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ABSTRACT 
 

Fraud is a persistent and increasing problem in the telecom industry. Telcos work in 

isolation to prevent fraud. Sharing information is critical for detecting and preventing fraud. The 

primary constraint on sharing information is privacy preservation. Several techniques have been 

developed to share data while preserving privacy using privacy-preserving record linkage (PPRL). 

Most of the PPRL techniques use a similarity measure like Jacquard similarity on homologous 

datasets, which are all prone to graph-based attacks, rendering existing methods insecure. Many 

complex and slow techniques use the Bloom filter implementation, which can be compromised in 

a cryptanalysis attack.  

 

This dissertation proposes an attack-proof PPRL framework (FD-PPRL) using existing 

infrastructure of a telco without a complex multistep protocol. First, a novel way of matching two 

non-homologous datasets using attack-proof digital signature schemes, like the Edwards-curve 

digital signature algorithm is proposed. Here, Jaccard similarity can only be estimated using this 

method and not on the datasets directly. Second, two parties transact with a simple request–reply 

method. To validate the match accuracy, privacy preservation, and performance of this approach, 

it was tested on a large public dataset (North Carolina Voter Database). This method is secure 

against attacks and achieves 100% match accuracy with improved performance. 

 

Fraud detection using Privacy-Preserving Record Linkage (PPRL) was first proposed in 

our dissertation. It addresses many challenges related to fraud detection in the telecommunications 

industry, which can then be expanded to other industries. We begin by introducing the research 



 
 

 

xii 

problems and challenges, followed by proposing solutions through research and development to 

address these issues. Our background section covers some of the PPRL concepts and 

terminologies, and we conduct a detailed analysis of current research and literature. Next, we 

develop the novel FD-PPRL framework upon which our solution is built. We also analyze various 

hash techniques with FD-PPRL and select the most suitable one for our implementation. The 

dissertation then delves into how the telco can securely store and transmit large volumes of fraud-

related information using a (or the) Block method. Additionally, we address speed issues and 

develop a method to facilitate communication among multiple telcos simultaneously. Finally, we 

conclude by highlighting how our approach has effectively solved the persistent fraud-sharing 

problem among telcos and provide guidance for future research. 
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INTRODUCTION 
 

 
This chapter serves as an introduction to the dissertation. We will begin by defining privacy 

and its importance, and then focus on the specific area in the telecom industry where there is a 

need to share information while still protecting the privacy of the individual. In Section 1.1, we 

will introduce the research problem. In Section 1.2, we will discuss the application of Privacy-

Preserving Record Linkage for fraud detection. In Section 1.3, we will define in detail the research 

problem with its challenges. Section 1.4 describes the aim and objectives of this research. Our 

contribution to the area of research is described in Section 1.5, and Section 1.6 outlines our 

research methodology. 

1.1 Research Problem 

Telecommunication companies are the primary source of technological connectivity 

worldwide and are prone to several daily fraud attacks [1]. As telecom products evolve, our 

everyday lives become more virtual, increasing the need to identify, prevent, and protect against 

these attacks. Therefore, telecommunication companies are primarily responsible for protecting 

internal and customer information transmitted over their network. 

According to the Communication Fraud Control Association (https://cfca.org/stop-the-fraud-

stop-the-churn/), telecom fraud is worth billions of dollars, which amounted to approximately $38.1 

billion in 2021. Although there are various kinds of fraud, subscription fraud [2] is among the most 

impactful. When a telecom company becomes a victim of fraud, it can lose its reputation and 

customers. Furthermore, the companies need to use each other's networks to support customer 

traffic. Therefore, an attack on one telecom company could impact other interconnected 

https://cfca.org/stop-the-fraud-stop-the-churn/
https://cfca.org/stop-the-fraud-stop-the-churn/
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companies. 

Traditional fraud management systems within telcos operate in isolation; fraudsters know 

and exploit this deficiency. When identified by one telecom, they move to another. These fraudsters 

can be stopped if telcos cooperate and share information. This was not possible in the past owing 

to privacy laws at the state, national, and international levels, such as Customer Proprietary 

Network Information (CPNI) and General Data Protection Regime (GDPR)[3] in Europe. Many 

such laws are either being considered for legislation or being formulated. 

For telcos to share information they need to comply with privacy laws and protect their 

business secrecy. The main challenges are: 1) sharing fraud information without revealing data; 2) 

sharing information without involving any third party; and 3) using a protocol that is safe, secure, 

fast, and easy to implement. This can be achieved using our privacy-preserving record linkage 

(PPRL) methods.  

 
1.1.1.) Sharing fraud information without revealing data is a key aspect of preventing fraud in the 

telecom industry. Identifying bad actors is crucial, but telcos can only identify repeat offenders 

using the information they have. On the first fraud occurrence for a specific telco, they cannot 

identify the fraud without additional information. This is where sharing information between telcos 

becomes extremely important. However, there are many constraints to doing so, including privacy 

laws that prevent telcos from sharing information. One of the most prominent privacy laws is the 

General Data Protection Regulation (GDPR) [3], which imposes harsh penalties for breaches of 

the law. Additionally, individual telcos may choose not to share information to remain competitive. 

While there are barriers for telcos to share information, our protocol allows fraud 

information to be shared without revealing information to the seeking and receiving telcos. This 
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would be a win-win situation for identifying fraud effectively. 

 

Figure 1.1 Fraud verification transaction between Telcos 

1.1.2.) Sharing information without involving any third party is a challenging task in the telecom 

industry, which is highly regulated and competitive. While information is key, it is also highly 

guarded due to the reasons mentioned in 1.). Many privacy-preserving record linkage (PPRL) 

protocols have been developed to conduct matches while not revealing information to each other. 

However, many of these protocols involve third parties, such as linkage units (LUs) [4], which can 

still expose information to the LU provider, even if they are semi-trustworthy. With the volume of 

data that could potentially be transacted through the LU, the third party would figure out the 

information and thus be in violation of privacy laws. Telcos will be more receptive to sharing fraud 

information if they can transact information directly with each other through a secure protocol. 

Figure 1.1 describes one such protocol described in this dissertation where the Telcos can transact 
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with each other directly through a request-reply method. 

                 
1.1.3.) Using a protocol that is safe, secure, fast, and easy to implement is crucial for an industry 

application. A fraud sharing protocol needs to be hack-proof and proven to withstand cryptanalysis 

attacks. Any breach of the protocol, as described previously, can have grave consequences for 

Telcos and the industry in general. For a protocol to have good adoption, it needs to be easy to 

implement on existing infrastructure and scalable across many Telecoms. When a fraud attack 

happens, speed of response is of vital importance. While data speed transmission has improved 

over time, along with database query and fetching speeds, the challenge remains in processing 

when the data is obfuscated or needs to be limited due to privacy constraints. Existing protocols 

have a run time complexity of O(nm) [5], where n is the number of steps and m is the speed of 

each step. Our protocol ensures that the implementation is safe, fast, secure, and extremely easy to 

implement. 

 

Definition 1.1: Fraud Detection through Privacy Preserving Record Linkage (FD-PPRL) is a 

protocol that enables multiple Telcos to share fraud information without revealing sensitive data. 

Assume TA, TB, TC, …, TN are N Telcos who have gathered fraud information over the course of 

conducting business. They respectively have DA, DB, DC, …, DN as their fraud databases, which 

we will describe in Chapter 6 on efficiently organizing that information for querying. To request 

fraud information (Fi), Telco TB sends a tuple of information (FiB, FjB, FkB, …, FnB) to the Telco 

to determine which of their records FA ∈ DA, FC ∈ DC, …, FN ∈ DN match the tuple using our 

protocol. Once a match is found, a block of information is sent to the requesting Telco, or 

confirmation is sent that the information requested is related to a fraud incident at one of the Telcos. 
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1.2 Application of the Fraud Detection Privacy Preserving Records 
Linkage (FD-PPRL) 
 
1.2.1 Fraud detection and prevention across multiple industries is a complex process that requires 

various transactions [6], inter-group cooperation, and domain and industry knowledge. With the 

large volume of data being transacted nowadays, data breaches and ransomware attacks are 

happening frequently. Requesting and analyzing data across industries today can be expensive and 

requires many professional hours to set up. FD-PPRL provides an effective way to fetch fraud 

information across various domains and industries while maintaining and protecting privacy. 

Fraudsters typically falsify their core information that identifies them and could hit 

multiple industries with similar patterns of behavior [6]. They change their information to look 

real to mislead intended parties. Such false information provides various linkage issues across 

databases and further empowers such fraudsters to commit such acts. 

FD-PPRL provides a way to identify false identities in databases and prevent them from 

being recorded in a legitimate database. The protocol provides the ability to identify records by 

linking them in near real time while preserving sensitive privileged information. It is also scalable 

to multiple databases and industries. 

1.2.2 Sharing medical information - FD-PPRL protocol can be used by research organizations in 

the medical field to obtain medical information across a patient base without revealing to the 

hospital who the inquiry is about. The research organization can obtain attribute-level information 

without revealing the identity of the patient. Hospitals can also use our protocol to ask about a 

patient and obtain specific information about test results or diseases not revealed during the patient 

check-in process. This can be done without the hospital revealing patient information to each other. 
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1.2.3 Our protocol can be used by government and criminal investigating agencies to inquire in 

near real-time about potential terrorist threats. However, if privacy is not maintained, an inquiry 

into a potential criminal database could bring that person into natural suspicion and violate their 

privacy. Some inquiries, even into such activities, need to adhere to privacy laws and constraints. 

Figure 2.2 shows how government and security agencies can obtain potential threat information 

without violating privacy. If the individual is not a terrorist, then their innocence can be 

maintained. 

                            
Figure 1.2 FD-PPRL protocol across industry segments  

   

1.3 Research Problem Definition 
 

In Chapter 3, we will examine several PPRL methods that are currently available. 

However, all existing PPRL methods have a common issue: the data sets being compared are 

encrypted using the same method. This results in homogeneity between the individual data, which 

can be exploited by an adversary to calculate a similarity measure on the encrypted data and 

determine the original data through graph attacks [7]. To prevent this attack, a method to measure 
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similarity must be developed on data processed through completely different protocols and only 

by the receiver. By transmitting only, the encrypted data to be compared against the unencrypted 

data, we can ensure that the two sets of data are always completely different, and the adversary 

cannot extract any information from the transmitted encrypted data. 

It is worth noting that in the telecom industry, the use of a third party is never feasible. If a 

protocol is developed with a third party, it is unlikely to be adopted. Therefore, the protocol needs 

to be simple, fast, secure, and direct. 

 
  Our study proposes a new PPRL method that: 1) is secure, and fast; 2) is based on a simple 

request–reply protocol to share fraud data between telcos; and 3) does not require a trusted third 

party.   

Challenge 1 
 
Create a protocol that compares two non-homologous datasets - Many PPRL methods that 

exist today rely on the same encryption methodology being shared between the two transacting 

entities [4][5][6]. This leads to the same methods being applied to both sets of data. While the data 

in isolation can be secure, using various cryptanalysis methods described in (Vindage 2022) [7], 

privacy can be compromised, making existing protocols completely defunct. The challenge is to 

compare two non-homologous databases where the similarity determination method, such as 

Jaccard similarity, can be done with completely disparate datasets and yet yield results, ensuring 

that privacy is not compromised. 

Challenge 2 
 
Create a protocol with a simple request reply mechanism- To ensure adoption in the telecom 

industry, it would be ideal to create a protocol with a simple request-reply mechanism. Many 
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existing PPRL methods are complex in their implementation, and the number of transactions grows 

when a third party or a linkage unit is involved [4], depending on how well each party intends to 

secure privacy. A simple request-reply protocol can accomplish the task in just two steps, making 

it practical for the telecom industry. 

 
Challenge 3 
 
Create a protocol that does not require a trusted third party - Using a third party to perform a 

privacy-preserving match on behalf of two transacting entities is unlikely to become popular in the 

telecom industry. This is because the introduction of a third party would require some form of 

regulatory oversight or an independent governing body oversight, which would make this setup 

cost-prohibitive at the very least. Additionally, third-party implementations are worked through 

the lens of being semi-honest, which makes these protocols impractical due to overarching privacy 

laws that are currently ineffective and many of which are being formulated and worked through in 

legislative bodies of many countries. 

 
Challenge 4  
 
Create a protocol that is secure and fast - Fraud detection using existing protocols can be 

complex and involve multiple transactions [4][5][6], which can make them slow. To quickly 

identify a fraudulent actor and prevent further damage, the protocol needs to have extremely quick 

response rates. However, increasing the speed of the protocol can compromise security, and vice 

versa. The ideal protocol for the telecom industry would be one that is both secure and fast at the 

same time. 
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1.4 Aims and objectives of this research 
 

As mentioned in Section 1.1, there is a pressing need for a fast, secure, and safe protocol 

to share fraud information in the Telecom industry. The protocol should be designed to ensure 

quick adoption by telcos and be compliant with industry regulations. Most importantly, the privacy 

of the entity must be maintained throughout the transaction. 

 

In the past decade, many approaches to Privacy-Preserving Record Linkage (PPRL) have 

been developed. As new versions of PPRL have been developed, their implementations have 

become more complex, compromising speed [4][5][6]. Moreover, all PPRL implementations 

have an inherent flaw where the same protocol is embedded in their implementation, causing 

them to be homologous. Developing a PPRL protocol across two non-homologous datasets while 

maintaining speed and simplicity is still an open research problem. 

 

The main aim of this dissertation is to develop a safe, secure, and fast protocol that can be 

easily adopted for the telecom industry. Our goal is to develop techniques to compare non-

homologous datasets. The protocol needs to have a simple request-reply protocol and should be 

scalable across large datasets and multiple companies/entities. This protocol will be general 

enough to be employed across other industry segments. Based on our aim, we define several 

objectives to be accomplished in this study:  
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Figure 1.3 High-level representation of the FD-PPRL Protocol 

 
1.4.1) Develop a FD-PPRL protocol that compares two non-homologous datasets 
 

To perform record linkage, similarity measures are used in PPRL implementations [4][5]. 

One of the most effective measures is the Jaccard similarity measure, which establishes the 

commonality between the data sets. As described in Chapter 4, the Jaccard similarity measure will 

only yield a match if the comparison is on two similar data sets TA and TB, where E(TA) ∼ 	E(TB), 

and E is the encryption function, which can range from a simple hash function to complex 

implementations. 

As described, data sets with similar encryptions inherently have homogeneity infused into 

them, making them susceptible to cryptanalysis attacks. In Chapter 4, we will develop a protocol 

by choosing one of the most secure encryption methods using the Edwards Curve digital Signature 

algorithm and determine a novel way of Jacquard similarity comparison between two non-

homologous datasets.  

We will establish the privacy of the implementation by subjecting the protocol to 

cryptanalysis attacks and measuring the outcome. We will compare the results against other 
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implementations to demonstrate the security of FD-PPRL. An analysis on the speed of processing 

will also be conducted and compared to existing protocols to demonstrate its capacity and 

feasibility for wider telecom industry application. 

1.4.2.) Develop FD-PPRL protocol choosing the most appropriate Similarity 
Measure and Hash techniques 
 

In Chapter 4, we develop a basic framework to compare two non-homologous datasets 

using a simple request-reply method that is easy, fast, and secure. We use the Jaccard similarity 

[8] measure to compare the datasets. In Chapter 5, we apply different similarity measures to 

determine which protocol yields the most accurate results. We also try the protocol with other 

measures using different MinHash protocols in our framework. Finally, we compare the privacy 

analysis of these protocols to develop the one that is most suited for adoption in the telecom 

industry. 

1.4.3.) Develop a block protocol with our FD-PPRL implementation for large 
datasets 
 

Any industry application of a protocol will require analysis to be conducted on large 

datasets. However, performing a full database scan will slow down the implementation and make 

it impractical for wider use. In Chapter 6, we will develop techniques of blocking so that 

transacting Telcos can compare smaller datasets and transmit the same between them for 

comparisons. The whole premise is to avoid the use of third-party implementation when data is 

transmitted between Telcos. We will conduct an analysis across various methods to show how data 

can be transmitted securely and quickly. 

1.4.4.) Develop a FD-PPRL protocol to communicate with multiple Telcos at the 
same time 
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Chapters 4, 5, and 6 describe implementations that mostly involve the interaction between 

two Telcos. However, it is speed-prohibitive if the implementation can be done only between two 

Telcos at a time. In Chapter 7, we will develop a protocol where a Telco can communicate with 

multiple Telcos at once to ensure timely identification of a fraud actor and prevent any potential 

damage. The developed implementation will again need to be secure, fast, and simple for wider 

industry adoption. 

1.5 Contributions 
This dissertation focuses on developing a Fraud Detection Privacy Preserving Protocol 

(FD-PPRL) for the Telecom industry, which can be easily adopted across other industry 

segments. Our contributions are categorized into four main sections. 

1.5.1 A FD-PPRL framework for Telco industry application  

We developed a framework that addresses a major flaw in current implementations where 

data comparison to perform linkage happens over homologous datasets. Additionally, the current 

protocols are not practical for the telecom industry due to several reasons described in Sections 

1.1 and 1.2. 

• We designed the protocol using a novel method of calculating Jacquard similarity over 

datasets that are not similar in any way.  

• The framework uses one of the most secure encryption schemes developed. 

• The FD-PPRL implementation provides PPRL practitioners across multiple industries with 

the ability to tailor the framework to their environment and use case. 
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1.5.2 Fast and secure implementation 
 

The FD-PPRL protocol was designed with other protocols to ensure speedy response times. 

The implementation uses one of the most secure encryption schemes, where cryptanalysis attacks 

are ineffective on our protocol. 

 

1.5.3 Simple request-reply protocol 
 

Some of the complex PPRL implementations that exist today have multiple interactions 

with transaction entities [4][5][6], making them prone to cryptanalysis attacks [7]. Our protocol 

has been designed to minimize transactions between Telcos using a simple request-reply protocol. 

The algorithm steps to detect fraud are also minimal. 

 
1.5.4 Efficient Block implementation for data transfers 
 

Since fraud information, or any information for that matter, in a particular industry is stored 

in large databases, we have designed a blocking protocol where data can be extracted and 

transmitted in smaller blocks that are only relevant to the information being sought. 

 

1.5.5 Multi Telecom protocol 
 

As detailed in Chapter 7, our protocol has an implementation where communication can 

be sent to multiple Telcos with responses attained quickly to identify an attack. The protocol can 

take a step further for automated responses once the comfort level of using our protocol has been 

established with Telcos. 
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1.6 Research Methodology 
 

For our dissertation, we used the process and methods below to design and develop 

algorithms for FD-PPRL. The process consists of several steps, as shown in Figure 1.4. 

 
Figure 1.4 Flow diagram of the steps taken to conduct research and formulate this dissertation  

 
1.) Initial research - During this stage, we developed a good understanding of the need for fraud 

prevention in the telecom industry, while also analyzing the concept of privacy and the need to 

protect the privacy of the individual being enquired upon. 

2.) Formulating the research problem - In this step, we researched and analyzed the current 

literature on existing privacy-preserving record linkage methods available and determined their 

existing flaws. This helped us to formulate the research problem to solve. 
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3.) Literature Review - In this step, we researched and analyzed the current literature on existing 

privacy-preserving record linkage methods, determined their flaws, and formulated the research 

problem to solve. 

4.) Designing framework - Here the algorithms were designed to solve the research problem. 

5.) Theoretical modeling - In this stage the theory was formulated to prove how our protocol 

addressed the fundamental flaw in existing implementations.  

6.) Prototype development - Python was used to develop and analyze the implementation described 

in section 1.4. We used a publicly available large dataset to analyze speed and security. 

7.) Experimental setup - At this stage, we tested various test cases and use cases against our 

protocol. We conducted evaluations to measure specific metrics and establish the effectiveness of 

the protocol. 

8) Evaluation - The results were analyzed to determine if the protocol is effective, fast, safe, and 

secure. 

The next chapter will cover the background on privacy, the need for it, how to conduct 

linking through privacy-preserving record linkage (PPRL), and its concepts. In Chapter 3, we will 

present a review of existing PPRL concepts and approaches. Our fundamental FD-PPRL 

framework will be presented in Chapter 4, where we will explain our choice of encryption protocol, 

similarity measure, and theoretical analysis. In Chapter 5, we will evaluate our FD-PPRL 

technique through various Minhash protocols and establish the most optimal one for the telecom 

industry application. We will dive into aspects of the framework’s application across large 

datasets, and in Chapter 6, we will discuss blocking approaches for efficient and small dataset 

management and transfer. In Chapter 7, we will develop a method for communication with 

multiple Telcos at the same time, emulating a real-world scenario. Finally, in Chapter 8, we will 
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conclude and summarize our findings and provide directions for future work in this area of 

research. 

 
 
  



 
 

 

17 

 

Chapter 2: BACKGROUND 
 
 

In this chapter, we will explore some of the concepts and background used in the following 

chapters to design our framework in Chapter 4, and other PPRL techniques and concepts in 

Chapters 5, 6, and 7. In Section 2.1, we will explore some concepts of privacy and the needs related 

to it. Privacy Preserving Record Linkage (PPRL) will be described in Section 2.2. In section 2.3, 

we will describe Fraud indicators which will be used throughout this dissertation. Section 2.4 

describes various techniques for similarity measures, the one chosen for our implementation. 

Section 2.5 describes encryption and the digital signature schemes and EdDSA technique used for 

our implementation. Section 2.6 describes various cryptanalysis methods and what is being used 

in our experimental evaluation. We will describe linkage quality measures in Section 2.7 that will 

be used in our dissertation. In Section 2.8, we will describe Privacy measure concepts to evaluate 

the robustness of our implementation. Section 2.9 describes our experimental setup and finally, in 

Section 2.10, we provide a summary of this chapter. 
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 Table 2.1 Notation and Terminology used in this Chapter 

TA, TB, TC ....TN Notation to represent Telecom companies 

DA, DB, DC, ......, DN Fraud database of the N Telecom companies 

H Hash function 

O Output of the Hash function 

Hi Set of hash function 

E Euclidean distance 

J Jaccard Similarity 

KP Encryption and Decryption Key 

TP True Positive 

FP False Positive 

FN False Negative 

Table 2.1 Notation and Terminology 

 

2.1 Privacy 
 

Privacy is a fundamental right for every individual in the world. It means the right to be 

left alone, where one has the freedom from intrusion or interference. This right is enshrined in the 

Universal Declaration of Human Rights, Article 12, which states that ‘No one shall be subjected 

to arbitrary interference with his privacy, family, home, or correspondence, nor to attacks upon his 

honor and reputation. Misrepresentation and interpretation, which are very prevalent today, can be 

blocked with the concept of privacy. 

Rocker C. Post elegantly [22] explained three concepts related to privacy. The first is the 

creation of knowledge, where information is created without misrepresentation of fact. The second 
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is related to dignity, where basic human decency and the right to dignity are maintained. The third 

is freedom, and in the context of privacy, it is where the right to choose to reveal information solely 

rests with the individual to whom the information pertains. 

Privacy [22] is the ability to control who can access information about our private life and 

activities. It is the right to keep our personal information confidential and to prevent others from 

accessing it without our consent. It is a crucial aspect of our lives that helps us maintain our 

autonomy and individuality. 

Privacy is important because:  

• Privacy is important because it gives us the power to choose our thoughts and feelings, and 

who we share them with.  

• It also protects our information that we do not want shared publicly, such as health or 

personal finances. 

•  Privacy helps protect our physical safety, especially if our real-time location data is 

private.  

• Additionally, privacy helps protect us as individuals and our businesses against entities that 

are more powerful than us.  

• Finally, privacy is tied to freedom. Without privacy, we could not be free and have free 

will.  
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2.2 Privacy Record Linkage  
 

Across many industries, confidential data is collected and made available about 

individuals. This data includes their address, government ID numbers, health information, 

shopping preferences, browsing patterns, and more. The exchange and processing of this 

information is vital to maintain commerce, research, security, and in our case, prevention of fraud. 

In a normal or regular linkage between datasets, the linkage is done on entities that are 

completely known to parties under transaction. Here, there is no preservation of privacy, and the 

enquiring entities know all the information about them. However, when we still need to get the 

attribute information, but do it in such a way that the entity which is typically being used to link 

the dataset is hidden, then this becomes an instance of privacy-preserving record linkage. This 

technique uses algorithmic techniques to effectively link records by matching identifiable 

information attributes without revealing them, thus keeping them protected. 

Using the above concept lets define our definition of Fraud Detection Privacy preserving record 

linkage (FD-PPRL). 

2.2.1 FD-PPRL Definition:  
 

Assume TA, TB, TC, …, and TN are N Telcos who have come together to collaborate for 

fraud prevention. Let DA, DB, DC, …, and DN be the fraud databases containing FiA, FiB, FC, …, 

and FiN fraud indicators or information. Where FiA∈ 	 DA, FiB ∈ 	to DB, FiC ∈ 	   DC, …, etc. Now 

FD-PPRL will be the linkage where, let us say, TB wants to inquire about the presence of FiB in 

DA, DC, …, or DN without revealing FiB. If there is no FiB, then TB does not learn about FiA, FiC, 

…, FiN in the other Telcom databases. Here, the actual entity information is not revealed, and hence 

privacy is preserved. However, the fraud information is obtained. 
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Figure 2.1 Telecom B interaction with Telcom A, C, E and F using FD-PPRL 

. 

2.2.2 PPRL transacting protocol 
 

When Telcos share data, they have the option to transact directly with each other using a 

two-party protocol or form a collective group and transact using a multi-party protocol. 

 
Two party transacting protocol  

When two telecommunication companies agree to transact with each other frequently or 

on an as-needed basis, they can do so without revealing their entity information. They encrypt the 

information between themselves and exchange it by conducting linkage through FD-PPRL. Telcos 

typically agree upon some of the parameters before conducting the transaction. Some of the agreed 

methods or parameters can be encryption, HASH, and data organization schemas. Transacting 

between two Telcos at a time can be efficient, but computationally expensive. 
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Multi-party transacting protocol    

When multiple telecommunication companies choose to communicate as a group, they 

must agree on common methods and parameters, like a two-party protocol. Both methods 

assume that there are no third parties involved in assisting with the linkage. This is one of the 

biggest advantages of FD-PPRL. In contrast, many protocols use a third party to collect 

information, which can be encrypted ahead of time to conduct a linkage, typically called the 

linkage unit (LU). Our protocol does not have an LU. 

 
2.2.3 Adversary models 
 

In our evaluation of the FD-PPRL protocol, we will examine the following models for 

Telcos or third parties to assess the security of our protocol against privacy leakage attacks, also 

known as cryptanalysis attacks. 

 

1.) Honest Party 

Here, Telco fully follows the steps of the Privacy-Preserving Record Linkage (PPRL) 

protocol to maintain the privacy of the transacting entity or fraud indicator. The Telcos do not 

collude with other Telcos to try to extrapolate the information to reveal the encrypted information 

[4]. However, this scenario is typically not practical in the real world and can sometimes only be 

achieved with external government intervention such as regulatory bodies or laws with violation 

penalties. 

2.) Honest but curious mode 

Telco follows the PPRL protocol to maintain privacy by not cross-sharing information with 

other Telcos [4]. However, they can choose to use the received data to extrapolate information and 



 
 

 

23 

extract data on the fraud indicator. This scenario is extremely likely as only the received 

information is used. It is important to note that such actions may fall under regulatory or legal 

purview. 

3.) Malicious party 

The Telco tries to follow the protocol, but if someone with malicious intent tries to violate 

privacy by learning information about other parties, many Privacy-Preserving Record Linkage 

(PPRL) protocols use a Secure Multi-Party Computation (SMC) method to prevent such actions. 

However, as described in Chapter 4 of our framework, which is designed for such scenarios, SMC 

is not necessary. 

 

2.2.3 PPRL techniques 
 

The PPRL techniques can be broadly classified into two categories. 1) Secure multi part 

computation technique (SMC), and 2.) Perturbation method. 

During the process of secure computation, the transacting parties perform computation on 

encrypted values, which are kept private from each other. They do not know each other’s 

information but only the result of the computation. The different computation techniques include 

secure multiparty computation [22], homomorphic encryption, secret sharing, and garbled 

circuits [15]. 

 
Secure summation   

In this protocol, the parties wish to conduct a mathematical operation on their private values 

without sharing them. According to Yao and Ranbaduge [22], in a multiple-party situation where 

a summation needs to be computed, the first party computes its sum by adding a random number 



 
 

 

24 

or a prime number to their private number and passes on the sum to the second person in the loop. 

This process continues until the last person is reached, and the final summed amount is sent back 

to the first party. The secret number is then subtracted from the sum, and a secure summation is 

revealed without disclosing the individual numbers. There are many other secure summation 

protocols that work with this basic concept. 

 
Secure set union and intersection 

In a secure union set scenario, a global union set is created for the parties without each 

party knowing where the information in the set was sourced. The parties use commutative 

encryption and a binary vector. The binary vector is used to check if their set values are already 

encrypted and insert them into the union set. Once all the parties complete their insertion, which 

is confirmed by the values in the binary set, the whole union set can be decrypted to reveal the 

union set. 

The secure intersection follows the same concept. However, here only the common values 

are released to the participating entities. This protocol is complex, and computations are very 

intensive. 

 
Homomorphic Encryption 

Encrypted addition and subtraction can be achieved through homomorphic encryption 

using public and private keys. There are three types of homomorphic encryption: fully 

homomorphic, partially homomorphic, and somewhat homomorphic. In partially homomorphic 

encryption, only one type of arithmetic operation (addition or multiplication) can be performed on 

ciphertexts. In somewhat homomorphic encryption, both addition and multiplication operations 

can be performed on ciphertexts, but only for a limited number of times. In fully homomorphic 
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encryption, arbitrary arithmetic operations can be performed on ciphertexts, but the computation 

cost is extremely high and is not practical for real-world applications. 

Perturbation techniques 

As the name suggests, plain text values are transformed into other values using encryption 

or morphing techniques to prevent privacy attacks. Once an entity’s information is changed, the 

linkage quality naturally decreases, making it much harder to perform data linkage and extract 

information. However, privacy can be secured. There are many ways to conduct perturbation 

techniques, which we will review below. 

a.) Adding Noise  

Here, the data is perturbed by adding random values to a database without a known pattern 

[22]. This helps in preventing frequency attacks since commonality within the data has been 

diminished. However, the similarity between records does go down. 

b) Differential Privacy 

Unlike above where noise is added to the dataset [22], where the random variable based on 

a private seed is added to the statistically generated query results where there is more mathematical 

control. 

c.) Embedding 

Here the features are extracted from the dataset and then mapped to a Euclidean space or 

Hamming space by computing the distance created by embedded vectors. These vectors are 

created for all the datasets that need to be compared. The vectors are then compared to find 

matches without knowing the contents of the dataset. 
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d.) Hashing 

A hash function is a one-way function [23] that maps an input to an array of values. 

Figure 2.2 shows a hash converter. If Fi is the input, then O = H(Fi), where O is the hashed value 

and H is the hash function. However, it is not possible to obtain Fi from O using Fi<-H-1(O). In 

Chapter 5, we will delve further into the details of several types of hash functions and their 

advantages. The most common protocol used today is SHA (Secure Hash Algorithm), which 

encodes its input to a specific size of bits. Since this is a many-to-few mapping, there is a chance 

of collisions happening. This means there could be more than one value mapping to the same 

hash value. Over the years, algorithms have been developed to reduce the collision of records. 

One of the other features of a hash function is that it is deterministic. This means that given the 

same input multiple times, the output is always the same. However, any small variation in the 

input will result in a completely different hash output. We will use the term hash signature 

throughout this dissertation to signify a hash function output. 

 

 

Figure 2.2 Example where “Alice Bob” is fed to a hashing function and outputs a hashed bit string 

. 
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2.3 Fraud Indicators 
 

In this dissertation, we will be using the term fraud indicator to represent information about 

an entity attempting or suspected of committing fraud. This can include someone’s full name, 

government ID such as driver’s license number, or an IP address. The fraud indicator may come 

with additional attributes such as place of origin, record time, number of fraud attempts, etc. Once 

the fraud indicator has been identified, its attributes (Atrb) can be transmitted. 

Fi (Atrb1, Atrb2, Atrb3 …. Atrbn) 

2.4 Similarity Measure 
 

To determine how alike or close datasets are, similarity measures are used. To link datasets 

using PPRL, these measures are used in diverse ways in protocols. We will review the five most 

popular similarity measures and home in on the one best suited for our implementation. 

 
2.4.1 Euclidean distance 

 

Euclidean distance is the most used distance measure, which is simply the Pythagorean 

distance between two points. It can be calculated as the square root of the sum of the squares of 

the differences between the corresponding coordinates of the two points.  

 

𝐸 = &∑(𝑥!   −  𝑦!)" 
                                                                (2.1) 

 
This measure is most suited for comparing homologous data sets. It is commonly used with 

Locality Sensitive Hashing (LSH) protocols, where similar data sets are grouped into different 
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bands, and the Euclidean distance between the bands is used to determine the proximity of the data 

sets.  

2.4.2 Manhattan distance 
 

In this measure the absolute difference of the x coordinate and the y coordinate are added 

to determine the distance. |x1-x2|+|y1-y2|.  

 
2.4.3 Cosine Similarity  
 

It is the measure of the cosine of angles of the vectors that represent the data point or in 

other words it is the dot product of the two vectors.  

𝑆𝐼𝑀(𝑋, 𝑌) = $.&
(|$||&|)

                                                                (2.2) 

It is quite an effective measure to determine the similarity between documents and web 

pages and is extensively used in many PPRL protocols.  

 
The three measures mentioned above, which are only a small representation of all the 

available measures, require some form of mathematical computation. This computation needs to 

be performed on homologous datasets, even if the data itself is encrypted. If performed on non-

homologous datasets, the results will be difficult to compute. As discussed in Chapter 5, there are 

some Locality Sensitive Hashing (LSH) based hashing techniques that look promising for our 

protocol, but they may not be feasible for implementation in our framework.  

2.4.3 Jacquard Similarity 
 
 Like the above-mentioned measure, the Jaccard similarity [24] is a measure of likeness 

between two datasets. It is the intersection value of the sets divided by the union value of the same,  
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i.e.  𝐽(𝐴, 𝐵)  =   !∩#
!∪#

.                                                                                 (2.3) 

 
Although quite simple in concept, it is one of the most popular measures invented by Paul Jaccard 

and is powerful when used. This similarity measure will form the basis of our framework, and we 

will show how it can be elegantly used to calculate similarity on non-homologous datasets. We 

will delve into further details in Chapter 4 and explain how and why this measure works in a Telco 

industry setting. 

 

 

Figure 2.2  Shows a Jacquard Similarity representation on two hash tables where J=2/8=0.25 

2.5 Encryption 
 

Encryption is a process of converting plain text into a secret code (cipher text) to prevent 

unauthorized access. The cipher text can only be decoded with a key. The key is a piece of data 

used to encode and decode the message. Encryption is achieved through complex mathematical 

computations that scramble the original message into an unreadable format. The key is used to 

unscramble the message back into its original form. 
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 There are two main types of encryptions: symmetric encryption and asymmetric 

encryption. 

In symmetric encryption, the same key is used to both encrypt and decrypt data. This means 

that all parties involved in the transaction share the same key to encode and decode the data. Well-

known implementations of symmetric encryption include AES and SNOW. However, if the key is 

shared, it could lead to a potential loss of privacy if the parties involved in the transaction are not 

fully honest. 

KP – Encryption and Decryption Key 

E(Fi) <- Encryption (Fi,KP) - Encrypt Fraud Indicator using shared key KP 

Fi <-Decryption(E(Fi), KP) - Decrypt Fraud Indicator using shared key KP 

In asymmetric encryption, also known as public-key cryptography, two keys are used: a 

public key and a private key. The public key is used to encrypt data and can be distributed widely 

and openly. The private key is used to decrypt the data encrypted with the public key. Asymmetric 

encryption is more secure than symmetric encryption because the private key is kept secret and is 

not shared with anyone. Implementations like RSA and elliptic curve cryptography use this type 

of encryption. 

KPu – Private Key, KPr – Private Key 

E(Fi) <- Encryption (Fi, KPu) - Encrypt Fraud Indicator using public key KPu 

Fi <-Decryption(E(Fi), KPr) - Decrypt Fraud Indicator using private key KP 
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2.5.1 Elliptic curve cryptography (ECC) 
 

Elliptic Curve Cryptography (ECC) [25] is one of the widely used public-key cryptography 

schemes. Typically, the key and the encryption protocol are based on a mathematical computation 

on two large prime numbers and the difficulty of factorizing the product to the original numbers. 

However, ECC is different from RSA in that it uses elliptic curves instead of prime numbers. The 

elliptic curve-based protocol is quite similar in concept to RSA, where the discrete logarithm of a 

random point on the elliptic curve with respect to a known point on the curve is infeasible. 

There are several types of ECC: 

a.) Elliptic-curve Diffie-Hellman scheme - This protocol [25] is another variant of the prime 

number based Diffie-Hellman scheme, combining a public-key concept, except here elliptic curves 

are being used.  

b.) The Elliptic Curve Integrated Encryption Scheme  

c.) Elliptic Curve Digital Signature Algorithm [25] (ECDSA)  

d.) The Edwards-curve Digital Signature Algorithm [25] (EdDSA) 

For our implementation, we chose the Edwards-curve Digital Signature Algorithm 

(EdDSA) scheme [25]. In Chapter 4, we go into the details of this protocol and the logic behind it. 

A digital signature scheme is a protocol where the authenticity of the document or data can be 

verified using a hash function. Typically, the data is signed with EdDSA using a private key and 

then verified against the original data using the public key. If the records do not match, then a 

False is returned.  
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Algorithm: Digital Signature Scheme 
 
Input: 

- Fo: Fraud data 

- Fi: Fraud data to be verified 

- H: Hash function 

- E: Encrypted function 

- KPu: Public key 

- KPr: Private key 

Output: 

-True/False 

Start: 

1 E <- Encode(H(Fo), KPr) 

2 Evaluate True or False <- Verify (Fi, KPu) 

3 If Fi = Fo, then True is returned; else False. 

End  

 

The Encode and Verify functions are part of the Edwards-curve Digital Signature 

Algorithm (EdDSA) scheme [25], which is a digital signature scheme using a variant of Schnorr 

signature based on twisted Edwards curves. You can find more details about this scheme in 

Chapter 4 of this dissertation. 
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Fig 2.3 Digital Signature Scheme mechanism using EdDSA that will form the basis of our 

protocol. 

 

2.6 Cryptanalysis attacks 
 

Cryptanalysis is the study of analyzing encrypted data to determine how to make it more 

secure or discover its weaknesses. Cryptanalysis methods strive to decipher the plaintext from the 

ciphertext. There are many types of Cryptanalysis attacks that can be used to determine the strength 

or weakness of an implementation. Here are some of the most common types of Cryptanalysis 

attacks: 

 
2.6.1 Ciphertext-only attack:  

Here, the information on the ciphertext is only known. There is no information about the 

plaintext, key, or encryption algorithm. The analyst will try to decipher the ciphertext using known 

protocols and patterns to try decoding the ciphertext. This could be computationally very intensive. 
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2.6.2 Known-plaintext attack:  
 

Here, the analyst or attacker will have access to some plaintext information related to the 

ciphertext. This could be information from a voter database, public websites, etc. Using this 

information by trying to correlate the plaintext to the ciphertext, the key can be determined. Once 

the key is determined and through existing crypto protocols, the crypto message can be decoded. 

 
2.6.3 Differential cryptanalysis attack:  
 

This is used on block ciphers and is analyzed in pairs of ciphertext to determine patterns 

that can then be extended to the encoded message to decode the same. 

d.) Side-channel attack:  

This is where the attacker overwhelms the database or PPRL system to make it compute 

an enormously complex problem by consuming its capacity. This will result in the system slowing 

down and rendering it incapable of responding to normal requests. 

 
2.6.4 Dictionary attack:  
 

This attack is based on exploiting the tendency of normal people to choose easy-to-

remember passwords. Once all the words of the dictionary are encrypted for a given known 

protocol, then it is compared against the ciphertext to decipher the same. 

 
2.6.5 Man-in-the-middle attack:  
 

Here, the attacker intercepts the transmission of keys between the transacting parties and 

tries to exchange the key with individuals. In this scenario, the transacting parties are unaware of 

the presence of the attacker and believe they are communicating with each other directly. 
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2.7 Linkage Quality 
 

While evaluating the effectiveness of PPRL Protocol linkage quality, it is important to 

measure the success of logic used. True Positive (TP) are where the intended matches are 

generated. False Positive (FP) are incorrectly generated matches and False Negative (FN) are 

correct matches not identified. 

a.) Precision (Prec) is the number of true matches over total matches that occurred not counting 

the false negative,  

 

Pr 𝑒 𝑐𝑖𝑠𝑖𝑜𝑛  = *+
(*+,-+)

                                                                      (2.4) 

 

b.) Recall (Rec) is the ratio of the true matches identified correctly to the overall complete matches  

 

𝑅𝑒𝑐𝑎𝑙𝑙  =   *+
(*+,-.)

                                                                           (2.5) 

 

c.) F-Measure used to measure the mean between precision and recall 

 

𝐹𝑀  =  2  × B/0 12×412
/0 12,412

C                                                                 (2.6) 

 

2.8 Privacy Analysis 
 

This is a measure of how much information an adversary can gain from the encrypted data 

using some of the techniques and attacks mentioned in the above sections. 
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2.8.1 Entropy: 
 

This is one of the measures of privacy is probability distribution or the measure of 

randomness in the encrypted data. The higher the entropy the more difficult it is for the data to be 

decoded. If r is the random variable and P(r) is the probability of deciphering this variable, then 

the entropy is 

 
𝐻(𝑅) = ∑ −𝑃(𝑟) logJ𝑃(𝑟)K 

                                                              (2.7) 

 
2.8.2 Information gain (IG): 
 

This is the measure of deciphering the original plain text from the ciphertext. If H is the 

entropy and P is the plain text and E is the encoded text, then IG(D/E) = H(D) - H (D/E) 

 

2.9 Experimental setup 
 

To set up our PPRL protocol and conduct the experiments, we used an Apple MacBook Air 

with an Apple M1 chip and 8 GB memory. We developed a Python package to simulate and 

SuperMinHash. For EdDSA, we specifically imported the D25519 libraries. 

To reproduce a real-world fraud database for TB, we downloaded the data from the North 

Carolina publicly available voter database (https://www.ncsbe.gov/results-data/voter-registration-

data) as opposed to using data generated by simulation software. The voter database (which has 

the advantage of having names used) and some of our manufactured names were used as a proxy 

for the fraud indicator FiA for TA. Our dataset size for running analysis was set to 10,000 rows. We 

used ‘RONALD JOHN ADAMS,’ a familiar name, as TB’s fraud indicator FiB to determine if a 

https://www.ncsbe.gov/results-data/
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match was present in FiA. In the Python package, we set variable N to feed multiple signature sizes 

for SuperMinHash and multiple values from 0.1 to 1 for the Jaccard threshold value JT. We 

embedded the Python time function between the various protocol stages to measure their run times. 

The protocol described in Section 3.3. The code and results are available at 

https://doi.org/10.5281/zenodo.8319042. We imported several libraries, including the ones related 

to EdDSA. 

2.10 Chapter Summary 
 

In this chapter, we discussed the concept of privacy and its importance. We then discussed 

how privacy can be protected using the method of Privacy-Preserving Record Linkage (PPRL) and 

then further defined Fraud-Detecting Privacy Protection Linkage (FD-PPRL), our protocol of 

fraud detecting privacy protection linkage. We discussed various adversary models laying a 

foundation as to why some of the PPRL techniques make use of the adversary model that best fits 

their need rather than assuming the worst-case scenario. We described some privacy-enhancing 

techniques and talked about hashing. We described several types of similarity measures and 

Jaccard similarity, which is what we will primarily use in our implementation. We introduced the 

digital signature scheme, especially the Edwards-curve digital signature algorithm (EdDSA), 

which we will go in-depth in Chapter 4. Several types of cryptanalysis attacks were described, and 

different linkage quality measures which we will use in our experiments. In the next chapter, we 

will review current research and literature with some analysis on their deficiencies.  

https://doi.org/10.5281/zenodo.8319042
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Chapter 3: CURRENT RESEARCH IN PRIVACY 
PRESERVING RECORD LINKAGE 
 

 
This chapter provides details on existing and current research in Privacy-Preserving Record 

Linkage (PPRL) methods. We will describe some fundamental classifications, their ease of 

implementation, and weaknesses. As we describe the implementation, we will highlight why these 

protocols are not suited for fraud detection implementation, especially in the telecom industry. In 

Section 3.1, we will review implementations with Bloom filters. In Section 3.2, we will review 

implementations without Bloom filters which will also include a review with and without a trusted 

third party. In Section 3.3, we will review the issues with current implementations. Finally, in 

Section 3.4 we will summarize this chapter. 

Table 3.1 Notation and Terminology used in this Chapter 

Hi Set of hash function ∀	i ∈ 	0...N) 

D1, D2 Database of partied transacting in PPRL 

Di Dataset ∀	i ∈ 	(0....N) 

D Dice coefficient 

𝜖!56 Randomized response 

 
PPRL is a type of entity resolution (ER) method [9] where two parties with databases D1 

and D2 use a similarity measure, such as the Dice coefficient [10], to determine a link between the 

datasets. The receiver and sender do not reveal information about their datasets to maintain 

privacy. PPRL techniques have been in place for over a decade; however, owing to the size of the 
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records (100,000 and above) being compared, Bloom filters are used in [11] current 

implementations. 

These techniques can broadly be classified into two main categories:  

• Implementation with Bloom filters. 

• Implementation without Bloom filters. 

 

3.1 Implementation using Bloom filters  
 

Bloom filters have become standard in PPRL protocols due to their simplicity in 

configuration over existing implementations. The use of Bloom filters for PPRL was first proposed 

by Randall et al [12] and was used to search medical records databases. Before we delve further 

into Bloom filters with PPRL, let us review what Bloom filters are. 

 
3.1.1 Bloom Filters   

 

Probabilistic data structures (PDS) are datasets where an inquiry in the same will not result 

in a fully deterministic answer. There will be a certain level of error in the response. This is used 

when speed needs to be achieved instead of accuracy. Bloom filters [12] are one such probabilistic 

data structure where they are used to evaluate the membership of a set. 

Bloom filters are bit arrays of a certain length L. K independent hash functions Hi are 

defined for any (0…K-1) to map a set S = {a1, a2……, an} into the Bloom filter [12]. Here, the 

indices from the hash function for an element ai are set to 1 in the filter. The set membership can 

be checked by hashing the elements that need to be matched using the same hash functions. Bloom 

filters are prone to collision errors and yield false positives. 

Here an initial empty set is taken as shown in Figure 3.1. There will be a set of Hash 

functions Hi(x) ∀	 i∈ 	 (0...N) that will be used to map elements into the Bloom filter (Bi(k)). For a 
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data set Di(x) ∀	 i ∈ 	(0…M), m <- H(x) where m will map to specific position on Bi(k) which get 

initialized to 0 before insertion. 

An initial empty set is taken, as shown in Figure 3.1. There will be a set of hash functions 

Hi(x) ∀	 i ∈ 	 (0…N) that will be used to map elements into the Bloom filter. For a data set Di(x) ∀	 

i ∈ 	 (0…M), m <- H(x) where m will map to a specific position on Bi(k), which gets initialized to 

0 before insertion. 

To check if a set member is present in the filter, it is hashed through the Hi(y) function for 

all 1…N. Then, a check is done to see if the bit is 1 or 0 in those positions. If it is 1, then true is 

returned, indicating that the member might be present in the set. However, if it is 0, then we know 

for sure that the member is not present in the set. It is important to note that the true value is only 

probabilistic, meaning that there is a chance of false positives. 

 
 
 

 
 

Figure 3.1 Shows the bloom filter insertion and membership check. 
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3.1.2 Dice Coefficient (D)  
 

The Dice coefficient is a measure used to compare the similarity between two Bloom filters 

[13]. Given two populated Bloom filters A and B, the similarity measure D is defined as D = 2h / 

(a + b), where h is the number of bits set to 1 that are common between A and B. In set A, a is the 

number of bits set to 1, and in set B, b is the number of bits set to 1. This measure provides a quick 

comparison of the Bloom filter sets. 

Once the Bloom filters are populated using a set of hash functions, they can be compared 

using the Dice coefficient, which is a similarity metric. This can be used to perform privacy-

preserving record linkage (PPRL). However, encoding large character lengths and comparing them 

can lead to matching errors. To address this issue, Bachteler [13] proposed a PPRL method using 

Bloom filters, in which the identifiers are split into q-grams for further encryption. Q-gram 

splitting is a way of separating data into chunks. 

 
For instance, the phrase “privacy preserving” can be split into bigrams as ‘pr,’ ‘ri’, ‘iv’, 

‘va’, ‘ac’, ‘cy’, 'y ‘,’ p’, ‘pr’, ‘re’, ‘es’, ‘se,’ ‘er,’ ‘rv,’ ‘vi,’ ‘in,’ ‘ng,’ and 'g '. Each of these word 

grams is then processed into the Bloom filter using K number of hash functions. These are then 

inserted into the Bloom filter and compared using the Dice coefficient. The advantage of using 

this approach is that comparisons can still be made even in the presence of spelling errors. 

 
To prevent cryptanalysis attacks, a balanced Bloom filter was developed. This is where the 

total number of bits on the filter remains the same regardless of inputs. Schnell [11] used a PPRL 

method using balanced Bloom filters to further strengthen their implementation against attacks. 

Because eliminating rare patterns with a constant Hamming distance is challenging, Bloom filters 
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of a certain length are concatenated with a negated copy of the same filter. To prevent attacks on 

the Bloom filters, Schnell [11] proposed three main methods. 

 
3.1.3 Random Hashing -  
 

Initially, a set of all n-grams is generated for each identifier. For each n-gram, k random 

numbers are generated between 1 and the length of the Bloom filter [11], denoted as l, using a 

single password as a seed. Subsequently, k random positions within the Bloom filter are selected 

and set to one. This approach eliminates the need for hash functions, thereby increasing the 

difficulty of launching a pattern-based attack. 

3.1.4 Balanced Bloom filters - 
 

 To mitigate attacks that leverage the Hamming weights of Bloom filters, Balanced Bloom 

filters [11] with a constant Hamming weight are utilized for PPRL. These filters are constructed 

by concatenating a Bloom filter of length l with a negated copy of the same Bloom filter. The 

resulting bit array, which has a length of 2 * l, must then be permuted. However, it is important to 

note that the increased length of Balanced Bloom filters and their constant Hamming weight could 

potentially lead to an increase in computation time. 

 
3.1.5 Permanent Randomized response -  
 

To enhance the security of the Bloom filter and the level of differential privacy (a concept 

where data is slightly altered to introduce noise), randomized responses are employed to flip the 

bits. It should be noted that the permanent randomized response [11] 𝜖!"# satisfies this requirement. 

𝜖!56 = 2𝑘  ln P
78!"6
!
"6
Q                                                                             (3.1) 

Lazrig et al. [15] introduced an intriguing technique that employs Bloom filters and the 

Dice coefficient. This paper presents the concept of garbled circuits (GC). When two Bloom filters 
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are used to compute the Dice coefficient, it becomes possible for either party to identify some 

potential records based on the Dice coefficient. To prevent this, a Dice Coefficient Threshold is 

established. Records that do not meet this threshold are not exposed to either party. This ensures 

that only the intended records are revealed. 

 
In this protocol, both the sender and receiver create their own set of secret keys. The 

receiver encodes its information using its secret key. Similarly, the sender encodes its information 

and the receiver’s information with its secret key and sends it back to the receiver. The receiver 

then decodes the sender’s information and performs a similarity comparison of the data that is 

encoded with the sender’s key. It is important to note that neither party reveals their information. 

The protocol also uses Garbled Circuits, which is a method where two parties directly compute a 

function. In this case, the Oblivious Transfer Protocol (OT) is a secure method that operates 

without a trusted third party. 

 

 
 

Figure 3.2 PPRL protocol using GC and OT functions between two parties. 
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A key point to note about this protocol is that no third party is involved in the transaction. 

However, the protocol requires the parties to communicate back and forth multiple times for each 

record. This can be computationally intensive. 

D. Vatsalan et al. [4] describe the use of Bloom filters with q-grams, along with 

blocking/filtering for comparison. They introduced a concept called the Counting Bloom Filter 

(CBF). The CBF is a data structure where the count of a given set of elements is smaller than a 

given threshold. False positive matches are possible, but false negatives do not occur with this 

filter. Typically, many of the protocols are between two parties. However, Vatsalan and his team 

have introduced their protocol to work in a multiparty scenario, especially in conjunction with 

secure computing. This paper also describes the challenges with this implementation and various 

forms of attack such as dictionary, frequency, and cryptanalysis. 

Following are some basic steps of the protocol. 

Step 1:  

The database owners agree upon the Hash function Hi, Bloom filter length Bl, similarity 

threshold, and Quasi Identifier (QID) Attributes. A QID is a data element that identifies or 

represents the entity under evaluation. 

Step 2:  

Each party applies the block function to reduce the number of records to be evaluated for 

comparison, rather than having their entire databases processed. 

 
Step 3:  

The database owners hash maps Hi of their QID into their Bloom filters. The owners set 

the Bloom filter parameters to ensure the PPRL qualities of complexity, quality, and privacy. 

Step 4:  
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The parties initiate a secure summation protocol with the linkage unit (LU) sending a 

Random Vector ® to the candidate to be summed with their Bloom filter vector BF. The candidate 

then sends the summed vector to the next candidate until all the members of the group are covered. 

The final summed amount is then sent to the LU. 

Step 5:  

The LU then generates the CBF c = R[cs] + Hi and calculates the DC to determine the 

matches for the candidate record and provides them back with this information. As can be seen, 

the protocol is quite cumbersome and involves back and forth between parties. It is complex in 

implementation and privacy can be compromised. 

S. Randall et al. [13] also describe the use of Bloom filters with blocking for large datasets 

and validate the efficacy of their algorithm by measuring the linkage quality. Large-scale datasets 

from New South Wales and the Western Australian hospital system, with data spanning 10 years 

and over 20 million records, were used to analyze privacy and linkage quality. According to the 

paper, the personal information was removed, and only the clinical information was shared for 

analysis. 

W. Xue et al. [16], M. Alaggan et al. [17], and R. Schnell et al. [11] have all developed 

numerous implementations of differential privacy using Bloom filters. Some of them have 

achieved privacy by introducing noise to further enhance secrecy while still performing record 

linkage. The paper states that the current implementations of the Bloom filter are limited to simple 

types of matching techniques using strings and numerical values. The matching techniques use 

machine learning algorithms to calculate the similarity measure. To make this implementation 

more secure, a Laplace-like perturbation method is used on the Bloom filter to add some noise to 

the data. This ensures that the data is not discriminated against due to collisions. 
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Ranbaduge et al. [5] present an interesting implementation using deep learning methods to 

enhance differential privacy with Bloom filters. These methods have become quite popular, and 

quite a few implementations include machine learning as part of the protocol. In this paper, their 

protocol is defined between two dataset owners, DA and DB. The cross product of the datasets 

yields two sets: one with matches (M) and one without matches (N). The matched record pairs (ri, 

rj) represent the same entity. If this is true, they will belong to M, and if not, they will belong to 

N. The process classifies the data into these two sets. 

Through this method, there are two main phases: the training phase and the classification 

phase. Different database owners collaboratively train the LU. So, when the unclassified records 

are sent by the DO to the LU, they get classified into M and N and are sent back to the DO. Due 

to security and privacy concerns, many DOs are not willing to share their data to train the LU. 

 

3.2 Implementation without Bloom filters 
 

In this section, Bloom filters were used in the implementation. While they can be extremely 

useful in PPRL protocols, they are extremely prone to cryptanalysis attacks. In this section, we 

will review some protocols that do not use Bloom filters. 

Meadows [18] introduced a method in which a trusted third party is not involved in the 

transaction. Here, the parties (A, B) exchange information while maintaining the privacy of their 

datasets using the Diffie–Hellman protocol. 

 
Algorithms used in this protocol: 

1. A and B each generate a random number and exponentiate it modulo P, where P is a large 

prime number known to both parties. 

2. A sends the result to B, and B sends the result to A. 
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3. A and B each exponentiate the received value with their secret number modulo P. 

4. A concatenates the result with its secret message and sends it to B, and B concatenates the 

result with its secret message and sends it to A. 

5. A and B each verify that the received message is the same as the one they expected. 

Transacting parties A and B have their secret keys SA and SB. They encode their messages 

MA and MB with their respective keys. A sends MASA to B, and B sends MBSB to A. A and B, in 

turn, encode their shared messages using their keys and return them to each other. A then has MASA 

× SB, and B has MBSA × SB. Subsequently, they can both determine if MA is equal to MB. 

 

 
 

Figure 3.3 PPRL depiction using Diffie-Helman protocol 

 
 

Vaisri et al [5] introduced an implementation without Bloom filters. Here, the QIDs are 

split into q-grams. The DOs in this protocol want to find the Longest Common Extension (LCE) 

on the elements in their datasets. These q-grams are hashed using functions agreed upon in 

advance. These hashed q-bits are then shifted. The bit table is also generated for the q-grams. The 

bit table and hashed data are then sent to the Link Unit (LU) to be used for processing and matches. 

The LU calculates the Largest Common Array (LCA) and sends it back to the parties involved. 

The LCE is calculated based on the algorithm below using the LCA. Even though Bloom filters 



 
 

 

48 

are not used, a bit table like the one in Bloom filters is still being used in this protocol. This 

implementation has a semi-trusted third-party linkage unit to perform matches and inform the 

respective parties 

 
 
 
 
 

 
 

Figure 3.4 Shows the PPRL protocol with a Linkage unit 
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Algorithm 1: Basic Encoded Q-Grams Comparison Process by the Linkage Unit (LU) 
 
Input: 
 
- hx: This is the list of q-grams from string x that have been hashed and shifted. 
 
- hy: This is the list of q-grams from string y that have been hashed and shifted. 
Output: 
 
- lce: This is the Longest Common Extension (LCE) of the pair of hashed q-gram lists. 
 
Steps: 
 

1 Initialize the length of the LCE to zero (lce ← 0). 
 

2 
Check if there are any common hashed elements between hx and hy (if set(hx) ∩ set(hy) 
= ∅). 
 

3 Loop over each position in the list hx (for 0 ≤ px < |hx|). 
 

4 
For each position, get the list of positions in hy where the element hx[px] occurs (py ← 
get PosMatch(hx[px], hy)). 
 

5 Get the current shifted (or rotated) list of the list hx (x ← hx[px:] + hx[:px]) 
 

6 Loop over each position in the list of positions py (for py ∈ py). 
 

7 For each position, get the current shifted list of the list hy (y ← hy[py:] + hx[:py]). 
 

8 Initialize the index and common count k to zero (k ← 0) 
 

9 Loop over x and y if a common element occurs (while (k < min (|x|, |y|)) and (x[k] = 
y[k])) 

10 Increment k (k ← k + 1). 
 

11 Keep the length of the so far maximum length of LCE (lce ← max (lce, k)). 
 

12 Return the found length of LCE back to the Data Owners (DOs) (return lce). 
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In their 2004 study, Churches [19] and colleagues proposed a method for sharing data 

securely. They suggested that the shared data should be divided into q-grams and then encrypted 

using a private-public key method. The matching process is performed on this encrypted data. 

 In this protocol, an entity known as an Honest but Curious Party (HBC) is considered. It is 

assumed that both parties (A and B) can trust the HBC. The HBC will not reveal A's information 

to B or B's information to A. 

The protocol employs a modified version of the Dice coefficient to determine matches. The 

Dice coefficient (DC) is calculated as follows: 

 

DC = 2 * |bigram(x) ∩ bigram(y)| / (|bigram(x)| + |bigram(y)|)           (3.2) 

 

Here, a bigram is a two-letter decomposition of a word. For instance, if x = "Sally", then bigram(x) 

would be {"sa", "al", "ll", "ly"}. 

Both A and B agree upon a secret Key Lab. They each split their words into bigrams, 

encode them using each other’s public keys, and send them to HBC. HBC runs a comparison 

between the two datasets and compares the DC, then relays the results back to A and B. For records 

that match or meet a threshold, the information is secured by A and B using their keys and 

transmitted. 

This implementation assumes that both transacting parties trust each other and are 

susceptible to cryptanalysis. As can be seen, this process is computationally complex, involving 

multiple transactions and exchanges. Also, the processing uses an HBC to determine the DC. Once 
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the HBC has a good quality of encrypted data and DC, it can conduct cryptanalysis to determine 

the contents of A and B’s sets. 

 
Smith [20] introduced a method that does not involve splitting the data into q-grams or 

using Bloom filters. A pseudo-randomization method is used, which replaces the actual data with 

a secure pseudonym. A similarity measure, such as the Dice coefficient, is used to determine a 

match. The concept of the Expectation Maximization (EM) algorithm was introduced. A record 

pair for comparison is sent as an input to EM, and the records are categorized as matched (M) or 

unmatched (U). The categorization is based on the DC and a set threshold for matches. 

 
The protocol above also considers weights given to the matched pairs so they can affect 

the value of the DC to elicit a response from EM. The record pairs themselves are pseudonymized 

(i.e., replaced with other random values) and then used for comparison. As discussed in many 

protocols, such approaches are still prone to frequency attacks, rendering the overall protocol 

vulnerable. 

 

3.3 The problem with current PPRL methods  
 

• They are not all secure. Most, if not all PPRL methods use some form of a similarity 

measure to determine a match. The latest cryptanalysis techniques use graphs to exploit 

similarity measures even when determined on encrypted data as demonstrated by 

Vindanage et al. [7]. This renders all current PPRL methods insecure. Also, many PPRL 

implementations use Bloom filters, as per Schnell, et al [11]. These implementations are 

prone to frequency attacks and are not secure, as per Schnell [21], using various 

cryptanalysis techniques over the q-grams of a Bloom filter.  
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•  Many use a trusted third party to transact secured attributes [5]. This technique is 

employed to ensure that the two parties do not reveal their information. 

• They are complex to implement, slow and have multiple transactions. Several PPRL 

methods [11] [4] use many convoluted variations of the Bloom filter with counting and 

randomized implementations. 

 

3.4 Summary 
 

In this chapter, we reviewed the various current implementations of Privacy-Preserving 

Record Linkage (PPRL) techniques. We reviewed implementations with Bloom filters, which is 

one of the most popular methods of implementing PPRL. However, Bloom filters are easy to 

implement, but lack the robustness to withstand cryptanalysis attacks and are extremely prone to 

privacy losses. Within the Bloom filter implementation, we also reviewed methods with and 

without a trusted third party. In most of the implementations, assumptions have been made that the 

trusted third party is honest, however, it is very likely at a minimum the third parties will be honest 

but curious. We also evaluated various implementations without Bloom filters and finally 

summarized why all these implementations are not suited for a Telecom industry application1. 

This then leads us to Chapter 4 where we will review our framework that will address all these 

deficiencies and provide a safe, secure, and fast implementation to conduct PPRL. 

  

https://bmcmedresmethodol.biomedcentral.com/articles/10.1186/s12874-022-01510-2
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Chapter 4: Fraud Detecting Privacy Preserving Record 
Linkage (FD-PPRL) Framework 

 

In this chapter, we present the Fraud Detection Privacy Protection Protocol (FD-PPRL) 

framework that telecommunication companies can use to share fraud-related information with each 

other. The FD-PPRL protocol, as described in this chapter, will need to meet the primary criteria 

for adoption. In Section 4.1, we briefly summarize the issues with current implementations, which 

demonstrate the need to design our protocol. In Section 4.2, we describe the research gap and our 

motivation for the fraud detection protocol. In Section 4.3, we summarize our main contributions. 

In Section 4.4, we briefly explain the selection of the encryption and MinHash Scheme. In Section 

4.5, we describe the FD-PPRL framework with proof of why the FD-PPRL can only be used to 

compare over two non-homologous datasets. Finally, in Section 4.6, we go over experiments to 

demonstrate the performance and privacy-related aspects of our protocol. We conclude the chapter 

with a summary in Section 4.7. 

Introduction 
 

Fraud is a growing and persistent problem in the telecom industry, and telcos work in 

isolation to prevent it. However, sharing information is critical for detecting and preventing fraud. 

Telcos must comply with privacy laws and protect their business secrecy when sharing 

information. The primary challenges are: 1) sharing fraud information without revealing data; 2) 

sharing information without involving any third party; and 3) using a protocol that is safe, secure, 

fast, and easy to implement. Privacy-preserving record linkage (PPRL) methods can be used to 

achieve these goals. Several techniques have been developed to share data while preserving 
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privacy using PPRL. However, most of the PPRL techniques use a similarity measure like the 

Jaccard Similarity on homologous datasets, which are all prone to graph-based attacks, rendering 

existing methods insecure. Many complex and slow techniques use the Bloom filter 

implementation that can be compromised in a cryptanalysis attack. To address these issues, we 

propose an attack-proof PPRL method using existing infrastructure of a telco without a complex 

multistep protocol. Our method uses a novel way of matching two non-homologous datasets using 

attack-proof digital signature schemes, like the Edwards-curve digital signature Algorithm 

(EdDSA). Here the Jaccard similarity can only be estimated using our method, and not on the 

datasets directly. Two parties transact with a simple request-reply method. To validate the match 

accuracy, privacy preservation, and performance of our approach, it was tested on a large public 

dataset (North Carolina Voter Database). Our method is secure against attacks and achieves 100% 

match accuracy with improved performance. 

 

Table 4.1 Notation and Terminology used in this Chapter 

TA, TB, TC ....TN - Notation to represent Telecom companies 
DA, DB, DC, ......, DN - Fraud database of the N Telecom companies 

KA, KB Private and Public Key Pairs 
J, JS Jaccard Similarity 

JT Jaccard Threshold 
EiA Encrypted Fraud Indicator 

HiA, HiB Hash of the Fraud Indicators FiA and FiB 

SH SuperMinHash Algorithm 

N Signature Length 
H Entropy of the protocol 

p probability of determining the bit in the protocol 
Table 4.1 Notation and Terminology used in Chapter 4 
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4.1 The problem with current PPRL methods  
 

•  All current PPRL methods are prone to cryptanalysis attacks – Most current 

implementations use some similarity measure to perform matches. The similarity measure 

is determined on a dataset encrypted using the same methods. Vindanage et al. [7] used 

graphs on similarity measures to conduct cryptanalysis and showed that all PPRL 

implementations are prone to attacks. Even in the implementation by Meadows [18], where 

there is no similarity measure, the use of a Diffe–Hellman protocol or any other primitive 

key exchange technique provides weak security features. 

• Usage of Bloom filters – All Bloom filter PPRL implementations are highly prone to 

cryptanalysis attacks, as demonstrated by Christen et al [27]. Cryptanalysis is a method in 

which attackers, assuming they have the encoded Bloom filter, exploit its behavior where 

a certain value, be it a q-gram, frequency, or hamming distance, occupies specific locations. 

Christen et al. [27] demonstrated that knowledge of all the parameters or encoding process 

is not needed; only access to public databases with names is needed to extract a match. 

Their cryptanalysis even overcomes some of the Bloom filter hardening techniques. 

• Usage of third parties – Implementations such as the one by Vaiwsri et al. [7] use a semi-

trusted third party to perform matches. Third party cannot be used in the Telcom industry 

due to privacy laws. Furthermore, telcos may not agree on a mutually trusted third party. 

Using a third party also involves multiple transactions between parties to determine a 

match, as shown by Vaiwsri et al. [7]. 

• Complex transactions and speed – Many implementations process data into q-grams, 

extract the frequency of characters and hamming distance, and pseudo-randomize the data 

to have additional layers of security. This leads to issues with the processing speed, adds 
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complexity in implementation for the telecom industry, and leads to precision errors in 

matching. 

4.2 Research gap and motivation   
 

The primary issue with all current PPRL methods is that the sets of data being compared 

are encrypted using the same method. The individual data might be secure; however, they still 

have homogeneity infused between each other. This enables an adversary to calculate a similarity 

measure even on the encrypted data and hence determine the original data through graph attacks 

[7]. To secure against this attack, a method to measure the similarity needs to be developed on data 

processed through completely different protocols and only by the receiver. We only need to 

transmit the encrypted data to be compared against the unencrypted data. This ensures that the two 

sets of data are always completely different, and the adversary cannot get any information from 

the transmitted encrypted data.  

  Our study proposes a new PPRL method that: 1) is secure, and fast; 2) is based on a simple 

request–reply protocol to share fraud data between telcos; and 3) does not require a trusted third 

party. 

4.3 The Main contributions are: 
 

• A novel method to determine Jaccard index on nonhomologous datasets by using 1) a 

MinHash data transmitted after encryption using an attack-proof digital signature scheme 

(DSS), and 2) normal MinHash data that is not transmitted. The similarity measure can 

only be determined on the datasets using our method.  

• The two parties transact through a simple request-reply method where the sender sends the 

digital signature without revealing the original message, as usually done in a DSS. 

•  The match is directly done on the MinHash data unlike other implementations that use 
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complex q-grams or feature extraction methods. 

   We propose using a SuperMinHash technique demonstrated for speed [26] over an 

Edwards curve digital signature algorithm (EdDSA) known similarly for speed and security [25] 

modified only to send the encrypted signature without the original message. The Jaccard index (J) 

satisfies the triangular inequality, unlike the Dice coefficient [28] which is calculated using the 

verification function of EdDSA. We also propose setting an optimal threshold measure (JT) and a 

signature length (N) that render our PPRL method to be both highly secure and fast. 

4.4 Proposed FD-PPRL Method for Fraud Detection Between Telcos 
 

Telcos identify, intercept, and prevent fraud daily; however, they do not share this 

information due to various constraints. Telcos can choose to store information regarding fraud-

related activities, called fraud indicators, such as name (first, middle, and last name), 

postal/physical address, network address or location, social security number, and account number. 

The telcos can directly transact fraud indicators with each other without a trusted third party using 

the FD-PPRL method described below, without revealing each other’s information with a simple 

request–reply method. 

In this section, we present the details of the FD-PPRL approach by first proposing the 

selection of a secure encryption scheme (Section 4.4.1) and an efficient MinHash algorithm 

(Section 4.4.2). These will then be incorporated into the FD-PPRL design (Section 4.5) to develop 

a new secure matching protocol. 

4.4.1 Encryption scheme selection 
 

Selecting a protocol for secure data transmission is vital for a successful PPRL 

implementation, especially when no third party is involved. Several cryptographic techniques are 

based on the Diffie-Hellman key exchange. Since the invention of the symmetric and asymmetric 
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key exchange, many secure protocols, such as DSS, ElGamal, and RSA, have been developed. 

We use a DSS where we incorporate a MinHash into the protocol to calculate the Jaccard 

index over the encrypted data. This keeps the transaction between telcos within a simple request–

reply method where they do not reveal each other's data. In a typical digital signature 

implementation, the message’s signature is sent along with the original message. We have 

designed the protocol so that only the encrypted signature is sent and not the message itself. This 

ensures privacy as the receiving telco will need to go through our protocol to determine a match. 

We use EdDSA for our implementation, which is a DSS that uses a Schnorr signature based on 

twisted Edwards curves. We used ED25519, a variant of EdDSA [25] widely known to be secure 

with smaller signature lengths, enabling faster transmission. The alternative to EdDSA is Elliptical 

Curve Digital Signature Algorithm (ECDSA). However, ECDSA is slower in performance, and is 

vulnerable to side-channel attacks [29], making EdDSA the best choice for our implementation. 

Edwards-curve digital signature algorithm (EdDSA) using Schnorr Signature 

EdDSA uses elliptical curves of the form y2 = x3 + Ax2 + x [25]. G is the generator point 

(x,y) that satisfies the above equation, and o is the subgroup order of the elliptical curve points 

generated by G. 

Creating EdDSA Key Pair function: (EdDSA.generateKey())                                (4.1) 

Private and public (KA, KB) key pairs are generated. KA is hashed, and the last bits (8 for 

ED25519) are cleared along with the highest bit, thereby ensuring the secrecy of the private key. 

KB is a point on the elliptical curve, given by KB=KA*G. 

Creating EdDSA Signature function: (EdDSA.encode())                                     (4.2) 

Hash the message (M1) and the secret key using a secure hash function. 
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Step 1:  

h=Hash (Hash (KA)+ M1)) mod(o), a secret number h is generated using the private key KA. 

Step 2:  

H1=Has((h*G) +KB+ M1) mod(o), h from Step 1 is multiplied by the Generator to get the elliptical 

point behind h and is combined with the public key KB and Message M1. 

Step 3:  

EA=((h*G) +H1*KA) mod(o), H1 from Step 2 is multiplied by the private key KA and combined 

with the elliptical point behind h. The signature is now (h, EA). 

Verifying the EdDSA Signature function: (EdDSA.verify())                              (4.3) 

During the verification process, only the public key signature (h, EA) is sent. In our 

implementation, the message is not sent. The receiver uses what they think might be the message, 

which is hashed, to determine if the message is valid or invalid (Boolean output).  

The verifier using their message (M2), calculates the hash using the same hash function as the 

sender. 

Step 1-  

H2=Hash(h+KB+M2) mod(o), combine the sent secret number from Equation (4.2), the public key, 

and the receiver’s message M2.  

Step 2 - 

 Check1=EA*G, multiply the generator G to get the elliptical point for EA from Equation (4.2). 

Step 3 - 

Check2=h+(H2*KB). 

Step 4 -  



 
 

 

60 

If Check1==Check2, then M1 is the same as M2. 

4.4.2 MinHash method selection 
 

The similarity measure we chose to determine a match between two datasets D1 and D2 is 

the Jaccard index: J = [0,1], where J=1 when D1=D2. This was initially used to measure ecological 

diversity [24] and is now widely used across various fields. Unlike the Dice coefficient, the Jaccard 

index satisfies the triangular inequality [2] and is a better similarity measure. Broder [30] 

introduced MinHash to estimate the Jaccard index. This method is based on the fact that when the 

datasets are hashed (H1, H2), the probability of minimum hashes through a random permutation 

is remarkably close to the Jaccard index: 

JS= P (min(H1) = min(H2)) = (97∩9")
(97∪9")

                                                         (4.4) 

While MinHash provides a faster way to estimate the Jaccard index, it also offers a layer 

of security because it is a one-way function. Furthermore, while determining the source of the hash 

might be possible, it is computationally demanding and time-consuming. 

Since Broder [30] introduced MinHash, several types of MinHash algorithms have been 

developed, such as HyperMinHash [31], MinMaxHash [32], ProbMinHash [23] and 

SuperMinHash [26], which have improved the speed and accuracy of the Jaccard index 

computation. We used SuperMinHash in our implementation owing to its accuracy and speed. 

Ertl used Fisher-Yates shuffling in his implementation of SuperMinHash to randomly 

permute the records. The typical MinHash algorithm has an O(NM) runtime complexity, where N 

is the signature length and M is the number of elements in the dataset. The SuperMinHash 

algorithm achieved a significantly better runtime complexity of O (N+M log2M). 
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4.5 FD-PPRL Method 
 

The proposed method involves two telcos (A and B) who transact between themselves to 

share information on a potential fraud indicator without 1) revealing the actual contents of each 

other's fraud indicators or 2) using a trusted third party for transactions. 

Because the dataset to be shared is large (greater than 100,000 records), the fraud-related 

dataset is categorized into blocks. The dataset is categorized using specific parameters such as 

state, zip code, or region. The telecom providers can share the block categorization [33] to 

configure their database in that format. 

 
Figure 4.1 Jaccard index calculation for a fraud indicator using SuperMinHash and EdDSA  

 

Fig. 4.2 shows the fraud indicator PPRL protocol between telecom A (TA) and telecom B 

(TB), where TB enquires TA about a fraud indicator. Given the apparent business secrecy and 

privacy law restrictions, TA and TB cannot share their actual fraud indicators. Therefore, through 
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our PPRL technique, TA and TB do not reveal their fraud indicators, but TB can confirm fraud using 

information from TA. 

Proposition: 

 
Jaccard similarity of the original message FA and FB can be estimated using the encrypted MinHash 

of FA, EiA and unencrypted MinHash of FB, HiB only using our method. 

Proof: 

 

As given in equation (4.4), J = 
("<∩"=)
("<∪"=)

 

MinHash function on a Message FA and FB maps it to a signature of length N, HiA and HiB 

respectively for any I ∈ 	   ( 0....N-1) using k independent hash functions (Hk). 

Where HiA := arg min(Hk(FA)) and HiB :=arg min(Hk(FB)) 

The probability that HiA is equal to HiB is same as J [30]. This property helps with the estimation 

of J using.  

J’(HiA, HiB) =  !
"
∑ 𝐼(𝐻𝑖# = 𝐻𝑖$)"%!
&'(                                                       (4.5)                                                            

Where I is an indicator function that returns a 1 when there is match and 0 otherwise. The variance 

of J’ and J is given by var=)()%!)
"

                                                              (4.6) 

[26] showing that the variance goes down as the signature size increases.  

Thus J’(HiA, HiB) ≈    J 

EiA is the EdDSA signature of HiA determined using Function                  (4.2)  

J’(EiA, HiB) = !
"
∑ 𝐼"%!
&'( (𝐸𝑖# = 𝐻𝑖$) =  0 

Since EiA  ≠    HiB for any I ∈ 	(0....N-1), proving that the Jacquard Similarity cannot be estimated 
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directly on EiA and HiB 

However, using Function (4.3) as the identity function  

Je(EiA, HiB) = !
"
∑ 𝐸𝑑𝐷𝑆𝐴"%!
&'( . 𝑣𝑒𝑟𝑖𝑓𝑦(𝐸𝑖#, 𝐻𝑖$, 𝐾$)                              (4.7) 

where KB is TA’s key sent to TB. EdDSA.verify() will return a 1 when EiA matches as a signature of 

HiB, else it will return 0.  

Thus J’(HiA, HiB) = Je(EiA, HiB) proving that Jaccard similarity can be estimated using two 

completely nonhomologous data sets using our method 

 

Algorithm 4.1: Logic to determine fraud 

Inputs: 
 
FiA, FiB – TA, and TB’s fraud indicators respectively  

H - Hash function shared between A and B (SuperMinHash) 

N - Size of the hash signature 

M – Size of the block of signatures transmitted by TB 

SH – SuperMinHash algorithm 

Outputs: 
 
JS - Jaccard indicator 
 
KA - TA’s private key 
 
KB -TB’s public key 
 
Match = True if JS > JT (Jaccard threshold); else, False 
 

Steps: 

(a0, a1, a2, ….... aN-1) <- [0,1] 
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(a0, a1, a2, ….... aN-1) <- (0, 0….0) 

1 (H0A, H1A, H2A....HNA) <- SH(FiA) generate SuperMinHash for TA’s fraud 
indicator. 

2 (H0B, H1B, H2B....HNB) <- SH(FiB) generate SuperMinHash for TB’s fraud 
indicator. 

3 KA, KB <- EdDSA.generateKey() using Function (4.1). Performed by TA 

4 EiA <-EdDSA.encode (KA, HiA) ∀	i∈ 	(0,1...(n-1)) using Function (4.2) 

5 TA transmits KB and EiA (0,1...M-1) to TB (steps 1 to 5 are performed for all 
the block contents) 

6 TB performs 

7  For j <- 0,1, 2…...M-1 do 

8   EjA 

9   For i <- 0,1, 2…...N-1 do 

10    aj <- EdDSA.verify (EiA, HiB) using Function (4.3) 

11   End For. 

12   𝐽> =
7
.
∑ 𝑎?.87
?@A                                                        (4.8) 

13   If JS  ≥ JT 

14    Then break 

15  End For 

16 JS ≥ JT then Match=True; else, False. 

 
Fig. 4.2 describes the process as follows: 
 
Initial Setup and parameter definitions 

Step 1 - TA and TB agree on a signature length (N), which is the output of the SuperMinHash 

algorithm and is the number of elements in the signature.  

Step 2 - The block indicator can be a zip code, state, or region from which TB wants information 
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from TA. The number of elements in the block that TA decides to send to TB is M, which comprises 

the fraud indicators (FiA) for any (0....M-1). 

Step3 - FiB is the fraud indicator that TB needs to determine if TA has in its database. 

Step4 - HiA is the SuperMinHash of FiA for any 𝑖 ∈ (0....M-1), and HiB is the SuperMinHash of 

FiA; both adopt N as their signature length. 

Step5 - EiA for any (0...M-1) is the encoded signature for HiA. 

Step6 - JT is the threshold value that can be set to any number [0,1], which can be compared against 

the calculated Jacquard index(J) to determine a match.  

• TB requests information from TA. TB has identified FiB and wants to enquire TA about the 

presence of FiB in its data. However, TB does not send or reveal Fi to TA. It only sends the block 

indicator to TA.  

• TA replies to TB. At this point, TA does not know the fraud indicator of TB. TA generates the 

public and private keys (KA, KB) using the EdDSA Function (4.1). TA runs the SuperMinHash 

algorithm on FiA for any 𝑖 ∈ (0....M-1) using the preset signature length N to generate their 

respective hash signatures HiA for any 𝑖 ∈ (0....M). 

• TA encodes HiA using the EdDSA Function (4.2) and its private key KA to generate the encoded 

signature EiA ∀	 i ∈ 	(0...M-1) and transmits it to TB along with the public key KB (which can 

be further secured by another public/private key method). Unlike the regular DSS where the 

original message is sent for signature verification, here the original message of TA, FiA is not 

sent. This ensures that TB has no knowledge of any of the fraud indicators of TA. 

• TB determines a match. TB hashes FiB using the same SuperMinHash algorithm. TB lacks 

knowledge of the contents of the encoded hashed fraud data from TA and can only verify a 
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match. TB cannot determine the private key of TA from EiA. Each element of EiA is iterated 

through the EdDSA verification Function (4.3) along with the elements of HiB to determine a 

match, which is then used to calculate the Jaccard index JS shown in Algorithm I. This Jaccard 

index is compared against a Jaccard threshold JT to return a match of True or False, thereby 

validating whether the indicator of B is fraudulent based on the data of A without decoding it. 

 

Figure 4.2 Example of the protocol for a signature size of 5 for Algorithm I 

Fig.4.3 shows the simulation of the algorithm I in which we use a block signature of size 

N=5. Here the fraud indicators (FiA, FiB) for TA and TB are selected as ‘Alice Bob.’ FiA and FiB are 

sent through the SuperMinHash algorithm to produce the five numerical hashes shown in the 

figure. The numerical hash for TA is input into EdDSA.encode() using Function (4.2) to generate 
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the five long alpha-numeric encoded signatures. The signature is then sent to TB, which uses the 

EdDSA.verify() Function (4.3) function on each of the five signatures and its numerical hash, as 

shown in the figure, where the function returns a value of 1 if there is an exact match. The Jaccard 

index JT is calculated using Equation (4.8), where aj=1for any j  ∈ 	[0,4] in this scenario resulting 

in JT=1, indicating a perfect match. The Python code mentioned in the experimental results, which 

is available on GitHub, can effortlessly reproduce this simulation. 

4.6 Experimental Results 
 

We first present the details of the experimental setup in Section 4.6.1 and then discuss the 

three experiments conducted on the protocol and their validity in Section 4.6.2. In Sections 4.6.3 

and 4.6.4, we review the experimental precision of the PPRL method and the privacy assessment 

of the protocol, respectively. In Section 4.6.5 we compare our PPRL implementation against 

some of the current methods. 

4.6.1 Experimental Setup  
 

To set up our PPRL protocol and conduct the experiments, we used an Apple MacBook 

Air with an Apple M1 chip and 8 GB memory. We developed a Python package to simulate the 

protocol described in Section 4.5. The code and results are available at 

https://doi.org/10.5281/zenodo.8319042. We imported several libraries, including the ones related 

to EdDSA and SuperMinHash. For EdDSA, we specifically imported the ED25519 libraries. 

To reproduce a real-world fraud database for TB, we downloaded the data from the North 

Carolina publicly available voter database (https://www.ncsbe.gov/results-data/voter-

registration-data) as opposed to using data generated by simulation software. The voter database 

(which has the advantage of having names used) and some of our manufactured names were used 

as a proxy for the fraud indicator FiA for TA. Our dataset size for running the analysis was set to 

https://www.ncsbe.gov/results-data/voter-registration-data
https://www.ncsbe.gov/results-data/voter-registration-data
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10,000 rows. We used ‘RONALD JOHN ADAMS,’ a familiar name as TB’s fraud indicator FiB 

to determine if a match was present in FiA. In the Python package, we set variable N to feed 

multiple signature sizes for SuperMinHash and multiple values from 0.1 to 1 for the Jaccard 

threshold value JT. We embedded the Python time function between the various protocol stages 

to measure their run times. 

4.6.2 Experiment measurements and validity 
 
The experimental analyses are explained below. 

Experiment 1: Measuring the run-time values for the algorithm using a signature size N = 5 

and a match in FiA with a block size M =10,000 to demonstrate the performance of our 

protocol 

• Run time for SuperMinHash algorithm on the fraud indicators FiA and FiB  – 0.9 ms. 

• Run time for the EdDSA.encode Equation (4.2) (ED25519) creation on FiA and FiB – 2 ms. 

• Run time for EdDSA.verify Equation (4.3) on EiA and FiB – 1 ms. 

• Run time for Jaccard index determination – 7 ms. 

• Total run time – 10.9 ms 

• Average file size for the digital signature of FiA, EiA as in encoded with EdDSA for 10,000 

records – 6 MB. It takes under 0.1 s to transmit EiA on a 1 GB connection. 

Experiment 2: Measuring the performance and validity of the algorithm for various signature 

sizes when a match on FiB is not present in FiA 

We collected the total run-time measurements of our PPRL method using signature lengths 

N between 3 and 45, as shown in Fig 4. The bars in orange show the total run time in seconds to 
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SuperMinHash FiA and FiB, generate EiA, verify using EiA and FiB, and calculate the Jaccard index. 

As the signature length increases by 5, the unmatched run time increases by approximately 100 s 

as the protocol would iterate through all the data in FiA. This is the expected behavior of the PPRL 

method, thereby validating the experimental setup and collected data. 

 

Figure 4.3 Performance of matched vs. unmatched for various signature length. 

Experiment 3: Measuring the performance and validity of the algorithm for various signature 

sizes when a match on FiB is present in FiA 

In Fig 4.4, the bars in blue show the total run time using signature lengths N between 3 and 

45. As the signature length increases by 5, the matched run time increases by 0.1 s owing to all the 

iterations through FiA. The run time in Experiment 3 is much shorter than that in Experiment 2, as 

shown in the side-by-side comparison in Fig 4.4, by 1/1000th of a second, as Algorithm I exhibit 

a designed break when a match is found. The behavior of the measured data is in line with the 

expected behavior of the PPRL method, thereby validating the experimental setup and collected 
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data. 

4.6.3 PPRL Method precision definition and measurement 
 

We used precision as a measure to qualify the performance of our method: 

Precision = *+
(*+,-+)

                                                        (4.9) 

where TP is the number of true positive matches, and FP is the number of false positive matches. 

Here the precision values range from 0 to 1, with 1 indicating a perfect match.  

Experiment 4: Measuring the protocol precision for various signature lengths. 
 

Four signature lengths N = 5, 10, 15, and 20 were used to measure the precision Equation 

(4.9) of the PPRL method, as shown in Fig 4.5. We measured the precision by varying the Jaccard 

Threshold (JT) from 0.1 to 1, incrementing by 0.1. We used the same experimental setup mentioned 

in Section 4.6.1 to find a match for FiB in FiA. As demonstrated in Fig 4.5, our method has a 

precision of 1, even with the thresholds as low as 0.5; the precision values fall with values of JT 

<0.5. The figure also shows that our method has high precision with low JT values as the signature 

length increases. Higher signature lengths provide more values to match, significantly reducing 

FP and leading to a precision value of 1 at low JT. Increasing the signature length to increase 

precision at low JT values does sacrifice the method performance. However, based on the figure, 

an ideal signature length and threshold can be implemented to achieve exact or high precision 

while giving an optimal run-time performance. Our experimental setup’s optimal values are JT >= 

0.6 with N=7. 
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Figure 4.4 Comparison of the PPRL method sensitivity to find a match for the Jaccard threshold 

(JT) for various SuperMinHash signature lengths N 

4.6.4 Privacy analysis 
 

TA sends a block of information (we used 10,000); it must be clear if TB could run the brute 

force analysis on the dataset to reveal information in the unmatched dataset. Before discussing the 

possibility of TB receiving information from unmatched records, we verified the possibility of a 

third-party adversary determining this information. Unlike a typical EdDSA transaction where the 

message is exchanged between the parties, in our implementation, no message is transacted except 

the digital signature and public key. The EdDSA protocol, especially ED25519, ensures tight 

security. We recommend that the public key is transacted only to the intended party through a 
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secure asymmetric key mechanism, such as RSA. Based on existing literature (Bernstein, 2012; 

Brende et al., 2021) have published theories and proof on the security of EdDSA, especially 

ED25519. The typical byte size of an EdDSA signature is 512, making it almost impossible to 

determine the signature through frequency attacks. (Probability is of the order of 1/2512 and is even 

lower as the signature length increases by 1/2512*N.) 

 Frequency /cryptanalysis is extremely difficult on our protocol, and we need to analyze if 

TB can use brute force to gain information on the encoded digital signatures using EdDSA.  

The entropy (H) of the digital signature (S) is shown in (4.7) 

H(S) =∑ −𝑝&'()
&*) 𝑙𝑜𝑔(𝑝&)                                                  (4.10) 

where p is the probability of determining the signature with a length of K bits.  

Conditional Entropy is the uncertainty in determining the signature given Jaccard threshold J < 1.  

H (S|J< 1) = 𝐽 × 𝐻(𝑆)                                                           (4.11) 

Experiment 5: Measuring the entropy of our PPRL to demonstrate its security and privacy. 

Table 4.2 lists the calculated values of the conditional entropy (4.11) when J ≤ 1 for 

signature lengths N = {5,10,15,20}. The bit length of ED25519 protocol is K=512 for N=1, and 

the probability of discovering one bit is p=1/2. The entropy values drop as J approaches 0 and 

increase with N. Even when J = 0.1, all the entropy values are extremely high, demonstrating the 

security of our method. Even when TB yields false positives with J < 0.5, it is challenging to 

determine the value of the non-matched fraud indicators in FiA. Vidanage et al. [7] conducted a 

graph-based cryptanalysis attack of similarity-based PPRL methods, assuming the adversary has 

access to the original message. However, this attack is ineffective against our PPRL method 
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because the original message is never sent and cannot be determined by frequency attacks or even 

with false positive values when J<=1. This shows that our proposed method has the highest privacy 

and is very secure. 

 

Signature 
Length 

J=1 J=0.5 J=0.2 J=0.1 

5 385 192 77 38 
10 770 385 154 77 
15 1155 577 231 115 
20 1541 770 308 154 

 

Table 4.2 Conditional entropy values for some Jaccard values ≤ 1 with various signature lengths 

Experiment 5.1: Conduct Cryptanalysis attack by Telecom B on the data set sent by Telecom A 

We conducted frequency-based cryptanalysis attack as mentioned in P. Christian et al. [27]. 

The experiment's purpose was to determine the resistance of such attacks when the data is shared 

between telcos. Experiment 5 shows the robustness of the protocol during data transmission, which 

is secure. For our experiment we used records from the North Carlina Voter database which is 

transmitted through our protocol to Telcom B. Assuming Telecom B is a semi honest adversary 

we use a common first name and a common First and Middle name with 10,50, and 100 

occurrences to conduct cryptanalysis attack. Figure 4.6 shows the results of the cryptanalysis attack 

where the occurrence of exact match is 0, and graphs show the percentage of partial match and no 

match. When we used common first, middle, and last Name no matches were found further 

demonstrating the security of our protocol. 
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Figure 4.5 Cryptanalysis a=ack performance of our protocol 

 

4.6.5 Comparison of our PPRL method against other implementations 
 

We use four criteria to evaluate the effectiveness of our protocol against various PPRL 

methods. 

• Use of Bloom filters referred to as Blm-Fltr from these papers D. Vatsalan et al., [4], M. 

Antoni et al [34], and S. Randall et al. [12] for comparison. We already know that they 

are prone to cryptanalysis attacks [27]. 

• Implementation complexity owing to multiple protocols as shown in papers such as W. 

Xue et al. [20], M. Alaggan  et al., [17], and R. Schnell et al., [11] as adding noise for 
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differential privacy leading to additional processing of the data. We will represent this as 

Blm-DP. T. Ranbaduge [22] uses deep learning techniques with bloom filter which we will 

represent as Blm-DL. 

• Employment of third parties or linkage units to perform matches as shown in. T. Lazrig et 

al. [15]. This will be represented as Partition GC-RL in our comparisons. 

• The execution speed of the protocol will be used to evaluate the above three criteria. 

Experiment 6: Measuring the execution time of our PPRL method for various data sizes (M) 

and its corresponding comparison against many other protocols. 

As shown in Table 4.3, we executed various data sizes using our PPRL method and 

experimental setup. As demonstrated, our PPRL framework performed much better against many 

other protocols mentioned above such as Blm-Fltr, Blm-DP, Blm-DL, and Partition GC-RL based 

on the four criteria mentioned above. 

 
 

PPRL Method 28000 
records 

5000 
records 

600 records 

Blm-Fltr 462 58 11 

Blm-DP 473 73 13 

Blm-DL 491 82 19 

Partition GC-RL 647 96 25 

Our Method 304 54 6 

 

Table 4.3 Comparison of various PPRL protocols to our method using execution time as a 
measure in seconds. 

 
Experiment 7: Measuring the precision of our PPRL Method against many other protocols. 

Table 4.4 shows the precision based on Equation 4.9 of our protocol against other protocols such 

as Blm-Fltr, Blm-DP, Blm-DL, and Partition GC-RL As demonstrated our protocol achieved 100% 
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precision due to efficient design without having additional complexity to maintain privacy. 

 
Method Precision 

BF 0.89 

DP-BF 0.91 

DLBF 0.86 

DP-DL-BF 0.8 

Partition GC-RL 0.99 

Our Method 1 

 

Table 4.4  PPRL precision comparison against other protocols 

 

4.7 Summary 
 
Telecom fraud is an increasingly worrying issue in the telecom industry and the lack of data sharing 

and a suitable protocol between telcos only perpetuates this problem. We explained the 

fundamental flaw in current implementations where data when encoded using the same methods 

can be easily compromised, along with many PPRL protocols that use error prone Bloom filters 

or third party to perform matches. Our study addressed this significant flaw of PPRL 

implementations and proposed a secure, fast, and accurate fraud detection system for the telecom 

industry that uses a SuperMinHash implementation designed into a DSS, EdDSA. We have proved 

and demonstrated how the Jaccard index can be used to find a match across two nonhomologous 

sets of data and yet maintain its privacy using only our method. We conducted experiments to 

demonstrate the speed of PPRL and even compared our implementation with current methods, 

finding that our protocol provides a remarkable improvement in performance and a superior ability 

to maintain privacy. Telcos can use our protocol to share fraud data with short response times and 
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high security while complying with privacy laws. Since our implementation currently links only 

to the Fraud Indicators to determine its presence in the database, we plan to extend the protocol to 

extract other valuable information and still maintain privacy.  
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Chapter 5: FD-PPRL Framework Evaluation with 
different MinHash Techniques 

 

In the preceding chapter, we introduced a unique protocol that utilizes the ElGamal 

Digital Signature Scheme for PPRL. This protocol was further refined to include SuperMinhash, 

enabling us to compute the Jaccard Similarity and assess matches. While we have explained our 

rationale for choosing EdDSA and basic MinHash, our aim is to test four different MinHash 

methods within our protocol to identify the most effective one, or at least to provide a range of 

options suitable for various scenarios. Section 5.1 outlines the standards we used to assess the 

different minhash techniques before settling on the most suitable one for our protocol. In Section 

5.2, we delve into the application of the MinHash technique in the FD-PPRL protocol. Section 

5.3 evaluates the implementation of the Weighted MinHash protocol within FD-PPRL. In 

Section 5.4, we examine the SimHash protocol in conjunction with FD-PPRL. Moving on to 

Section 5.5, we perform a conceptual analysis of the four methods when used with the FD-PPRL 

protocol. In Section 5.6, we carry out an empirical evaluation of these four protocols. Finally, in 

Section 5.7, we summarize the chapter and provide recommendations that are most appropriate 

for FD-PPRL 

 

Introduction 
 

In the telecom industry, as described, telcos continuously face fraud attacks. It is critical 

to quickly identify and prevent fraud. While sharing information is important, it is equally 

important to protect privacy. Speed and accuracy are extremely important to measure the 

effectiveness of fraud prevention. 
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Table 5.1 Notation and Terminologies used in this chapter 

FiA, FiB TA, and TB’s fraud indicators respectively 

N Size of the hash signature 

JS 
Jacquard Similarity 

JT Jacquard Threshold 

TA Telecom Provider A 

TB Telecom Provider B 

HS, HSA, HSB Hash signatures, and Hash signatures for Telco A, and Telco B 

SHA, SHB Shingles of FiA, FiB Fraud Indicator for A, and B 

p1, p2, p3 Prime numbers for MinHash functions 

K1….KN Large set of integers to map the Fraud Indicator 

PRNG Pseudo Random Number Generator 

WMHB, WMHA Weighted MinHash Samples 

SMHA, SMHB SimHash signature for Telco A and B 

MH MinHash protocol 

WMH Weighted MinHash Protocol 

SMH SimHash Protocol 

SuMH SuperMinHash Protocol 

Z Amount of shingles from the fraud indicator 

AE Accuracy of the EdDSA protocol 

AM Accuracy of the FD-PPRL protocol 

Table 5.1 Notation and Terminologies 
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We evaluated several models of the protocol described. This section will focus on the Hash 

protocols used to determine a Similarity Measure, such as Jacquard or Cosine Similarity, and 

which protocol best fits the needs of the telecom industry. To better evaluate these protocols, we 

will be using the Jacquard Similarity measure, calculated using various MinHash techniques, to 

evaluate accuracy, speed, and security. 

 

5.1 Overview 
 

In Chapter 3, we describe how two Telcos TA and TB interact with each other to share Fraud 

Indicators. Typically, there are many Minhash protocols to choose from to encrypt the Fraud 

Indicator. As we evaluate each Minhash algorithm, we will fit the same into our protocol and 

evaluate the following areas: 1) Ease of implementation, 2) Speed, 3) Accuracy of the results, and 

4) Privacy. Figure 1 shows which area of the protocol we will be evaluating for our analysis. We 

will maintain all other aspects of the protocol static. We will start our evaluation with the simplest 

MinHash and build upon more robust implementations. 

 

5.2 FD-PPRL implementation using MinHASH Protocol 
 

MinHash is a technique used in computer science and data mining to estimate the 

similarity between two sets. It was introduced by Andrei Z. Broder [30] in his paper. The main 

aspect of the algorithm is a hash function which takes the Fraud Indicator FiA and FiB and maps 

it to a signature set of numbers with no collision. This signature set is then used to estimate the 

similarity between two sets. The idea behind MinHash is to represent each set as a signature, 

which is a small set of values that can be compared to other signatures to estimate the similarity 

between the two sets. 
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To ensure a fair comparison, we will set the size N to be the same across all the protocols. 

This means that the same number of values will be used to create the signature set for each 

protocol. By doing this, we can compare the performance of each protocol on an equal footing. 

 
5.2.1 Protocol Definition 
 

A simple representation of a hash function for an input number x is H(x) = (p1x + p2) % 

p3, where p1 and p2 are random numbers and p3 is a prime number greater than x. For different 

values of p1 and p2, the hash function will produce random mapping values which will constitute 

a hash signature of size N. For our version of MinHash, we will use a pseudorandom number 

generator (PRNG) that will be seeded using the Telco’s fraud indicator. This will then be used to 

derive the MinHash signature. The Minwise hashing takes the Fraud Indicator Fi and maps it to N 

size hash signature H. 

H_s (Fi)≔arg min H(Fi) 

Using the above equation derive the signature HSA and HSB for the fraud indicator FiA and 

FiB, The probability that HSA= HSB the same as the Jacquard similarity i.e., P (HSA=HSB) = J. This 

property allows the unbiased estimation of J. 

 
𝐽(𝐻>B = 𝐻>C)  =   7

.
∑ Ι(𝐻>B = 𝐻>C).
!@7                                                 (5.1) 

 
 
Where I is the indicator function that returns a 1 when the inputs are equal else a 0. 
 
5.2.2 Parameter Definition: 
 

p1, p2, p3 are extremely large prime numbers used during the MinHash process. The fraud 

indicator, either directly or through the shingling process (see the definition and process in the 

background section), will be mapped to a large set of integers (K1…….KN). Typically, N, being 
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the signature size, will dictate the number of large integers that are an output of the MinHash 

process. These integers will then be the signature of the fraud indicator. 

 
5.2.3 Record Encoding 
 

During the MinHash stage itself, there is no record-level encoding. The MinHash technique 

itself offers a decent amount of security since fraud indicators are mapped to large integers. To get 

to the large integers, the algorithm considers large prime numbers in the conjectured one-way 

function, which will be difficult to reverse into the original input. G<-f(Fi). However, Fi=f-1(G) 

(this is f inverse) is hard. Although the core encryption is not at the MinHash layer, it does offer a 

level of security from basic cryptanalysis attacks. 

 

Algorithm 5.1 Logic to determine Fraud using simple MinHash function 

Inputs:  

FiA, FiB – TA, and TB’s fraud indicators respectively   

JT – Jaccard Threshold  

H - Hash function shared between A and B   

N - Size of the hash signature  

MH – MinHash algorithm  

SHA, SHB - Shingles of the Fraud Indicator FiA, FiB  

Z - Amount of shingles from the fraud indicator 

Outputs:  

JS - Jaccard indicator  
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KA - TA’s private key  

KB - TB’s public key  

HSA, HSB – Telcom A and B hash signatures of FiA and FiB  

Match = True if JS > JT (Jaccard threshold); else, False 

Steps: 

1 (a0, a1, a2, ….... aN-1) [0,1] 

2 (a0, a1, a2, ….... aN-1) <- (0, 0, …., 0) 

3 Telcom B generates minhash of its fraud indicator 

4 SHB <- Shingle-process (FiB) 

5 HSB1, HSB2, …., HSBN <- inf, inf, …., inf 

6 SHB 

7 For i <- 0,1…Z-1 do 

8  Initialize a pseudo random generator r with a seed SHB 

9  For j<-0,1…. N-1 do 

10   HSAj <- min (HSAi,r) 

11  End For 

12 End For 

13 Telcom A generates minhash of its fraud indicator 

14 SHA <- Shingle-process (FiA) 

15 HSA1, HSA2, …., HSAN <- inf, inf, …., inf 

16 For k<-0,1…Z-1 do 

17  SHA 
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18  For i <- 0,1…Z-1 do 

19   Initialize a pseudo random generator r with a seed SHA 

20   For j<-0,1…. N-1 do 

21    HSAj <- min (HSAi,r) 

22   End For 

23  End For 

24 End For 

25 KA, KB <- EdDSA.generateKey() 

26 EiA <- EdDSA.encode (KA, HSAi) ∀i∈ 	(0,1...(N-1)) 

27 TA transmits KB and EiA (0,1...N-1) to TB 

28 TB performs  

29 EjA 

30 For j <- 0,1, 2…...N-1 do 

31  aj <- EdDSA.verify (EiA, HSBi) 

32 End For 

33 𝐽> =
1
𝑁X𝑎?

.87

?@A

 

34 If JS ≥ JT 

35  Then Break 

36 End If 
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Algorithm 5.1 describes the process for fraud detection between Telco A and B using the 

simple min hash technique. Chapter 4 developed a framework for doing the same using one of the 

minhash techniques that will be evaluated in this chapter. Here, Telco A and B have their fraud 

indicators, which they can split into shingles. Telco A and B take their now split data, where each 

of the shingle values becomes a seed for a pseudorandom number generator (PRNG). The HiA and 

HiB ∀	i ∈ 	(0…N) minhash arrays store the final process values. These arrays are initialized with 

infinity or an extremely high number. 

For each position on the MinHash array, the minimum of the existing value is compared 

against the PRNG. The algorithm iterates through all the shingles until a complete MinHash 

signature of the fraud indicator is established. The remaining protocol is as per the framework 

where Telco A further encrypts using the EdDSA algorithm and sends that data to TB along with 

the public key for a Jaccard verification check. 

The accuracy of the implementation using the MinHash technique will be based on the 

accuracy of the EdDSA verification function and the variance on the MinHash function that is 

used to hash the fraud indicator. 

𝐴D   =  𝐴E   × B1 −  
F# ×(7 8 F#)

.
C                                                 (5.2)                    

Where AM is the overall accuracy of the FD-PPRL protocol using the simple MinHash 

technique, AE is the accuracy of the EdDSA verification function which for experimentation will 

assume AE≈  1 since the accuracy of the verification function is extremely high and is almost 1. 
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5.3 FD-PPRL implementation using Weighted MinHash with LSH 
 

Telcos have a vast collection of customers and potential bad actors who, for several 

reasons, have been flagged as a substantial risk. While MinHash is a simple and straightforward 

protocol, we need a protocol that can handle large datasets. The Locality Sensitive Hashing (LSH) 

function can help categorize related items into closer groups, which can be combined with the 

MinHash protocol to speed up the estimation of the Jaccard Similarity function. Once the items 

are hashed to the same bucket, they can be considered for a candidate pair. These candidate pairs 

can then be checked for similarity. The dissimilar pairs that do not hash to the same buckets are 

false positives and are never checked. There will be a smaller population of false positives that are 

in the same bucket. 

The above protocol describes the determination of the Jaccard similarity using MinHash 

with LSH hash functions. While this helped with sorting pairs more efficiently, in the case of 

searches on large datasets, consideration is being given to weighted datasets where the weight can 

be the frequency of an item or simply, in the case of fraud indicators, the propensity of committing 

fraud. 

Consistent weighted sampling is an LSH Scheme [30] where the probability of hash 

collision is equal to the Jacquard similarity. The sample k is uniformly taken from the set of hashed 

values HS, where weights y ∈ 	S a set of weights which are assigned as described above.  

𝑃 (𝑠𝑎𝑚𝑝𝑙𝑒 𝐻$% =  𝑆𝑎𝑚𝑝𝑙𝑒 𝐻$&) =
' )*+(-!".-!#)
')01(-!".-!#)

             (5.3) 

 
The goal of Minhash is to represent data with the lowest possible bits and still be able to 

reconstruct the distances efficiently and accurately. 
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Algorithm 5.2 Logic to determine Fraud using simple Weighted MinHash function 

Inputs:  

FiA, FiB – TA, and TB’s fraud indicators respectively   

JT – Jaccard Threshold  

H - Hash function shared between Telco A and B   

N - Size of the hash signature  

MH – MinHash algorithm  

SHA, SHB - Shingles of the Fraud Indicator FiA, FiB  

Z - Amount of shingles from the fraud indicator 
 

Outputs:  

JS - Jaccard indicator  

KA - TA’s private key  

KB - TB’s public key  

HSA, HSB – Telcom A and B hash signatures of FiA and FiB  

WMHB, WMHA – Weighted MinHash Samples 

Match = True if JS > JT (Jaccard threshold); else, False 

Steps: 

1 (a0, a1, a2, ….... aN-1) [0,1] 

2 (a0, a1, a2, ….... aN-1) <- (0, 0, …., 0) 

3 Telcom B generates minhash of its fraud indicator 

4 SHB <- Shingle-process (FiB) 

5 HSB1, HSB2, …., HSBN <- inf, inf, …., inf 
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6 SHB 

7 For i <- 0,1…Z-1 do 

8  Initialize a pseudo random generator r with a seed SHB 

9  For j<-0,1…. N-1 d0 

10   HSBj <- min (HSBi,r) 

11  End For 

12 End for 

13 Generate the Weighted MinHash LSH Samples 

14 For i <- 0,1 .... N-1 do 

15  Sample: 

16  (k*,y*) <- {(k, y): {k  HSA, 0 ≤ y ≤ S} //S - Set of weights 

17 End For 

18 WMHA <- (k*,y*) 

19 KA, KB <- EdDSA.generateKey() 

20 EiA <- EdDSA.encode (KA, WMHA i) ∀i∈ 	(0,1...(N-1)) 

21 TA transmits KB and EiA (0,1...N-1) to TB 

22 TB performs 

23 EjA 

24 For j <- 0,1, 2…...N-1 do 

25  aj <- EdDSA.verify (EiA, WMHB i) 

26 End For 
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27 𝐽G =
1
𝑁X𝑎?

.87

?@A

 

28 If Jb ≥ JT 

29  Then Break 

30 End If 

 

As with MinHash, the accuracy of the implementation using the MinHash technique will 

be based on the accuracy of the EdDSA verification function and the variance on the Weighted 

MinHash function that is used to hash the fraud indicator. 

Since the Weighted MinHash through the sampling process is pushed to a signature size 

of b bits. The probability that the b-bit hash collide is 2-b which will factor into the calculation of 

the Weighted MinHash Jacquard Similarity [40] Jb 

𝐽G = 𝑃(𝑊𝐻𝑀B = 𝑊𝑀𝐻G) = 𝐽 + (1 − 𝐽)28G                                               (5.4) 

Then AM the overall accuracy of the FD-PPRL protocol can be defined as 

𝐴D = 𝐴E ×
HF$×(7 8F$)I

.
                                                                                  (5.5) 

 where we can substitute AE≈ 1 

5.4 FD-PPRL implementation using SimHash Protocol 
 

The Simhash algorithm is used to quickly estimate the similarity between sets. It was 

designed by Moses Charikar [41] and is used by Google Crawler to find near-duplicate pages. 

The algorithm works by generating a hash signature for each set and then comparing the 

signatures to determine their proximity. 
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5.4.1 Protocol Definition 
 

The Fraud Indicator is sent through the SimHash process where the features are extracted. 

The Features could be how often a character occurs in the indicator or length of indicator. In our 

case the Fraud indicator is split into shingles where the process is mentioned in the background 

section. These shingles are then hashed using one of the standard hash functions. These individual 

Hash values are then combined, or their individual bit can be XORed. 

Typically, once the digital signature of the Fraud indicators is determined, they can be 

compared using a cosine similarity function. 

𝑃(𝑆𝑀𝐻%   =  𝑆𝑀𝐻&) = 1 −
𝜃
𝜋

 

Where 𝜃	is angle between the vectors SMHA and SMHB (the SimHash signature of Telco A, and 

B) and the probability that they match proportional to the cosine of the angle between the two 

vectors.  

However, since our FD-PPRL protocol uses the EdDSA verification function that returns 

either a true or false, which works well with an Identity function, the similarity measure will only 

compare the Encrypted SimHash and unencrypted SimHash to return a True or False on the 

matches. 

 
5.4.2 Parameter Definition 
 

The main inputs to SimHash are the fraud indicator themselves with the outputs being their 

hashed signature for comparison. 

 

5.3 Record Encoding 
 
The records are Hashed using SHA1 encoding scheme, 
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Algorithm 5.3 Logic to determine Fraud using simple SimHash function 

Inputs: 

FiA, FiB – TA and TB’s fraud indicators respectively  

H - Hash function shared between A and B (SuperMinHash) 

N - Size of the hash signature 

T – Size of the block of signatures transmitted by TB 

SHA, SHB - Shingles of the Fraud Indicator FiA, FiB 

 Z - number of shingles from the fraud indicator 

 
Outputs: 

JS - Jaccard indicator 

KA - TA’s private key 

KB -TB’s public key 

Match = True if JS > JT (Jaccard threshold); else, False 

 
Steps: 

1 (a0, a1, a2, ….... aN-1) ['True', 'False’] 

2 (a0, a1, a2, ….... aN-1) <- (null, null, ..., null) 

3 Telcom B generates SimHash of its fraud indicator 

4 SHB<-Shingle-process (FiB) 

5 W[f] <- 0; //f length dimension vector 

6 for i = 1 to n do 

7  X ← H(SHB), H is a normal hash function 

8  for j=1to f do 
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9   if X[j] = 1  

10    then W[j] ← W[j] + wi  //wi are the weight of the Shingle SHB 

 
11   Else 

12    W[j] ← W[j] − wi 

13   End If 

14  End For 

15 End For 

16 for I=1 to f 

17  
if W[i] > 0 then 

18   SMHB[i] ← 1 

19  else 

20   SMHB[i] ← 0 
 

21  End If 

22 End For 

23 return SMHB 

24 KA, KB <- EdDSA.generateKey() 

25 EiA <-EdDSA.encode (KA, SMHA),i∈ 	(0,1...(N-1) 

26 TA transmits KB and EiA (0,1...N-1) to TB 

27 TB performs 

28 EjA 

29 For i <- 0,1, 2…...N-1 do 
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30  aj <- EdDSA.verify (EiA, SMHB) 

31 End For   

32 aj returns True or False based on the EdDSA.verify function output 

 

The accuracy of the implementation using the SimHash technique will be based on the 

accuracy of the EdDSA verification function and the variance on the SimHash function that is used 

to hash the fraud indicator. 

𝐴D   =  1  −   J
KLM(J)

                                                              (5.6) 

Where AM is the overall accuracy of the FD-PPRL protocol using the simple SimHash technique, 

AE is the accuracy of the EdDSA verification function which we will set to 1. d is the hamming 

distance between SMHA and SMHB with Max(d) the maximum hamming distance when 

SMHA≇ 	SMHB. 

5.4 FD-PPRL implementation using SuperMinHash protocol 
 

The SuperMinHash algorithm was designed by Otmar Ertl [26] to increase the speed and 

accuracy of the MinHash algorithm. While there are many other algorithms that precede 

SuperMinHash such as ProbMinHash and MinMax hash, they do not pan out when incorporated 

into our developed framework since the logic of the algorithm does not allow comparison of two 

non-homologous datasets. As shown in section 5.1, the regular MinHash function, while quite 

effective, can have speed and accuracy limitations as demonstrated in the experiment section of 

this chapter. 
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5.4.1 Protocol Definition 
 

As mentioned, this hash algorithm was designed to keep speed and accuracy as the primary 

criteria for design. The Fisher-Yates shuffle algorithm is used in this logic. This is where the input 

array of characters that are being shuffled is used to determine the next element randomly until no 

elements remain. This algorithm is one of the most efficient shuffling algorithms present currently. 

The run time complexity reduces from O(nm) to O (n + m log2m) for large data sets. 

 
5.4.2 Parameter Definition 
 

The main inputs to SuperMinHash Algorithms are the fraud indicator themselves with the 

outputs being their hashed signature for compare. 

 
 

Algorithm 5.4 Logic to determine Fraud using simple SuperMinHash function 

Inputs: 

FiA, FiB – TA, and TB’s fraud indicators respectively  

H - Hash function shared between A and B (SuperMinHash) 

N - Size of the hash signature 

T – Size of the block of signatures transmitted by TB 

MH – MinHash algorithm 

SHA, SHB - Shingles of the Fraud Indicator FiA, FiB 

 Z - numbers of shingles from the fraud indicator 

 
Outputs: 

JS - Jaccard indicator 

KA - TA’s private key 

KB -TB’s public key 
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Match = True if JS > JT (Jaccard threshold); else, False 

 

Steps: 

1 (a0, a1, a2, ….... aN-1) [0,1] 

2 (a0, a1, a2, ….... aN-1) <- (0, 0….0) 

3 Telcom B generates SuperMinHash of its fraud indicator 

4 SHB<-Shingle-process (FiB) 

5 HiB<-inf  ∀	i∈ 	 (0…N) 

6 ARi array for assigning value for all (0…N) 

7 QRi<—1 for all (0…. N) 

8 For i<- 0 ……N-1 

9  Initialize PRNG with SHB 

10  For j<-0,1….m-1 do 

11   Ran1<- uniform random number from [0,1) 

12   Ran2<- uniform random number from {j……N-1} 

13   If QRj ≠  I then 

14    QRj<-I 

15    ARk<-k 

16   End If 

17   Swap ARj and ARk 

18   HiA<-min (HiA, R+j) 

19  End for 
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20 End For 

21 Telcom A generates minhash of its fraud indicator 

22 SHA <-Shingle-process (FiA) 

23 HiA<-inf for all i (0…N) 

24 ARi array for assigning value for all (0…N) 

25 QRi<—1 for all (0…. N) 

26 For I<- 0 ……Z-1 

27  Initialize PRNG with SHA 

28  For j<-0,1….m-1 do 

29   Ran1<- uniform random number from [0,1) 

30   Ran2<- uniform random number from {j……N-1} 

31   If QRj ≠ I then 

32    QRk<-I 

33    ARk<-k 

34   End If 

35   Swap ARj and AR 

36     HiA<-min (HiA, R+j) 

37  End For 

39 End for 

40 KA, KB <- EdDSA.generateKey() 

41 EiA <-EdDSA.encode (KA, HiA),i(0,1...(N-1) 

42 TA transmits KB and EiA (0,1...N-1) to TB (steps 21 to 41 are performed for all the 
block contents) 
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43 TB performs  

44 For j <- 0,1, 2…...M-1 do 

45   EjA 

46  For i <- 0,1, 2…...N-1 do 

47   aj <- EdDSA.verify (EiA, HiB) 

48  End For 

49  𝐽>  =
1
𝑁X 𝑎?

.87

?@A

 

50  If JS  ≥ JT 

51   Then break 

52  End If 

53 End For 

54 JS ≥  JT then Match=True; else, False. 

The accuracy of the implementation using the SuperMinHash technique will be based on 

the accuracy of the EdDSA verification function and the variance on the MinHash function that is 

used to hash the fraud indicator.  

 

𝐴D = 1 − F(78F)
.

× _1 − ∑ O%%&!
'(!  H(O,7)%,(O87)%8"O%I

(.87)%×.%
`                                   (5.7) 

 
Where AM is the overall accuracy of the FD-PPRL protocol using the simple MinHash 

technique, AE is the accuracy of the EdDSA verification function which for experimentation will 
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assume AE≈ 1 since the accuracy of the verification function is extremely high is almost 1 and N 

is the signature length. 

 

5.5 Conceptual Analysis of the Signature HASH Techniques to be 
used in our framework 
 

In this section we conduct a conceptual analysis of the three hash methods for data sharing 

in terms of complexity, quality of blocking and privacy on the data being shared with each Telco. 

 
5.5.1 Complexity 
 

We analyze the computational and communication complexity of three methods described 

above into two main aspects of record request and response. Let nf be the size of the block indicator 

for which information is requested. Let n be the signature length and m be the length of the fraud 

indicator. The regular MinHash protocol in 5.1 will have a runtime complexity of O(nm). For the 

Simhash algorithm, which has a run-through process of feature extraction through the fraud 

indicator (m), hashing the extracted features (m), and computing the SIMHASH signature, the 

runtime complexity will be O(3m). For the Superminhash algorithm, since it uses the Fischer Yates 

Sorting algorithm and makes only one pass at the signature, it will have a runtime complexity of 

O (n + m log2m). In the experimental section, we will compare the performance of these various 

methods. 

 
5.5.2 Accuracy  
 

Here we will analyze the sensitivity of the three methods to detect similarities with the 

Fraud Indicator in our protocol's framework. While these protocols have their own accuracy 
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metrics on a standalone basis, their behavior will change since they have been redesigned to be 

incorporated into the FD-PPRL framework. Hence, we will need to reevaluate their accuracy. 

 
5.5.3 Privacy analysis 
 

The main privacy protection feature in FD-PPRL is the use of the EdDSA algorithm to 

compare two non-homologous datasets. We will analyze the impact of using one of the three 

hash methods to determine which is more secure. Assuming the Telcos are honest but curious 

entities, since they will need to agree upon or share the same hash algorithm, the experimental 

section will analyze any potential privacy leaks. 

 

5.6 Experimental Evaluation and Discussion 
 
In the experimental setup section, we will discuss the database used, the parameter selection, and 

the evaluation of the results. Also, the experiment results will be reviewed and discussed, 

explaining the logic and criteria we used to select the most appropriate Hash technique for the FD-

PPRL protocol. 

 
5.6.1 Experimental Setup 
 

As in Chapter 4 we used an Apple MacBook Air with an Apple M1 chip and 8 GB memory. 

We developed a Python package for each of the hash techniques with our FD-PPRL protocol using 

the four algorithms mentioned above. We also used the North Carolina voter database as a 

substitute for the Fraud database that will be housed within Telcos. For our analysis, we established 

the length of the database, which represents the block of information sent by TA, to be 1000. The 

Fraud Indicator FA that is being searched for was set to be ‘ALICE TEST BOB.’ 
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Experiment 1 
 

We conducted experiments incorporating the MinHash (MNH), WeightMinHash (WMH), 

SimHash (SMH), and SuperMinHash (SuMH) into the FD-PPRL protocol to measure the accuracy 

of each of these implementations to get a measure of what will be best suited for FD-PPRL. Table 

4.1 will show the Fraud Data and the variance in characters that was processed through the protocol 

for measurements. 

 

Character Variance FA 

0 ALICE TEST BOB 

1 ALICE TEST BO* 

2 ALICE TEST B** 

3 ALICE TEST *** 

4 ALICE TES**** 

 

Table 5.2 Character position variance to test the accuracy of implementation 

 
 
 

For each of the protocols, 1000 records of individual block data were processed against 

each of the FA’s and the Jaccard similarity measure was recorded. The accuracy, as mentioned in 

equations 5.2, 5.5, and 5.6, was measured and recorded for various signature lengths N=5,10, 15, 

and 20, with the character variance from 0 to 4 as depicted in Table 5.2. The graphical 

representation of the results is shown in Figures 5.1, 5.2, 5.3, and 5.4. 
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N=5 MH WMH SMH SuMH  N=10 MH WMH SMH SuMH 

0 1 1 1 1  0 1 1 1 1 

1 1 1 0 0.8  1 1 1 0 0.8 

2 1 1 0 0.6  2 0.8 0.5 0 0.67 

3 1 1 0 0.6  3 0.8 0.5 0 0.53 

4 1 0.9 0 0.4  4 0.8 0.5 0 0.46 

           

N=15 MH WMH SMH SuMH  N=20 MH WMH SMH SuMH 

0 1 1 1 1  0 1 1 1 1 

1 1 1 0 0.8  1 1 1 0 0.8 

2 0.86 0.667 0 0.67  2 0.9 0.9 0 0.6 

3 0.67 0.667 0 0.53  3 0.9 0.9 0 0.53 

4 0.8 0.667 0 0.46  4 0.9 0.9 0 0.46 

Table 5.3 Accuracy comparison of the four protocols across four signature lengths 

 
 

 
Figure 5.1 Accuracy of the four methods with Signature Length N=5 
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Figure 5.2 Accuracy of the four methods with Signature Length N=10 

 
 

 
 

Fig 5.3 Accuracy of the four methods with Signature Length N=15 
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Figure 5.4 Accuracy of the four methods with Signature Length N=20 

The data presented in the following figures and tables clearly demonstrate the sensitivity 

of SIMHASH implementation to minor character changes. For precise readings on a Fraud 

Indicator, SMH proves to be beneficial. MH, WMH, and SuMH exhibit similar behaviors, but 

SuMH outperforms in accuracy for larger variations as the Jaccard similarity begins to decrease 

rapidly with an increase in character variations. MH and WMH fail to show significant shifts when 

the differences in characters increase, suggesting their limitations for precise readings. SuMH, on 

the other hand, can still identify matches for minor character variations, such as spelling errors. 

This key advantage is a primary reason for our decision to incorporate SuMH into our 

implementation. 
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Experiment 2 
 

In this experiment, we evaluated the implementation speed of four protocols - MinHash 

(MNH), WeightMinHash (WMH), SimHash (SMH), and SuperMinHash (SuMH) - when 

integrated with FD-PPRL. We used a consistent block dataset comprising a thousand names across 

two distinct scenarios. In the first scenario, the fraud block FB<-“ALICE TEST BOB” is included 

in the 1000-block fraud data, and we measured the performance in seconds. In the second scenario, 

FB is absent from the dataset, necessitating a full dataset scan by the protocol. Performance 

measurements were conducted across five different signature lengths, namely N=5,15,15,20, and 

25. 

With “ALICE 
TEST BOB in 
data set  

    

N MH WMH SMH SuMH 

5 0.4453 0.0316 0.0076 0.0087 

10 0.7389 0.0467 0.00637 0.0171 

15 1.0617 0.0681 0.00567 0.0245 

20 1.3921 0.0910 0.00647 0.0318 

25 1.701 0.1116 0.0067 0.0317 

     

With “ALICE 
TEST BOB not 
in data set  

    

N MH WMH SMH SuMH 

5 1.2456 1.2165 0.2456 0.8775 

10 2.4435 2.3843 0.2384 1.7489 

15 3.5428 3.6135 0.2384 2.6344 

20 4.6749 4.7153 0.2384 3.5193 

25 5.7950 5.9020 0.2384 4.3765 
Table 5.4 Runtime analysis of the four protocols with and without matches 
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Figure 5 5 Run time analysis with matches in the Fraud data 

 

 
Figure 5.6  Run time analysis without any matches in the Fraud data 
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Upon examining the data and charts, it is evident that SimHash exhibits the best runtime 

performance among the four protocols, given the deterministic nature of its FD-PPRL output. 

MinHash FD-PPRL, on the other hand, performs the least efficiently, making it unsuitable for 

industrial implementation, especially over large datasets. The choice between Weighted MinHash 

and SuperMinHash becomes clear as SuMH significantly outperforms in both scenarios - with and 

without matches. 

5.7 Chapter summary 
 

In this chapter, we examined four distinct hashing techniques. We began with the most 

basic, MinHash, and progressed to WeightMinHash, which incorporates locality-sensitive hashing. 

We then delved into SimHash, a protocol with a completely different hashing principle that is 

commonly used in search engines. Finally, we evaluated SuperMinHash, which has proven to be 

the most efficient in terms of performance and accuracy, as demonstrated in our conceptual 

analysis and experimental section. Consequently, we have opted to use SuperMinHash in the FD-

PPRL protocol for Telco fraud detection and sharing. In the next chapter, we will examine various 

blocking techniques for Telcos to organize and transmit data in their Fraud Database when a 

request is made. 
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Chapter 6: Blocking Framework for Data Organization 
and Sharing in FD-PPRL 
 

 
 
 

In this chapter, we present a protocol to be used by telecommunication companies that have 

large databases with fraud information and need to share that information with each other. The 

protocol should be scalable and can avoid full data scans but instead get to the relevant sections of 

the data store to extract data blocks for comparison. As with the previous implementations, the 

protocol should be easy to implement, stable, and secure. In Section 6.1, we describe the overview 

of our approach. Section 6.2 describes the Shared Parameter Blocking method. In Section 6.3, we 

will review the Dynamic Blocking method. Section 6.4 describes the Tuple-based Blocking 

Method. In Section 6.5, we will go over the conceptual analysis of the three blocking methods 

described in this chapter. In Section 6.6, we will conduct some experimental analysis on the 

blocking techniques. Finally, we will summarize the chapter and introduce it to the next chapter. 

 

Introduction 

Searching for large numbers of records has always been a challenge that needs to be 

addressed by any application that links records. When multiple databases are involved, the 

record comparison increases exponentially, making the process of PPRL comparison extremely 

challenging. To address this challenge, we can use the techniques of blocking or indexing, which 

have been used for many years. These techniques reduce checks or comparisons by removing 

true negatives or non-matches of the record pairs. This results in a reduction in the number of 

computational and communication steps in a protocol while checking for fraud. We will evaluate 
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many blocking techniques and focus on the one that will be best suited for fraud detection using 

PPRL. 

 

Table 6.1 - Notation and Terminology used in this Chapter 

TB Telco B requesting the Fraud check 

TA Telco A processing the Block information for transmission 

DA 
Fraud dataset of Telecom A 

DB 
Fraud dataset of Telecom B 

FD-PPRL Fraud Detection Private preserving record linkage 

EdDSA Edwards Curve Digital Signature Algorithm 

PK   Parameter for determining blocking 

SH SuperMinHash Algorithm 

FiA, FiB 
TA, and TB’s fraud indicators respectively 

N Size of the hash signature 

T Size of the block of signatures transmitted by TA 

PKA 
Block Parameter of FiA 

KBA ,KBB TB’s public key and Private key 

AM Accuracy of the block protocol 

AE 
Accuracy of the EdDSA protocol 
 

Table 6.1 Notation and Terminology in Chapter 6 
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In this chapter we will evaluate the following blocking techniques: 

1.) Shared parameter block method –  

In this method, Telcos organizes blocks based on agreed-upon block methods and 

parameters used to create and distribute their fraud data into the blocks. These blocks are then sent 

based on the received request. 

2.) Dynamic Parameter block method -  

In this method, the parameters or part of the fraud indicator are sent to Telcos. These 

parameters are then used to create blocks dynamically based on a preset Jacquard threshold. This 

dynamically created block is then transmitted. 

3.) Tuple based Parameter blocking -  

Telcos can choose to organize their blocks of fraud information however they want. A tuple 

of parameters {para1, para2, para3…} is sent to the telco. The blocks of fraud information are pre-

clustered based on a hierarchy of parameters, and the search goes down the hierarchy. When a 

match is found on all the information in the tuple, the selected block of fraud indicators is 

transmitted. 

6.1 Overview of our approach 
 

One of the major problems with many implementations is the speed of search and potential 

transmission of large volumes of data. One easy way to increase speed is to reduce the size of the 

search and the quantity of transmission. However, it is quite possible that blocks with smaller sizes 

could be prone to cryptanalysis attacks. In our framework, the implementation has been encrypted 

using EdDSA, which is one of the most secure protocols. 
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The goal is to reduce the search space and transmission quantity to ensure a faster response 

time. This can be represented as DA -> DBiA, DA->DBjA, … , DA->DBkA, where DA is the original 

dataset. It gets split or addressed based on the following criteria: 

1. Prearranged Method of Splitting, Requesting, and Sharing Data: The data is split 

according to a predetermined method, and the process of requesting and sharing data 

follows this method. 

2. Individual Telco Desire: The data blocks are split based on the individual preferences of 

the Telco. The request is independent of the splitting process. 

In this protocol phase, the transaction begins with a request for a block by the requesting 

Telco TB, which is referred to as RA. The following sections describe in detail how RB is processed 

by TA and how a response is generated back to TB. 

 

6.2 Shared parameter block method  
 
In this section we describe the protocol in detail 

6.2.1 Parameter determination 
 

Telcos TA and TB, along with TN and N Telcos, collaborate to determine parameters 

{PK∣K∈ [𝑎…j]} to organize the dataset and use it for transmission. The parameters themselves are 

not encoded when determined and used to segregate the data; they only get encoded when the 

request is made for a block. Since the block parameter determination is being done within the 

industry, it would be easy for the group to come to an agreement on the basis on which the 

parameters are determined. Block size will also be a factor in determining the type of parameter to 

be used. For instance, if FiA represents an individual’s name, the block can potentially be 

segregated by state, city, or even zip code. 
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6.2.2 Record encoding 
 

The block parameter from Telco B is encoded, but not with Telco A. This ensures that 

Telco A receives as little information as possible from Telco B’s inquiry. Telco A’s fraud 

indicators are encoded and transmitted using FD-PPRL. 

6.2.3 Block Tree Construction 
 

The maximum size of the blocks for storage will be determined primarily by the 

transmission size T. The speed of response will typically be set based on the network topology and 

technology used between the Telcos to communicate with each other. Let’s assume that the 

network speed will be based on the choice of an average mid-size company that uses a VPN or 

Ethernet network. The transmission size for a fraud enquiry will play a factor in determining the 

response time, which will be determined by Telcos at the time of setup. Once the block size T has 

been determined, it will need to be segregated and set based on the agreed-upon parameters 

{PK∣K∈ [𝑎…j]}. 

 

Algorithm 6.1: Shared Parameter Block generation and setting 

Input:  

DA - Database belonging to A 

T - Transmission size/maximum block size 

PK - Parameter for determining blocking 

Output: 

{BK∣K∈[𝑎..j]} 

Start: 

BK<- {} 

For each FAi belong to [a,...,j] where j is the total number of records 
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PKA< extract-parameter (FAi) 

i<-0 

KAA, KAB <- EdDSA.generateKey() performed by TA 

While FAi is not null 

 While FAi is not null 

  HiA <-SH(FAi) //SuperMinHash Algorithm 

  EiA <-EdDSA.encode (KAA, HiA),i(0,1...(n-1) //Encode using EdDSA Algorithm 

  BKAi <- EiA, PKA 

  i=i+1 

 End 

End 

Return BKA 

 

Algorithm 6.1 explains the process of block generation using the parameter defined through 

the Telco Collaborative process. The blocking parameter used for segregation is extracted or 

determined from the Fraud Indicator. For example, if the Fraud Indicator is a name, the block 

parameter can be city, state, or both. Once the block parameter is assigned to the Fraud Indicator, 

the process of block assignment starts. The block max size is evaluated continuously with respect 

to the number of items in the block. 

Once the block size limit is reached, a new block with the same block parameter and a next 

generation is started. The process continues until all the Fraud indicators are assigned to a block 

and with the block to a specific block parameter generation. Now that the block age is set, the 

block parameter assigned to each block is MinHashed using the agreed-upon hash algorithm. For 
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our purpose, we have chosen the SuperMinHash algorithm. The blocks themselves are 

preprocessed, i.e., SuperMinHashed. They are then processed through the EdDSA algorithm with 

keys and digital signatures generated, ready for transmission once a request has been made. 

 

 

 
Figure 6.1 Shared parameter Block generation and setting 

 

Algorithm 6.2: Shared Parameter Block Method Fraud Information sharing protocol 

Inputs: 

FiA, FiB – TA, and TB’s fraud indicators respectively  

N - Size of the hash signature 

T – Size of the block of signatures transmitted by TA 

SH – SuperMinHash algorithm 

PKA- Block Parameter of FiA 
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Outputs: 

JS - Jaccard indicator 

KBA - TB’s public key 

KBB - TB’s Private key 

Match = True if JS > JT (Jaccard threshold); else, False 

Steps: 

1 (a0, a1, a2, ….... aN-1) [0,1] 

2 (a0, a1, a2, ….... aN-1) <- (0, 0,….0) 

3 PKB<-extract_parameter(FiB) //function to extract parameter from Fraud Indicator 

4 (H1PKB, H2PKB, H3PKB …. HNPKB) <-SH(PKB) generate SuperMinHash for TB fraud 
indicator parameter 

5 KBA, KBB <- EdDSA.generateKey() performed by TB 

6 KEiB <-EdDSA.encode (KBB, HiPKB) ∀	 i∈ 	 (0,1...(N-1) 

7 TB transmits KBA and KEiB (0,1...N-1) to TA 

8 TA Perform Block Parameter matching using information from Step above 

9 TA performs  

10 For j <- 0,1, 2…...N-1 do 

11  KEiB 

12  For i <- 0,1, 2…...N-1 do 

13      aj <- EdDSA.verify (KEiB, PKA) 

14  End For 

15  𝐽> =
1
𝑁X𝑎?

.87

?@A

 

16  If JS = 1 

17   Then break 
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18  End If 

19 End For 

20 TA transmits BKA and KAB to TB (steps 1 to 19 are performed for all the block contents). 

21 TB performs 

22 For j <- 0,1, 2…...N-1 do 

23  BKA 

24  For i <- 0,1, 2…...N-1 do 

25   aj <- EdDSA.verify (EiA, HiB) 

26  End For 

27  𝐽> =
1
𝑁X𝑎?

.87

?@A

 

28  If JS  ≥ JT 

29   Then break 

30  End If 

31 End For 

32 JS ≥  JT then Match=True; else, False 

  

Once the Telco has set up their data block based on Algorithm 6.1, Algorithm 6.2 goes into 

the step-by-step process of fraud information sought by Telecom B. TB extracts or determines the 

Block Category from FiB, which, as stated in 6.1, is predetermined ahead of time by the Telcos. 

Once the Block category is extracted, it is then hashed using their agreed-upon hash algorithm. 

This is then encoded using the EdDSA algorithm described in Chapter 4. The digital signature 

KEiB and the Key KAB are then transmitted to Telco A for block identification. 
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TA then compares the encoded Block category using Algorithm 6.2, to identify the block 

to be transmitted. Unlike a fraud matching protocol where we have a Fraud Threshold to determine 

the likelihood of a match, since the categories are predetermined, we suggest that the Jaccard index 

match is one. Once the Block is identified, it is sent to TB for Fraud identification. The remaining 

steps for Fraud identification are described in Chapter 4 or Algorithm 6.2. 

The accuracy of the implementation of this blocking technique used for fraud detection using the 

SuperMinHash technique will be based on of course the accuracy of the EdDSA implementation 

AE which we will approximate to 1. Variance factor 𝛾	  [26] is given based on the equation below. 

 

𝛾 = 1 − ∑ O%%
'(! ×H(O,7)% , (O87)% 8"O%I

(.87)%×.%
                                                           6.1 

 

The accuracy of the overall protocol can then be defined as  

 

𝐴D   = 𝐴E   × B1 −  
F) (78F))

.
× 𝛾C × B1 − F (78F)

.
× 𝛾C                                   6.11 

 

Where JB is the jacquard similarity of block parameter that TB sent to TA for matching and J is the 

Jacquard similarity of Fraud Indicator FiB matching against the transmitted block by B. 

The performance of Bidirectional block protocol is based on the Transmission Size T. Let bk be 

the speed given by Mega Bytes/sec where N=1. Let S be the speed of the FD-PPRL match protocol 

The performance of time measure (Tp) of the protocol would be 

𝑇P  =  𝑁 × 𝑏Q × (𝑇 + 𝑁>) +  2𝑆                                                                     6.12 

where (T+NS) is the block size plus shared parameter size. 
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6.3 Dynamic Parameter blocking 
 
In this section we describe the protocol in detail 

6.3.1 Parameter determination 
 

Unlike the above method where Telcos work in unison, in this method, Telcos do not have 

an agreed-upon method to block. In fact, in cases of initial setup where the number of Fraud 

Indicators is low, Telcos may not even choose to set up their datasets. Here, Telco A extracts a 

parameter from the Fraud Indicator FiB, which will be a part of the same, such as the first four 

letters of the name, enough to get a hit on the Jaccard Similarity matching and not enough 

information for privacy to be compromised. 

6.3.2 Record encoding 
 

The block parameter from Telco B is encoded, but not with Telco A. This ensures that 

Telco A receives as little information as possible from Telco B’s inquiry. Telco A’s fraud 

indicators are encoded and transmitted using FD-PPRL. 

6.3.3 Block Tree Construction 

As stated above, this method does not involve any block constructions. However, Telcos 

can choose to organize their datasets into blocks. Regardless of how the data is organized, the 

premise of this method is to scan all the elements in the database. 
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Figure 6.2 Dynamic block generation protocol 

 
 

Algorithm 6.3 - Dynamic block generation protocol 

Inputs: 

FiA, FiB – TA, and TB’s fraud indicators respectively  

H - Hash function shared between A and B (SuperMinHash) 

N - Size of the hash signature 

T – Size of the block of signatures transmitted by TB 
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SH – SuperMinHash algorithm 

BKB - Block Parameter of FiB 

JT - Jacquard matching threshold 

M - is the size of all records in the fraud dataset 

C - count of element in the Block being created 

Inc - incremental factor for JT 

Outputs: 

JS - Jacquard indicator 

KAA, KAB - TA’s private and public key 

KBA, KBB - TB’s public and private key 

Match = True if JS > JT (Jacquard threshold); else, False 

Steps: 

1 (a0, a1, a2, ….... aN-1) [0,1] 

2 (a0, a1, a2, ….... aN-1) <- (0, 0….0) 

3 C<-0 

4 PKB <-extract_parameter(FiB) 

5 (H1PKB, H2PKB, H3PKB …. HNPKB) <-SH(PKB) // generate SuperMinHash for TB 
fraud indicator 

6 KBA, KBB <- EdDSA.generateKey() // EdDSA function performed by TB 

7 KEiB <-EdDSA.encode (KBB, HiPKB)  i (0,1...(N-1) 

8 TB transmits KBA and KEiB (0,1...N-1) to TA 

9 TA Performs full database scan 

10 (H1A, H2BA, H3A …. HMA) <-SH(FiA) // generate SuperMinHash for TB of its M fraud 
indicators 

11 TA performs  
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12   C<-0 

13 For j <- 0,1, 2…...M-1 do 

14  HiA 

15  For i <- 0,1, 2…...N-1 do 

16   aj <- EdDSA.verify (KEiB, HiA) 

17  End For. 

18  𝐽> =
1
𝑁X 𝑎?

.87

?@A

 

19  If JS   >=JT 

20   BKA, JS<- HiA 

21   C=C+1 

22  END IF 

23 End For 

24 If count(BKA) > T then 

25  JT=JT + in 

26  C<-0 

27  For i<- 1….C-1 do 

28   If JS   >=JT 

29    Then BKA, JS<- BKA 

30   END IF 

31  End For 

32 End If 

33 EiA <-EdDSA.encode (KAA, BKA)  i (0,1...(N-1) 
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34 TA transmits KB and EiA to TB 

35 TB performs 

36 For j <- 0,1, 2…...M-1 do 

37  EjA 

38  For i <- 0,1, 2…...N-1 do 

39   aj <- EdDSA.verify (EiA, HiB) 

40  End For 

41  𝐽> =
1
𝑁X 𝑎?

.87

?@A

 

42  If JS  ≥ JT  then  

43   Then break 

44  End If 

45 End For 

46 JS ≥  JT then Match=True; else, False. 

 

As described in Algorithm 6.3, the parameter is extracted from the Fraud Indicator and 

typically represents a small portion of it, which is enough to trigger a response from the Jacquard 

similarity check without revealing the identity of the Fraud Indicator. FiB is min-hashed and 

encrypted using the EdDSA algorithm, and the key and digital signature are sent over to TA for 

block request. 

TA uses the BK indicator and scans it across all the records in its dataset where the Jaccard 

index is greater than or equal to the threshold. Here, the comparison of the block parameter is made 

directly on the fraud indicator to determine if there is a hit on Jaccard similarity greater than or 
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equal to the Jaccard Threshold. Once the condition is met, the Fraud Indicator along with its 

Jaccard indicator is assigned to a block that is dynamically created. 

Algorithm 6.3 shows how the blocks are generated dynamically in real-time. As the 

comparison is being made for fraud indicators, the transmission size T is used to determine the 

block size. If the block size is greater than the transmission size, the Jaccard Threshold is 

incremented by a fixed quantity, and the data is reevaluated to reassign the fraud indicators to the 

block. This process is repeated until the block size is the same as or less than the transmission size. 

Once the block is dynamically created, it is then transmitted to TB. TB uses this block to 

determine the presence of the fraud indicator using the algorithm or process described in Chapter 

4, which is also shown in Algorithm 6.3. 

The accuracy of the implementation of this blocking technique used for fraud detection 

using the SuperMinHash technique will be based on the probability of finding the match on the 

parameters over a Jaccard threshold, which can range from 0 to 1. Once the match is found, the 

probability will be the same as the SuperMinHash implementation discussed in the previous 

section. 

𝐴2   =  1  −   ∫ (1 −  𝐽3)𝑑𝐽3 <𝐽 ×
(456)
7
>4

8                                              6.13 

 

𝐴2   =
4
9
× <1 −   6(456)

7
>                                                                        6.14 

 

The performance of Dynamic block creation protocol is dependent on the Transmission 

Size T. Let bk be the speed given by Mega Bytes/sec where N=1. Let S, be the speed of the FD-

PPRL match protocol The performance of time measure of the protocol would be 

𝑇+ =  𝑏Q × 𝑇 ×𝑁  +  𝑆 ×  (𝑀 + 2𝑁)                                                          6.15 
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Where M is the total number of database records of Fraud Indicators for A and N is the signature 

size. 

 
6.4 Tuple based Parameter blocking 
 
6.4.1 Parameter determination  
 

In this method, the telcos generally agree on a framework of parameters. They do not 

necessarily need to agree on organizing the block in any method, nor do they need to agree on 

using all the block parameters, except for a few. 

 
6.4.2 Record encoding 
 

The block parameter from Telco B is encoded, but not with Telco A. This ensures that 

Telco A receives as little information as possible from Telco B’s inquiry. Telco A’s fraud 

indicators are encoded and transmitted using FD-PPRL. 

 
6.4.3 Block Tree Construction 
 

Just like the Shared Parameter Block Method, the primary factor that determines the 

maximum size of the blocks for storage is the transmission size T. Telcos can choose the block 

parameter that best suits their dataset and organize them in a set hierarchy that enables quick 

navigation to a block. 
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Figure 6.3 Tuple Block Parameter generation 

 

Algorithm 6.4: Tuple Block Parameter generation and setting 

Input:  

DA - Database belonging to A 

T - Transmission size/maximum block size 

PKA- Parameter for Fraud Indicator of A 

BHi(J level Block hierarchy BH1->BH2->BH3->…., BHJ 

 
Output: 

{BK∣K∈ [0...J]} 

KAA, KAB - TA’s private and public key 

Steps: 

1 BK<- {} 
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2 For each FAi, i ∈ 	[1….M] where M is the total number of records 

3  PKA <-extract_parameter(FiA) 

4  
(H1A, H2A, H3A....HNA) <- SH(FiA) generate SuperMinHash for TA’s fraud 
indicator. 

5  
(H1PKA, H2PKA, H3PKA....HNPKA) <- SH(PKA) generate SuperMinHash for 

TA’s fraud indicator. 

6  i<-0 

7  While FiA is not null 

8   While m<=T 

9    EiA <-EdDSA.encode (KAA, HiA)∀	 i∈ 	(0,1...(N-1) 

10    
BKA <- EiA ,HiPKA, // assign the Fraud Indicator and parameter to 

the block 

11    m=m+1 

12    i+1 

13   End 

14  End 

15 End For 

16 Return BKA 

 
 
 
 

Algorithm 6.5 - Tuple Block Parameter Protocol 

Inputs: 

FiA, FiB – TA, and TB’s fraud indicators respectively  

H - Hash function shared between A and B (SuperMinHash) 
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N - Size of the hash signature 

T – Size of the block of signatures transmitted by TB 

SH – SuperMinHash algorithm 

PKB - Block Parameter of FiB 

JT - Jacquard matching threshold 

Outputs: 

JS - Jacquard indicator 

KAA, KAB - TA’s private and public key 

KBA, KBB - TB’s public and private key 

Match = True if JS > JT (Jacquard threshold); else, False 

Steps: 

1 PKB<-extract_parameter(FiB) 

2 (H1PKB, H2PKB, H3PKB …. HNPKB) <-SH(PKB) //generate SuperMinHash for TB’s 
fraud parameter 

3 KBA, KBB <- EdDSA.generateKey()  Performed by TB 

4 KEiB <-EdDSA.encode (KBB, HiB),i(0,1...(N-1) 

5 TB transmits KBA and KEiB (0,1...M-1) to TA 

6 TA Performs tuple-based hierarchy scan 

7 For j <- 0,1, 2…...N-1 do 

8  KEiB 

9  For i <- 0,1, 2…...N-1 do 

10   aj <- EdDSA.verify (KEiB, HiBHKA) 

11  End For 

12  𝐽> =
1
𝑁X 𝑎?

.87

?@A
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13  If JS≠ 1 

14   Then break 

15  Else 

16  If i=N 

17      BK // Block BK is selected under the hierarchy tree for transmission 

18  End If 

19 End For 

20 TA transmits KAB and BK(0,1... T-1) to TB 

21 TB performs 

22 For j <- 0,1, 2…...T-1 do 

23  BK 

24  For i <- 0,1, 2…...N-1 do 

25     aj <- EdDSA.verify (BK, HiB) 

26  End For 

27  𝐽> =
1
𝑁X 𝑎?

.87

?@A

 

28  If JS  ≥ JT 

29   Then break 

30  End If 

31 End For 

32 JS ≥  JT then Match=True; else, False 
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Algorithm 6.4 describes the process for organizing the Fraud dataset. The Telcos extract 

the Block Features from Fraud Indicators based on the agreed-upon parameters. They also choose 

the hierarchy, as shown in Figure 6.3, to organize the dataset. It is important to note that the Telcos 

do not need to agree on how to organize their data. The dataset is processed, and the Fraud 

Indicators are assigned to the block as they step through the hierarchy until the lowest level is 

reached. If the Fraud Indicators do not have additional features, it is possible to create the block at 

higher levels of the hierarchy. 

Algorithm 6.5 describes the process of requesting the block for fraud identification by TB. 

For the fraud indicator FiB, TB generates a tuple of block features (BHB1, BHB2…BHBN) to be 

sent to Telco A. Once Telco A receives the tuple of block features, it will take each tuple through 

an interactive process through its hierarchy as it navigates through the branches of the hierarchy 

checking to see which block feature gets a Jaccard similarity hit of 1 or less than 1. This process 

continues until there are no more branches to navigate. Once the last branch is reached and the 

block feature of TA of the Jaccard similarity is still <1, then there will be no fraud indicator block 

to be sent to TB. However, if the Jaccard similarity is 1, then if there is a block in that hierarchy 

branch, that block can be sent over to TB for fraud identification. 

The accuracy of tuple-based search will be the same as that of the shared parameter block 

method since they use the base SuperMinHash protocols. The same applies to their performance. 

Thus, their performance and accuracy equations will be the same as those in 6.11 and 6.12.  
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6.5 Conceptual Analysis the blocking methods 
 

In this section, we conduct a conceptual analysis of the three methods for creating data 

blocks for sharing. We evaluate these methods in terms of their complexity and the level of privacy 

they maintain for the data being shared with each telecommunications company (Telco). 

6.5.1 Complexity 
 

We analyze the computational and communication complexity of the three methods 

described above, focusing on two main aspects: Block creation and Block request. Let’s denote 

nd as the total number of records in the database for the Dynamic Block creation method, and nh 

as the size of the MinHashed block parameter sent by TA. O(nh) will represent the 

computational complexity of calculating the Jaccard similarity on one Fraud record of TB. 

Therefore, O(nh * nb) will be the computational complexity of generating the entire block to be 

transmitted to TB, provided the block size is less than or equal to T. However, if the block size is 

greater than T, another iteration occurs on the block to choose records with the Jaccard 

Threshold being incremented to achieve the correct transmission size. If the block size is bk, then 

the overall runtime complexity will be O((nh*nB)+bk). 

In the case of Bi-directional parameter blocking, since the Block Parameters are 

reorganized and agreed upon ahead of time, the only runtime complexity would be the 

identification of the correct block. If nb represents the number of records in the block, which will 

be less than nd, then the runtime complexity will be O(nb). 

Let nhi be the number of hierarchy levels agreed upon by Telcos based on the blocking 

parameter. The level of complexity to navigate the hierarchy in the tuple directional method will 

be O(nhi * nt), where nt is the number of elements in the tuple that is sent by Telecom B. 
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6.5.2 Privacy analysis 
 

We will assume that all the Telcos follow an ‘honest but curious’ policy. When a request 

for information is made through the process of block identification and extraction, we need to 

analyze whether there will be a loss of privacy. Each of the three methods sends different pieces 

of information to Telcos to fetch information. The Dynamic Block creation method sends a small 

part of the fraud indicator, which seems most likely to be the candidate for a privacy attack. We 

will conduct experiments to determine if that is the case. The other two methods only send block 

parameter information, with the two-way method sending the exact block parameter info and the 

tuple-based method sending a list of parameters. 

6.6 Experimental Evaluation and Discussion 
 

We used the same experimental setup as in Chapters 4 and 5. We developed a Python 

package for each of the blocking techniques with our FD-PPRL protocol using the algorithms 

mentioned in Algorithms 6.1, 6.2, 6.3, 6.4, and 6.5. We used the North Carolina voter database as 

a substitute for the Fraud database, where the block-based techniques were applied to that dataset. 

For our analysis, we established the length of the database, which represents the block of 

information sent by TA, to be 1000, except in the case of the dynamic block method where we 

used a Jaccard threshold of JT>=0.3. The Fraud Indicator FA that is being searched for was set to 

be ‘ALICE TEST BOB’. 

 
6.6.1 Experiment 1 
 

We conducted experiments to measure the accuracy of our three block-based protocols 

based on the equations mentioned in the previous section. As described, the accuracy of the Tuple-

based protocol and the Shared Parameter Block protocol simply follow the accuracy of the 
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SuperMinHash protocol, which we analyzed in Chapter 5. We focused our experiments on the 

Dynamic Tuple-based protocol, which could be easily implemented without prior setup or 

collaboration. The threshold or filter cutoff was set at JT>=0.3. We conducted accuracy 

measurements on signature sizes ranging from N=5 to 50, with increments of 5. The graph in Fig 

6.4 shows the accuracy across various signature lengths. 

 

 
Figure 6.4 Accuracy of Dynamic Blocking over multiple signature lengths 

As shown in the graph, the accuracy measure remains under 50%, indicating that while this 

could be a great option for limiting data transfers without prior setup or agreements, accuracy is 

greatly reduced. This protocol could work where there is a much lower threshold for fraud 

detection accuracy, or put another way, the telco chooses to be aggressive in pursuing fraud 

identification. 
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6.6.2 Experiment 2 
 

The experiment is focused on analyzing the potential loss for the dynamic block generation 

protocol since a portion of the fraud indicator is sent for inquiry. While this protocol offers 

flexibility benefits, especially without prior setup, an analysis is being conducted to determine if 

the risks of privacy loss outweigh the benefits. We conduct this experiment by sending 10%, 20%, 

30%, 40%, and 50% of the fraud indicator and then analyze if privacy is compromised by 

determining the probability of privacy loss, which can be defined in terms of the Jaccard similarity 

of the partial fraud indicator that is sent. 

% of Char Sent 5 10 15 20 25 

10% 0 0 0 0 0 

20% 0.2 0.1 0.06 0.05 0.04 

30% 0.2 0.2 0.2 0.2 0.16 

40% 0.4 0.3 0.27 0.3 0.28 

50% 0.4 0.4 0.33 0.35 0.28 
Table 6.2 Privacy lose based on the % of Character sent 

 
Figure 6.5 Probability of Privacy loss vs.% of Fraud Indicator transmitted 
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As shown in the experiment results, the danger of privacy loss or potential discovery of 

the fraud indicator is less when the percentage of the fraud indicator is within the range of 10% - 

30%. The results do demonstrate that sending a higher percentage of the fraud indicator for block 

creation could pose a potential loss of privacy and hence is not recommended. 

6.6.3 Experiment 3  

We measure the performance of the three block-based approaches over a Transmission 

dataset of 1000 records. Even though the dynamic block-based approach could have vastly 

different block sizes, 1000 was chosen to establish a good baseline for comparing the different 

approaches. 

N SB DB TB  

5 0.052 0.0464 0.0478 

10 0.107 0.1233 0.1239 

15 0.1617 0.1626 0.1629 

20 0.2165 0.2182 0.2179 

25 0.2692 0.3118 0.3108 

 

Table 6.3 Performance measured in seconds for the three methods across various signature sizes 
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Figure 6.6 Performance of the three methods across various signature sizes 

As seen in the results and the graph above, all the three approaches are similar in 

performance, with the Shared parameter-based approach shown a slightly better performance 

over larger signature sizes. This is obvious as the search for a block would be the most 

straightforward of the other two approaches. This approach, however, requires a lot of 

collaboration and coordination between Telcos.  

6.7 Chapter Summary 
 

In this chapter, we reviewed three methods where Telcos can organize their fraud 

information into blocks with a set transmission size of T. We reviewed the reasons to do so to 

achieve a faster response time and to attain a higher probability of Fraud information matching. 

We conceptually reviewed the performance and privacy of the blocks. Given the fact that the 

Shared Parameter Blocking method and the Tuple-based Blocking Method have the same privacy 
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factor as the framework described in Chapter 5, we focused on the Dynamic blocking creation 

method and reviewed it in terms of privacy loss and accuracy. We also reviewed the performance 

of all three protocols. In the next chapter, we will discuss methods where Telcos can communicate 

with multiple Telcos at the same time for a faster response in Fraud identification. 
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Chapter 7: Fraud Detection using FD-PPRL over Publish-
Subscribe protocol for Multiple Telco Communication 
 

 
 
 

In this chapter, we introduce a protocol designed for use by multiple telcos wishing to 

establish a private fraud detection network for information sharing. The protocol aims to be easy 

to implement, stable, and secure. In Section 7.1, we discuss the necessity for multiple telecoms to 

communicate. Section 7.2 outlines various potential methods for these telecoms to establish a 

private, secure network. In Section 7.3, we detail a Publish-Subscribe (pub-sub) method using our 

PPRL method, which was described in Chapter 4. Section 7.4 is dedicated to a conceptual analysis 

of our approach. We review the experimental evaluation in Section 7.5. Finally, in Section 7.6, we 

conclude with a discussion on the pub-sub methods. 

 
Introduction 
 

In Chapter 4, we described a secure way for two Telcos to communicate fraud information 

using our privacy-preserving record linkage (PPRL) method. In Chapter 5, we described the use 

of block methods to transact substantial amounts of data between Telcos. As demonstrated in these 

chapters, communication between the two Telcos is quite successful. However, there are over a 

hundred telecom companies in the US and worldwide. Therefore, we need to create a protocol for 

these companies to communicate fraud parameters in an efficient, safe, and secure manner without 

having to communicate with each other where the time of discovery rises exponentially. 
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Table 7.1 Notation and Terminology used in this Chapter 

FiA, FiB, FiN TA, TB’s and TN’s fraud indicators respectively 

H Hash function shared between the N Telcos (SuperMinHash) 

T Size of the block of signatures transmitted by TB 

N Size of the hash signature 

SH SuperMinHash algorithm 

JT Jacquard matching threshold 

M Size of all records in the fraud dataset 

C Count of elements in the Block being created 

Inc Incremental factor for JT 

JS Jacquard indicator 

KA TA’s private key 

KB TB’s public key 

H(S) Entropy of the protocol 

p Probability of the bit being identified 

g Portion of the Fraud Indictor that is transmitted 

K is the bit length if the EdDSA protocol 

Table 7.1  Notation and Terminology Chapter 7 

Many telcos today form part of a consortium or group based on their size, product offerings, 

and geographic location. Some such groups that exist today are the ‘Telecommunications Industry 

Association,’ US Telecom, and the Wireless Communication Alliance, among others. It would only 

be natural for such companies to come together, provided they have the right technology and means 
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to share fraud information. This could be mutually beneficial to each other and, in turn, protect the 

industry in general. 

 
In this chapter, we will first describe a potential network solution for telecommunications 

companies to share fraud data that is secure, efficient, and fast. Over this network, we will propose 

our solution for telecommunications companies to communicate with each other. 

7.1 Telcos Communication network 
 

The Telcos can choose several types of network technologies to communicate with each 

other with either a ring or mesh topology. 

 

 

Figure 7.1 Mesh network of Telecom companies 
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1.) NaaS network -  

The Network-as-a-Service model [35] for telecom can bring network subscription-based 

hardware, software tools, and services that help telecom companies communicate with each other 

to share fraud parameters. It is a tightly integrated model that combines software and hardware 

solutions for communications. 

2.) SDWAN - 

A Software-Defined Wide Area Network [36] is a beneficial technology that can be used 

by a group of telecom companies wishing to collaborate on sharing their fraud information. It can 

be utilized for cloud-based services and processing. This technology has the potential to reduce 

costs and improve performance. 

3.) SASE network - 

 The Secure Access Service Edge (SASE) is a framework [37] that combines SD-WAN 

and security solutions in a cloud-based platform to offer safe, fast, and secure network connections 

for telecom companies. 

4.) Virtual Private Network -  

Telecom companies can opt to use a low-cost VPN where transmissions are secure and 

private. 

 

7.2 Pub-Sub Method  
 

Although Telcos have the flexibility to select from a broad range of communication 

topologies and network configurations, some of which have been previously outlined, our 

recommendation is to employ a Publish/Subscribe (Pub/Sub) [38] model for Telos communication. 
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 7.2.1 Pub/Sub Model - 

 This is an asynchronous communication model that can facilitate communication between 

different Telco Companies within a network. This system is widely used in distributed locations 

where components need to communicate without being tightly coupled. 

In this model, there are four key components: messages, topics, subscribers, and publishers. 

A message is sent from the sender to the receiver. Each message has an associated topic that acts 

like a channel between the involved parties. The subscribers, in this case Telcos, are recipients 

who must register to the topic of interest, such as Fraud Identifiers. The publisher will create a 

fraud topic and send it to all the Telcos for them to check. The interaction is a one-to-many 

relationship. 

 

 

Figure 7.2 Pub/Sub protocol method 
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In Chapters 4 and 6, we described a protocol that enables two Telcos to safely communicate 

using various methods to detect fraud. When checks are needed from multiple Telcos, the 

complexity of operation is O(n*m), where m is the number of Telcos and n is the number of 

communication steps with each Telco. As can be seen, the scale of complexity increases m-fold as 

the number of Telcos increases. To obtain immediate information on a fraud occurrence, there will 

be a need to communicate with all the Telcos at the same time. To accomplish this, we have 

designed two methods as described below. The Pub/Sub message provides instant notifications for 

Telcos, which will be distributed and is a scalable and reliable communication method. 

1.) Pub/Sub Fraud detection method without blocking-  

Pub/Sub Fraud detection method without blocking is a process where the TB publishes the 

Encoded Fraud Indicator and Telcos respond with a confirmation of the presence of Fraud 

Information. 

2.) Pub/Sub Fraud detection method with blocking -  

Here, a block tuple containing a small portion of the fraud indicator is published to elicit a 

response from Telcos. 

 

7.3 Overview of our approach 
 

Fraudsters can defraud multiple companies by exploiting the lack of cooperation between 

Telcos. Although Telcos compete, they work in cohesion to complete a telecom network request 

for their customer with appropriate compensation. If they are provided with a platform that has 

the right technology to satisfy speed, reliability, and security, they can come together to share 

fraud information even though it is in a distributed manner. 
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The need to obtain fraud information from other Telcos quickly is of extreme importance, 

especially in situations where fraud prevention is critical. There are many Telco organizations that 

come together in an organized manner, either through industry organizations or groups. We 

described various communication network possibilities in section x for Telcos to communicate 

with each other all at once. The same approach can be extended to other industry groups and across 

industries. 

In this protocol, the request is made by Telecom TB for fraud information and in the below 

section we will describe how the Telcos TA, TC….TN respond to request and respond back to TB 

with the appropriate information. 

 
7.3.1 Pub/Sub (FS) Fraud detection method without blocks 
 
In this section we describe the protocol in detail 

a.) Parameter determination - 

When TB has a fraud occurrence and wants to inquire about its Fraud Indicator FiB, only 

the block parameters or a portion of the fraud indicator is sent in Chapter 4, 5, and 6. In this 

protocol, the entire Fraud Indicator is hashed and is encoded with the digital signature and is sent 

for fraud verification. The public key K is also published. 

b.) Record encoding -  

The entire Fraud Indicator is encoded using the EdDSA algorithm described in Chapter 4. 

As with other implementations, there is no need for Telcos to encode their data as it will not be 

transmitted with this protocol implementation. 

c.) Pub/Sub Protocol construction - 
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This protocol has the concepts of a publisher and subscriber. The publisher is where a Telco 

company outputs a piece of information that needs to be broadcast, and the subscriber is one that 

listens or sources that information on a constant basis. Typically, subscribers will not be listening 

to all messages in the message bus. They will have to subscribe to a specific topic. In this case, it 

will be the topic of Fraud Detection. In this Fraud Sharing network, a Telecom company can play 

the role of a publisher and subscriber. The Pub/sub protocol that will be deployed across the 

Telcom companies’ joint infrastructure has two main domains: the data domain and the control 

domain. In the data domain, this is where messages move between the publishers and subscribers, 

and the Control domain is where the servers are assigned to the publisher or subscriber which are 

called routers. The servers in the data plane are called forwarders. Event.publish is the action 

protocol for Telecom B to publish the Fraud event, and event.subscribe is where the N subscribers 

listen to the Fraud topic.  

 

Algorithm 7.1 Pub/Sub Fraud detection method without blocking 

Input: 

FiA, FiB, FiN - TA, TB’s and TN’s fraud indicators respectively  

H - Hash function shared between the N Telcos (SuperMinHash) 

N- Size of the hash signature 

T – Size of the block of signatures transmitted by TB 

SH – SuperMinHash algorithm 

JT - Jacquard matching threshold 

M is the size of all records in the fraud dataset 

C - count of element in the Block being created 
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Inc - incremental factor for JT 

 
Outputs: 

JS - Jacquard indicator 

KA - TA’s private key 

KB -TB’s public key 

Match = True if JS > JT (Jacquard threshold); else, False 

Steps: 

 (a0, a1, a2, ….... aN-1) [0,1] 

 (a0, a1, a2, ….... aN-1) <- (0, 0….0) 

 C<-0 

 Event.topic<- “Fraud Detection” 

 H1B, H2B, H3B …. HNB) <-SH(FiB) generate SuperMinHash for TB fraud 
indicator 

 KBA, KBB <- EdDSA.generateKey() performed by TB 

 event.publishB(event.topic, KBA, KEiB) 

 
event.subscribeA(event.topic,KBA,KEiB),event.subscribeC(event.topic,KBA, 

KEiB)….event.subscribeN(event.topic, KBA, KEiB) 

 For all TA…. TN performs 

  For j <- 0,1, 2…...M-1 do 

  HjFA……HjFN (Hash data of the N telecom fraud dataset) 

   For i <- 0,1, 2…...N-1 do 

    aj <- EdDSA.verify (HjFA, KEiB) 

   End For 

   𝐽>  =  
1
𝑁X 𝑎?

.87

?@A
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   If JS  ≥ JT 

    Then break 

   End If 

  End For 

 End For 

 JS ≥  JT then Match=True; else, False 

 

 

 
Figure 7.3 Pub/Sub protocol without Block (FS) 

       

As described in Algorithm 7.1, Telcom B wants to make an enquiry with N telcos at once 

on the network to determine whether its indicator has committed fraud in the past, so that it can 

take the next steps towards fraud prevention. Unlike in Chapters 4, 5, and 6, where the full fraud 
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indicator is not sent out, here the MinHashed encrypted fraud indicator is published with the 

public key with a Fraud Enquiry topic into the Pub/Sub network. 

The N Telcos listening/receiving this published message then takes this encrypted fraud 

indicator KEiB for processing. The Telcos take this fraud indicator through their entire fraud 

database to determine if there is a match if it meets its Jacquard Threshold. The comparison is 

done against the unencrypted fraud indicator database of the Telco, still fulfilling the condition of 

comparing on a non-homologous dataset. Once a specific or multiple Telcos get a confirmation 

from Step 7 whether the Fraud Indicator is present, they send a success message; otherwise, they 

send a failure message. The main advantage of this message is that the request for information is 

sent to multiple Telcos at once, and a fraud presence response is received quickly. We will delve 

into the advantages, disadvantages, and potential privacy loss in Section 7.4. 

Since the entire encrypted fraud indicator is published for identification, we would like to determine 

the likelihood of privacy being compromised. As discussed in Chapter 4, privacy is indirectly correlated to 

the amount of entropy in the protocol. We will start by determining the entropy assuming there are many 

Telcos participating in the protocol. While the typical probability of a bit being compromised is 1/2, we 

will assume that the probability can range from 0 to 1 to determine the full entropy of the protocol with all 

the participating Telcos. Hence the entropy of the digital signature S is  

 

𝐻(𝑆) = ∑ ∫ −𝑝4
8

7
:.4   log(𝑝)𝑑𝑝  =   ∑ 4

;
7
:.4                                                (7.1) 

 

For a signature size N=1, the Entropy is ¼  

The performance of the protocol will be dependent on the network, the pub/sub response 

rates, and the performance of the FD-PPRL framework, which we have reviewed in Chapters 4, 5, 

and 6. As given in the above equation, the entropy is lower than a two-way Telco implementation, 
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and in order to preserve privacy, it would be advisable to largely increase the signature sizes. We 

will be evaluating the performance of this protocol over large signature sizes to determine the 

feasibility of adoption. 

        

7.3.2 Pub/Sub Fraud detection method with dynamic block creation (PSB) 
 
In this section we describe the protocol in detail: 

a.) Parameter determination 

Like Section 7.31, when Telecom B has a fraud occurrence and wants to inquire about its 

Fraud Indicator (FiB), where the actual fraud indicator is sent, here Telecom B chooses to publish 

only a part of the Fraud indicator. This could be the first few characters of the indicator or a random 

sampling of the same. The public Key (KB) is also published. 

b.) Record encoding 

The partial Fraud Indicator that is to be published is encoded using the Edwards-curve 

Digital Signature Algorithm (EdDSA). Once the dynamic block is created, the Telcos’ Fraud 

indicators are encoded and then transmitted as described in Chapter 4. 

c.) Pub/Sub Protocol construction 

Using the concepts described in Section 7.2, Telecom B publishes the sample Fraud Indicator to 

see a response from Telcos. Once a Telco or Telcos with the most promising prospect is selected, 

individual connections are established with Telcos to transact the requested Fraud Information one 

way for Fraud identification as described in Algorithm 7.2. 
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Algorithm 7.2 Pub/Sub Fraud detection method without blocking 

Inputs: 

FiA, FiB, FiN - TA, TB’s and TN’s fraud indicators respectively  

H - Hash function shared between the N Telcos (SuperMinHash) 

N - Size of the hash signature 

T – Size of the block of signatures transmitted by TB 

SH – SuperMinHash algorithm 

JT - Jacquard matching threshold 

M - is the size of all records in the fraud dataset 

C- count of element in the Block being created 

Inc - incremental factor for JT 

Outputs: 

Jmax - Jacquard indicator 

KA - TA’s private key 

KB -TB’s public key 

Match = True if JS > JT (Jacquard threshold); else, False 

Step: 

1 (a0, a1, a2, ….... aN-1) [0,1] 

2 (a0, a1, a2, ….... aN-1) <- (0, 0….0) 

3 C<-0 

4 Event.topic<- “Fraud Detection” 

5 BKB<-extract_parameter(FiB) 

6 Jmax <- 0 
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7 
(H1BKB, H2BKB, H3BKB, …., HNBKB) <-SH(BKB) genetrate SuperMinHash for TB’s 

fraud indicator 

8 KBA, KBB <- EdDSA.generateKey() 

9 KEiB <-EdDSA.encode (KBB, HiBKB) ∀	i∈ 	(0,1...(N-1) 

10 event.publishB(event.topic, KBA, KEiB) 

11 
event.subscribeA(event.topic,KBA,KEiB),event.subscribeC(event.topic,KBA,KEiB)….e

vent.subscribeN(event.topic, KBA, KEiB) 

 
12 For all Telco TA…TN performs database scan 

13  For j <- 0,1, 2…...M-1 do 

14  KEiB 

15   For i <- 0,1, 2…...N-1 do 

16    aj <- EdDSA.verify (KEIB, HiA) 

17   End For 

18   𝐽>  =  
1
𝑁X 𝑎?

.87

?@A

 

19   If JS   >=JT 

20    Then BKA, JS<- BKA 

21    C=C+1 

22   End If 

23  End For 

24  If count (BKA) > T then 

25   JT=JT + inc 

26   C<-0 
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27   For i<- 1….C-1 do 

28    BKA 

29    If JS   >=JT 

30     Then BKA, JS<- BKA 

31    End If 

32   End For 

33  End If 

34 End For 

35 For All N telcos publish Jmax in success message 

36 Telcom B choose the Telco or Telcos with the highest Jmax 

37 The dynamically created block information is sent TB 

38 TB performs 

39 For j <- 0,1, 2…...M-1 do 

40    EjA 

41  For i <- 0,1, 2…...N-1 do 

42   aj <- EdDSA.verify (EiA, HiB) 

43  End For 

44  𝐽>   =  
1
𝑁X 𝑎?

.87

?@A

 

45  If JS  ≥ JT 

46   Then break 

47  End If 
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48 End For 

49 JS ≥  JT then Match=True; else, False. To indicate the presence of Fraud 

 

Algorithm 7.2 provides more detail on how Telco B solicits dynamic block information 

from multiple Telcos at once using the Pub/Sub method. Unlike in 7.1, Telco B does not publish 

the entire Fraud Indicator. Instead, it takes a small part of the Fraud Indicator as described in 

Chapter 6 and uses the dynamic blocking method to ensure privacy is not compromised. The Block 

parameter is MinHash and encoded using the framework mentioned in Chapter 4. 

The encoded digital signature along with the public key is published into the message bus 

with the topic of “fraud detection.” The N Telcos listening take the message for further 

processing. Each of the Telcos then takes a partially encrypted fraud indicator and compares it 

against the unencoded fraud indicators in their database. During the comparison process, Telcos 

determine the Jaccard similarity coefficient for each fraud indicator while simultaneously 

tracking the maximum Jaccard value in their dataset against the TB’s partial fraud indicator. The 

block to be shared is also dynamically created and ready for transmission. 

After the processing is complete, the Telcos publish their maximum Jaccard value when it 

is greater than zero. A Telco for which the Jaccard value is zero, simply responds with a failure. 

With this information, Telco B can choose to communicate with the Telco of their choice, which 

will be a much smaller set. Typically, the most logical choice will be to request the block 

information from the Telco with the maximum Jaccard value from the comparison. Once the 

request is made to the Telco of choice, Telco B sends its dynamically created block for fraud 

identification. Telco B then processes the block to identify the presence of fraud indicators as per 

the framework described in Chapter 4. 
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Since only a portion of the fraud indicator is published for action in this version of 

implementation, namely the entropy will be quite high, and the potential loss of privacy is much 

lower. 

Let G be the total size of the Fraud Indicator where g is the transmitted portion. Just as in 

the above method the Entropy can be given by, 

 

𝐻(𝑆) =   ∑ R
S

T
?@7 × ∫ 𝑝7A   log(𝑝) 𝑑𝑝 = ∑ R

US
T
?@7                                                                           (7.2) 

Where for a signature size N=1 

𝐻(𝑆) =   R
US

                                                                                                                                (7.3) 

7.4 Conceptual Analysis of the Pub/Sub methods 
 

In this section, we analyze the two pub/sub fraud detection methods for data sharing in 

terms of complexity, quality of blocking and privacy on the data shared with each Telco. 

7.4.1 Complexity 
 
We analyze the computational and communication complexity of the two methods described 

above, focusing on two main aspects: record request and response. Let nf represent the size of the 

block indicator for which information is requested. The record complexity of the input being 

MinHashed and encrypted using the Chapter 4 framework is denoted as O(nf). Now, let M be the 

maximum number of database records across N telecommunication companies. Since the search 

is conducted in parallel, the runtime complexity of the search is O(M). Therefore, the total 

complexity for the pub-sub method without blocking becomes O (M + nf). 
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In the case of the pub-sub method with blocking, the creation of the blocking parameter to 

be published incurs a complexity of O(nf). Like the previous scenario, with M representing the 

maximum database size and the block being dynamically created in parallel, the runtime 

complexity remains O(M). Once processed and chosen, let nbk denote the block size of the 

returned block, where k represents the number of telecommunication companies returning 

information. The fraud detection step adds a runtime complexity of O(nbk). Therefore, the total 

runtime complexity for the overall process becomes O (M +nf + nbk). In the experiment section, 

we will conduct an analysis and measure the time performance of these two methods. 

7.4.2 Publish-response quality 
 

We analyze the quality of the published record and its corresponding response in two 

methods to determine which method provides the highest quality of information for the Telco to 

obtain the right amount of information to detect Fraud. In the case of the pub-sub method, without 

blocking the entire fraud, an encrypted fraud indicator is published. The quality of the response 

and the presence of a confirmed Fraud indicator will be high since it is either a True or False 

response. On the other hand, the second method’s selection is based on the selection of the Telco 

with the highest JS, which will be used to request the Block of Fraud Indicators for matching 

purposes. 

7.4.3 Privacy analysis 
 

Just as in Chapter 6, we will assume that all the Telcos follow an honest but curious policy. 

When a request for information is made through the process of pub-sub, we will analyze if there 

will be a loss of privacy. Each of the two methods sends different pieces of information to Telcos 

to fetch information. In the pub-sub method without blocking, which naturally has the least 
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complexity and highest response quality, the risk of privacy leaks could be high as the Fraud 

Indicators themselves are published. 

In the pub-sub method without blocking, only the partial fraud indicator is published, so 

the risk to privacy is small. The only risk to privacy will be with the block information sent, and 

TB could try to extract information from other blocks. 

 

7.5 Experimental Evaluation and Discussion 
 
7.5.1 Experiment I (With matches) 
 

We conducted experiments to measure the accuracy of our two pub-sub methods with FD-

PPRL based on the equations mentioned in the previous chapter. We determined that the 

performance of the protocols with signature sizes N <20 is comparable to what is described in 

Chapters 4, 5, and 6. As demonstrated by the entropy equations and the number of Telcos who 

could potentially subscribe to this solution, we decided to focus our experiments on larger 

signature sizes and measure the performance with that in scope. This was done because the entropy 

was low at lower signature sizes, and to increase it, we had to increase the signature sizes. We 

measured the performance of the pub-sub protocol without blocking (PS), and the pub-sub protocol 

with blocking (PSB) to determine at large signature sizes which implementation would be feasible 

for an industry application. 
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With Matches 

N PS PSB 

10 0.2169 0.107 

20 0.4453 0.2169 

30 0.6857 0.3222 

40 0.9187 0.4392 

50 1.1583 0.5417 

60 1.400 0.6527 

70 1.6565 0.7868 

80 1.8966 0.8893 

90 2.1413 0.9839 

100 2.3819 1.103 

Table 7.1 Performance of PS and PSB protocol with matches 

 

We used ‘ALICE TEST BOB’ as the Fraud Indicator that needs to be verified in FS. 

‘ALICE’ was used as the partial Fraud Indicator for FSB. Even though it would seem most intuitive 

that publishing the entire fraud indicator would solicit a faster response, the PSB method is 

remarkably faster in performance. This is mainly because only a partial fraud indicator is sent and 

at larger signature sizes performs well when the block is dynamically created and sent for 

verification. Also, since the entropy of PS is lower per Equation 7.1 and the entropy of PSB is 
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much larger per Equation 7.3 since the protocol is based on the lower number of characters or 

information that is sent. 

 

 

Figure 7.4 Performance in seconds with matches across various signature Lengths N 

7.5.2 Experiment II (Without Matches) 
 

Just as in the above experiments we measured the performance of PS and PSB where 

Telcos do not find any matches at all. This is where a full data scan is conducted of the fraud 

data.  
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Without Matches 

N PS PSB 

10 1.8688 0.107 

20 3.7227 0.2161 

30 5.5873 0.3487 

40 7.5189 0.4408 

50 9.336 0.544 

60 11.2965 0.6572 

70 13.2658 0.7927 

80 15.101 0.8853 

90 17.159 0.9890 

100 19.108 1.1070 

 

Table 7.2 Performance of PS and PSB protocol without matches 
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Figure 7.5 Performance in seconds without Matches across various signature lengths 

As demonstrated in the graph, FSB performed far better than FS, even though a dynamic 

block was sent to check for Fraud Indicator presence. If no response is generated with partial 

fraud indicators in FSB with the Telco, the performance will be even better since no blocks are 

sent for verification. 

 

Chapter Summary 
 

In this chapter, we discussed two main protocols where a Telco can communicate with 

multiple Telcos at the same time to identify Fraud. We reviewed some potential networks like mesh 

that can be employed over some types of networks like VPN or SASE on which the FD-PPRL 

protocol can be deployed to communicate across many Telcos. We introduced the concept of the 

Publish/Subscribe method for Telcos to effectively communicate with each other. We introduced 

two protocols with FD-PPRL built over the Pub/Sub method where one method was without blocks 
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and the other with blocks. A conceptual analysis of the two methods was discussed with 

experiments conducted to determine their effectiveness. In conclusion, both the methods offer 

many advantages where the Telcos can use them effectively to prevent Fraud. In the next chapter, 

we will conclude our dissertation summarizing our contribution and providing future directions. 
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Chapter 8: Conclusion and Future Directions 
 

In this dissertation, the main objective is to present comprehensive research in Fraud 

Detection using Privacy Preserving Record Linkage (FD-PPRL). In the previous chapters, we have 

described the FD-PPRL framework, evaluation, and selection of the correct Hash Technique 

implementation. We also reviewed various blocking techniques for efficient storage and 

transmission of data, and a protocol to communicate with multiple telcos for a faster response. 

These were in response to various challenges faced, and a proposal to help address the same. In 

Section 8.1, we will review the challenges presented in Fraud Detection in the Telco industry. In 

Section 8.2, we will outline our contributions to address the same. In Section 8.3, we will review 

probable future directions, and a conclusion will be presented in Section 8.4. 

 

Outline of the Research Problem 
 

As mentioned in the introduction, telecommunication companies enable global tech 

connections. However, they face numerous fraud attacks daily. They must ensure the security of 

the data they and their customers transmit over their network, as their products increasingly 

virtualize our lives. Fraudsters exploit the fact that telcos’ fraud management systems operate 

independently. When sharing information, telcos need to respect privacy laws and protect their 

business secrets. The main challenges they encounter are: 1) how to share fraud information 

without disclosing sensitive data; 2) how to share information without third-party interference; and 

3) what protocol to use that is safe, secure, fast, and easy to implement. 
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Even when an appropriate FD-PPRL framework has been established, there is a challenge 

of storing and transmitting the data efficiently. Most implementations are primarily between two 

parties. Therefore, to be effective, there is a need for communication or transactions with multiple 

parties simultaneously to ensure a fast identification of fraud attacks. 

 

8.1 Challenges faced to identify and shared Fraud information in 
the Telecom industry 
 
8.1.1 Develop a method that can measure the similarity between two dissimilar data 
sets 
  A common limitation of many PPRL methods is that they require the same encryption 

technique to be used by both parties involved in the data exchange. This results in applying the 

same methods to both data sets. However, this does not guarantee privacy, as some cryptanalysis 

methods can expose the data, rendering the existing protocols useless. The problem is to find a 

way to compare two different databases using a similarity measure, such as Jaccard similarity, that 

can work with diverse data sets and still produce accurate results, while preserving privacy. 

8.1.2 Design a method that can exchange data a simple request reply mechanism 
 

A simple request-reply protocol is desirable for the telecom industry, as it can compare 

data sets in only two steps. Many current PPRL methods are complicated and require more 

transactions when a third party or a linkage unit is involved, which affects the level of privacy 

protection. 

8.1.3 Design a protocol that works without a reliable intermediary 
 

A privacy-preserving match by a third party for two transacting entities is not likely to gain 

traction in the telecom industry. This is because a third party would need some regulation or 
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oversight from an independent body, which would be expensive at best. Moreover, third-party 

solutions assume that they are only partially honest, which makes them unsuitable for the complex 

and evolving privacy laws in many countries. 

8.1.4 Develop a protocol that is secure and fast 
 

Current protocols for fraud detection are complicated and require many transactions, which 

slows them down. To catch a fraudster fast and stop more harm, the protocol must respond very 

quickly. But, making the protocol faster can reduce security, and the other way around. The best 

protocol for the telecom industry would be one that is both fast and secure simultaneously. 

8.2 Summary of our contribution to address these challenges 
 
8.2.1 Developed FD-PPRL Framework for Fraud detection for Telco  

We developed a novel FD-PPRL system (Chapter 4) that overcomes the major drawback 

of existing approaches, where data encoded with the same techniques can be easily breached, as 

well as many PPRL methods that rely on unreliable Bloom filters or third parties for matching. 

Our system is a secure, fast, and accurate solution for fraud detection in the telecom sector, based 

on a SuperMinHash scheme integrated with a DSS, EdDSA. In Chapter 5, we evaluated various 

hash techniques with FD-PPRL and the performance, privacy, ease of implementation to choose 

the best technique for FD-PPRL. 

We demonstrated and verified how our method can utilize the Jaccard index to identify 

matches between two heterogeneous data sets while preserving their privacy. We conducted 

experiments to assess the efficiency of our PPRL system and compared it with existing approaches. 

Our findings indicate that our method provides a significant improvement in performance and a 

superior level of privacy protection. The FD-PPRL framework [39] was published in, The Journal 

of Engineering after going through a rigorous peer review process. 
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8.2.2 Developed Blocking methods with FD-PPRL 
 
 We developed three blocking methods (Chapter 6) with FD-PPRL to efficiently store and 

transmit data. The first method is a Shared Parameter Blocking method designed to be simple and 

straightforward, but requires prior coordination, agreement and setup-with the Telcos for the 

protocol to be effective. 

We developed three blocking methods (Chapter 6) with FD-PPRL to efficiently store and 

transmit data. The first method is the Shared Parameter Blocking method. It is designed to be 

simple and straightforward, but it requires prior coordination, agreement, and setup with Telcos 

for the protocol to be effective. 

The second method is a dynamic block creating method which requires no coordination or 

prior setup. The blocks to be transmitted can be created on the fly for identification. 

 The third method is tuple-based, which offers Telco the flexibility to organize the data 

however they see fit. It still allows for efficient block identification and response when a fraud 

information request is made. 

8.2.3 Developed FD-PPRL Pub-Sub Method for multi telco communication 
 

We developed two protocols with FD-PPRL built over the Pub/Sub method, one method 

was without blocks and the other with blocks, as discussed in Chapter 7. These methods can be 

used effectively by a Telco to communicate with multiple Telcos at the same time to elicit a 

response to identify fraud quickly. One method is where the entire fraud indicator is shared, and 

the other where only a portion of the fraud indicator is sent to get a response for identification. 

Based on the conceptual analysis of the two methods and the experiments conducted to determine 

their effectiveness, Telcos can choose the most appropriate method for implementation. 
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8.3 Future Directions 
 
8.3.1 FD- PPRL in other industry  
 

In this dissertation, we focused our work on fraud detection through sharing in the Telco 

industry. There is a need to share vital information in other industries while preserving privacy. 

One use case is the health care industry where there would be a need to check on patient records 

across multiple hospitals and states that use different EMR systems. Privacy and patient 

information protection laws like HIPAA are strong in this industry which prevents sharing patient 

information. We would like to investigate the use of FD-PPRL in this industry. 

8.3.2 FD-PPRL across industry  

While segments and companies in a particular industry act in silos, which is a major hurdle 

in fraud detection and prevention, each industry segment is further siloed. For example, the 

medical industry does not interact much with the Telco industry, and vice versa. Through this, FD-

PPRL has proved to be highly effective in breaking down silos within industries to share 

information. We would like to investigate the use case where FD-PPRL can be used to share 

information across multiple industries to foster beneficial cooperation on information sharing 

while preserving the privacy of information with fervor. 

8.3.3 FD- PPRL with AI 
 

We would like to investigate the use of AI in cryptanalysis attacks on our frameworks to 

determine if privacy will be compromised. Theoretically, the odds or probabilities are remote; 

however, we would like to conduct experiments to determine if privacy will be compromised 

through any of the available generative AI mechanisms. 

We would also like to incorporate generative AI into the FD-PPRL framework for effective 

and safe fraud detection through sharing or any viral information sharing while preserving privacy. 
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Conclusion 
 

This dissertation was the first to present comprehensive research in Fraud Detection 

through sharing among Telcos using Privacy Preserving Record Linkage (FD-PPRL). First, 

through an extensive review, we identified several research questions and gaps for Fraud Detection 

in the Telco Industry. We then proposed the FD-PPRL framework [39] to address these gaps which 

was published in the Journal of Engineering after a rigorous peer review process. We proposed 

methods to store and transmit substantial amounts of data and communicate with multiple Telcos 

at the same time. We conducted experiments to demonstrate the speed of PPRL and even compared 

our implementation with current methods, finding that our protocol provides a remarkable 

improvement in performance and a superior ability to maintain privacy. Telcos can use our 

protocol to share fraud data with short response times with high security while complying with 

privacy laws. To conclude, the work presented in this dissertation provides an insight into the 

importance of Fraud detection through sharing and FD-PPRL can be used in many real-world 

industries. 
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Appendix - Published Paper contributing to Dissertation 
 

 

Thomas, Satish & Sluss, James. (2023). Fraud detection through data sharing using privacy‐

preserving record linkage, digital signature (EdDSA), and the MinHash technique: Detect fraud 

using privacy preserving record links. The Journal of Engineering. 2023. 10.1049/tje2.12341. 
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