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Abstract

Sparsity manifests itself in a multitude of modern High-Performance Computing applications

including graph neural networks, network analytics, and scienti�c computing. In sparse

matrices, the majority of values are zeros. Traditional methods of storing and processing

dense data are unsuitable for the new nature of sparse data, as they end up wasting storage

and compute on zeros. Hence, a variety of sparse data formats that store only the non-zero

elements were proposed in literature to provide a compact representation of sparse data.

Performance of operations on sparse data mainly depends on the sparse data format used

for storing the data, as the algorithm needs to closely match the sparse data format. However,

choosing the optimal sparse data format for the input sparse matrix is non-trivial, as the

optimal format depends on the sparsity pattern of the input sparse matrix. For example, in

sparse matrix-vector multiplication (SpMV), for the same input sparse matrix, using di�erent

sparse data formats can yield highly variant performance. The best format being the one that

closely matches how the non-zeros are arranged within the matrix. Additionally, performance

prediction for operations involving sparse matrices is not as straightforward as it used to be

for the dense case. For dense computations, dimensions and strides su�ce for performance

predictions as they provide a sense of the number of �oating point operations (FLOPs) to

be performed, and how this number compares to the architecture properties (peak FLOPs,

number of processing elements, etc.). On the other hand, sparse matrix dimensions do not

directly convey useful information about the total number of operations to be performed,

since the majority of elements are zeros and do not contribute to the total number of FLOPs.

Moreover, existing work on sparse operations optimizations mainly depends on a discrete set

of matrices, limiting the ability to generalize observations.

To address these challenges, we identify the sparsity pattern as the main driving factor for

xiii



performance. First, we propose an extensible classi�er framework to automatically identify

the sparsity pattern of the input sparse matrix. This framework uses graph neural networks

(GNNs) by representing the input sparse matrix as a graph, and then learning the struc-

tural relationship between nodes in the matrix (graph). Our framework achieves up to 98%

classi�cation accuracy on full graphs, the same accuracy for scrambled matrices, and 92%

accuracy for small random subsamples taken out of original graphs. Second, we use graph

models as a proxy to generate large-scale synthetic sparse matrices. We propose another

modular framework to study the correlation between the graph model parameters, and the

structure of the resulting graph and its tolerance to noise during the generation step. Third,

we also use graph models for a performance evaluation framework that can assist in �nding

the best sparse format for a given graph model on a given architecture, utilizing the graph

model parameters as a representative set of features to predict performance, and providing

a more robust way of visualizing sparse matrix operations performance. This framework

also takes into consideration noise in the matrix generation step, and evaluates the extent of

noise to which performance can still be predictable based on the graph model parameters.

Our results show that sparse computations need richer models to categorize sparse ma-

trices in terms of structure, study the sensitivity of such models even for one structure, and

tie performance to a more descriptive set of parameters.
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Chapter 1

Introduction

Handling sparse data is challenge that poses itself in modern high-performance computing

(HPC) workloads. Sparsity either naturally exists or enforced to reduce memory and compute

requirements. Deep learning workloads are one example of such applications: input data (for

training/inference) can be sparse due to the nature of data (social network relationship [62]

, user-product interaction data [99], etc.), or the model inherent sparsity [80], or enforcing

sparsity through pruning [39], and quantization [22], [100], [95], [31]. Either ways, e�ciently

exploiting sparsity leads to reducing memory requirements for such giant models. This is

only one example, several other workloads manifest sparsity such as graph analytics, �nite

element analysis [33], [60, 21].

In Sparse Matrices, the majority of values are zeros. For a given sparse matrix A, with

dimensions n ×m, the total number of non-zeros nnz is much smaller than n ×m. Hence,

traditional methods of storing and processing dense matrices are un�t when dealing with

sparse matrices. This is mainly due to the unnecessary storage of zeros, which take up

memory resources and exhibit poor performance for computations involving sparse matrices.

Figure 1.1a shows an example of a 10 × 10 sparse matrix, with only �ve non-zeros

(marked). The remaining 95 elements are zeros. Storing this matrix as a dense matrix,

requires the storage of all the zeros regardless of sparsity, resulting in a matrix size of

1



10 × 10 × 4bytes= 400bytes (assuming 32-bit single �oating point precision). Additionally,

computing on this matrix as a dense matrix introduces unnecessary operations by computing

on zeros. Figure 1.1a shows an example of a dense representation of a 10×10 sparse matrix,

with 95% sparsity. Figure 1.1b shows the a code example for a matrix-vector multiplication

operation y = A∗x where y is a dense vector, A is a sparse matrix in a dense representation,

and x is a dense vector. The code needs to iterate over all matrix elements, including zeros,

to do the multiplications, even though the zeros do not a�ect the result stored in the dense

vector y.

0
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0 1 2 3 4 5 6 7 8 9
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d

e

(a) Example sparse matrix.

1 for (int i = 0; i < n; ++i) {
2 y[i] = 0.0f;
3 for (int j = 0 ; j < m; ++j) {
4 y[i] += A[i][j] * x[j];
5 }
6 }

(b) Dense matrix-vector multiplication code

Figure 1.1: An Example Dense Representation of a sparse (mostly zeros) matrix, and the
algorithm to perform a Dense Matrix-Vector Multiplication using the dense representation.

Due to the ine�ciency of dense representation and algorithm for dealing with sparse

matrices, various sparse storage formats were developed with the goal of storing only non-

zeros in a sparse matrix. With the emergence of new sparse data formats, new algorithms

are developed to iterate over these formats. The algorithm is tightly coupled with the

sparse storage format used. Figure 1.2a shows the same example matrix represented using

the COOrdinate (COO) sparse storage format. Each entry in the matrix is represented

using a triplet: row index, column index, and the value. For this example, the storage

requirement is 5 entries × 3 arrays × 4 bytes = 60 bytes, assuming 32-bit indices and 32-bit

�oating point values, which is 6.7x less storage required compared to the dense representation.

Additionally, Figure 1.2b shows the code for Sparse Matrix-Vector Multiplication (SpMV)
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(a) COO representation

1 for (int i = 0; i < n; ++i) {
2 y[i] = 0.0f;
3 }
4 for (int i = 0 ; i < nnz; ++i) {
5 y[row[i]] += val[i] * x[col[i]];
6 }

(b) Sparse Matrix-Vector multiplication code us-

ing COO

Figure 1.2: Representing the matrix in Fig. 1.1a as a sparse matrix in COO format, and the
algorithm used to calculate Sparse Matrix-Vector Multiplication where tha operand sparse
matrix is in COO format

where the operand sparse matrix is represented in COO format. One thing to notice is that

the runtime complexity now is dependent on the number of non-zeros in the matrix (nnz)

instead of the matrix dimensions in the dense case. For sparse matrices, nnz is signi�cantly

less than the matrix dimensions (n × m), making sparse implementations more space and

runtime e�cient that dense implementations for sparse matrices.

A huge body of research introduced various di�erent sparse storage formats [67, 38, 6,

72, 43, 104, 7, 45, 27, 84, 53, 11, 70, 20, 63, 30, 90]. For a given input sparse matrix, the

performance of a sparse operation (e.g. SpMV) varies depending on many factors. One

important factor is the used sparse storage format. Figure 1.3 shows SpMV performance in

GFLOPs (vertical axis) for di�erent matrices from the SuiteSparse Matrix Collection [21]

(horizontal axis), using three di�erent sparse storage formats: COO, Compressed Sparse Row

(CSR), and ELLPACK (ELL) on AMD Radeon VII GPU. Two main points are clear from

this experiment: (a) For the same input matrix, performance varies across di�erent sparse

storage formats, and (b) there is no single format that universally performs best across all

matrices.

To this end, a lot of research work focused on using machine learning and auto-tuning

techniques to �nd the optimal sparse format for an input sparse matrix [64, 88, 103, 81, 13,

17]. However, they fall short due to the following reasons:

1. They represent matrices based on a limited set of features, extracted through a pre-
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Figure 1.3: Performance (in GFLOP/s) comparison of rocSPARSE SpMV kernel on AMD
Radeon VII GPU with 23 di�erent sparse matrices from the SparseSuite Matrix Collection
in COO, CSR, and ELL representations

processing step, or based on a �xed-size representation of the matrix, losing important

information in the process.

2. They exclusively use a discrete set of matrices for training and inference, making the

generalization of their conclusions challenging.

3. The proposed solutions are not extensible: the choice of the optimal format is based

on a limited number of available sparse storage formats.

This dissertation addresses the above challenges through a tri-fold approach. The con-

tributions of this dissertation are:

1. Proposing an extensible classi�er framework based on Graph Neural Networks (GNNs).

The framework takes as input a sparse matrix and produces as output the predicted

class of shape (sparsity pattern) of the input matrix.

2. Proposing the usage of graph models to generate large-scale sparse matrices and study

their structure. A modular framework is developed to study the sensitivity of sparse

matrices and graphs structures to the variation of the input parameters of graph gen-

erative models. The framework takes an input a graph generative model and produces

as output a sensitivity analysis of the structure to the input parameters, and to noise.
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3. The introduction of a framework for performance analysis, prediction, and visualiza-

tion of sparse matrix operations. The framework uses graph models as a parameterized

way of studying performance. The goals of the framework are: (a) to �nd a reperen-

stative set of features in the sparse case to relate to performance (other than matrix

dimensions), (b) to derive decision on the optimal sparse storage format for a given

graph model with a set of parameters and target architecture, (c) to study the e�ect

of noise in sparse data on sparse operation performance, (d) to study the end-to-end

performance breakdown across the sparse application work�ow, and (e) to provide

appropriate visualizations of sparse performance using identi�ed features.

4. Evaluation of high-level optimizations to accelerate sparse computations based on the

sparse data characteristics such as the graph model used to generate the data and its

parameters alongside with the used architecture and sparse operation.

The ultimate goal of this dissertation is to:

1. Automatically and quickly identify the non-zero and sparsity pattern of sparse data,

with minimal memory and compute requirements.

2. Provide the tools for a comprehensive understanding of the structure of sparse matrices

and graphs, based on how the data was generated.

3. Drive optimization decisions for sparse applications.

4. Layout the ground for future work that takes an input sparse data and architecture

characteristics, and provides as output the ideal sparse storage format and a set of high-

level optimizations and their con�guration to achieve the best possible performance.

The rest of this dissertation is organized as follows:

� Chapter 2 provides the fundamental background needed for the rest of the dissertation.
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� Chapter 3 discusses in detail the development of the GNN-based classi�er framework

for identifying sparse matrix structures.

� Chapter 4 describes the proposed framework for analyzing the robustness of graph

models.

� Chapter 5 introduces the proposed framework for performance analysis and visualiza-

tion for sparse computations.

� Chapter 6 explores high-level optimizations for sparse computations.

� Chapter 7 concludes the dissertation by providing a summary and future directions.
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Chapter 2

Background and Related Work

In the realm of computational sciences and engineering, the abstraction of complex systems

and relationships through graphs and sparse matrices has become a cornerstone of algorith-

mic development and data analysis. This chapter delves into the foundational aspects of

graph theory and sparse matrix representation, elucidating their pivotal roles in modeling

intricate network structures and facilitating e�cient computational operations. By exploring

various graph types, their properties, and the myriad ways in which sparse matrices can be

stored and manipulated, we embark on a journey through the theoretical underpinnings and

practical applications that underscore their signi�cance. The evolution of storage formats

and optimization techniques reveals a landscape marked by a relentless pursuit of e�ciency,

underscoring the ingenuity and innovation that characterize this domain. This chapter also

sheds light on some of the signi�cant work in literature dealing with sparse matrices and

graph in terms of tuning important kernels (such as SpMV), introducing sparse data for-

mats, architecture-aware auto-tuning and selection the optimal sparse format, and automatic

generation of sparse kernels.
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2.1 Graphs

In computer science, a graph is a data structure that consists of a set of vertices (or nodes)

and a set of edges connecting these vertices. Graphs are widely used to model relationships

between di�erent entities. In graph theory, a graph G is formally de�ned as an ordered pair

G = (V,E), where:

V is a non-empty set of vertices (or nodes),

E is a set of edges, where each edge is a 2-element subset of V.

The elements of E represent connections between the vertices in V . If G is an undirected

graph, the order of the elements in the subset is not considered, meaning {u, v} = {v, u}.

If G is a directed graph, the order of the elements in the subset matters, and the edge is

directed from the �rst element to the second.

Additionally, in the case of a weighted graph, each edge is associated with a numerical

value or weight.

So, in mathematical terms:

G = (V,E) and E ⊆ {{u, v} | u, v ∈ V }.

This formal de�nition captures the fundamental components of a graph and the relation-

ships between its vertices and edges.

2.1.1 Types of Graphs

Graphs can be categorized into multiple categories. Examples (not an exhaustive list) of

such categories are:

� Undirected Graphs: Figure 2.1a shows an example, where edges are bi-directional.
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� Directed Graphs (Digraphs): Edges have a speci�c direction, that goes from one

node (vertex) to another. Figure 2.1b shows an example directed graph.

� Weighted Graphs: Edges have weights assigned to them. Weighted graphs can be

directed or undirected. Figure 2.1c shows an example of a weighted undirected graph.

� Cyclic Graphs: If a directed graph contains at least one cycle (loop), it is considered

a cyclic graph as shown in Figure 2.1d.

A

B

C

D

E

(a) Undirected Graph

A

B

C

D

E

(b) Directed Graph (Digraph)

A

B

C

D

E

2 3 4 1

(c) Weighted Graph

A

B

C

D

E

(d) Cyclic Graph

Figure 2.1: Examples of di�erent categories of graphs

2.1.2 Representations of Graphs

Graphs can be represented in di�erent ways, commonly using adjacency lists or adjacency

matrices.

Adjacency List

In an adjacency list representation, each vertex maintains a list of its adjacent vertices

(neighbors). Figure 2.2a shows an example directed graph of �ve nodes (vertices). To

represent this graph using adjacency list, a list of neighboring nodes (vertices) is maintained

for each of the �ve nodes. Figure 2.2b shows the adjacency list representation of this example

graph. For undirected graph, if node A is connected to node B, then node B is also connected
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to node A as the edges of the graph are bidirectional. Figure 2.3a shows the same graph as

2.2a, but now all edges are undirected. To accommodate for this change, Figure 2.3b shows

the adjacency list representation of the undirected graph.

A

B

C

D

E

(a) Directed Graph

Node Adjacency List
A [B, D]
B [C, E]
C []
D []
E [D]

(b) Adjacency List

A B C D E
A 0 1 0 1 0
B 0 0 1 0 1
C 0 0 0 0 0
D 0 0 0 0 0
E 0 0 0 1 0

(c) Adjacency Matrix

Figure 2.2: (a)Directed Graph and two Representations of it using (b) Adjacency List, and
(c) Adjacency Matrix

A

B

C

D

E

(a) Undirected Graph

Node Adjacency List
A [B, D]
B [A, C, E]
C [B]
D [A, E]
E [B, D]

(b) Adjacency List

A B C D E
A 0 1 0 1 0
B 1 0 1 0 1
C 0 1 0 0 0
D 1 0 0 0 1
E 0 1 0 1 0

(c) Adjacency Matrix

Figure 2.3: (a)Undirected Graph and two Representations of it using (b) Adjacency List,
and (c) Adjacency Matrix

Adjacency Matrix

Another way to represent graphs is using an adjacency matrix. In an adjacency matrix repre-

sentation, a 2D array is used to represent the connections between vertices. The dimensions

of the matrix are |V |× |V | where |V | is the number of nodes (vertices) of the graph. If there

exists an edge between v1 and v5, then the entry at index (v1, v5) will be set (1 in unweighted

graph, or w15 in a weighted graph, where w15 is the weight on the edge between v1 and v5).

Figure 2.2c shows the adjacency matrix representation for a directed graph, and Figure 2.3c

illustrates the same representation for an undirected graph.
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2.2 Sparse Matrices

Sparse matrices are data structures with a majority of elements being zero. They arise

naturally in many scienti�c and engineering applications, such as the representation of adja-

cency matrices in graph theory, solutions to partial di�erential equations, and data encoding

in machine learning algorithms. The sparse nature of these matrices typically stems from

the systems they model; many real-world systems are comprised of elements with limited

interaction, leading to a signi�cant number of zero coe�cients.

Working with sparse matrices requires algorithms that are fundamentally di�erent from

those used for dense matrices. The usual matrix operations such as addition, multiplication,

and inversion need to be adapted to ignore the zero elements, which signi�cantly improves

computational e�ciency. One of the main advantages of exploiting sparsity is the potential

for reducing computational complexity. Operations that are quadratic or cubic in the di-

mension of the matrix for dense matrices can often be performed in linear or near-linear time

for sparse matrices. This e�ciency can be critical in applications such as solving systems of

linear equations, eigenvalue problems, and performing various matrix decompositions. The

utility of sparse matrices is underscored by their ability to handle large datasets and models

that would otherwise be infeasible to manage with dense matrix representations.

Sparse matrices are pivotal in various applications, such as:

� Network analysis, where the connectivity can be represented by adjacency matrices

that are typically sparse.

� Finite element methods in engineering simulations, which produce system matrices

that are sparse due to locality of element interactions.

� Graph algorithms and data mining techniques that involve large, sparse adjacency

matrices.
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(a) Example Sparse Matrix
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(e) LIL Representation
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(g) ELL Representation

Figure 2.4: Sparse Matrix Example (a) and its representation using (b) COO, (c) CSR, (d)
CSC, (e) LIL, (f) DIA, and (g) ELL formats.

2.3 Sparse Matrix Storage Formats

E�cient storage and operation on sparse matrices are crucial for the performance of many

algorithms and applications. To e�ciently utilize the memory and computational advantages

of sparse matrices, several storage schemes have been devised. Each format presents di�erent

advantages depending on the operations to be performed. Figure 2.4 shows an example sparse

matrix and its representation using di�erent common sparse storage formats. These include:

2.3.1 COOrdinate Representation (COO)

In this representation, three arrays are maintained as shown in Figure 2.4b: val linearly

stores the non-zero values in the matrix, row_idx and col_idx store the corresponding

row indices and column indices respectively for these non-zero values.
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2.3.2 Compressed Sparse Row Representation (CSR)

CSR [78] stores the sparse matrix using 3 arrays as shown in Figure 2.4c: val stores the

non-zero values, col_idx stores the corresponding column indices for these values, and

row_ptr keeps track of elements that belong to each row. For example, in Figure 2.4c

row_ptr[0]=0 means that non-zero elements for row 0 of the sparse matrix, start at index

0 in both val and col_idx. The last non-zero element in row 0 is identi�ed by looking

at row_ptr[1] which in this example is 2. This means that non-zero elements of row 1 of

the sparse matrix start at index 2 in val and col_idx, suggesting that index 1 is the last

index for row 0 elements.

2.3.3 Compressed Sparse Column Representation (CSC)

This representation is similar to CSR, except that it records non-zero elements column-wise

(instead of row-wise in CSR). As shown in Figure 2.4d-d, it also keeps track of three arrays:

val for the nonzero values, row_idx to store the corresponding row indices for the non-

zero values, and col_ptr stores pointers to the start indices of non-zero elements in val

and row_idx for the corresponding column. In this example, col_ptr[0] = 0 means

that non-zero elements in column 0 of the sparse matrix, start at index 0 in both val and

row_idx arrays.

2.3.4 List of Lists Representation (LIL)

LIL keeps maintains two structures: rows and vals. Each of them contains an array for

each row in the sparse matrix that has at least one non-zero element. Arrays in rows store

the column indices of each non-zero element in that row. Non-zero values for each row are

stored in vals arrays. Figure 2.4e shows an example of LIL representation. Each row of

the example sparse matrix contains at least one non-zero element, so LIL contains 4 arrays

for rows and vals: one for each sparse row.
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2.3.5 DIAgonal Representation (DIA)

Diagonal representation is the most e�cient representation for matrices where all or most

of the non-zero lie on or around the main diagonal. It maintains two arrays: offsets and

val. offsets stores sorted o�sets of non-zeros from the main diagonal. In Figure 2.4f,

value d is at (2,0) in the original sparse matrix. For row 2 in the matrix, a diagonal element

would be at index (2,2). This means that d is at o�set 0-2= -2 columns from the main

diagonal element. O�sets for all non-zero elements from the main diagonal are obtained and

are sorted in an increasing order in both offsets and val.

2.3.6 ELLPACK Representation (ELL)

ELL representation utilizes two 2D arrays to store non-zero values, and non-zero column

indices as shown in Figure 2.4g. The number of rows for each of the arrays is equal to

the number of rows in the original sparse matrix. The number of columns in these arrays

is equal to the maximum number of non-zeros per row. If a row contains fewer non-zeros

than the maximum number of non-zeros per row, the corresponding entries in the values

and column indices arrays are padded with 0s and -1s respectively. One advantage of ELL

representation is the regular access (as compared to CSR for example), which enables further

loop optimizations and parallelization techniques. However, a major drawback rises when

the variation of the number of non-zeros per row is high, since the memory storage required

for the values and column indices can be very high, depending on the maximum number of

non-zeros per row.

2.3.7 Doubly-Compressed Sparse Column Representation (DCSC)

DCSC [14] evolved as an improvement over CSC for hypersparse matrices, in which the

number of non-zeros is much lower than the dimensions of the matrix. The problem in CSC

arises when many columns do not contain any non-zeros, which means that the col_ptr
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array of CSC will store the same index multiple times (|col_ptr| = n where n is the

number of columns). DCSC only keeps track of columns with at least one non-zero value.

Hence, |col_ptr| = nzc where nzc is the number of columns with at least one non-zero.

However, one more level of indirection is needed to map the new column pointers to the

original column pointers.

2.4 Optimizing Sparse Operations

2.4.1 Linear Algebra Libraries

Intel Math Kernel Library (MKL) [91] is a general purpose sparse linear algebra library,

written in C/Fortran. It contains optimized kernels for Intel CPUs for a variety sparse matrix

computations. cuSparse [74] is NVIDIA's library for sparse matrix computations on GPUs,

o�ering both row-major and column-major access patterns. AMD's GPU counterpart library

is rocSPARSE [5]. Eigen [36] is a header-only, C++ template-based library that provides

high performance linear algebra operations and is used in Google's Tensor�ow.

2.4.2 Architecture-Speci�c Optimizations

Merge-based CsrMV [73] introduced a parallel, load-balancing method to perform SpMV on

CPUs and GPUs using the CSR format. The method partitions the input matrix equally

among threads, so that all threads have the same workload, regardless of any irregularities in

the sparsity structure of the matrix (rows with too many or too few non-zeros for example).

Results show predictable performance with minimum correlation to the non-zero distribution

across the matrix.

Su and Keutzer [86] proposed clSpMV, a runtime auto-tuning framework built on top of

OpenCL [85] that analyzes and chooses the best sparse matrix representation for the target

platform. clSpMV also introduces a new sparse format called the "Cocktail Format". Results

show that clSpMV performs between 63.3% and 83% better than NVIDIA's cuSparse SpMV
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implementation.

YaSPMV [97] addresses the same problem of load imbalance in SpMV kernels, in addition

to memory bottleneck. In order to tackle these problems, this work introduced the blocked

compressed common coordinate sparse format (BCCOO) to enable blocked SpMV execution

on GPUs. This format split the matrix into vertical segments for improved cache locality.

This work also proposes an e�cient SpMV scan algorithm to mitigate load imbalance, and

an auto-tuning framework to optimize SpMV parameters based on the input matrix features.

Results show performance gains over cuSparse v 5.0 between 42% to 65% depending on the

GPU architecture, and between 40% and 70% over clSpMV [86].

Choi et. al [18] presented a model-driven auto-tuning framework for SpMV on GPU

using blocked formats. The model includes GPU hardware characteristics into consideration

when optimizing execution parameters. They introduced hand-crafted SpMV kernel based

on the block ELLPACK (BELLPACK) format. The auto-tuner has an o�ine and online

phase. The online phase is required to determine block size parameters. Results show that

the framework can achieve within 15% of the best global performance obtained by exhaustive

space search.

Ortega et. al [75] introduced a fast library implementation of SpMM on GPUs that at-

tempts to hide the memory access latency with a high operational intensity ratio, exploiting

ELLPACK-R format, and using streaming accesses to minimize the CPU-GPU communica-

tion latency e�ect.

Liu and Vinter [69] studied SpGEMM kernels that involve irregular matrices as operands

on GPUs. Their work focuses on mitigating two major problems: memory pre-allocation of

the result matrix, since the number of non-zeros is unknown before the actual computation,

and the expensive insertion of values at random indices due to lack to locality. For the

result matrix allocation, they introduced a parallel algorithm to calculate the upper bound

of non-zeros for each row and assigning each row to a bin of 38 possible bins according to the

number of non-zeros per row and allocate a temporary result matrix. For insertions, they

16



use a parallel GPU merge algorithm. Results show speedup over cuSparse and Intel MKL

implementations.

CSX [52] targets the optimization of SpMV on shared-memory systems where the per-

formance of the kernel does not scale well with increasing the number of processors. It

targets reducing the volume of metadata communicated through the shared memory system

by introducing a new compressed format for the sparse matrix metadata. The newly intro-

duced format depends mainly on the fact that sparse matrices represent real-life physical

structures, and they include repeated patterns or regularities. By exploiting these regular

substructures horizontally, vertically, and diagonally, CSX can represent sparse matrices in

a more compressed form (than CSR for example). The preprocessing cost can be partially

hidden by either doing it o�ine, or perform sampling while executing online preprocessing.

Adaptive Sparse Tiling (ASpT) [40] focuses on optimizing the performance of two speci�c

sparse matrix kernel: sparse-dense matrix multiplication (SpMM) and Sampled Dense Dense

Matrix Multiplication (SDDMM). The key motivation of this work is the complexity of ap-

plying tiling to sparse matrix formats. This is because the irregular matrix access patterns

when sparse matrices are involved. The high-level idea of ASpT uses a hybrid of two tech-

niques: 2D tiling, and no tiling (using regular row-wise access) according to the number of

non-zeros in a column segments. First, ASpT splits the matrix into a number of row panels,

each panel consists of a �xed number of consecutive rows which depends on the cache size.

Within each panel, columns are sorted according to the number of non-zero elements in each

column. ASpT de�nes a target-speci�c threshold that di�erentiates heavy column segments

from sparse column segments. Assuming that this threshold is Th, column segments with

nnz >= Th are considered heavy, while column segments with nnz < Th are considered light.

Now, each row panel is divided into two tiles: a dense tile with all the heavy segments, and a

sparse tile with all the light segments. The dense tile is further divided into 2D tiles in which

the tile width is determined by cache capacity. Column segments are then ordered according

to the number of non-zero elements: column segments with the highest number of non-zeros
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comes �rst. Heavy column segments are processed using 2D tiling, while light segments are

processed using traditional CSR row-wise execution. The paper reports signi�cant speedups

between 7.26x to 30.15x compared to other state-of-the-art solutions.

2.4.3 Machine Learning Techniques

Selection of Sparse Matrix Representation on GPU [81] is one work that addresses the issue

of choosing an appropriate sparse matrix representation with the goal of optimizing perfor-

mance. That work focuses mainly on optimizing SpMV operation on GPUs. They introduced

a machine learning model using decision trees to select the best sparse matrix representation

for a given matrix on a given target to achieve the highest performance possible. For the

dataset, they used 682 matrices from 114 in the University of Florida sparse matrix collection

[21]. The feature set used in the training and testing is mainly about the sparsity structure

of the matrix such as: number of rows, number of columns, number of non-zeros, fraction

of non-zeros, non-zeros per row (minimum, maximum, average, and standard deviation),

non-zero blocks per row (minimum, maximum, average, and standard deviation), and size

of non-zero blocks per row (minimum, maximum, average, and standard deviation).

SMATER [88] extends SMAT by supporting more storage formats and including a �exible

backend containing both Intel MKL implementation and their hand-tuned implementation.

The backend is intended to be �exible to include any BLAS library for multiple targets

(multi/many core CPUs and GPUs). SMATER training set is also the University of Florida

sparse matrix collection. The feature set is similar to SMAT, with the addition of two

features to represent the estimated dense sub-block row and column size (to enable support

for blocked sparse formats). Results show a 2.5× performance improvement on average when

compared with Intel MKL.

Benatia et. al [13] proposed a similar machine learning based approach for SpMV on

GPUs. Their results show that the prediction model achieves 98% of the performance of the

optimum format selection. They consider COO, CSR, ELL, and HYB as candidate formats.
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Sparse matrix features are extracted and fed to a support vector machine (SVM) classi�er

to be trained on them. The extracted feature set represents the sparsity structure of the

matrix, similar to the previous two works.

Lehnert et. al [55] introduced a Linear Regression and k-Nearest Neighbors (KNN)

models to predict the performance of SpMV on GPUs using di�erent sparse matrix formats.

In addition to the regular matrix sparsity structure features, they added CUDA block size

as a feature to take GPU thread mapping a factor into the decision process.

2.4.4 Sparse Matrix Formats

HiCOO (Hierarchical COOrdinate) [63] is another hierarchical format for sparse tensors. The

motivation behind HiCOO was the mode-dependent nature of most sparse representations

and their hierarchical variants. Mode here is referring to the dimension. For example, CSR

is mode-dependent because the access pattern (iteration) is dependent on the row (mode

1) structure. In CSR, it is e�cient to randomly access any row. However, in order to

�nd element at index (i, j), we cannot �nd the value for j directly. We need to search

the structure (array) storing non-zero values for row i, and then get element (i, j). So, we

say that CSR is mode-1 dependent. One motivation to introducing HiCOO is to be mode

independent. The HiCOO format represents tensors as blocks in a sparse pattern. For

every non-zero value, HiCOO stores a pointer to the containing block (start address of the

block), sparse block indices, and non-zero indices within the block. This provides a compact

storage, compared to COO, if the number of non-zeros per block is greater than 2. The paper

also uses HiCOO format for the Matricized Tensor Times Khatri-Rao Product (MTTKRP)

operation. A parallel variant of the algorithm based on HiCOO is also introduced. Results

show a signi�cant speedup (up to 3.5× compared to the COO format and 4.3× compared

to CSF format).

CSR5 [70] was proposed as an improvement over the traditional CSR format, for SpMV

on CPU and GPU targets. One major strength of CSR5 is its independence of the matrix
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sparsity structure. It provides high throughput SpMV regardless of regularity of the input

matrix. CSR5 was evaluated against multiple existing formats on di�erent architectures,

using a benchmark suite of 24 matrices: 10 irregular and 14 regular ones. Results show

that CSR5 achieves similar or better performance for the regular matrices, while achieving

an average performance improvement between 17.6% and 293.0% depending on the target

architecture.

Hierarchically Tiled Arrays (HTAs) [30] introduce a class to split matrices into multiple

levels of representation. The �rst level partitions the matrix into tiles. These tiles can be

further partitioned into tiles (second level) or remain untiled. The outer level (�rst level)

can be distributed among di�erent processors to achieve computation parallelism. Inner

tiles can be processed locally to exploit locality. Tiles can be referenced as a whole. For

example, if the original matrix M is partitioned into 4 square tiles of size n, we can access

the second tile using the notation M1,1. We can access the �rst element in this tile using the

expression M1,1(1,1), or alternatively the tile can be �attened and the same element can be

accessed using M(1, n+1). In order to carry on an operation over two HTAs, they need to

be conformable, meaning that they must have the same number of levels and shape.

Recursive Matrix and Vector (RMV) [90] applies a similar idea to scale-free graph. The

idea is based on the observation that these graphs contain a few vertices with many edges,

and a large number of vertices with few edges. If we zoom in these vertices with few edges,

we can see that the same pattern repeats. Based on this recursive pattern, RMV introduced

a hierarchical storage representation of graphs as matrices. The lowest level of hierarchy

consists of the actual matrix values. Going up, each level represents a coarser view of the

bottom-most level. Upper levels structures are called containers. Each structure consists

of multiple �elds: whether this is a container or a value, the number of columns and rows

which can be accessed by this structure, and a bit matrix describing the pattern of non-zero

elements. The main objective for RMV is to preserve the locality in both graphs and the

cache, which was not supported by other sparse formats for this type of graphs.
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2.4.5 Domain Speci�c Languages and Compiler-based Approaches

The Tensor Algebra Compiler (TACO) [50] is the �rst compiler that generates entire kernels

for both sparse and dense tensors. TACO takes two inputs: a tensor expression that consists

of an arbitrary number of operands and operators. The second input is the data format

for each dimension of the involved operands. Each operand dimension can be either dense

or sparse. For sparse dimensions, a format can be speci�ed such as CSR, CSC, COO, and

DIA. The output is a single kernel code generated to evaluate the speci�ed expression with

the speci�ed tensor formats. TACO generates kernel code by introducing an intermediate

representation called iteration graph, when then uses "Merge Lattices" to merge elements

at matching indices, depending on the operation. Iteration graphs are graph representations

that describe how to iterate over the indices of sparse dimensions, while merge lattices

describe how to merge indices that access dimensions of more than one tensor. For example,

for a SpMV, merge lattices operate at the intersection of the indices of the sparse matrix

and the dense vector. On the other hand, for dis-junction operation such as vector addition,

lattices operate at the union of the indices of both vectors. Code is generated lattice point

by lattice point, introducing the appropriate loop boundaries and necessary code for merge

operations. TACO results show competitive performance when compared to other popular

hand-crafted libraries.

Tiramisu [8] is another compiler that uses the polyhedral model to generate e�cient

code for di�erent domains such as: image processing, deep learning, and linear algebra

(including sparse). It generates code for CPU, GPU, and distributed multi-node systems.

Tiramisu leverages a 4-level intermediate representation, which enables the decoupling of the

algorithm, the schedule, computation processing unit location, and the data representation

and layout. Results show comparable performance to hand-tuned library implementations.

Taichi [41] is a domain-speci�c language for 3D visual computing that exploits spatial

sparsity (regions of interest are smaller than the containing bounding volume). It addresses

the issue of the complexity of sparse data structures, speci�cally the time spent handling
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sparse structures due to indirection and parallelization ine�ciencies. The approach uses is

Taichi depends mainly on separating the computational kernel from the data structures. It

provides a separate hierarchical data structure description language, which is, along with

imperative computation language, is then transformed into an intermediate representation

and data structure access optimization by the compiler. Then, the runtime system performs

auto parallelization and memory management. Finally, code is generated for a choice of

CPU or GPU backends. Results show that code generated by Taichi is 7× to 13× shorter

and 1.2× to 13× faster than state-of-the-art counterparts.

2.5 Summary

This chapter has traversed the basic background needed for the rest of the dissertation,

especially on graphs and sparse matrices, shedding light on their profound impact on mod-

ern applications and workloads across di�erent domains. The chapter explored some of the

common graph types and their representations and showed the di�erence between the dense

and sparse representation of data in terms of storage and needed algorithms. The examina-

tion of sparse matrix storage formats and optimization strategies has further demonstrated

the relentless quest for computational e�ciency, highlighting signi�cant advancements and

emerging trends. As we re�ect on the contributions of pioneering works and contempo-

rary studies, it is evident that the journey of innovation in graph theory and sparse matrix

manipulation is far from over. The ongoing exploration of new storage schemes, optimiza-

tion techniques, and applications promises to unlock even greater potentials, propelling us

towards novel discoveries and advancements in computational science and beyond.
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Chapter 3

Using GNNs to Identify Sparse Matrix

Structure

3.1 Introduction

(a) (b)

Diagonal Random Rand+Diag Kronecker

Diagonal 500 0 0 0
Random 0 490 10 0

Rand+Diag 0 40 460 0
Kronecker 0 20 0 480

(c)

Figure 3.1: E�cacy of our classi�er framework at determining structure when the data is
permuted. (a) is an o�-diagonal matrix, (b) is a re-labelled variant of (a), and (c) is the
confusion matrix for the classi�er framework on re-labelled matrices similar to (b). By using
GCNs our approach is invariant to node labelling and achieves around 97% accuracy.

Sparse matrices represent a fundamental building block used throughout the �eld of sci-

enti�c computing in applications, such as graph analytics, machine learning, �uid mechanics,

and �nite element analysis [60, 21]. Such matrices appear as operands in numerous funda-

mental computational kernels such as sparse matrix-vector multiplication (SpMV), Cholesky

factorization, LU factorization, sparse matrix -dense matrix multiplication, and matricized

tensor times Khatri-Rao product (MTTKRP) among others. Building e�cient algorithms
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for this class of kernels mainly depends on the storage format used for the sparse matrix as

observed in di�erent studies [17, 12]. A variety of such formats are proposed in literature

[29, 54]. Hence, it is crucial to identify the structure of the matrix to choose the ideal sparse

format, and eventually tailor the algorithm to that format to optimize the workload perfor-

mance. However, identifying the structure of the matrix is not always trivial. Figure 3.1a

shows a spy plot of an o�-diagonal sparse matrix, and Figure 3.1b shows the same matrix,

with some of the original row indices and column indices re-labelled. It is less obvious for

the latter �gure to provide an insight of the original structure of the non-zeros within the

matrix. Additionally, in case of huge sparse matrices, we might only have access to samples

of the matrix. This could be because of computational or storage restrictions, or missing

data. In these two cases (re-labelling and sub-sampling), we need e�cient techniques to

recognize the shape of the input matrix.

To tackle mentioned issues, we propose a framework to identify sparse matrices struc-

tures, using graph neural networks. Figure 3.1c shows the confusion matrix for the proposed

framework using four sample classes on re-labelled variants. The framework design is mod-

ular, allowing users to easily augment it with new structures generators or feature sets. The

main contributions of this chapter are as follows:

� Proposing a novel, modular Graph Neural Network framework to accurately predict

the shapes of sparse matrices, including partial samples, and re-labelled variants of

original matrices.

� Presenting a new balanced synthetic dataset for structured sparse matrices.

� Providing a performance analysis of graph-level classi�cation on sparse matrices, using

di�erent feature sets.

� Introducing two new compact and e�cient feature sets for matrices as graphs, namely:

Linear and Exponential Binned One-Hot Degree Encoding.
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The rest of this chapter is organized as follows: Section 3.2 introduces the necessary back-

ground and related work, Section 3.3 details the design of the proposed framework, Section

3.4 discusses the evaluation and results of the framework. Finally, Section 3.5 summarizes

the �ndings of the chapter.

3.2 Background and Related Work

3.2.1 Graphs as Matrices

A Graph is a collection of nodes or vertices, and edges or links that connect pairs of nodes.

Graphs are used to represent and analyze complex relationships and connections between en-

tities such as social networks, transportation systems, electrical circuits, chemical molecules,

etc. There are many types of graphs, including directed and undirected graphs, weighted and

unweighted graphs, bipartite graphs, and more. Graph theory is the branch of mathematics

that studies graphs and their properties.

Representing graphs as matrices has several bene�ts. Matrices provide a convenient way

to perform various computations on graphs. For instance, matrix multiplication can be used

to compute the number of paths between two nodes in a graph. Moreover, graph traversal

algorithms such as depth-�rst search and breadth-�rst search can be e�ciently implemented

using linear algebra operations [47]. Additionally, matrices can be used to represent graphs

in machine learning applications, allowing the use of standard machine learning techniques

such as deep learning and clustering. Matrices also provide a way to visualize graphs using

tools such as heat maps, which can help in identifying patterns and structures in the graph.

Finally, storing graphs as matrices can be more e�cient than other representations in terms

of storage and access. This is because matrices can be stored and accessed using standard

techniques for numerical data.

Overall, representing graphs as matrices provides a powerful and �exible way to analyze,

visualize, and solve problems on graphs, making it a popular choice for many applications.
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3.2.2 Matrices as Graphs

1 0 0.8
0 0 0
0 0.3 5


(a) Dense

row 0 0 2 2

col 0 2 1 2

val 1 0.8 0.3 5

(b) COO

0

2

1

(c) Graph

Figure 3.2: The graph/matrix duality allows us to represent graphs and matrices using the
same data formats, and more importantly allows us to use Graph Convolutional Networks
on the graphical representation of sparse matrices to recover the structure from local (node)
observations.

Matrices can be represented as graphs as shown in Figure 3.2. An example of a dense

representation of a matrix is shown in Figure 3.2a, as it consists of di�erent rows and columns

and the intersection of a row and a column stores a value. A more compact representation

for a sparse matrix is the COOrdinate format, as shown in Figure 3.2b where three arrays

are maintained: the row indices, the column indices, and the non-zero values. Only entries

for non-zero values are stored. Additionally, by looking at the COO representation of the

matrix, one can also represent the matrix as a graph where nodes (vertices) are row/column

indices, and the existence of an edge indicates the existence of a non-zero value. The weight

of an edge can be used to represent the actual non-zero value if needed. Figure 3.2c shows

an example of such representation. For the �rst entry of the matrix (0,0,1) we have an edge

(non-zero) between row 0 and column 0. Since they both are of the same value (0), we can

represent them as one node in the graph with a self-loop. We can optionally add a weight

to that edge with the value 1 indicating the actual non-zero value stored at that location.

Graph representation of matrices is speci�cally bene�cial in di�erent ways: (1) Graphs

can provide a compact representation of the matrix, reducing storage and memory require-

ments, (2) It allows for the application of graph theory techniques to the analysis of matrices.

For example, properties such as degree, diameter, clustering coe�cient, and centrality mea-

sures can be computed for the corresponding graph representation of the matrix. These

properties can provide insights into the structure and behavior of the matrix that might
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not be immediately apparent from its matrix form (whether it is dense or sparse). Another

bene�t is that it enables the use of graph algorithms and techniques for matrix operations.

For example, graph traversal algorithms can be used to compute matrix products, which

can be useful for large and sparse matrices. Additionally, graph-based algorithms such as

PageRank can be applied to matrices to matrices to perform tasks such as ranking, cluster-

ing, and dimensionality reduction. Finally, representing matrices as graphs enables the use

of a powerful class of machine learning models on them to predict graph-level, node-level, or

edge-level parameters. This class of graph enabled machine learning models is Graph Neural

Networks.

3.2.3 Graph Neural Networks

Graph neural networks (GNNs) [79] are a class of deep learning models that operate on

graphs or networks, which are commonly used to represent complex structured data such

as molecules, social networks, electronic circuits, road networks, and many more. Unlike

traditional neural networks that operate on structured data such as images or sequences,

GNNs can handle arbitrary graph structures with varying node and edge attributes, enabling

them to learn powerful representations of graph-structured data.

The key idea behind GNNs is to iteratively update node embeddings by aggregating in-

formation from the embeddings of their neighbors, which is based on the graph convolution

operation. By stacking multiple layers of graph convolution and non-linear activation func-

tions, GNNs can learn hierarchical representations of the graph that capture both local and

global information.

GNNs have shown remarkable success in a variety of applications such as node classi�ca-

tion, link prediction, and graph generation. For example, GNNs have been used to predict

protein-ligand binding a�nity, recommend items in e-commerce platforms, and detect fake

news in social media. GNNs have also been extended to handle dynamic graphs that evolve

over time, and to incorporate additional information such as node features, edge attributes,
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and attention mechanisms.

3.2.4 Structured Matrices

Several common structures are observed in sparse matrices, such as:

Diagonal all non-zeros are located on the main or a secondary diagonal. This structure rep-

resents a 1D mesh and commonly appears in various scienti�c and engineering applications.

Random the non-zero elements are randomly distributed across the matrix, with variable

density. Such matrices have no speci�c identi�able structure.

Kronecker Graphs [56] are a class of synthetic graphs that have been widely used to

model real-world networks such as social networks, biological networks, and communication

networks. These graphs are generated by recursively applying the Kronecker product of a

small base graph with itself, typically of size 2×2 or 3×3. Let A and B be two matrices.

Then, their Kronecker product A⊗B is given by

A⊗B =


a11B · · · a1nB

...
. . .

...

am1B · · · amnB

 (3.1)

where aij are the entries of A. The resulting graph has a power-law degree distribution

and exhibits a hierarchical structure that captures both the local and global connectivity

patterns of the underlying real-world network.

We use these three classes of structures, and a combination of them, as a representative

set that can be combined to form more complex relationships [76, 89]. Our framework is not

limited to only these structures, and they serve as an example to evaluate its performance.

Degree as a representative node feature Figure 3.3 illustrates that one can accurately

distinguish between the di�erent classes based on the degree distribution of the representative

graph. For example, for Diagonal matrices (Figure 3.3a), the degree for all nodes is low, and

is either constant or linear across all nodes. Kronecker graphs follow a power-law degree
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(a) Diagonal (b) Random

(c) Random+Diagonal (d) Kronecker Graph

Figure 3.3: Global Degree Distribution for samples in each matrix (graph) class studied in
this chapter. In our approach we classify the shape based on local views from sampled data.

distribution, with only a few nodes having many connections (high degree) and most of

the nodes having relatively few connections (low degree). However, only the local per-node

degree view may be immediately available, and not the global graph view. An example of

such a case is only having a sample of the graph and not the entire graph due to storage or

computational limitations. The power of GNNs can be leveraged to carry out the required

task: the prediction of the sample matrix structure.

3.2.5 Prediction on Sparse Matrices

Several studies investigated the use of machine learning to predict the optimal sparse format

for SpMV on CPU and GPU [103, 88, 86, 66, 65, 13]. Our framework does not directly

predict the best sparse format, instead, we only predict the structure of the input matrix.

This allows de-coupling the sparsity pattern from the sparse format, following the argument

adopted by AlphaSparse [25] since our framework also allows the seamless integration of

new classes. Existing techniques collect a set of features from each matrix such as: the

number of diagonals, the ratio of true diagonals to total diagonals, the (maximum) number

of non-zeros per row, the variation of the number of nonzeros per row, the ratio of nonzeros

in DIA and ELL data structures, and a factor or power-law distribution. We only need to

calculate one feature per node: its degree. Also, [103] uses a CNN approach to treat matrices
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Figure 3.4: High-Level overview of the framework. It consists of three main phases: dataset
generation, where the synthetic sparse matrices are generated, prepared as graphs, and
have feature set attached. Then, the GNN model training using 5-fold cross validation to
capture the model performance, and then generate a trained model instances, that is used
later in the inference phase.

as images, and in order to �x the size of the matrix, they normalize input matrices into �xed

size blocks, losing partial matrix information in the process. In contrast, our approach

handles arbitrary sizes of matrices, without losing precision, leveraging the power of Graph

Neural Networks. We can optionally sample large matrices and maintain high prediction

accuracy. An additional bene�t to our framework is that it is order agnostic, since matrices

are represented as graphs.

3.2.6 Graph Representation for Learning

Representing non-attribute graphs is an open problem [19]. Common approaches employ

graph properties such as node degree, more speci�cally a one-hot encoding of the degree

[96]. One-hot encoding su�ers from numerous limitations (Section 3.3.3). LDP [15] provides

a compact representation for graph using �ve features per node. Although the computation

of such feature vector is e�cient, using LDP results in unreliable model performance for

our task (Section 3.4.2). Both our representations (LBOH and EBOH) outperform one-hot

encoding and LDP while addressing their shortcomings.
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3.3 Framework Description

The goal of the proposed framework is to predict the structure of the input sparse matrix

through its classi�cation into one of the con�gured target classes. We use diagonal, random,

diagonal+random, and Kronecker graph as examples of these classes to evaluate the perfor-

mance of the framework. New structures can be seamlessly integrated. Figure 3.4 shows

a high-level overview of the proposed framework. It consists of three main stages: Dataset

generation, Model Training, and Inference. A synthetic dataset is generated using di�erent

generators for di�erent shapes of matrices, which are then represented as graphs. In the

training phase, we use GNN with 5-fold cross validation to evaluate the model performance.

Finally, the trained model instance is used for later inference.

Procedure for using the trained model is as follows: the input sparse matrix is a matrix

market �le (.mtx) in triplets (COO) format, which is then used to build a graph representa-

tion of the matrix, as discussed in section 3.2.2. The input coordinate representation can be

thought of as the adjacency list of the graph: at each index i of the row array and col array,

there exists an edge (a non-zero) in the generated graph. The union of the unique sets of

the row and col arrays is the set of vertices (nodes) in the graph. The actual non-zero values

are not recorded, since the shape of the matrix does not depend on them. The existence of

a non-zero (an edge) is enough information for our approach to decide the class the input

matrix belongs to.

The output is a prediction (label) that speci�es the class with highest probability that

the input matrix belongs to, according to the model. In the rest of this section, we discuss

in more detail the di�erent building blocks in our proposed framework.

3.3.1 Dataset Generation

We generate a balanced dataset of 40K synthetic sparse matrices, covering the four sample

classes through individual generators: : Diagonal, Random, Diagonal + Random, and Kro-
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necker Graphs. Each of the generators returns a Coordinate (COO) representation for the

matrix, excluding the actual non-zero values which provides an additional bene�t of reduced

storage for the dataset needed to train the model. The COO representation is then used as

the adjacency list to build the graph representation.

In this section, we discuss the process of generating each.

Diagonal Generator

generates diagonal sparse matrices that can be either main diagonal, upper diagonal, or lower

diagonal matrices. The generator takes as input two parameters: the size of each dimension,

and the diagonal position.

Random Generator

generates random sparse matrices. The density of the matrix (ratio of the number of non-

zeros to the total number of elements in the matrix) is adjustable in the range of 0% (fully

sparse, no non-zeros) and 100% (fully dense, all elements are non-zeros). The default density

used for the generated matrices is 20%.

Random+Diagonal Generator

generates random square sparse matrices with a main diagonal. The density of the generated

matrix is also adjustable using the same method of generating Random matrices.

Kronecker Graphs Generator

generates Kronecker Graphs, starting from a 2×2 initiator matrix K1. The initiator matrix

K1 is fully dense (all 4 values are non-zeros). The generator takes the number of times the

Kronecker product will be applied as a parameter. For example, if times = 2, it generates

K3 = K1 ⊗K1 ⊗K1 with dimensions 8 × 8. Then, a uniform random probability matrix
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is generated with the same size as the resulting Kronecker product, and used to mask the

product to generate the �nal Kronecker graph.

3.3.2 Dataset Preparation

For the development of the graph neural network model, we use PyTorch Geometric [28].In

order for the generated matrices to be compatible with PyTorch Geometric, they are expected

to be converted into the library's data.Data objects. In order to construct such objects,

the following attributes are needed:

� edge_index: a 2D tensor representing the edges of the graph. Follows the same

format as COO arrays. The generators described in section 3.3.1 already return the

row and column indices arrays separately. Simply stacking them using torch.stack

generates the required tensor for edge_index. A requirement for the edge index

array is that the maximum row or column index should be less than the total number

of nodes in the graph. To satisfy this requirement, the generated sparse matrices pass

�rst through an encoder we implemented to re-label the indices. Also, a separate

function is implemented to explicitly calculate the total number of nodes in the graph.

� x: a 2D tensor representing the nodes feature matrix. Each node needs a vector of

dimension d representing the features of this node. For this chapter, di�erent rep-

resentations of degree are evaluated as node features. The shape of this tensor is

num_nodes × d. A more detailed analysis of the chosen features for input graphs is

provided in Section 3.3.3.

� y: a tensor representing the labels. In this work, the learning task is a graph-level clas-

si�cation task, so labels are one per graph. A numerical representation for the di�erent

labels (classes) is used as follows: 0 for diagonal, 1 for random, 2 for random+diagonal,

and 3 for Kronecker.
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3.3.3 Feature Set Selection

A per-node feature vector is necessary for the graph neural network to classify matrices. Node

degree can be calculated for rows/columns in input matrices from their graph representation.

One-Hot Degree Encoding Since node degree appears to be an e�cient feature to identify

the graph structure, we use one-hot encoding of the node degree as a feature vector. For one-

hot encoding, the number of features (length of the feature vector) is equal to the maximum

degree in the dataset + 1. However, this kind of representation su�ers from the following

shortcomings:

1. To build the feature vector for each node in each graph, the knowledge of the maximum

degree across the entire dataset is needed in advance. In order to overcome this limita-

tion, for each graph, we store only the labels (y) and the adjacency list (edge_index)

as discussed in Section 3.3.2. After we have iterated over all the matrices, we record

the maximum degree seen across all graphs into a �le. Every time we load a graph for

training or testing, we attach the one-hot degree encoding to the graph object, since

the maximum degree across the entire dataset is known at this point.

2. In our synthetic dataset, the maximum degree recorded across all graphs is 7710,

meaning that for each node in each graph, the feature vector of node i : x[i] needs to

be of length 7711, even if the actual degree for that node is 0. This adds unnecessary

storage requirements and slows down the training process, since graphs will be huge

and batch sizes need to be close to or equal to 1 to �t in GPU memory.

3. The node feature vector length is not �xed across di�erent training datasets and de-

pends on the maximum degree found in the training dataset. This requires the knowl-

edge of the maximum degree found in the training phase even in the inference phase,

which is not ideal for model deployment, since a �xed feature dimension that is inde-

pendent of the training data is preferred.

4. Inference on graphs with a maximum degree greater than the maximum degree that
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Figure 3.5: An example of �nding the linear binned one-hot degree encoding for a node with
degree = 5, where the parameters for the encoding scheme are α = 5, β = 3, and k = 2.
Degree 5 is mapped to its associated bucket (5 to 7), then the bucket index (5) is represented
using one-hot encoding (1 at the position where the value 5 exists, 0 otherwise).

the model was trained on is not straightforward. For example, if the model is trained

on our synthetic dataset with maximum degree = 7710 (feature vector dimension =

7711), and we try to infer the class of a graph with a maximum degree of 7711, building

the feature matrix of the input graph fails (since it assumes the same feature vector

dimension for input data). This problem can be indirectly solved by sub-sampling the

graph and inferring on a smaller sample graph where its maximum degree is less than

or equal to 7710.

Local Degree Pro�le (LDP) [15] captures the local structural information of nodes in

their immediate neighborhood. LDP is calculated for each node as a �ve-feature vector: the

node degree, the minimum degree of its neighbors, the maximum degree of its neighbors, the

mean degree for its neighbors, and the standard deviation of the degrees of neighbors. LDP

features are easy to compute for any given graph. Additionally, the number of features per

node is �xed, regardless of the used training data. LDP incurs low storage overhead.

Linear Binned One-Hot Degree Encoding (LBOH) We implement a modi�ed version

of one-hot encoding, to address its limitations. LBOH works by having a �xed number

of buckets for representing one-hot degrees. Buckets ranges are designed as follows: a set

individual sequential buckets from 0 t α (inclusive) where α is a small integer (less than 10).

Then, we add a set of buckets with �xed step β from α: (α+β), (α+2β), ..., (α+kβ) where

(α+ kβ) is the maximum degree threshold. Any degree greater than (α+ kβ) is mapped to

the �nal bucket.

Figure 3.5 shows an example of LBOH encoding. Assuming α = 4, β = 3, and k = 2, the
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Figure 3.6: An example of �nding the exponential binned one-hot degree encoding for a node
with degree = 7880, where the parameters for the encoding scheme are α = 2 and k = 3.
Degree 7880 is mapped to its associated bucket (33 to ∞), then the bucket index (8) is
represented using one-hot encoding (1 at the position where the value 8 exists, 0 otherwise).

following degree mapping is implemented: buckets 0 through 4 provide a one-to-one mapping

of degrees 0 through 4. Degrees 5 through 4+3 = 7 map to bucket 5, and degrees 7 through

4+6=10 map to bucket 6. To �nd the encoding for a given input degree, the bucket index

where this degree maps to needs to be found �rst. For example, if the input degree is 6, then

the bucket index is 5. Finally, we represent that index using one hot encoding as 0000010.

This new representation addresses the shortcomings of the vanilla one-hot degree encoding

as it provides a �xed number of features (buckets) regardless of the maximum degree in the

training dataset. At the inference stage, only the values of α, β, and k are needed in order

to prepare any graphs. However, one potential area of improvement is further reducing the

number of features (buckets) in order to reduce the storage requirements and accelerate

training. As opposed to One-Hot Encoding, LBOH provides a �xed number of features

regardless of the maximum degree in the training dataset. At the inference stage, only the

values of α, β, and k are needed.

Exponential Binned One-Hot Degree Encoding (EBOH) The main di�erence be-

tween EBOH and LBOH is the kind of step between buckets ranges. Instead of a linear step

in LBOH, EBOH uses an exponential step to cover more degree values with a small number

of features. First, the value of α is chosen such that 1 ≤ α ≤ 3. Then for the buckets,

a sequential one-to-one mapping is performed for values 0 through 2α. For the following

buckets, the upper bound (inclusive) is 2α+i where i ∈ [1, k] and k ∈ N∗.

Figure 3.6 shows an example of EBOH encoding: given α = 2, and k = 3, the bucket

upper bounds will be as follows: 0, 1, 2, 3, 4, 8, 16, and 32. To �nd the exponential binned
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one-hot encoding for an input degree of 7880, �rst the bucket for the value 7880 is found

(33 to ∞), and then the index of this bucket is found (8), then a one-hot encoding for

this value is represented as 000000001. The main bene�t of this encoding scheme over the

scheme discussed in Section 3.3.3 is that it can represent a wider range of degree values, with

a smaller number of buckets (features). Exponential binned one-hot degree encoding still

provides the bene�t of having the number of features independent of the maximum degree in

the input training set. We use this scheme as the main approach to represent node features

in our framework.

3.3.4 The Graph Neural Network Architecture
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Figure 3.7: Graph Neural Network architecture.

To identify the structure of the input matrix, the matrix is viewed as the adjacency list

of a graph, enabling the use of machine learning methods designed for graph data. GNNs

provide additional bene�ts such as allowing the use of matrices (graphs) of arbitrary sizes

as input, Also, GNNs are agnostic to node ordering. This powerful property enables re-

labelling or permuting nodes in a graph representing a sparse matrix, while maintaining

accurate predictions. The machine learning task of interest is graph-level prediction since a

single label (class) is needed for an entire graph (matrix). The GNN architecture is shown in

Figure 3.7. The hidden layers are three graph convolution layers [49] and one linear (output)

layer. Graph convolution is an operation where node embeddings are iteratively generated as

the aggregations from the node neighborhoods. This operation is used to capture complex

features of the graph. The �rst convolution layer aggregates information from the local
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neighborhood of each node. This operation is repeated in subsequent convolution layers in

order to propagate information to increasingly larger neighborhoods. By the end of three

convolution layers, the model has learned a hierarchical representation of the graph, where

the features at each layer capture increasingly complex structural patterns. The learned

representation so far is "node embeddings". Then, learned node embeddings are reduced

into a single graph embedding using a global mean pooling operation (called readout layer).

Samples are randomly dropped out to reduce over�tting. Finally, a linear classi�er is applied

to the graph embedding.

def generateDiagRandom(size, threshold=2):
""" A function to generate a Diag+Random square matrix """

tuples = [(x,y) for x in range(size) for y in range(size) if (
random.randint(0,10) <= threshold or x == y)]

# seperate tuples into two lists: the row array and the column
array

coo_rep = list(map(list, zip(*tuples)))
return coo_rep[0], coo_rep[1], [size, size]

def process(self):
catMap = [...., {

# Number of instances to generate for this class
'num_iter':10000,
# Name of the generator function
'generator':generateDiagRandom,
# A string list of required generator function param
'gen_params':['random.randint(MIN_DIM_SIZE,MAX_DIM_SIZE)'] }]

Figure 3.8: The two steps needed to add a new class to the classi�er framework. First (top),
create a new generator function in the generators �le, and second (bottom), add a dictionary
entry to catMap list in the process method of the dataset class.

Modularity New shapes of matrices can be easily integrated in our framework. To achieve

this, two steps are needed as shown in Figure 3.8: (1) write a generator for that new shape,

and (2) add an entry to the categories (shapes) map in the dataset class for this shape,

containing the number of dataset instances to generate, the name of the generator function,

and the di�erent required parameters. The generator is required to return the COO rep-

resentation excluding values, and the matrix dimensions. After generating the new dataset

instances for this class, one does not need to re-train the entire model again. Transfer learn-

ing [92] can be used to replace the last layer of the trained model with a new layer that has
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the appropriate number of outputs, after introducing the new shape(s). Then, the weights of

all previous layers are frozen and only the new layer is trained. Another aspect of modularity

in our framework is the ability to seamlessly attach di�erent feature sets. Feature sets are

only computed when the graph is queried. To implement a new feature set, a modi�cation

to the get method of the dataset is needed. This method �rst reads in the graph �le from

disk, calculates the new feature set, and attaches it to the graph.

3.4 Analysis

We run a set of experiments to evaluate the accuracy of our approach in detecting shapes, and

compare it against the numbers reported by similar existing approaches. We also evaluate

the impact of di�erent feature representation discussed in Section 3.3.3 on accuracy.

3.4.1 Evaluation

Experimental Setup Table 3.1 shows the experimental setup and learning parameters used

in the experiments. We use PyTorch Geometric [28] for the GNN.

Table 3.1: Experimental setup and Training parameters used in the experiments. * Batch size
used for traditional one-hot encoding is 1.

Component Speci�cation Parameter Value

GPU NVIDIA RTX A6000 Optimizer Adam
GPU Memory 48 GB GDDR6 Learning Rate 0.01
CUDA Version 11.8 Error Criterion Cross Entropy
Main Memory 64 GB DDR4 Batch Size 256*
Operating System Ubuntu 22.04 Cross Validation Folds 5

Evaluation Metrics Prediction accuracy of the classi�er is the main evaluation metric for

our approach; since the goal of this work is to implement a classi�er that can accurately

detect the shapes of input sparse matrices. For accuracy, we use four derived metrics:

accuracy, precision, recall, and F1 score. Accuracy simply represents the ratio of the number

of correctly predicted instanced to the total instances tested. Precision is the ratio of the
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number of correctly predicted instances for that shape (True Positives) to the sum of the

number of correctly predicted instances and incorrectly classi�ed instances as that shape

(True Positives + False Positives); that is precision = TP
TP+FP

. Recall is the ratio of the

number of correctly predicted instances for that shape (True Positives) to the sum of the

number of correctly predicted instances and incorrectly misclassi�ed instances (True Positives

+ False Negatives); that is recall = TP
TP+FN

. F1 score is the harmonic mean of precision and

recall; F1 score= 2×precision×recall
precision+recall

. We calculate all four metrics for the overall classi�er, and

also for each of the classes to determine how well the model performs for each individually.

We report accuracy and F1 score numbers, since F1 score summarizes both precision and

recall in one number. Accuracy gives an overall view of how well the classi�er is performing,

while the F1-score provides insights into its ability to correctly classify positive instances.

Dataset

We generate a dataset of 40K synthetic matrices for each of the sample classes: diagonal,

random, random+diagonal, and Kronecker graphs using the generators discussed in Section

3.3.1. The dataset is balanced; the number of instances in each class is the same (10K

matrices). The number of non-zeros in each of the generated matrices ranges between 1

and 21386821. Figure 3.9 shows the distribution of the number of non-zero values in our

synthetic dataset.

Cross Validation

We use k-fold cross validation to train our model, with k = 5, in order to estimate the

performance of our model.

as shown in Figure 3.10. We split the dataset into two subsets: a training and a validation

set. It is split into �ve equally-sized subsets, called "folds". The model is then trained and

evaluated �ve times, with each of the folds used once as the validation set, and the remaining

four folds used as the training set. This process is repeated until each fold has been used as

40



0 5000 10000 15000 20000 25000 30000 35000 40000
Matrices

0.0

0.5

1.0

1.5

2.0

Nu
m
be

r o
f N

on
-z
er
o 
Va

lu
es

1e7

Figure 3.9: Distribution of number of non-zero values (vertical axis) across the 40000 matrices
(horizontal axis) in our synthetic dataset.

Figure 3.10: 5-fold Cross Validation used in estimating the accuracy of the model. For each
fold, the dataset is split into two subsets: training and validation. Di�erent partitions of the
dataset are assigned to each of them.

the validation set once. Before splitting using k-fold cross validation, we randomly shu�e

the indices of the dataset, to make sure that data is randomly distributed across folds and

to prevent any bias that might be introduced if the data is sorted by label (class).

K-fold cross validation allows for a more accurate estimation of the model's performance

than a single train/test split. By training and testing he model on di�erent subsets of the

data, one can get a better understanding of how the model will perform on new, unseen data.

After the process, the evaluation metrics (discussed in Section 3.4.1) are averaged across the

di�erent folds to provide an estimate of the model's performance.
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Training Method and Parameters

We use k-fold cross validation to train our model, with k = 5, in order to accurately estimate

the performance of our model. For the optimizer, we use Adam [48] with a learning rate of

0.01. We used cross entropy loss as the error criterion. The model is trained on batches of

input data, where a batch contains multiple graphs. We used batch sizes of 256 for LDP,

LBOH, and EBOH, and a batch size of 1 for One-Hot Encoding since it was the only possible

batch size that �ts in GPU memory using this encoding. Batch sizes vary by experiment

based on the degree encoding used for that speci�c experiment. The encoding scheme used

a�ects the size of the graph, and therefore a�ects the number of graphs per batch that can

�t at once in the GPU memory for training. In our experiments, batch sizes varied from 1

in case of using traditional one-hot degree encoding, to 256 when using LDP and EBOH.

3.4.2 Results

Table 3.2: Performance of the classi�er for di�erent degree representations

Degree Representation

One-Hot Encoding LDP LBOH EBOH

Accuracy F1 Score Accuracy F1 Score Accuracy F1 Score Accuracy F1 Score

Diagonal 1.0 0.90 1.0 0.97 1.0 1.0 1.0 1.0
Random 0.90 0.91 0.64 0.76 0.92 0.95 0.95 0.96
Random+Diagonal 0.86 0.99 0.98 0.83 0.96 0.94 0.97 0.96
Kronecker 0.90 0.94 0.90 0.93 0.98 0.97 0.96 0.98

Overall 0.90 0.90 0.88 0.88 0.97 0.97 0.97 0.98

Classi�cation Performance Table 3.2 shows the accuracy and F1 score for the classi�er

using the di�erent degree representations discussed in Section 3.3.3. Performance results

show that both LBOH, and EBOH provide high prediction accuracy of around 97% and

a F1 score of around 98%. On the other hand, traditional one-hot encoding exhibits a

lower accuracy of around 90%. One-Hot Encoding requires a signi�cantly large number of

features per node (7711), limiting the training batch size on the A6000 GPU to only one

graph. This forces the optimizer to adjust the neural network weights very frequently, hence
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hurting the overall accuracy. Using LDP as a feature set exhibits variant model performance

across folds depending on the validation set being used. In some folds, LDP provides high

accuracy of around 97% to 98% similar to EBOH. In other folds, LDP fails to converge

to an acceptable loss value, and ends up with an accuracy of around 74% on the last few

epochs. This performance variance across folds deems LDP un�t for the purposes of our

application. It signi�cantly fails in two classes: Random and Kronecker. It predicts Random

matrices as Random+Diagonal for more than 32.5% of the instances. This is likely due to

the prevalence of the local degree neighbor summary features (the last four LDP features)

instead of focusing on the node degree. This eventually results in failing to discover the global

hierarchical structures in the matrix. LDP still shows perfect accuracy in case of diagonal

matrices since almost all nodes in the matrix's graph have the same degree. LDP prediction

quality for Kronecker graphs is also lower than other evaluated feature sets (around 81% in

some folds) for the same reasons.
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Figure 3.11: Cross Entropy Loss across di�erent folds in 5-fold cross validation training using
(a) EBOH, and (b) LDP feature set.

Figure 3.11a demonstrates the validation loss across the 5 di�erent folds for EBOH. It

shows almost no variance in the loss across the di�erent folds, indicating the stability of the

model's performance across folds. On the other hand, Figure 3.11b shows the validation loss

for LDP and illustrates that the loss does not converge in 2 out of 5 folds.
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Training Time

While training is a one-time overhead, we capture the training time spent for our model using

di�erent feature sets. For EBOH, training the model on the entire dataset took around 10

hours and 12 minutes. For LBOH, the training time was around 11 hours. LDP trains on

the entire dataset in around 10 hours and 10 minutes. Traditional One-Hot Encoding on the

other hand took around 37 hours to train.

The justi�cation of the slight variance (or almost invariance) of training time even with

di�erent batch sizes being used for LDP, LBOH, and EBOH, is the way the feature set is

being attached to graph nodes. Graphs are not stored on disk with node features. Instead,

node features are calculated every time the graph is fetched during the training process. This

incurs additional memory and computation overhead, however it also provides the �exibility

needed to easily experiment with di�erent feature sets. Since training overhead is a one-

time cost, we decided to keep the lazy feature calculation method as the �exibility bene�t

over-weighs the single time memory and compute overhead.

Classifying Sub-samples and Re-labelled Subgraphs The choice of graph neural net-

works for our framework accounts to the attractive properties of such networks, such as being

agnostic to both the size and the arrangement of input data. To test the e�cacy of GNN

on both aspects, we generate 200 new matrices: 50 for each of the four classes. For each of

them, we generate 10 subgraphs and 10 re-labelled variants. To generate the subgraphs, we

use uniform random node sampling (URNS) [57]. URNS works as follows: for a given graph

G = {V,E} where V = {v1, v2, .., vn} is the set of nodes, and E = {e1, e2, ..., en} is the set

of edges, an URNS subgraph G′ consists of nodes that are randomly selected with uniform

probability, as well as the edges connecting the selected nodes. Re-labelling of a graph G

simply renames (re-orders) the nodes V of the graph, and produces a new graph G′ with the

same size and degree distribution of the original graph G. Figure 3.12 shows an example of

both URNS and random re-labelling.

Table 3.3 shows the model's performance on subgraphs and re-labelled variants as com-
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Table 3.3: Accuracy comparison for node sampling, node re-labelling, and original graphs
using EBOH feature set.

Class Node Sampling Node Re-labelling Original Graphs
Diagonal 1 1 1
Random 0.83 0.98 0.98

Random+Diagonal 0.92 0.92 0.92
Kronecker 0.94 0.96 0.96

Overall 0.92 0.97 0.97

pared to original full graphs. The table shows that re-labelling node has no impact on the

classi�cation accuracy; it shows the same overall accuracy of around 97% which is observed

for the original graphs. This is expected because the arrangement of nodes in a graph is

irrelevant, since the graph has the same degree distribution. For subgraphs generated using

URNS of larger graphs, the overall accuracy drops to around 92%. The reason being that

random node sampling can alter the degree distribution of the graph. The random choice of

nodes can result in either isolated nodes (no edges) or much lower degree nodes as compared

to the original graph. This a�ects the accuracy specially for complex shapes such as random

and Kronecker graphs. One way to reduce the accuracy loss for samples is to use a more

sophisticated graph sampling technique rather than randomly selecting nodes or edges.
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Figure 3.12: Example of generating a random sub-sample and a re-labelled variant of a graph.
The original graph (left) contains six nodes. Using URNS, a random subgraph (middle) of
three nodes is generated. A re-labelled variant (right) is generated using a random 1:1
mapping between the original and new node labels.
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3.5 Summary

In this chapter, we proposed a GNN based framework to classify structured sparse matrices.

We introduced two novel non-attribute graph representations based on node degrees: LBOH,

and EBOH. We evaluated the e�cacy of our framework on a synthetic, balanced dataset of

matrices that we generated containing random matrices from four sample classes: diagonal,

random, random+diagonal, and Kronecker graphs. Performance results demonstrate a high

classi�cation accuracy of 97% for the framework when using our feature sets: LBOH and

EBOH. They also show high accuracy of 92% and 97% on random node subsamples and re-

labelled variants respectively. Our framework is modular, allowing the inclusion of additional

classes with minimal user e�ort. Future endeavors target the automatic generation of the

optimal sparse data format and algorithm for sparse matrix kernels, using the obtained

prediction results from the current framework.
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Chapter 4

A Framework for Analyzing the

Robustness of Graph Models

4.1 Introduction

Graph models are incredibly important for generating large scale synthetic data when real

data is not accessible, and when graph operations need to be evaluated for performance.

Thus, generated data gives developers a proxy dataset to re�ne their code. The closer the

model approximates the real data, the more likely developers are to produce code that is

e�cient for those real datasets. One question is how much of a predictive understanding of

the global structures of the graph can these models provide, and are these structures robust

enough, i.e. not highly sensitive to noise, that a developer can optimize for them?

To this end, we propose a novel framework to evaluate graph descriptors. Our framework

takes an input vector of graph generation parameters P and produces a set of graphs Gs =

{G1, G2, G3, ..., Gn}. It then evaluates the e�ect of varying P values on the structure of

the output graph set Gs through observing the change in di�erent properties distributions

such as: degree, in-degree, out-degree, in-betweenness centrality, clustering coe�cient, etc.

To ensure the robustness of the parameter set P in describing the graph structure, our
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Figure 4.1: An example of an output plot produced by our graph analysis framework. The
plot shows the e�ect of changing a graph generation parameter x1 on the node clustering
coe�cient distribution of the graph. The dashed line indicates the distribution for the initial
graph G0

framework also evaluates the e�ect of adding gradual noise to the parameter set and observes

the noise threshold alpha at which the structure of the graph is dominated by the induced

noise.

Figure 4.1 shows an example output plot from our framework. This kernel density es-

timation (KDE) plot evaluates the e�ect of varying a graph generation parameter x1 ∈ P

with an incremental step α = 0.1 on the graph clustering coe�cient distribution, as one of

the graph structural properties. The original graph distribution is represented by the dashed

black line. As discussed later, x1 is an initiator matrix value of a Kronecker graph.

The main contributions of this work are:

1. Proposing a novel framework to evaluate graph descriptors and how sensitive graph

structures are to them.

2. Evaluating the tolerance of the graph descriptor to random noise.

3. Demonstrating the usage of the proposed framework through a case study on the

Kronecker Graph model.
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4.2 Background and Related Work

4.2.1 Generative Graph Models

Various works presented di�erent models to generate synthetic graphs [26, 4, 35, 37, 87, 68,

101], that are similar in terms of graph properties [16] to real world graph. The motivation

behind the introduction of such models is, but not limited to: (1)understanding complex

structures of large graph using smaller, well-formulated synthetic models, (2)tackling the

privacy restrictions associated with accessing and studying real graphs, (3)predicting the

evolution of large scale graphs, and (4) benchmarking graph neural networks (GNNs) [79].

In this chapter, we focus on the Kronecker graph model as one example of such generative

models.

4.2.2 Kronecker Graphs

Kronecker graphs [56] are a class of synthetic graphs that have been widely used to model

real-world networks and are generated by recursively applying the Kronecker product of a

small base graph with itself. Let A and B be two matrices. Then, their Kronecker product

A⊗B is given by

A⊗B =


a11B · · · a1nB

...
. . .

...

am1B · · · amnB

 (4.1)

where aij are the entries of A. The resulting graph has a power-law degree distribution

and exhibits a hierarchical structure that captures both the local and global connectivity

patterns of the underlying real-world network.

To generate Kronecker graphs, an initiator matrix (typically of size 2×2 or 3×3) is

chosen, and the Kronecker product is applied to this matrix by itself K times, where K is

the Kronecker power. Then, a randomly generated probability matrix is used to mask out
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random values in the Kronecker matrix (remove edges from the Kronecker graph). Other

compute-e�cient methods can be used to generate Kronecker graphs such as ball dropping

and grass hopping [77].

In [56, 58, 46], the authors present and analyze the Kronecker graph model as an ap-

proximation of scale-free graphs. Their analysis served as a template for ours, however in

their work they compared their model against the real graphs that they were approximating,

whereas as we analyze varying synthetic graphs against each other. In addition to Kronecker

Graphs, many other graph models have been studied and surveyed [102, 24, 34].

In [83] the authors demonstrate that the Kronecker Graph model does not produce power

law graphs, but that through the addition of noise the resulting model becomes a much

stronger representation of power law graphs.

4.2.3 Graph Learning and Structure Prediction

In [3], we present an extensible framework for classifying sparse matrices structures using

graph neural networks. The framework classi�es an input matrix (graph), into one of a

pre-de�ned classes of structure such as mesh network, random matrix, Kronecker graph, and

combination of them. Additional classes can be integrated in the framework. Our proposed

framework can be used in tandem with the classi�er framework by evaluating more graph

models (classes of structure), and then augmenting the classi�er framework with additional

structures that show a clear correlation between the input generation parameter set P and

the output graph structure, and robustness to injected noise.

In addition, our framework can be used to evaluate graph generation parameters that

can be then used in the feature set selection step of training graph neural networks for

non-attributed graphs [15], given that these parameters prove to be robust representing the

graph structure.
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Figure 4.2: High-level overview of the proposed framework. It takes initial generation pa-
rameters P0 alongside with the domain of legal values D and the generation function f to
generate a new parameters set Ps which is used to generate a new graph set Gs. Noise is
also injected after generating the initial graph G0 to synthesize the noisy graph set Gs_Noise.
Finally, an analysis is performed on the output graph sets structure.

4.3 Framework Overview

Our proposed framework can be visualized as shown in Figure 4.2. It takes as input a

graph model (M) generator f and a set of initial parameters vector P0 = {p00, p01, ..., p0m−1}

such that one can generate a graph G0 of model M as follows: G0 = f(P0). In addition,

it expects the domain of legal values for each of the parameters D = {d0, d1, ..., dm−1}.

Then, the framework generates a set of graphs Gs by varying each of the parameters in P0

individually within D for n times, while �xing the rest of the parameters, generating a new

set of parameters Ps = {P1, P2, P3, ..., Pn}. With the new set of parameters, a new set of

graphs Gs is generated using f such that Gi = f(Pi) for 1 ≤ i ≤ n.

For each of the generated graphs, the framework calculates and plots multiple graph

structural properties such as degree centrality, in-degree, out-degree, betweenness centrality,

closeness centrality, Laplacian centrality, clustering coe�cient, and singular values. The

output vectors and �gures enable the evaluation of the e�ect of changing the parameter set

Ps on the structure of the original graph G0.
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In addition, the framework evaluates how graph structure reacts to injecting random

noise, and the extent of noise to which it maintains its original underlying structure. This

is done by adding random edges, represented as a random sparse matrix (adjacency matrix)

with density alpha. By varying alpha, di�erent noise matrices are generated and are added

to the original graph's (G0) adjacency matrix. The same graph properties are calculated and

plotted as output.

Such analysis enables the evaluation of the graph model M and the parameter set P .

One can determine whether this model M is a representative model of a set of classes that

share speci�c structural properties, that can be later exploited to design the algorithms and

data structures for this class of graph, or this model does not introduce any exploitable

characteristics (i.e. random).

Moreover, the analysis can predict whether the structure of the generated graphs is sen-

sitive to the input parameter set. Hence, a decision can be made to use the input parameter

set as a representative feature set for this class of graph. The choice of adequate representa-

tive set for graph is critical in many applications such as compact graph representation for

large graphs (compressing large graphs by only storing a small set of parameters that can

be used to generate such graph on demand), and learning on graphs: choosing a feature set

for (non-attributed) graphs in a graph neural network setting.

Noise analysis is crucial as well, since most of the real data (graphs) are expected to

include a certain level of entropy. Gradual noise injection and observing the resulting graph

structure permits a good estimate of a noise tolerance, where the original graph model

maintains its structure before, and loses its special characteristics beyond. It is also useful in

evaluating the graph generation parameter set: if adding noise with higher values does not

a�ect the graph structure, this means that the initial graph structure was already random

and the used parameter set and/or graph model cannot be e�ectively used to represent a

meaningful unique class of graphs.
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4.4 Case Study: Analyzing Kronecker Graphs

In order to evaluate our framework, we analyze the stochastic Kronecker Graph Model. The

generator f is the Kronecker graph generator. It takes the following parameters P : the

Kronecker initiator matrix X and the Kronecker power K. For simplicity, we only consider

X in this discussion.

X is assumed to be a 2× 2 matrix and consists of the following values:

x0 x1

x2 x3


Hence, each parameter vector can be represented as Pi = {xi0, xi1, xi2, xi3}. The domain

D for the each xij ∈ Pi is �oating point values between 0 and 1.

To evaluate the correlation between each of the initiator matrix values and the resulting

Kronecker graph structure, we vary each of them within D, while �xing the other three

values. We observe the e�ect of this variation on di�erent graph and node-level attributes

such as: degree, in-degree, out-degree, betweenness centrality, etc. The initial parameter

vector P0 is based on Kron�t's [58] estimated Kronecker initiator values [56] of the High

Energy Physics - Phenomenology Collaboration (CA-HEP-PH) Graph [59]. Starting with

P0, we generate graphs of the 6th Kronecker Power (K = 6) for each of initiator matrices

we evaluate Ps = {P1, P2, ..., Pn}.

For example, to evaluate the e�ect of changing x0, we �x the values of x1, x2, and x3.

We then vary the value of x0 for m times (5 in our experiments), by subtracting α (0.1) each

time. So, for the �rst time, the new initiator matrix values will be as follows:

x0 − α x1

x2 x3


From this new initiator matrix, we generate a Kronecker Graph of Kronecker power 6. Then,
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we analyze the di�erent graph and node-level attributes detailed in the following subsections.

For distributions, our framework generates Kernel Density Estimation plots, where the

horizontal axis represents the property distribution (degree, betweenness centrality, etc.), and

the vertical axis represents the density of the distribution at each point. A black dashed line

the Figures 4.3, 4.4, 4.5 represents the corresponding distribution for the initial parameter

set P0, which is the starting point from which the framework begins to vary the parameter

set values.
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Figure 4.3: The e�ect of changing (a)x0 , (b)x1 , (c)x2, and (d)x3 on the degree distribution
of the resulting K6 Kronecker Graph. Each of the sub-�gure is a KDE plot where the degree
distribution are on the horizontal axis, and the density is on the vertical axis.

Figure 4.3 shows the e�ect of varying the di�erent initiator matrix values on the degree

distribution of the resulting Kronecker graph. To further investigate the structural e�ects

of changing the di�erent initiator matrix values, we additionally study the in-degree and
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out-degree behavior. Figure 4.4 shows a similar analysis for in-degree distribution. Figure

4.5 shows the analysis for out-degree distribution.
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Figure 4.4: The e�ect of changing (a)x0 , (b)x1 , (c)x2, and (d)x3 on the in-degree distribution
of the resulting K6 Kronecker Graph. Each of the sub-�gure is a KDE plot where the degree
distribution are on the horizontal axis, and the density is on the vertical axis.

For noise analysis in Figure 4.6, we evaluate the e�ect of varying random noise (varying

the random noise sparse matrix density: alpha) on: (a) Degree, (b) In-Degree, (c) Out

Degree, (d) Betweenness Centrality, (e) Closeness Centrality, (f) Laplacian Centrality, (g)

Clustering Coe�cient, and (h) Scree Plot (singular values). The dashed black lines represent

the distributions for the original initial graph G0 with no noise injected.
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Figure 4.5: The e�ect of changing (a)x0 , (b)x1 , (c)x2, and (d)x3 on the out-degree distri-
bution of the resulting K6 Kronecker Graph. Each of the sub-�gure is a KDE plot where
the degree distribution are on the horizontal axis, and the density is on the vertical axis.
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4.4.1 E�ect of Varying Kronecker Initiator Values

varying x0

For the degree distribution , Figure 4.3a shows that increasing x0 value results in increas-

ing the maximum degree across nodes, and decreasing it decreases the maximum degree.

It is also seen that the minimum degree is not a�ected due to x0 variation. This means

that increasing the value of x0 �attens the degree distribution of the graph, where the peak

density (or frequency) of nodes with low degree is decreased (as compared to lower x0 values)

and the peak of the distribution gradually shifts towards the right bottom. This behavior is

consistent across the di�erent values we tested for x0 within the legal range.

In-degree distribution exhibits a similar behavior to the overall degree distribution as

shown in Figure 4.4a: maximum degree increases with increasing the value of x0, and the

minimum degree is still una�ected, which squishes the peak density of the lower degrees into

a �atter curve with lower peaks as compared to smaller x0 values.

As for out-degree , increasing x0 still increases the maximum out-degree. However,

x0 contribution to increase of out-degree is limited compared to in-degree as illustrated in

Figure 4.5a.

Varying x1

For the degree distribution , Figure 4.3b shows the e�ect of varying x1. A similar trend to

x0's is observed. However, increasing x1 rapidly increases the maximum degree to a higher

value.

On the other hand, changing x1 shows a di�erent trend of increasing both maximum and

minimum In-degree as shown in Figure 4.4b, even though the increase in the minimum

degree is slower. Also, the maximum in-degree for the maximum x1 value is signi�cantly

lower than that of the overall degree. So, most of the degree increase accounts to the out-

degree increase and not the in-degree. An extended range of maximum degree increase proves
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this behavior in Figure 4.5b.

Varying x2

The e�ect of varying x2 on the resulting graph degree is similar to that of x1 as shown in

Figure 4.3c, and with similar values for maximum degree.

However, the opposite is true for In-Degree and Out-Degree . Figure 4.4c illustrates

that in-degree increase dominates the majority of the degree increase. The peak density still

decreases with increasing x2, but the range of in-degrees that fall within the peak density is

narrower than what is observed for x1.

x2 changes the out-degree distribution in smaller steps than it does for the in-degree

distribution as illustrated by 4.5c.

Varying x3

Figure 4.3d demonstrates the e�ect of varying x3 on the overall degree distribution, where

increasing x3 value a�ects both the minimum and maximum degree across nodes. Smaller

x3 values have both smaller minimum and maximum degree values as compared to higher

x3 values. Changing x3 values shifts the degree distribution to the right or the left (change

min and max degree), but has a smaller e�ect on the degree density across nodes (peak

density/frequency is slightly a�ected), which is di�erent from the e�ect of changing x0, x1 ,

and x2 on the degree density as described before.

Similarly, for In-Degree both tails of the density distribution are extended without a

signi�cant change in the peak density as exhibited in Figure 4.4d. x3 variation has an almost

identical e�ect on both in-degree and out-degree .

General Observations

From the above analysis, it is obvious that certain features are more sensitive to certain pa-

rameters than others. For example: Figure 4.3 shows that degree is more sensitive to varying
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x3 than x0. In-degree (Figure 4.4) is highly sensitive to changes in x1, while out-degree is

more reactive to changes of x2. Also, as x3 values increases (gets closer to x0), degree distri-

butions start to diverge quickly (the mean degree shifts signi�cantly). Additionally, Figure

4.4b shows that x1 change has the highest e�ect of in-degree, and Figure 4.5c demonstrates

that x2 has a signi�cant impact on out-degree distribution.

4.4.2 Varying noise

To evaluate the robustness of the correlation between the graph descriptor (Kronecker ini-

tiator matrix values) and the graph structure, we inject random noise to observe how the

structure reacts to noise. The noise injected is a random sparse matrix, that is added to the

adjacency matrix of the generated Kronecker graph. Then, we vary the density (sparsity) of

the random matrix and evaluate the e�ect of noise with di�erent values for density (alpha).

Figures 4.6a, 4.6b, and 4.6c show that for lower values of alpha (up to around 2%), the

resulting graph maintains a very similar degree distribution, compared to the original graph

with no noise. Beyond that point, the random noise starts to take over until the Kronecker

characteristics of the original graph are no longer recognizable.

Figure 4.6d shows a similar behavior for the betweenness centrality of the graphs. Ran-

dom noise with alpha above 4% distorts the original graph betweenness centrality distribu-

tion.

Closeness centrality distribution is more sensitive to random noise as shown in Figure

4.6e, where the entire distribution shifts to the right, with the minimum closeness tail almost

�xed. However, the pattern still persists where for injected noise with alpha beyond 4%, the

distribution completely changes.

Laplacian centrality in Figure 4.6f is less sensitive to the noise as compared to closeness

centrality, for lower values of alpha (up to 4%). With higher alpha, the distribution skews

and is mainly random noise.

The Clustering coe�cient by nature is highly sensitive to graph structure changes as

59



0 6 12 18 24 30 36 42

Degree

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

D
en

si
ty

no_noise
alpha=0.010
alpha=0.020
alpha=0.040
alpha=0.080
alpha=0.160

(a)

−3 0 3 6 9 12 15 18 21 24

In-Degree

0.00

0.05

0.10

0.15

0.20

D
en

si
ty

no_noise
alpha=0.010
alpha=0.020
alpha=0.040
alpha=0.080
alpha=0.160

(b)

−4 0 4 8 12 16 20 24

Out-Degree

0.00

0.05

0.10

0.15

0.20

D
en

si
ty

no_noise
alpha=0.010
alpha=0.020
alpha=0.040
alpha=0.080
alpha=0.160

(c)

−0.04 0.00 0.04 0.08 0.12 0.16 0.20

Betweenness Centrality

0

10

20

30

40

50

60

D
en

si
ty

no_noise
alpha=0.010
alpha=0.020
alpha=0.040
alpha=0.080
alpha=0.160

(d)

−0.1 0.0 0.1 0.2 0.3 0.4 0.5 0.6

Closeness Centrality

0

2

4

6

8

10

12

D
en

si
ty

no_noise
alpha=0.010
alpha=0.020
alpha=0.040
alpha=0.080
alpha=0.160

(e)

−0.015 0.000 0.015 0.030 0.045 0.060 0.075

Laplacian Centrality

0

10

20

30

40

50

60
D
en

si
ty

no_noise
alpha=0.010
alpha=0.020
alpha=0.040
alpha=0.080
alpha=0.160

(f)

−0.06 0.00 0.06 0.12 0.18 0.24 0.30 0.36 0.42

Clustering Coefficient

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

D
en

si
ty

no_noise
alpha=0.010
alpha=0.020
alpha=0.040
alpha=0.080
alpha=0.160

(g)

0 8 16 24 32 40 48 56 64

Rank

0

1

2

3

4

5

6

Si
ng

ul
ar
 V
al
ue

no_noise
alpha=0.010
alpha=0.020
alpha=0.040
alpha=0.080
alpha=0.160

(h)

Figure 4.6: The e�ect of changing the injected sparse random noise matrix density on (a)
degree, (b) in-degree, (c) out-degree, (d) betweenness centrality, (e) closeness centrality, (f)
Laplacian centrality, and (d) scree plot of the resulting Graph. Each of the sub-�gure is a
KDE plot where the degree distribution are on the horizontal axis, and the density is on the
vertical axis.
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shown in Figure 4.6g. Any noise with alpha greater than 1% immediately disrupts the

distribution. Such behavior is expected since the clustering coe�cient captures the local

connections in a graph, and how it propagates globally. When adding a few new edges (by

injecting random noise with low alpha value), the local connectivity patterns are immediately

a�ected: local clusters may be disrupted or new clusters may form, eventually leading to

changes in the clustering coe�cient values for individual nodes, and then the overall distri-

bution. However, one can still notice the signi�cant di�erence between inducing noise with

lower alpha values (up to 4%) and inducing noise with higher alpha values.

The Scree plot of a graph captures the relative importance of components (nodes) in the

graph. The importance of a component in a graph is mainly represented by the number

of connections (degree) of the component. Inducing the random noise in our experiments

simply adds new edges to the graph, so its relative e�ect on scree plot is not expected to be

signi�cant as shown in Figure 4.6h. However, adding noise with higher alpha values increases

the (absolute) spectral gap between adjacent singular values.

4.5 Summary

In this chapter, we proposed a novel framework to evaluate graph descriptors. The framework

takes as input the graph descriptor (generation parameters) and generation function, and

evaluates the co-relation between the descriptor values and the underlying graph structure.

It captures the sensitivity of the graph structure to the descriptor values, as well as to injected

random noise. Changes in graph structure are detected by observing the change in di�erent

graph structural properties such as degree, in-degree, out-degree, betweenness centrality,

closeness centrality, Laplacian centrality, clustering co-e�cient, and singular values. We

provided a case study of using the framework by analyzing the sensitivity of stochastic

Kronecker graph structure to the initiator matrix values used to generate them, and to

induced random noise (sparse random matrix) with varying density. The design of the
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framework is modular so that it can evaluate di�erent existing and future graph models, and

additional graph properties can be easily calculated for evaluated graphs.
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Chapter 5

A Framework for Analyzing the

Performance of Graph Models

5.1 Introduction

Large, sparse, and irregular data is central in the domains such as graph analytics, graph

neural networks, �uid mechanics, and �nite element analysis. Speci�cally, if the dynamic

relationship between elements in a dataset can be captured as an edge-pair relationship

between vertices, then graphs provide a natural representation of that data. Furthermore,

if the analysis of complex relationships in the data can be performed through sequential

linear algebra-like operations over the adjacency matrices of these datasets, then operations

such as Sparse Matrix times Vector Multiplication (SpMV) are critical to the performance

of computations in these domains. However, optimizing operations like SpMV is challenging

because the structure of the sparse data, the implementation of the operation, and the

architecture of the target all have a tremendous bearing on the execution time of these

operations. If a sparse operation is tuned for one class of data, that performance may not

generalize to another class. The core of this work is to provide a benchmarking framework

for correlating performance with the structural features of sparse data.
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Figure 5.1: Double Precision Dense General Matrix-Vector Multiplication Performance using
cuBLAS on NVIDIA RTX A6000 GPU as a function of input size

For dense matrices, performance evaluation and visualization is straightforward. Figure

5.1 shows an example of performance evaluation of the general matrix-vector multiplication

(GEMV) on a RTX A6000 GPU using cuBLAS. For simplicity, evaluated matrices are as-

sumed to be of square dimensions: n×n. The horizontal axis represents the di�erent values

of n evaluated, and the vertical axis shows the performance in GFLOPs. Moving along the

horizontal axis (from left to right and from right to left) shows a clear correlation between

the matrix dimensions (n × n) and GEMV performance. Performance interpolation from

existing data points is possible, based on the dense matrix dimensions (n)

On the other hand, Figure 5.2 shows a corresponding performance evaluation for SpMV

using cuSparse. Sample matrices from the SuiteSparse collection [21] are evaluated. Table

5.1 lists the properties of these matrices. The horizontal axis in Figure 5.2 represents di�er-

ent matrices, and the vertical axis shows the SpMV performance in GFLOPs. In this case,

moving along the horizontal access does not provide any meaningful insights regarding how

SpMV performance changes across di�erent matrices. This is because di�erent matrices have

totally di�erent characteristics and there is no correlation between them. Using dimension

size on the x-axis (similar to the dense case) also does not help draw conclusions since: a)two

matrices can be of the same dimensions, but have di�erent sparsity ratios, and b)sparse ma-

64



12
mo
nth

1

bm
wc
ra_
1

bo
ne
01
0

co
ns
ph

cra
nk
seg

_1
ho
od

ma
c_e

co
n
pw
tk sls

tor
so1

Input Matrix

0

20

40

60

80

Pe
rf
or
m
an

ce
 (
G
FL

O
Ps

)

Figure 5.2: Double Precision Sparse Matrix-Vector Multiplication Performance using cuS-
parse on NVIDIA RTX A6000 GPU for a selected set of matrices from SuiteSparse, using
the COOrdinate data representation.

trices from di�erent applications can have extremely di�erent dimensions. Another variable

to use on the horizontal axis can be the number of non-zeros (NNZ). However, also NNZ does

not always provide enough insight on the sparsity ratio or the dimensions of the sparse ma-

trix. Two matrices with similar NNZ can have completely di�erent dimensions and sparsity

ratios. Moreover, while existing performance evaluation models work on providing multiple

di�erent performance metrics [9], face a set of limitations adapting to sparse data workloads

with regard to using a representative feature/parameter being related to performance [93].

Also, the dependence on discrete sets of graphs/sparse matrices for benchmarking such op-

erations [60, 21, 10] limits the ability to make performance interpolation and generalization

across a more diverse set of input data. Additionally, many existing optimization techniques

focus solely on the sparse operation to be optimized, and do not have a global breakdown

of the system-level execution time, prohibiting further optimization opportunities on other

potential performance bottlenecks, such as I/O.

To address the above limitations, we propose a novel end-to-end framework for perfor-

mance analysis and evaluation of sparse matrices and graph operation. The framework em-

65



Table 5.1: Properties of the evaluated sparse matrices

Matrix rows columns nnz
12month1 12471 872622 22624727
bmwcra 148770 148770 10641602
bone010 986703 986703 47851783
consph 83334 83334 6010480
crankseg 52804 52804 10614210
pwtk 217918 217918 11524432
hood 220542 220542 9895422
sls 1748122 62729 6804304

torso1 116158 116158 8516500
mac_econ_fwd500 206500 206500 1273389

ploys parameterized graph models to generate synthetic graphs, account for di�erent sources

of noise in model parameters and choice of the correct model and evaluates the sensitivity

of performance to these sources. The framework systematically analyzes the relationships

between the input parameters of the sparse matrix/graph generators, and the performance

of the sparse operations (e.g., SpMV) over the sparse matrix outputs of those generators.

The idea being that if we can build this predictive understanding between the generator

and the performance, then we can make guided decisions when operating over data that is

approximated by those generators. Our framework focuses on choosing a representative set

of features/parameters that relate to the performance of the operations on the input data,

enabling a new horizon of performance optimizations. It provides multiple e�cient ways of

visualizing and relating performance to di�erent parameters. Our framework also analyzes

the overall system-level execution time to capture additional performance bottlenecks and

drive optimization decisions.

The main contributions of this work are as follows:

1. Propose an extensible framework for performance analysis and evaluation for sparse

data operations and driving design choice for performance optimizations.

2. Evaluate the usage of di�erent graph model parameters and how it relates to perfor-

mance interpolation and extrapolation.
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3. Provide an alternative to using discrete graph sets for benchmarking sparse data work-

loads.

4. Estimate the e�ect of di�erent noise sources in performance and integrating it into

potential performance interpolations.

5. Present a system-level breakdown of execution time, rather than only focusing on the

kernel to be optimized, unleashing new potentials for additional system-wide perfor-

mance optimizations.

The rest of this chapter is organized as follows: Section 5.2 introduced the necessary

background and discusses related work, its limitations, and how they motivate the proposal

of our framework to address them. Section 5.3 details the description of our proposed

framework. Section 5.4 shows a set of experiments conducted through our framework and

discusses the results and observations. Finally, Section 5.5 summarizes the �ndings of the

chapter.

5.2 Background and Related Work

5.2.1 Sparse Matrix and Graph Operations

Many traditional and modern applications require the operation on sparse data in the form of

sparse matrices. Examples of these operations are Sparse Matrix-Dense Vector Multiplication

(SpMV), Sparse Matrix-Matrix Multiplication (SpMM), and Sampled Dense-Dense Matrix

Multiplication (SDDMM). SpMV, for instance, is used in many applications such as Natural

Language Processing (NLP), scienti�c simulations, �nite element analysis, image processing,

solvers for partial di�erential equations (PDEs), and recommender systems. Also, traditional

graph operations can be cast as linear algebra operations [47]. Due to the unique nature

of sparse matrices, di�erent sparse data formats were implemented to e�ciently store them

in memory. Examples of popular formats are COOrdinate (COO), Compressed Sparse Row
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(CSR), and Compressed Sparse Column (CSC) [78]. The implementation of an algorithm

for a sparse operation (e.g. SpMV) is traditionally tightly coupled to the sparse data format

used for storing the sparse data. Multiple highly tuned linear algebra libraries are available to

perform di�erent sparse operations using di�erent sparse data formats. Examples of vendor-

speci�c libraries are Intel Math Kernel Library (MKL) [91] for CPU, NVIDIA cuSparse [74],

and AMD rocSPARSE [5].

5.2.2 Graph Models for Sparse Data

Many performance evaluation techniques for sparse data have emerged in response to the

generation of such data from engineering and physics problems. However, many real data

is more accurately represented by large scale-free synthetic data that follow a power-law

distribution such as Kronecker graphs [61, 58] or a combination of Kronecker + Random

[82]. Kronecker graphs are a class of synthetic graphs that have been widely used to model

real-world networks, and are generated by recursively applying the Kronecker product of a

small base graph with itself. Let A and B be two matrices. Then, their Kronecker product

A⊗B is given by

A⊗B =


a11B · · · a1nB

...
. . .

...

am1B · · · amnB

 (5.1)

where aij are the entries of A. The resulting graph has a power-law degree distribution

and exhibits a hierarchical structure that captures both the local and global connectivity

patterns of the underlying real-world network.

To generate Kronecker graphs, an initiator matrix (typically of size 2×2 or 3×3) is

chosen, and the Kronecker product is applied to this matrix by itself K times, where K is

the Kronecker power. Then, a randomly generated probability matrix is used to mask out

random values in the Kronecker matrix (remove edges from the Kronecker graph). Other
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compute-e�cient methods can be used to generate Kronecker graphs such as ball dropping

and grass hopping [77].

Additionally, many graph models have been proposed to generate synthetic data that

have similar properties to real graphs [26, 4, 35, 37, 87, 68, 101]. Frameworks have been

proposed to classify input sparse data/graph into one of these models [3], and to evaluate

the robustness of such graph models in terms of sensitivity of the graph structure to model

parameters and noise [2].

While generative graph models (e.g. Kronecker graphs) provide a parameterized way

of generating synthetic graphs similar to real graphs, tools that try to �t real data to such

model (e.g. Kron�t [58]) are limited in estimation accuracy of the model parameters. Hence,

our framework uses di�erent generation models, but accounts for di�erent sources of noise,

including noise in graph generation parameters.

5.2.3 Performance Evaluation for Sparse Data Operations

In order to correctly understand how modern algorithms contribute to improving perfor-

mance, several frameworks have been proposed. The Graph Algorithm Iron Law (GAIL) [9]

targets graph processing algorithms, and proposes the usage of more adequate metrics, other

than just execution time, to quantify performance contributions in regard to graphs. The pro-

posed metrics include algorithmic work, communication volume, and bandwidth utilization.

While these metrics can provide a better understanding of the performance improvements

of di�erent algorithms, the main focus of this work is performance metrics (vertical axis of

performance plots), and not the graph model features/parameters which can a�ect these

performance metrics (horizontal axis of performance plots).

The roo�ine model [93] has been the standard model used in performance evaluation,

where theoretical machine peak performance and bandwidth bounds are calculated, and

application performance is recorded as a point under the theoretical bounds curve. The x

value for each point is the operational intensity (FLOPs/byte), and the y value is performance
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Figure 5.3: Performance Evaluation of SpMV in MKL for di�erent sparse formats (COO,
CSR, and CSC) on a set of sparse matrices using the Roo�ine model. Since the arithmetic
intensity is imposed by the sparse data format, little insights are provided on how to optimize
performance. Arithmetic intensity was estimated based on memory footprint for di�erent
storage formats and SpMV FLOPs.

(FLOPs). Additionally, many derived variants of the roo�ine model have been developed to

accommodate for di�erent memory hierarchy assumptions [71], capture the hardware changes

in modern architectures such as GPUs [51, 98, 42], and work on �ner granularity than a

FLOP/byte such as instruction/transaction [23]. However, the application of the roo�ine

model for applications on sparse data is less than adequate. Assuming we try to optimize

SpMV operation, and we evaluate the performance of each algorithm using operational

(arithmetic) intensity, and FLOPs. Since SpMV operations are directly coupled to a speci�c

sparse data format (COO, CSR, CSC), the operational intensity for any implementation is

�xed for a speci�c sparse data format, since the format imposes the size (bytes) of the data

pieces involved in the SpMV operation. Figure 5.3 illustrates this issue, where the SpMV

performance was evaluated using COO, CSR, and CSC for a set of input graphs. Most of

the data points lie on the same vertical line in the �gure, since they have similar arithmetic

intensity imposed by the sparse data format. This kind of plots provides little insights on

70



how to optimize such operations on sparse data.

In response to the above limitations, we developed our framework to evaluate using

di�erent features on the horizontal axis of performance plots, which have the potential of

being exploited for performance optimization. These features can be parameters used to

generate graphs/sparse matrices using a speci�c graph model. In addition, our framework is

�exible to incorporate any performance metric (vertical axis) similar to the ones proposed

in existing work (e.g. GRAIL), while providing a better representation of datasets to enable

performance interpolation.

5.2.4 Benchmarking Sparse and Graph data Workloads

In order to benchmark sparse and graph data workloads, appropriate input data needs to be

fed to developing algorithms. Most of existing work in literature on di�erent performance

optimization for sparse matrices and graphs uses SNAP dataset [60], SuiteSparse Matrix

Collection [21], and GAP [10]. These benchmarks provide a set of synthetic and real graph-

s/matrices from di�erent applications and structures. However, they are limited in the sense

that they are a discrete collection of graphs. Interpolating the performance of unseen graphs

from a set of discrete graphs with no common continuity feature is challenging. For example,

the GAP benchmark graph dataset consists of only �ve graphs. Tuning new algorithms on

a discrete set of graphs, it is di�cult to expect the performance interpolations to generalize

across other sparse matrices and graphs. A recent work [32] proposed the use of arti�-

cial sparse matrix generators to tackle the issue of potential biased performance decisions

based on discrete sets of matrices. However, the proposed generator parameters are lim-

ited to the observed SpMV bottlenecks features (average nnz per row, standard deviation of

nonzeros per row, bandwidth of matrix, etc.). Hence, additional work is needed to provide a

more comprehensive performance analysis framework that takes into consideration any input

graph/sparse matrix generation models.
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5.3 Methods

Our framework aims at providing a modern infrastructure for describing the performance

of applications where sparse data and graphs are involved. As demonstrated in Section 5.2,

existing techniques fall short in this category of irregular memory access applications. Our

framework provides a means of interpolating and extrapolating the performance of di�erent

sparse matrices/graphs, based on models they closely �t.

The main goal of our framework is to �nd a relationship between the graph generation

mechanism and the resulting performance of operations in which the graph is involved as

an operand. Such analysis allows for the identi�cation of promising graph generation pa-

rameters/features that show direct in�uence on performance. Algorithms can be developed

to exploit these parameters to optimize the performance of operations where graphs of this

model are used as operands.

The advantage of using our framework over pro�ling a single application is that it allows

for a deeper understanding of the performance of applications that would operate over any

matrix/graph that �ts a speci�c graph model. It uses more representative features beyond

dimensions or arithmetic intensity that might not be suitable in many cases.

5.3.1 High-Level Overview

A general overview of the framework is shown in Algorithm 1. All Graphs discussed are

directed weighted graphs, where the vertices are row/column indices, and the weights on

edges are non-zero values. Initial Graphs are generated using a parameterized graph model

(generator). Each model takes as input a set of parameters. In addition to the initial set of

graphs, the framework generates additional sets Gs by varying the input parameters within

the legal range of values for each, while �xing the rest of the values.

Then, the framework induces two forms of noise indicated in Algorithm 1 as noiseA

and noiseB. noiseA tries to capture noisy prediction of real data to the model parameter.
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Algorithm 1 General Framework Description

1: for param in model_gen_params do
2: for val in param_legal_values do
3: new_params = val ∪ (params− param_old_value)
4: G = gen(new_params)
5: append G to Gs
6: for (n0=0;n0<nA_thresh;n0+=nA_step) do
7: GNA = gen_noiseA(G, n0)
8: append GNA to GsNA

9: end for
10: for (n1=0;n1<nB_thresh;n1+=nB_step) do
11: GNB = gen_noiseB(G, n1)
12: append GNB to GsNB

13: end for
14: for op in operations do
15: for impl in implementations[op] do
16: for fmt in sparse_formats do
17: for graph in Gs ∪GsNA ∪GsNB do
18: r = record(perf_eval(impl(fmt(graph))))
19: append r to results
20: end for
21: end for
22: end for
23: end for
24: end for
25: end for
26: for feature in features do
27: visualize(results, feature)
28: end for

Algorithm 2 Performance Evaluation Routine

1: time graph = load_file(graph_file)
2: time graph_data = conv_to_fmt(graph)
3: time dev_data = alloc_mem_dev(sizeof(graph_data))
4: time cp_mem_to_dev(dev_data, graph_data)
5: time warm_up(operation, dev_data, times)
6: time result_dev = execute(operation, dev_data, times)
7: time cp_mem_from_dev(result_host, result_dev)
8: time verify(result_host, golden_result)
9: time deallocate_mem()
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Graph models are expected to produce synthetic graphs with similar features to real-world

graphs, but noiseA tests the e�ect of errors in these graph model parameters. noiseB on

the other hand assesses the cases in which the model alone does not entirely describe the

real data. Real graphs do not appear as pure representation of a model, noisy data might

be added in the process of reading, transmitting, or pre-processing such graphs. Also, those

graphs do not hold any node ordering guarantees.

The framework injects noiseA into Gs through the arithmetic addition of Gs with a

set of random sparse matrices generated using a parameterized that varies from (n0) to

nA_thresh from a uniform distribution, and a user-de�ned step of nA_step producing

a new set of Graphs: GsNA. Injecting this noise is an arithmetic matrix addition between

the adjacency matrices of the random sparse graph and the original graph. In this process,

new edges may be added, and/or existing edges weight may change. Additionally, noiseB

is added to Gs as a random sparse matrix with density n1 in steps of nB_step up to a

maximum of nB_thresh, generating the GsNB graph set.

After the completion of the graph sets generation phase, performance of such graphs

involved as operands in operations is to be evaluated. Multiple operations can be executed

where these graphs are operands, for example Sparse Matrix-Vector Multiplication (SpMV),

in which the graph represents the sparse matrix. The graph or the sparse matrix can be

represented using di�erent sparse formats (COO, CSR, CSC, etc.), and each of these have

their own implementation. The framework evaluates the performance of SpMV using the

di�erent formats and implementations for all generated graph sets.

The �nal step is to relate performance to di�erent features and parameters of the graph

model. These features and parameters are then used to represent the horizontal axis of

the performance plots. The goal of such representation is to �nd a relationship between a

feature or a set of features, and the performance of the operation on the graph. Using this

information, more e�cient algorithms can be tuned to optimize performance by exploiting

features that exhibit strong correlation with performance.
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5.3.2 Performance Evaluation

Algorithm 2 shows a more detailed description of the performance evaluation model. Gen-

erated graphs are stored as �les. In order to evaluate their performance in an operation

(SpMV), �rst step is to load each �le into main memory. Then, depending on the evaluated

sparse data format, a format conversion might be needed. If a device (GPU) is employed,

necessary memory needs to be allocated on that device, and graph data structures in the

target format need to be copied from the host to the device. Memories are warmed up a

number of times to reduce performance numbers reporting errors. The main operation is

then executed for a number of times, to record a distribution of execution times and check

for any variance or outliers in the reported numbers. Operation results are copied back to

the host and are veri�ed for correctness using test harness. Finally, unused memory is freed.

The application is instrumented and each of the described steps is separately timed to report

the break-down of execution time and identify potential performance bottlenecks as well.

5.4 Evaluation and Results

The general framework described in Algorithm 1 generates a high-dimensional set of exper-

iments involving di�erent combinations of parameters and noise values. We conducted a

sub-set of experiments to showcase the capabilities of our framework. In this section, we

report planar slices of some of the experiments. Our framework was evaluated for both CPU

and GPU. Table 5.2 shows the con�guration for the system used in our experiments. For

MKL, the number of threads used is the number of CPU cores on the system. For each of our

experiments, ten iterations of SpMV computation are measured after ten warmup iterations.

There is little variance of the execution time across the ten runs, so the average execution

time is reported and converted into GFLOPs/s throughout the rest of this section. Table

5.3 shows the properties of the di�erent synthetic sparse matrices (graphs) that were used

in the evaluation.
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Table 5.2: System Con�guration

Component Speci�cation

GPU NVIDIA RTX H100
GPU Memory 80 GB
CUDA Version 12.0
CPU Intel Xeon Gold 6338 @ 2.00GHz
CPU Sockets 2
CPU Cores per Socket 32
CPU Threads per Core 2
MKL Version 2022.1.0
Main Memory 256 GB DDR4

Table 5.3: Used Synthetic Matrices Properties

Model Dimensions Min NNZ Max NNZ
K21 2097152× 2097152 26556004 365044062
K15 32768× 32768 200896 1306053
Random 8192× 8192 1024 67108864

5.4.1 Graphs Generated by Varying Model Parameters

In the �rst phase of our framework, a set of graphs is generated by varying di�erent graph

model parameters. For this experiment, we used the Kronecker Graph model. The choice of

the Kronecker graph model as one model throughout the rest of this chapter is because (1)

the Kronecker model has a small and clear set of input parameters that can be dialed, and

(2) tools exist that can map real-world graphs to their best �t Kronecker graph approxima-

tion (e.g, Kron�t [58]). If a real graph is well approximated by this model, then we would

expect the performance of operations over that graph �t the pro�le produced by our frame-

work. However, these components are replaceable. For example, di�erent parameterizable

generative models that capture dense block structures could be used, and the performance

could be measured on a more SIMD amenable format such as Blocked Compressed Sparse

Row (BCSR). This would provide an ideal range of inputs for this format, so our framework

provides the entry points for adding noise to help �nd where BCSR would break down. This

is in contrast to the standard approach of benchmarking sparse matrix and graph operations
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of using standard collections of datasets, where such an evaluation may not be possible.

K15 Graphs with Varying Initiator Matrix � Heatmaps

A Kronecker power of 15 was used, and the initiator matrix values were varied as follows: we

start with a sample 2 × 2 initiator matrix of the values [0.999, 0.437; 0.4370.484], matching

the estimated initiator values by Kron�t [58] for the High Energy Physics - Phenomenology

Collaboration (CA-HEP-PH) Graph [59] from the SNAP dataset. Then, we �x the �rst and

last initiator matrix values, while varying the other two, producing di�erent combinations of

them. For each of the new generated initiator matrices, a new Kronecker graph is generated.

Finally, we evaluate the performance of each as a sparse matrix in a SpMV operation.

(a) COO (b) CSR (c) CSC

Figure 5.4: MKL SpMV performance of K15 Kronecker Graphs with varying initiator matrix
values x1 (x-axis), and x2 (y-axis). The graph is represented in (a) COO, (b) CSR, and (c)
CSC formats.

Figure 5.4 shows heatmaps generated by our framework, representing the performance

of SpMV for the generated K15 graphs, using Intel MKL for di�erent sparse data formats:

COO, CSR, and CSC. The choice of heatmap for the visualization of the Kronecker graph

performance enables observing relationship between two di�erent features (parameters) of

the model (two initiator matrix values), and how the performance changes with varying both

of the parameters. Also, the comparison between di�erent sparse data formats (COO, CSR,

and CSC) drives the decision of choosing the ideal data format, for the given input graph

model (K15), tool (MKL), and architecture (CPU). The �gure clearly shows that CSR is
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(a) cuSparse on H100 (b) MKL on Intel Xeon Gold

Figure 5.5: SpMV performance KDE for 100 Kronecker graphs generated from the same
initiator matrix using a Kronecker power of 21. Tools evaluated are (a)cuSparse on H100
GPU, and (b)MKL on Intel Xeon Gold CPU. COO, CSR, and CSC sparse formats are
evaluated. Performance in GFLOPs is shown on the horizontal axis, and density is on the
vertical axis.

a winner among the three evaluated formats in this speci�c situation. It also shows that

the performance of COO is stable across di�erent x1 and x2 values, so no potential bene�t

appears from optimizing using these two parameters for this speci�c format.

K21 Graphs with the Same Initiator Matrix � KDE

In contrary to the previous experiment, we �x all initiator matrix values and generate 100

di�erent Kronecker graphs using the same initiator matrix. However, we vary the Kronecker

power from 15 to 21. Then, the framework evaluates the performance of the generated graphs

using two tools: NVIDIA cuSparse on GPU, and Intel MKL on CPU. For each of the tools,

we evaluate three di�erent sparse representations: COO, CSR, and CSC.

Figure 5.5 shows the performance results for this experiment. Instead of using heatmaps

to observe the performance variation across a grid of di�erent initiator matrix values, we use

Kernel Density Estimation (KDE) plots to visualize the frequency of di�erent performance

ranges (in GFLOPs). The horizontal axis represents the SpMV performance, while the

vertical access represents the number of graphs achieving that performance. This type of
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plots is informative when a decision about the optimal sparse format is to be made. Figures

5.5a and 5.5b show that CSR is also the best performing format for the generated K21 graphs

of the same initiator matrix on both CPU and GPU.

(a) COO Performance vs nrows (b) CSR Performance vs nrows (c) CSC Performance vs nrows

(d) COO Performance vs nnz (e) CSR Performance vs nnz (f) CSC Performance vs nnz

(g) COO Performance vs density(h) CSR Performance vs density (i) CSC Performance vs density

Figure 5.6: cuSparse SpMV performance for: random, SNAP, and K15 graphs plotted against
number of rows, number of non-zeros, and density on the horizontal axis. COO, CSR, and
CSC formats are evaluated.
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5.4.2 Multiple Di�erent Models with Di�erent Features

In this experiment, we evaluate the performance of di�erent graph models (vertical axis) and

relate that performance to di�erent features of the models (horizontal axis). The purpose

of this experiment is to show if we can directly compare the performance of di�erent sparse

matrix/graph models using common features. This shows if we can interpolate or extrapolate

the performance of di�erent model from existing performance results, by dialing di�erent

parameters/feature.

To conduct this experiment, we used three graph models: random graphs generated using

the density parameter, Kronecker graphs generated using K power 15 and di�erent initiator

matrix values and select graphs from SNAP dataset collection. The selected SNAP graph

are shown in Table 5.4.

Figure 5.6 shows the performance results of this experiment using cuSparse on H100

GPU, plotted against number of rows, number of non-zeros, and density used as features

on the horizontal axis. Each subplot illustrates the performance of a speci�c sparse data

representation out of the three we evaluated: COO, CSR, and CSC.

Looking at the relationship between Performance and number of rows (Figure 5.6a, 5.6b,

5.6c), one can observe that it is not a suitable feature to tune for performance, as compared

to the case in dense matrices. For example, for random sparse matrices of the same number

of rows, performance varies signi�cantly across the entire range of observed performance.

Regarding the choice of ideal format, Figure 5.6 shows the need of using our framework

to sweep across a wide range of graph parameters and noise to generate graphs and make

optimization decisions. For the SNAP subset of graphs we evaluated, the maximum attained

performance was for the web-NotreDam in COO format, at 181 GFLOPs. If one was to

tune for only this subset of SNAP graphs, a conclusion to use the COO format would have

been made. However, throughout our experiment, we can see that CSR shows the global

highest performance across the three graph models, using cuSparse on the H100 GPU.

Random graph generators use a main parameter: density. All of the generated random
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graphs were of the same dimensions (square). We can see that density (Figure 5.6g, 5.6h,

5.6i) as a feature on the x-axis, capture performance well for the random graph, since it is

directly a graph model parameter. However, it does not work as well for Kronecker graphs;

multiple graphs with the same density exhibit di�erent performance characteristics. Also,

for SNAP, looking at the scattered performance points, one cannot interpolate or extrapolate

the performance (using existing performance data) at di�erent density values that have not

been evaluated.

For number of non-zeros (Figure 5.6d, 5.6e, 5.6f), we can see it can be better utilized to an

extent to interpolate SNAP graphs performance. However, Kronecker graphs still illustrate

performance variations for similar nnz values, where some formats (CSC) are more unstable

than others (CSR).

Table 5.4: Properties of the evaluated SNAP graphs

Graph Nodes Edges
soc-Epinions1 75,879 508,837
cit-HepPh 34,546 421,578
cit-HepTh 27,770 352,807
ca-HepPh 12,008 118,521

web-NotreDame 325,729 1,497,134
ca-GrQc 5,242 14,496

p2p-Gnutella25 22,687 54,705
p2p-Gnutella30 36,682 88,328
com-DBLP 317,080 1,049,866

5.4.3 Inducing Noise

Following the general description provided in algorithm 1, our framework evaluates the

sensitivity of performance to di�erent types of noise: noiseA, which represents the error

from �tting a dataset to the model being generated, and noiseB, which represents using the

wrong model for a dataset. The heatmaps shown in Figure 5.4 can also serve as a means of

evaluating noiseA: noise added to input graph parameters, since each cell in the heatmap

represent the performance of a graph generated by varying two initiator matrix values.
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For noiseB, we present two slices of the high-dimensional search space of noise: the �rst

being injected noise in the form of adding a random sparse graph of varying edge densities to

the original graph, and the second being swapping (re-labelling) nodes in the original graph

a number of times.

Adding Random Sparse Graphs with Varying Density

For this experiment, we use a smaller subset of the K21 graphs generated before. For each

of them, we generate a number of sparse random matrices, with varying density. In our

experiment the lowest noise density was 0.000125% (0.00000125 × 221 × 221 = 5, 497, 559

additional random edges).

(a) cuSparse COO (b) cuSparse CSR (c) cuSparse CSC

(d) MKL COO (e) MKL CSR (f) MKL CSC

Figure 5.7: SpMV Performance Boxplots for adding noise in the form of random sparse
matrix with varying density (Alpha %) to a subset of the generated K21 graphs. Performance
Evaluation is performed using both cuSparse and MKL for COO, CSR, and CSC sparse data
formats.
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For cuSparse, we can see that adding noise to Kronecker graphs in the form of random

sparse matrices, changes the median performance within ±10 GFLOPs for COO and CSR

(Figure 5.7a, 5.7b). However, for MKL, the range of change for median performance is

limited: less than 0.06 GFLOPs for COO, around a single GFLOP for CSR and CSC. This

kind of performance sensitivity to noise analysis enables the estimation of performance of

di�erent graph models, given an expected amount of noise, architecture, tool, and operation.

Relabelling Graph Nodes

Another kind of noiseB that we evaluated using our framework is re-labelling nodes. The

re-labelling mechanism is implemented as follows: two nodes are chosen using a weighted

probability (heavier nodes have a higher chance of being picked). Then, we swap the two

nodes labels in all edges they are a source or a destination in. This counts as a single swap,

and we evaluate a di�erent number of swaps. We evaluated up to eight swaps only because

the swapping operation is computationally expensive.

Figure 5.8 shows the performance (vertical axis) sensitivity to swapping node labels in the

original graphs for a number of times (horizontal axis). A subset of the previously generated

K21 Kronecker graphs was also used for this experiment. For cuSparse, the range of change

for the median performance (GFLOPs) is around 3 GFLOPs. Most of the change happens

as soon as the �rst swap happens, and then performance almost stabilizes for up to 8 swaps.

The same e�ect is observed across all the three evaluated sparse formats (COO, CSR, and

CSC) on the GPU.

For MKL, the e�ect of swapping nodes up to 8 swaps is limited on performance, since

the original performance range of SpMV for these graphs is narrower than that of cuSparse.

5.4.4 System-Level Runtime � Practical Considerations

All performance results reported so far are only for the actual operation (e.g. SpMV) invoked

on the sparse data. However, in a practical setting, this is not the only overhead that needs to
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(a) cuSparse COO (b) cuSparse CSR (c) cuSparse CSC

(d) MKL COO (e) MKL CSR (f) MKL CSC

Figure 5.8: SpMV Performance Boxplots for adding noise in the form of swapping the labels
of node pairs, selected based on a weighted probability according to their degree. The swap
is performed a number of times (horizontal axis). Performance Evaluation is performed using
both cuSparse and MKL for COO, CSR, and CSC sparse data formats.
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be evaluated, as the overall system runtime involves additional steps as shown in Algorithm

2, where recording the performance of the actual computation represents only line 6 of

the algorithm.

To this end, we isolated a single run and instrumented the di�erent phases of execu-

tion. For this experiment, we used cuSparse with one input graph from the generated K21

Kronecker Graphs in COO format. Table 5.5 shows the percentage of execution time each

of the activities is taking. The "other" set of activities include loading dynamic libraries,

creating cuSparse di�erent structures, allocating cuSparse SpMV speci�c bu�ers, etc. From

this table, we can see that loading the graph �le (from disk) and parsing it to store the

sparse data according to the COO structure takes up the majority of execution time. In our

experiments, we used the Matrix Market (.mtx) format to store our graphs.

This observation suggests that it is crucial to develop more e�cient techniques to load,

parse, and store sparse data in di�erent sparse formats. Another direction is devising more

e�cient �le formats for sparse data. Also, using the same graph a large number of times in

multiple computations can amortize for the high cost of loading the graph. Our framework

provides detailed analysis and insights that can greatly drive the optimization process for

di�erent practical settings.

Table 5.5: Execution Time Breakdown for 1 instance of SpMV in COO using cuSparse on
H100 GPU as percentages of the total binary execution time.

Activity Percentage
Loading (from disk) and Parsing Graph File in COO 89.17%

Memory allocation on GPU 0.001%
Copy from host to GPU 0.12%
SpMV Warmup (10 times) 0.008%
Actual SpMV (1 time) 0.0008%

Copy result from GPU to host 0.0024%
Result Veri�cation on host 0.967%

Free memory (host and GPU) 0.061%
Other 9.66%
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5.5 Summary

In this chapter, we propose a highly modular framework for evaluating and analyzing the

performance of sparse matrix and graph operations. Our proposed framework makes use of

parameterized graph models to generate graphs by varying these parameters and observing

performance. It also evaluates the e�ect of inducing di�erent types of noise to the perfor-

mance of sparse data operations: noise due to error in model �tting tools, and noise rising

from using the wrong model for the data. Our framework focuses on evaluating performance

(using di�erent metrics) against representative parameters/features (horizontal axis of per-

formance plots), from which performance interpolations and extrapolation can be performed.

It also aims at overcoming the existing limitation of using discrete graph sets to tune the

performance of sparse matrix and graph kernel. We show results from sets of experiments,

conducted through our framework to show the potential it provides to draw insightful per-

formance optimization decisions.
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Chapter 6

High-Level Optimizations for Sparse

Computations

6.1 Introduction

Optimizing computational operations to improve performance is a cornerstone of computa-

tional linear algebra, especially for operations like matrix-vector multiplication (MatVec). A

well-known optimization technique that exploits data reuse (locality) is tiling, which orga-

nizes computations to maximize the e�ciency of data cached during execution. Such opti-

mizations are well-established in the context of dense linear algebra operations, notably in

General Matrix Multiply (GEMM) and dense MatVec operations, where they can be applied

relatively straightforwardly due to the regularity and predictability of data access patterns.

The bene�ts of these optimizations, including reduced memory bandwidth usage and en-

hanced cache utilization, are signi�cant, leading to substantial performance improvements

on modern computing architectures.

However, when it comes to sparse operations, such as Sparse Matrix-Vector multipli-

cation (SpMV), the scenario drastically changes. The irregularity of non-zero elements'

distribution in sparse matrices complicates the direct application of high-level optimizations

87



like tiling. The unpredictability of data access patterns in sparse operations challenges tra-

ditional optimization strategies, as the bene�ts of data locality and reuse become much

harder to exploit. Consequently, while techniques such as loop unrolling and vectorization

remain applicable, their e�ectiveness is often limited by the sparsity pattern. This inherent

di�culty in optimizing sparse operations stems from the need to navigate the trade-o�s be-

tween the computational overhead introduced by managing sparse data structures and the

potential performance gains from optimization techniques. Thus, optimizing sparse oper-

ations demands more sophisticated, context-aware strategies that can adapt to the unique

characteristics of each sparse matrix.

As established in the previous chapters and in literature, the performance of sparse

operations mainly depends on the structure of the sparse matrix, and the sparse storage

format used. The structure of the sparse matrix can be represented using the parameters

used to generate the sparse matrix using graph models as discussed in Chapters 4 and

5. Ultimately, our goal is providing a model that takes as input the graph model and its

parameters, and outputs the optimizations that yield the best performance for the input. In

this work, we explore di�erent high-level optimization strategies and its impact on sparse

performance. We use Sparse-Matrix Vector Multiplication (SpMV) as an example for sparse

operations.

6.2 Background and Related Work

Tensor algebra is an essential computational paradigm across various domains, including data

analytics, machine learning, engineering, and physical sciences. Addressing the unbounded

complexity of tensor expressions and the challenges posed by sparse tensor representations,

Kjolstad et al. introduced TACO [50], a pioneering code generation tool. TACO is designed

to automate the generation of e�cient, parallelized kernels for both dense and sparse tensor

algebra expressions. This tool not only aids in the practical execution of tensor algebra oper-
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ations but also signi�cantly reduces the development e�ort by obviating the need for manual

kernel optimization. Taco's versatility extends to handling mixed kernels, thereby o�ering a

comprehensive solution for the increasing demand for sophisticated tensor computations.

For example, in order to generate the code for SpMV using TACO, one can use the

provided command line tool and provide a simple expression as follows:

taco "y(i) = A(i,j) * x(j)" -f=x:d -f=A:ds -f=y:d

Here y is the output dense vector, A is the sparse matrix, and x is the input dense

vector. Notice the usage of index variables i,j in tensor notation to provide the semantics

of the multiplication operation. Notice also that the user can provide the formats for each

dimension of the input vectors/matrices/tensors through the command line option -f where

the value d means a dense dimension, while s means a sparse dimension. In TACO, the

format ds used here corresponds to CSR format. In addition to the standalone command

line tool, TACO also provides APIs for both C++ and Python. The TACO code generated

for this kernel is shown in Figure 6.1.

TACO stands out by its ability to navigate the intricacies of sparse tensor storage and

computation. Traditionally, the sparsity in tensors, indicative of a predominant presence

of zeros, necessitates bespoke compressed formats and tailored computational kernels for

e�cient storage and processing. TACO automates this process, generating kernels that

adeptly manage sparse formats, thereby optimizing memory usage and computational per-

formance. The tool supports a broad spectrum of tensor algebra expressions using tensor

index notation. With TACO, developers can quickly prototype and optimize tensor opera-

tions, exploring various storage formats and computational strategies without delving into

the complexities of hand-written kernel development.

Tiling or blocking is a crucial loop optimization used to improve temporal locality in

many applications [44, 94, 40, 1]. The basic idea of tiling is to divide input data into

smaller tiles (blocks) that �t into cache, and keep them in the cache for as long as possible
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1 int compute(taco_tensor_t *y, taco_tensor_t *A, taco_tensor_t *x
) {

2 int y1_dimension = (int)(y->dimensions[0]);
3 double* restrict y_vals = (double*)(y->vals);
4 int A1_dimension = (int)(A->dimensions[0]);
5 int* restrict A2_pos = (int*)(A->indices[1][0]);
6 int* restrict A2_crd = (int*)(A->indices[1][1]);
7 double* restrict A_vals = (double*)(A->vals);
8 int x1_dimension = (int)(x->dimensions[0]);
9 double* restrict x_vals = (double*)(x->vals);
10

11 #pragma omp parallel for schedule(runtime)
12 for (int32_t i = 0; i < A1_dimension; i++) {
13 double tjy_val = 0.0;
14 for (int32_t jA = A2_pos[i]; jA < A2_pos[(i + 1)]; jA++) {
15 int32_t j = A2_crd[jA];
16 tjy_val += A_vals[jA] * x_vals[j];
17 }
18 y_vals[i] = tjy_val;
19 }
20 return 0;
21 }

Figure 6.1: TACO generated code for SpMV (CSR format)

1 for (int i = 0; i < n; i++){
2 for (int j = 0; j < n; j++){
3 for (int k = 0; k < n; k++){
4 C[i,j] += A[i,k] * B[k,j];
5 }
6 }
7 }

(a) Naive Implementation
1 for (int i = 0; i < n; i += BLOCK_DIM){
2 for (int j = 0; j < n; j += BLOCK_DIM){
3 for (int k = 0; k < n; k+= BLOCK_DIM){
4 for (int ii = i ; ii < i+BLOCK_DIM; ii++){
5 for (int jj = j; jj < j+BLOCK_DIM; jj++){
6 for (int kk = k; kk < k+BLOCK_DIM; kk++){
7 C[ii,jj] += A[ii,kk] * B[kk,jj];
8 }
9 }
10 }
11 }
12 }
13 }

(b) Tiling with block size= BLOCK_DIM× BLOCK_DIM

Figure 6.2: General Matrix-Matrix Multiplication Code for the Expression Cij = Aik · Bkj

using (a) naive three-loop implementation, (b) tiling.

90



while computing on them. For example, in most general dense matrix-matrix multiplication

(GEMM) implementations, tiling is employed to split input matrices into tiles (blocks) of

dimensions that �t into cache and perform partial matrix multiplication on these tiles while

in cache. Tiling is usually implemented using two other loop optimizations: stripmining,

where an original loop is split into two loops, and permutation where the order of two loops

is permuted. Figure 6.2 shows an example code for a simple GEMM for the expression

Cij = Aik · Bkj where A, B, and C are square n × n matrices. The naive implementation

(Figure 6.2a) uses three loops. In order to perform tiling, the three loops are stripmined

(split), each into two loops, then the order of the loops is permuted to re�ected tile traversal

correctly as shown in Figure 6.2b.

6.3 Methods

6.3.1 Sparse Tiling using TACO

The main idea of our optimization is to simulate a tiling e�ect of sparse matrix-vector

multiplication through a data layout transformation. The tensor index expression for SpMV

is: given a matrix A and a vector x, the result of the multiplication y = Ax can be expressed

in tensor index notation as:

yi = Aij · xj

Here, yi represents the i-th component of the result vector y, Aij represents the elements

of the matrix A, and xj represents the components of the vector x. The indices i and j range

over the dimensions of the matrix A and the vector x, respectively. The operation implies

a summation over the index j, which aligns with the Einstein summation convention where

repeating indices in a term imply summation over those indices.

This notation succinctly captures the essence of the matrix-vector multiplication, where

91



each element of the resulting vector y is calculated as the dot product of a row of matrix A

with the vector x.

While there is no re-use in the sparse matrix involved in this operation, there is a potential

of re-use in the dense vectors by tiling (blocking) the sparse matrix. However, tiling in sparse

matrices is expensive, as it requires scanning the sparse matrix to �nd dense regions.

One way to circumvent this limitation is to bake the tiling in the sparse matrix data

layout itself. Given an input two-dimensional matrix, we raise it to a higher-dimensional

tensor (4D). The conversion from 2D to 4D in the data is simply by converting the indices

of non-zeros from 2D (i, j) to 4D (io, jo, ii, ji) as shown in 3.

Algorithm 3 Transform 2D indices to 4D. Here, nb is the number of rows per block, and
mb is the number of columns per block.

function to_4d(i, j, nb,mb)
io← i÷ nb ▷ Compute the outer row index
ii← i mod nb ▷ Compute the inner row index
jo← j ÷mb ▷ Compute the outer column index
ji← j mod mb ▷ Compute the inner column index
return (io, ii, jo, ji)

end function

Now, after raising the sparse matrix into a 4D tensor, the SpMV operation can be con-

verted to a tensor-times-matrix operation as follows:

Yiojo = Aiojoiiji ·Xiiji

The code generated by TACO for this computation by invoking

taco "Y(io,jo) = A(io,jo,ii,ji) * X(ii,ji)" -f=A:ssss -f=X:dd

-f=Y:dd

is shown in Figure 6.3
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1 int compute(taco_tensor_t *Y, taco_tensor_t *A, taco_tensor_t *X)
{

2 int Y1_dimension = (int)(Y->dimensions[0]);
3 int Y2_dimension = (int)(Y->dimensions[1]);
4 double* restrict Y_vals = (double*)(Y->vals);
5 int* restrict A1_pos = (int*)(A->indices[0][0]);
6 int* restrict A1_crd = (int*)(A->indices[0][1]);
7 int* restrict A2_pos = (int*)(A->indices[1][0]);
8 int* restrict A2_crd = (int*)(A->indices[1][1]);
9 int* restrict A3_pos = (int*)(A->indices[2][0]);
10 int* restrict A3_crd = (int*)(A->indices[2][1]);
11 int* restrict A4_pos = (int*)(A->indices[3][0]);
12 int* restrict A4_crd = (int*)(A->indices[3][1]);
13 double* restrict A_vals = (double*)(A->vals);
14 int X1_dimension = (int)(X->dimensions[0]);
15 int X2_dimension = (int)(X->dimensions[1]);
16 double* restrict X_vals = (double*)(X->vals);
17

18 #pragma omp parallel for schedule(static)
19 for (int32_t pY = 0; pY < (Y1_dimension * Y2_dimension); pY++)

{
20 Y_vals[pY] = 0.0;
21 }
22

23 #pragma omp parallel for schedule(runtime)
24 for (int32_t ioA = A1_pos[0]; ioA < A1_pos[1]; ioA++) {
25 int32_t io = A1_crd[ioA];
26 for (int32_t joA = A2_pos[ioA]; joA < A2_pos[(ioA + 1)]; joA

++) {
27 int32_t jo = A2_crd[joA];
28 int32_t joY = io * Y2_dimension + jo;
29 double tiiY_val = 0.0;
30 for (int32_t iiA = A3_pos[joA]; iiA < A3_pos[(joA + 1)]; iiA

++) {
31 int32_t ii = A3_crd[iiA];
32 for (int32_t jiA = A4_pos[iiA]; jiA < A4_pos[(iiA + 1)];

jiA++) {
33 int32_t ji = A4_crd[jiA];
34 int32_t jiX = ii * X2_dimension + ji;
35 tiiY_val += A_vals[jiA] * X_vals[jiX];
36 }
37 }
38 Y_vals[joY] = tiiY_val;
39 }
40 }
41 return 0;
42 }

Figure 6.3: TACO generated code for 4D Sparse Tensor Times Dense Matrix,
where all tensor dimensions are sparse
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6.3.2 A Header-only Library for Sparse Tiling

In addition to evaluating TACO, we introduce a novel C++ header-only library for sparse

tiling. The main idea is to split the input sparse matrix into multiple tiles (blocks) regardless

of the sparse operation. This means that tiling is tied to the data layout. Figure 6.4 shows a

pseudo-code example of using the library. The user �rst would read an input sparse matrix

from a �le (Matrix Market File) by creating an instance of the SpMat class, providing the

precision as a template parameter for the class. Then, the user can invoke the function

tile on the SpMat instance, passing the desired number of rows per tile, and number of

columns per tile. Afterwards, the user reads or generate the dense vector operator, and

allocate memory for the result dense vector. Finally, an invocation of multiply on the

SpMat instance is needed, passing both dense vectors as arguments.

tile call divides the matrix into a number of tiles or submatrices, each with number of

rows = rowsPerTile and number of columns = colsPerTile. These sub-matrices or

tiles are stored in CSR format (CSRMatrix<T>) within a std::map that keeps track of

the tile indices (tile row and tile column) as a key.

multiply iterates over the map containing CSR blocks, and performs partial multipli-

cation for each with the corresponding slice of the dense vector. This potentially improves

data re-use for the dense vector. The backend used for performing individual tile sub-vector

multiplication can be plugged in or out to use any SpMV implementation (MKL, cuSparse,

etc.).

1 SpMat<float> inputMatrix = SpMat<float>("matrix_file.mtx");
2 inputMatrix.tile(rowsPerTile, colsPerTile);
3 std::vector<float> dVec;
4 std::vector<float> result(inputMatrix.nrows());
5 inputMatrix.multiply(dVec, result);

Figure 6.4: An example for using our library for a simple SpMV operation
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6.4 Evaluation and Results

6.4.1 TACO experiments

Table 6.1: System Con�guration

Component Speci�cation

CPU Intel Xeon Gold 6338 @ 2.00GHz
CPU Sockets 2
CPU Cores per Socket 32
CPU Threads per Core 2
TACO Version 0.1+git 823e8dac
Main Memory 256 GB DDR4

Table 6.1 shows the system con�guration used to conduct TACO experiments. To eval-

uate the e�ciency of raising the 2D sparse matrices into 4D sparse tensors before the sparse

multiplications, we generate a dataset of 1716 matrices using the Kronecker graph model

[56]. The Kronecker power for the graphs generated vary from 16 to 22. For the initia-

tor matrix values, we start from an initial set of values based on Kron�t's [58] estimated

Kronecker initiator values [56] of the High Energy Physics - Phenomenology Collaboration

(CA-HEP-PH) Graph [59]. Then, we vary each of these values while �xing the others with

a step = 0.001 in both directions (up and down) within the domain of legal values (between

0 and 1).

For each of input matrices, to generate 4D tensors, we use Algorithm 3 to convert the

2D indices into 4D indices. For each of the input matrix �les, we generate a set of tensor

�les for di�erent block sizes (powers of two, up to 4096 for both original dimensions). We

try multiple di�erent ordering of indices: (io, ii, jo, ji), (io, jo, ii, ji) to

re�ect di�erent traversal orders.

The following variants of sparse multiplications are then evaluated:

1. Baseline SpMV: The Normal SpMV with sparse matrix. For the input sparse matrix,

we evaluate di�erent formats for the dimensions ds,ss
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2. Blocked SpMV: On top of the normal SpMV, we feed TACO a schedule to stripmine

then re-order the multiplication loop. Such schedule can be provided to TACO by

splitting the �rst index variable i into two index variable io, ii using the number of

rows per block nb, and repeating similarly for the j index variable as follows:

-s='split(i,io,ii,\$nb),split(j,jo,ji,\$mb),reorder(io

,jo,ii,ji)

Here also nb and mb are varied through powers of two up to 4096.

3. Tensorized Multiplication: We use the generated 4D tensors to do sparse tensor-dense

matrix multiplication.

4. Tensorized Multiplication with Re-ordering: Same as tensorized multiplication, but

we change the order of the two innermost index variables in the tensor notation. For

re-ordering we used two di�erent mechanisms: (a) Using TACO schedules, and (b)

Manually �ipping the order in the tensor index expression.

Each of the experiments is run ten times, and then the median execution time is used as

representative of performance. It serves as a fair metric since the standard deviation of the

execution time distribution of the ten runs is much lower than the average execution time.

Median execution time is then used to estimate performance in GFLOPs per second based

on the number of FLOPs for SpMV.

6.4.2 Baseline SpMV

Figure 6.5 shows the relationship between the Kronecker graph generation parameters (K

power and initiator matrix values) and baseline SpMV performance. Each line represents a

set of initiator matrix values. Due to the large number of permutations of these values, they

were omitted from the �gure legend. Some observations from this �gure are:
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Figure 6.5: Kronecker Power (horizontal axis) versus Performance in GFLOPs (vertical axis)
for baseline TACO SpMV with no blocking using CSR format

� Performance decreases as the Kronecker power increases. This is because as the Kro-

necker power increases, the size of the graph (matrix) gets bigger, and it does not �t

in any level of cache. Hence, most values need to be fetched from main memory. This

applies to the dense vectors as well, as they have to match the dimensions of the sparse

matrix so that the multiplication is valid.

� Varying the initiator matrix values for the same Kronecker power has varying e�ect.

This is because the summation of the initiator matrix values directly a�ects the total

number of non-zeros in the sparse matrix, and hence the size of the matrix. The

gap between the best and worst performing initiator matrix values however varies

based on the K power, since K power determines the total number of nodes in the

graph. The Kronecker power and the summation of the initiator matrix values together

determine the size, sparsity, and the sparsity pattern of the matrix. Table 6.2 shows

the gap between the best and the worst initiator matrix values for each of the evaluated
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Kronecker power values.

Table 6.2: Performance Gap between Worst and Best Performing Initiator Matrix Values for
di�erent Kronecker Power values for Baseline SpMV in TACO using CSR. Time in millisec-
onds.

K Power Worst Values Worst Time Best Values Best Time
16 0.899 0.537 0.537 0.584 4.06704 0.899 0.537 0.526 0.484 2.13947
17 0.899 0.537 0.537 0.583 14.9136 0.964 0.437 0.437 0.484 2.85515
18 0.899 0.537 0.537 0.565 50.1947 0.899 0.437 0.437 0.484 5.09403
19 0.899 0.537 0.537 0.583 189.332 0.899 0.437 0.437 0.484 14.3231
20 0.899 0.537 0.52 0.484 221.799 0.899 0.437 0.437 0.484 39.3673
21 0.899 0.537 0.437 0.484 252.357 0.899 0.438 0.437 0.484 99.1911
22 0.908 0.437 0.437 0.484 324.235 0.9 0.437 0.437 0.484 281.922

6.4.3 Blocked SpMV

To generate the blocked (tiled) variant of SpMV, we provide a schedule to TACO. The

schedule starts by splitting (stripmining) each loop into two loops, with a step of number of

rows per block and number of columns per block respectively. This step introduces a new

point loop under each original loop. Then, the two innermost loop nests (after splitting) are

permuted. The two variables in this schedule are: the number of rows per block nb and the

number of columns per block mb. We evaluate all power of two permutations for both nb

and mb up to 4096. The performance distribution of Blocked SpMV versus baseline SpMV

is shown in Figure 6.6. Results show that blocking for CSR using this schedule in TACO

severely worsens SpMV performance as compared to baseline. This is due to the overhead

of adding additional loops while searching for non-zeros within block boundaries (nb and

mb) which is not straightforward in sparse storage formats such as CSR. This additional

overhead is not amortized by the re-use in the output dense vector.

6.4.4 Tensorized SpMV

We evaluated the performance of raising SpMV tensor-times-matrix in di�erent ways:

� Di�erent storage formats for each of the four dimensions.
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Figure 6.6: Performance Distributions for both baseline SpMV (no blocking) and Blocked
SpMV. Blocked SpMV is generated by providing a split then re-order schedule to TACO.

� Di�erent indices order in the data layout transformation pre-processing step.

� Di�erent schedules to reorder the loops in TACO.

� Di�erent index variable orders in the tensor expression (no schedule provided).

Table 6.3 shows the relative performance of di�erent evaluated con�gurations as compared

to baseline SpMV. For the tensor storage format, each dimension can be dense (d) or sparse

(s). DLT refers to Data Layout Transformation, where 2D matrix �les are converted to 4D

tensor �les. Schedule in the table refers to a re-ordering schedule that swaps the order of

the second and third loop nests. Manual reorder refers two simply changing the order of the

index variables in the tensor expression without providing a schedule.

We compare tensor performance to the performance of its corresponding matrix it was

generated from. For example, matrix mtx is used to generate many tensors tns1, tns2,

tns3, ... each re�ecting a di�erent block size. When evaluating the performance of the

tensor-matrix multiplication operation on tensor tns1, we compare it to SpMV performance

on matrix mtx. We notice that providing a re-ordering schedule for the 4D tensor results
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in TACO generating incorrect code, which fails to compile. For the rest of con�gurations,

TACO produces code that compiles and runs (in many cases, but for some sizes still fails to

run). However, all variants exhibit performance which is worse compared to the 2D matrix

SpMV performance. The magnitude at which the performance is worse varies signi�cantly

based on the used block size.

Figure 6.7: Performance comparison between Tensorized multiplication with manual indices
order (io, ii, jo, ji) for di�erent block sizes generated from a K16 matrix with the initiator
values [0.899 ; 0.537 ; 0.537 ; 0.561], and baseline SpMV using TACO. Stor-
age Format for 4D Tensors is ssss

Taking one random K16 matrix as an example with the following initiator matrix values

: [0.899 ; 0.537 ; 0.537 ; 0.561], the total number of DLT2 + manual reorder

attempted to evaluate was 100. 45 of these failed to run by TACO. Figure 6.7 shows median

execution time (milliseconds) comparison between tensorized and baseline. We can observe

that baseline SpMV is consistently better than tensorized, but the gap increases when block
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sizes are small (4 × 4 is the worst among those evaluated).

Table 6.3: Relative Performance Results for Di�erent Tensorized Con�guration in TACO as
compared to a baseline SpMV.

Storage Format DLT1 (io, jo, ii, ji) DLT2 (io, ii, jo, ji) DLT1 + schedule DLT2 + schedule DLT1 + manual reorder DLT2 + manual reorder
ssss Worse Worse All Failed All Failed Worse Worse
dsss Worse Worse All Failed All Failed Worse Worse
sdss Worse Worse All Failed All Failed Worse Worse
ssds Worse Worse All Failed All Failed Worse Worse

6.4.5 Proposed Library Experiments

For the experimental setup, we use the same setup for TACO shown in Table 6.1, but for the

SpMV backend we use MKL version 2023.1.0. In order to �nd a range of high-performing tile

sizes for the system, we evaluate the performance of SpMV using MKL (no tiling) for a sample

initiator matrix [0.899 0.537; 0.526 0.484] for all Kronecker powers varying from

1 to 20 as shown in Figure 6.8. We can observe that for the system con�guration, peak

performance is achieved between K power = 13 and 17. Hence, we choose this range of size

to evaluate as tile sizes for our library implementation experiments.

For di�erent Kronecker powers from 17 to 20, we evaluate the range of peak tile sizes

obtained from the aforementioned experiment, using the same initiator matrix values. Fi-

grue 6.9 shows performance results for using our library to implement data-side tiling using

di�erent tile sizes. The main observations from this set of experiments is that increasing the

number of columns per block up to the maximum evaluated sizes, improves performance,

with tiles having the maximum number of columns per tile showing similar or better perfor-

mance to no tiling. This is mainly due to the high sparsity of the Kronecker graphs; fewer

columns per block mean fewer non-zeros to operate on, not justifying the additional loop

overhead and metadata overhead due to maintaining a large number of tiles. We can also

observe that with increasing the Kronecker power, the performance gap between the best

tiling con�guration and the no-tiling con�guration increases in favor of the tiling. For K=17,

the best tiling con�guration (131072×131072) achieves similar performance to no tiling. For

K=18, the best tiling con�guration (131072×262144) achieves 1.05% better performance
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Figure 6.8: MKL SpMV performance in GFLOPs (vertical axis) versus Kronecker Power
(x-axis) for the Kronecker initiator matrix [0.899 0.537; 0.526 0.484]
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(a) K=17 (b) K=18

(c) K=19 (d) K=20

Figure 6.9: Performance (GFLOPS) of our library's tiled SpMV with di�erent tile con�gu-
rations using MKL for (a)K=17, (b)K=18, (c)K=19, and (d)K=20 for the initiator matrix
[0.899 0.537; 0.526 0.484].

than no tiling. For K=19, the gap is 2.56% better in favor of 65536×262144 over no tiling.

For K=20, the tiling con�guration 131072×262144 is 8.6% better than no tiling. This is

mainly due to the fact that increasing Kronecker graph power (sparse matrix dimensions)

increases the dense vector dimension as well. When the dense vector increases signi�cantly

in space, the e�ect of re-use via tiling becomes more pronounced.
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6.5 Summary

In this chapter we explored a set of high-level optimizations for SpMV using TACO as a

code generator. Example optimizations include tiling (blocking) 2D sparse matrices, raising

matrices to higher dimensional 4D tensors through data layout transformation and adjusting

loop iteration ordering. For each of the optimizations, we evaluated plenty of sparse storage

formats for the sparse matrix/tensor. As expected, tiling over a 2D matrix incurred an

additional overhead and resulted into worse performance as compared to a baseline CSR

SpMV with no blocking. The reason being tiling includes scanning the sparse storage format

for dense blocks within the row/column block size boundaries. Raising the matrix to higher

dimensional tensors did not show any performance improvement to baseline SpMV. It is

possible that TACO lacks the mechanisms to generate e�cient code for this speci�c situation,

which was clear when it generated incorrect code for an instance where a re-ordering schedule

was provided for the 4D tensor multiplication case. Changing the sparse format resulted in

performance changes, however, no performance bene�t over the baseline implementation was

observed. Our results show the need for more specialized tools to perform such optimizations

in the sparse world, as existing tools falls short once the number of dimensions increase and

specialized optimizations need to be tailored. We introduced a novel header-only library to

perform tiling on the data itself using CSR format, achieving up to 1.09× better performance

than no tiling. This shows the potential of data layout transformation and opens the door

to further improve performance gains by carefully reducing metadata overhead, exploring

other sparse storage formats (in addition to CSR), evaluating the e�ects of the approach on

a wide range of Kronecker graph parameters (initiator matrix values and Kronecker power),

and exploring additional optimizations.
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Chapter 7

Conclusion

This dissertation has embarked on a journey to bridge the gap between sparse matrix com-

putation and graph models, elucidating the intricate interplay between these two pivotal

areas in computational science. Through a comprehensive exploration encompassing the

optimization of sparse operations, leveraging graph neural networks (GNNs) for identifying

sparse matrix structures, and the development of frameworks for analyzing the robustness

and performance of graph models, this work has contributed signi�cantly to advancing our

understanding and capabilities in handling sparse matrices and graphs.

7.1 Main Contributions

The dissertation's contributions are multifaceted, addressing both theoretical and practical

aspects of sparse matrix computations and graph models. Firstly, we introduced an inno-

vative approach using GNNs to accurately identify the structure of sparse matrices. This

methodology not only enhances our ability to predict matrix properties but also opens new

avenues for optimizing sparse matrix storage and operations. Furthermore, we developed

frameworks that allow for the analysis of graph models' robustness and performance, pro-

viding valuable tools for researchers and practitioners to evaluate and improve their graph-

based algorithms and applications. Additionally, this dissertation explored a set of high-level
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optimizations for sparse computations to evaluate its e�ciency and to assess the quality of

current code generation tools for sparse kernels.

7.2 Future Directions

While this dissertation has made strides in bridging sparse matrix computation and graph

models, several exciting avenues for future research have emerged. One potential direction

involves the further re�nement and expansion of the GNN-based framework for identifying

sparse matrix structures. Exploring additional features and network architectures could yield

even more accurate and e�cient predictions. Working on a parallel framework for regression

to predict the numeric parameters used to generate the input sparse matrix (after classifying

its generator) is another important future work to move a step closer to predicting the optimal

sparse format. Additionally, the developed frameworks for analyzing graph models' robust-

ness and performance present opportunities for integration with machine learning techniques

to automate and enhance the decision-making process regarding the choice of sparse matrix

formats and optimization strategies. As a result of adopting graph models, working on the

e�cient generation of sparse data is a crucial direction to investigate. Optimized generators

that make use of system heterogeneity can assist in generating large-scale sparse data more

e�ciently. In addition, as observed in Chapter 5, in a typical SpMV work�ow, sparse matrix

�le loading and parsing takes up the majority of the end-to-end system wall time. Hence,

introducing e�cient �le formats for sparse data helps minimizing this signi�cant portion of

the work�ow execution. Additionally, given the shortage of specialized e�cient sparse tensor

algebra tools in capturing and improving sparse performance, new tools are needed to �ll

in this gap. The ultimate goal is to have a model that takes as input graph model and

generation parameters, and comes up (as output) with the optimal optimization strategy for

a given sparse operation (e.g., SpMV).
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7.3 Final Thoughts

In conclusion, this dissertation stands as a testament to the profound interconnectedness

of sparse matrix computations and graph models, highlighting the importance of continued

research and development in these areas. The contributions made herein not only advance

our theoretical understanding but also provide practical tools and frameworks that can be

leveraged across various domains of computational science. As we look to the future, it is

clear that the exploration of sparse matrices and graph models will continue to be a rich and

fruitful �eld of inquiry, promising to unlock new discoveries and innovations at the nexus of

computation, mathematics, and data science.
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