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Abstract 72 
Riparian buffer zones are specially managed zones that lie between agricultural 73 

fields and rivers, lakes, or wetlands. They are crucial for protecting water quality, human 74 

health, and ecosystem function. Critical ecosystem services of riparian soils include 75 

nitrogen removal via denitrification and phosphorus retention through sorption on 76 

mineral surfaces. Soil moisture influences these processes by controlling the rate of 77 

oxygen diffusion and, therefore, the soil’s redox potential. However, soils are predicted 78 

to be drier as climate change progresses, and these changes in soil moisture conditions 79 

will alter nitrogen cycle dynamics and phosphorus removal in riparian systems. We 80 

conducted a lab experiment to investigate potential changes in riparian ecosystem 81 

services brought on by climate change. We hypothesized that climate-induced shifts in 82 

moisture dynamics would enhance phosphorus removal but hinder denitrification due to 83 

increased oxygen diffusion caused by lower soil moisture conditions. We collected forty-84 

eight soil cores (5 cm diameter, 15 cm height), and we collected additional samples for 85 

particle size, bulk density, and powder X-ray diffraction (XRD) analyses. We applied soil 86 

treatments in a fully factorial design, considering soil texture (sandy loam versus silty 87 

clay loam), antecedent soil moisture (field capacity versus drought), water application 88 

(flooding versus capillary rise), and pollutant quantity (simulated agricultural runoff 89 

versus deionized water). We primarily performed colorimetric assays on soil porewater 90 

and soil samples to determine NO3
- and PO4

3- availability and movement. We also 91 

performed elemental analyses to complement the colorimetric assays. Our porewater 92 

chemistry and mass balance results showed significant changes in nitrogen cycle 93 

dynamics, showing evidence of denitrification, Dissimilatory Nitrate Reduction to 94 

Ammonium (DNRA), nitrogen fixation, and nitrogen mineralization. Statistical analyses 95 
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of the data, primarily through generalized additive mixed-effects models (GAMMs), 96 

indicate significant individual and combined positive and negative effects (p<0.05) of the 97 

simulated treatments on porewater nitrate, ammonium, and phosphate concentrations, 98 

along with porewater pH and ARQ (CO2/O2). Critically, Moisture Regime and Water 99 

Application, our two climate proxies, both individually and collectively, significantly 100 

affected porewater nitrate, ammonium, and phosphate concentrations. Nitrate 101 

porewater concentrations are higher in decreased moisture conditions and changing 102 

precipitation as predicted under future climate scenarios. Phosphate porewater 103 

concentrations were lower in sandier soils, drought conditions, and capillary rise water 104 

application. However, phosphate leached out of the soil during simulated intense 105 

precipitation, highlighting the complexities of how predicted climate scenarios will be 106 

partially beneficial for phosphate sorption. XRD analysis revealed a mixed clay 107 

mineralogy, including a mixed-layer illite-montmorillonite, IS70R1. Additionally, clay 108 

mineralogy in clay-rich soil plays a statistically significant role in moderating the soil 109 

nitrogen cycle. Correlated extractable iron and nitrogen data indicate evidence of the 110 

Ferrous Wheel Hypothesis, especially in temporarily anoxic soils flooded by intense 111 

precipitation. Our research demonstrates that future climate scenarios affect key 112 

riparian biogeochemical processes and should be researched more thoroughly as the 113 

average worldwide temperature climbs above 1.5°C.  114 

Plain Language Summary  115 
This study focuses on the impact of climate change on the health of areas next to 116 

rivers (riparian buffer zones), which are essential for clean water, human health, and the 117 

environment. These zones are particularly good at removing nitrogen and phosphorus 118 
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from the soil - nitrogen through denitrification and phosphorus by sorbing to minerals in 119 

the soil. Soil moisture, which climate change will affect, plays a significant role in these 120 

processes. We did a lab experiment to determine how changes in climate, especially in 121 

moisture, might affect ecosystem functions like denitrification and phosphorus sorption. 122 

We used 48 soil samples with two different soil textures and tested them under different 123 

conditions, such as differing soil moisture conditions, water application method, and 124 

pollutant level. After creating statistical models, we found that changes in moisture due 125 

to climate change can significantly alter how nitrogen and phosphorus are processed in 126 

the soil. For instance, in sandy soils or during droughts, phosphorus sorbs to soil better, 127 

but intense precipitation causes the phosphorus to leach out of the soil. Nitrogen 128 

removal was less efficient in drought and heavy rain conditions. Our study shows that 129 

climate change will affect how riparian zones handle nitrogen and phosphorus, which 130 

affect water quality and soil health.  131 

Keywords: climate change, riparian buffer zone, denitrification, phosphate sorption, iron redox cycling 132 

  133 
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1. Background 134 

1.01 Statement of Issue 135 
Riparian buffer zones (RBZs) are strips of land bordering streams, lakes, or 136 

wetlands that are managed differently than the surrounding landscape. They protect 137 

ecosystems from pollutants derived from land management practices, such as 138 

overfertilization. These buffers act as filters, removing agricultural pollutants, trace 139 

metals, and other harmful materials from runoff. Riparian buffer zones have been 140 

thoroughly researched because they effectively preserve surface water quality. 141 

However, this filtration process is rarely straightforward. Factors affecting a riparian 142 

buffer's performance include soil properties and site hydrology.  143 

Climate change further complicates our understanding of riparian buffer function 144 

as weather patterns change in valuable agricultural regions like the Midwestern United 145 

States. According to the International Panel on Climate Change (IPCC), near-future 146 

climate change predictions indicate that there will be a change in soil moisture content 147 

brought on by less frequent but more intense precipitation events, along with an 148 

extended dry season (Figure 1). These changes in soil moisture conditions and 149 

precipitation are certain to change runoff volume, frequency of runoff interactions with 150 

riparian buffers, and the partitioning of runoff into surface and subsurface flow through 151 

the riparian buffer (Rounsevell et al., 1999; Várallyay, 2010; Cahoon et al., 2011; IPCC, 152 

2021).  153 
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 154 

Figure 1: IPCC predicted changes in soil moisture, with the Midwestern United 155 

States highlighted (IPCC, 2021). 156 

 As soil moisture decreases and precipitation intensity increases, biogeochemical 157 

processes that rely on specific soil moisture conditions could be affected. Denitrification, 158 

a part of the nitrogen cycle, relies on limited oxygen diffusion through soil pore water 159 

brought on by high soil moisture, which could be influenced by drought. Phosphate 160 

sorption often relies on redox-active minerals and could change when intense 161 

precipitation events temporarily limit oxygen, forcing microbes to reduce Fe(III) to Fe(II). 162 

As Fe(III) reduces to Fe(II), the bonds between iron minerals and phosphate will 163 

weaken, allowing phosphate to re-enter the solution. These anoxic conditions will allow 164 

phosphate to leach out of riparian systems. Climate change, therefore, should affect the 165 

nitrogen cycle, phosphorous sorption, and iron redox cycling. Consequently, it is 166 

imperative to quantify the impact of these anticipated climate scenarios on riparian 167 

buffers to enhance our understanding of these complex processes.  168 
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1.02 Nitrogen Cycling in Riparian Buffers 169 
Perhaps no Earth cycle is as important as the N cycle (Figure 2) in governing 170 

riparian biogeochemistry. Riparian buffers are often the last line of defense in 171 

preventing agricultural runoff from contaminating our limited freshwater supply, and the 172 

associated microbially-mediated nitrogen transformations play a crucial role in removing 173 

N leached from agricultural fertilizers (Vidon et al., 2018).  174 

Denitrification is a riparian buffer zone's primary and most studied nitrogen 175 

removal mechanism (Vidon et al., 2018). Denitrification occurs when soil moisture 176 

content is high, with low soil pO2 and high N availability (Pandey et al., 2020). Complete 177 

denitrification, total reduction of NO3
- to N2, is favored under specific conditions. First, 178 

there must be an anoxic or near-anoxic environment present in the soil due to limited 179 

oxygen diffusion. Soil moisture at or above field capacity leads to limited oxygen 180 

diffusion and promotes denitrification. Field capacity is where the largest pores in the 181 

soil are open, allowing some oxygen diffusion, but the smallest pores are filled with 182 

water, allowing denitrification. (Martin et al., 1998; Equations 1-4).  183 

1. NO3
-+2e-+2H+

→NO2
-+H2O 184 

2. NO2
-+ e-+2H+

→NO+H2O 185 

3. 2NO+2e-+2H+
→N2O+H2O 186 

4. N2O+2e-+2H+
→N2+H2O 187 

Equations 1-4: Denitrification reactions  188 

Denitrification can also occur in microsites within soil aggregates when O2 189 

demand exceeds the diffusion rate. In this case, the physical properties of riparian 190 
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zones act as primary controls on denitrification. These include clay mineralogy, particle 191 

size distribution, and porosity. The absence of free-flowing oxygen allows microbes to 192 

complete denitrification, releasing N2 from the riparian buffer (Burgin & Groffman, 2012). 193 

Clay mineralogy can act as a physical control of these anoxic microsites. Notably, 194 

smectites, such as montmorillonite, swell during moderate to high moisture and prevent 195 

oxygen diffusion into the soil profile, allowing denitrification to proceed to its end 196 

reaction. While illites, kaolinites, and chlorites do not swell, they also limit O2 diffusion 197 

when present in high quantities. This occurs because all clay minerals, regardless of 198 

expandability, reduce macroporosity and increase microporosity due to their small 199 

particle size (Keiluweit et al., 2018).  200 

 201 

Figure 2: Nitrogen Cycle (Baas et al., 2019) 202 

However, the soil moisture changes caused by climate change threaten the 203 

nitrogen cycle's overall function in riparian systems. When soil moisture decreases due 204 

to anticipated climate change, the water table lowers, and oxygen can diffuse further 205 
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into the soil profile. Oxygen can diffuse further into the soil profile because the diffusion 206 

rate is orders of magnitude higher in free air than in water. Increased oxygen diffusion 207 

leads to a delayed switch in microbe terminal electron acceptors since the preferred 208 

terminal electron acceptor, free oxygen, is still present in significant quantities (Cahoon 209 

et al., 2011; Burgin & Groffman, 2012; Keiluweit et al., 2018). Under the climate 210 

scenarios the IPCC (2021) put forth, decreased soil moisture should impact 211 

denitrification and could lead to N2O being released instead of N2. N2O is a potent 212 

greenhouse gas and is the result of incomplete denitrification. Oxygen is a more 213 

favorable terminal electron acceptor for microbes due to its higher redox potential (Eh) 214 

than nitrous oxide. This concept is further explored in the leaky pipe model (Davidson, 215 

1991). When nitrate is denitrified, the ideal goal is to reduce it to N2. However, pipes 216 

have leaks. Leaks in the denitrification pipeline represent incomplete denitrification due 217 

to increased oxygen diffusion into the soil profile. In these scenarios, other N species, 218 

including nitric oxide (NO) and nitrous oxide (N2O), are released. So, when soil moisture 219 

decreases and oxygen can diffuse further down into the soil, heterotrophs will not use 220 

N2O as a terminal electron acceptor but instead use oxygen. Therefore, N2O will be the 221 

final product of denitrification in increased oxygen conditions, not N2 (Burgin & 222 

Groffman, 2012; Keiluweit et al., 2018). 223 

Furthermore, other processes compete and coexist with denitrification depending 224 

on the limiting variables. One of these processes is dissimilatory nitrate reduction to 225 

ammonium (DNRA). Dissimilatory nitrate reduction to ammonium competes with and 226 

even outcompetes denitrification in tropical soils, limited anaerobic subtropical soils, and 227 

wetlands where nitrogen is the limiting variable. Dissimilatory nitrate reduction to 228 
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ammonium is also influenced by Fe(II) concentrations, total sulfide, soil pH, the NO2
-229 

/NO3
- ratio, redox potential, and clay mineralogy (Davis et al., 2008; Fridel et al., 2018; 230 

Pandey et al., 2020). By reducing nitrate to bioavailable ammonium, DNRA is a shortcut 231 

in the nitrogen cycle and avoids denitrification, fixation, and mineralization (Figure 2, 232 

Equation 5). While DNRA has only been studied in limited environments, it is thought to 233 

play a critical role in riparian nitrogen cycling (Davis et al., 2008; Fridel et al., 2018; 234 

Pandey et al., 2020).  235 

NO3
−+8e−+10H+

→2NH4
++3H2O 236 

Equation 5: Dissimilatory Nitrate Reduction to Ammonium (DNRA) 237 

Dissimilatory Nitrate Reduction to Ammonium is also particularly challenging to 238 

measure, even in the environments where it is proven to exist. Commonly, measuring 239 

DNRA involves measuring ammonium and nitrate pore water concentrations regularly 240 

and assessing whether there is a negative correlation between nitrate and ammonium. 241 

Potassium chloride (KCl) extractions are also valuable for determining the total change 242 

in nitrate and ammonium over a set period. KCl extractions work by using the relatively 243 

high concentrations of K+ ions in solution to displace the NH4
+ and NO3

- present in an 244 

ion exchange reaction. After supernatant filtration, the K+ ions remain bonded to the soil 245 

particles, and the NH4
+ and NO3

- ions are extracted in solution. Using the 15N/14N ratio 246 

to track the nitrogen cycle through these environments is also possible. Soils are 247 

typically depleted in 15N, so by enriching test soils and allowing 15N to replace 14N, it is 248 

possible to use an isotope ratio mass spectrometer (IRMS) to “track the nitrogen” (Silver 249 

et al., 2001; Pandey et al., 2020). 250 
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Fixed ammonium also plays a critical role in the nitrogen cycle in riparian soils. 251 

Previous research indicates that some clay minerals act as ammonium hubs, 252 

particularly illites and vermiculites. These clay minerals fix and exchange ammonium to 253 

help regulate this portion of the nitrogen cycle. While each type of clay mineral fixes 254 

different amounts of ammonium, it is likely that soils with high clay content act as 255 

ammonium reservoirs and consequently reduce porewater NH4
+ concentrations (Doram 256 

& Evans, 1983) 257 

1.03 Phosphate Sorption in Riparian Buffer Systems 258 
 However, the anoxic conditions favoring denitrification and DNRA are a double-259 

edged sword. Phosphate, a typical agricultural fertilizer, requires iron oxides and, 260 

consequently, available oxygen to be removed from agricultural runoff. In soils with 261 

appreciable concentrations of Fe oxides, phosphate adsorbs onto these oxides and is 262 

immobilized. However, this process relies on those iron oxides remaining oxidized. 263 

When Fe(III) reduces to Fe(II), the adsorbed PO4
+3 can enter the solution, as Fe(II) is 264 

water-soluble. Soils at field capacity are just as acceptable for phosphate sorption as for 265 

denitrification because the open pores in the soil that do not retain water through 266 

capillary action allow enough oxygen to diffuse and preserve the iron oxides that serve 267 

as sorption sites for PO4
-3 (Pote et al., 1996; Sharpley & Smith, 1996; Sharpley & Smith, 268 

2009; Andersson et al., 2013; Asomaning, 2020).  269 

 However, future climate scenarios could threaten this balance. During drought 270 

conditions, oxygen should diffuse further into the soil profile since the water table will be 271 

lower and diffusion in air is orders of magnitude higher than in water. Therefore, it 272 

stands to reason that drought conditions will increase phosphate sorption in riparian 273 
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soils since oxygen will preserve the Fe oxide sorption sites. However, the less frequent 274 

but more intense precipitation events predicted by the IPCC (IPCC, 2021) could 275 

significantly impact phosphate concentrations in riparian buffers. While the increased 276 

length of drought periods could allow for more phosphate sorption, more intense 277 

precipitation events could overwhelm the drought-stricken soils. Water could quickly fill 278 

all the available pore space within these soils and cause temporary anoxic conditions. 279 

Under these temporary conditions, iron could be reduced, weakening the bonds with 280 

phosphate and causing the phosphate to leach out of the soil. Therefore, it is essential 281 

to quantify how intense precipitation events impact phosphate sorption in riparian soils.  282 

1.04 Sulfur Dynamics in Riparian Soils 283 
 The sulfur cycle (Figure 3) plays a significant role in controlling riparian 284 

biogeochemistry and is inextricably linked with climate, nitrogen, phosphorus, and iron 285 

in soils. Sulfur mineralization/immobilization and adsorption/desorption depend heavily 286 

on the quantity of iron and aluminum oxides, soil pH, organic matter composition, and 287 

clay mineralogy (David et al., 1983). Critically, sulfur and iron are linked, particularly in 288 

anaerobic soils. In these anaerobic environments, sulfur is typically reduced. Reduced 289 

sulfur can abiotically dissolve iron in a reductive dissolution reaction. Therefore, in these 290 

anaerobic environments, iron-sulfide minerals undergo multiple transformations 291 

(Equations 6-8, Figure 4).  292 
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 293 

Figure 3: Sulfur Cycle (University of British Columbia, 2023) 294 

6. HS-+2O2 → H++SO4
2- 295 

7.  2HS-+FeOOH+H+
→ S0+ FeS+H2O 296 

8.  Fe2++ HS-⇆ FeS+ H+ 297 

Equations 6-8: Iron-Sulfur Reactions 298 
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 299 

Figure 4: Iron and Sulfur Interactions (Li et al., 2012) 300 

 Sulfur also interacts with carbon in riparian buffers. Bioavailable sulfur and 301 

organic carbon are frequently linked outside arid environments due to plant uptake of 302 

both organic nutrients (Luo et al., 2015). In soils, organic sulfur species are typically 303 

treated similarly to bioavailable sulfur since organic sulfur can make up 99% of the S in 304 

a system and is more assimilable than inorganic sulfur for plants. Sulfate can be 305 

mineralized into ester sulfate or immobilized into carbon-bonded S. However, ester 306 

sulfates are typically less stable than carbon-bonded S and usually comprise the 307 

bioavailable portion (Figure 5, Scherer, 2009). 308 



Clements 11 
 

 309 

Figure 5: Inorganic and Organic Sulfate Flux (David et al., 1983) 310 

Furthermore, the sulfur cycle in riparian buffers is affected by climate, soil 311 

texture, soil pH, and clay mineralogy. Sulfate in the soil leaches out during intense 312 

precipitation. The loss of sulfate is more significant in coarser-grained soils, such as 313 

sandy loam. Finer particle soils inhibit fluid movement through the soil, preventing 314 

sudden, high quantities of water from reaching the sulfate. This effect works with the 315 

clay mineralogy of the soil. Depending on the number of edge sites on the clay mineral, 316 

sulfur species can adsorb onto the clay minerals. Sulfur preferentially adsorbs onto 317 

kaolinites, illites, and smectites (Scherer, 2009).  This further prevents sulfur loss in 318 

clay-rich soils; the inverse is true for sandier soils. Sulfur adsorption is also dependent 319 

on soil pH. Sulfur adsorption is highest at a soil pH of 3, and then as the soil pH 320 

increases to a pH greater than 6.5, adsorption reaches zero. This effect occurs because 321 

OH- and SO4
2- compete at this pH range, and OH- outcompetes sulfate for bonding 322 

sites. Additionally, phosphorus compounds are more soluble at this pH range and 323 

compete for the edge sites on clays (Scherer, 2009).  324 
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1.05 Soil and Pore Water pH 325 
Soil and pore water pH significantly control mineral stability and soil 326 

biogeochemical processes. Depending on the pH of both the soil and its pore water, a 327 

bevy of soil processes are affected, including, but not limited to, denitrification, 328 

phosphorous availability, heavy metal precipitation, organic matter mineralization, and 329 

clay mineral stability (Devau et al., 2009; Neina, 2019; Figures 6, 7). 330 

 331 

Figure 6: Biogeochemical processes and soil characteristics regulated by soil pH (adapted from 332 

(Devau et al., 2009; Neina, 2019) 333 
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 334 

Figure 7: Biogeochemical processes and soil characteristics regulated by soil pH 335 

divided by soil pH ranges (adapted from (Devau et al., 2009; Neina, 2019) 336 

Some of the most relevant biogeochemical processes to this work influenced by 337 

soil pH are denitrification and nitrification, two essential components of the nitrogen 338 

cycle. Other processes, such as ammonia volatilization, require a basic soil pH (>8) and 339 

are outside this work's scope. When the soil pH is below 7, nitrous oxide is the most 340 

likely product of denitrification, whereas dinitrogen is the more likely product of 341 

denitrification at a soil pH above 8. As soil pH decreases from that ideal range, the 342 

nitrous oxide reductase enzyme cannot convert the nitrous oxide into dinitrogen, and 343 

this microbial population is reduced in size (Neina, 2019). Critically, soil pH also affects 344 

nitrification, converting ammonium to nitrate. A soil pH of 6 to 8 is the ideal zone for 345 

nitrification, with the nitrification rate decreasing outside of this ideal zone (Neina, 2019).  346 
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 Soil pH also influences organic matter stability. As mentioned earlier, pH affects 347 

microbial populations and, therefore, rates of biogeochemical processes, including the 348 

oxidation of soil organic matter. Subsequently, organic carbon, nitrogen, sulfur, and 349 

phosphorous are susceptible to changes in soil pH. At a higher soil pH, the rate of 350 

organic matter mineralization is higher because the bonds between the organic matter 351 

and clay minerals are easier to break (Curtin et al., 1998). This leads to additional inputs 352 

of N into the nitrogen cycle and has vast effects on other nutrient availability for plants.  353 

 Similar to organic phosphorus, the availability of inorganic phosphorus is 354 

controlled by soil pH. Geochemical modeling has shown that different clay minerals 355 

contribute to phosphorus adsorption between a soil pH of 5.8 and a soil pH of 7.4. As 356 

soil pH increases, the amount of phosphorus sorbed onto illite increases. This also 357 

occurs in kaolinite, but to a lesser degree due to kaolinite’s lower cation exchange 358 

capacity when compared to illite (Devau et al., 2009).  359 

1.06 Iron Redox Reactions in Riparian Systems 360 
 Iron redox cycling is a necessary biogeochemical process influencing nutrient 361 

cycling, soil carbon, and soil nitrogen cycles. Iron compounds are less desirable 362 

terminal electron acceptors and have a lower Gibbs Free Energy than nitrate and 363 

manganese compounds. The availability of free oxygen in soil is crucial to moderating 364 

iron redox cycling. When aerobic conditions exist in the soil, iron is more likely than not 365 

in the form of oxidized Fe(III). However, under anaerobic conditions, microbes must 366 

switch to using alternate terminal electron acceptors such as Fe(III)OH (Patrick & 367 

Jugsujinda, 1992; Rissmann, 2011; Hodges et al., 2019). Additionally, clay minerals, 368 
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particularly illites and smectites, can act as terminal electron acceptor hubs and mediate 369 

iron redox processes (Shelobolina et al., 2012).  370 

 371 

Figure 8: Terminal Electron Acceptors in Soil and Groundwater (Rissmann, 2011) 372 

 Iron redox reactions are linked with other biogeochemical processes. High 373 

concentrations of Fe(II) have been linked to fueling DNRA in tropical soils through 374 

chemoautotrophic processes by reducing the nitrite to ammonium (Pandey et al., 2020). 375 

This correlation exists because higher Fe(II) concentrations typically indicate anoxic 376 

environments where DNRA activity is favored. Previous research has also found 377 

positive correlations between DNRA and Fe(II) concentrations (Hou et al., 2012; Yin et 378 

al., 2014; Pandey et al., 2020).  379 

1.07 Powder X-Ray Diffraction (XRD) 380 
 Powder X-ray diffraction (XRD) is a powerful tool in Earth materials 381 

characterization. It has been a stalwart of geosciences for the past century, helping 382 
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geoscientists characterize countless rock and soil samples. As regularly ordered, three-383 

dimensional objects, minerals refract light differently based on their composition and 384 

structure. Therefore, we can discern information about a sample’s mineralogy when X-385 

ray waves are diffracted (Chauhan & Chauhan, 2014; Bunaciu et al., 2015).  386 

However, XRD analysis of soil samples typically varies from XRD analysis of 387 

rock samples. Rock samples typically involve whole-rock random and oriented, clay-388 

sized mounts to determine the complete mineralogy of the sample. Soil scientists are 389 

often most focused on the mineralogy of the clay-sized fraction, and so typically, many 390 

studies into soil mineralogy using XRD only use oriented mounts. Typical treatments for 391 

the oriented mounts include air-drying, hydration with ethylene glycol, and heat 392 

treatment at 550°C. Combining these treatments forms an analysis, providing 393 

information regarding clay mineralogy and quantity, including mixed-layer clay minerals. 394 

However, many procedures, treatments, and sample preparation methods exist to 395 

analyze the clay-sized fraction in soils, leading to significant ambiguity (Kahle et al., 396 

2002). 397 

1.08 Apparent Respiratory Quotient (ARQ) 398 
 The apparent respiratory quotient (ARQ) is critical in measuring soil microbial 399 

activity and respiration. The ARQ, when measured in a closed system, is defined as:  400 

ARQ=(CO2 measured%-CO2 atm%)/(20.95%-O2 measured%) 401 

Equation 9: Headspace ARQ (adapted from Hodges et al., 2019) 402 

When measuring soil pore gas concentrations directly, ARQ often needs a correction 403 

factor to account for the difference in diffusion rates between O2 and CO2. However, no 404 
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diffusion correction is needed when calculating ARQ from headspace gases due to the 405 

nature of the closed system. Under typical conditions, the ARQ should be approximately 406 

one since oxygen is continuously resupplied and carbon dioxide is continually respired 407 

from the system (Angert et al., 2015). Frequently, the ARQ deviates significantly from 408 

the ideal conditions, and these changes inform us of critical soil biogeochemical 409 

processes in real time. Multiple biogeochemical processes change the ARQ, including 410 

anaerobic respiration and oxidation reactions (Hodges et al., 2019a). When the ARQ is 411 

above 1, the soil undergoes processes such as anaerobic respiration, organic acid 412 

mineralization, and precipitation of carbonates. Additionally, more CO2 is produced than 413 

expected. An ARQ below 1 indicates a bevy of processes, such as carbonate 414 

weathering and dissolution of CO2 gas into soil water. When the ARQ is less than 1, 415 

less CO2 is produced than expected, or more O2 is consumed than expected (Hodges et 416 

al., 2019). Under different anticipated climate regimes, the ARQ can be used to 417 

determine what biogeochemical processes are occurring throughout the soil profile and 418 

at what rates.  419 

1.09 The Ferrous Wheel Hypothesis 420 
The Ferrous Wheel is a controversial topic in soil biogeochemistry that couples 421 

the nitrogen cycle to iron redox reactions. The Ferrous Wheel Hypothesis postulates 422 

that ferrous iron facilitates the abiotic reduction of nitrate to nitrite in forest soils. Nitrite 423 

then reacts with dissolved organic matter (DOM) in soils through nitration and 424 

nitrosation to form dissolved organic nitrogen (DON) (Davidson et al., 2003; Matus et 425 

al., 2019). While it is well established in soil biogeochemistry that compounds higher on 426 

the redox ladder can facilitate the reduction of compounds lower on the redox ladder, 427 

especially with iron and sulfur, these redox reactions are usually biotically mediated. 428 
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Previous research has taken issue with the proposed abiotic nature of the ferrous wheel 429 

as well as the existence of the ferrous wheel itself (Colman et al., 2008; Schmidt & 430 

Matzner, 2009). Proponents of the Ferrous Wheel Hypothesis argue that using 15N can 431 

track N incorporation into the DOM with maximum incorporation of 25% of the original 432 

pool of 15N (Matus et al., 2019). While it is far outside the scope of this work to consider 433 

the abiotic versus the biotic nature of the ferrous wheel, we do argue that it should be 434 

possible to provide evidence for nitrate reduction coupled with Fe oxidation by tracking 435 

the changes in nitrate, Fe(II), and organic nitrogen.  436 

1.10 Research Purpose 437 
 With this study, we seek to quantify how riparian buffer zones will react to future 438 

climate scenarios. Riparian buffer zones and their associated ecosystem services are 439 

vital to terrestrial and freshwater ecosystems. Therefore, it is essential to understand 440 

how predicted climate scenarios will impact riparian biogeochemical cycles. The 441 

questions our study attempts to answer are: 442 

1. How does anticipated climate change impact denitrification in riparian buffers?  443 

2. How are phosphorous sorption and iron redox cycling in riparian buffers affected 444 

by anticipated climate change?  445 

We hypothesize that riparian soils experiencing drought and intense precipitation will be 446 

worse at retaining N due to increased oxygen diffusion into the soil. However, these 447 

same soils under the predicted soil moisture conditions could help retain P since oxygen 448 

will not be a limiting factor. However, the intense precipitation events should cause P to 449 

desorb and leach out of the riparian soils. This work will fill critical knowledge gaps in 450 

riparian and wetlands research worldwide by answering these research questions. We 451 
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also hope to provide new information on riparian biogeochemistry for land managers, 452 

biogeochemical modelers, soil health advocates, nanogeochemists interested in clay-453 

sized particles in soils, aqueous geochemists interested in nitrogen cycling, ferrous 454 

wheel enthusiasts, and other stakeholders interested in riparian buffers for commercial 455 

or sustenance agriculture.  456 

2. Methods 457 

2.01 Site and Soil Characterization 458 
The selected site is in the Lexington Wildlife Management Area (WMA) centered 459 

around the Helsel Creek riparian buffer zone at 35°3'9.08"N, 97°10'34.69"W (Figure 9a). 460 

The site has floodplain soils, with the Port soil series mapped on both sides of the 461 

creek. The Port soil series is a Mollisol, with diagnostic pedogenic carbonates in the B 462 

horizon, and a Permian-age sandstone parent material, the Garber Sandstone. The Port 463 

soil series taxonomic class is a fine-silty, mixed, superactive Cumulic Haplustoll 464 

(National Cooperative Soil Survey, 2023). We collected soil cores (Figure 9b) from a 465 

sandy loam (SaLo) (orange circle) and a silty clay loam (SiClLo) (blue circle) (Figure 466 

9a).  467 
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 468 

Figure 9a: Google Earth image of the study area within the Lexington WMA.  469 

 470 

Figure 9b: Soil core collection in the Silty Clay Loam Riparian Buffer Zone 471 
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To quantify the clay mineralogy of the Port soil series, we selected the sample 472 

with the highest clay content in the Silty Clay Loam soil profile. Therefore, we conducted 473 

a micropipette soil particle size analysis on all horizons in the Silty Clay Loam profile 474 

following Miller & Miller (1987). We prepared the samples using a 7:1 mixture of 0.05 M 475 

sodium hexametaphosphate and the less than two-millimeter soil fraction. After two 476 

hours of shaking and another two hours of settling, only the clay-sized fraction remained 477 

suspended at the top of the mixture. We used a pipette to collect a standard volume of 478 

2.5 mL of the suspended clay fraction from each replicate. Each suspended clay sample 479 

was then placed in an aluminum pan for drying. We separated the sand from the silt and 480 

the remaining clay fractions using a 53-micron sieve. After sieving, we collected and 481 

dried the sand and clay samples overnight at 105 °C and weighed them to determine 482 

each horizon's total clay, silt, and sand content (Miller & Miller, 1987). 483 

After identifying the horizon with the highest clay content, we made an oriented 484 

mount for powder X-ray diffraction (XRD) analysis. We tried various methods, including 485 

the standard sonic dismembration, but were unsuccessful in dispersing clay-rich 486 

microaggregates. These microaggregates caused further problems when making a filter 487 

peel oriented XRD mount since the clays would not lay flat on the slide. 488 

Here, we developed a modified oriented mount preparation method that reduces 489 

time and effort for soil mineralogists interested in using XRD for site characterization. 490 

Building off the Miller & Miller (1987) soil particle size procedure, we identified clay-rich 491 

horizons of interest and made three extra replicates. After treating these samples 492 

identically to the particle size samples through settling, we pipetted 2.5 mL of the clay 493 

fraction and combined the replicates. After diluting the clay fraction with deionized water 494 
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to a 10:1 water-to-clay ratio, we vacuum filtered the sample using a 0.2-micron filter to 495 

collect the clay-sized minerals. After filtering, we hydrated the clays with two milliliters of 496 

1 M CaCl2 solution. Then, we applied the oriented mount slide to the filter and dried the 497 

clay in a 100°C oven for 60 to 90 seconds. Finally, we peeled off the dried filter paper, 498 

creating an oriented mount for XRD analysis. 499 

             We performed XRD analyses of the oriented mounts using a Rigaku Ultima IV 500 

diffractometer. The Rigaku Ultima IV diffractometer uses Cu-K-alpha radiation (40 kV, 501 

44 mA) and a Bragg-Brentano detector. We ran the samples sequentially in air-dried, 502 

ethylene glycol, and 550°C heat-treated states. The scanning range for the oriented 503 

mount spanned two to thirty degrees 2Θ with a fixed increment of 0.2° per step. Data 504 

analysis was completed using Jade MDI Pro with the ICDD (International Centre for 505 

Diffraction Data) PDF4+ database (ICDD, 2023). 506 

We also measured soil pH and bulk density of the sandy loam and silty clay loam 507 

soil cores. We made a 1:1 solution of two-millimeter sieved soil and 0.01 M CaCl2 508 

consistent with previously established procedures (e.g., Eckert & Sims, 2009). The 509 

higher ionic strength of dilute CaCl2 compared to deionized water increases the 510 

reproducibility of soil pH measurements, which are otherwise sensitive to differences in 511 

the electrical conductivity of the soil solution. After making the slurry, we analyzed the 512 

soil pH with the ThermoFisher Orion Star A211 pH probe. Additionally, we collected soil 513 

bulk density samples by collecting three replicate cores, five centimeters in diameter 514 

and fifteen centimeters in height, using a slide hammer. We weighed the soil cores after 515 

drying at 40°C for 30 days to find the average bulk density.  516 
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2.02 Incubation Setup 517 
We collected forty-eight soil cores from the Helsel Creek riparian zone to test our 518 

research questions regarding the effects of climate change on riparian buffers. Half of 519 

these cores have a sandy loam (SaLo) soil texture, while the other half have a silty clay 520 

loam (SiClLo) soil texture. The cores were soil stored in PVC liners fifteen centimeters 521 

long and five centimeters in diameter, with 3 centimeters left between the top and the 522 

soil, allowing headspace gases to accumulate. Each core was capped on both ends. 523 

After drying the cores in the oven for thirty days at 40°C, the soil cores were water-free 524 

since they maintained a constant mass for the last five days of drying. We applied 525 

treatments simulating different moisture regimes, water application points, and water 526 

types in a fully factorial design between the two soil textures. Field Capacity represents 527 

the soil moisture regime under normal conditions, while Drought represents the soil 528 

moisture regime predicted under future climate scenarios. We maintained the mass of 529 

Field Capacity cores by adding DI water weekly, while the Drought cores had no water 530 

added throughout the experiment. Similarly, we used two water application points to 531 

simulate ideal and predicted climate conditions. Allowing water uptake from the bottom 532 

of the core simulated Capillary Rise, the ideal water application method. Applying water 533 

from the top resulted in Flooding, which is predicted under future climate scenarios. 534 

Finally, we used two different water types to simulate input from agricultural systems. 535 

We used a simulated agricultural runoff, DI water mixed with NO3 and PO4 fertilizers, to 536 

simulate input from an agricultural system. We used DI water to simulate ideal 537 

conditions without input from an agricultural system. The agricultural runoff has a 538 

concentration of 7.23 mmol/L NO3 and 0.35 mg/L PO4, consistent with previous core 539 

experiments (Tindall et al., 1996) This fully factorial design is shown graphically in 540 
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Figure 10, with the replicates for each treatment removed. The abbreviations for each 541 

treatment are shown in Supplemental Material T-6.  542 

 543 

Figure 10: Experimental design specified to treatment level.  544 

 We applied 15 mL of agricultural runoff or DI water to each flooding treatment 545 

and 10 mL of agricultural runoff or DI water to each capillary rise treatment weekly. This 546 

amount is far less than the water needed to maintain field capacity conditions, about 30 547 

mL/week, but enough to ensure we would get a representative porewater sample from 548 

each core. One day after the water application, we used rhizons to extract the pore 549 

water from each core. We placed the rhizons at the midpoint of the soil in the cores to 550 

allow time for the applied water to interact with the soil through flooding and capillary 551 

rise. The rhizons have a 0.15-micron filter built in so no sediment can contaminate the 552 

pore water. Using vacuum tubes, we collected the pore water from the cores one day 553 

after application (Figure 11).  554 
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 555 

Figure 11: Core experiment setup featuring soil cores, rhizons, and vacuum collection 556 

tubes. 557 

2.03 Measurements and Analyses During Incubation  558 
After collecting pore water, we used colorimetric analysis to determine the 559 

amount of nitrate, phosphate, and ammonium in the pore water. We used a 560 

ThermoFisher MultiSkan SkyHigh microplate UV-Vis analyzer with wavelength scanning 561 

capability for these colorimetric analyses. We created microplates based on established 562 

colorimetric analysis procedures for nitrate (Doane & Horwath, 2003), phosphate 563 

(McConnel, 2020), and ammonium (Ringuet et al., 2011). Additionally, we measured 564 

pore water pH directly using the ThermoFisher Orion Star A211 pH probe.   565 
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 We measured the headspace O2 and CO2 and calculated the ARQ weekly to 566 

complement our pore water data during the core experiments. At the beginning of the 567 

experiment, we installed grey, leakproof septa at the top of each core lid. Before 568 

sampling the headspace gases, we capped the cores for twenty-four hours before 569 

sampling. We performed O2 measurements using the Quantek 901 oxygen meter and 570 

CO2 measurements with a LICOR 7815 Trace Gas Analyzer (Hodges et al., 2019b). 571 

After measuring these headspace values for each replicate, we combined them into a 572 

treatment-level average. We normalized both values to their respective laboratory 573 

atmospheric normal values using Equation 14 to calculate the ARQ.  574 

ARQ=(CO2 measured-0.025)/(20.95-O2 measured) 575 

Equation 10: Headspace ARQ (Lab Ambient) 576 

2.04 Post-Incubation Measurements and Analyses 577 
 Following the conclusion of the core experiments, we determined the amount of 578 

nitrogen in each main pool in the nitrogen cycle, including total nitrogen, bioavailable 579 

ammonium, and bioavailable nitrate, in the treatment and control samples. We used the 580 

Elementar EL Vario Cube to determine each treatment and control sample's total 581 

carbon, nitrogen, and sulfur concentrations (Xu et al., 2017). 582 

 We also utilized two-molar potassium chloride (2M KCl) extractions to determine 583 

the concentration of bioavailable ammonium and nitrate in the treatment and control 584 

samples (Keeney & Nelson, 1982). Potassium chloride extractions allow analysis of the 585 

bioavailable nitrate and ammonium by displacing nitrate and ammonium with potassium. 586 

After the extraction of nitrate and ammonium and supernatant filtration, we used the 587 

same colorimetric analyses for the pore water to determine the initial and final nitrate 588 
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and ammonium concentrations. Integrating these data with the elemental and pore 589 

water analyses allows us to determine which nitrogen pools were impacted by the 590 

treatments and how these impacts affected the final pore water nitrate concentrations 591 

throughout the pore water analyses. Furthermore, we performed a nitrogen cycle mass 592 

balance to determine how much nitrogen, if any, each treatment lost. To do this, we 593 

used our pre-and post-treatment total N values, the amount of NH4
+ removed from the 594 

system, and the amount of NO3
- fertilizer we added. We calculated the change in each 595 

N pool by using the formula below and converting all N measurements to grams 596 

(Formula 11). This involved multiplying the percentage values of total N by the average 597 

pre-treatment mass of the cores. Then, we subtracted the pre-treatment N mass from 598 

the post-treatment N mass and then subtracted the total amount of NO3
- that we added 599 

during the experiment. Since we did not add ammonium to the system, we did not 600 

include it in our calculations.  601 

Total N=NO3+NH4+SON 602 

Formula 11: N Mass Balance Calculation 603 

 To test the iron redox reactions occurring in these soils, we used the initial 0.5M 604 

HCl-extractable Fe (II) and Fe (III) in the Silty Clay Loam and Sandy Loam soils using 605 

the ferrozine-based microplate method (Huang & Hall, 2017). We used the same 606 

approach to test the final 0.5M HCl-extractable Fe (II) and Fe (III) content in each core 607 

following the conclusion of the denitrification and phosphorous sorption experiments 608 

and averaging each replicate to produce a treatment level final average.   609 
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2.05 Data Analysis and Figure Creation 610 
 Data collection was exclusively conducted through Microsoft Excel v2307. We 611 

collected historical imagery through Google Earth (v7.3.6, Alphabet 2023). We used R 612 

Statistical Software (v4.1.2; R Core Team 2022) for statistical analyses. Specifically, we 613 

used the R mgcv package to create the generalized additive mixed effects models 614 

(GAMMs) (v1.9-0, Wood, 2023). We used generalized additive mixed-effects models 615 

over the more common generalized linear mixed-effects models (GLMMs) found in the 616 

R package nlme (v3.1-163, Pinheiro et al., 2023) and other packages due to the 617 

conditional linearity and smoothing terms that GAMMs provide. Utilizing these abilities 618 

found in GAMMs enabled more robust and better-fitting models for our continuous time-619 

series data. We verified the accuracy of these models using AIC scores, deviance 620 

explained (R2 for GAMMs), Q-Q plots, plotting the Histogram of Residuals, and plotting 621 

the Residuals versus the Fitted Values to examine for heteroscedasticity. We also 622 

performed posthoc Wald tests on our GAMMs using the functions found in the R mgcv 623 

package and clustered statistically similar comparisons using dendrogram plots found in 624 

ggplot2. We also generated boxplots showing the individual and combined treatment 625 

effects on porewater chemistry and ARQ measurements using ggplot2. We also 626 

examined data correlations with k-means clustering and correlation coefficients using 627 

the R dplyr package (v1.1.3, Wickham et al., 2023). For significant results from the 628 

models, we used α=0.1 due to the various treatments and relatively low number of 629 

replicates. We used Microsoft Word v2307 to generate the soil profile tables and other 630 

data tables in this work. Additionally, we used the soiltexture R package to create the 631 

soil texture triangles (v1.5.1, Moeys et al., 2018). To generate and analyze multiple 632 

nonparametric decision trees, we used the R package randomForest (v4.7-1.1, Liaw, 633 
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2022). We used Jade MDI Pro to organize and plot all Powder XRD traces onto one 634 

figure (v6.5, ICDD 2023). Furthermore, we generated nitrate, ammonium, phosphate, 635 

pore water pH, and ARQ plots in Microsoft Excel v2307. We generated our decision tree 636 

visualizations, k-means clustering, correlation figures, and model graphs in R using 637 

ggplot2 (v3.4.4, Wickham et al., 2023). Finally, we generated our boxplots using the 638 

tidyverse R package (v2.0.0, Wickham et al., 2023).  639 

3. Results 640 

3.01 Field Site Characterization 641 

3.01.1 Pedology of Helsel Creek Riparian Buffer Zone 642 
We identified that one of the mapped units (NRCS, 2023), the Port soil series, 643 

was the primary soil series in the Helsel Creek riparian buffer zone. However, there 644 

were notable differences between the two soil profiles. The silty clay loam profile had 645 

significant clayey textures in the A, Bw1, and Bw2 horizons (Figure 12). We observed 646 

ferro-manganese nodules in the Ab horizon.  647 

  648 
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Horizon Depth Color Structure Field Texture 

A 0-7 cm 7.5 YR 3/4 Subangular Blocky Clay Loam 

Bw1 7-26 cm 2.5 YR 4/8 Subangular Blocky Clay Loam 

Bw2 26-34 cm 2.5 YR 5/8 Subangular Blocky Clay Loam 

C 34-81 cm 2.5 YR 4/8 
Single 

Grain/Structureless 
Sandy Loam 

Ab 81-96 cm 10 YR 2/2 Subangular Blocky Sandy Clay Loam 

2C 96+ cm 2.5 YR 4/6 
Single 

Grain/Structureless 
Loamy Sand 

Figure 12: Pedological information of the Helsel Creek Riparian Buffer Silty Clay Loam (SiClLo) 649 

Topsoil Profile 650 

 The sandy loam profile has more sand in the upper horizons, with accompanying 651 

granular structures. Additionally, redoximorphic features are present in the Btk1, Btk2, 652 

and C horizons, namely manganese nodules (Figure 13). 653 

  654 
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Horizon Depth Color Structure Field Texture 

Ap 0-24 cm 5 YR 3/4 Granular Sandy Loam 

A 24-50 cm 5 YR 3/4 Subangular Blocky Sandy Clay Loam 

AB 50-68 cm 2.5 YR 3/6 Subangular Blocky Sandy Clay Loam 

Bw 68-110 cm 2.5 YR 4/6 Subangular Blocky Clay 

Btk1 110-128 cm 2.5 YR 4/6 Subangular Blocky Clay 

Btk2 128-165 cm 2.5 YR 4/8 Subangular Blocky Sandy Clay 

C 165+ cm 2.5 YR 5/8 
Single 

Grain/Structureless 
Sandy Clay Loam 

Figure 13: Pedological information of the Helsel Creek Riparian Buffer Sandy Loam 655 

(SaLo) Topsoil Profile 656 

  The physiochemical properties of both soils also differed. The SiClLo cores had 657 

less initial nitrogen and carbon than the SaLo cores but more initial sulfur. Bioavailable 658 

nitrate and ammonium were higher in the sandier soils, along with Fe(III), but the clay-659 

rich soils had more Fe(II). The silty clay loam soil had a higher bulk density and soil pH 660 

than the sandy loam soil (Table 1). 661 
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Table 1: Initial Physiochemical Properties of the Tested Soils 

Core N Initial 
% 

C Initial 
% 

S Initial 
% 

Bioavailable 
NO3

- g/g 
soil 

Bioavailable 
NH4

+ mg/g 
soil 

Fe(II) 
Initial 
mg/g soil 

Fe(III) 
Initial 
mg/g soil 

Bulk 
Density 
g/cm3 

Soil pH 

SiClLo 0.0650 0.6750 0.0975 0.004077 0.0916 0.2257 0.7852 1.48 6.08 
SaLo 0.0750 0.7700 0.0460 0.006607 0.1383 0.2200 1.4998 1.39 5.51 

Micropipette particle size analysis of the SiClLo topsoil profile resulted in textures 662 

ranging from silty clay loam in the A and Bw1 horizons to a sandy loam texture in both C 663 

horizons (Figure 14). The sandy loam topsoil profile is almost exactly the opposite. The 664 

upper horizons have textures ranging from sandy loam to silty loam, while the Bk1, Bk2, 665 

and C horizons have silty clay and silty clay loam textures (Figure 15). 666 

 667 

Figure 14: Silty Clay Loam (SiClLo) Topsoil Profile Particle Size Analysis 668 

 669 
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Figure 15: Sandy Loam (SaLo) Topsoil Profile Particle Size Analysis 670 

3.01.2 Powder X-Ray Diffraction (XRD) 671 
Using the SiClLo topsoil allowed the perfect opportunity to analyze the surface 672 

clay mineralogy of the Port soil series using XRD. After making the filter peel oriented 673 

mount and running it in its three treatments, XRD analysis confirmed the mixed clay 674 

mineralogy in the Port soil series description (National Cooperative Soil Survey, 2023). 675 

Oriented mount analysis through air drying, glycolation, and heat treatment suggests 676 

the presence of kaolinite, illite, smectite, chlorite, and a mixed layer of illite-smectite 677 

(Figure 16). Notably, d-spacing differences due to interlayer hydration between the air-678 

dried and glycolated treatments are consistent with smectite and the mixed layer illite-679 

smectite. Further modeling of the mixed layer illite-smectite revealed that it is an IS70R1 680 

clay, consisting of 70% illite and 30% smectite, where the illite layers and smectite 681 

layers alternate with short-range ordering.  682 

 683 
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Figure 16: Powder X-Ray Diffraction Treatment Results and Interpretations of Silty Clay 684 

Loam (SiClLo) Topsoil 685 

3.02 Porewater Chemistry During Incubations 686 

3.02.1 Porewater pH 687 
Statistical analysis using a GAMM yielded valuable insights into the controls on 688 

pore water pH. The interaction of Moisture Regime and Water Type provided the most 689 

significant effect (p-value = 0.00265). Conversely, Soil Texture was the least significant 690 

factor in controlling pore water pH (p-value = 0.05372) (Table 2, Figure 17). Additionally, 691 

there is a negative correlation between ammonium and pore water pH, with correlation 692 

values ranging from -0.225 to -0.788. A similar negative correlation exists with nitrate 693 

and pore water pH. (Supplemental Material F-1). Furthermore, our climate proxies, 694 

Moisture Regime (p-value=0.03335), and Water Application (p-value=0.04659) were 695 

individually significant, indicating that our climate proxies are important for predicting 696 

porewater pH.  697 

A posthoc Wald test of the GAMM for porewater pH yielded 64 significant 698 

comparisons grouped into fourteen statistically different clusters, revealing how 699 

decreasing soil moisture and flooding impacted porewater pH throughout the 700 

incubations (Supplemental Material F-11, T-4, C-1). These clusters consist of treatment 701 

comparisons that are all statistically similar in how changing the treatment factor levels 702 

of Moisture Regime, Water Application, and Water Type affected porewater pH. Drought 703 

conditions were present in twelve comparisons, and Field Capacity and Flooding 704 

conditions were present in nine comparisons. These comparisons include ones such as 705 

the silty clay loam soil undergoing simulated drought and flooding with agricultural runoff 706 

(SiClLo-D-F-Ag) compared against the silty clay loam soil under the Field Capacity 707 
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antecedent soil moisture and flooding water application with agricultural runoff applied 708 

(SiClLo-FC-F-Ag) (Estimate = 0.6379, SE = 0.2939, p-value = <0.001). This comparison 709 

indicates a positive relationship between switching the moisture regime to drought and 710 

porewater pH. Drought and capillary rise are the treatments most commonly compared 711 

in sandier soils, with eight total comparisons each. The estimates and standard errors 712 

(SE) for these comparisons ranged widely, suggesting varying degrees of impact on 713 

Porewater pH. This can be seen in a comparison between two sandy loam treatments. 714 

When comparing the Drought to the Field Capacity antecedent soil moisture with the 715 

same Water Application and Water Type (Capillary Rise and Agricultural Runoff), a 716 

significant negative effect on porewater pH exists (Estimate=-0.5581, p-value=<0.001). 717 

Similar comparisons exist with different Water Application types (Supplemental Material 718 

C-1). Consequently, these results indicate that changing the Moisture Regime from 719 

Field Capacity to Drought or changing Water Application from Capillary Rise to Flooding 720 

significantly impacts porewater pH values.  721 

Table 2: Pore Water pH Generalized Additive Model Results 
 

Significant Factors Affecting Pore Water pH F p-value 

Soil Texture 3.783 0.05372 

Moisture Regime 4.616 0.03335 

Water Application 4.030 0.04659 

Water Type 
 

4.362 0.03852 

Moisture Regime x Water Type 9.356 0.00265 

Water Application x Water Type 7.656 0.00641 
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Soil Texture x Moisture Regime x Water 
Type 

4.241 0.04128 

Moisture Regime x Water Application x 
Water Type 

9.274 0.00277 

Model Fit R2=0.545 Deviance Explained=63.2% 

Pore water pH exhibited significant variability throughout the experiment, 722 

reflecting the dynamic nature of soil biogeochemical processes under different 723 

treatment conditions. In the SiClLo soils, pore water pH values ranged from as acidic as 724 

pH 5 to as alkaline as pH 8.5, depending on the specific treatment. This wide pH range 725 

indicates a complex interplay of biogeochemical reactions influenced by various 726 

environmental factors. The agricultural runoff treatments diverged substantially from the 727 

deionized (DI) water control. The Field Capacity-Flood, Drought-Flood, and Drought-728 

Capillary Rise treatments, in particular, exhibited the most significant variations in pH. 729 

We observed an exception in the Field Capacity-Capillary Rise-DI Water treatment, 730 

which experienced a notable drop in pore water pH towards the end of the 731 

measurement period. Specifically, the Drought-Flood-Agricultural Runoff treatment 732 

maintained a consistently lower pore water pH throughout the experiment than the DI 733 

control. Conversely, the Field Capacity-Flood-Agricultural Runoff treatment showed an 734 

inverse relationship with the DI control (Supplemental Material F-16). However, the 735 

sandy loam pore water pH data indicate a vastly different treatment response. pH 736 

values vary between 7.96 and 4.63 across all sandy loam soil treatments, with many 737 

readings below a pH of 6. The capillary rise treatments are inversely correlated, with the 738 

Field Capacity-Capillary Rise pH measurements indicating that the Agricultural Runoff 739 

treatment has a lower pore water pH than its DI control and the Drought-Capillary Rise-740 

Agricultural Runoff treatment possessing higher pore water pH measurements than its 741 
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DI control. The sandy loam soils exhibit more drastic changes in pH than their SiClLo 742 

counterparts, with rapid fluctuations from a pH of 5 to a pH of almost 8 (Supplemental 743 

Material F-17). 744 

 745 

Figure 17: Porewater pH GAMM results showing boxplot comparisons of each 746 
treatment level and all treatments' interactions on porewater pH values. 747 

3.02.2 Porewater Nitrate 748 
The GAMM results indicate that soil texture (p-value = 0.04697), antecedent soil 749 

moisture (p-value = 0.00389), and runoff delivery (p-value = 0.00296) significantly 750 

affected porewater NO3
- concentrations throughout the incubation experiment. The most 751 

significant factors were the interaction of Soil Texture and Water Application and the 752 
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interaction of Moisture Regime and Water Application with p-values <0.001. Conversely, 753 

the interaction of Soil Texture, Moisture Regime, and Water Application provided the 754 

least statistically significant effect, with a p-value of 0.0472 (Table 3, Figure 18).  755 

A posthoc Wald test of the porewater nitrate GAMM indicates 59 significant 756 

associations between treatments grouped into twelve statistically significant and unique 757 

clusters (Supplemental Material F-12, T-1, C-1). These clusters consist of treatment 758 

comparisons that are all statistically similar in how changing the treatment factor levels 759 

of Moisture Regime, Water Application, and Water Type affected nitrate concentrations. 760 

For example, nitrate concentrations were significantly higher in the porewater of sandy 761 

loam soils with simulated drought and flooding compared to all other treatments. Among 762 

these, the comparison of the Sandy Loam soil under Drought conditions and Capillary 763 

Rise water application method with Agricultural Runoff applied (SaLo-D-CR-Ag) against 764 

the Sandy Loam soil under Drought conditions and Flooding water application with 765 

Agricultural Runoff applied (SaLo-D-F-Ag) showed a negative effect associated with the 766 

change of water application from Capillary Rise to Flooding (Estimate = -0.0104, SE = 767 

0.0035, T = -3.0128, p-value = 0.0026). Furthermore, comparisons between the Sandy 768 

Loam soil under Drought conditions with Flooding water application and Agricultural 769 

Runoff applied (SaLo-D-F-Ag) against the Silty Clay Loam soil under Field Capacity soil 770 

moisture conditions with Flooding water application and Agricultural Runoff applied 771 

(SiClLo-FC-F-Ag) highlighted significant differences (p-value=0.0025), indicating that 772 

changes in the climate proxies of soil moisture and water application significantly affect 773 

the RBZ’s capacity to filter N from agricultural runoff.  774 
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Table 3: Nitrate Generalized Additive Mixed-Effects Model (GAMM) Results 

Significant Factors Affecting Nitrate F p-value 

Soil Texture 4.001 0.046966 

Moisture Regime 8.551 0.003894 

Water Application 9.077 0.002959 

Water Type 
 

8.513 0.003973 

Soil Texture x Moisture Regime 
 

7.171 0.008088 

Soil Texture x Water Application 
 

12.578 0.000497 

Moisture Regime x Water Application 
 

12.058 0.000645 

Soil Texture x Water Type 8.198 0.004687 

Moisture Regime x Water Type 10.344 0.001539 

Water Application x Water Type 10.370 0.001518 

Soil Texture x Moisture Regime x Water 
Application 

3.991 0.047230 

Soil Texture x Moisture Regime x Water 
Type 

9.029 0.003033 

Soil Texture x Water Application x Water 
Type 

5.824 0.016804 

Moisture Regime x Water Application x 
Water Type 

10.824 0.001204 

Soil Texture x Moisture Regime x Water 
Application x Water Type 

6.801 0.009873 

Model Fit R2=0.787 Deviance Explained=80.9% 

Porewater nitrate concentrations were higher in the flooding versus the capillary 775 

rise treatments, lower in the clay-rich soils, and lower in the soils that remained at field 776 

capacity. This is evidenced by the model results (Moisture Regime p-value=0.003894, 777 

Water Application p-value=0.002959, Supplemental Material T-1) and the porewater 778 
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nitrate concentrations. We observed that pore water nitrate concentrations exhibited 779 

significant fluctuations in the Silty Clay Loam cores. These ranged from as low as 0.01 780 

g/L to as high as 5.283 g/L, with the Drought-Capillary Rise treatment responsible for 781 

these two extremes across all treatments. Such variability points to the complex 782 

interplay of environmental factors, such as soil moisture and water application methods 783 

influencing nitrogen cycling.  784 

The maximum nitrate values observed in each treatment provide further insights 785 

into this variability. The Field Capacity-Flood treatment reached a peak of 4.719 g/L, the 786 

Drought-Flood treatment at 5.141 g/L, and the Drought-Capillary Rise treatment showed 787 

the highest concentration at 5.283 g/L (Supplemental Material F-18). The Sandy Loam 788 

soils have nitrate values that range between 0.01 g/L and 9.11 g/L between all 789 

treatments. Maximums for each treatment are 5.103 g/L for the Field Capacity-Flood 790 

treatment, 9.112 g/L for the Field Capacity-Capillary Rise treatment, 8.162 g/L for the 791 

Drought-Flood treatment, and 3.69 g/L for the Drought-Capillary Rise treatment. 792 

Excluding the Drought-Capillary Rise treatment, pore water nitrate values are higher in 793 

Sandy Loam soils than in Silty Clay Loam ones (Supplemental Material F-19). These 794 

results underscore the critical role of land use and moisture regime in controlling nitrate 795 

concentrations, in line with the GAMM's findings. The porewater nitrate concentration 796 

data, bolstered by both the GAMM and the posthoc Wald test, provide a comprehensive 797 

understanding of nitrate variability in response to predicted climate and management 798 

conditions. 799 
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 800 

Figure 18: Nitrate GAMM results showing boxplot comparisons of each treatment level 801 

and all treatments' interactions on porewater nitrate concentrations. 802 

3.02.3 Porewater Ammonium 803 
The GAMM results for porewater ammonium concentrations indicate that two 804 

factors influenced ammonium pore water concentrations. Soil Texture was the most 805 

significant factor, with a p-value of 0.0223. The interaction of Moisture Regime, Water 806 

Application, and Water Type also provided a significant effect, with a p-value of 0.0561 807 

(Table 4, Figure 19). A negative correlation also exists between nitrate and ammonium, 808 

with seven out of the eleven weeks of common measurements showing a correlation 809 
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value between -0.143 and -0.454 (Supplemental Material C-1). A posthoc Wald test of 810 

the Ammonium GAMM revealed 54 significant associations in twenty statistically 811 

different clusters between the treatments (Supplemental Material F-13, T-2). Particularly 812 

noteworthy was the comparison between the Silty Clay Loam soil under Drought 813 

conditions with Deionized Water applied through Capillary Rise (SiClLo-D-CR-DI) and 814 

the Sandy Loam soil under Field Capacity conditions with Deionized Water applied 815 

through Flooding (SaLo-FC-F-DI), which showed a highly significant negative effect 816 

when changing soil texture, antecedent soil moisture, and water application method 817 

(Estimate = -5.8744, SE = 1.7238, T = -3.4078, p-value = 0.0007). This pattern was 818 

consistent across several comparisons, underscoring the intricate relationship between 819 

how decreasing soil moisture and more intense precipitation events negatively influence 820 

porewater ammonium levels. 821 

Table 4: Porewater Ammonium GAMM Results 

Significant Factors Affecting Ammonium F p-value 

Soil Texture 5.328 0.0223 

Moisture Regime x Water Application x 
Water Type 

3.704 0.0561 

Model Fit R2=0.464 Deviance Explained=51.6% 

Porewater ammonium concentrations were higher in the flooding versus the 822 

capillary rise treatments, lower in the clay-rich soils, and lower in the soils that remained 823 

at field capacity. When evaluating all treatments collectively, we found that the Silty Clay 824 

Loam ammonium pore water concentrations ranged between 0.096 mg/L and 0.171 825 

mg/L. The flooding treatments consistently showed higher pore water ammonium 826 

concentrations than their capillary rise counterparts. Breaking down the results by 827 
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treatment, the maximum ammonium pore water concentrations were observed as 828 

follows: 0.171 mg/L in the Field Capacity-Flood-Agricultural Runoff treatment, 0.113 829 

mg/L in the Field Capacity-Capillary Rise-Agricultural Runoff treatment, 0.143 mg/L in 830 

the Drought-Flood-Agricultural Runoff treatment, and 0.128 mg/L in the Drought-831 

Capillary Rise-Agricultural Runoff treatment (Supplemental Material F-20). Sandy Loam 832 

pore water ammonium values ranged between 0.04 mg/L and 0.54 mg/L, treatment-833 

dependent. Maximum values for each treatment are 0.32 mg/L for the Field Capacity-834 

Flood treatment, 0.54 mg/L for the Field Capacity-Capillary Rise treatment, 0.26 mg/L 835 

for the Drought-Flood treatment, and 0.20 mg/L for the Drought-Capillary Rise 836 

treatment. In the Field Capacity-Capillary Rise treatment, a significant spike in 837 

ammonium concentrations precedes the spike in pore water nitrate concentrations 838 

(Supplemental Material F-21). These variations highlight the influence of changing the 839 

moisture regime and water application method on ammonium dynamics within the soil. 840 
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 841 

Figure 19: Ammonium GAMM results showing boxplot comparisons of each treatment 842 

level and all treatments' interactions on porewater ammonium concentrations. 843 

3.02.4 Porewater Phosphate 844 
Statistical analysis of the pore water phosphate concentrations using a GAMM 845 

indicates significant treatment effects on the P concentrations in pore water. The 846 

interaction of Soil Texture and Water Application provided the most significant effect, 847 

with a p-value<0.001. Soil Texture alone provided the least significant effect, with a p-848 

value of 0.0919 (Table 5, Figure 20). Phosphorus also had a significant positive weekly 849 

correlation with nitrate, with correlation values ranging between 0.110 and 0.715 for 850 
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eight weeks and only exhibiting a negative correlation for two weeks. Phosphorus also 851 

negatively correlated with ammonium, with most weeks having negative correlation 852 

values between -0.09 and -0.288. Phosphorus also positively correlated with pore water 853 

pH and ARQ (Supplemental Material C-1).  854 

A posthoc Wald test on the phosphate GAMM yielded 85 significant associations 855 

between treatments grouped into eleven statistically different clusters of statistically 856 

similar comparisons (Supplemental Material F-14, T-3). The comparisions in these 857 

clusters have similar positive and negative effects on porewater phosphate 858 

concentrations. These results show various effects across treatment comparisons. For 859 

example, the comparison between the sandy loam soil under Field Capacity moisture 860 

conditions with DI water applied through Capillary Rise (SaLo-FC-CR-DI) and the silty 861 

clay loam soil under Drought conditions with DI water applied through Flooding 862 

treatments (SiClLo-D-F-DI) revealed a significant negative effect with a p-value of 863 

0.005. Similarly, other comparisons like the sandy loam soil under drought conditions 864 

with agricultural runoff applied through Capillary Rise (SaLo-D-CR-Ag) against the silty 865 

clay loam soil under Drought conditions with agricultural runoff applied through 866 

simulated Flooding (SiClLo-D-F-Ag) also showed a significant negative effect, with a p-867 

value<0.001. These comparisons suggest substantial differences in phosphorus 868 

concentrations between the treatment groups. Conversely, some comparisons indicated 869 

positive effects. For instance, the comparison between two silty clay loam soils with 870 

agricultural runoff applied through Flooding showed a positive effect of switching from 871 

Drought conditions to Field Capacity conditions with a highly significant p-value<0.001. 872 

These findings highlight the complex interactions between soil texture, water 873 
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application, moisture regime, and water type treatments and their impact on phosphorus 874 

levels (Supplemental Material F-13, T-3). 875 

  876 
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Table 5: Porewater Phosphate GAMM Results 

Significant Factors Affecting Phosphate F p-value 

Soil Texture 2.871 0.091932 

Moisture Regime 5.745 0.017576 

Water Type 
 

12.157 0.000617 

Soil Texture x Moisture Regime 
 

14.765 0.000169 

Soil Texture x Water Application 
 

22.815 3.73e-06 

Moisture Regime x Water Application 
 

3.602 0.059342 

Soil Texture x Moisture Regime x Water 
Application 

14.400 0.000203 

Soil Texture x Moisture Regime x Water 
Type 

7.192 0.008015 

Soil Texture x Moisture Regime x Water 
Application x Water Type 

8.353 0.004332 

Model Fit R2=0.96 Deviance Explained=96.5% 

The varied P porewater concentration results indicate how each soil responded 877 

to the treatments. In the Silty Clay Loam soil cores, phosphorus porewater 878 

concentrations ranged from 0.07 mg/L to 2.37 mg/L across all treatments. Under the 879 

ideal Field Capacity-Capillary Rise treatment, the final P values stayed reasonably 880 

constant, consistently below 0.35 mg*L-1/week of applied P. However, the Drought-881 

Capillary Rise treatment had a phosphate porewater concentration of 0.47 mg/L. 882 

Flooding also appears to exacerbate this effect, with the Field Capacity-Flood treatment 883 

soils showing a porewater concentration of 1.62 mg/L of P on the same observation. 884 

The combined impact of flooding and drought released the most P during that 885 

measurement, with 2.36 mg/L of P released (Supplemental Material F-22). In the Sandy 886 

Loam soils, phosphate concentrations were lower than in the SiClLo soils. Notably, the 887 
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Field Capacity-Capillary Rise treatment had the most significant spike with a P 888 

porewater concentration of 0.56 mg/L, a substantial difference from its Silty Clay Loam 889 

counterpart, which never had P final values that exceeded the applied P that week. Both 890 

Sandy Loam drought treatments experienced a spike at the same time as the same 891 

Silty Clay Loam treatments. These spikes in the phosphate were much lower in 892 

magnitude, with values of 0.38 mg/L for the Drought-Flood treatment and 0.40 mg/L for 893 

the Drought-Capillary Rise treatment (Supplemental Material F-23). 894 

 895 
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Figure 20: Phosphate GAMM results showing boxplot comparisons of each treatment 896 

level and all treatments' interactions on porewater phosphate concentrations. 897 

3.02.5 Apparent Respiratory Quotient, O2, and CO2 898 
Critically, statistical analyses of the ARQ values indicate that some treatments 899 

significantly affected ARQ. Soil Texture provided the most significant control on ARQ, 900 

with a p-value of 0.000381. Water Application had the least statistically significant effect, 901 

with a p-value of 0.033 (Table 6, Figure 21). Additionally, ARQ has a negative 902 

correlation with nitrate and a positive correlation with ammonium (Supplemental 903 

Material C-1).  904 

A posthoc Wald test of the ARQ GAMM yielded 34 highly significant interactions 905 

grouped into eight statistically different clusters of statistically similar comparisons, 906 

which indicates how our climate proxies affected ARQ values during the incubation. For 907 

example, the comparison of two silty clay loam soils under Drought conditions with 908 

agricultural runoff applied  has a statistically significant negative effect on ARQ by 909 

switching water application from Capillary Rise to Flooding (Estimate -0.0686, p-910 

value=0.012). A similar comparison exists between two silty clay loam soils with 911 

agricultural runoff applied. This comparison has a significant negative effect by 912 

switching from Field Capacity and Capillary Rise to Drought and Flooding (Estimate=-913 

0.0683, p-value=0.0125). Drought conditions appear in twenty-four comparisons, 914 

flooding appears in nine, and the combined effect of drought and flooding appears in 915 

seven total comparisons (Supplemental Material F-15, T-5, C-1).  916 

Table 6: ARQ Generalized Additive Model Results 

Significant Factors Affecting ARQ F p-value 
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Soil Texture 13.108 0.000381 

Water Application 4.603 0.033244 

Soil Texture x Moisture Regime 
 

8.671 0.003655 

Soil Texture x Water Application 
 

10.903 0.001155 

Soil Texture x Water Type 4.592 0.033457 

Soil Texture x Moisture Regime x Water 
Application 

11.101 0.001044 

Soil Texture x Water Application x Water 
Type 

10.755 0.001246 

Soil Texture x Moisture Regime x Water 
Application x Water Type 

4.773 0.030192 

Model Fit R2=0.732 Deviance Explained=85.6% 

The apparent respiratory quotient (ARQ) produced clear signals from each 917 

climate regime treatment. The ARQ was consistently above the aerobic line after the 918 

second measurement in all Silty Clay Loam soils, suggesting anaerobic respiration. The 919 

lowest observed ARQ was 0.17, and the highest observed ARQ was 7.24 among 920 

treatments. Both flooding treatments and the Field Capacity-Capillary Rise treatment 921 

showed strong signals of anaerobic respiration, and the agricultural runoff treatments 922 

were higher in ARQ than their DI water counterparts. However, this was not the case 923 

with the Drought-Capillary Rise treatment. The Drought-Capillary Rise-Agricultural 924 

Runoff treatment was lower than its DI counterpart and had a consistently lower ARQ 925 

than the other Silty Clay Loam agricultural runoff treatments, indicating the presence of 926 

more oxygen than other treatments. Additionally, the Field Capacity-Agricultural Runoff 927 

treatments remained somewhat close to their DI water counterparts, with some 928 

covarying peak differences between the agricultural runoff and DI water. This contrasts 929 

heavily with the Drought-Agricultural Runoff treatments, which have ARQ values 930 
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consistently above or below their DI control, depending on the water application method 931 

(Supplemental Material F-24).  932 

 Conversely, the Sandy Loam ARQ values tell a different story. The minimum and 933 

maximum ARQ values are 0.20 and 9.64, respectively, across all treatments. Much like 934 

the Silty Clay Loam soils, all Sandy Loam soils exhibited an anaerobic environment 935 

after the second measurement, with some treatments showing evidence of anaerobic 936 

respiration after the first measurement. In contrast to the Silty Clay Loam soils, the initial 937 

spike in ARQ was overall higher in the Sandy Loam samples. The agricultural runoff 938 

and DI water cores exhibited similar behavior in the ideal Field Capacity-Capillary Rise 939 

treatment. The Field Capacity-Flood-Agricultural Runoff treatment had multiple spikes in 940 

ARQ, similar to the Silty Clay Loam soils. However, both drought treatments exhibited 941 

initial sharp increases in ARQ and significant decreases, with more minor variations in 942 

ARQ over the remainder of the experiment (Supplemental Material F-25).  943 
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 944 

Figure 21: ARQ GAMM results showing boxplot comparisons of each treatment level 945 

and all treatments' interactions on ARQ values.  946 



Clements 53 
 

3.03 Post Incubation Results 947 

3.03.1 Soil pH 948 
 949 

 950 

 951 

 952 

 953 

 954 

 955 

 956 

 957 

 958 

 959 

 960 

 961 

 962 

 963 

 964 

 965 

Key: FC-Field Capacity, D-Drought, F-Flooding, CR-Capillary Rise, Ag-Agricultural Runoff, DI-Deionized Water 966 

Table 7: Soil pH values for the Silty Clay Loam and Sandy Loam Soils 
Silty Clay Loam 

Treatments 
Soil pH pH Standard Error Change in pH 

SiClLo Initial 6.08 - - 
SiClLo-FC-F-Ag 

 
7.32 0.0318 1.24 

SiClLo-FC-F-DI 
 

7.26 0.0173 1.18 

SiClLo-FC-CR-Ag 
 

7.22 0.0088 1.14 

SiClLo-FC-CR-DI 
 

7.27 0.0067 1.19 

SiClLo-D-F-Ag 
 

7.26 0.0186 1.18 

SiClLo-D-F-DI 
 

7.22 0.0088 1.14 

SiClLo-D-CR-Ag 
 

7.22 0.0203 1.14 
 
 

SiClLo-D-CR-DI 
 

7.22 0.0133 1.14 

Sandy Loam 
Treatments 

Soil pH pH Standard Error Change in pH 

SaLo Initial 5.51 - - 
SaLo-FC-F-Ag 

 
7.27 0.0367 1.76 

SaLo-FC-F-DI 
 

7.25 0.0120 1.74 

SaLo-FC-CR-Ag 
 

7.21 0.0115 1.70 

SaLo-FC-CR-DI 
 

7.28 0.0067 1.77 

SaLo-D-F-Ag 
 

7.24 0.0426 1.73 

SaLo-D-F-DI 
 

7.25 0.0120 1.74 

SaLo-D-CR-Ag 
 

7.27 0.0088 1.76 

SaLo-D-CR-DI 
 

7.26 0.0120 1.75 
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Random Forest analysis indicates that water application controls soil pH, with 967 

Moisture Regime and Water Type also providing equally significant effects. Water 968 

Application has the highest increase in node purity, indicating that it has the most 969 

significant impact on controlling soil pH. Soil pH is positively correlated with bioavailable 970 

nitrate and negatively correlated with bioavailable ammonium (Supplemental Material F-971 

2).  972 

Soil pH varied drastically throughout the core experiments. The initial SiClLo soil 973 

pH was 6.08, a neutral soil pH. However, the pH value increased between 1.14 and 974 

1.24 pH units depending on the treatment, with the Field Capacity-Flood-Agricultural 975 

Runoff treatment increasing the most and the two capillary rise and agricultural runoff 976 

treatments increasing the least. In the Sandy Loam soils, the initial pH was 5.51, a 977 

weakly acidic soil. Compared to the Silty Clay Loam soils, however, the pH value of 978 

Sandy Loam soils increased between 1.70 and 1.77, reaching soil pH values similar to 979 

the Silty Clay Loam soils. Standard errors for Sandy Loam and Silty Clay Loam samples 980 

were low (<0.005) (Table 7).  981 

3.03.2 Nitrate and Ammonium KCl Extractions 982 
Random Forest analysis of 500 decision trees indicates that bioavailable nitrate 983 

is most affected by Water Application, Water Type, and Moisture Regime, similar to the 984 

results of the porewater nitrate GAMM (Supplemental Material F-3). Water Type 985 

provides the most significant control on bioavailable nitrate, while Moisture Regime and 986 

Water Application also provide significant effects. Similarly, bioavailable ammonium is 987 

primarily controlled by water type, which has the highest increase in node purity. 988 
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However, our two climate proxies, Moisture Regime and Water Application, were also 989 

significant in controlling bioavailable ammonium (Supplemental Material F-4).  990 

The Silty Clay Loam KCl extraction results provide compelling evidence of a shift 991 

in nitrogen species from ammonium to nitrate throughout the experiment, a pattern 992 

indicative of active nitrification processes in the soil. This shift was observed across all 993 

treatments, with nitrate concentrations increasing from an initial value of 0.004077 g/g 994 

soil to ranges between 0.0686 g/g and 0.1237 g/g soil. The standard errors for these 995 

measurements varied from 0.1596 to 0.2398, indicating a consistent trend despite some 996 

variability. Notably, the Field Capacity-Capillary Rise-DI Water treatment exhibited the 997 

most significant increase in nitrate, with a change (ΔNO3) of 0.1196 g/g soil. 998 

Conversely, ammonium concentrations generally decreased throughout the 999 

experiment, ranging from reductions of 0.0072 mg/g to 0.0178 mg/g soil, as evidenced 1000 

in treatments like the Drought-Capillary Rise-DI Water. The standard errors for these 1001 

decreases were between 2e-4 and 5.2e-3, suggesting a consistent pattern of 1002 

ammonium depletion across the treatments (Table 8). 1003 

Table 8: Silty Clay Loam KCl Extraction Results 
Treatment NO3 g/g soil NO3 Standard 

Error 
ΔNO3 g NH4 mg/g soil NH4 Standard 

Error 
ΔNH4 

SiClLo Initial 0.004077 - - 0.0916 - - 
SiClLo-FC-F-

Ag 
 

0.0575 
 
 

0.1596 0.0534 
 
 

0.0844 0.0004 -0.0072 

SiClLo-FC-F-
DI 
 

0.0686 0.1705 0.0645 
 
 

0.0837 0.0002 -0.0078 

SiClLo-FC-
CR-Ag 

 

0.0863 
 
 

0.1598 0.0822 
 
 

0.0862 0.0014 -0.0054 

SiClLo-FC-
CR-DI 

 

0.1237 
 
 

0.2398 0.1196 
 
 

0.0901 0.0035 -0.0014 

SiClLo-D-F-
Ag 

 

0.0895 
 
 

0.2440 0.0854 
 
 

0.0782 0.0052 -0.0134 
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SiClLo-D-F-
DI 
 

0.0756 
 
 

0.1902 0.0716 
 
 

0.0881 0.0021 -0.0034 

SiClLo-D-CR-
Ag 

 

0.0953 
 
 

0.1951 0.0913 
 
 

0.0836 0.0029 -0.0079 

SiClLo-D-CR-
DI 
 

0.0801 
 
 

0.1467 0.0760 
 
 

0.0738 0.0006 -0.0178 

Key: FC-Field Capacity, D-Drought, F-Flooding, CR-Capillary Rise, Ag-Agricultural Runoff, DI-Deionized Water 1004 

Potassium chloride extractions from the Sandy Loam soils underscore a 1005 

significant trend similar to that observed in the Silty Clay Loam treatments, yet with 1006 

notable distinctions. Initially, the SaLo soils had nitrate and ammonium concentrations 1007 

of 0.006607 g/g and 0.14 mg/g soil, respectively. Ammonium concentrations decreased 1008 

throughout the experiment, mirroring the trend in Silty Clay Loam soils. However, a 1009 

critical difference emerged in the nitrate dynamics. In the Sandy Loam soils, changes in 1010 

nitrate concentrations were more pronounced, ranging from 0.088 g/g soil to 0.1843 g/g 1011 

soil, with final nitrate levels reaching as high as 0.1909 g/g soil. This contrasted with the 1012 

Silty Clay Loam soils, where nitrate increases were less extreme. The standard errors 1013 

for ammonium and nitrate in the Sandy Loam soils ranged between 7e-4 to 9.5e-3 and 1014 

0.07 to 1, respectively (Table 9).  1015 

Table 9: Sandy Loam Soil KCl Extraction Results 
Treatment NO3 g/g soil NO3 Standard 

Error 
ΔNO3 NH4 mg/g soil NH4 Standard 

Error 
ΔNH4 

SaLo Initial 0.006607 - - 0.1383 - - 
SaLo-FC-F-

Ag 
 

0.1000 
 
 

0.1593 0.0934 
 
 

0.1071 0.0132 -0.0312 

SaLo-FC-F-
DI 
 

0.1098 
 
 

0.6232 0.1032 
 
 

0.0905 0.0015 -0.0478 

SaLo-FC-CR-
Ag 

 

0.1909 
 
 

1.0066 0.1843 
 
 

0.0825 0.0007 -0.0558 

SaLo-FC-CR-
DI 
 

0.0965 
 
 

0.1084 0.0899 
 
 

0.0898 0.0095 -0.0485 

SaLo-D-F-Ag 
 

0.1208 
 
 

0.2109 0.1141 
 
 

0.0899 0.0062 -0.0484 

SaLo  0.0948 0.0407 0.0881 0.0915 0.0060 -0.0468 
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-D-F-DI 
 

 
 

 
 

SaLo-D-CR-
Ag 

 

0.1187 
 
 

0.1025 0.1121 
 
 

0.0811 0.0029 -0.0572 

SaLo-D-CR-
DI 
 

0.1103 
 
 

0.0675 0.1037 
 
 

0.0725 0.0025 -0.0658 

Key: FC-Field Capacity, D-Drought, F-Flooding, CR-Capillary Rise, Ag-Agricultural Runoff, DI-Deionized Water 1016 

3.03.3 Iron Redox Cycling 1017 
Random Forest analysis also reveals how different factors impact the Fe(II) and 1018 

Fe(III) concentrations. Fe(II) was most affected by Soil Texture, followed by Water 1019 

Application, Water Type, and Moisture Regime. Fe(III) was also strongly influenced by 1020 

Soil Texture but was followed by Water Type, Water Application, and Moisture Regime, 1021 

which all exhibited similar significance levels (Supplemental Material F-5, F-6). This 1022 

contrasts with Fe(II), where Water Application provided the second most statistically 1023 

significant effect. Additionally, K-means clustering analysis (Supplemental Material F-1024 

10) confirms that Soil Texture provided the most significant control, with higher Fe(II) 1025 

concentrations associated with Silty Clay Loam and high Fe(III) concentrations related 1026 

to SaLo soils (Supplemental Material F-5, F-6).  1027 

The iron species data for the Silty Clay Loam soils provide valuable insights into 1028 

the redox cycling conditions present in the soil. Not only did all treatments indicate a rise 1029 

in total iron concentration, but there are apparent differences between the treatments. 1030 

The Field Capacity-Capillary Rise treatments generally experienced the highest 1031 

increase in Fe(III) and one of the lowest changes in Fe(II). Both Capillary Rise 1032 

treatments had the lowest increase in Fe(II) concentration from the initial values (0.12 1033 

mg/g soil and 0.08 mg/g soil, respectively). In contrast, the Flood treatments 1034 

experienced the most significant increase in Fe(II) concentration from the initial Fe(II) 1035 

value. Of the flooding treatments, the Field Capacity-Flood treatments exhibited the 1036 
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highest concentrations of Fe(II) (0.49 mg/g soil and 0.47 mg/g soil, respectively). The 1037 

same is true of the Field Capacity-Capillary Rise treatments. These treatments have 1038 

higher total extractable iron, extractable Fe(III), and extractable Fe(II)  concentrations 1039 

than their drought counterparts (Table 10).  1040 

Table 10: Silty Clay Loam Iron Redox Cycling Data 
Treatment Fetot 

mg/g 
soil 

Fetot 
Standard 

Error 

ΔFetot Fe(III) 
mg/g 
soil 

Fe(III) 
Standard 

Error 

ΔFe(III) Fe(II)/Fe(III) Fe(II) 
mg/g 
soil 

Fe(II) 
Standard 

Error 

ΔFe(II) 

SiClLo 
Initial 

1.0109 - - 0.7852 - - 0.2875 0.2257 - - 

SiClLo-
FC-F-Ag 

 

2.0413 0.2573 1.0303 1.5525 0.1712 0.7673 0.3148 0.4888 0.0863 
 

0.2630 

SiClLo-
FC-F-DI 

 

2.0239 0.1835 1.0130 1.2404 0.1105 0.4552 0.6317 0.7835 0.2051 0.5578 

SiClLo-
FC-CR-

Ag 
 

2.2305 
 

0.0885 
 
 

1.2196 1.8830 0.1840 1.0978 0.1846 0.3475 0.0964 0.1218 

SiClLo-
FC-CR-DI 

 

2.3525 0.2697 1.3416 1.9498 0.1846 1.1646 0.2066 0.4028 0.1259 0.1770 

SiClLo-D-
F-Ag 

 

2.2169 0.2642 1.2060 1.7490 0.3942 0.9638 0.2675 0.4679 0.1353 0.2422 

SiClLo-D-
F-DI 

 

1.9237 0.2531 0.9128 1.3380 0.0625 0.5528 0.4377 0.5857 0.1906 0.3600 

SiClLo-D-
CR-Ag 

 

1.9131 0.2744 0.9022 1.6023 0.2595 0.8171 0.1940 0.3108 0.0420 0.0851 

SiClLo-D-
CR-DI 

 

2.1884 0.3640 1.1775 1.8876 0.3659 1.1024 0.1594 0.3008 0.0090 0.0751 

Key: FC-Field Capacity, D-Drought, F-Flooding, CR-Capillary Rise, Ag-Agricultural Runoff, DI-Deionized Water 1041 

While the amount of total iron also increased similarly to the Silty Clay Loam 1042 

soils, the Sandy Loam soils were primarily driven by increases in Fe(III). The 1043 

Fe(II)/Fe(III) ratios are significantly decreased compared to the Silty Clay Loam 1044 

treatments. For the Field Capacity-Capillary Rise treatment, the negative change in 1045 

Fe(II) of 14.4 µg/g soil from the initial indicates that some ferrous iron was oxidized into 1046 

ferric iron. Both Drought treatments also possessed the most significant change in total 1047 
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iron, with the Drought-Capillary Rise treatment experiencing the most significant change 1048 

in total iron and ferric iron. Other Sandy Loam soils experienced little change in Fe(II) 1049 

while primarily experiencing changes in Fe(III) (Table 11). 1050 

Table 11: Sandy Loam Iron Redox Cycling Data 
Treatment Fetot 

mg/g 
soil 

Fetot 
Standard 

Error 

ΔFetot Fe(III) 
mg/g 
soil 

Fe(III) 
Standard 

Error 

ΔFe(III) Fe(II)/Fe(III) Fe(II) 
mg/g 
soil 

Fe(II) 
Standard 

Error 

ΔFe(II) 

SaLo 
Initial 

1.7198 - - 1.4998 - - 0.1467 0.2200 - - 

SaLo-FC-
F-Ag 

 

3.4890 0.1207 1.7692 3.2130 0.1267 1.7132 0.0859 0.2760 0.0465 0.0560 

SaLo-FC-
F-DI 

 

3.1331 0.0965 1.4133 2.8983 0.0897 1.3985 0.0810 0.2348 0.0121 0.0148 

SaLo-FC-
CR-Ag 

 

3.0995 
 

0.1412 1.3797 2.8938 0.1337 1.3940 0.0711 0.2056 0.0113 -0.0144 

SaLo-FC-
CR-DI 

 

3.4083 
 
 

0.0662 1.6885 3.2158 0.0748 1.7160 0.0599 0.1925 0.0096 -0.0275 

SaLo-D-
F-Ag 

 

3.5988 0.1984 1.8790 3.3717 0.1844 1.8719 0.0674 0.2271 0.0140 0.0071 

SaLo-D-
F-DI 

 

3.0498 0.0626 1.3300 2.7939 0.0848 1.2941 0.0916 0.2559 0.0548 0.0359 

SaLo-D-
CR-Ag 

 

3.7402 0.0837 2.0204 3.5013 0.0854 2.0015 0.0682 0.2389 0.0159 0.0189 

SaLo-D-
CR-DI 

 

3.6623 0.1730 1.9425 3.4003 0.1443 1.9005 0.0771 0.2620 0.0292 0.0420 

Key: FC-Field Capacity, D-Drought, F-Flooding, CR-Capillary Rise, Ag-Agricultural Runoff, DI-Deionized Water 1051 

3.03.4 Elemental Analysis 1052 
Random Forest analysis reveals which factors affect total N, C, and S in the 1053 

Sandy Loam and Silty Clay Loam soils. Total N is affected most by Water Application, 1054 

then Moisture Regime, Water Type, and Soil Texture. Total C is affected by the same 1055 

factors, but Water Type is the most significant. Total S is also most affected by Water 1056 

Application. Soil Texture had the least effect on all these variables (Supplemental 1057 

Material F-7, F-8, F-9). K-means clustering analysis confirms the Random Forest 1058 

results, with Water Application as the defining factor in all clusters. Flood treatments in 1059 

Silty Clay Loam soils are generally higher in total N, C, and S, while capillary rise 1060 
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treatments in Sandy Loam soils are usually higher in these nutrients (Supplemental 1061 

Material F-7, F-8, F-9). 1062 

Elemental analysis of the Silty Clay Loam soil samples, both pre- and post-1063 

treatment, yielded valuable insights into the treatments' effects on the soils. The initial 1064 

weight percent values of carbon, nitrogen, and sulfur are 0.67%, 0.065%, and 0.098%, 1065 

respectively. Post-treatment analysis revealed a significant increase in the percent 1066 

carbon in the soils, with values ranging from 0.75% to 2.16%. Notably, the drought and 1067 

flooding treatments resulted in the most pronounced changes, exemplified by the silty 1068 

clay loam soil under Drought conditions with DI water applied through Flooding 1069 

treatment, which recorded a dramatic increase in carbon content to 2.16%, representing 1070 

a 220% increase from the initial value. This was followed by the silty clay loam soil 1071 

under Field Capacity conditions with DI water applied through Flooding and the silty clay 1072 

loam soil under Drought conditions with agricultural runoff applied through Capillary 1073 

Rise which showed an 84.69% and 59.51% increase in carbon, respectively. 1074 

Similarly, nitrogen content exhibited substantial increases, most notably in the 1075 

silty clay loam soil under Drought conditions with DI water applied through Flooding 1076 

where nitrogen levels rose by 197.44%. The percent difference in nitrogen across all 1077 

treatments varied from 69% to 197%, with drought and flooding again causing the 1078 

highest increases. Sulfur content changes were more varied, with some treatments like 1079 

the silty clay loam soil under Field Capacity conditions with agricultural runoff applied 1080 

through Flooding, which had an 82.22% increase. In comparison, others like the silty 1081 

clay loam soil under Drought conditions with DI water applied through Capillary Rise 1082 

decreased in sulfur content by 66.50%. 1083 
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The C/N ratios also changed significantly compared to the initial C/N ratio of 1084 

11.19. The range of treatment C/N ratios varied from 5.75 in the silty clay loam soil 1085 

under Field Capacity conditions with agricultural runoff applied through Flooding to 1086 

11.60 in the silty clay loam soil under Drought conditions with DI water applied through. 1087 

These shifts in C/N ratios indicate a notable impact of the treatments on the nutrient 1088 

balance in the soil. The analysis underscores the profound effect of changing the 1089 

Moisture Regime and Water Application, particularly under extreme conditions like 1090 

drought and flooding, on the soil's elemental composition (Table 12). 1091 

Table 12: Silty Clay Loam Elemental Analysis Results 
Treatment %C %C 

Standard 
Error 

% 
Difference 

C 

%N %N 
Standard 

Error 

% 
Difference 

N 

C/N 
Ratio 

%S %S 
Standard 

Error 

% 
Difference 

S 

SiClLo 
Initial 

0.6750 0.0050 - 0.0650 0.0050 - 11.1915 0.0975 0.0185 - 

SiClLo-
FC-F-Ag 

 

0.7567 0.0775 12.0988 0.1333 0.0067 105.1282 5.7480 0.1777 0.1282 82.2222 

SiClLo-
FC-F-DI 

 

1.2467 0.0733 84.6914 0.1733 0.0088 166.6667 7.2035 0.0467 0.0030 -52.1368 

SiClLo-
FC-CR-

Ag 
 

1.0767 0.1920 59.5062 0.1167 0.0176 79.4872 9.8220 0.0343 0.0035 -64.7863 

SiClLo-
FC-CR-DI 

 

1.2233 0.2367 81.2346 0.1133 0.0167 74.3590 10.6884 0.0363 0.0042 -62.7350 

SiClLo-D-
F-Ag 

 

1.2400 0.3570 83.7037 0.1100 0.0252 69.2308 10.7770 0.0357 0.0058 -63.4188 

SiClLo-D-
F-DI 

 

2.1600 0.7497 220.0000 0.1933 0.0754 197.4359 11.5976 0.1307 0.0822 34.0171 

SiClLo-D-
CR-Ag 

 

1.0200 0.4606 51.1111 0.0867 0.0318 33.3333 11.3608 0.0327 0.0032 -66.4957 

SiClLo-D-
CR-DI 

 

0.9667 0.3598 43.2099 0.0833 0.0260 28.2051 11.1457 0.0337 0.0039 -65.4701 

Key: FC-Field Capacity, D-Drought, F-Flooding, CR-Capillary Rise, Ag-Agricultural Runoff, DI-Deionized Water 1092 

Meanwhile, the Sandy Loam soil samples indicate the effects of the treatments 1093 

on soils. The initial values of carbon, nitrogen, and sulfur are 0.77%, 0.075%, and 1094 
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0.046% respectively. The analysis post-treatment revealed that the percent difference in 1095 

carbon varied significantly across treatments, ranging from a modest increase of 3.46% 1096 

in the sandy loam soil under Field Capacity conditions with DI water applied through 1097 

Capillary Rise to a substantial increase of 228% in the sandy loam soil under Field 1098 

Capacity conditions with agricultural runoff applied through Capillary Rise, with final 1099 

carbon values reaching up to 2.38%. Similarly, nitrogen content changes were notable, 1100 

ranging from an increase of 0.14% in the sandy loam soil under Drought conditions with 1101 

DI water applied through Flooding to a dramatic increase of 224% in the sandy loam soil 1102 

under Field Capacity conditions with agricultural runoff applied through Capillary Rise 1103 

with final nitrogen values peaking at 0.24%. 1104 

Sulfur content also exhibited significant variability, with the percent difference 1105 

ranging from a decrease of 35.51% in the sandy loam soil under Drought conditions 1106 

with DI water applied through Flooding to an increase of 184% in the sandy loam soil 1107 

under Drought conditions with DI water applied through Capillary Rise, bringing the final 1108 

sulfur values to a range between 0.03% and 0.13%. In contrast to the SiClLo soils, the 1109 

capillary rise treatments, particularly in the SaLo soils, showed the most pronounced 1110 

increase in total carbon, nitrogen, and sulfur throughout the experiment. For example, 1111 

the sandy loam soil under Field Capacity conditions with agricultural runoff applied 1112 

through Capillary Rise not only led to the highest increase in carbon but also in nitrogen 1113 

and sulfur, suggesting a distinct impact of this treatment on the soil (Table 13). 1114 

Table 13: Sandy Loam Elemental Analysis Results 
Treatment %C %C 

Standard 
Error 

% 
Difference 

C 

%N %N 
Standard 

Error 

% 
Difference 

N 

C/N 
Ratio 

%S %S 
Standard 

Error 

% 
Difference 

S 

SaLo 
Initial 

0.7700 0.0400 - 0.0750 0.0050 - 10.3814 0.0460 0.0020 - 
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SaLo-FC-
F-Ag 

 

1.0300 0.2901 33.7662 0.0967 0.0219 28.8889 10.7065 0.0343 0.0038 -25.3623 

SaLo-FC-
F-DI 

 

1.0233 0.1534 32.9004 0.0933 0.0133 24.4444 10.9616 0.0303 0.0767 -34.0580 

SaLo-FC-
CR-Ag 

 

2.5267 1.5639 228.1385 0.2433 0.1543 224.4444 10.6521 0.1257 0.0746 173.1884 

SaLo-FC-
CR-DI 

 

0.7967 0.0441 3.4632 0.0767 0.0067 2.2222 10.4829 0.0320 0.0012 -30.4348 

SaLo-D-
F-Ag 

 

0.8567 0.0606 11.2554 0.0800 0.0058 6.6667 10.6386 0.0310 0.0012 -32.6087 

SaLo-D-
F-DI 

 

0.8300 0.1212 7.7922 0.0800 0.0100 6.6667 10.1686 0.0297 0.0032 -35.5072 

SaLo-D-
CR-Ag 

 

0.9500 0.1332 23.3766 0.0900 0.0100 20.0000 10.5887 0.0350 0.0765 -23.9130 

SaLo-D-
CR-DI 

 

2.3800 1.3506 209.0909 0.2133 0.1102 0.1383 10.7574 0.1307 0.0847 184.0580 

Key: FC-Field Capacity, D-Drought, F-Flooding, CR-Capillary Rise, Ag-Agricultural Runoff, DI-Deionized Water 1115 

3.03.5 Nitrogen Mass Balance 1116 
Our nitrogen mass balance results provide an indication as to how our two 1117 

climate proxies, Moisture Regime and Water Application, affect N cycling in riparian 1118 

soils. Throughout the incubations, we applied 58.53 mg of NO3
- to the treatments 1119 

involving simulated agricultural runoff. Increases in Total N were primarily driven by an 1120 

increase in bioavailable nitrate, which was partially countered by decreases in 1121 

bioavailable ammonium and soil organic nitrogen (SON). The Sandy Loam treatments 1122 

experienced greater losses in NH4
+ than the Silty Clay Loam treatments. Critically, most 1123 

of the treatments that experienced some form of simulated climate change (drought, 1124 

flooding, or the combined effect) lost more SON than treatments that were not subjected 1125 

to simulated climate change. The exception to this is the Silty Clay Loam soil at Field 1126 

Capacity conditions experiencing Flooding, which had an increase of 5.24 g of SON 1127 

(Figure 22). 1128 
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 1129 

Figure 22: Nitrogen Mass Balance Pre- and Post-Treatment showing changes in each major N 1130 

pool (Total N, NO3
-, NH4

+, Soil Organic Nitrogen) over the course of the experiment. 1131 

Key: SiClLo-Silty Clay Loam, SaLo-Sandy Loam, FC-Field Capacity, D-Drought, F-Flooding, CR-Capillary Rise, Ag-1132 

Agricultural Runoff, DI-Deionized Water 1133 

4. Discussion 1134 

4.01 Overview 1135 
Our results suggest that riparian soils will be less effective at removing N but 1136 

better at removing P in the drier climate predicted for much of the Southern Plains of the 1137 

United States. As drought conditions worsen throughout the region, oxygen can diffuse 1138 

further into the soil. This will prevent complete denitrification, leading to the production 1139 

of N2O, a potent greenhouse gas. However, drought conditions will benefit P removal 1140 

since oxygen will no longer be a limiting variable in P sorption. Critically, infrequent but 1141 
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intense precipitation events, also predicted under future climate scenarios, can 1142 

temporarily waterlog riparian soils, which will induce temporary anaerobic conditions. 1143 

These conditions will force microbial populations to use Fe as a terminal electron 1144 

acceptor, reducing the iron from Fe(III) to Fe(II) and allowing P to leach to soil pore 1145 

water. Clay-rich soils will be more efficient at removing N than sandier soils, but sandier 1146 

soils will be more likely to retain sorbed P during intense precipitation. The clay-rich 1147 

soils limit oxygen diffusion and retain more water, which favors denitrification. 1148 

Conversely, the sandier soils allow greater oxygen diffusion, which favors P sorption. 1149 

4.02 The Effects of Climate Change on Riparian Denitrification 1150 
We analyzed the influence of soil moisture, precipitation, and soil texture on 1151 

nitrogen cycling within riparian buffer soils. In riparian buffers, denitrification under field 1152 

capacity scenarios is already a well-researched process (Burgin & Groffman, 2012; 1153 

Vidon et al., 2018; Pandey et al., 2020). Our results reaffirm that soils at field capacity 1154 

are the most efficient in removing nitrate due to their optimal moisture content, 1155 

facilitating microbial processes such as denitrification in the smallest, water-filled pores. 1156 

However, during drought conditions, the soil's capacity for nitrate removal is reduced 1157 

due to inhibited denitrification pathways brought on by increased oxygen diffusion into 1158 

the soil profile. While this change in soil moisture does change when nitrate is leached, 1159 

it also results in pore water concentrations that are higher in nitrate (Figure 18, 1160 

Supplemental Material F-18-F-19). The intense precipitation associated with flooding 1161 

exacerbates nitrate leaching, flushing nitrate from the soil before it can be fully 1162 

denitrified. Statistical analyses corroborate that Moisture Regime and Water Application, 1163 

our two climate proxies, were statistically significant in determining nitrate and 1164 

ammonium concentrations (Tables 3, 4, Supplemental Material F-3, F-4). Therefore, as 1165 
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soil moisture regimes in Oklahoma shift towards drought and precipitation becomes less 1166 

frequent but more intense, riparian soils should remove less nitrate from surface runoff.  1167 

 The clay minerals identified in the XRD analysis (Figure 16), primarily smectites 1168 

and illites, are crucial in controlling nitrogen concentrations. Prior studies have shown 1169 

that clay minerals limit oxygen diffusion under field capacity conditions, which allows 1170 

microbes to switch to nitrate as an alternate terminal electron acceptor. (Cahoon et al., 1171 

2011; Burgin & Groffman, 2012; Keiluweit et al., 2018). Additionally, 2:1 clay minerals 1172 

can immobilize ammonium through interlayer cation exchange (Doram & Evans, 1983). 1173 

Our data show that clay content significantly controls nitrate and ammonium pore water 1174 

concentrations (Figures 18-19; Supplemental Material F-18-F-21; Tables 3, 4). This 1175 

control on nitrogen concentrations occurs through the interlayer cation exchange 1176 

capacity for ammonium, coupled with clay minerals’ ability to restrict oxygen diffusion—1177 

thereby facilitating nitrate reduction under low-oxygen conditions.  1178 

Our data also demonstrate that sandier soils, consistent with previous cultivation, 1179 

result in soils that are increasingly unable to regulate nitrate and ammonium 1180 

concentrations, a phenomenon that is notably more pronounced during drought 1181 

(Supplemental Material F-19, F-21; Tables 3, 4). Therefore, restored riparian buffers, 1182 

although beneficial, do not function with the same efficacy as their untouched 1183 

counterparts. 1184 

Additionally, our results present limited evidence consistent with dissimilatory 1185 

nitrate reduction to ammonium (DNRA). Previous findings on DNRA support that it can 1186 

occur within riparian buffers in tropical environments (Davis et al., 2008; Fridel et al., 1187 

2018; Pandey et al., 2020). However, our results indicate that DNRA may also be 1188 
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necessary for N cycling in subtropical environments. We observed significant decreases 1189 

in nitrate concentrations and subsequent immediate increases in ammonium 1190 

concentrations, with differences by climate regime. However, the difference between 1191 

nitrate and ammonium porewater concentrations were four orders of magnitude apart, 1192 

with around 1 mg/L of ammonium for every 1 g/L of nitrate. Specifically, the Silty Clay 1193 

Loam soils undergoing Flooding with Agricultural Runoff and the Sandy Loam Soils 1194 

under Field Capacity moisture conditions with Agricultural Runoff applied through 1195 

Capillary Rise treatments exhibit decreases in porewater nitrate and subsequent 1196 

increases in porewater ammonium (Figures 19-22). Additionally, post hoc Wald tests 1197 

indicate that ammonium concentrations are partially dependent on Water Type, which 1198 

also lends credence to the existence of DNRA as we did not add ammonium fertilizer to 1199 

our simulated agricultural runoff. Our results also indicate a smaller decline in 1200 

bioavailable ammonium levels than the significant increase in bioavailable nitrate after 1201 

KCl extractions (Tables 8, 9). The ammonium must have another source since the 1202 

agricultural runoff only contained nitrate and phosphate fertilizers. We propose that 1203 

ammonium is replenished from the soil organic nitrogen pool and through DNRA 1204 

derived from the nitrate in the simulated runoff. This effect is further corroborated by the 1205 

high ARQ values (Supplemental Material F-23, F-24), consistent with anaerobic 1206 

respiration and soil organic matter mineralization. However, this process occurs to a 1207 

lesser extent under drought conditions and in sandier soils due to increased oxygen 1208 

diffusion, which disrupts the low-oxygen environment typically needed for effective 1209 

denitrification. 1210 
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Elemental analysis indicates that under drought conditions, less nitrogen is fixed 1211 

compared to field capacity samples, influencing the amount of soil organic nitrogen 1212 

(SON) and inorganic nitrogen available for the conversion to ammonium. (Figure 22; 1213 

Tables 12, 13; Equations 6-8). These reactions are consistent with the weakly acidic soil 1214 

and pore water pH levels observed during the experiment (Tables 2, 3, 7; Figure 6; 1215 

Supplemental Material F-16, F-17).  1216 

Consequently, nitrogen cycling in riparian buffers will be affected by changes in 1217 

moisture regime and water application brought on by anthropogenic climate change. 1218 

The intricate interplay between soil physical properties, microbial activity, and 1219 

environmental conditions shapes the efficiency of nitrate removal processes. Notably, 1220 

under varying moisture regimes, the capacity of riparian soils to regulate nitrogen 1221 

concentrations is affected, with diminished efficacy during Drought conditions and 1222 

intense precipitation events for the silty clay loam soils. Sandier soils, however, have 1223 

diminished nitrogen removal capacity during Field Capacity and Capillary Rise 1224 

conditions (Figure 22). These findings highlight the importance of preserving soil 1225 

structures and carefully considering land-use practices in managing riparian buffers. As 1226 

climate change continues to alter precipitation patterns and soil moisture regimes, 1227 

understanding and adapting to these changes will be essential for maintaining these 1228 

critical systems’ ecological integrity and functionality. Our research contributes valuable 1229 

insights into these dynamics, offering a foundation for future studies and strategies to 1230 

enhance riparian buffer efficiency in the face of evolving environmental challenges. 1231 
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4.03 The Effects of Climate Change on Riparian Phosphorus Sorption 1232 

 Oxygen diffusion rates, clay mineral content, and short-range order (SRO) iron 1233 

and aluminum oxides influence phosphorus sorption in soils. Our study aligns with 1234 

existing research (Pote et al., 1996; Sharpley & Smith, 1996; Sharpley & Smith, 2009; 1235 

Andersson et al., 2013; Asomaning, 2020), which suggests that the increased oxygen 1236 

diffusion and intense flooding events predicted in future climate scenarios significantly 1237 

impact phosphorus cycling in soils. In drought conditions, phosphorus sorption is 1238 

enhanced due to increased oxygen diffusion, which facilitates binding to clays and metal 1239 

oxy(hydr)oxides. This observation confirms that drier soil conditions predicted in future 1240 

climate scenarios are more conducive to phosphate retention. 1241 

Interestingly, our data also show that the clay-rich soils generally exhibit good 1242 

phosphorus sorption capacity with their soil texture, confirmed by statistical analyses 1243 

(Figure 20; Table 5; Supplemental Material F-22, F-23). However, their performance 1244 

notably diminishes during flooding events, where significant amounts of pore water 1245 

phosphate are present (Supplemental Material F-22). The intense flooding allowed 1246 

phosphorus sorbed onto the edges of clay minerals and SRO oxides to re-enter the 1247 

solution in an anaerobic environment (Supplemental Material F-24, F-25) and leach out 1248 

of the soil. During these events, phosphate leaching from SRO oxides and clay minerals 1249 

highlights a critical vulnerability. With climate change increasing flooding intensity, there 1250 

is a high risk of escalated phosphate contamination in surface waters.  1251 

The texture of these sandier soils also differs significantly from the clay-rich soils, 1252 

primarily due to the reduced presence of clay minerals. In the context of phosphorus 1253 

cycling, the fewer clay minerals in the sandier soils impact how phosphorus interacts 1254 
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with the soil. Despite the decrease in these minerals, their role remains pivotal in 1255 

phosphorus sorption. However, short-range order (SRO) iron and aluminum oxides do 1256 

compensate for these soils' limited clay minerals, as evidenced by the higher increases 1257 

in 0.5 M HCl-extractable Fe (II) and Fe(III) in the sandier soils (Tables 10, 11). These 1258 

oxides can effectively bind phosphorus, even in small quantities, reducing its mobility in 1259 

soil pore water. Although these sandier soils contain fewer clay minerals, the increased 1260 

oxygen diffusion brought on by increased macroporosity and drought compensates by 1261 

facilitating more efficient phosphorus sorption in the sandier soils (Supplemental 1262 

Material F-24, F-25; Table 5).  1263 

In our study, soils at field capacity, considered ideal for many soil functions, 1264 

performed poorly regarding phosphorus sorption. This is likely due to limited oxygen 1265 

diffusion in these conditions, which hampers phosphorus binding to soil particles 1266 

(Supplemental Material F-22, F-24, F-25). Furthermore, flooding exacerbated 1267 

phosphorus release, producing higher phosphate concentrations in the solution. This 1268 

aligns with the observed tendency of flooded soils to release bound nutrients. This 1269 

factor becomes increasingly important considering the impacts of predicted climate 1270 

scenarios, changes in moisture regime, and water application on soil phosphorus 1271 

availability (Supplemental Material F-22, F-23). Statistical analyses support this, with the 1272 

interaction of Land Use and Water Application providing the most significant effect on 1273 

the sandy and clay-rich soils (Table 5). These findings are significant because high 1274 

phosphate concentrations could leach out of soil depending on the rainfall during these 1275 

flooding events.  1276 
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4.04 The Effects of Climate Change on Riparian Iron Redox Cycling 1277 
 Iron cycling through oxidation and reduction is an essential biogeochemical 1278 

process that plays a significant role in soil's cycling of nutrients, carbon, and nitrogen, 1279 

even under future climate scenarios. Their Gibbs Free Energy indicates that iron-based 1280 

compounds are less favored as terminal electron acceptors than nitrate and manganese 1281 

compounds, offering lower energy yields. (Patrick & Jugsujinda, 1992; Rissmann, 2011; 1282 

Hodges et al., 2019b). Iron and sulfur are also biogeochemically linked since sulfur can 1283 

act as a reducing agent for iron in anaerobic soils (Li et al., 2012). Additionally, previous 1284 

research has identified that high concentrations of Fe(II) are linked with increasing rates 1285 

of DNRA in anaerobic soils (Pandey et al., 2020). Clay minerals are also hubs for iron 1286 

redox cycling, particularly 2:1 clay minerals like smectites and illites (Shelobolina et al., 1287 

2012).  1288 

However, the predicted changes in soil moisture and water application should 1289 

affect iron redox cycling, like other biogeochemical cycles. Our data indicate that 1290 

decreased soil moisture favors the formation of extractable Fe(III) over extractable Fe(II) 1291 

due to increased oxygen diffusion brought on by drought, which lowers ARQ (Tables 10, 1292 

11; Figures 25, 26). Conversely, field capacity and flooded and clay-rich samples favor 1293 

the formation of Fe(II) over Fe(III) due to the reduced oxygen diffusion rate in water and 1294 

clay minerals. These data are consistent with other research on anoxic soils, indicating 1295 

that the riparian zone exhibits reducing conditions under these climate proxies.  1296 

Further expanding on the role of iron, our research has revealed that higher 1297 

concentrations of 0.5 M HCl-extractable Fe(II) are consistently found in clay-rich soils 1298 

experiencing drought and flooding conditions. This observation provides additional 1299 
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support for a potential link between extractable Fe(II) prevalence and the process of 1300 

dissimilatory nitrate reduction to ammonium (DNRA), as suggested by Pandey et al. 1301 

(2020). Increased extractable Fe(II) concentrations and ARQ values (Tables 10, 11; 1302 

Supplemental Material F-24, F-25) in the flooded and field capacity soils indicate a 1303 

reducing, anaerobic environment favoring DNRA activity. These findings highlight the 1304 

intricate relationship between soil conditions, iron redox cycling, and nitrogen 1305 

transformations. 1306 

Therefore, iron redox cycling, like other biogeochemical cycles, is susceptible to 1307 

changes in soil moisture and water application patterns, as predicted under future 1308 

climate scenarios. Our data show that reduced soil moisture conditions, often 1309 

associated with drought, promote the formation of Fe(III) over Fe(II) due to increased 1310 

oxygen diffusion. This aligns with previous work, which states that extractable Fe(II) 1311 

content increases as precipitation amounts increase (Hodges et al., 2019b). In contrast, 1312 

field capacity and flooded and clay-rich soils favor the formation of Fe(II) over Fe(III), 1313 

which is attributable to the reduced rate of oxygen diffusion in temporarily water-1314 

saturated and clay-rich environments. 1315 

4.05 The Ferrous Wheel Hypothesis 1316 
 The Ferrous Wheel Hypothesis is a controversial hypothesis that states that 1317 

nitrate is abiotically reduced to nitrite by Fe(II) oxidizing to Fe(III). Fe(III) then acts as an 1318 

oxidizing agent for organic carbon, and the cycle repeats (Davidson et al., 2003). This 1319 

hypothesis is heavily debated, with some research arguing that it exists strictly as an 1320 

abiotic mechanism (Matus et al., 2019) and some research arguing that it simply does 1321 

not exist (Colman et al., 2008; Schmidt & Matzner, 2009). Using our bioavailable nitrate 1322 
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and iron redox cycling data, we provide evidence for the Ferrous Wheel Hypothesis 1323 

outside the stable isotope analyses used in other studies.  1324 

 Our Silty Clay Loam soil samples with Capillary Rise water application indicate 1325 

some evidence for the Ferrous Wheel Hypothesis, the reduction of nitrate to nitrite 1326 

coupled with Fe(II) oxidation. These samples have relatively high concentrations of 1327 

extractable Fe(II) and nitrate but low concentrations of extractable Fe(III) (Tables 10, 1328 

11). As our ARQ data, which is consistently above 1, signifying there is more CO2 1329 

present than O2 (Supplemental Material F-24, F-25) indicates, anaerobic respiration is 1330 

occurring, suggesting that any present extractable Fe (III) must have been oxidized from 1331 

Fe(II) by the slightly less energetically favorable, but more plentiful terminal electron 1332 

acceptor, nitrate. This is consistent with the previously established Ferrous Wheel 1333 

pathways (Matus et al., 2019). Under drought conditions, the amount of extractable 1334 

Fe(II) is lower compared to field capacity conditions, but the trends are still the same 1335 

(Supplemental Material F-5, F-6). Similar trends under different moisture regimes 1336 

indicate that if the Ferrous Wheel exists, it is only slightly affected by changes in the 1337 

moisture regime. However, a change in water application does appear to eliminate the 1338 

Ferrous Wheel. Changes in nitrate leaching brought on by flooding prevent nitrate from 1339 

remaining in the soil long enough to be reduced to nitrite by Fe(II). This correlates with 1340 

our denitrification data, where complete denitrification to N2 cannot occur due to the 1341 

increased precipitation leaching nitrate more frequently.  1342 

 However, our work has some critical limitations related to the Ferrous Wheel 1343 

Hypothesis. Since we did not use 18O and 15N isotope measurements, we cannot 1344 

calculate the direct amount of oxygen from nitrate incorporated into Fe(OH)3 and how 1345 
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much nitrogen is incorporated into the dissolved organic nitrogen (DON) pool. 1346 

Regardless, our data indicate some evidence for the existence of the Ferrous Wheel 1347 

Hypothesis as an abiotic or biotic mechanism.  1348 

5. Conclusions, Implications & Future Directions 1349 

 Our results indicate that predicted changes in soil moisture and water application 1350 

affect vital biogeochemical cycles, namely the nitrogen, phosphorus, and iron redox 1351 

cycles. Drought and flooding conditions cause significant increases in nitrate in soil pore 1352 

water during leaching events, particularly in previously cultivated riparian zones. 1353 

Denitrification capacity is reduced under drought conditions due to increased oxygen 1354 

diffusion. Clay minerals in clay-rich soils also help mediate ammonium concentrations in 1355 

soil pore water. However, phosphorus sorption improves under the predicted drought 1356 

conditions. This effect is due to the increased oxygen diffusion present in drought 1357 

conditions. Clay minerals also drive phosphorus sorption in clay-rich soils, while oxygen 1358 

diffusion and SRO oxides are the primary drivers of phosphorus sorption in sandier 1359 

soils. Phosphorus is primarily released through leaching events caused by flooding, 1360 

especially in Silty Clay Loam soils. Additionally, drought conditions favor the formation 1361 

of extractable Fe(III) over Fe(II) due to increased oxygen diffusion. Finally, our data 1362 

indicate limited evidence for the Ferrous Wheel Hypothesis based on the amount of 1363 

Fe(III) present in anaerobic conditions in clay-rich soils based on the ARQ, nitrate, and 1364 

ammonium data we collected.  1365 

These data and findings provide wide-ranging implications for riparian buffer 1366 

research. While some studies have investigated how soils will be affected by climate 1367 
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change and other studies have investigated riparian biogeochemical cycling, this 1368 

research provides a unique perspective on how biogeochemical cycles in riparian 1369 

buffers will function under the predicted changes in climate. By exploring this 1370 

intersection, we have provided strong evidence that the predicted changes in climate 1371 

will result in more nitrate entering surface waters but could decrease the amount of 1372 

phosphate entering the same surface waters. Furthermore, our data indicate that DNRA 1373 

occurs in subtropical soils. Additionally, our data that support the Ferrous Wheel 1374 

Hypothesis further link the biogeochemical cycles of nitrogen and iron. Our data and 1375 

conclusions will help biogeochemical modelers refine riparian, agricultural, and wetland 1376 

models and incorporate future climate scenarios into those models. Likewise, our 1377 

research adds to the growing bodies of literature regarding riparian buffer zones and the 1378 

effects of future climate scenarios on soils. Our research underscores how critical 1379 

riparian buffers are to soil health and water quality, even in future climate scenarios.  1380 

These findings also present numerous future directions to build upon this 1381 

research. Future work should ideally focus on transforming the lab-based experiment 1382 

found here into a field-based experiment. Moving to a field-based experiment will help 1383 

evaluate the intersection of seasonality, changes in soil moisture, and water application. 1384 

Furthermore, a field-based experiment would help determine which lab-based scenario 1385 

most accurately represents current field conditions. Additionally, testing predicted 1386 

temperature increases and changes in soil moisture and water application in a lab-1387 

based experiment could yield more insights into how predicted climate scenarios will 1388 

affect the riparian biogeochemical cycles tested here. Finally, future work could focus on 1389 

additional proof for the Ferrous Wheel Hypothesis. By recreating this lab-based 1390 
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experiment and using 18O and 15N stable isotope measurements, future work can 1391 

determine how much Fe(II) is reducing nitrate based on the subsequent inclusion of 18O 1392 

into Fe(OH)3. Furthermore, 15N measurements can help determine how much NO3-N is 1393 

recycled through DNRA.  1394 

6. Acknowledgements & Declaration of Competing Interest 1395 

 This research was funded through USDA Grant #2020-67034-31716 and the 1396 

University of Oklahoma Mewbourne College of Earth and Energy. We want to thank 1397 

Brittany Moehnke and Tiffany Legg for their assistance in sampling this research. We 1398 

would also like to thank Dr. Andrew Elwood-Madden, who assisted with the Powder 1399 

XRD portion of this research and reviewed this manuscript, and Dr. Kato Dee, who also 1400 

reviewed this manuscript. Additionally, we would like to thank Dr. Claire Curry for her 1401 

advice regarding statistical models and Joseph Nabonne for permission to use the 1402 

Lexington WMA. We declare no competing interests.  1403 

7. References 1404 
Abbas, F., Hammad, H., Ishaq, W., Farooque, A., Bakhat, H., Zia, Z., . . . Cerdà, A. (2020). A 1405 

review of soil carbon dynamics resulting from agricultural practices. Journal of 1406 
Environmental Management. 1407 

Aguiar Jr., T., Raseraa, K., Parronc, L., Brito, A., & Ferreira, M. (2015). Nutrient removal 1408 
effectiveness by riparian buffer zones in rural temperate watersheds: The impact of 1409 
no-till crops practices. Agricultural Water Management, 74-80. 1410 

Andersson, H., Bergström, L., Djodjic, F., Ulén, B., & Kirchmann, H. (2013). Topsoil and 1411 
Subsoil Properties Influence Phosphorus Leaching from Four Agricultural Soils. 1412 
Journal of Environmental Quality, 455-463. 1413 

Angert, A., Yakir, D., Rodeghiero, M., Preisler, Y., Davidson, E., & Weiner, T. (2015). Using 1414 
O2 to study the relationships between soil CO2 efflux and soil respiration. 1415 
Biogeosciences, 2089-2099. 1416 



Clements 77 
 

Asomaning, S. (2020). Processes and Factors Affecting Phosphorus Sorption in Soils. In G. 1417 
a. Kyzas, Sorption in 2020s. InTechOpen. 1418 

Baas, P., Knoepp, J., & Mohan, J. (2019). Well-Aerated Southern Appalachian Forest Soils 1419 
Demonstrate Significant Potential for Gaseous Nitrogen Loss. Forests. 1420 

Bunaciu, A., UdriŞTioiu, E., & Aboul-Enein, H. (2015). X-Ray Diffraction: Instrumentation 1421 
and Applications. Critical Reviews in Analytical Chemistry. 1422 

Burgin, A., & Groffman, P. (2012). Soil O2 controls denitrification rate and N2O yield in a 1423 
riparian wetland. Journal of Geophysical Research-Atmospheres. 1424 

Cahoon, D., Perez, B., Segura, B., & Lynch, J. (2011). Elevation trends and shrink–swell 1425 
response of wetland soils to flooding and drying. Estuarine, Coastal and Shelf 1426 
Science, 463-474. 1427 

Change, I. P. (2021). Climate Change 2021: The Physical Science Basis. Geneva: United 1428 
Nations. 1429 

Chauhan, A., & Chauhan, P. (2014). Powder XRD Technique and its Applications in Science 1430 
and Technology. Journal of Analytical and Bioanalytical Techniques. 1431 

Colman, B., Fierer, N., & Schimel, J. (2008). Abiotic nitrate incorporation, anaerobic 1432 
microsites, and the ferrous wheel. Biogeochemistry, 223-227. 1433 

Curtin, D., Campbell, C., & Jalil, A. (1998). Effects of acidity on mineralization: pH-1434 
dependence of organic matter mineralization in weakly acidic soils. Soil Biology and 1435 
Biochemistry, 57-64. 1436 

Data, I. C. (2023). JADE Pro. Livermore, California. 1437 

David, M., Schindler, S., Mitchell, M., & Strick, J. (1983). Importance of organic and 1438 
inorganic sulfur to mineralization processes in a forest soil. Soil Biology and 1439 
Biochemistry, 671-677. 1440 

Davidson, E., Chorover, J., & Dail, D. (2003). A mechanism of abiotic immobilization of 1441 
nitrate in forest ecosystems: the ferrous wheel hypothesis. Global Change Biology. 1442 

Davis, J., Griffith, S., Horwath, W., Steiner, J., & Myrold, D. (2008). Denitrification and 1443 
Nitrate Consumption in an Herbaceous Riparian Area and Perennial Ryegrass Seed 1444 
Cropping System. Soil Science Society of America Jorunal, 1299-1310. 1445 

Devau, N., Le Cadre, E., Hinsinger, P., Jaillard, B., & Gerard, F. (2009). Soil pH controls the 1446 
environmental availability of phosphorus: Experimental and mechanistic modelling 1447 
approaches. Applied Geochemistry, 2163-2174. 1448 



Clements 78 
 

Doane, T., & Horwath, W. (2003). Spectrophotometric Determination of Nitrate with a 1449 
Single Reagent. Analytical Letters. 1450 

Eckert, D., & Sims, J. (2009). Recommended Soil pH and Lime Requirement Tests. 1451 
Recommended Soil Testing Procedures for the Northeastern United States. 1452 

Friedl, J., De Rosa, D., Rowlings, D., Grace, P., Müller, C., & Scheer, C. (2018). 1453 
Dissimilatory nitrate reduction to ammonium (DNRA), not denitrification dominates 1454 
nitrate reduction in subtropical pasture soils upon rewetting. Soil Biology and 1455 
Biochemistry, 340-349. 1456 

Gates-Rector, S., & Blanton, T. (2019). The powder diffraction file: a quality materials 1457 
characterization database. Powder Diffraction, 352-360. 1458 

Hodges, C., Kim, H., Brantley, S. L., & Kaye, J. (2019a). Soil CO2 and O2 Concentrations 1459 
Illuminate the Relative Importance of Weathering and Respiration to Seasonal Soil 1460 
Gas Fluctuations. Soil Science Society of America Journal, 1167-1180. 1461 

Hodges, C., Mallard, J., Markewitz, D., Barcellos, D., & Thompson, A. (2019b). Seasonal 1462 
and spatial variation in the potential for iron reduction in soils of the Southeastern 1463 
Piedmont of the US. Catena. 1464 

Hou, L., Liu, M., Carini, S., & Gardner, W. (2012). Transformation and fate of nitrate near 1465 
the sediment–water interface of Copano Bay. Continental Shelf Research. 1466 

Huang, W., & Hall, S. (2017). Optimized high-throughput methods for quantifying iron 1467 
biogeochemical dynamics in soil. Geoderma. 1468 

Kahle, M., Kleber, M., & Jahn, R. (2002). Predicting carbon content in illitic clay fractions 1469 
from surface area, cation exchange capacity and dithionite-extractable iron. 1470 
European Journal of Soil Science. 1471 

Keeney, D., & Nelson, D. (1982). Nitrogen-inorganic forms. Methods of soil analysis: Part 2. 1472 
Chemical and microbiological properties. ASA Monograph Number 9., 643-698. 1473 

Keiluweit, M., Gee, K., Denney, A., & Fendorf, S. (2018). Anoxic microsites in upland soils 1474 
dominantly controlled by clay content. Soil Biology and Biochemistry, 42-50. 1475 

Li, Y., Yu, S., Strong, J., & Wang, H. (2012). Are the biogeochemical cycles of carbon, 1476 
nitrogen, sulfur, and phosphorus driven by the “Fe(III)–Fe(II) redox wheel” in 1477 
dynamic redox environments? Journal of Soils and Sediments, 683-693. 1478 

Liaw, A. (2022). Breiman and Cutler's Random Forests for Classification and Regression. 1479 
Retrieved from https://cran.r-1480 
project.org/web/packages/randomForest/randomForest.pdf 1481 



Clements 79 
 

Luo, W., Dijkstra, F., Bai, E., Feng, J., Tao-Lu, X., Wang, C., . . . Yong, J. (2015). A threshold 1482 
reveals decoupled relationship of sulfur with carbon and nitrogen in soils across 1483 
arid and semi-arid grasslands in northern China. Biogeochemistry, 141-153. 1484 

Martin, T. K. (1999). Review: Denitrification in Temperate Climate Riparian Zones. Water, 1485 
Air, and Soil Pollution, 171-186. 1486 

Matus, F., Stock, S., Eschenbach, W., Dyckmans, J., Merino, C., Nájera, F., . . . Dippold, M. 1487 
(2019). Ferrous Wheel Hypothesis: Abiotic nitrate incorporation into dissolved 1488 
organic matter. Geochimica et Cosmochimica Acta, 514-524. 1489 

McConnell, C. A., Kaye, J. P., & Kemanian, A. R. (2020). Reviews and syntheses: Ironing out 1490 
wrinkles in the soil phosphorus cycling paradigm. Biogeosciences. 1491 

Miller, W., & Miller, D. (1987). A micro‐pipette method for soil mechanical analysis. 1492 
Communications in Soil Science and Plant Analysis. 1493 

Moeys, J., Shangguan, W., Petzold, R., Minasny, B., Rosca, B., Jelinski, N., . . . ten Caten, A. 1494 
(2018). soiltexture: Functions for Soil Texture Plot, Classification and 1495 
Transformation. Retrieved from https://cran.r-1496 
project.org/web/packages/soiltexture/index.html 1497 

Mohammadi, M., Naghibi, S., Motevalli, A., & Hashemi, H. (2022). Human-induced arsenic 1498 
pollution modeling in surface waters - An integrated approach using machine 1499 
learning algorithms and environmental factors. Journal of Environmental 1500 
Management, 1-12. 1501 

National Cooperative Soil Survey, United States Department of Agriculture. (2023). Port 1502 
Soil Series-Official Series Description. 1503 

Neilen, A. C. (2017). Differences in nitrate and phosphorus export between wooded and 1504 
grassed riparian zones from farmland to receiving waterways under varying rainfall 1505 
conditions. Science of the Total Environment, 188-197. 1506 

Neina, D. (2019). The Role of Soil pH in Plant Nutrition and Soil Remediation. Applied and 1507 
Environmental Soil Science. 1508 

Pandey, C., Kumar, U., Kaviraj, M., Minick, K., Mishra, A., & Singh, J. (2020). DNRA: A short-1509 
circuit in biological N-cycling to conserve nitrogen in terrestrial ecosystems. 1510 
Science of the Total Environment. 1511 

Patrick Jr., W., & Jugsujinda, A. (1992). Sequential Reduction and Oxidation of Inorganic 1512 
Nitrogen, Manganese, and Iron in Flooded Soil. Soil Science Society of America 1513 
Journal. 1514 



Clements 80 
 

Pinheiro J, B. D., & Team, R. C. (2023). nlme: Linear and Nonlinear Mixed Effects Models. 1515 
Retrieved from https://CRAN.R-project.org/package=nlme 1516 

Pote, D., Daniel, T., A.N., S., Moore, J. P., Edwards, D., & Nichols, D. (1996). Relating 1517 
Extractable Soil Phosphorus to Phosphorus Losses in Runoff. Soil Science Society 1518 
of America Journal, 855-859. 1519 

R Core Team. (2022). R: A language and environment for statistical. Vienna, Austria. 1520 

Ringuet, S., Sassano, L., & Johnson, Z. (2011). A suite of microplate reader-based 1521 
colorimetric methods to quantify ammonium, nitrate, orthophosphate and silicate 1522 
concentrations for aquatic nutrient monitoring. Journal of Environmental 1523 
Monitoring. 1524 

Rissman, C. (2011). Regional Mapping of Groundwater Denitrification Potential and Aquifer 1525 
Sensitivity. Environment Southland. 1526 

Rounsevell, M., Evans, S., & Bullock, P. (1999). Climate Change and Agricultural Soils: 1527 
Impacts and Adaptation. Climactic Change, 683-709. 1528 

Scherer, H. (2009). Sulfur in soils. Journal of Plant Nutrition and Soil Science. 1529 

Schmidt, B., & Matzner, E. (2009). Abiotic reaction of nitrite with dissolved organic carbon? 1530 
Testing the Ferrous Wheel Hypothesis. Biogeosciences. 1531 

Sharpley, A., & Smith, S. (1989). Prediction of Soluble Phosphorous Transport in 1532 
Agricultural Runoff. Journal of Environmental Quality, 313-316. 1533 

Sharpley, A., Smith, S., & R.G., M. (2009). Phosphorous Dynamics in Agricultural Runoff 1534 
and Reservoirs in Oklahoma. Lake and Reservoir Managment, 75-81. 1535 

Shelobolina, E., Konishi, H., Xu, H., Benzine, J., Yia, M., Wu, X., . . . Roden, E. (2012). 1536 
Isolation of phyllosilicate–iron redox cycling microorganisms from an illite–smectite 1537 
rich hydromorphic soil. Microbiology: Microbiological Chemistry and 1538 
Geomicrobiology. 1539 

Silver, W., Herman, D., & Firestone, M. (2001). DISSIMILATORY NITRATE REDUCTION TO 1540 
AMMONIUM IN UPLAND TROPICAL FOREST SOILS. Ecology. 1541 

Tindall, J., Petrusak, R., & McMahon, P. (1996). Nitrate transport and transformation 1542 
processes in unsaturated porous media. Journal of Hydrology. 1543 

University of British Columbia. (2023). The Sulfur Cycle. 1544 

Valiente, N., Jirsa, F., Hein, T., Wanek, W., Prommer, J., Bonin, P., & Gómez-Alday, J. 1545 
(2022). The role of coupled DNRA-Anammox during nitrate removal in a highly saline 1546 
lake. Science of the Total Environment. 1547 



Clements 81 
 

Várallyay, G. (2010). The impact of climate change on soils and on their water 1548 
management. Agronomy Research, 385-396. 1549 

Vidon, P. W. (2018). Twenty Years of Riparian Zone Research (1997–2017): Where To Next? 1550 
. Journal of Environmental Quality, 248-260. 1551 

Wickham, H. (2016). ggplot2: Elegant Graphics for Data Analysis. Springer-Verlag New 1552 
York. Retrieved from https://ggplot2.tidyverse.org 1553 

Wickham, H. (2023). tidyverse: Easily Install and Load the 'Tidyverse'. Retrieved from 1554 
https://cran.r-project.org/web/packages/tidyverse/index.html 1555 

Wickham, H., François, R., Henry, L., Müller, K., Vaughan, D., & Posit Software, P. (2023). 1556 
dplyr: A Grammar of Data Manipulation. Retrieved from https://CRAN.R-1557 
project.org/package=dplyr 1558 

Wood, S. (2023). mgcv: Mixed GAM Computation Vehicle with Automatic Smoothness. 1559 
Retrieved from https://cran.r-project.org/web/packages/mgcv/mgcv.pdf 1560 

Xu, Y., Fan, J., Ding, W., Gunina, A., Chen, Z., Bol, R., . . . Bolan, N. (2017). Characterization 1561 
of organic carbon in decomposing litter exposed to nitrogen and sulfur additions: 1562 
Links to microbial community composition and activity. Geoderma. 1563 

 1564 

8. Supplemental Material 1565 

8.01 Supplemental Material-Figures 1566 

 1567 



Clements 82 
 

Supplemental Material F-1: Correlation Plot of Post-Incubation Data showing 1568 
significant positive and negative correlations. 1569 

 1570 

Supplemental Material F-2: Random Forest Plot of Variables Important in Predicting 1571 
Soil pH as sorted by Increase in Node Purity 1572 

 1573 

Supplemental Material F-3: Random Forest Plot of Variables Important in Predicting 1574 
Bioavailable Nitrate as sorted by Increase in Node Purity 1575 
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 1576 

Supplemental Material F-4: Random Forest Plot of Variables Important in Predicting 1577 
Bioavailable Ammonium as sorted by Increase in Node Purity 1578 

 1579 

Supplemental Material F-5: Random Forest Plot of Variables Important in Predicting 1580 
Fe(II) concentrations as sorted by Increase in Node Purity 1581 
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 1582 

Supplemental Material F-6: Random Forest Plot of Variables Important in Predicting 1583 
Fe(III) concentrations as sorted by Increase in Node Purity 1584 

 1585 

Supplemental Material F-7: Random Forest Plot of Variables Important in Predicting 1586 
Total Carbon as Sorted by Increase in Node Purity 1587 
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 1588 

Supplemental Material F-8: Random Forest Plot of Variables Important in Predicting 1589 
Total Nitrogen as Sorted by Increase in Node Purity 1590 

 1591 

Supplemental Material F-9: Random Forest Plot of Variables Important in Predicting 1592 
Total Sulfur as Sorted by Increase in Node Purity 1593 
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 1594 

Supplemental Material F-10: Annotated K-means clustering plot of post-incubation 1595 
data with PC1 and PC2 explaining 63.2% of total variance. 1596 

 1597 

Supplemental Material F-11: Forest Plot of Significant Wald Test Results for Porewater pH. 1598 
The red line indicates the line of non-significance β=0. Points indicate how many comparisons 1599 

have this treatment. The lines represent 95% confidence intervals for each comparison. A 1600 
negative estimate indicates that treatment has a negative effect, while a positive estimate 1601 

indicates that treatment has a positive effect. If a treatment confidence interval crosses this line, 1602 
the treatment and all comparisons involving this treatment are not statistically significant in 1603 

determining Porewater pH. 1604 
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 1605 

Supplemental Material F-12: Forest Plot of Significant Wald Test Results for Porewater Nitrate 1606 
concentrations. The red line indicates the line of non-significance β=0. Points indicate how 1607 
many comparisons have this treatment. A negative estimate indicates that treatment has a 1608 

negative effect, while a positive estimate indicates that treatment has a positive effect.The lines 1609 
represent 95% confidence intervals for each comparison. If a treatment confidence interval 1610 

crosses this line, the treatment and all comparisons involving this treatment are not statistically 1611 
significant in determining porewater nitrate. 1612 

 1613 

Supplemental Material F-13: Forest Plot of Significant Wald Test Results for Porewater 1614 
Ammonium concentrations. The red line indicates the line of non-significance β=0. Points 1615 
indicate how many comparisons have this treatment. A negative estimate indicates that 1616 
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treatment has a negative effect, while a positive estimate indicates that treatment has a positive 1617 
effect.The lines represent 95% confidence intervals for each comparison. If a treatment 1618 

confidence interval crosses this line, the treatment and all comparisons involving this treatment 1619 
are not statistically significant in determining porewater ammonium. 1620 

 1621 

Supplemental Material F-14: Forest Plot of Significant Wald Test Results for Porewater 1622 
Phosphate concentrations. The red line indicates the line of non-significance β=0. Points 1623 
indicate how many comparisons have this treatment. The lines represent 95% confidence 1624 
intervals for each comparison. A negative estimate indicates that treatment has a negative 1625 
effect, while a positive estimate indicates that treatment has a positive effect. If a treatment 1626 

confidence interval crosses this line, the treatment and all comparisons involving this treatment 1627 
are not statistically significant in determining porewater phosphate concentrations. 1628 



Clements 89 
 

 1629 

Supplemental Material F-15: Forest Plot of Significant Wald Test Results for the ARQ. The red 1630 
line indicates the line of non-significance β=0. Points indicate how many comparisons have this 1631 

treatment. The lines represent 95% confidence intervals for each comparison. A negative 1632 
estimate indicates that treatment has a negative effect, while a positive estimate indicates that 1633 

treatment has a positive effect. If a treatment confidence interval crosses this line, the treatment 1634 
and all comparisons involving this treatment are not statistically significant in determining ARQ. 1635 
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 1636 

Supplemental Material F-16: Weekly Silty Clay Loam Porewater pH Concentrations 1637 
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 1638 

Supplemental Material F-17: Weekly Sandy Loam Porewater pH Concentrations 1639 
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 1640 

Supplemental Material F-18: Weekly Silty Clay Loam Porewater Nitrate Concentrations 1641 
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 1642 

Supplemental Material F-19: Weekly Sandy Loam Porewater Nitrate Concentrations 1643 
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 1644 

Supplemental Material F-20: Weekly Silty Clay Loam Porewater Ammonium Concentrations 1645 
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 1646 

Supplemental Material F-21: Weekly Sandy Loam Porewater Ammonium Concentrations 1647 
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 1648 

Supplemental Material F-22: Weekly Silty Clay Loam Porewater Phosphate Concentrations 1649 
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 1650 

Supplemental Material F-23: Weekly Sandy Loam Porewater Phosphate Concentrations 1651 
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 1652 

Supplemental Material F-24: Weekly Silty Clay Loam ARQ Values 1653 
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 1654 

Supplemental Material F-25: Weekly Sandy Loam ARQ Values 1655 
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8.02 Supplemental Material-Tables  1656 

 1657 

Supplemental Material T-1: Post Hoc Wald Test Results Featuring statistically 1658 
significant Pore Water Nitrate Comparisons grouped into statistically different clusters 1659 
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composed of statistically similar comparisons of effects on porewater nitrate 1660 
concentrations.  1661 

 1662 

Supplemental Material T-2: Post Hoc Wald Test Results Featuring statistically 1663 
significant Pore Water Ammonium Comparisons grouped into statistically different 1664 

clusters composed of statistically similar comparisons of effects on porewater 1665 
ammonium concentrations. 1666 
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Supplemental Material T-3: Post Hoc Wald Test Results Featuring statistically 1668 
significant Pore Water Phosphate Comparisons grouped into statistically different 1669 

clusters composed of statistically similar comparisons of effects on porewater 1670 
phosphate concentrations. 1671 
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 1672 
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Supplemental Material T-4: Post Hoc Wald Test Results Featuring statistically 1673 
significant Pore Water pH Comparisons grouped into statistically different clusters 1674 
composed of statistically similar comparisons of effects on porewater phosphate 1675 

concentrations. 1676 

 1677 

Supplemental Material T-5: Post Hoc Wald Test Results Featuring statistically 1678 
significant ARQ Comparisons grouped into statistically different clusters composed of 1679 

statistically similar comparisons of effects on porewater phosphate concentrations. 1680 

Acronym Soil Texture Moisture Regime Water Application Water Type 

SiClLo-FC-F-Ag Silty Clay Loam Field Capacity Flooding Ag. Runoff 
SiClLo-FC-F-DI Silty Clay Loam Field Capacity Flooding DI Water 

SiClLo-FC-CR-Ag Silty Clay Loam Field Capacity Capillary Rise Ag. Runoff 
SiClLo-FC-CR-DI Silty Clay Loam Field Capacity Capillary Rise DI Water 

SiClLo-D-F-Ag Silty Clay Loam Drought Flooding Ag. Runoff 
SiClLo-D-F-DI Silty Clay Loam Drought Flooding DI Water 

SiClLo-D-CR-Ag Silty Clay Loam Drought Capillary Rise Ag. Runoff 
SiClLo-D-CR-DI Silty Clay Loam Drought Capillary Rise DI Water 
SaLo-FC-F-Ag Sandy Loam Field Capacity Flooding Ag. Runoff 
SaLo-FC-F-DI Sandy Loam Field Capacity Flooding DI Water 

SaLo-FC-CR-Ag Sandy Loam Field Capacity Capillary Rise Ag. Runoff 
SaLo-FC-CR-DI Sandy Loam Field Capacity Capillary Rise DI Water 

SaLo-D-F-Ag Sandy Loam Drought Flooding Ag. Runoff 
SaLo-D-F-DI Sandy Loam Drought Flooding DI Water 

SaLo-D-CR-Ag Sandy Loam Drought Capillary Rise Ag. Runoff 
SaLo-D-CR-DI Sandy Loam Drought Capillary Rise DI Water 
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Supplemental Material T-6: Table showing what each treatment acronym means, 1681 
including Soil Texture, Moisture Regime, Water Application, and Water Type.  1682 

8.03 Supplemental Material-Code 1683 

8.03.1 GAMM R Code (Supplemental Material C-1) 1684 
#install.packages("mgcv") 1685 

#install.packages("reshape2") 1686 

library(mgcv) 1687 

library(mgcViz) 1688 

GLMM.Table=read.csv("C:/Users/jacob/Documents/Research/GLMM.Table.2.csv", header=T) 1689 

attach(GLMM.Table) 1690 

names(GLMM.Table) 1691 

library(moments) 1692 

library(multcomp) 1693 

library(itsadug) 1694 

library(ggplot2) 1695 

library(tidyr) 1696 

library(dplyr) 1697 

library(purrr) 1698 

library(reshape2) 1699 

skewness(GLMM.Table$Nitrate, na.rm = TRUE) 1700 

skewness(GLMM.Table$Ammonium, na.rm = TRUE) 1701 

skewness(GLMM.Table$Phosphate, na.rm = TRUE) 1702 

skewness(GLMM.Table$Pore.Water.pH, na.rm = TRUE) 1703 

skewness(GLMM.Table$ARQ, na.rm = TRUE) 1704 

 1705 

# Generate a simpler model without interaction terms 1706 

nitrate.gamm.1 <- gam(Nitrate ~ (Soil.Texture) + (Moisture.Regime) + (Water.Application) + 1707 
(Ag.DI)+ 1708 

                      s(Week, bs = "ad", k=13), 1709 

                     family=gaussian(link="inverse"), 1710 

data = GLMM.Table, na.action=na.omit) 1711 
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summary(nitrate.gamm.1) 1712 

#Add in Interactions 1713 

GLMM.Table$Soil.Texture <- as.factor(GLMM.Table$Soil.Texture) 1714 

GLMM.Table$Moisture.Regime <- as.factor(GLMM.Table$Moisture.Regime) 1715 

GLMM.Table$Water.Application <- as.factor(GLMM.Table$Water.Application) 1716 

GLMM.Table$Ag.DI <- as.factor(GLMM.Table$Ag.DI) 1717 

 1718 

 1719 

#Go to best model code.r for bs and k values 1720 

nitrate.gamm.2 <- gam(Nitrate ~ (Soil.Texture) * (Moisture.Regime) * (Water.Application) * 1721 
(Ag.DI)+ 1722 

                        s(Week, bs = "ad", k=13), 1723 

                      family=gaussian(link="inverse"), 1724 

                      data = GLMM.Table, na.action=na.omit) 1725 

 1726 

# Summary of the model 1727 

summary(nitrate.gamm.2) 1728 

AIC(nitrate.gamm.2) 1729 

anova.nitrate=anova(nitrate.gamm.2) 1730 

print(anova.nitrate) 1731 

plot(nitrate.gamm.2, residuals=FALSE, pch=0.1, cex=0.1, shade=TRUE, shade.col="lightblue", 1732 
seWithMean = TRUE, main="Nitrate GAM", cex.main=3, cex.lab=1.5, cex.axis=1.1) 1733 

concurvity(nitrate.gamm.2, full=TRUE) 1734 

k.check(nitrate.gamm.2) 1735 

gam.check(nitrate.gamm.2) 1736 

nitrate.plot.all=getViz(nitrate.gamm.2) 1737 

print(plot(nitrate.plot.all, allTerms=T, pages=1)) 1738 

anova(nitrate.gamm.1, nitrate.gamm.2, test="Chisq") 1739 

wald_gam(nitrate.gamm.2, t.test=TRUE) 1740 

wald_nitrate_results <- wald_gam(nitrate.gamm.2, t.test=TRUE) 1741 

# Filter out only significant results (p < 0.05) 1742 
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nitrate_significant_results <- wald_nitrate_results %>% 1743 

  filter(p.value < 0.05)  # Use p.value2 if appropriate 1744 

# Selecting and renaming columns for clarity 1745 

nitrate_significant_results_formatted <- nitrate_significant_results %>% 1746 

  select(Comparison = C1, Against = C2, Estimate, SE, CI, T = T, p.value)  # Adjust column 1747 
names as needed 1748 

 1749 

# View the formatted significant results 1750 

nitrate_significant_results_formatted 1751 

write.csv(nitrate_significant_results_formatted, "nitrate_significant_results_formatted.csv") 1752 

 1753 

# Calculate Euclidean distance based on selected measures (e.g., Estimate and SE) 1754 

nitrate_distance_matrix <- dist(nitrate_significant_results_formatted[, c("Estimate", "SE")], 1755 
method = "euclidean") 1756 

nitrate.hc <- hclust(nitrate_distance_matrix, method = "ward.D2") 1757 

# Choose a suitable number of clusters or cut height 1758 

nitrate.clusters <- cutree(nitrate.hc, k=12) # Or use a height threshold 1759 

nitrate_significant_results_formatted$Cluster <- nitrate.clusters 1760 

nitrate_grouped_summary <- nitrate_significant_results_formatted %>% 1761 

  group_by(Cluster) %>% 1762 

  summarize(MeanEstimate = mean(Estimate), MeanSE = mean(SE), .groups = 'drop') 1763 

print(nitrate_grouped_summary) 1764 

plot(nitrate.hc) 1765 

 1766 

 1767 

 1768 

# Assuming 95% CI, which typically involves +/- 1.96 * SE for each estimate 1769 

# If CI bounds are already provided in your results, you can use those directly 1770 

nitrate_significant_results_formatted <- nitrate_significant_results_formatted %>% 1771 

  mutate(LowerCI = Estimate - 1.96 * SE, 1772 

         UpperCI = Estimate + 1.96 * SE) 1773 
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 1774 

# Creating the coefficient plot 1775 

ggplot(nitrate_significant_results_formatted, aes(x = reorder(Comparison, Estimate), y = 1776 
Estimate)) + 1777 

  geom_point() + # Adds the point estimates 1778 

  geom_errorbar(aes(ymin = LowerCI, ymax = UpperCI), width = 0.2) + # Adds the CIs as error 1779 
bars 1780 

  coord_flip() + # Flips the coordinates for horizontal bars 1781 

  labs(title = "Coefficient Plot of Wald Test Results", 1782 

       x = "Variable", 1783 

       y = "Estimate") + 1784 

  theme_minimal() # Using a minimal theme for clarity 1785 

 1786 

ggplot(nitrate_significant_results_formatted, aes(x = Estimate, ymin = LowerCI, ymax = 1787 
UpperCI, y = reorder(Comparison, Estimate))) + 1788 

  geom_point() + # Adds the point estimates as dots 1789 

  geom_errorbarh(aes(xmin = LowerCI, xmax = UpperCI), height = 0.2) + # Adds horizontal error 1790 
bars for the CIs 1791 

  geom_vline(xintercept = 0, linetype = "dashed", color = "red") + # Optional: Add a line at x=0 1792 
for reference 1793 

  labs(title = "Forest Plot of Nitrate Wald Test Results", 1794 

       x = "Estimate", 1795 

       y = "Comparison") + 1796 

  theme_minimal() # Applying a minimal theme for clarity 1797 

 1798 

 1799 

# Assume Ammonium is your variable of interest 1800 

 1801 

ammonium.gamm.1 <- gam(Ammonium ~ (Soil.Texture) + (Moisture.Regime) + 1802 
(Water.Application) + (Ag.DI)+ 1803 

                        s(Week, bs = "ps", k=4), 1804 

                      family=gaussian(link="inverse"), 1805 
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                      data = GLMM.Table, na.action=na.omit) 1806 

 1807 

 1808 

 1809 

 1810 

ammonium.gamm.2 <- gam(Ammonium ~ (Soil.Texture) * (Moisture.Regime) * 1811 
(Water.Application) * (Ag.DI)+ 1812 

                        s(Week, bs = "ps", k=4), 1813 

                       family=gaussian(link="inverse"), 1814 

                      data = GLMM.Table, na.action=na.omit) 1815 

 1816 

# Summary of the model 1817 

summary(ammonium.gamm.2) 1818 

 1819 

AIC(ammonium.gamm.2) 1820 

anova.ammonium=anova(ammonium.gamm.2) 1821 

print(anova.ammonium) 1822 

plot(ammonium.gamm.2, residuals=TRUE, pch=0.1, cex=0.1, shade=TRUE, 1823 
shade.col="lightblue", main="Ammonium GAM", cex.main=3, cex.lab=1.5, cex.axis=1.1) 1824 

concurvity(ammonium.gamm.2, full=TRUE) 1825 

k.check(ammonium.gamm.2) 1826 

gam.check(ammonium.gamm.2) 1827 

ammonium.plot.all=getViz(ammonium.gamm.2) 1828 

print(plot(ammonium.plot.all, allTerms=T, pages=1)) 1829 

anova(ammonium.gamm.1, ammonium.gamm.2, test="Chisq") 1830 

wald_gam(ammonium.gamm.2, t.test=TRUE) 1831 

wald_ammonium_results <- wald_gam(ammonium.gamm.2, t.test=TRUE) 1832 

# Filter out only significant results (p < 0.05) 1833 

ammonium_significant_results <- wald_ammonium_results %>% 1834 

  filter(p.value < 0.05)  # Use p.value2 if appropriate 1835 

# Selecting and renaming columns for clarity 1836 
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ammonium_significant_results_formatted <- ammonium_significant_results %>% 1837 

  select(Comparison = C1, Against = C2, Estimate, SE, CI, T = T, p.value)  # Adjust column 1838 
names as needed 1839 

 1840 

# View the formatted significant results 1841 

ammonium_significant_results_formatted 1842 

write.csv(ammonium_significant_results_formatted, 1843 
"ammonium_significant_results_formatted.csv") 1844 

ammonium_significant_results_formatted <- ammonium_significant_results_formatted %>% 1845 

  mutate(LowerCI = Estimate - 1.96 * SE, 1846 

         UpperCI = Estimate + 1.96 * SE) 1847 

 1848 

ggplot(ammonium_significant_results_formatted, aes(x = Estimate, ymin = LowerCI, ymax = 1849 
UpperCI, y = reorder(Comparison, Estimate))) + 1850 

  geom_point() + # Adds the point estimates as dots 1851 

  geom_errorbarh(aes(xmin = LowerCI, xmax = UpperCI), height = 0.2) + # Adds horizontal error 1852 
bars for the CIs 1853 

  geom_vline(xintercept = 0, linetype = "dashed", color = "red") + # Optional: Add a line at x=0 1854 
for reference 1855 

  labs(title = "Forest Plot of Ammonium Wald Test Results", 1856 

       x = "Estimate", 1857 

       y = "Comparison") + 1858 

  theme_minimal() # Applying a minimal theme for clarity 1859 

 1860 

# Calculate Euclidean distance based on selected measures (e.g., Estimate and SE) 1861 

ammonium_distance_matrix <- dist(ammonium_significant_results_formatted[, c("Estimate", 1862 
"SE")], method = "euclidean") 1863 

ammonium.hc <- hclust(ammonium_distance_matrix, method = "ward.D2") 1864 

plot(ammonium.hc) 1865 

# Choose a suitable number of clusters or cut height 1866 

ammonium.clusters <- cutree(ammonium.hc, k=20) # Or use a height threshold 1867 

ammonium_significant_results_formatted$Cluster <- ammonium.clusters 1868 
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ammonium_grouped_summary <- ammonium_significant_results_formatted %>% 1869 

  group_by(Cluster) %>% 1870 

  summarize(MeanEstimate = mean(Estimate), MeanSE = mean(SE), .groups = 'drop') 1871 

print(ammonium_grouped_summary) 1872 

 1873 

 1874 

# Assume Phosphate is your variable of interest 1875 

phosphate.gamm.1 <- gam(Phosphate ~ (Soil.Texture) + (Moisture.Regime) + 1876 
(Water.Application) + (Ag.DI)+ 1877 

                         s(Week, bs = "ps", k=9), 1878 

                       family=gaussian(link="inverse"), 1879 

                       data = GLMM.Table, na.action=na.omit) 1880 

 1881 

 1882 

phosphate.gamm.2 <- gam(Phosphate ~ (Soil.Texture) * (Moisture.Regime) * 1883 
(Water.Application) * (Ag.DI)+ 1884 

                         s(Week, bs = "ps", k=9), 1885 

                        family=gaussian(link="inverse"), 1886 

                       data = GLMM.Table, na.action=na.omit) 1887 

 1888 

anova(phosphate.gamm.1, phosphate.gamm.2, test="Chisq") 1889 

# Summary of the model 1890 

summary(phosphate.gamm.2) 1891 

AIC(phosphate.gamm.2) 1892 

anova.phosphate=anova.gam(phosphate.gamm.2) 1893 

print(anova.phosphate) 1894 

plot(phosphate.gamm.2, residuals=TRUE, pch=0.1, cex=0.1, shade=TRUE, 1895 
shade.col="lightblue", main="Phosphate GAM", cex.main=3, cex.lab=1.5, cex.axis=1.1) 1896 

concurvity(phosphate.gamm.2, full=TRUE) 1897 

gam.check(phosphate.gamm.2) 1898 

phosphate.plot.all=getViz(phosphate.gamm.2) 1899 
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print(plot(phosphate.plot.all, allTerms=T, pages=1)) 1900 

wald_gam(phosphate.gamm.2, t.test=TRUE) 1901 

wald_phosphate_results <- wald_gam(phosphate.gamm.2, t.test=TRUE) 1902 

# Filter out only significant results (p < 0.05) 1903 

phosphate_significant_results <- wald_phosphate_results %>% 1904 

  filter(p.value < 0.05)  # Use p.value2 if appropriate 1905 

# Selecting and renaming columns for clarity 1906 

phosphate_significant_results_formatted <- phosphate_significant_results %>% 1907 

  select(Comparison = C1, Against = C2, Estimate, SE, CI, T = T, p.value)  # Adjust column 1908 
names as needed 1909 

 1910 

# View the formatted significant results 1911 

phosphate_significant_results_formatted 1912 

write.csv(phosphate_significant_results_formatted, 1913 
"phosphate_significant_results_formatted.csv") 1914 

 1915 

phosphate_significant_results_formatted <- phosphate_significant_results_formatted %>% 1916 

  mutate(LowerCI = Estimate - 1.96 * SE, 1917 

         UpperCI = Estimate + 1.96 * SE) 1918 

 1919 

ggplot(phosphate_significant_results_formatted, aes(x = Estimate, ymin = LowerCI, ymax = 1920 
UpperCI, y = reorder(Comparison, Estimate))) + 1921 

  geom_point() + # Adds the point estimates as dots 1922 

  geom_errorbarh(aes(xmin = LowerCI, xmax = UpperCI), height = 0.2) + # Adds horizontal error 1923 
bars for the CIs 1924 

  geom_vline(xintercept = 0, linetype = "dashed", color = "red") + # Optional: Add a line at x=0 1925 
for reference 1926 

  labs(title = "Forest Plot of Phosphate Wald Test Results", 1927 

       x = "Estimate", 1928 

       y = "Comparison") + 1929 

  theme_minimal() # Applying a minimal theme for clarity 1930 

# Calculate Euclidean distance based on selected measures (e.g., Estimate and SE) 1931 
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phosphate_distance_matrix <- dist(phosphate_significant_results_formatted[, c("Estimate", 1932 
"SE")], method = "euclidean") 1933 

phosphate.hc <- hclust(phosphate_distance_matrix, method = "ward.D2") 1934 

plot(phosphate.hc) 1935 

# Choose a suitable number of clusters or cut height 1936 

phosphate.clusters <- cutree(phosphate.hc, h=2) # Or use a height threshold 1937 

phosphate_significant_results_formatted$Cluster <- phosphate.clusters 1938 

phosphate_grouped_summary <- phosphate_significant_results_formatted %>% 1939 

  group_by(Cluster) %>% 1940 

  summarize(MeanEstimate = mean(Estimate), MeanSE = mean(SE), .groups = 'drop') 1941 

print(phosphate_grouped_summary) 1942 

 1943 

 1944 

 1945 

 1946 

#Pore Water pH is variable of interest 1947 

pH.gamm.1 <- gam(Pore.Water.pH ~ (Soil.Texture) + (Moisture.Regime) + (Water.Application) + 1948 
(Ag.DI)+ 1949 

                          s(Week, bs = "cc", k=11), 1950 

                        family=Gamma(link="identity"), 1951 

                        data = GLMM.Table, na.action=na.omit) 1952 

 1953 

 1954 

pH.gamm.2 <- gam(Pore.Water.pH ~ (Soil.Texture) * (Moisture.Regime) * (Water.Application) * 1955 
(Ag.DI)+ 1956 

                          s(Week, bs = "cc", k=11), 1957 

                 family=Gamma(link="identity"), 1958 

                        data = GLMM.Table, na.action=na.omit) 1959 

 1960 

 1961 

 1962 
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anova(pH.gamm.1, pH.gamm.2, test="Chisq") 1963 

# Summary of the model 1964 

summary(pH.gamm.2) 1965 

AIC(pH.gamm.2) 1966 

anova.pH=anova.gam(pH.gamm.2) 1967 

print(anova.pH) 1968 

plot(pH.gamm.2, residuals=TRUE, pch=0.1, cex=0.1, shade=TRUE, shade.col="lightblue") 1969 

concurvity(pH.gamm.2, full=TRUE) 1970 

gam.check(pH.gamm.2) 1971 

pH.plot.all=getViz(pH.gamm.2) 1972 

print(plot(pH.plot.all, allTerms=T, pages=1)) 1973 

wald_gam(pH.gamm.2, t.test=TRUE) 1974 

wald_pH_results <- wald_gam(pH.gamm.2, t.test=TRUE) 1975 

# Filter out only significant results (p < 0.05) 1976 

pH_significant_results <- wald_pH_results %>% 1977 

  filter(p.value < 0.05) 1978 

# Selecting and renaming columns for clarity 1979 

pH_significant_results_formatted = pH_significant_results %>% 1980 

  select(Comparison = C1, Against = C2, Estimate, SE, CI, p.value)  # Adjust column names as 1981 
needed 1982 

 1983 

# View the formatted significant results 1984 

pH_significant_results_formatted 1985 

write.csv(pH_significant_results_formatted, "pH_significant_results_formatted.csv") 1986 

pH_significant_results_formatted <- pH_significant_results_formatted %>% 1987 

  mutate(LowerCI = Estimate - 1.96 * SE, 1988 

         UpperCI = Estimate + 1.96 * SE) 1989 

 1990 

ggplot(pH_significant_results_formatted, aes(x = Estimate, ymin = LowerCI, ymax = UpperCI, y 1991 
= reorder(Comparison, Estimate))) + 1992 

  geom_point() + # Adds the point estimates as dots 1993 
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  geom_errorbarh(aes(xmin = LowerCI, xmax = UpperCI), height = 0.2) + # Adds horizontal error 1994 
bars for the CIs 1995 

  geom_vline(xintercept = 0, linetype = "dashed", color = "red") + # Optional: Add a line at x=0 1996 
for reference 1997 

  labs(title = "Forest Plot of Porewater pH Wald Test Results", 1998 

       x = "Estimate", 1999 

       y = "Comparison") + 2000 

  theme_minimal() # Applying a minimal theme for clarity 2001 

 2002 

pH_distance_matrix <- dist(pH_significant_results_formatted[, c("Estimate", "SE")], method = 2003 
"euclidean") 2004 

pH.hc <- hclust(pH_distance_matrix, method = "ward.D2") 2005 

plot(pH.hc) 2006 

# Choose a suitable number of clusters or cut height 2007 

pH.clusters <- cutree(pH.hc, k=14) # Or use a height threshold 2008 

pH_significant_results_formatted$Cluster <- pH.clusters 2009 

pH_grouped_summary <- pH_significant_results_formatted %>% 2010 

  group_by(Cluster) %>% 2011 

  summarize(MeanEstimate = mean(Estimate), MeanSE = mean(SE), .groups = 'drop') 2012 

print(pH_grouped_summary) 2013 

 2014 

 2015 

#ARQ is variable of interest and is  bounded on one end by 0 2016 

ARQ.gamm.1 <- gam(ARQ ~ (Soil.Texture) + (Moisture.Regime) + (Water.Application) + 2017 
(Ag.DI)+ 2018 

                   s(Week, bs = "tp", k=11), 2019 

                 family=Gamma(link="inverse"), 2020 

                 data = GLMM.Table, na.action=na.omit) 2021 

 2022 

 2023 

 2024 
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ARQ.gamm.2 <- gam(ARQ ~ (Soil.Texture) * (Moisture.Regime) * (Water.Application) * (Ag.DI)+ 2025 

                   s(Week, bs = "tp", k=11), 2026 

                  family=Gamma(link="inverse"), 2027 

                 data = GLMM.Table, na.action=na.omit) 2028 

 2029 

 2030 

anova(ARQ.gamm.1, ARQ.gamm.2, test="Chisq") 2031 

# Summary of the model 2032 

summary(ARQ.gamm.2) 2033 

AIC(ARQ.gamm.2) 2034 

anova.ARQ=anova.gam(ARQ.gamm.2) 2035 

print(anova.ARQ) 2036 

plot(ARQ.gamm.2, residuals=FALSE, pch=0.1, cex=0.1, shade=TRUE, shade.col="lightblue", 2037 
main="ARQ GAM", cex.main=3, cex.lab=1.5, cex.axis=1.1) 2038 

concurvity(ARQ.gamm.2, full=TRUE) 2039 

gam.check(ARQ.gamm.2) 2040 

ARQ.plot.all=getViz(ARQ.gamm.2) 2041 

print(plot(ARQ.plot.all, allTerms=T, pages=1)) 2042 

wald_gam(ARQ.gamm.2, t.test=TRUE) 2043 

wald_ARQ_results <- wald_gam(ARQ.gamm.2, t.test=TRUE) 2044 

# Filter out only significant results (p < 0.05) 2045 

ARQ_significant_results <- wald_ARQ_results %>% 2046 

  filter(p.value < 0.05) 2047 

# Selecting and renaming columns for clarity 2048 

ARQ_significant_results_formatted = ARQ_significant_results %>% 2049 

  select(Comparison = C1, Against = C2, Estimate, SE, CI, p.value)  # Adjust column names as 2050 
needed 2051 

 2052 

# View the formatted significant results 2053 

ARQ_significant_results_formatted 2054 

write.csv(ARQ_significant_results_formatted, "ARQ_significant_results_formatted.csv") 2055 
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ARQ_significant_results_formatted <- ARQ_significant_results_formatted %>% 2056 

  mutate(LowerCI = Estimate - 1.96 * SE, 2057 

         UpperCI = Estimate + 1.96 * SE) 2058 

 2059 

ggplot(ARQ_significant_results_formatted, aes(x = Estimate, ymin = LowerCI, ymax = UpperCI, 2060 
y = reorder(Comparison, Estimate))) + 2061 

  geom_point() + # Adds the point estimates as dots 2062 

  geom_errorbarh(aes(xmin = LowerCI, xmax = UpperCI), height = 0.2) + # Adds horizontal error 2063 
bars for the CIs 2064 

  geom_vline(xintercept = 0, linetype = "dashed", color = "red") + # Optional: Add a line at x=0 2065 
for reference 2066 

  labs(title = "Forest Plot of ARQ Wald Test Results", 2067 

       x = "Estimate", 2068 

       y = "Comparison") + 2069 

  theme_minimal() # Applying a minimal theme for clarity 2070 

 2071 

ARQ_distance_matrix <- dist(ARQ_significant_results_formatted[, c("Estimate", "SE")], method 2072 
= "euclidean") 2073 

ARQ.hc <- hclust(ARQ_distance_matrix, method = "ward.D2") 2074 

plot(ARQ.hc) 2075 

# Choose a suitable number of clusters or cut height 2076 

ARQ.clusters <- cutree(ARQ.hc, k=8) # Or use a height threshold 2077 

ARQ_significant_results_formatted$Cluster <- ARQ.clusters 2078 

ARQ_grouped_summary <- ARQ_significant_results_formatted %>% 2079 

  group_by(Cluster) %>% 2080 

  summarize(MeanEstimate = mean(Estimate), MeanSE = mean(SE), .groups = 'drop') 2081 

print(ARQ_grouped_summary) 2082 

#Correlation Tables 2083 

GLMM.Table%>%  2084 

  group_by(Week) %>% 2085 

  summarize(correlation = cor(Nitrate, Ammonium)) 2086 
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GLMM.Table%>%  2087 

  group_by(Week) %>% 2088 

  summarize(correlation = cor(Nitrate, Phosphate)) 2089 

GLMM.Table%>%  2090 

  group_by(Week) %>% 2091 

  summarize(correlation = cor(Nitrate, Pore.Water.pH))   2092 

GLMM.Table%>%  2093 

  group_by(Week) %>% 2094 

  summarize(correlation = cor(Nitrate, ARQ))   2095 

GLMM.Table%>%  2096 

  group_by(Week) %>% 2097 

  summarize(correlation = cor(Ammonium, Phosphate))  2098 

GLMM.Table%>%  2099 

  group_by(Week) %>% 2100 

  summarize(correlation = cor(Ammonium, Pore.Water.pH))    2101 

GLMM.Table%>%  2102 

  group_by(Week) %>% 2103 

  summarize(correlation = cor(Ammonium, ARQ))    2104 

GLMM.Table%>%  2105 

  group_by(Week) %>% 2106 

  summarize(correlation = cor(Phosphate, Pore.Water.pH))    2107 

GLMM.Table%>%  2108 

  group_by(Week) %>% 2109 

  summarize(correlation = cor(Phosphate, ARQ))    2110 

GLMM.Table%>%  2111 

  group_by(Week) %>% 2112 

  summarize(correlation = cor(Pore.Water.pH, ARQ))    2113 

 2114 

 2115 

# Define a function to calculate correlation 2116 
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calc_correlation <- function(data, var1, var2) { 2117 

  data %>% 2118 

    group_by(Week) %>% 2119 

    summarize(correlation = cor(.data[[var1]], .data[[var2]]), 2120 

              variable_pair = paste(var1, var2, sep = "-")) %>% 2121 

    ungroup() 2122 

} 2123 

 2124 

# List of variable pairs 2125 

var_pairs <- list( 2126 

  c("Nitrate", "Ammonium"), 2127 

  c("Nitrate", "Phosphate"), 2128 

  c("Nitrate", "Pore.Water.pH"), 2129 

  c("Nitrate", "ARQ"), 2130 

  c("Ammonium", "Phosphate"), 2131 

  c("Ammonium", "Pore.Water.pH"), 2132 

  c("Ammonium", "ARQ"), 2133 

  c("Phosphate", "Pore.Water.pH"), 2134 

  c("Phosphate", "ARQ"), 2135 

  c("Pore.Water.pH", "ARQ") 2136 

) 2137 

 2138 

# Calculate correlations for all pairs 2139 

correlations <- map_df(var_pairs, ~calc_correlation(GLMM.Table, .x[1], .x[2])) 2140 

 2141 

# Plotting 2142 

ggplot(correlations, aes(x = Week, y = correlation, color = variable_pair, group = variable_pair)) 2143 
+ 2144 

  geom_line() + 2145 

  labs(title = "Weekly Correlations", x = "Week", y = "Correlation") + 2146 
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  theme_minimal() + 2147 

  theme(legend.position = "bottom") + 2148 

  guides(color = guide_legend(title = "Variable Pair")) 2149 

# Calculate Euclidean distance based on selected measures (e.g., Estimate and SE) 2150 

nitrate_distance_matrix <- dist(nitrate_significant_results_formatted[, c("Estimate", "SE")], 2151 
method = "euclidean") 2152 

nitrate.hc <- hclust(nitrate_distance_matrix, method = "ward.D2") 2153 

# Choose a suitable number of clusters or cut height 2154 

nitrate.clusters <- cutree(nitrate.hc, k=12) # Or use a height threshold 2155 

nitrate_significant_results_formatted$Cluster <- nitrate.clusters 2156 

nitrate_grouped_summary <- nitrate_significant_results_formatted %>% 2157 

  group_by(Cluster) %>% 2158 

  summarize(MeanEstimate = mean(Estimate), MeanSE = mean(SE), .groups = 'drop') 2159 

print(nitrate_grouped_summary) 2160 

plot(nitrate.hc) 2161 

 2162 

 2163 

 2164 

# Assuming 95% CI, which typically involves +/- 1.96 * SE for each estimate 2165 

# If CI bounds are already provided in your results, you can use those directly 2166 

nitrate_significant_results_formatted <- nitrate_significant_results_formatted %>% 2167 

  mutate(LowerCI = Estimate - 1.96 * SE, 2168 

         UpperCI = Estimate + 1.96 * SE) 2169 

 2170 

# Creating the coefficient plot 2171 

ggplot(nitrate_significant_results_formatted, aes(x = reorder(Comparison, Estimate), y = 2172 
Estimate)) + 2173 

  geom_point() + # Adds the point estimates 2174 

  geom_errorbar(aes(ymin = LowerCI, ymax = UpperCI), width = 0.2) + # Adds the CIs as error 2175 
bars 2176 

  coord_flip() + # Flips the coordinates for horizontal bars 2177 
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  labs(title = "Coefficient Plot of Wald Test Results", 2178 

       x = "Variable", 2179 

       y = "Estimate") + 2180 

  theme_minimal() # Using a minimal theme for clarity 2181 

 2182 

ggplot(nitrate_significant_results_formatted, aes(x = Estimate, ymin = LowerCI, ymax = 2183 
UpperCI, y = reorder(Comparison, Estimate))) + 2184 

  geom_point() + # Adds the point estimates as dots 2185 

  geom_errorbarh(aes(xmin = LowerCI, xmax = UpperCI), height = 0.2) + # Adds horizontal error 2186 
bars for the CIs 2187 

  geom_vline(xintercept = 0, linetype = "dashed", color = "red") + # Optional: Add a line at x=0 2188 
for reference 2189 

  labs(title = "Forest Plot of Nitrate Wald Test Results", 2190 

       x = "Estimate", 2191 

       y = "Comparison") + 2192 

  theme_minimal() # Applying a minimal theme for clarity 2193 

# View the formatted significant results 2194 

ammonium_significant_results_formatted 2195 

write.csv(ammonium_significant_results_formatted, 2196 
"ammonium_significant_results_formatted.csv") 2197 

ammonium_significant_results_formatted <- ammonium_significant_results_formatted %>% 2198 

  mutate(LowerCI = Estimate - 1.96 * SE, 2199 

         UpperCI = Estimate + 1.96 * SE) 2200 

 2201 

ggplot(ammonium_significant_results_formatted, aes(x = Estimate, ymin = LowerCI, ymax = 2202 
UpperCI, y = reorder(Comparison, Estimate))) + 2203 

  geom_point() + # Adds the point estimates as dots 2204 

  geom_errorbarh(aes(xmin = LowerCI, xmax = UpperCI), height = 0.2) + # Adds horizontal error 2205 
bars for the CIs 2206 

  geom_vline(xintercept = 0, linetype = "dashed", color = "red") + # Optional: Add a line at x=0 2207 
for reference 2208 

  labs(title = "Forest Plot of Ammonium Wald Test Results", 2209 
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       x = "Estimate", 2210 

       y = "Comparison") + 2211 

  theme_minimal() # Applying a minimal theme for clarity 2212 

 2213 

# Calculate Euclidean distance based on selected measures (e.g., Estimate and SE) 2214 

ammonium_distance_matrix <- dist(ammonium_significant_results_formatted[, c("Estimate", 2215 
"SE")], method = "euclidean") 2216 

ammonium.hc <- hclust(ammonium_distance_matrix, method = "ward.D2") 2217 

plot(ammonium.hc) 2218 

# Choose a suitable number of clusters or cut height 2219 

ammonium.clusters <- cutree(ammonium.hc, k=20) # Or use a height threshold 2220 

ammonium_significant_results_formatted$Cluster <- ammonium.clusters 2221 

ammonium_grouped_summary <- ammonium_significant_results_formatted %>% 2222 

  group_by(Cluster) %>% 2223 

  summarize(MeanEstimate = mean(Estimate), MeanSE = mean(SE), .groups = 'drop') 2224 

print(ammonium_grouped_summary) 2225 

phosphate_significant_results_formatted <- phosphate_significant_results_formatted %>% 2226 

  mutate(LowerCI = Estimate - 1.96 * SE, 2227 

         UpperCI = Estimate + 1.96 * SE) 2228 

 2229 

ggplot(phosphate_significant_results_formatted, aes(x = Estimate, ymin = LowerCI, ymax = 2230 
UpperCI, y = reorder(Comparison, Estimate))) + 2231 

  geom_point() + # Adds the point estimates as dots 2232 

  geom_errorbarh(aes(xmin = LowerCI, xmax = UpperCI), height = 0.2) + # Adds horizontal error 2233 
bars for the CIs 2234 

  geom_vline(xintercept = 0, linetype = "dashed", color = "red") + # Optional: Add a line at x=0 2235 
for reference 2236 

  labs(title = "Forest Plot of Phosphate Wald Test Results", 2237 

       x = "Estimate", 2238 

       y = "Comparison") + 2239 

  theme_minimal() # Applying a minimal theme for clarity 2240 
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# Calculate Euclidean distance based on selected measures (e.g., Estimate and SE) 2241 

phosphate_distance_matrix <- dist(phosphate_significant_results_formatted[, c("Estimate", 2242 
"SE")], method = "euclidean") 2243 

phosphate.hc <- hclust(phosphate_distance_matrix, method = "ward.D2") 2244 

plot(phosphate.hc) 2245 

# Choose a suitable number of clusters or cut height 2246 

phosphate.clusters <- cutree(phosphate.hc, h=2) # Or use a height threshold 2247 

phosphate_significant_results_formatted$Cluster <- phosphate.clusters 2248 

phosphate_grouped_summary <- phosphate_significant_results_formatted %>% 2249 

  group_by(Cluster) %>% 2250 

  summarize(MeanEstimate = mean(Estimate), MeanSE = mean(SE), .groups = 'drop') 2251 

print(phosphate_grouped_summary) 2252 

pH_significant_results_formatted <- pH_significant_results_formatted %>% 2253 

  mutate(LowerCI = Estimate - 1.96 * SE, 2254 

         UpperCI = Estimate + 1.96 * SE) 2255 

 2256 

ggplot(pH_significant_results_formatted, aes(x = Estimate, ymin = LowerCI, ymax = UpperCI, y 2257 
= reorder(Comparison, Estimate))) + 2258 

  geom_point() + # Adds the point estimates as dots 2259 

  geom_errorbarh(aes(xmin = LowerCI, xmax = UpperCI), height = 0.2) + # Adds horizontal error 2260 
bars for the CIs 2261 

  geom_vline(xintercept = 0, linetype = "dashed", color = "red") + # Optional: Add a line at x=0 2262 
for reference 2263 

  labs(title = "Forest Plot of Porewater pH Wald Test Results", 2264 

       x = "Estimate", 2265 

       y = "Comparison") + 2266 

  theme_minimal() # Applying a minimal theme for clarity 2267 

 2268 

pH_distance_matrix <- dist(pH_significant_results_formatted[, c("Estimate", "SE")], method = 2269 
"euclidean") 2270 

pH.hc <- hclust(pH_distance_matrix, method = "ward.D2") 2271 

plot(pH.hc) 2272 
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# Choose a suitable number of clusters or cut height 2273 

pH.clusters <- cutree(pH.hc, k=14) # Or use a height threshold 2274 

pH_significant_results_formatted$Cluster <- pH.clusters 2275 

pH_grouped_summary <- pH_significant_results_formatted %>% 2276 

  group_by(Cluster) %>% 2277 

  summarize(MeanEstimate = mean(Estimate), MeanSE = mean(SE), .groups = 'drop') 2278 

print(pH_grouped_summary) 2279 

ARQ_significant_results_formatted 2280 

write.csv(ARQ_significant_results_formatted, "ARQ_significant_results_formatted.csv") 2281 

ARQ_significant_results_formatted <- ARQ_significant_results_formatted %>% 2282 

  mutate(LowerCI = Estimate - 1.96 * SE, 2283 

         UpperCI = Estimate + 1.96 * SE) 2284 

 2285 

ggplot(ARQ_significant_results_formatted, aes(x = Estimate, ymin = LowerCI, ymax = UpperCI, 2286 
y = reorder(Comparison, Estimate))) + 2287 

  geom_point() + # Adds the point estimates as dots 2288 

  geom_errorbarh(aes(xmin = LowerCI, xmax = UpperCI), height = 0.2) + # Adds horizontal error 2289 
bars for the CIs 2290 

  geom_vline(xintercept = 0, linetype = "dashed", color = "red") + # Optional: Add a line at x=0 2291 
for reference 2292 

  labs(title = "Forest Plot of ARQ Wald Test Results", 2293 

       x = "Estimate", 2294 

       y = "Comparison") + 2295 

  theme_minimal() # Applying a minimal theme for clarity 2296 

 2297 

ARQ_distance_matrix <- dist(ARQ_significant_results_formatted[, c("Estimate", "SE")], method 2298 
= "euclidean") 2299 

ARQ.hc <- hclust(ARQ_distance_matrix, method = "ward.D2") 2300 

plot(ARQ.hc) 2301 

# Choose a suitable number of clusters or cut height 2302 

ARQ.clusters <- cutree(ARQ.hc, k=8) # Or use a height threshold 2303 
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ARQ_significant_results_formatted$Cluster <- ARQ.clusters 2304 

ARQ_grouped_summary <- ARQ_significant_results_formatted %>% 2305 

  group_by(Cluster) %>% 2306 

  summarize(MeanEstimate = mean(Estimate), MeanSE = mean(SE), .groups = 'drop') 2307 

print(ARQ_grouped_summary) 2308 

8.03.2 Correlation and K-Means Clustering R Code (Supplemental Material C-2) 2309 
Initial.Final.data <- read.csv("Initial.Final.Table.csv", header=T) 2310 

attach(Initial.Final.data) 2311 

head(Initial.Final.data) 2312 

summary(Initial.Final.data) 2313 

# Convert categorical variables to factors 2314 

str(Initial.Final.data) 2315 

Initial.Final.data$Time <- as.factor(Initial.Final.data$Time) 2316 

Initial.Final.data$Land.Use <- as.factor(Initial.Final.data$Land.Use) 2317 

Initial.Final.data$Moisture.Regime <- as.factor(Initial.Final.data$Moisture.Regime) 2318 

Initial.Final.data$Water.Application <- as.factor(Initial.Final.data$Water.Application) 2319 

Initial.Final.data$Ag.DI <- as.factor(Initial.Final.data$Ag.DI) 2320 

 2321 

cor_matrix <- cor(Initial.Final.data[, c("KCl.Nitrate", "KCl.Ammonium", "Fe2", "Fe3", "perC", 2322 
"perN", "perS", "Soil.pH")], use = "complete.obs") 2323 

corrplot::corrplot(cor_matrix, method = "circle", type="lower") 2324 

 2325 

covmat <- cov(Initial.Final.data[, sapply(Initial.Final.data, is.numeric)], use="na.or.complete") 2326 

print(covmat) 2327 

 2328 

#K-means clustering 2329 

# Load necessary packages 2330 

#install.packages("dplyr") 2331 

#install.packages("ggplot2") 2332 

library(dplyr) 2333 

library(ggplot2) 2334 
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 2335 

# Filter only numeric columns 2336 

numeric_data <- Initial.Final.data %>% select_if(is.numeric) 2337 

 2338 

# Scale the data 2339 

scaled_data <- scale(numeric_data) 2340 

set.seed(123) # for reproducibility 2341 

wss <- (nrow(scaled_data)-1)*sum(apply(scaled_data,2,var)) 2342 

for (i in 2:15) wss[i] <- sum(kmeans(scaled_data, centers=i)$tot.withinss) 2343 

 2344 

# Plot the Elbow Curve 2345 

plot(1:15, wss, type="b", xlab="Number of Clusters", ylab="Within groups sum of squares") 2346 

 2347 

set.seed(123) # for reproducibility 2348 

k_value <- 6  # or whatever value you chose based on the Elbow curve 2349 

kmeans_result <- kmeans(scaled_data, centers=k_value) 2350 

kmeans_result$Factor_Importance <- c("Land.Use", "Moisture.Regime", "Water.Application", 2351 
"Ag.DI") 2352 

# Print cluster assignments 2353 

print(kmeans_result$cluster) 2354 

 2355 

# Attach cluster assignments to the original data 2356 

Initial.Final.data$cluster <- kmeans_result$cluster 2357 

 2358 

# Check cluster centers 2359 

print(kmeans_result$centers) 2360 

 2361 

# Perform PCA 2362 

pca_result <- prcomp(scaled_data) 2363 

 2364 
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# Plot clusters using the first two principal components 2365 

ggplot(as.data.frame(pca_result$x), aes(PC1, PC2, color=factor(kmeans_result$cluster))) + 2366 

  geom_point(alpha=0.6, size=8) + 2367 

  theme_minimal() + 2368 

  labs(color='Cluster')+ 2369 

  theme(axis.text.x = element_text(size=20),  # Increase x-axis label size 2370 

        axis.text.y = element_text(size=20))  # Increase y-axis label size 2371 

scores <- pca_result$x 2372 

PC1_scores <- scores[,1] 2373 

PC2_scores <- scores[,2] 2374 

PC1_scores 2375 

PC2_scores 2376 

 2377 

# Assuming you stored your k-means result in kmeans_result 2378 

cluster_assignments <- kmeans_result$cluster 2379 

 2380 

# You can add this as a new column to your data for easier inspection 2381 

Initial.Final.data$Cluster <- cluster_assignments 2382 

 2383 

# View the dataset with the cluster assignments 2384 

head(Initial.Final.data) 2385 

tail(Initial.Final.data) 2386 

Initial.Final.data 2387 

cluster1_data <- Initial.Final.data %>% filter(Cluster == 1) 2388 

cluster2_data <- Initial.Final.data %>% filter(Cluster == 2) 2389 

cluster3_data <- Initial.Final.data %>% filter(Cluster == 3) 2390 

cluster4_data <- Initial.Final.data %>% filter(Cluster == 4) 2391 

cluster5_data <- Initial.Final.data %>% filter(Cluster == 5) 2392 

cluster6_data <- Initial.Final.data %>% filter(Cluster == 6) 2393 

head(cluster1_data) 2394 
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head(cluster2_data) 2395 

head(cluster3_data) 2396 

head(cluster4_data) 2397 

head(cluster5_data) 2398 

head(cluster6_data) 2399 

clusters_3_and_5_data <- Initial.Final.data %>% filter(Cluster %in% c(3, 5)) 2400 

head(clusters_3_and_5_data) 2401 

 2402 

#Parallel Coordinates Plot 2403 

install.packages("RColorBrewer") 2404 

library(RColorBrewer) 2405 

 2406 

num_clusters <- length(unique(Initial.Final.data$cluster)) 2407 

cluster_colors <- brewer.pal(num_clusters, "Set1")  # "Set1" is a palette with distinct colors. 2408 
Adjust as needed. 2409 

 2410 

#install.packages("GGally") 2411 

library(GGally) 2412 

Initial.Final.data$cluster <- kmeans_result$cluster 2413 

ggparcoord(Initial.Final.data, columns = 1:(ncol(Initial.Final.data)-1), groupColumn = 2414 
ncol(Initial.Final.data), scale = "uniminmax") + 2415 

  theme_minimal() + 2416 

  labs(title = "Parallel Coordinates Plot for K-means Data", group="Cluster") + 2417 

  theme(legend.position="bottom") 2418 

 2419 

# Get loadings for PC1 and PC2 2420 

loadings_pc1 <- pca_result$rotation[, "PC1"] 2421 

loadings_pc2 <- pca_result$rotation[, "PC2"] 2422 

sort(loadings_pc1, decreasing = TRUE) 2423 

sort(loadings_pc2, decreasing = TRUE) 2424 

 2425 
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# Assuming pca_result is the result of prcomp 2426 

summary_pca <- summary(pca_result) 2427 

 2428 

# Variance explained by each principal component 2429 

explained_variance <- summary_pca$importance[2, ] 2430 

 2431 

# Proportion of variance explained 2432 

proportion_explained <- explained_variance / sum(explained_variance) 2433 

 2434 

# Percentage of variance explained by PC1 and PC2 2435 

percent_variance_PC1 <- proportion_explained[1] * 100 2436 

percent_variance_PC2 <- proportion_explained[2] * 100 2437 

 2438 

# Output the variance explained by PC1 and PC2 2439 

cat("Percentage of variance explained by PC1:", percent_variance_PC1, "%\n") 2440 

cat("Percentage of variance explained by PC2:", percent_variance_PC2, "%\n") 2441 

 2442 

 2443 

#Hierarchical Clustering 2444 

numeric_data <- Initial.Final.data[sapply(Initial.Final.data, is.numeric)] 2445 

scaled_numeric_data <- scale(numeric_data) 2446 

dist_matrix <- dist(scaled_numeric_data, method = "euclidean") 2447 

hclust_result <- hclust(dist_matrix, method = "average") 2448 

# If for example, you want to use a column "Labels" as the labels on the dendrogram 2449 

rownames(scaled_data) <- Initial.Final.data$Labels 2450 

plot(hclust_result, hang = -1) 2451 

cluster_assignments <- cutree(hclust_result, k=6) 2452 

rect.hclust(hclust_result, k = 6, border = "red") 2453 

8.03.3 Random Forest R Code (Supplemental Material C-3) 2454 
#install.packages(c("randomForest", "ggplot2")) 2455 
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library(randomForest) 2456 

library(ggplot2) 2457 

Initial.Final.data$Land.Use <- as.factor(Initial.Final.data$Land.Use) 2458 

Initial.Final.data$Moisture.Regime <- as.factor(Initial.Final.data$Moisture.Regime) 2459 

Initial.Final.data$Water.Application <- as.factor(Initial.Final.data$Water.Application) 2460 

Initial.Final.data$Ag.DI <- as.factor(Initial.Final.data$Ag.DI) 2461 

 2462 

#Nitrate 2463 

 2464 

rf.nitrate <- randomForest(KCl.Nitrate ~ Land.Use + Moisture.Regime + Water.Application + 2465 
Ag.DI, data=Initial.Final.data, ntree=500, mtry=2, importance=TRUE) 2466 

importance.nitrate <- importance(rf.nitrate) 2467 

 2468 

importance.nitrate.df <- data.frame( 2469 

  Variable = rownames(importance.nitrate), 2470 

  Importance = importance.nitrate[,"IncNodePurity"] 2471 

) 2472 

 2473 

ggplot(importance.nitrate.df, aes(x=reorder(Variable, Importance), y=Importance)) + 2474 

  geom_bar(stat="identity") + 2475 

  coord_flip() + 2476 

  labs(title="Feature Importance-Nitrate", x="Variables", y="Increase in Node Purity") 2477 

 2478 

#Ammonium 2479 

 2480 

rf.ammonium <- randomForest(KCl.Ammonium ~ Land.Use + Moisture.Regime + 2481 
Water.Application + Ag.DI, data=Initial.Final.data, ntree=500, mtry=2, importance=TRUE) 2482 

importance.ammonium <- importance(rf.ammonium) 2483 

 2484 

importance.ammonium.df <- data.frame( 2485 

  Variable = rownames(importance.ammonium), 2486 
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  Importance = importance.ammonium[,"IncNodePurity"] 2487 

) 2488 

 2489 

ggplot(importance.ammonium.df, aes(x=reorder(Variable, Importance), y=Importance)) + 2490 

  geom_bar(stat="identity") + 2491 

  coord_flip() + 2492 

  labs(title="Feature Importance-Ammonium", x="Variables", y="Increase in Node Purity") 2493 

 2494 

 2495 

#Fe2 2496 

rf.Fe2 <- randomForest(Fe2 ~ Land.Use + Moisture.Regime + Water.Application + Ag.DI, 2497 
data=Initial.Final.data, ntree=500, mtry=2, importance=TRUE) 2498 

importance.Fe2 <- importance(rf.Fe2) 2499 

 2500 

importance.Fe2.df <- data.frame( 2501 

  Variable = rownames(importance.Fe2), 2502 

  Importance = importance.Fe2[,"IncNodePurity"] 2503 

) 2504 

 2505 

ggplot(importance.Fe2.df, aes(x=reorder(Variable, Importance), y=Importance)) + 2506 

  geom_bar(stat="identity") + 2507 

  coord_flip() + 2508 

  labs(title="Feature Importance-Fe2", x="Variables", y="Increase in Node Purity") 2509 

 2510 

#Fe3 2511 

rf.Fe3 <- randomForest(Fe3 ~ Land.Use + Moisture.Regime + Water.Application + Ag.DI, 2512 
data=Initial.Final.data, ntree=500, mtry=2, importance=TRUE) 2513 

importance.Fe3 <- importance(rf.Fe3) 2514 

 2515 

importance.Fe3.df <- data.frame( 2516 

  Variable = rownames(importance.Fe3), 2517 
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  Importance = importance.Fe3[,"IncNodePurity"] 2518 

) 2519 

 2520 

ggplot(importance.Fe3.df, aes(x=reorder(Variable, Importance), y=Importance)) + 2521 

  geom_bar(stat="identity") + 2522 

  coord_flip() + 2523 

  labs(title="Feature Importance-Fe3", x="Variables", y="Increase in Node Purity") 2524 

 2525 

#perC 2526 

rf.perC <- randomForest(perC ~ Land.Use + Moisture.Regime + Water.Application + Ag.DI, 2527 
data=Initial.Final.data, ntree=500, mtry=2, importance=TRUE) 2528 

importance.perC <- importance(rf.perC) 2529 

 2530 

importance.perC.df <- data.frame( 2531 

  Variable = rownames(importance.perC), 2532 

  Importance = importance.perC[,"IncNodePurity"] 2533 

) 2534 

 2535 

ggplot(importance.perC.df, aes(x=reorder(Variable, Importance), y=Importance)) + 2536 

  geom_bar(stat="identity") + 2537 

  coord_flip() + 2538 

  labs(title="Feature Importance-perC", x="Variables", y="Increase in Node Purity") 2539 

 2540 

#perN 2541 

rf.perN <- randomForest(perN ~ Land.Use + Moisture.Regime + Water.Application + Ag.DI, 2542 
data=Initial.Final.data, ntree=500, mtry=2, importance=TRUE) 2543 

importance.perN <- importance(rf.perN) 2544 

 2545 

importance.perN.df <- data.frame( 2546 

  Variable = rownames(importance.perN), 2547 

  Importance = importance.perN[,"IncNodePurity"] 2548 
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) 2549 

 2550 

ggplot(importance.perN.df, aes(x=reorder(Variable, Importance), y=Importance)) + 2551 

  geom_bar(stat="identity") + 2552 

  coord_flip() + 2553 

  labs(title="Feature Importance-perN", x="Variables", y="Increase in Node Purity") 2554 

 2555 

#perS 2556 

rf.perS <- randomForest(perS ~ Land.Use + Moisture.Regime + Water.Application + Ag.DI, 2557 
data=Initial.Final.data, ntree=500, mtry=2, importance=TRUE) 2558 

importance.perS <- importance(rf.perS) 2559 

 2560 

importance.perS.df <- data.frame( 2561 

  Variable = rownames(importance.perS), 2562 

  Importance = importance.perS[,"IncNodePurity"] 2563 

) 2564 

 2565 

ggplot(importance.perS.df, aes(x=reorder(Variable, Importance), y=Importance)) + 2566 

  geom_bar(stat="identity") + 2567 

  coord_flip() + 2568 

  labs(title="Feature Importance-perS", x="Variables", y="Increase in Node Purity") 2569 

 2570 

#Soil.pH 2571 

rf.Soil.pH <- randomForest(Soil.pH ~ Land.Use + Moisture.Regime + Water.Application + Ag.DI, 2572 
data=Initial.Final.data, ntree=500, mtry=2, importance=TRUE) 2573 

importance.Soil.pH <- importance(rf.Soil.pH) 2574 

 2575 

importance.Soil.pH.df <- data.frame( 2576 

  Variable = rownames(importance.Soil.pH), 2577 

  Importance = importance.Soil.pH[,"IncNodePurity"] 2578 

) 2579 
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 2580 

ggplot(importance.Soil.pH.df, aes(x=reorder(Variable, Importance), y=Importance)) + 2581 

  geom_bar(stat="identity") + 2582 

  coord_flip() + 2583 

  labs(title="Feature Importance-Soil pH", x="Variables", y="Increase in Node Purity") 2584 

8.03.4 Soil Texture Triangle R Code (Supplemental Material C-4) 2585 
library(soiltexture) 2586 

TT.plot( class.sys = "USDA.TT" ) 2587 

natural.texture=data.frame( 2588 

  "CLAY"=c(33.16, 28.82, 2.25, 26.32, 8.22), "SILT"=c(50.91, 31.14, 36.89, 19.82, 21.39), 2589 
"SAND"=c(15.93, 40.04, 60.85, 53.85, 70.39) 2590 

) 2591 

TT.plot( 2592 

  class.sys = "USDA.TT", 2593 

  tri.data = natural.texture, 2594 

  main = "Uncultivated Soil Texture", 2595 

  cex.main=2, 2596 

  col="red", 2597 

  col.lab="black", 2598 

  class.lab.col = "beige", 2599 

  pch=4, 2600 

  class.p.bg.col=c("slategray2", "palegreen", "skyblue", "palegoldenrod", "coral", "palevioletred", 2601 
"seagreen1", "royalblue", "orchid", "peru", "salmon", "indianred") 2602 

) 2603 

chart.labels.uc=c("A-Bw1”, “Bw2", "C", "Ab", "2C") 2604 

TT.text( 2605 

  tri.data = natural.texture, 2606 

  geo = geo, 2607 

  labels = chart.labels.uc, 2608 

  font = 2, 2609 

  col = "black", 2610 
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  adj=1,  2611 

  pos=1 2612 

) 2613 

TT.points.in.classes( 2614 

  tri.data = natural.texture[1:5,], 2615 

  class.sys = "USDA.TT" 2616 

) 2617 

library(soiltexture) 2618 

TT.plot( class.sys = "USDA.TT" ) 2619 

cultivated.texture=data.frame( 2620 

  "CLAY"=c(5.17, 3.19, 4.16, 19.14, 37.45, 42.83, 39.38), "SILT"=c(41.05, 54.65, 57.53, 63.12, 2621 
50.2, 52.54, 41.39), "SAND"=c(53.78, 42.15, 38.31, 17.74, 12.35, 4.63, 19.22) 2622 

) 2623 

TT.plot( 2624 

  class.sys = "USDA.TT", 2625 

  tri.data = cultivated.texture, 2626 

  main = "Cultivated Soil Texture",  2627 

  cex.main=2, 2628 

  col="red", 2629 

  col.lab="black", 2630 

  class.lab.col = "beige", 2631 

  pch=4, 2632 

  class.p.bg.col=c("slategray2", "palegreen", "skyblue", "palegoldenrod", "coral", "palevioletred", 2633 
"seagreen1", "royalblue", "orchid", "peru", "salmon", "indianred") 2634 

) 2635 

chart.labels=c("Ap", "A", "AB", "Bw", "Bk1", "Bk2", "C") 2636 

TT.text( 2637 

  tri.data = cultivated.texture, 2638 

  geo = geo, 2639 

  labels = chart.labels, 2640 

  font = 2, 2641 
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  col = "black", 2642 

  adj=1,  2643 

  pos=1 2644 

) 2645 

TT.points.in.classes( 2646 

  tri.data = cultivated.texture[1:5,], 2647 

  class.sys = "USDA.TT" 2648 

) 2649 

8.03.5 Porewater Chemistry Boxplot Code 2650 
#install.packages("tidyverse") 2651 

library(tidyverse) 2652 

long_data <- GLMM.Table %>%  2653 

  gather(key = "Variable", value = "Value", Soil.Texture, Moisture.Regime, 2654 
Water.Application, Ag.DI) 2655 

ggplot(long_data, aes(x = Value, y = Nitrate, fill = Value)) + 2656 

  geom_boxplot() + 2657 

  facet_wrap(~ Variable, scales = "free_x") +  # Use facetting by Variable 2658 

  labs(title = "Effect of Variables on Nitrate Concentrations", 2659 

       x = "", 2660 

       y = "Nitrate Concentration") + 2661 

  theme_minimal() 2662 

 2663 

# Create an interaction variable 2664 

GLMM.Table$interaction_term <- interaction(GLMM.Table$Soil.Texture, 2665 
GLMM.Table$Moisture.Regime, drop = TRUE, sep = " & ") 2666 

long_data <- GLMM.Table %>%  2667 

  gather(key = "Variable", value = "Value", Soil.Texture, Moisture.Regime, 2668 
Water.Application, Ag.DI, interaction_term) 2669 

p <- ggplot(long_data, aes(x = Value, y = Nitrate, fill = Value)) + 2670 

  geom_boxplot() + 2671 
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  facet_wrap(~ Variable, scales = "free_x") +  # Use facetting by Variable 2672 

  labs(title = "Effect of Variables and Interactions on Nitrate Concentrations", 2673 

       x = "", 2674 

       y = "Nitrate Concentration") + 2675 

  theme_minimal() 2676 

 2677 

print(p) 2678 

 2679 

# Create interaction variables 2680 

GLMM.Table$int_Land_Moisture <- interaction(GLMM.Table$Soil.Texture, 2681 
GLMM.Table$Moisture.Regime, drop = TRUE, sep = " & ") 2682 

GLMM.Table$int_Land_WaterApp <- interaction(GLMM.Table$Soil.Texture, 2683 
GLMM.Table$Water.Application, drop = TRUE, sep = " & ") 2684 

GLMM.Table$int_Land_WaterType <- interaction(GLMM.Table$Soil.Texture, 2685 
GLMM.Table$Ag.DI, drop = TRUE, sep = " & ") 2686 

GLMM.Table$int_Moisture_WaterApp <- interaction(GLMM.Table$Moisture.Regime, 2687 
GLMM.Table$Water.Application, drop = TRUE, sep = " & ") 2688 

GLMM.Table$int_Moisture_WaterType <- interaction(GLMM.Table$Moisture.Regime, 2689 
GLMM.Table$Ag.DI, drop = TRUE, sep = " & ") 2690 

GLMM.Table$int_WaterApp_WaterType <- interaction(GLMM.Table$Water.Application, 2691 
GLMM.Table$Ag.DI, drop = TRUE, sep = " & ") 2692 

 2693 

# Three-way interactions 2694 

GLMM.Table$int_Land_Moisture_WaterApp <- interaction(GLMM.Table$Soil.Texture, 2695 
GLMM.Table$Moisture.Regime, GLMM.Table$Water.Application, drop = TRUE, sep = " 2696 
& ") 2697 

GLMM.Table$int_Land_Moisture_WaterType <- interaction(GLMM.Table$Soil.Texture, 2698 
GLMM.Table$Moisture.Regime, GLMM.Table$Ag.DI, drop = TRUE, sep = " & ") 2699 

GLMM.Table$int_Land_WaterApp_WaterType <- interaction(GLMM.Table$Soil.Texture, 2700 
GLMM.Table$Water.Application, GLMM.Table$Ag.DI, drop = TRUE, sep = " & ") 2701 
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GLMM.Table$int_Moisture_WaterApp_WaterType <- 2702 
interaction(GLMM.Table$Moisture.Regime, GLMM.Table$Water.Application, 2703 
GLMM.Table$Ag.DI, drop = TRUE, sep = " & ") 2704 

 2705 

# Four-way interaction 2706 

GLMM.Table$int_Land_Moisture_WaterApp_WaterType <- 2707 
interaction(GLMM.Table$Soil.Texture, GLMM.Table$Moisture.Regime, 2708 
GLMM.Table$Water.Application, GLMM.Table$Ag.DI, drop = TRUE, sep = " & ") 2709 

 2710 

# Gather into long format 2711 

long_data <- GLMM.Table %>%  2712 

  gather(key = "Variable", value = "Value",  2713 

         Soil.Texture, Moisture.Regime, Water.Application, Ag.DI, 2714 

         int_Land_Moisture, int_Land_WaterApp, int_Land_WaterType,  2715 

         int_Moisture_WaterApp, int_Moisture_WaterType, int_WaterApp_WaterType, 2716 

         int_Land_Moisture_WaterApp, int_Land_Moisture_WaterType,  2717 

         int_Land_WaterApp_WaterType, int_Moisture_WaterApp_WaterType, 2718 

         int_Land_Moisture_WaterApp_WaterType) 2719 

nitrate.p2 <- ggplot(long_data, aes(x = Value, y = Nitrate, fill = Value)) + 2720 

  geom_boxplot() + 2721 

  facet_wrap(~ Variable, scales = "free_x") +  # Use facetting by Variable 2722 

  labs(title = "Effect of Variables and Their Interactions on Nitrate Concentrations", 2723 

       x = "", 2724 

       y = "Nitrate Concentration g/L") + 2725 

  theme_minimal() + 2726 

  theme_minimal() + 2727 

  theme(axis.text.x = element_text(angle = 45, hjust = 1, size = 8),  # Adjust x-axis text 2728 
size 2729 

        axis.text.y = element_text(size = 10),                         # Adjust y-axis text size 2730 

        axis.title.x = element_text(size = 14),                        # Adjust x-axis title size 2731 
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        axis.title.y = element_text(size = 14),                        # Adjust y-axis title size 2732 

        plot.title = element_text(size = 16))  2733 

 2734 

print(nitrate.p2) 2735 

#install.packages("tidyverse") 2736 

library(tidyverse) 2737 

long_data <- GLMM.Table %>%  2738 

  gather(key = "Variable", value = "Value", Land.Use, Moisture.Regime, 2739 
Water.Application, Ag.DI) 2740 

ggplot(long_data, aes(x = Value, y = Ammonium, fill = Value)) + 2741 

  geom_boxplot() + 2742 

  facet_wrap(~ Variable, scales = "free_x") +  # Use facetting by Variable 2743 

  labs(title = "Effect of Variables on Ammonium Concentrations", 2744 

       x = "", 2745 

       y = "Ammonium Concentration") + 2746 

  theme_minimal() 2747 

 2748 

# Create an interaction variable 2749 

GLMM.Table$interaction_term <- interaction(GLMM.Table$Soil.Texture, 2750 
GLMM.Table$Moisture.Regime, drop = TRUE, sep = " & ") 2751 

long_data <- GLMM.Table %>%  2752 

  gather(key = "Variable", value = "Value", Soil.Texture, Moisture.Regime, 2753 
Water.Application, Ag.DI, interaction_term) 2754 

p <- ggplot(long_data, aes(x = Value, y = Nitrate, fill = Value)) + 2755 

  geom_boxplot() + 2756 

  facet_wrap(~ Variable, scales = "free_x") +  # Use facetting by Variable 2757 

  labs(title = "Effect of Variables and Interactions on Nitrate Concentrations", 2758 

       x = "", 2759 

       y = "Nitrate Concentration") + 2760 
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  theme_minimal() 2761 

 2762 

print(p) 2763 

 2764 

# Create interaction variables 2765 

GLMM.Table$int_Land_Moisture <- interaction(GLMM.Table$Soil.Texture, 2766 
GLMM.Table$Moisture.Regime, drop = TRUE, sep = " & ") 2767 

GLMM.Table$int_Land_WaterApp <- interaction(GLMM.Table$Soil.Texture, 2768 
GLMM.Table$Water.Application, drop = TRUE, sep = " & ") 2769 

GLMM.Table$int_Land_WaterType <- interaction(GLMM.Table$Soil.Texture, 2770 
GLMM.Table$Ag.DI, drop = TRUE, sep = " & ") 2771 

GLMM.Table$int_Moisture_WaterApp <- interaction(GLMM.Table$Moisture.Regime, 2772 
GLMM.Table$Water.Application, drop = TRUE, sep = " & ") 2773 

GLMM.Table$int_Moisture_WaterType <- interaction(GLMM.Table$Moisture.Regime, 2774 
GLMM.Table$Ag.DI, drop = TRUE, sep = " & ") 2775 

GLMM.Table$int_WaterApp_WaterType <- interaction(GLMM.Table$Water.Application, 2776 
GLMM.Table$Ag.DI, drop = TRUE, sep = " & ") 2777 

 2778 

# Three-way interactions 2779 

GLMM.Table$int_Land_Moisture_WaterApp <- interaction(GLMM.Table$Soil.Texture, 2780 
GLMM.Table$Moisture.Regime, GLMM.Table$Water.Application, drop = TRUE, sep = " 2781 
& ") 2782 

GLMM.Table$int_Land_Moisture_WaterType <- interaction(GLMM.Table$Soil.Texture, 2783 
GLMM.Table$Moisture.Regime, GLMM.Table$Ag.DI, drop = TRUE, sep = " & ") 2784 

GLMM.Table$int_Land_WaterApp_WaterType <- interaction(GLMM.Table$Soil.Texture, 2785 
GLMM.Table$Water.Application, GLMM.Table$Ag.DI, drop = TRUE, sep = " & ") 2786 

GLMM.Table$int_Moisture_WaterApp_WaterType <- 2787 
interaction(GLMM.Table$Moisture.Regime, GLMM.Table$Water.Application, 2788 
GLMM.Table$Ag.DI, drop = TRUE, sep = " & ") 2789 

 2790 

# Four-way interaction 2791 
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GLMM.Table$int_Land_Moisture_WaterApp_WaterType <- 2792 
interaction(GLMM.Table$Soil.Texture, GLMM.Table$Moisture.Regime, 2793 
GLMM.Table$Water.Application, GLMM.Table$Ag.DI, drop = TRUE, sep = " & ") 2794 

 2795 

# Gather into long format 2796 

long_data <- GLMM.Table %>%  2797 

  gather(key = "Variable", value = "Value",  2798 

         Soil.Texture, Moisture.Regime, Water.Application, Ag.DI, 2799 

         int_Land_Moisture, int_Land_WaterApp, int_Land_WaterType,  2800 

         int_Moisture_WaterApp, int_Moisture_WaterType, int_WaterApp_WaterType, 2801 

         int_Land_Moisture_WaterApp, int_Land_Moisture_WaterType,  2802 

         int_Land_WaterApp_WaterType, int_Moisture_WaterApp_WaterType, 2803 

         int_Land_Moisture_WaterApp_WaterType) 2804 

ammonium.p2 <- ggplot(long_data, aes(x = Value, y = Ammonium, fill = Value)) + 2805 

  geom_boxplot() + 2806 

  facet_wrap(~ Variable, scales = "free_x") +  # Use facetting by Variable 2807 

  labs(title = "Effect of Variables and Their Interactions on Ammonium Concentrations", 2808 

       x = "", 2809 

       y = "Ammonium Concentration") + 2810 

  theme_minimal() + 2811 

  theme(axis.text.x = element_text(angle = 45, hjust = 1, size = 8),  # Adjust x-axis text 2812 
size 2813 

        axis.text.y = element_text(size = 10),                         # Adjust y-axis text size 2814 

        axis.title.x = element_text(size = 14),                        # Adjust x-axis title size 2815 

        axis.title.y = element_text(size = 14),                        # Adjust y-axis title size 2816 

        plot.title = element_text(size = 16))  2817 

 2818 

print(ammonium.p2) 2819 

#install.packages("tidyverse") 2820 
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library(tidyverse) 2821 

long_data <- GLMM.Table %>%  2822 

  gather(key = "Variable", value = "Value", Land.Use, Moisture.Regime, 2823 
Water.Application, Ag.DI) 2824 

ggplot(long_data, aes(x = Value, y = Phosphate, fill = Value)) + 2825 

  geom_boxplot() + 2826 

  facet_wrap(~ Variable, scales = "free_x") +  # Use facetting by Variable 2827 

  labs(title = "Effect of Variables on Phosphate Concentrations", 2828 

       x = "", 2829 

       y = "Phosphate Concentration") + 2830 

  theme_minimal() 2831 

 2832 

# Create interaction variables 2833 

GLMM.Table$int_Land_Moisture <- interaction(GLMM.Table$Soil.Texture, 2834 
GLMM.Table$Moisture.Regime, drop = TRUE, sep = " & ") 2835 

GLMM.Table$int_Land_WaterApp <- interaction(GLMM.Table$Soil.Texture, 2836 
GLMM.Table$Water.Application, drop = TRUE, sep = " & ") 2837 

GLMM.Table$int_Land_WaterType <- interaction(GLMM.Table$Soil.Texture, 2838 
GLMM.Table$Ag.DI, drop = TRUE, sep = " & ") 2839 

GLMM.Table$int_Moisture_WaterApp <- interaction(GLMM.Table$Moisture.Regime, 2840 
GLMM.Table$Water.Application, drop = TRUE, sep = " & ") 2841 

GLMM.Table$int_Moisture_WaterType <- interaction(GLMM.Table$Moisture.Regime, 2842 
GLMM.Table$Ag.DI, drop = TRUE, sep = " & ") 2843 

GLMM.Table$int_WaterApp_WaterType <- interaction(GLMM.Table$Water.Application, 2844 
GLMM.Table$Ag.DI, drop = TRUE, sep = " & ") 2845 

 2846 

# Three-way interactions 2847 

GLMM.Table$int_Land_Moisture_WaterApp <- interaction(GLMM.Table$Soil.Texture, 2848 
GLMM.Table$Moisture.Regime, GLMM.Table$Water.Application, drop = TRUE, sep = " 2849 
& ") 2850 

GLMM.Table$int_Land_Moisture_WaterType <- interaction(GLMM.Table$Soil.Texture, 2851 
GLMM.Table$Moisture.Regime, GLMM.Table$Ag.DI, drop = TRUE, sep = " & ") 2852 
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GLMM.Table$int_Land_WaterApp_WaterType <- interaction(GLMM.Table$Soil.Texture, 2853 
GLMM.Table$Water.Application, GLMM.Table$Ag.DI, drop = TRUE, sep = " & ") 2854 

GLMM.Table$int_Moisture_WaterApp_WaterType <- 2855 
interaction(GLMM.Table$Moisture.Regime, GLMM.Table$Water.Application, 2856 
GLMM.Table$Ag.DI, drop = TRUE, sep = " & ") 2857 

 2858 

# Four-way interaction 2859 

GLMM.Table$int_Land_Moisture_WaterApp_WaterType <- 2860 
interaction(GLMM.Table$Soil.Texture, GLMM.Table$Moisture.Regime, 2861 
GLMM.Table$Water.Application, GLMM.Table$Ag.DI, drop = TRUE, sep = " & ") 2862 

 2863 

# Gather into long format 2864 

long_data <- GLMM.Table %>%  2865 

  gather(key = "Variable", value = "Value",  2866 

         Soil.Texture, Moisture.Regime, Water.Application, Ag.DI, 2867 

         int_Land_Moisture, int_Land_WaterApp, int_Land_WaterType,  2868 

         int_Moisture_WaterApp, int_Moisture_WaterType, int_WaterApp_WaterType, 2869 

         int_Land_Moisture_WaterApp, int_Land_Moisture_WaterType,  2870 

         int_Land_WaterApp_WaterType, int_Moisture_WaterApp_WaterType, 2871 

         int_Land_Moisture_WaterApp_WaterType) 2872 

phosphate.p2 <- ggplot(long_data, aes(x = Value, y = Phosphate, fill = Value)) + 2873 

  geom_boxplot() + 2874 

  facet_wrap(~ Variable, scales = "free_x") +  # Use facetting by Variable 2875 

  labs(title = "Effect of Variables and Their Interactions on Phosphate Concentrations", 2876 

       x = "", 2877 

       y = "Phosphate Concentration") + 2878 

  theme_minimal() + 2879 

  theme(axis.text.x = element_text(angle = 45, hjust = 1, size = 8),  # Adjust x-axis text 2880 
size 2881 

        axis.text.y = element_text(size = 10),                         # Adjust y-axis text size 2882 
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        axis.title.x = element_text(size = 14),                        # Adjust x-axis title size 2883 

        axis.title.y = element_text(size = 14),                        # Adjust y-axis title size 2884 

        plot.title = element_text(size = 16)) 2885 

 2886 

print(phosphate.p2) 2887 

#install.packages("tidyverse") 2888 

library(tidyverse) 2889 

long_data <- GLMM.Table %>%  2890 

  gather(key = "Variable", value = "Value", Land.Use, Moisture.Regime, 2891 
Water.Application, Ag.DI) 2892 

ggplot(long_data, aes(x = Value, y = Pore.Water.pH, fill = Value)) + 2893 

  geom_boxplot() + 2894 

  facet_wrap(~ Variable, scales = "free_x") +  # Use facetting by Variable 2895 

  labs(title = "Effect of Variables on Pore Water pH", 2896 

       x = "", 2897 

       y = "Pore Water pH") + 2898 

  theme_minimal() 2899 

 2900 

# Create interaction variables 2901 

GLMM.Table$int_Land_Moisture <- interaction(GLMM.Table$Soil.Texture, 2902 
GLMM.Table$Moisture.Regime, drop = TRUE, sep = " & ") 2903 

GLMM.Table$int_Land_WaterApp <- interaction(GLMM.Table$Soil.Texture, 2904 
GLMM.Table$Water.Application, drop = TRUE, sep = " & ") 2905 

GLMM.Table$int_Land_WaterType <- interaction(GLMM.Table$Soil.Texture, 2906 
GLMM.Table$Ag.DI, drop = TRUE, sep = " & ") 2907 

GLMM.Table$int_Moisture_WaterApp <- interaction(GLMM.Table$Moisture.Regime, 2908 
GLMM.Table$Water.Application, drop = TRUE, sep = " & ") 2909 

GLMM.Table$int_Moisture_WaterType <- interaction(GLMM.Table$Moisture.Regime, 2910 
GLMM.Table$Ag.DI, drop = TRUE, sep = " & ") 2911 

GLMM.Table$int_WaterApp_WaterType <- interaction(GLMM.Table$Water.Application, 2912 
GLMM.Table$Ag.DI, drop = TRUE, sep = " & ") 2913 
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 2914 

# Three-way interactions 2915 

GLMM.Table$int_Land_Moisture_WaterApp <- interaction(GLMM.Table$Soil.Texture, 2916 
GLMM.Table$Moisture.Regime, GLMM.Table$Water.Application, drop = TRUE, sep = " 2917 
& ") 2918 

GLMM.Table$int_Land_Moisture_WaterType <- interaction(GLMM.Table$Soil.Texture, 2919 
GLMM.Table$Moisture.Regime, GLMM.Table$Ag.DI, drop = TRUE, sep = " & ") 2920 

GLMM.Table$int_Land_WaterApp_WaterType <- interaction(GLMM.Table$Soil.Texture, 2921 
GLMM.Table$Water.Application, GLMM.Table$Ag.DI, drop = TRUE, sep = " & ") 2922 

GLMM.Table$int_Moisture_WaterApp_WaterType <- 2923 
interaction(GLMM.Table$Moisture.Regime, GLMM.Table$Water.Application, 2924 
GLMM.Table$Ag.DI, drop = TRUE, sep = " & ") 2925 

 2926 

# Four-way interaction 2927 

GLMM.Table$int_Land_Moisture_WaterApp_WaterType <- 2928 
interaction(GLMM.Table$Soil.Texture, GLMM.Table$Moisture.Regime, 2929 
GLMM.Table$Water.Application, GLMM.Table$Ag.DI, drop = TRUE, sep = " & ") 2930 

 2931 

# Gather into long format 2932 

long_data <- GLMM.Table %>%  2933 

  gather(key = "Variable", value = "Value",  2934 

         Soil.Texture, Moisture.Regime, Water.Application, Ag.DI, 2935 

         int_Land_Moisture, int_Land_WaterApp, int_Land_WaterType,  2936 

         int_Moisture_WaterApp, int_Moisture_WaterType, int_WaterApp_WaterType, 2937 

         int_Land_Moisture_WaterApp, int_Land_Moisture_WaterType,  2938 

         int_Land_WaterApp_WaterType, int_Moisture_WaterApp_WaterType, 2939 

         int_Land_Moisture_WaterApp_WaterType) 2940 

pH.p2 <- ggplot(long_data, aes(x = Value, y = Pore.Water.pH, fill = Value)) + 2941 

  geom_boxplot() + 2942 

  facet_wrap(~ Variable, scales = "free_x") +  # Use facetting by Variable 2943 

  labs(title = "Effect of Variables and Their Interactions on Pore Water pH", 2944 
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       x = "", 2945 

       y = "Pore Water pH") + 2946 

  theme_minimal() + 2947 

  theme(axis.text.x = element_text(angle = 45, hjust = 1, size = 8),  # Adjust x-axis text 2948 
size 2949 

        axis.text.y = element_text(size = 10),                         # Adjust y-axis text size 2950 

        axis.title.x = element_text(size = 14),                        # Adjust x-axis title size 2951 

        axis.title.y = element_text(size = 14),                        # Adjust y-axis title size 2952 

        plot.title = element_text(size = 16))  2953 

 2954 

print(pH.p2) 2955 

#install.packages("tidyverse") 2956 

library(tidyverse) 2957 

long_data <- GLMM.Table %>%  2958 

  gather(key = "Variable", value = "Value",Soil.Texture, Moisture.Regime, 2959 
Water.Application, Ag.DI) 2960 

ggplot(long_data, aes(x = Value, y = ARQ, fill = Value)) + 2961 

  geom_boxplot() + 2962 

  facet_wrap(~ Variable, scales = "free_x") +  # Use facetting by Variable 2963 

  labs(title = "Effect of Variables on ARQ", 2964 

       x = "", 2965 

       y = "ARQ") + 2966 

  theme_minimal() 2967 

 2968 

# Create interaction variables 2969 

GLMM.Table$int_Land_Moisture <- interaction(GLMM.Table$Soil.Texture, 2970 
GLMM.Table$Moisture.Regime, drop = TRUE, sep = " & ") 2971 

GLMM.Table$int_Land_WaterApp <- interaction(GLMM.Table$Soil.Texture, 2972 
GLMM.Table$Water.Application, drop = TRUE, sep = " & ") 2973 
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GLMM.Table$int_Land_WaterType <- interaction(GLMM.Table$Soil.Texture, 2974 
GLMM.Table$Ag.DI, drop = TRUE, sep = " & ") 2975 

GLMM.Table$int_Moisture_WaterApp <- interaction(GLMM.Table$Moisture.Regime, 2976 
GLMM.Table$Water.Application, drop = TRUE, sep = " & ") 2977 

GLMM.Table$int_Moisture_WaterType <- interaction(GLMM.Table$Moisture.Regime, 2978 
GLMM.Table$Ag.DI, drop = TRUE, sep = " & ") 2979 

GLMM.Table$int_WaterApp_WaterType <- interaction(GLMM.Table$Water.Application, 2980 
GLMM.Table$Ag.DI, drop = TRUE, sep = " & ") 2981 

 2982 

# Three-way interactions 2983 

GLMM.Table$int_Land_Moisture_WaterApp <- interaction(GLMM.Table$Soil.Texture, 2984 
GLMM.Table$Moisture.Regime, GLMM.Table$Water.Application, drop = TRUE, sep = " 2985 
& ") 2986 

GLMM.Table$int_Land_Moisture_WaterType <- interaction(GLMM.Table$Soil.Texture, 2987 
GLMM.Table$Moisture.Regime, GLMM.Table$Ag.DI, drop = TRUE, sep = " & ") 2988 

GLMM.Table$int_Land_WaterApp_WaterType <- interaction(GLMM.Table$Soil.Texture, 2989 
GLMM.Table$Water.Application, GLMM.Table$Ag.DI, drop = TRUE, sep = " & ") 2990 

GLMM.Table$int_Moisture_WaterApp_WaterType <- 2991 
interaction(GLMM.Table$Moisture.Regime, GLMM.Table$Water.Application, 2992 
GLMM.Table$Ag.DI, drop = TRUE, sep = " & ") 2993 

 2994 

# Four-way interaction 2995 

GLMM.Table$int_Land_Moisture_WaterApp_WaterType <- 2996 
interaction(GLMM.Table$Soil.Texture, GLMM.Table$Moisture.Regime, 2997 
GLMM.Table$Water.Application, GLMM.Table$Ag.DI, drop = TRUE, sep = " & ") 2998 

 2999 

# Gather into long format 3000 

long_data <- GLMM.Table %>%  3001 

  gather(key = "Variable", value = "Value",  3002 

         Soil.Texture, Moisture.Regime, Water.Application, Ag.DI, 3003 

         int_Land_Moisture, int_Land_WaterApp, int_Land_WaterType,  3004 

         int_Moisture_WaterApp, int_Moisture_WaterType, int_WaterApp_WaterType, 3005 
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         int_Land_Moisture_WaterApp, int_Land_Moisture_WaterType,  3006 

         int_Land_WaterApp_WaterType, int_Moisture_WaterApp_WaterType, 3007 

         int_Land_Moisture_WaterApp_WaterType) 3008 

ARQ.p2 <- ggplot(long_data, aes(x = Value, y = ARQ, fill = Value)) + 3009 

  geom_boxplot() + 3010 

  facet_wrap(~ Variable, scales = "free_x") +  # Use facetting by Variable 3011 

  labs(title = "Effect of Variables and Their Interactions on ARQ", 3012 

       x = "", 3013 

       y = "ARQ") + 3014 

  theme_minimal() + 3015 

  theme(axis.text.x = element_text(angle = 45, hjust = 1, size = 8),  # Adjust x-axis text 3016 
size 3017 

        axis.text.y = element_text(size = 10),                         # Adjust y-axis text size 3018 

        axis.title.x = element_text(size = 14),                        # Adjust x-axis title size 3019 

        axis.title.y = element_text(size = 14),                        # Adjust y-axis title size 3020 

        plot.title = element_text(size = 16))  3021 

 3022 

print(ARQ.p2) 3023 


