et al. 2009, Dias et al. 2013, St. Pierre 

and Kovalenko 2014, Bernhardt et al. 2018, He et al. 2020). Alteration of these structural 

properties by stream drying or other disturbances can therefore have strong effects on 

biodiversity and ecosystem services (Neeson et al. 2011, Perkin et al. 2013). 

In nonperennial stream networks, connectivity is an especially consequential structural 

property. The absence of connectivity (i.e., fragmentation) prevents the movement of matter, 

energy, and organisms (Boulton et al. 2017). Communities in nonperennial stream networks are 

frequently subjected to connectivity loss due to drying in stream reaches, which can lead to 

threats to population persistence (Jaeger et al. 2014), shifts in species richness (Matthews and 

Robison 1998), and changes in community composition (Perkin and Gido 2012). Structural 

properties of stream networks can also interact, having ecological consequences. For example, 

stream network topology mediates how ecological communities respond to connectivity loss. 

Metacommunity modeling studies have shown that the response of local species richness to 

connectivity loss depends on whole network topology and the location of connectivity loss (Lee 

et al. 2022) and that loss of connectivity decreases community recovery following disturbance 

events (Jacquet et al. 2022).  
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In nonperennial streams, connectivity is dependent on when and where flow occurs. Flow 

occurrence reflects external forcings and internal processes (Shanafield et al. 2021). Important 

external forcings are climate (Poff et al. 1997, Malish et al. 2023), geology (Mayer and Naman 

2011), vegetation (Schreiner-McGraw et al. 2020), and human impacts (Smakhtin 2001). Internal 

processes that can affect connectivity include streamflow generation, stream water loss, and 

spatio-temporal variability in flow (Shanafield et al. 2021). The variability of where and when 

flow occurs in nonperennial streams results in networks that differ in spatio-temporal patterns of 

connectivity. As a result, the spatial location of drying varies widely among watersheds. In some 

watersheds, drying occurs primarily in the headwaters (e.g. Sagehen Creek, CA, USA; Godsey 

and Kirchner 2014) and downstream flow is sustained by groundwater inputs (Lake 2003). In 

other basins, drying occurs in the mainstem. This often is found where headwaters are associated 

with permanent sources (Jaeger and Olden 2012), where downstream infiltration losses exceed 

inflows (Datry 2012), or where water loss is driven by human overconsumption throughout the 

watershed (e.g., the Colorado River and the Rio Grande River, USA).  

Here, we investigated how the impacts of stream drying on ecosystem connectivity might 

depend on stream network size and the location of drying within the network. To do this, we used 

eleven stream networks of varying size from across the continental United States, and simulated 

drying scenarios in which we varied the location and spatial extent of drying. We hypothesized 

that rate of stream network connectivity loss is driven by 1) stream network size and 2) drying 

location. We expected connectivity to decline more rapidly in smaller stream networks than in 

larger stream networks because in smaller networks, an individual dry reach makes up a larger 

proportion of the total stream network. We expected connectivity to decline more rapidly when 

drying occurs in the mainstem than in the headwaters because mainstem reaches tend to be more 

centrally located within the watershed. Given wide variation in the observed extent and location 

of drying among basins, our aim was to better understand when and where stream drying may 

have the greatest impacts on ecosystem connectivity.   

 

METHODS 

Stream networks 

Eleven nonperennial stream networks were selected for this study (Figures 2-1 and S2-1). 

These networks were chosen because they experience stream drying and are minimally impacted 
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by urbanization and dams. We derived the stream networks from 10 m elevation grids using a 

threshold of drainage accumulation above 0.1 km2, with reaches delineated on a confluence-to-

confluence basis. Because in our models drying occurs at the reach scale, we hypothesized that 

the number of reaches in the network would be the most relevant measure of network size (e.g., 

rather than drainage area) for the purposes of our study. The stream networks range in size from 

43 to 2510 reaches (Table 2-1).  

 

Drying simulations  

We quantified the effects of drying in the stream networks using three simulation 

experiments (Figure 2-2). In a first experiment, to quantify how the rate of connectivity loss 

varies with stream network size, we used a Monte Carlo approach to simulate spatially random 

drying in the stream networks. At the start of each simulation, all stream reaches were classified 

as wet. We then randomly selected one reach and changed its status to dry. We repeated this 

process until no wet reaches remained. Network connectivity was calculated at each step. For 

each stream network, we carried out a total of 99 random drying simulations and reported the 

mean and variance in network connectivity across these 99 simulations.  

To quantify how the rate of connectivity loss varies with the location of drying, we 

performed two further experiments in which we simulated mainstem-first drying (experiment 2) 

and headwater-first drying (experiment 3) in the stream network (Figure 2-2). Both the 

mainstem-first and headwater-first drying scenarios were deterministic. In these two 

experiments, the order of drying was determined by the Strahler stream order of the reaches and 

reach length (Figure S2-2). Mainstem-first simulations selected reaches of the highest stream 

order to dry first. When multiple reaches were of the same stream order, the longest reach of that 

stream order was selected for drying. Headwater-first simulations represent the opposite of 

mainstem-first simulations, by selecting reaches of the lowest stream order to dry first and 

selecting the shortest reach when there were multiple reaches of the same stream order. Reaches 

were dried one at a time until no wet reaches remained. Network connectivity was calculated at 

each step. There were n steps in each simulation, where n is the number of stream reaches in a 

stream network. Because the location-based simulations were deterministic, each simulation was 

carried out once per stream network. 
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Reach contributions to connectivity 

To aid our interpretation of the drying simulations, we carried out an experiment to 

determine the contributions of individuals reaches to network connectivity (experiment 4). For 

each stream network, we iteratively dried each individual stream reach. At each iteration, we 

calculated network connectivity. This experiment provides information on the magnitude of the 

decrease in connectivity associated with drying in each individual stream reach.  

 

Connectivity 

To measure stream network connectivity, we used a modified version of the dendritic 

connectivity index (DCI). The DCI was originally developed to measure the impact of point 

barriers on fish passability (Cote et al. 2009) and is widely used to quantify ecosystem 

connectivity in river networks (Perkin et al. 2013, Edge et al. 2017, Flecker et al. 2022). In the 

modified version of the DCI, we consider dry stream reaches to act as physical barriers that 

block connectivity (Malish et al. 2023). For all stream reaches i and j, DCI was calculated as 

follows: 

𝐷𝐷𝐷𝐷𝐷𝐷 = ��𝑐𝑐𝑖𝑖𝑖𝑖
𝑙𝑙𝑖𝑖
𝐿𝐿
𝑙𝑙𝑖𝑖
𝐿𝐿
∗ 100

𝑛𝑛

𝑖𝑖=1

𝑛𝑛

𝑖𝑖=1

 

where cij is a Boolean variable that takes the value 1 if reach i is connected to reach j, or 0 if not. 

Two reaches were considered connected if there was a path between them made entirely of wet 

reaches. The lengths of stream reaches i and j are identified as li and lj, with L representing the 

total length of the drainage network. DCI can take values ranging from 100 (in the case of a fully 

connected network with no dry reaches) to 0. 

 

RESULTS 

From the random drying simulation experiment, we found that mean declines in 

ecosystem connectivity from stream drying were strongly related to river network size, such that 

the largest networks experienced the greatest losses in connectivity (Figure 2-3). When 5% of the 

reaches in the network were dry, for example, the mean DCI value for the largest watershed was 

nine times greater than the mean DCI value for the smallest watershed (Figure 2-3B). Across all 

watersheds there was a strong negative correlation between DCI and stream network size at this 

stage of drying (Figure 2-3C; r = -0.84, p = 0.001). When 15% of the reaches in the network 
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were dry, DCI in the largest watershed was 29 times greater than in the smallest watershed, and a 

strong negative correlation between DCI and stream network size remained (Figure 2-3C; r = -

0.71, p = 0.015). 

While mean declines in connectivity were related to network size, we also found that 

variability of connectivity loss differed among stream network sizes. Across 99 simulations in 

which stream drying was spatially random, the range of resulting DCI values for the smallest 

network was often an order of magnitude larger than the range of DCI values for the largest 

network (Figure 2-4A). When 5% of the reaches in the network were dry, the range of DCI 

values for the smallest watershed (DCI between 35.4 and 98.2) was four times greater than the 

range of DCI values for the largest watershed (DCI between 3.4 and 19.2; Figure 2-4B). Across 

all watersheds there was a strong negative correlation between variability in DCI and stream 

network size (Figure 2-4C; r = -0.88, p < 0.001). When 15% of the reaches in the network were 

dry, the range of DCI values for the smallest watershed (DCI between 18.1 and 77.6) was 49 

times greater than the range of DCI values for the largest watershed (DCI between 0.9 and 2.1; 

Figure 2-4C), and a strong negative correlation between range of DCI values and stream network 

size remained (r = -0.77, p = 0.006). 

Comparing the results of headwater-first and mainstem-first drying simulations, we found 

that the rate of connectivity loss varied with the location of drying, but this effect was modulated 

by network size for mainstem-first drying (Figure 2-5). Connectivity declined relatively slowly 

when drying was concentrated in the headwaters (Figure 2-5A), and more rapidly when drying 

was concentrated in mainstem reaches (Figure 2-5B). In the headwater-first simulations, there 

was no clear relationship between rate of connectivity loss and stream network size. In the 

mainstem-first simulations, larger stream networks tended to lose connectivity at a more rapid 

rate than smaller stream networks (Figure 2-5C). When 5% of the reaches in the network were 

dry, for example, DCI values were two times greater for headwater-first drying than mainstem-

first drying in the smallest watershed, and 19 times greater in the largest watershed. When 15% 

of reaches were dry, DCI values for headwater-first drying were nine times greater than 

mainstem-first drying for the smallest watershed, and 118 times greater in the largest watershed. 

The impact of individual stream reaches on connectivity loss varied with network size 

(Figure 2-6). In smaller stream networks, a greater proportion of reaches were moderately 

impactful or highly impactful on connectivity loss. Moderate impact reaches resulted in DCI 
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values between 80 and 95 when dried, while high impact reaches resulted in DCI values less than 

80 when dried. The minimum DCI resulting from the drying of a single stream reach ranged 

from 48.23 in the smallest stream network to 51.15 in the largest stream network. The maximum 

DCI resulting from the drying of a single stream reach ranged from 99.4 in the smallest stream 

network to 100.0 in the largest stream network.  

 

DISCUSSION 

Here we demonstrate how, in nonperennial streams, connectivity is influenced by the 

spatial patterning of wet and dry reaches – an important structural property of the stream network 

itself. This adds to established knowledge that stream network connectivity is influenced by 

processes and forcings that take place across multiple spatial scales (Jencso et al. 2009, Fullerton 

et al. 2010). Our simulation-based experiments reveal that rate of connectivity loss is driven by 

interactions between stream network size and the location of stream drying within the stream 

network. Given increases in stream drying globally, our results underscore the need for managers 

to be vigilant about increased stream drying in networks where it is likely to have the greatest 

impacts on fragmentation.  

 

Connectivity and network size 

We first hypothesized that rate of connectivity loss is driven by stream network size. We 

expected that connectivity would decline more rapidly in smaller stream networks than in larger 

stream networks, but found the opposite. Our simulations illustrate how larger stream networks 

tend to be less connected than smaller stream networks at equivalent stages of drying (Figures 2-

3 and 2-5). While the drying simulation experiments showed that larger stream networks tend to 

lose connectivity more rapidly than smaller stream networks, the drying experiment examining 

impacts of individual stream reaches showed that the drying of a single stream reach is likely to 

reduce connectivity much more in smaller stream networks than in larger stream networks 

(Figure 2-6). We attributed the findings of the experiment examining impacts of individual 

stream reaches to the fact that in smaller stream networks, a single stream reach is likely to be a 

larger proportion of total stream length in the network. Our measurement of connectivity is 

weighted so that longer stream reaches have a greater impact on connectivity. As a result, drying 

of longer stream reaches has a larger impact on connectivity loss than the drying of a smaller but 
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equivalently located stream reach. With this information, we attributed the rapid connectivity 

loss in larger stream networks to greater potential for fragmentation compared to smaller stream 

networks. To reach equivalent stages of drying, there will be more dry stream reaches in a larger 

stream network than in a smaller stream network. Increased dry stream reaches, especially when 

those dry reaches are not contiguous, are likely to be associated with a more fragmented stream 

network. While drying in a single reach in a larger stream network may have a minimal impact 

on connectivity (Figure 2-6), in the larger networks, progressive drying and fragmentation leads 

to disproportionate declines in connectivity. 

The random drying simulations showed that variability in the rate of connectivity loss 

also varied with stream network size. Smaller stream networks had more variability in the rate of 

connectivity loss than larger stream networks (Figure 2-4). We again attributed this to the fact 

that there is likely to be more fragmentation in larger stream networks, resulting in consistent, 

rapid losses of connectivity. When multiple reaches dry randomly, the dry reaches are less likely 

to be adjacent in larger stream networks. As a result, larger stream networks are likely to be more 

fragmented more consistently, resulting in less variability in the rate of connectivity loss. While 

it is possible for random drying simulations to result in high fragmentation in smaller stream 

networks, there is a greater probability for dry reaches to be adjacent in smaller stream networks 

than in larger stream networks. This leads to the observed greater variability in the rate of 

connectivity loss in smaller stream networks.   

The relationship we have found between connectivity and network size points to the 

importance of considering scale when conducting research on stream network connectivity. One 

goal of landscape ecology is to identify scales that best characterize relationships between spatial 

heterogeneity and the processes or response variables of interest (Turner and Gardner 2015). 

When attempting to connect network patterns to an ecological process, it’s important to consider 

the scale, or more specifically the spatial extent, at which the ecological process works (Heino et 

al. 2015). For example, when conducting a study examining the impacts of connectivity loss on a 

population with low dispersal ability, a spatial extent should be chosen that is relevant to that 

population (Alp et al. 2012). In some cases, this could mean carrying out simulations over 

multiple spatial extents in order to determine which best explains observed patterns.  

 

Connectivity and location of drying 
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We hypothesized that the rate of connectivity loss is driven by the location of drying, 

with greater losses in connectivity associated with mainstem-first drying than headwater-first 

drying. Our study supported this hypothesis. Where drying occurs within a stream network 

greatly influenced the effect of drying on network connectivity (Figure 2-4). Above we explained 

the important relationship between fragmentation and connectivity. The findings of our location-

based drying experiments show how impactful the role of fragmentation can be. No 

fragmentation occurred during the headwater first drying scenario, meaning that all wet reaches 

were always neighboring one another. In this scenario, disproportionately high connectivity was 

maintained until approximately 30 percent of reaches were dried. After this point, connectivity 

was rapidly lost. Conversely, when mainstem reaches dried first, a scenario with relatively high 

fragmentation, connectivity was immediately lost rapidly. Connectivity values were halved 

before 10 percent of reaches were dried in the stream networks.  

The point at which connectivity was rapidly lost for the headwater first drying 

experiments is indicative of a threshold (Groffman et al. 2006). Similar thresholds have been 

observed in actual stream networks (Ward et al. 2018, Malish et al. 2023) and in other 

connectivity loss simulations (Lee et al. 2022). With roots in percolation theory (Stauffer and 

Aharony 2018), significant research effort has established that in terrestrial landscapes a critical 

threshold exists where small changes in habitat type result in sudden changes in landscape 

properties. The hierarchical stream network structure differs from the typical grid-based 

landscape structure in many landscape ecology studies. Despite this difference, a threshold was 

still identified. It is noteworthy that a threshold was identified in the headwater first drying 

simulations, but not the mainstem first or random drying simulations. Where drying occurs can 

have vastly different impacts on connectivity and biodiversity (Crabot et al. 2020, Lee et al. 

2022). 

Classification of spatial patterns of drying have been used to better understand ecological 

effects (Lake 2003, Datry et al. 2016, Sánchez-Montoya et al. 2018). When headwaters dry, 

refugia for aquatic organisms exist downstream. Drying of the headwaters is consistent with a 

pattern of network expansion and contraction. In cases of network expansion and contraction, 

fragmentation is minimal. When mainstem drying occurs, the headwaters serve as refugia for 

biota (Cooling and Boulton 1993). As a result of drying in the mainstem, the network becomes 

fragmented, resulting in highly variable communities (Erman and Erman 1995) and reduced gene 
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flow (Schanke et al. 2017). While both fragmentation and contraction result in reduced habitat, 

the effects on connectivity are different. Our findings help to demonstrate why ecological 

consequences of drying vary according to spatial patterns of drying. 

 

Management implications 

As stream drying increases globally (Sauquet et al. 2021, Zipper et al. 2021), 

management concerns about associated habitat loss and connectivity loss will become more 

prevalent. Our findings demonstrate that managers should not only be concerned with the extent 

of drying, but also the location of drying. Due to variations in hydrology, geology, and human 

impacts, drying can occur in different parts of the stream network (Boulton et al. 2017). For 

example, mainstem drying is common in watersheds where headwaters are located in mountain 

ranges or mesic uplands and then flow into more arid areas, or where streams flow over highly 

permeable geologic formations (Meyer and Meyer 2000, Jaeger and Olden 2012). Headwater 

drying is common where downstream reaches are sustained by groundwater inputs (Lake 2003). 

Spatial patterns of drying control the degree of fragmentation that is associated with stream 

drying. Drying in the headwaters creates patterns of network contraction and expansion through 

time. Patterns of network contraction and expansion mean that wet reaches of the network are 

generally connected to one another, and therefore fragmentation is not a major concern. Instead, 

habitat loss should be the major concern for watershed managers. Mainstem drying, in contrast, 

can result in high degrees of fragmentation and connectivity loss. As a result, consequences of 

fragmentation should be the primary concern in these systems.  

Additionally, when managing for specific taxa, managers must carefully consider the 

spatial scales that are most relevant. Populations that are characterized by high dispersal abilities 

should be managed from the perspective of a larger spatial scale. At larger spatial scales, 

addressing the effects of fragmentation is likely to be a primary concern. In contrast, populations 

characterized by low dispersal abilities may be best managed at a smaller spatial scale. At 

smaller scales, populations are more likely to be affected by habitat loss and management actions 

to create or restore habitats is likely to be high priority.  Differentiating between fragmentation 

and habitat loss as consequences of stream drying, as well as identifying the scenarios where 

each is likely to be of primary concern, is key for managing nonperennial streams. 
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TABLES 

  
Table 2-1. Stream networks included in the study. 

 
 
 
 
 
 
 
 
 
 
 
 
 
  

Stream Network State Reaches (n) 
Shane Creek  Kansas 43 
Teakettle Creek California 44 
East Turkey Creek Arizona 239 
Deer Creek California 415 
Cave Creek Arizona 703 
South Sandy Creek Alabama 797 
Chalone Creek California 1310 
Passage Creek Virginia 1428 
McDowell Creek Kansas 1462 
Sycamore Creek Arizona 2247 
Blue River Oklahoma 2510 
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FIGURES 
 

 
Figure 2-1. Maps of stream networks included in the study, ordered from largest to smallest. (A) 
Blue River, OK; (B) Sycamore Creek, AZ; (C) McDowell Creek, KS; (D) Passage Creek, VA; 
(E) Chalone Creek, CA; (F) South Sandy Creek, AL; (G) Cave Creek, AZ; (H) Deer Creek, CA; 
(I) East Turkey Creek, AZ; (J) Teakettle Creek, CA; (K) Shane Creek, KS. 
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Figure 2-2. Conceptual figure of random, mainstem-first, and headwater-first drying simulations 
in a stream network. Wet stream reaches are represented by solid black lines and dry stream 
reaches are represented by dashed gray lines. Reaches were selected randomly at each step 
during the random drying simulations. Mainstem-first simulations dried reaches of the highest 
stream order first and selected the longest stream reach when there were multiple reaches of the 
same stream order. Headwater-first simulations dried reaches of the lowest stream order first and 
selected the shortest stream reach when there were multiple reaches of the same stream order. 
For all simulations, reaches were dried one at a time until there were no more wet reaches in the 
network. There were n steps in each simulation, where n is the number of stream reaches in a 
stream network. Connectivity was calculated at each step. 
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Figure 2-3. Connectivity loss associated with stream drying varied with stream network size. (A) 
Results of random drying simulations. Lines show mean values of random drying simulations (n 
= 99) for the eleven stream networks. Dashed gray lines indicate percent dry reaches represented 
in panels B and C. (B) Differences in connectivity between the largest (Blue River) and smallest 
(Shane Creek) stream networks at 5% and 15% reaches dry. (C) Relationship between stream 
network size and connectivity at 5% and 15% reaches dry. Circles represent 5% drying and 
diamonds represent 15% drying. Lines are locally weighted regressions fit to data points. In all 
panels, colors indicate the size of the stream network with darker colors representing larger 
stream networks. 
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Figure 2-4. Variability of connectivity loss associated with stream drying varied with stream 
network size. (A) Lines show mean values of random drying simulations (n = 99) for the largest 
(Blue River) and smallest (Shane Creek) stream networks. Shaded regions show the area 
between the maximum and minimum connectivity values of random drying simulations for each 
stream network. Dashed gray lines indicate percent dry reaches represented in panels B and C. 
(B) Differences in range of connectivity between the largest and smallest stream networks at 5% 
and 15% reaches dry. (C) Relationship between stream network size and range of connectivity at 
5% and 15% reaches dry. Circles represent 5% drying and diamonds represent 15% drying. Lines 
are locally weighted regressions fit to data points. In all panels, colors indicate the size of the 
stream network with darker colors representing larger stream networks. 
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Figure 2-5. Connectivity loss varies with drying location. (A) Connectivity loss associated with 
headwater-first drying experiments. Dashed gray lines indicate percent dry reaches represented 
in panel C. (B) Connectivity loss associated with mainstem-first drying experiments. Dashed 
gray lines indicate percent dry reaches represented in panel C. (C) Differences in connectivity 
loss between the largest and smallest stream networks at 5% and 15% reaches dry for headwater-
first and mainstem first drying experiments. In all plots, colors indicate the size of the stream 
network with darker colors representing larger stream networks.  
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Figure 2-6. (A) Distribution of connectivity values resulting from the experiment where each 
stream reach within a network was iteratively dried. Gray dashed lines delineate moderate impact 
and high impact reaches. Moderate impact reaches resulted in connectivity values between 80 
and 95 when dried, while high impact reaches resulted in values less than 80 when dried. (B) 
Proportion of reaches in each stream network found to have a moderate impact and (C) high 
impact. In all plots, colors represent the size of the stream network with darker colors 
representing larger stream networks. 
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CHAPTER THREE  
DRY GETS WETTER, WET GETS DRIER: COUNTERINTUITIVE CHANGES IN STREAM 

DRYING DRIVEN BY CROSS-SCALE INTERACTIONS BETWEEN REGIONAL AND 
GLOBAL HYDROLOGIC PROCESSES 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Keywords: 

aridity, connectivity, climate, cross-scale interactions, fragmentation, intermittent river  
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ABSTRACT 

Nonperennial streams are globally widespread and increasingly common. In many river 

basins, the spatial and temporal patterning of stream drying emerges from cross-scale 

interactions among local, regional and global hydrologic processes. Here, we evaluated how 

changes in streamflow and river network connectivity might be influenced by interactions 

between global-scale climate change and regional aridity. We modeled streamflow in stream 

networks across the continental United States for current and future climate scenarios to 

investigate how drivers of connectivity across spatial scales interact. We found that while nine of 

eleven stream networks had increased flow in the future, only four stream networks showed 

increased network connectivity. A prominent narrative states that, in general, wet regions will get 

wetter while dry regions will get drier due to climate change. By extension, it is often assumed 

that stream networks in wet regions will become more connected, those in dry regions will 

become less connected. Our results indicated the opposite. Changes in the number of days 

annually that the stream networks were very highly or very poorly connected varied with aridity. 

However, more arid networks tended to have more high connectivity days in the future while 

more mesic networks tended to have more low connectivity days in the future. Our findings 

overall highlight how cross-scale interactions between climate change and aridity drove 

predictable changes in network connectivity. The ability to predict future changes in connectivity 

improves our ability to anticipate the consequences of climate change and manage ecosystems in 

a changing world. 
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INTRODUCTION 

Nonperennial streams (i.e., those that cease to flow at some point in time and space) are 

widespread and abundant. These streams occur on all continents and all ecoregions, together 

composing more than half of the world’s streams (Busch et al. 2020, Messager et al. 2021). 

Where and when streams dry has important consequences for humans and ecosystems. Streams 

sustain agricultural and domestic water supply and provide a wide range of ecosystem services 

(Koundouri et al. 2017). Streamflow is also essential for ecological function. In particular, 

ecological connectivity, or the ability for organisms, nutrients, and matter to move throughout a 

network, is determined by the timing and magnitude of flow throughout the river network 

(Shanafield et al. 2021).   

Spatial and temporal patterns of stream intermittency are the result of interactions among 

a suite of local, regional, and global hydrologic processes (Costigan et al. 2016). In the 

continental United States, changes in flow intermittency are already occurring due to global-

scale climate change. General trends indicate increased duration of drying in nonperennial 

streams during the past several decades (Zipper et al. 2021). At the regional scale, aridity is 

recognized as a strong predictor of stream intermittency, explaining flow permanence and timing 

(Jaeger et al. 2019, Hammond et al. 2021).  At more local scales, geology, geomorphology, and 

human impacts, such as water withdrawal, can be important drivers of stream drying (Palmer et 

al. 2008, Perkin et al. 2015a, Hammond et al. 2021). Spatial and temporal patterns of flow 

intermittency interact to drive patterns of network connectivity (Jaeger et al. 2014, Malish et al. 

2023).  

Given that patterns of stream drying emerge from cross-scale interactions among local, 

regional, and global processes, conceptual frameworks from macrosystems ecology may be 

useful for understanding drivers of network connectivity. Riverine macrosystems are defined as 

hierarchical dynamic networks, influenced by strong directional connectivity that integrates 

processes across multiple scales and broad distances through time (McCluney et al. 2014). 

Macrosystems have cross-scale interactions that determine ecological properties, like 

connectivity. Cross-scale interactions occur when processes at one scale interact with processes 

at another scale, sometimes having non-linear responses (Heffernan et al. 2014, Soranno et al. 

2014). Understanding relationships that exist across spatial scales is necessary to predict likely 
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outcomes and determine management strategies to address complex environmental problems 

(Miller et al. 2004, Soranno et al. 2014). 

One such complex environmental problem is predicting how stream drying patterns 

might change in the future. Climatological studies often find a “rich get richer” pattern in global 

moisture trends, in which wet locations are projected to become more wet in the future, and dry 

locations are projected to become drier (Held and Soden 2006, Chou et al. 2009, Durack et al. 

2012). However, other studies have found that this pattern is inconsistent, particularly over land 

(Greve et al. 2014, Feng and Zhang 2015). In the case of stream drying, hydrologic processes 

unrelated to global climate (e.g., local geology, land use, and human water consumption) may, in 

some places, further counteract global “rich get richer” trends in moisture. Thus, a key research 

challenge is to understand how cross-scale interactions among global climate and local 

hydrology might drive spatiotemporal patterns of stream drying across a river network.   

The purpose of this study was to investigate how drivers of network connectivity that act 

at multiple spatial scales interact in nonperennial stream networks. Specifically, we asked: (1) 

How do changes in climate impact streamflow and network connectivity?, and (2) Do changes in 

streamflow and network connectivity vary predictably with watershed aridity and match the “rich 

get richer” paradigm? We answered these questions using a hydrological modeling approach in 

which we simulate daily streamflow in stream networks that span the continental United States 

under current and future climate simulations. We used these models to explore changes in 

watershed daily discharge and connectivity, as well as the relationship between the two. We also 

used linear models to explore changes in the number of very high and very low connectivity days 

during each climate simulation in relation to watershed aridity. The ability to reliably predict 

future connectivity is important for the management of ecologically and societally important 

stream networks in a changing climate. 

 

METHODS 

Study watersheds 

We focused on eleven stream networks from the southern half of the continental United 

States (Figure 3-1). Distinct spatial patterns of changes in stream intermittency in the US have 

been identified, with the southern US experiencing widespread increases in stream drying 

(Zipper et al. 2021). Stream drying occurs in each of the watersheds to varying degrees. The 
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study networks were selected to span the continental aridity gradient across the southern US 

while being minimally impacted by anthropogenic influences such as dams and urbanization. 

Watershed aridity, defined here as mean annual precipitation divided by mean annual reference 

ET, ranged from 2349 for Sycamore Creek, AZ to 9737 for South Sandy Creek, AL (Trabucco 

and Zomer 2019).  

 

Hydrologic modeling 

We used the Couple Routing and Excess Storage (CREST) model for hydrologic 

modeling. CREST is a distributed hydrologic model that simulates surface and subsurface flow 

(Wang et al. 2011). Calibration and validation focused on capturing the low flow condition and 

stream intermittency in numerous small headwater streams using data collected by in situ loggers 

(Chapin et al. 2014) and USGS stream gages. As a result, we have shown this model to be 

capable of estimating daily water occurrence at various stream orders in the study watersheds in 

prior studies (Gao et al. 2021, Malish et al. 2023). 

Model outputs were simulated at a 10 m grid spatial resolution at a daily timestep. Using 

10 m elevation grids, we delineated stream reaches on a confluence-to-confluence basis. 

Streamflow grids were spatially averaged over each reach to calculate mean daily flow. We then 

converted the daily streamflow to a binary wet or dry status.  

Hydrologic models were created for current and future climate simulations. Models were 

forced with climate data resulting from two 13-year Weather Research and Forecasting model 

simulations which used 4-km grid spacing over CONUS (Liu et al. 2017). The spatial extent of 

the simulations allows for comparisons of the study watersheds. The current climate simulation 

runs from October 1, 2001 to September 30, 2012 and is forced with ERA-Interim reanalysis 

data (Dee et al. 2011), which combined modeled data and observational data to provide a 

complete and consistent climate dataset. The future climate simulation spans the same time 

period and is forced with the ERA-Interim reanalysis data plus a climate perturbation, which 

represents ‘pseudo global warming’. The climate perturbation is the 95-year CMIP5 multi-model 

ensemble mean change signal under the RCP8.5 emission scenario, corresponding to an 

approximately 3-6 °C warming signal. The use of ensembles reduce biases introduced by 

individual models. The use of these climate models allows for direct comparisons of the current 
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and future climate simulations that are not influenced by natural climate variations (Liu et al. 

2017).    

 

Measuring discharge and connectivity 

To understand the impacts of climate change, we measured watershed discharge and 

connectivity. Watershed discharge was quantified as streamflow at the outlet of the watershed. To 

measure connectivity, we used a modified version of the dendritic connectivity index (DCI). The 

DCI was originally developed to measure the impact of point barriers (e.g., road culverts and 

dams) on fish passability (Cote et al. 2009). We used a modified version of the original 

formulation in which we considered dry stream reaches to be barriers. For all stream reaches i 

and j, DCI was calculated as: 

𝐷𝐷𝐷𝐷𝐷𝐷 = ��𝑐𝑐𝑖𝑖𝑖𝑖
𝑙𝑙𝑖𝑖
𝐿𝐿
𝑙𝑙𝑖𝑖
𝐿𝐿
∗ 100

𝑛𝑛

𝑖𝑖=1

𝑛𝑛

𝑖𝑖=1

 

where cij is a Boolean variable that takes the value 1 if reach i is connected to reach j, or 0 if not. 

Two reaches were considered connected if there was a path between the two made entirely of wet 

reaches. The lengths of stream reaches i and j are identified as li and lj, with L representing the 

total length of the drainage network. DCI ranges from 0-100 where 0 represents a completely dry 

stream network and 100 represents a completely wet, and therefore completely connected, stream 

network. We calculated discharge and DCI at a daily timestep for both climate simulations in the 

11 study watersheds (Malish et al. 2023).  

 

Analysis 

We visualized effects of climate on discharge and connectivity using exceedance 

probability curves and histograms. We also examined the relationship between discharge and 

connectivity, which tends to be sigmoidal (Malish et al. 2023). For each river network, there 

exists a low discharge threshold below which the river network is maximally fragmented and 

DCI is always 0. Similarly, for each river network there exists a high discharge threshold above 

which the river network is maximally connected and DCI is always 100. How rapidly networks 

transition from states of high connectivity to states of low connectivity is an indicator of the 

stability of connectivity in the network (Malish et al. 2023).  
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To quantify the stability of connectivity, we used piecewise linear regression to model the 

relationship between log transformed daily discharge and DCI. Using this method, we identified 

two breakpoints (i.e., the low and high discharge thresholds) in the relationship between 

discharge and connectivity in each river network. The two break points resulted in three line 

segments: a horizontal line of best fit below the low discharge threshold, a line with positive 

slope between the two thresholds, and a horizontal line above the high discharge threshold. We 

fit models for every stream network and each climate simulation. For each model, the first and 

third regression lines were constrained with zero slope and y-intercepts equal to the minimum or 

maximum DCI value, respectively. These constraints reflect the data showing that above and 

below certain discharge values, connectivity does not change. With these constraints, we used the 

slope of the second line as a measure of how changes in discharge influence changes in 

connectivity. Models were fit using the R package ‘optimx’ (Nash and Varadhan 2011). We then 

used linear regressions to model the relationships between aridity and slope for each climate 

simulation, as well as between aridity and change in slope from the current to future climate 

simulation. 

Finally, we were interested in frequency distributions of daily DCI values in relation to 

climate simulation and aridity. We focused on high connectivity days (DCI > 80, DCI > 95) and 

low connectivity days (DCI < 5, DCI < 20), because extremes in connectivity are ecologically 

important. Low connectivity days represent high amounts of drying and fragmentation. High 

connectivity days provide potential opportunities for recovery following low connectivity days. 

We calculated the percent change in the number of high and low connectivity days per year and 

examined those changes in relation to aridity using linear models. 

All analyses were completed in R (R Core Team 2023). 

 

RESULTS 

We found that climate change caused a projected increase in mean annual discharge in 9 

of 11 stream networks in our study (Figure 3-2A). Increases in discharge were largely driven by 

increases in the frequency and magnitude of extreme high and low flow events (Figure 3-3). A 

clear example of this is Shane Creek, where much of the current and future climate simulation 

discharge exceedance probability curves are similar, but maximum discharge was greater in the 

future climate (Figure 3-3H). Similar patterns were observed in McDowell Creek (Figure 3-3G), 
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Passage Creek (Figure 3-3I), and South Sandy Creek (Figure 3-3J). In Teakettle Creek, where 

mean discharge was projected to decrease, the future climate simulation again showed an 

increase in maximum discharge, but reduced flows for the majority of the simulation (Figure 3-

3F). 

Although most watersheds are projected to become wetter in the future when considering 

mean discharge, projected changes in mean river network connectivity were less consistent. 

Indeed, mean DCI increased in only 4 watersheds (Figure 3-2B). In East Turkey, Cave, Blue, 

Passage, and South Sandy watersheds, mean DCI is projected to decrease despite a projected 

increase in mean discharge. Changes in connectivity were largely driven by days with very high 

and very low connectivity (Figure 3-4). In networks where connectivity increased in the future 

simulation, we either observed an increased maximum DCI value such as in Sycamore Creek 

where the maximum DCI value increased from 63 during the current climate simulation to 85 

during the future climate simulation (Figure 3-4A), or an increase in the number of very high 

connectivity days (i.e. McDowell Creek, Shane Creek watersheds; Figures 3-4G, 3-4H). In 

networks where connectivity decreased in the future simulation, we observed more low 

connectivity days (Cave Creek; Figure 3-4D), fewer high connectivity days (Deer Creek, 

Teakettle Creek; Figures 3-4E, 3-4F), or both (South Sandy Creek, Figure 3-4K). 

Within each river network, the relationship between daily discharge and DCI was highly 

nonlinear and exhibited two thresholds (Figure 3-5A). Changes to connectivity also include a 

loss of stability around thresholds, where a small change in stream drying results in rapid change 

of connectivity. We used piecewise regression to measure how rapidly network connectivity 

increased as discharge increased during current and future climate simulations (Figure 3-5B). We 

used the slope of the regression line to measure the stability of network connectivity. The slope 

for current and future climate simulations was related to aridity. Slope tended to increase with 

aridity index, such that more arid networks had less steep slopes (current climate: p < 0.05, Radj

2
 = 

0.45; future climate: p < 0.05, Radj

2
 = 0.39). The slope was steeper in the future climate simulation 

than in the current climate simulation in seven watersheds (Figure 3-5C), indicating that an 

equivalent change in discharge will lead to a bigger change in connectivity in the future. Slope 

decreased in three networks and did not change in one network. The percent change in slope 

from the current to the future climate simulation was not related to aridity (p > 0.05, Radj

2
 = -0.11; 

Figure 3-5D). 
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The impacts of climate change on the ecologically important very high and very low 

connectivity days depended on the aridity of the watershed. Arid stream networks tended to have 

large, positive percent change in the number of high connectivity days, while wetter stream 

networks experienced small, near-zero percent change (Figures 3-6A and 3-6B; Table 3-1). There 

was a significant relationship between aridity and percent change in days with DCI > 95 (p 

<0.05, Radj

2
 = 0.53), but not days with DCI > 80 (p > 0.05, Radj

2
 = 0.22). In the future climate 

simulation, there was a more than a 200% increase in days with DCI > 95 in the three most arid 

watersheds. We observed the opposite trend with low connectivity days (Figures 3-6C and 3-6D). 

Arid stream networks experienced small, near-zero percent change in days with low connectivity, 

while wetter stream networks tended to have larger percent change values. There was a 

significant relationship between aridity and percent change in days with DCI < 5 (p < 0.01, Radj

2
 = 

0.60), but not days with DCI < 20 (p > 0.05, Radj

2
 = 0.13). 

 

DISCUSSION 

In our simulations, cross-scale interactions drove changes in stream network connectivity. 

Interactions between global scale climate change and regional scale aridity resulted in 

predictable patterns of connectivity change in stream networks across the continental United 

States. These patterns did not reflect the traditional “rich get richer” paradigm found in other 

studies (Chou et al. 2009, Feng and Zhang 2015). Instead, we found that the most arid networks 

are likely to see the largest increases in stream network connectivity, while the least arid 

networks are likely to see the largest decreases. Our findings highlight the spatial complexities of 

interacting hydrological processes that act at multiple spatial scales.  

 

Impacts of climate change on streamflow and network connectivity 

Hydrologic models of current and future climate conditions showed that mean discharge 

increased in the future climate simulation in 9 of 11 study networks, while it decreased in only 

two study networks (Figure 3-2). In our models, changes in discharge between the current and 

future climate simulations are driven solely by changes in precipitation and temperature (Wang et 

al. 2011). Our findings reflect current understanding about the impacts of climate change on 

precipitation and temperature. Due to climate change, there is expected to be an increase in the 
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frequency of extreme precipitation events, meaning that precipitation is expected to occur during 

fewer events that are greater in magnitude (Payton et al. 2023). Because precipitation will occur 

during fewer events, there will be longer periods of low or no precipitation. Concurrently, rising 

temperatures associated with climate change are expected in all regions of the United States. 

Rising temperatures result in increased potential evaporation (Marvel et al. 2023). Together, 

change in precipitation and temperature are likely to result in more extreme high and extreme 

low flow events. In this study, we observed more days with extremely high streamflow and often 

an increase in maximum streamflow during the future climate simulation (Figure 3-3), resulting 

in the increase in average daily discharge we observed in many of the study networks despite 

concurrent increases in low and zero-flow days. More days with high streamflow and higher high 

flows are likely to contribute to more flooding events. Potential negative consequences of 

flooding events include displacement of organisms and destruction of habitats (Fisher et al. 

1982), while potential positive consequences include increased upstream-downstream 

connectivity and increased connectivity between the stream channel and floodplain (Boulton et 

al. 2017). 

We also observed changes in the relationship between discharge and connectivity due to 

climate change. In a stream network, high discharge is generally associated with high 

connectivity while low discharge is associated with low connectivity (Malish et al. 2023). How 

suddenly networks transition from states of high connectivity to low connectivity can be 

understood as the stability of network connectivity. We found that climate change reduced the 

stability of connectivity in seven of the study networks (Figure 3-5). This reduction means that 

equivalent decreases in discharge result in larger decreases of connectivity in the future than in 

the current climate simulation. Decreased stability of network connectivity thresholds suggests 

that stream ecosystems are likely to lose connectivity more rapidly and more often in the future. 

How rapidly fragmentation occurs in stream networks is known to influence biodiversity. For 

example, rapid fragmentation limits the ability of taxa to move elsewhere in the network to avoid 

no flow conditions (Vander Vorste et al. 2021). Therefore, networks that lose connectivity more 

slowly may be more diverse and have higher survival rates during drying events (Price et al. 

2021). 

In contrast to our finding of increased daily discharge in most stream networks in the 

future climate simulation, connectivity decreased in seven networks while it increased in only 



72 
 

four (Figure 3-2). Climate change tended to particularly impact the number of very low and very 

high connectivity days (Figures 3-4 and 3-6). The observed reductions in average network 

connectivity despite increased average daily discharge is largely because a network cannot 

exceed being fully connected (where DCI = 100). Therefore, despite higher magnitude flows and 

more frequent high flows, increases in daily connectivity are limited. This combined with an 

increase in low connectivity days resulted in reductions in average connectivity in many study 

networks. 

The number of very low and very high connectivity days is understood to be ecologically 

consequential. During low connectivity days, there is less habitat availability and existing habitat 

is often fragmented. The ability for organisms to move around to access habitats and other 

resources is reduced. This causes population declines, loss of genetic diversity, and local 

extirpations (Meyer and Meyer 2000, Matthews and Marsh‐Matthews 2003, Bonada et al. 2017). 

In contrast, periods of high connectivity represent opportunities for ecological recovery (Dodds 

et al. 2004, Acuña et al. 2005). Organisms can re-colonize parts of the stream network, there is 

opportunity for gene flow among previously isolated populations, and population sizes can 

increase. Therefore, to predict changes in how often stream networks experience very high and 

very low connectivity is important to be able to predict ecological impacts of climate change. 

 

Cross-scale interactions between climate change and aridity 

We found that the impacts of global-scale climate change interact with regional-scale 

aridity to drive changes in the number of very high and very low connectivity days. Generally, 

the more arid a stream network, the larger the percent increase in the number of high 

connectivity days from the current climate simulation to the future climate simulation (Figure 3-

6). The least arid stream networks tended to experience a slight percent decrease in the number 

of high connectivity days. In contrast, the least arid stream networks tended to experience the 

largest percent increases in the number of very low connectivity days, while the more arid 

networks tended to experience near-zero percent change. Our study included stream networks 

that span the southern portion of the continental United States, encompassing much of the 

continental US aridity gradient. Generally, aridity increases from east to west across the 

continental US with impacts of climate change also varying by region. The southcentral and 

southeastern regions of the United States are expected to experience future increases in annual 
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precipitation, while the southwestern region is expected to experience decreases in annual 

precipitation (Marvel et al. 2023). These regional patterns alone don’t explain our findings.  

Our findings are explained by the increase in extreme precipitation events in the future 

climate simulation. In the arid stream networks (e.g. Sycamore Creek, East Turkey Creek, 

Chalone Creek, and Cave Creek), the extreme precipitation events cause systems that are 

generally poorly connected to be well connected more often (Asadieh and Krakauer 2017). 

Precipitation is an important driver of streamflow and connectivity (Costigan et al. 2016, Jaeger 

et al. 2019). The extremely large percent increases in the number of high connectivity day are 

also explained by the fact that there are very few (0-4) high connectivity days in these networks 

during the current climate simulation models. Therefore, even 1-2 more high connectivity days 

during the future climate simulation models represents large percent increases. Additionally, 

Sycamore Creek had zero days with DCI > 95 or 80 in the current climate simulation and is 

therefore not represented in Figures 3-5A or 3-5B. While the number of days with DCI > 95 did 

not change in the future climate simulation, the number of days with DCI > 80 annual increased 

to 0.3, a substantial relative increase (Table 3-1). Also in the arid stream networks, there were 

already many low connectivity days during the current climate simulation. Therefore, any 

changes, whether increases or decreases, resulted in near-zero percent change. The opposite 

trends occurred in the least arid networks (e.g. Passage Creek and South Sandy Creek). These 

systems were generally well connected, with many high connectivity days per year during the 

current climate simulation, so any changes in the number of high connectivity days in the future 

climate simulation resulted in near-zero percent change. In contrast, these systems had relatively 

few low connectivity days during the current climate simulation. The increases in the number of 

low and no precipitation days associated with the increase in extreme precipitation events in the 

future climate simulation resulted in more low connectivity days.  

The scale at which we conducted our analysis allowed us to identify the effects of cross-

scale interactions. Spatial scale is likely an important explanation for the counterintuitive nature 

of our findings. The studies that have identified the ‘rich-get-richer’ trend are generally 

conducted at the global scale at a coarse resolution (e.g. 25 km in Feng and Zhang 2015, 1.5° in 

Chou et al. 1982). We used hydrological models with 10 m resolution for each study watershed 

(<1000 km2). Analysis at a finer spatial scale allowed us to identify exceptions to general, large-

scale trends.  
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Implications for water management and sustainability 

We showed that global-scale climate change induced alterations in the number of days 

with very high and very low connectivity in stream networks, and that these alterations varied 

predictably with regional-scale aridity. There is a general understanding that in nonperennial 

stream networks, more water is associated with a more connected system (Bonada and Resh 

2013, Messager et al. 2021). By extension, it’s often assumed that regions that will experience 

more precipitation and associated increases in streamflow in the future will therefore be more 

connected in the future. Combining this logic with the “rich get richer” paradigm would lead one 

to assume that stream networks in currently dry regions will get more dry and less connected in 

the future, while those in wet regions will get more wet and more connected. Our study 

demonstrates that this assumption is not only false, but that the opposite is true in many cases. 

Regions of the continental United States that are currently very arid are expected to see decreases 

in precipitation in the future (Marvel et al. 2023). Our study stream networks located in these 

networks experienced more high connectivity days in the future. Regions of the continental 

United States that are currently more humid are expected to see increases in precipitation. We 

found that stream networks in these regions are likely to experience more low connectivity days 

in the future.  

The impact of human development may dampen the trends we identified in our 

unregulated stream networks. The networks selected for our study were selected because they are 

relatively unimpacted by anthropogenic factors such as instream structures (e.g. dams) and water 

withdrawal. However, this is uncharacteristic of rivers in the United States, where rivers are 

generally heavily regulated (Ostroff et al. 2013). Prior to human development in the continental 

United States, stream networks were less connected in arid basins than in humid basins due to 

naturally occurring drying in arid basins. Now, humid basins are the most fragmented due to the 

construction of dams and other structures (Spinti et al. 2023). As a result of the construction of 

these dams and associated reservoirs, humid basins have more potential for regulation of 

streamflow (Spinti et al. 2023), which itself has potential to counteract the increase in the 

number of low connectivity days due to the stream drying we identified in our analysis through 

strategic releases of waters (e.g. e-flows). Previous work has shown that in some basins, dams 

impact the flow regime more than climate change (Arheimer et al. 2017). This is likely true also 
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for more developed, humid watersheds, where increased fragmentation due to drying may be less 

of a concern and addressing the consequences of fragmentation due to anthropogenic structures 

should be prioritized. Water withdrawal associated with development is also likely to increase 

stream drying and decrease connectivity in both arid and humid basins (Deacon et al. 2007, 

Bogan and Lytle 2011, Rugel et al. 2012), although impacts are likely to be smaller in humid 

basins with greater water availability. Impacts of human development on hydrology are 

heterogeneous, even within the same region (Bhaskar et al. 2020) and effective management of 

watersheds requires consideration of factors across spatial scales, from global climate to local 

infrastructure. 

 

Conclusion 

Cross-scale interactions between global climate and regional aridity drive predictable 

changes in stream network connectivity. These changes are antithetical to common narratives 

regarding the influence of climate change – that wet regions will get wetter and dry regions will 

get drier (Chou et al. 2009, Feng and Zhang 2015). The contrast between our findings and 

common narratives illustrates why site-specific information is imperative for management. As 

changes in stream drying (Zipper et al. 2021) and connectivity (Jaeger et al. 2014, Perkin et al. 

2015b) continue, effective management of stream networks requires consideration of global, 

regional, and local processes that influence network scale hydrology (Costigan et al. 2017, 

Shanafield et al. 2021). 
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TABLES 
 
Table 3-1. Annual number of high connectivity and low connectivity days for current and future 
climate simulations. Stream networks are ordered from most arid to least arid. 

Stream 
Network 

Annual Days with  
DCI > 95 

Annual Days with 
DCI > 80 

Annual Days with  
DCI < 20 

Annual Days with  
DCI < 5 

 Current Future Current Future Current Future Current Future 
Sycamore 0.0 0.0 0.0 0.3 350.5 342.9 315.6 306.8 
East Turkey 0.4 1.4 1.4 4.1 342.1 347.2 214.5 320.2 
Chalone 0.1 0.5 4.3 5.9 321.3 319.9 199.5 208.6 
Cave 0.2 1.3 5.1 6.9 333.4 339.6 287.6 300.9 
Deer 267.7 257.2 281.6 269.9 42.2 49.1 21.5 23.5 
Teakettle 280.4 269.0 293.3 284.6 38.1 42.8 26.9 29.3 
McDowell 12.9 24.6 23.8 42.6 258.7 253.3 226.5 227.2 
Shane 13.6 27.1 27.7 46.3 278.8 266.5 235.5 236.0 
Blue 16.7 19.9 41.9 44.4 237.9 242.5 123.4 140.8 
Passage 151.6 143.5 189.4 175.0 46.5 56.1 0.0 0.5 
South Sandy 91.8 78.5 121.3 106.3 121.2 130.5 27.7 38.2 
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FIGURES 

 
Figure 3-1. Map of stream network locations. Color represents aridity, with lighter, warmer 
colors indicating more arid networks and darker, cooler colors representing more humid 
networks. 
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Figure 3-2. Mean daily discharge (Q, m3/day; A) and dendritic connectivity index (DCI; B) 
values under current and future climate simulations. Black line indicates 1:1 relationship. When 
points are above the 1:1, there was an increase in daily discharge or DCI in the future. When 
points are below the 1:1, there was a decrease in daily discharge or DCI in the future. Color 
represents aridity, with lighter, warmer colors indicating more arid networks and darker, cooler 
colors representing more humid networks. 
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Figure 3-3. Daily discharge (m3/day) exceedance probability curves for current and future 
climate simulations in A) Sycamore, B) East Turkey, C) Chalone, D) Cave, E) Deer, F) 
Teakettle, G) McDowell, H) Shane, I) Blue, J) Passage, K) South Sandy. Plots are arranged from 
the most arid to the least arid watershed. 
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Figure 3-4. Histogram of daily DCI values for current climate (grey) and future (green) climate 
simulations for A) Sycamore, B) East Turkey, C) Chalone, D) Cave, E) Deer, F) Teakettle, G) 
McDowell, H) Shane, I) Blue, J) Passage, K) South Sandy. Plots are arranged from the most arid 
to the least arid watershed. 
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Figure 3-5. Piecewise regression between daily discharge (m3/day) and dendritic connectivity 
index (DCI). A) Example of the sigmoidal relationship between log(Discharge) and DCI, here 
showing data for South Sandy Creek. B) Piecewise regression fit to the points shown in panel A. 
The first and third lines are constrained to have a slope of zero and y-intercept equal to the 
minimum or maximum DCI value, respectively. C) Slope of piecewise regression for current and 
future climate simulations. Slope refers to the slope of the second line of the piecewise 
regression, as shown in panel B. A steeper slop indicates more rapid transitions between 
connected and disconnected states. D) There is no relationship between aridity index and percent 
change in slope from the current to future climate simulation. In panels A-C, grey represents 
current climate and green represents future climate. In panel D, color represents aridity, with 
lighter, warmer colors indicating more arid networks and darker, cooler colors representing more 
humid networks. 
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Figure 3-6. Relationship between aridity index and percent change in A) days with DCI > 95, B) 
days with DCI > 80, C) days with DCI < 20, and D) days with DCI < 5 from the current to the 
future climate simulation. Panels show linear regression where a significant relationship was 
identified (p < 0.05). Color represents aridity, with lighter, warmer colors indicating more arid 
networks and darker, cooler colors representing more humid networks. 
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SYNTHESIS AND CONCLUSIONS 

 
Connectivity is a fundamental property of stream ecosystems (Pringle 2003, Fuller et al. 

2015). Flowing water allows for the movement of organisms and resources across broad 

geographic scales and supports key ecosystem processes (Acuña et al. 2005, Perkin et al. 2013, 

Vaughn et al. 2015, Heim et al. 2016). Fragmentation in river ecosystems often decreases 

biodiversity due to habitat alteration, habitat loss, and limitation of organism movement (Perkin 

and Gido 2012, Bogan et al. 2013, Datry et al. 2014). In nonperennial stream networks, spatial 

and temporal connectivity patterns are largely determined by where and when stream drying 

occurs. Because of this, connectivity in nonperennial stream networks is dynamic (Boulton et al. 

2017). Drying and connectivity patterns in nonperennial streams are driven by processes that act 

at multiple spatial scales (Costigan et al. 2016). How connectivity patterns change in the future 

will vary based on the cross-scale interactions of these processes (Hammond et al. 2021, Zipper 

et al. 2021). The overarching goal of this dissertation research was to improve understanding of 

the patterns and drivers of stream drying and connectivity in nonperennial stream networks 

In Chapter One, I identified critical tipping points in stream drying. To identify these 

tipping points, I used a hydrological modeling approach to quantify spatiotemporal drying 

patterns under current and future climate scenarios in the Blue River, Oklahoma. I found that 

stream drying is likely to increase in all future climate scenarios and that increases in stream 

drying reduce connectivity. Importantly, the effects of stream drying on connectivity were highly 

non-linear. There is watershed daily discharge threshold around which a small increase in stream 

drying led to a rapid drop in connectivity. Identifying the presence of a connectivity threshold is 

a key insight when considering management of this watershed: water managers must carefully 

consider the potential impacts of even small increases in stream drying. 

In Chapter Two, I explored how the impacts of stream drying on connectivity vary by 

stream network size and the location of drying within the stream network. I simulated drying 

scenarios in eleven stream networks from across the United States and varied the location and 

spatial extent of drying. The rate of connectivity loss varied with stream network size, such that 

larger stream networks lost connectivity more rapidly than smaller stream networks. The rate of 

connectivity loss also varied with the location of drying. When drying occurred in the mainstem, 

even small amounts of drying resulted in rapid losses in connectivity. When drying occurred in 
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headwater reaches, small amounts of drying had little impact. However, beyond a certain 

threshold, connectivity declined rapidly with further increases in drying. These findings 

underscore the need for managers to be particularly vigilant about fragmentation when managing 

at large spatial scales and when stream drying occurs in mainstem reaches. 

In Chapter Three, I built on the findings of Chapter One by expanding the geographic 

scope to examine the effects of future climate change on streamflow and connectivity in the 

eleven stream networks studied in Chapter Two. Again using a hydrological modeling approach, 

this work showed that cross-scale interactions of drivers of stream drying result in 

counterintuitive changes in connectivity. Arid stream networks tended to have more high 

connectivity days in the future while the number of low connectivity days did not change. In 

contrast, in wetter stream networks the number of high connectivity did not change and there 

tended to be large increases in the number of low connectivity days. These findings highlight 

how cross-scale interactions between global-scale climate change and regional-scale aridity drive 

predictable changes in stream network connectivity. The ability to predict changes in 

connectivity allows for the anticipation and management of the consequences of climate change. 

Taken together, the research contained in this dissertation demonstrates that stream drying 

and connectivity patterns are complex, but vary in predictable ways. Stream drying, network 

connectivity, and the relationship between the two is mediated by factors and processes that act 

at the network scale (network size, drying location), the regional scale (aridity), and the global 

scale (climate change). The alteration of stream drying and connectivity will have ecological 

consequences. My research shows that we can anticipate changes in in stream drying and 

connectivity patterns, improving our ability to predict ecological consequences and manage 

changing ecosystems. 
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SUPPLEMENTAL INFORMATION 

CHAPTER ONE  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure S1-1. Elevation (Gesch et al. 2018; A), land cover (Dewitz 2019; B), and aquifer extent 
(Oklahoma Water Resources Board 2011; C) of the study area.  
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Figure S1-2. Water occurance frequency (i.e., proportion of days in which the stream reach was 
wet) during the current study period (2010-2029).  
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Figure S1-3. Water occurance frequency (i.e., proportion of days in which the stream reach was 
wet) during the future study period (2060-2079). 
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Figure S1-4. Change in annual number of dry days by drainage area across nine future climate 
scenarios. Climate scenarios result from all combinations of three GCMs (rows) and three RCPs 
(columns). Within each plot, each box-and-whisker plot shows the distribution of the change in 
number of dry days for all stream reaches of a given drainage area. 
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Figure S1-5. Change in annual number of dry periods by drainage area across nine future climate 
scenarios. Climate scenarios result from all combinations of three GCMs (rows) and three RCPs 
(columns). Within each plot, each box-and-whisker plot shows the distribution of the change in 
number of dry periods for all stream reaches of a given drainage area. 
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Figure S1-6. Change in average dry period duration by drainage area across nine future climate 
scenarios. Climate scenarios result from all combinations of three GCMs (rows) and three RCPs 
(columns). Within each plot, each box-and-whisker plot shows the distribution of the change in 
duration of dry periods for all stream reaches of a given drainage area. 
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Figure S1-7. Daily percent wetted length (A), number of dry fragments (B), average length of 
dry fragments (C), and connectivity (D) for current (2010-2029) and future (2060-2079) periods 
from hydrologic model driven by CCSM4 GCM for RCP 2.6. Plots show mean (line) and IQR 
(shaded). 
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Figure S1-8. Daily percent wetted length (A), number of dry fragments (B), average length of 
dry fragments (C), and connectivity (D) for current (2010-2029) and future (2060-2079) periods 
from hydrologic model driven by CCSM4 GCM for RCP 8.5. Plots show mean (line) and IQR 
(shaded). 
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Figure S1-9. Daily percent wetted length (A), number of dry fragments (B), average length of 
dry fragments (C), and connectivity (D) for current (2010-2029) and future (2060-2079) periods 
from hydrologic model driven by MIROC5 GCM for RCP 2.6. Plots show mean (line) and IQR 
(shaded). 
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Figure S1-10. Daily percent wetted length (A), number of dry fragments (B), average length of 
dry fragments (C), and connectivity (D) for current (2010-2029) and future (2060-2079) periods 
from hydrologic model driven by MIROC5 GCM for RCP 4.5. Plots show mean (line) and IQR 
(shaded). 
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Figure S1-11. Daily percent wetted length (A), number of dry fragments (B), average length of 
dry fragments (C), and connectivity (D) for current (2010-2029) and future (2060-2079) periods 
from hydrologic model driven by MIROC5 GCM for RCP 8.5. Plots show mean (line) and IQR 
(shaded). 
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Figure S1-12. Daily percent wetted length (A), number of dry fragments (B), average length of 
dry fragments (C), and connectivity (D) for current (2010-2029) and future (2060-2079) periods 
from hydrologic model driven by MPI_ESM_LR GCM for RCP 2.6. Plots show mean (line) and 
IQR (shaded). 
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Figure S1-13. Daily percent wetted length (A), number of dry fragments (B), average length of 
dry fragments (C), and connectivity (D) for current (2010-2029) and future (2060-2079) periods 
from hydrologic model driven by MPI_ESM_LR GCM for RCP 4.5. Plots show mean (line) and 
IQR (shaded). 
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Figure S1-14. Daily percent wetted length (A), number of dry fragments (B), average length of 
dry fragments (C), and connectivity (D) for current (2010-2029) and future (2060-2079) periods 
from hydrologic model driven by MPI_ESM_LR GCM for RCP 8.5. Plots show mean (line) and 
IQR (shaded). 
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Figure S1-15. Distribution of daily average dry fragment length during current (blue) and future 
(orange) climate scenarios. Climate scenarios result from all combinations of three GCMs (rows) 
and three RCPs (columns). 
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Figure S1-16. Relationships between wetted length and connectivity for nine climate scenarios (r 
= 0.99, p < 0.05). Climate scenarios result from all combinations of three GCMs (rows) and three 
RCPs (columns). 
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Figure S1-17. Relationship between watershed daily discharge (m3/day) and connectivity for the 
hydrologic model driven by CCSM4 GCM for RCP 2.6 for the current and future study periods. 
Points represent days and lines represent relationship modeled using smoothing splines. Dashed 
lines represent mean daily discharge for current and future study periods. 
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Figure S1-18. Relationship between watershed daily discharge (m3/day) and connectivity for the 
hydrologic model driven by CCSM4 GCM for RCP 8.5 for the current and future study periods. 
Points represent days and lines represent relationship modeled using smoothing splines. Dashed 
lines represent mean daily discharge for current and future study periods. 
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Figure S1-19. Relationship between watershed daily discharge (m3/day) and connectivity for the 
hydrologic model driven by MIROC5 GCM for RCP 2.6 for the current and future study periods. 
Points represent days and lines represent relationship modeled using smoothing splines. Dashed 
lines represent mean daily discharge for current and future study periods. 
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Figure S1-20. Relationship between watershed daily discharge (m3/day) and connectivity for the 
hydrologic model driven byMIROC5 GCM for RCP 4.5 for the current and future study periods. 
Points represent days and lines represent relationship modeled using smoothing splines. Dashed 
lines represent mean daily discharge for current and future study periods. 
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Figure S1-21. Relationship between watershed daily discharge (m3/day) and connectivity for the 
hydrologic model driven by MIROC5 GCM for RCP 8.5 for the current and future study periods. 
Points represent days and lines represent relationship modeled using smoothing splines. Dashed 
lines represent mean daily discharge for current and future study periods. 
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Figure S1-22. Relationship between watershed daily discharge (m3/day) and connectivity for the 
hydrologic model driven by MPI_ESM_LR GCM for RCP 2.6 for the current and future study 
periods. Points represent days and lines represent relationship modeled using smoothing splines. 
Dashed lines represent mean daily discharge for current and future study periods. 
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Figure S1-23. Relationship between watershed daily discharge (m3/day) and connectivity for the 
hydrologic model driven by MPI_ESM_LR GCM for RCP 4.5 for the current and future study 
periods. Points represent days and lines represent relationship modeled using smoothing splines. 
Dashed lines represent mean daily discharge for current and future study periods. 
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Figure S1-24. Relationship between watershed daily discharge (m3/day) and connectivity for the 
hydrologic model driven by MPI_ESM_LR GCM for RCP 8.5 for the current and future study 
periods. Points represent days and lines represent relationship modeled using smoothing splines. 
Dashed lines represent mean daily discharge for current and future study periods. 
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CHAPTER TWO 
 

 

Figure S2-1. Locations of the study stream networks. 
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Figure S2-2. Composition of each stream network by Strahler stream order. 
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CHAPTER THREE 
 

Table S3-1. Mean daily discharge (m3/day) and dendritic connectivity index (DCI) values under 
current and future climate scenarios, and the p-value resulting from t-tests comparing each 
climate scenario. Blue indicates significant increases in daily discharge or DCI. Red indicates 
significant decreases in discharge or DCI. Stream networks are ordered from most arid to least 
arid. 
Stream 
Network 

Mean 
Discharge 
(Current) 

Mean 
Discharge 
(Future) 

Mean DCI  
(Current) 

Mean DCI  
(Future) 

Sycamore 11567 16634 2.8 3.9 
East Turkey 1118 1290 4.9 4.6 
Chalone 11051 12652 9.2 9.3 
Cave 3829 4360 6.6 5.8 
Deer 117060 115687 82.9 80.8 
Teakettle 10851 9976 83.6 81.7 
McDowell 129165 178408 17.8 20.9 
Shane 1181 2124 17.0 20.3 
Blue 189015 245374 25.1 24.7 
Passage 133050 156623 68.4 65.4 
South Sandy 178257 206002 50.9 47.8 
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