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MOMENT INEQUALITIES FOR EQUILIBRIUM MEASURES IN THE
PLANE

A. BAERNSTEIN II, R. S. LAUGESEN, AND I. E. PRITSKER

ABSTRACT. The equilibrium measure of a compact plane set gives the steady
state distribution of charges on the conductor. We show thatcertain moments
of this equilibrium measure, when taken about the electrostatic centroid and de-
pending only on the real coordinate, are extremal for an interval centered at the
origin. This has consequences for means of zeros of polynomials, and for means
of critical points of Green’s functions.

We also study moments depending on the distance from the centroid, such as
the electrostatic moment of inertia.

Dedicated to our friend Fred Gehring, on the occasion of his 80th birthday.

1. Introduction

Let K be a compact non-polar subset of the complex planeC, andµK be its
equilibrium measure. For functionsφ : K → R, the integral

∫

K
φ(z) dµK(z)

is called theφmoment ofK, or of the probability measureµK . For example, when
φ(z) = |z|2 theφ moment is the moment of inertia about the origin.

In this paper we take up some problems involving maximizing or minimizingφ
moments whenφ satisfies certain conditions. In all of our results the competing
setsK will have the same logarithmic capacity, which, as a normalization, we take
to be1. That is:

cap(K) = 1.

And we shall usually take theconformal centroid
∫
K z dµK(z) of K to lie at the

origin: ∫

K
z dµK(z) = 0.

In all of our results, the extremalφmoment will be achieved by a line segment of
length4. When sets in the class have conformal centroid at the origin, the interval
L defined by

L = [−2, 2]
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will be among the extremals.
In our two main results the functionφ will in fact depend only on the real part

of z. Here are those results.

Theorem 1. SupposeK ⊂ R is compact with capacitycap(K) = 1, and that its
conformal centroid is at the origin. Then for every convex functionφ : R → R, we
have ∫

K
φ(Re z) dµK(z) ≥

∫

L
φ(Re z) dµL(z).

Moreover, ifK \ L has positive capacity and the restriction ofφ to L is not a
linear function, then strict inequality holds.

Theorem 2. SupposeK ⊂ C is compact and connected with capacitycap(K) =
1, and that its conformal centroid is at the origin. Then for every convex function
φ : R → R, we have

∫

K
φ(Re z) dµK(z) ≤

∫

L
φ(Re z) dµL(z).

Moreover, ifK 6= L and the restriction ofφ to L is not a linear function, then
strict inequality holds.

Theorem 1 says that among all compact sets on a line with the same conformal
centroid and the same capacity, the least spread out set, as measured by convex
integral means, is a single interval. Contrary-wise, Theorem 2 says that among all
plane continua with the same conformal centroid and the samecapacity, the single
interval is the most spread out.

For a lower estimate applicable in both Theorems 1 and 2, we observe
∫

K
φ(Re z) dµK(z) ≥ φ(0)

by Jensen’s inequality, wheneverK is compact with conformal centroid on the
imaginary axis (Re

∫
K z dµK(z) = 0) andφ is convex. Equality is attained when-

everK is contained in the imaginary axis. Theorems 1 and 2 also require only that
the conformal centroid be purely imaginary, but, for brevity, we shall continue to
assume the conformal centroid is at the origin.

The proof of Theorem 2 is modeled on the proof of a theorem of Baernstein [2],
p.139, about maximizing integral means in certain classes of univalent functions
in the unit disk. The novelty in the present Theorem 2 is that instead of working
with symmetric decreasing rearrangements on circles, as in[2], one must devise
a “*-function” appropriate to “symmetric increasing rearrangements” of functions
defined and unbounded in all ofR. The proof of Theorem 1 follows the same
general strategy as that of Theorem 2, but is simpler, in thatno functions need to
be rearranged.

Theorem 1 is motivated by considerations in number theory; it will be proved
in §3. Some consequences will be presented in§4. Theorem 2, to be proved in§5,
arose in an attempt to prove a conjecture stated in§6. The conjecture asserts, when
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bothφ andφ′ are convex, that
∫

K
φ(log |z|) dµK(z) ≤

∫

L
φ(log |z|) dµL(z) (1)

providedK is compact and connected withcap(K) = 1 and with its conformal
centroid at the origin, and with the origin belonging toK. If true, the conjec-
ture would prove a conjecture of Pommerenke [14] about integral means of univa-
lent functions in the classΣ0, and would also prove a conjecture of Pritsker and
Ruscheweyh [17] about lower bounds for factors of polynomials.

We will present an example showing that (1) is false within the class of all
convex functions. But if we add toK the assumption, stronger than having the
conformal centroid at the origin, thatK is symmetric with respect to the origin,
then (1) is true for all convexφ. This is Corollary 6.3. It follows from Theorem 6.2,
which restates a result of Laugesen [11] (and which is itselfa consequence of
Baernstein’s integral means result, Theorem 1 in [2]).

2. Potential theoretic preliminaries

For potential theoretic notions we shall mostly follow the approach in [18]. Let
K be a compact subset ofC, andKc be the complement ofK on the Riemann
sphereC. For a measureµ compactly supported inC, the energyI(µ) is defined
to beI(µ) =

∫
K×K log |z − ζ| dµ(z) dµ(ζ). If I(µ) = −∞ for everyµ supported

onK thenK is said to bepolar. If K is non-polar, then there is a unique proba-
bility measureµK onK, called the equilibrium measure ofK, which maximizes
I(µ) over all probability measuresµ onK. ClearlyI(µK) is a finite real number,
becauseK is bounded. The capacitycap(K) of K is defined to beeI(µK ). For
polarK, definecap(K) = 0. A general setE is said to be polar ifcap(K) = 0
for every compactK ⊂ E.

For non-polarK, denote byg the equilibrium potential ofK. Then

g(z) = gK(z) =

∫

K
log |z − ζ| dµK(ζ), z ∈ C.

Putg(∞) = +∞. Theng is harmonic inKc except at∞, whereg(z) = log |z| +
o(1). By Frostman’s Theorem ([18], p.59),

g ≥ I(µK) = log cap(K)

everywhere inC, with equality onK \ E for some polar setE. The potentialg is
related to the Green’s function ofKc with pole at∞ by

g(z) = log cap(K) + g(z,∞,Kc), z ∈ C.

See [18], pp.107, 132.
Set

B(R) = {z ∈ C : |z| < R}, B(R) = {z ∈ C : |z| ≤ R},
and let

an = an(K) =
1

n

∫

K
ζn dµK(ζ), n ≥ 1.

In particular,a1 is the conformal centroid ofK.
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Suppose thatK ⊂ B(R). In the definition ofg, take|z| > R and expand thelog
in powers of|ζ| ≤ R. We obtain

g(z) = log |z| − Re
∞∑

n=1

anz
−n, |z| > R. (2)

Next, suppose thatK1 andK2 are two non-polar compact subsets ofC with the
same capacity and the same conformal centroid. Defining the potentialsgj(z) =∫
Kj

log |z − ζ| dµKj
(ζ), from (2) it follows that

g1(z)− g2(z) = −Re
∞∑

n=2

bnz
−n, (3)

wherebn = an(K1) − an(K2) and the series converges for|z| > R whenB(R)
contains bothK1 andK2. Thusg1(z) − g2(z) = O(z−2) at∞, and also,g1 and
g2 are bounded on compact subsets ofC. It follows that the function

w(x) =

∫ ∞

−∞
[g1(x+ iy)− g2(x+ iy)] dy, x ∈ R,

is well defined as an absolutely convergent integral, and is continuous onR. (To see
the continuity, split the defining integral into two parts: inside and outside the disk
B(2R). Outside the disk,g1 − g2 is represented by the absolutely and uniformly
convergent series (3), and hence the integral is continuousin x. Inside the disk, one
can first write down the definitions ofg1 andg2 as potentials, and then use Fubini’s
theorem and integrate the logarithmic kernel with respect to Lebesgue measure on
the vertical segment inside the disk. This eliminates the singularity, and thus this
part of the integral is continuous inx too.)

Note that for each complete vertical lineΓ not passing through0 we have∫
Γ z

−n dz = 0, n ≥ 2. With (3), this implies

w(x) = 0, |x| ≥ R. (4)

To prove Theorems 1 and 2, we shall make use of the following formula.

Formula. SupposeK1 andK2 are compact non-polar subsets ofC having the
same capacity and the same conformal centroid, and contained in B(R).

Then for eacha ≥ R and each functionφ ∈ C2(R), we have
∫

K1

φ(Re z) dµK1
(z) −

∫

K2

φ(Re z) dµK2
(z) =

1

2π

∫ a

−a
w(x)φ′′(x) dx.

Proof. For a > R, b > R letQ = [−a, a] × [−b, b]. In the sense of distributions,
we have∆g = 2π µK in C, whereK denotesK1 or K2 andg denotesg1 or g2.
See [18], Theorem 3.7.4. Forψ ∈ C2(C), Green’s formula gives

2π

∫

K
ψ dµK =

∫

Q
ψ∆g dx dy

=

∫

Q
g∆ψ dx dy +

∫

∂Q
{ψ∂ng − g∂nψ}|dz|
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where∂n denotes outer normal derivative. Thus,

2π{
∫

K1

ψ dµK1
−
∫

K2

ψ dµK2
}

=

∫

Q
(g1 − g2)∆ψ dx dy +

∫

∂Q
{ψ∂n(g1 − g2)− (g1 − g2)∂nψ}|dz|.

Write z = x+ iy and takeψ(z) = φ(x). Then

2π{
∫

K1

φ(x) dµK1
(z)−

∫

K2

φ(x) dµK2
(z)}

=

∫

Q
(g1 − g2)(z)φ

′′(x) dx dy +
∫

∂Q
{φ∂n(g1 − g2)− (g1 − g2)∂nφ}|dz|.

Fix a > R and letb → ∞. Sinceg1(z) − g2(z) = O(z−2) and∇[g1(z) −
g2(z)] = O(z−3) asz → ∞, the integral overQ tends to

∫ a
−a w(x)φ

′′(x) dx and
the boundary integrals over the horizontal sides tend to0.

WriteQ = Q(b) to show the dependence onb and denote the right hand vertical
boundary side by∂Q+(b). Then by (3),

lim
b→∞

∫

∂Q+(b)
(g1 − g2)∂nφ |dz| = −φ′(a)Re

∫

R

∞∑

n=2

bn(a+ iy)−n dy.

The last term equalsφ′(a)w(a) which, by (4), is0. Thus,

lim
b→∞

∫

∂Q+(b)
(g1 − g2)∂nφ |dz| = 0.

The three other vertical boundary integrals likewise have limit zero. The formula
is proved whena > R. By continuity, the formula also holds fora = R. �

Our proofs of Theorems 1 and 2 will make use of the following lemmas.

Lemma 2.1. With K1, K2 as in the Formula, suppose thatS is a vertical strip
−∞ < γ1 < Re z < γ2 < ∞. If µK1

(S) = 0 thenw(x) is concave on(γ1, γ2). If
µK2

(S) = 0 thenw(x) is convex on(γ1, γ2).

Proof. AssumeµK1
(S) = 0. Let φ be a nonnegativeC2 function onR with

compact support in(γ1, γ2). Takea ∈ R so large thata ≥ R and (γ1, γ2) ⊂
(−a, a). Then in the Formula, the integral overK1 is zero. Sinceφ ≥ 0 and
µK2

≥ 0, the Formula implies that

0 ≥
∫ a

−a
w(x)φ′′(x) dx =

∫ γ2

γ1

w(x)φ′′(x) dx.

Sincew is continuous onR, the 1-dimensional version of Weyl’s Lemma [9]
or [4], p.127 shows thatw is concave on(γ1, γ2). The proof is similar when
µK2

(S) = 0. �
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Lemma 2.2. Suppose that a functionu is subharmonic in the upper half planeH,
is continuous onH∪R and satisfiesu(x0) > u(z) for all z ∈ H and somex0 ∈ R.
Then

lim inf
y→0+

u(x0)− u(x0 + iy)

y
> 0.

Proof. Let D be the open half diskH ∩ B(x0, ǫ). Thenu(x) ≤ u(x0) for all
x ∈ [x0 − ǫ, x0 + ǫ] andu(z) < u(x0) for all z in the circular part of∂D. Let v
solve the Dirichlet problem inD with boundary valuesu. Thenv is nonconstant
on ∂D, hence nonconstant inD. Also, sup∂D v = v(x0), and so by the strong
maximum principle,v(x0) > v(z) for all z ∈ D. By Hopf’s Lemma, as stated at
the top and bottom of [7], p.34, the lim inf in Lemma 2.2 is positive for v. Since
u ≤ v in D, the lim inf is also positive foru. �

3. Proof of Theorem 1

LetK be a compact subset ofR. We assume also thatcap(K) = 1 and that the
conformal centroid ofK is at the origin,

∫
K z dµK(z) = 0.

Recall thatL = [−2, 2]. Thencap(L) = 1 and the conformal centroid ofL is at
the origin. We shall apply the considerations of§2 withK1 = L andK2 = K.

Write G = g1 andg = g2 for the respective Green’s functions ofLc andKc

with poles at∞. The functionw(x) introduced in§2 is defined onR by

w(x) =

∫

R

[G(x + is)− g(x+ is)] ds, x ∈ R.

Hence

w(x) = 2

∫ ∞

0
[G(x+ is)− g(x+ is)] ds, x ∈ R,

by symmetry ofG andg in the real axis, recalling thatK,L ⊂ R.
As observed in§2, w is continuous onR and satisfiesw(x) = 0 for |x| ≥ R,

whereR is so large thatK andL are contained inB(R).
Let φ : R → R be convex. The second distributional derivative ofφ is a non-

negative Borel measure onR; call it ν. Via approximation, one sees that the For-
mula in§2 generalizes to

∫

L
φ(Re z) dµL(z)−

∫

K
φ(Re z) dµK(z) =

1

2π

∫

R

w dν. (5)

Thus, to prove the inequality in Theorem 1, it suffices to prove that

w(x) ≤ 0, x ∈ R.

To accomplish this, we solve the Dirichlet problem inH with boundary valuesw
on R (and boundary value0 at infinity), and call the resulting functionw(z) =
w(x+ iy). Thenw is continuous onH∪R, equals0 on the real axis near infinity,
and tends to0 asz → ∞ in H. Moreover, we will showw has the representation

w(z) = 2

∫ ∞

y
[G(x+ is)− g(x+ is)] ds, z = x+ iy ∈ H ∪ R. (6)
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To see that this representation is valid, call the function on the rightw̃. Then, see
(3), w̃ is bounded and continuous onH ∪ R, and equalsw onR and tends to0 as
z → ∞ in H. Further,g andG are harmonic inH (sinceK,L ⊂ R), from which
it follows thatw̃xx = 2(Gy − gy). Also, differentiation ofw̃ twice with respect to
y givesw̃yy = 2(gy −Gy). Thusw̃ is harmonic inH. By uniqueness of solutions
to the Dirichlet problem in the halfplane, we havew̃ = w.

As just noted, (6) gives the identity

wxx(z) = 2[Gy(z)− gy(z)], z ∈ H,
and also gives

wy(z) = 2[g(z) −G(z)], z ∈ H. (7)

Set
M = sup

H∪R
w.

ThenM ≥ 0, sincew(x) = 0 for |x| ≥ R. Suppose thatM > 0. Then by
continuity ofw and the strong maximum principle there existsx0 ∈ R such that
w(x0) = M andw(z) < w(x0) for eachz ∈ H. There are two possible locations
for x0.

Case 1.x0 ∈ (−∞,−2]∪ [2,∞). SinceµL is supported on[−2, 2], Lemma 2.1 in
§2 implies thatw is concave on each open bounded subinterval of(−∞,−2], hence
is concave on(−∞,−2]. Sincew(x) = 0 for all x ≤ −R, it follows thatw ≤ 0
on (−∞,−2]. So if x0 ∈ (−∞,−2], thenM = 0. Similarly, if 2 ≤ x0 < ∞ then
M = 0. This contradicts our assumption thatM > 0, and so Case 1 cannot occur.

Case 2.x0 ∈ (−2, 2). Sincew is harmonic inH, Lemma 2.2 implies that

lim inf
y→0+

w(x0)− w(x0 + iy)

y
> 0. (8)

On the other hand,w(x0 + iy) is a continuous function ofy on [0,∞) and is
differentiable on(0,∞). By the mean value theorem, for eachy > 0 there exists
y∗ ∈ (0, y) such that

w(x0)−w(x0 + iy)

y
= −wy(x0 + iy∗)

= 2[G(x0 + iy∗)− g(x0 + iy∗)] by (7)

≤ 2G(x0 + iy∗) sinceg ≥ 0

→ 0

asy → 0+, becausex0 ∈ L andG = 0 onL. This contradicts (8), and so Case 2
cannot occur. The inequality in Theorem 1 is proved.

To prove the strict inequality statement, assumeK \ L has positive capacity.
Sinceg is harmonic inC \ suppµK and is nonnegative and nonconstant there, we
have by the strong minimum principle thatg > 0 onC \ suppµK . Recalling that
g = 0 onK \ E for some polar setE, we deduceK \ E ⊂ suppµK . Hence, if
suppµK ⊂ [−2, 2] thenK \E ⊂ [−2, 2] = L, which impliesK \L ⊂ E is polar,
meaningK \ L has capacity zero in contradiction to our assumption. Therefore
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suppµK 6⊂ [−2, 2], so that somet > 2 exists with eitherµK ([t,∞)) > 0 or
µK ((−∞,−t]) > 0. Say the former holds. Takeφ(x) = (x − t)+ in (5). Then
the distributional second derivative ofφ is the unit point mass att, so that

w(t) = −2π

∫

K
(x− t)+ dµK(x) < 0.

Thus,w is nonconstant in the closed upper half plane, and alsow ≤ 0 as we saw
above.

If w(x) = 0 for somex ∈ L, then we can rerun the Hopf’s lemma argument
in the proof of Case 2 to get a contradiction. So,w(x) < 0 at everyx ∈ L. If
φ is convex onR and not linear onL, then the corresponding measureν satisfies
ν ((−2, 2)) > 0. Formula (5) implies

∫
L φ(Re z) dµL(z) <

∫
K φ(Re z) dµK(z).

�

4. Applications of Theorem 1

This section contains three direct applications of Theorem1. They are related to
the properties of Green’s function and its derivatives, as well as to the asymptotic
zero distribution of polynomials.

4.1. Pointwise bounds for Green’s function and its derivatives. Suppose as be-
fore thatK ⊂ R is a compact set,cap(K) = 1 and

∫
K x dµK(x) = 0, whereµK

is the equilibrium measure ofK. Recall thatg denotes Green’s function ofC \K
andG denotes Green’s function ofC \ L, with poles at∞, whereL = [−2, 2].
Then the equilibrium measure ofL is given bydµL = dx/(π

√
4− x2), and

G(z) = log |z +
√
z2 − 4| − log 2.

Corollary 4.1. Let x0 ∈ R, x0 > 2, be fixed. For any setK as above, with
maxK < x0, we have

∂mg

∂xm
(x0) ≤

∂mG

∂xm
(x0) whenm ≥ 0 is even, (9)

∂mg

∂xm
(x0) ≥

∂mG

∂xm
(x0) whenm ≥ 1 is odd. (10)

Furthermore, ifz0 = x0 + iy0 andmaxK < x0 − |y0|, then

g(z0) ≤ G(z0). (11)

Equality holds in(9)–(11) if and only ifK \ L has zero capacity.

In words, inequality (9) withm = 0 says that the Green’s function ofKc is
smaller atx0 than the Green’s function ofLc, which is reasonable sinceK is more
spread out thanL and thus contains points closer tox0.

Clearly, one can considerx0 < −2 by symmetry, and make corresponding ad-
justments in the above corollary.

Proof. Recall thatg(z) =
∫
K log |z − s| dµK(s). SincemaxK < x0, we have

thatg ∈ C∞ aroundz = x0, and

∂mg

∂xm
(x0) =

∫

K
(−1)m+1(m− 1)!(x0 − s)−m dµK(s), m ∈ N.
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Note that the integrand can be extended to a strictly convex function ofs ∈ R,
for oddm ∈ N. Hence Theorem 1 gives (10). Similarly, the integrand is strictly
concave for evenm ≥ 0, so that we obtain the reversed inequality (9).

Forz0 = x0 + iy0, we have

g(z0) =
1

2

∫

K
log((x0 − s)2 + y20) dµK(s).

Thus the integrand is a strictly concave function ofs for s < x0 − |y0|, and (11) is
again a direct consequence of Theorem 1.

For the case of equality, supposecap(K \L) = 0. ThenµK(K \L) = 0 (since
otherwise the restriction ofµK toK \ L would give a finite energy), and soµK is
supported inL. Henceg is harmonic inC \L, so thatg −G is harmonic inC \ L.
Becauseg−G is nonnegative onL and equals zero at infinity, the strong maximum
principle impliesg−G ≡ 0, so that equality holds in (9)–(11). On the other hand,
if cap(K \ L) > 0 then strict inequalities hold in (9)–(11) by Theorem 1. �

4.2. Means of zeros of polynomials. This part is inspired by the problem on the
smallest limit point for the arithmetic means of zeros for polynomials with integer
coefficients and positive zeros, considered by Schur [19] and Siegel [20]. They
gave lower bounds for the arithmetic means of zeros, which improved the standard
arithmetic-geometric means inequality.

We consider certain extremal polynomials on the real line here. The number
theoretic aspects of the problem for integer polynomials will be treated in a separate
paper.

Let K ⊂ C be an arbitrary compact set. It is well known that for any monic
polynomialPn of degreen, we have‖Pn‖K ≥ (cap(K))n, where the norm onK
is the supremum norm (cf. [1]). Thus a sequence of monic polynomialsPn, n ∈ N,
is calledasymptotically extremalfor the setK if

lim
n→∞

‖Pn‖1/nK = cap(K).

This class includes many polynomials orthogonal with respect to various weights
onK, and polynomials minimizing variousLp norms; see [1] and [21] for numer-
ous examples. Among the classical families on the real line,we mention Legendre,
Chebyshev and Jacobi polynomials (normalized to be monic).Asymptotically ex-
tremal polynomials have interesting asymptotic zero distributions. Let{αk,n}nk=1
be the zeros ofPn. Define the counting measure for the set{αk,n}nk=1 by

τn =
1

n

n∑

k=1

δαk,n
,

whereδαk,n
is a unit point mass atαk,n. If K ⊂ R, cap(K) 6= 0, and thePn are

asymptotically extremal forK, then theτn form a sequence of positive unit Borel
measures that converge in the weak* topology to the equilibrium measure ofK;
see Theorem 1.7 of [1, p. 55]. The definition of weak* convergence states that

lim
n→∞

∫

C

f dτn =

∫

R

f dµK
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for any continuous functionf onC. This enables us to obtain information on the
limiting behavior of means of zeros ofPn. In particular, we have the following
result stated forK normalized bycap(K) = 1. (The case of arbitrary capacity can
be reduced to this by a linear change of variable.)

Corollary 4.2. Suppose thatφ : C → R is continuous, andφ is convex onR.
Assume thatK ⊂ R is compact,cap(K) = 1 and

∫
K x dµK(x) = 0. If Pn, n ∈

N, is a sequence of asymptotically extremal polynomials forK, then we have for
theφ-arithmetic means of their zeros that

lim
n→∞

1

n

n∑

k=1

φ(αk,n) =

∫

K
φ(x) dµK(x) (12)

≥
∫

L
φ(x) dµL(x) =

∫ 2

−2

φ(x) dx

π
√
4− x2

=: ℓ(φ).

If K \L has positive capacity and the restriction ofφ toL is not a linear function,
then strict inequality holds.

In particular, ifφ(x) = |x|m, m ∈ N, then

ℓ(|x|m) = 2m
Γ(m/2 + 1/2)√
π Γ(m/2 + 1)

,

because the change of variablex = 2t1/2 reduces the integral forℓ(|x|m) to a beta
integral. Henceℓ(|x|) = 4/π andℓ(x2) = 2.

Proof. Sinceφ is continuous onR, the first equality in (12) follows from the weak*
convergence ofτn to µK . The inequality (and when it becomes equality) is imme-
diate from Theorem 1. �

We also state a version of this result for polynomials with positive zeros.

Corollary 4.3. Assumeφ : [0,∞) → R and thatφ(x2) is convex onR. Suppose
K ⊂ [0,∞) is compact andcap(K) = 1. If Pn, n ∈ N, is a sequence of asymp-
totically extremal polynomials forK, and if eachPn has all its zeros positive, then

lim
n→∞

1

n

n∑

k=1

φ(αk,n) =

∫

K
φ(x) dµK(x) ≥

∫ 4

0

φ(x) dx

π
√
x(4− x)

=: ℓ+(φ).

If K \[0, 4] has positive capacity and the restriction ofφ(x2) to [0, 4] is not a linear
function, then strict inequality holds.

In particular, settingφ(x) = xm, m ∈ N, gives

ℓ+(x
m) =

∫ 4

0

xm dx

π
√
x(4− x)

= 2m
1 · 3 · . . . · (2m− 1)

m!
.

The first few values ofℓ+(xm) are2 for m = 1, 6 for m = 2, and20 for m = 3.
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Proof. The proof is essentially the same as for Corollary 4.2. For the inequal-
ity, one should apply the change of variablex = t2 and define the compact set√
K = {t ∈ R : t2 ∈ K}. Then

√
K is symmetric about the origin, so

that
∫√

K t dµ√K(t) = 0. Furthermore,dµ√K(t) = dµK(t2), t ∈
√
K, and

cap(
√
K) = 1; see [18, p. 134]. Now apply Theorem 1 to

√
K. �

A consequence of Corollary 4.3 is that we also have information on the as-
ymptotic behavior of the coefficients ofPn. For example, ifPn(x) = xn +
an−1,nx

n−1 + . . .+ a0,n =
∏n

k=1(x− αk,n) thenan−1,n = −∑n
k=1 αk,n. Hence

lim
n→∞

an−1,n

n
= −

∫

K
x dµK(x) ≤ −2

under the assumptions of Corollary 4.3, with equality forK = [0, 4].

4.3. Equilibrium measure and Green’s function when K is the union of sev-
eral intervals. LetK =

⋃N
l=1 [al, bl], wherea1 < b1 < a2 < b2 < . . . < aN <

bN are real numbers. Define the functionR(z) =
∏N

l=1(z − al)(z − bl). Consider
the branch of

√
R(z), satisfyinglimz→∞

√
R(z)/zN = 1, which is analytic in

C \⋃N
l=1[al, bl]. For future reference, we describe the values of

√
R(z) on the real

line:

√
R(x) =





√
|R(x)|, x ≥ bN ,

(−1)N+l i
√

|R(x)|, al ≤ x ≤ bl, l = 1, . . . , N,

(−1)N+l
√

|R(x)|, bl ≤ x ≤ al+1, l = 1, . . . , N − 1,

(−1)N
√

|R(x)|, x ≤ a1.
(13)

Here, the values of
√
R(x) for x ∈ ⋃N

l=1[al, bl] are the limit values of
√
R(z)

whenIm z → 0+.
WhenK = L = [−2, 2], thenR(z) = z2 − 4 and for−2 < x < 2 we have

dµL(x) =
dx

π
√
4− x2

=
dx

πi
√
R(x)

.

We give the following explicit representation for the equilibrium measure of the
setK (see also [21] and [23]).

Proposition 4.4. LetK =
⋃N

l=1 [al, bl] ⊂ R. There exists a polynomialT (x) =

−xN−1 + . . . ∈ RN−1[x], such that the equilibrium measure ofK is given by

dµK(x) =
T (x) dx

πi
√
R(x)

, x ∈
N⋃

l=1

[al, bl]. (14)

Furthermore, whenN ≥ 2we haveT (x) = −
∏N−1

j=1 (x−zj)withzj ∈ (bj , aj+1), j =
1, . . . , N − 1, and

∫

K
x dµK(x) =

N∑

l=1

al + bl
2

−
N−1∑

l=1

zl. (15)

For the proof of Proposition 4.4, we need the following simple lemma.
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Lemma 4.5. LetK =
⋃N

l=1 [al, bl]. For anyTN−1 ∈ RN−1[x], we have

1

πi

∫

K

TN−1(t) dt

(t− z)
√
R(t)

=

{
0, z ∈ ⋃N

l=1 (al, bl),

TN−1(z)/
√
R(z), z ∈ C \K, (16)

where the integral is understood in the Cauchy principal value sense.

We remind the reader that whent ∈ R,
√
R(t) is defined to be

lims→0+

√
R(t+ is).

Proof of Lemma 4.5.Forz ∈ C \K definef(z) = TN−1(z)/
√
R(z). It is easy to

see that the limit values of
√
R(z) asz tends to a point ofK from above and from

below are negatives of each other, so the same is true forf . Thus, with obvious
notation,

f(z+) = f(z) = −f(z−), z ∈ K. (17)

Consider a contourΓ which consists ofN simple closed curves, one around
each of the intervals[al, bl], and located close to those intervals. Then

1

2πi

∫

Γ

f(t)

t− z
dt = f(z)

for z in the exterior ofΓ, and forz ∈ K the integral equals zero.
Takingz ∈ C \K, lettingΓ shrink toK, and using (17), we obtain

f(z) =
1

πi

∫

K

f(t)

t− z
dt, z ∈ Kc,

as asserted by the Lemma.
Next, takez ∈ ∪N

l=1(al, bl). The existence of the Cauchy principal value atz
for the functionf follows from the results in Chapter 2 in [8], which also contains
a discussion of Plemelj’s formula. This formula asserts that the Cauchy principal
value satisfies

1

πi

∫

K

f(t)

t− z
dt =

f(z+) + f(z−)

2
, z ∈ ∪N

l=1(al, bl).

By (17), the right hand side is zero. This completes the proofof the lemma. �

Proof of Proposition 4.4.We shall deduce (14) from Lemma 4.5. SelectT (t) =∑N−1
j=0 cjt

j ∈ RN−1[t] so that it satisfies the following equations:

∫ al+1

bl

T (t) dt√
R(t)

=

N−1∑

j=0

cj

∫ al+1

bl

tj dt√
R(t)

= 0, l = 1, . . . , N − 1, (18)

and
1

πi

∫

K

T (t) dt√
R(t)

=

N−1∑

j=0

cj
πi

∫

K

tj dt√
R(t)

= 1. (19)

The polynomialT (t) is defined by these equations uniquely, because the corre-
sponding homogeneous system of linear equations (with zeroon the right of (19)),
in the coefficientscj of T (t), has only the trivial solution. Indeed, letTh(t) be a
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nontrivial solution of this homogeneous system. Since the sign of
√
R(t) is con-

stant on each(bl, al+1) by (13),Th(t) must change sign on each[bl, al+1], l =
1, . . . , N − 1, by (18). HenceTh(t) has a simple zero in each(bl, al+1), l =
1, . . . , N − 1, and its sign alternates on the intervals[al, bl], l = 1, . . . , N . (Note
that the same is true forT (t).) It follows from (13) thatTh(t)/(πi

√
R(t)) doesn’t

change sign onK, contradicting

1

πi

∫

K

Th(t) dt√
R(t)

= 0.

ThusT (t) exists and is unique. In addition, the above argument and (19) show that
T (t)/(πi

√
R(t)) keeps positive sign onK, that is, (14) actually defines a positive

unit Borel measure onK.
As in the proof of Lemma 4.5, setf = T/

√
R. Let

h(z) =
1

πi

∫

K

f(t)

t− z
dt, z ∈ C.

Thenh is the Cauchy transform off1K in C and is the Hilbert transform of
f1K on R. It is easy to see thatf ∈ Lp(R) for each1 < p < 2. From M.
Riesz’s conjugate function theorem (see for example Stein-Weiss [22]), it follows
thath ∈ Lp(R).

From Lemma 4.5, we see thath = 0 onK except at endpoints, andh = f on
Kc. Define

u(z) =
1

πi

∫

K
(log |z − t|)f(t) dt.

Thenu is continuous onC andux = −Reh in the open upper half plane. Since
h ∈ Lp(R), the functionh(· + iy) converges toh(·) in Lp(R) wheny → 0+, and
hence converge toh in L1(a1, bN ). Thus, forx ∈ [a1, bN ],

u(x+ iy)− u(a1 + iy) = −Re

∫ x

a1

h(t+ iy) dt

→ −Re

∫ x

a1

h(t) dt = −
∫ x

a1

h(t) dt.

The last equality holds becauseh = 0 onK andh = f with f real in the gaps
between the intervals ofK. Combining this description ofh with (18), we see that
if x ∈ K then the last integral is zero. Sinceu(x+iy) → u(x) asy → 0+ for all x,
we conclude thatu is constant onK. Then Frostman’s theorem and the uniqueness
of the equilibrium measure imply thatf(x)/(πi) dx = T (x) dx/(πi

√
R(x)) is

the equilibrium measure forK.
We now show that the leading coefficient ofT is −1. Observe that (16) gives

for z = 0 andTN−1(x) = xj+1 that

1

πi

∫

K

tj dt√
R(t)

= 0, j = 0, . . . , N − 2.
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Also, recall that near infinity
(
1− a

z

)−1/2
= 1 +

1

2

a

z
+ . . . .

Therefore, we have the following Laurent expansion at infinity

zN√
R(z)

= 1 +
1

2

N∑

l=1

(al + bl)
1

z
+ . . . . (20)

Applying the same argument as in the proof of Lemma 4.5 and evaluating the
residue at infinity by (20), we obtain

1

πi

∫

K

tN−1 dt√
R(t)

= − 1

2πi

∮

|z|=r

zN−1 dz√
R(z)

= −1.

Hence (19) givescN−1 = −1. Similarly, we have
∫

K
x dµK(x) = − 1

πi

∫

K

xN dx√
R(x)

+ cN−2
1

πi

∫

K

xN−1 dx√
R(x)

=

N∑

l=1

al + bl
2

−
N−1∑

l=1

zl,

becausecN−2 =
∑N−1

l=1 zl. �

We remark that the zeros of the polynomialT are exactly the critical points of
the Green’s functiong(z,∞,Kc) for the domainKc = C\K, with pole at infinity.
Indeed, we have forg(z,∞,Kc) =

∫
K log |z − t| dµK(t)− log cap(K) that

gx(x,∞,Kc) =
1

πi

∫

K

T (t) dt

(x− t)
√
R(t)

= − T (x)√
R(x)

, x ∈ R \K,

by (16). Moreover,gy(z,∞,Kc) is zero onR \K and is never zero onC \ R.
Thus we can obtain interesting information about location of the critical points.

For the background material on the critical points of Green’s function see Chapter
VII of Walsh [24]. If K = [a1, b1] ∪ [a2, b2] and |b1 − a1| = |b2 − a2|, then
it follows by an elementary symmetry argument thatz1 = (b1 + a2)/2. Also, if
|b1 − a1| > |b2 − a2| thenz1 > (b1 + a2)/2. But the location of critical points
becomes difficult to predict for three or more intervals.

The following inequality gives information on the average position of the critical
points in terms of the midpoints of the gaps between the intervals ofK.

Corollary 4.6. LetK =
⋃N

l=1 [al, bl] ⊂ R satisfycap(K) = 1. With the above
notation, we have

N−1∑

l=1

(
bl + al+1

2
− zl

)
≥ 2− bN − a1

2
,

where the sum is interpreted to be0 for N = 1. Equality holds above if and only if
K is a segment of length 4.
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Proof. We consider the integral
∫
K x dµK(x), and observe that translating the set

K by a constantc ∈ R changes the integral by addingc. Hence we may assume that
a1 = 0, and must show that

∫
K x dµK(x) ≥ 2, with equality only forK = [0, 4].

Define
√
K = {t ∈ R : t2 ∈ K}. Then, as in the proof of Corollary 4.3,

√
K is

symmetric about the origin,
∫√

K x dµ√K(x) = 0, andcap(
√
K) = 1. Moreover,

∫
√
K
t2 dµ√K(t) =

∫

K
x dµK(x) =

N∑

l=1

al + bl
2

−
N−1∑

l=1

zl

by (15). Applying Theorem 1 withφ(t) = t2, we obtain that
∫
√
K
t2 dµ√K(t) ≥

∫ 2

−2

t2 dt

π
√
4− t2

= 2,

with equality possible only if
√
K = [−2, 2] andK = [0, 4]. �

Using higher moments will give more complicated inequalities involving the
endpoints ofK and zeros (or coefficients) ofT .

5. Proof of Theorem 2

LetK be a compact connected subset ofC with cap(K) = 1. The connectivity
ofK implies that each boundary point of the domainKc is regular for the Dirichlet
problem inKc, which, in turn, implies that the Green function ofKc is continuous
in C.

We shall assume also that the conformal centroid ofK is at the origin. That is:
∫

K
z dµK(z) = 0.

Then by Theorem 1.4 of [15, p.19], we have

K ⊂ B(2).

Recall thatL = [−2, 2]. Thencap(L) = 1 and the conformal centroid ofL is
at the origin. We shall apply the considerations of§2 withK1 = K, K2 = L and
R = 2.

Write g = g1 andG = g2 for the respective Green’s functions ofKc andLc

with poles at∞. The functionw(x) is defined onR by

w(x) =

∫

R

[g(x + is)−G(x+ is)] ds, x ∈ R. (21)

By the Formula in§2, to prove Theorem 2 it suffices to prove that

w(x) ≤ 0, x ∈ R.

To accomplish this, we shall extendw to a certain functionw(z) which is subhar-
monic in the upper half planeH.

For setsE ⊂ R, letEb denote the complement ofE in R:

Eb = R \ E.
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Also, let|E| denote the one-dimensional Lebesgue measure ofE, and fory ≥ 0,
let

I(y) = [−y, y].
For boundedE ⊂ R with |E| = 2y andx ∈ R, set

w(x,E) =

∫

R

[1Eb(s)g(x+ is)− 1I(y)b(s)G(x+ is)] ds

= w(x) +

∫

I(y)
G(x+ is) ds−

∫

E
g(x+ is) ds,

where1 denotes a characteristic or indicator function. The asymptotic behavior of
g andG (discussed in§2) ensures that the first integral is absolutely convergent.
The second equality follows from (21).

Now takez = x+ iy ∈ H, and define

w(z) = sup
E
w(x,E), (22)

where the sup is taken over all bounded measurableE ⊂ R with |E| = 2y.
For eachx, we haveg(x+ is) ≥ 0 andlim|s|→∞ g(x+ is) = ∞. The analysis

on p.149 of [2] is applicable to−g(x + is) as a function ofs, and shows that for
eachy ∈ [0,∞) there exists a setE ⊂ R with |E| = 2y for which the supremum
of −

∫
E g(x + is) ds over allE with |E| = 2y is attained. Note the minus sign in

−g. Moreover, there exists a numbert ≥ 0 such that{s ∈ R : g(x + is) < t} ⊂
E ⊂ {g(x + is) ≤ t}, andE is bounded. We shall denote such a maximizing set
byE(z). Then

w(z) =

∫

R

[1E(z)b(s)g(x+ is)− 1I(y)b(s)G(x+ is)] ds (23)

= w(x) +

∫

I(y)
G(x+ is) ds−

∫

E(z)
g(x+ is) ds (24)

=

∫

|s|>y
[g(x + is)−G(x+ is)] dx (25)

+

∫

I(y)
g(x+ is) ds −

∫

E(z)
g(x+ is) ds.

The following lemma provides information on the maximizingsetsE(z).

Lemma 5.1. With the situation as above, there exist positive constantsb and k
depending only onK such that wheneverz = x+ iy ∈ H:
(a) if y ≥ b thenE(z) = I(y) + t = [−y + t, y + t], for somet with |t| < k/y;
(b) if y ≤ b thenE(z) ⊂ [−2b, 2b].

Proof of Lemma 5.1.By (2), we can write

g(z) = log |z|+ h(z) (26)
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whereh is harmonic outsideB(2). The conformal centroid ofK is at the origin,
and so the coefficienta1 in (2) equals0. Thus,h satisfies|h(z)| ≤ k

8 |z|−2 and
|∇h(z)| ≤ k

8 |z|−3 for |z| ≥ 3, for some positive constantk.
From gy = y|z|−2 + hy, it easily follows that there existsb0 ≥ 3 such that

gy(x+ iy) > 0 whenevery ≥ b0 andgy(x+ iy) < 0 whenevery ≤ −b0.
Now we establish two estimates:

|g(z) − g(z)| ≤ k

4
|z|−2, (27)

g(z + it)− g(z) ≥ 1

2
ty|z|−2 − k

4
|z|−2, (28)

whenz = x+ iy ∈ H, |z| ≥ 3 andt ∈ (0, |z|]. The first estimate is obvious from
(26). The second follows similarly, becauseRe(it/z) ∈ (0, 1] and so

log |(z + it)/z| ≥ log(1 + Re(it/z)) ≥ 1

2
Re(it/z) =

1

2
ty|z|−2.

Moreover, there exists a numberb > b0 ≥ 3 such thatg(x + is) > g(x +
is0) whenever|s| ≥ b and |s0| ≤ b0, as we now show. For|x| ≤ 3 one just
takesb large enough thatmaxS0

g < min|x|≤3 g(x ± ib) whereS0 = [−3, 3] ×
[−b0, b0], recalling here thatg is continuous and finite in the plane. For|x| > 3,
one estimates|g(x+ is)− log |x+ is|| ≤ k

8x
−2 and uses concavity of the function

t 7→ log 1+b2t
1+b2

0
t
, t ∈ [0,∞), together with monotonicity properties ofg; note that for

our purposes,t = x−2 ∈ (0, 1/9). Details are left to the interested reader.
Now fix x ∈ R and visualize the graph ofp(s) = g(x + is). The functionp is

strictly increasing on[b0,∞), strictly decreasing on(−∞,−b0], andp(s) > p(s0)
for every|s0| ≤ b0 and|s| ≥ b. Forα > 0, writeEα = {s : p(s) < α}. ThenEα

is a maximal set of measure|Eα|. Setα0 = min{p(−b), p(b)} andy0 = 1
2 |Eα0

|.
ThenEα0

is a single interval which contains[−b0, b0], andy0 ≤ b. Giveny ≥ b,
there is a uniqueα ≥ α0 such that|Eα| = 2y. ThenE(x+ iy) = Eα, and thisEα

also is a single interval containing[−b0, b0]. These facts imply thatE(x+ iy) has
the form[−y+ t, y+ t], where|t| ≤ y− b0. Further, the maximality ofE(x+ iy)
and continuity ofg imply thatp(−y + t) = p(y + t) = α.

Take z = x + iy ∈ H with y ≥ b. Suppose the numbert in the previous
paragraph is nonnegative; the caset ≤ 0 is handled analogously. Letz2 = z +
it, z1 = z + it. Then

1

2
ty|z|−2 − k

4
|z|−2 ≤ g(z2)− g(z) by (28)

≤ g(z2)− g(z) +
k

4
|z|−2 by (27)

< g(z2)− g(z1) +
k

4
|z|−2 sinceg(z1) = α < g(z)

=
k

4
|z|−2

becauseg(z2) = g(z1) = α as above. Hencety < k, proving part (a).
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To prove (b), takez = x+ iy ∈ H with y ≤ b, and letE(z) be a maximizing set
for z, so that|E(z)| = 2y. SupposeE(z) intersects the interval(2b,∞) in a set of
measureǫ > 0. Then the set[0, 2b]\E(z) has measure at leastǫ. Sinceg(x+is0) <
g(x + is) when0 < s0 < 2b < s, we can strictly decrease

∫
E(z) g(x + is) ds if

we moveE(z) ∩ (2b,∞) into some subset of[0, 2b] \ E(z). This violates the
definition of maximizing set, and shows thatE(z) cannot intersect the interval
(2b,∞) in a set of positive measure. Similarly it cannot intersect(−∞,−2b).
ThusE(z) ⊂ [−2b, 2b], after possibly deleting a set of zero measure fromE.

�

Here now is the main ingredient in the proof of the theorem.

Claim. w is subharmonic inH.

Let us carry out the proof of Theorem 2 assuming the claim.
Firstly, the functionw is continuous onH ∪ R. It is continuous also at infinity,

becausew(z) → 0 asz → ∞ in H, as we now show. From (25) it suffices to show
that

lim
z→∞

∫

|s|>y
[g(x+ is)−G(x+ is)] ds = 0

and

lim
z→∞

(∫

I(y)
g(x+ is) ds −

∫

E(z)
g(x+ is) ds

)
= 0.

The first is a simple consequence of (3). The second follows from Lemma 5.1:
wheny ≥ b use part (a) of the lemma, and then decomposition (26), and when
y ≤ b with |x| → ∞, use part (b) of the lemma and then decomposition (26). A
key fact for the latter case is that|E(y)| = |I(y)|. Details are left to the reader.

Continuing now with the proof of Theorem 2, set

M = sup
H∪R

w,

where the supremum is finite becausew is bounded at infinity. NoteM ≥ 0, since
from §2 we knoww(x) = 0 for |x| ≥ 2.

If M > 0, then by continuity ofw and the strong maximum principle, there
existsx0 ∈ R such thatw(x0) = M andw(z) < w(x0) for eachz ∈ H. Since
K is connected, its orthogonal projection onto the real axis is a single interval
[c1, c2], and sinceK ⊂ B(2) we have[c1, c2] ⊂ [−2, 2]. By Lemma 2.1,w(x) is
concave on every bounded subinterval of(−∞, c1), hence is concave on(−∞, c1).
Similarly, w is concave on(c2,∞). Sincew(x) = 0 for |x| ≥ 2, we must have
w ≤ 0 onR \ [c1, c2]. Thusx0 ∈ [c1, c2]. Sincex0 is a maximizing point forw,
Lemma 2.2 implies we must have

lim inf
y→0+

w(x0)− w(x0 + iy)

y
> 0. (29)

On the other hand, from (24), we see that fory > 0,

w(x0)−w(x0 + iy) =

∫

E(x0+iy)
g(x0 + is) ds−

∫

I(y)
G(x0 + is) ds. (30)
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SinceE(x0+ iy) maximizes integrals of−g, for eachy > 0 and for each bounded
E ⊂ R with |E| = 2y we have

0 ≤
∫

E(x0+iy)
g(x + is) ds ≤

∫

E
g(x+ is) ds. (31)

Further, becausex0 ∈ [c1, c2] there existss0 ∈ R with x0 + is0 ∈ K, so that
g(x0 + is0) = 0. TakingE = [s0 − y, s0 + y] and using continuity ofg, we see
from (31) that

lim
y→0+

1

y

∫

E(x0+iy)
g(x0 + is) ds = 0.

Similarly, G(x0) = 0, and hencelimy→0+
1
y

∫
I(y)G(x0 + is) ds = 0. Thus, by

(30),

lim
y→0+

w(x0)− w(x0 + iy)

y
= 0,

which contradicts (29).
We conclude thatM > 0 is impossible, and soM = 0, meaningw ≤ 0 in H∪R.

This completes the proof of the inequality in Theorem 2, modulo the Claim.
To prove the strict inequality statement in the theorem, letK be a compact set

satisfying the hypotheses of Theorem 2 which does not coincide withL. ThenK,
which is contained inB(2), cannot contain the points−2 or 2, because if it did
then it would equal[−2, 2] = L by the equality case of [15, Theorem 1.4]. Hence
−2 < c1 ≤ c2 < 2. The argument that gavew(t) < 0 for somet > 2 in the proof
of Theorem 1 works again here, except withK andL interchanged, producing that
w(t) < 0 for everyt ∈ (−2, 2) \ [c1, c2].

Now we showw(t) < 0 for everyt ∈ [c1, c2]. Suppose instead thatw(x0) = 0
for somex0 ∈ [c1, c2]. Notew ≤ 0 is not identically zero inH, by the preceding
paragraph, and sow < 0 in H by the strong maximum principle. Now rerun the
argument used above to rule out the caseM > 0, to obtain a contradiction. Hence
w < 0 on [c1, c2].

We have shownw < 0 on (−2, 2), and so formula (5) (withK andL inter-
changed) implies the strict inequality that

∫

K
φ(Re z) dµK(z) <

∫

L
φ(Re z) dµL(z),

whenφ is convex onR and is not a linear function on[−2, 2].

Proof of the Claim.Fix z = x + iy ∈ H. LetE(z) be a corresponding maximal
set of measure2y, as in (24). For brevity, we’ll write

E(z) = E

and also
I(y) = I.

Then (23) says

w(z) =

∫

R

[1Eb(s)g(x + is)− 1Ib(s)G(x+ is)] ds. (32)
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Takeρ ∈ (0, y). To prove subharmonicity ofw it suffices to show thatw(z) is
less than or equal to the mean value ofw over the circle with centerz and radiusρ.

The functiong is subharmonic inC andG is harmonic inC \ [−2, 2]. Thus

g(x+ is) ≤ 1

2π

∫ π

0
[g(x + is + ρeiφ) + g(x + is + ρe−iφ)] dφ, s ∈ R.

If |s| > y, then equality holds wheng is replaced byG. Substitute the inequality
and equality into (32), and switch the order of integration on the right. This gives
the inequality

2πw(z) ≤
∫ π

0
[J(φ) + J(−φ)]dφ, (33)

where

J(φ) =

∫

R

[1Eb(s)g(x + is+ ρeiφ)− 1Ib(s)G(x+ is+ ρeiφ)] ds.

Fix φ ∈ [0, π] and setǫ = ρ sin φ. In J(φ), substitute

x+ is + ρeiφ = x+ ρ cos φ+ i(s+ ǫ),

then make the change of variablet = s+ ǫ, and integrate overR. We obtain

J(φ) =

∫

R

[1Eb+ǫ(t)g(x + ρ cos φ+ it)− 1Ib+ǫ(t)G(x + ρ cos φ+ it)] dt.

The same equation holds whenφ is changed to−φ andǫ to −ǫ. It follows that,
for φ ∈ [0, π],

J(φ) + J(−φ) =
∫

R

{[1Eb+ǫ + 1Eb−ǫ](t)g(x + ρ cos φ+ it)

− [1Ib+ǫ + 1Ib−ǫ](t)G(x + ρ cos φ+ it)} dt.

The argument on the top half of p.148 of [2] shows that for our setE = E(x +
iy) and for0 < ǫ < y there exist bounded measurable setsA andB in R such that
|A| = 2(y + ǫ), |B| = 2(y − ǫ) and

1E+ǫ + 1E−ǫ = 1A + 1B .

Using1A = 1 − 1Ab , etc., one sees that this equation also holds when the four
sets are replaced by their complements inR. Furthermore,(E± ǫ)b = Eb± ǫ, and,
recalling thatI = I(y), one can check directly that1Ib+ǫ + 1Ib−ǫ = 1I(y+ǫ)b +
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1I(y−ǫ)b . Thus,

J(φ) + J(−φ)

=

∫

R

{[1Ab + 1Bb ](t)g(x + ρ cos φ+ it)

− [1I(y+ǫ)b + 1I(y−ǫ)b](t)G(x+ ρ cos φ+ it)} dt

=

∫

R

[1Ab(t)g(x+ ρ cos φ+ it)− 1I(y+ǫ)b(t)G(x+ ρ cos φ+ it)] dt

+

∫

R

[1Bb(t)g(x + ρ cos φ+ it)− 1I(y−ǫ)b(t)G(x + ρ cos φ+ it)] dt

≤ w(x+ ρ cos φ+ i(y + ǫ)) + w(x+ ρ cos φ+ i(y − ǫ)),

by the definition ofw as a supremum, in (22). Substitution in (33) gives

2πw(z) ≤
∫ π

0
[w(x + ρ cos φ+ i(y + ǫ)) + w(x+ ρ cos φ+ i(y − ǫ))] dφ

=

∫ π

0
[w(z + ρeiφ) + w(z + ρe−iφ)] dφ,

recallingǫ = ρ sin φ. Thus,w satisfies the sub-mean value property atz, and the
Claim is proved. �

6. Moments involving |z|
In Theorem 2 we obtained sharp upper bounds for moments of theform

∫
K φ(Re z) dµK(z),

whereK is a continuum satisfying certain hypotheses. In this section, we again
takeK to be a continuum, and seek sharp upper bounds for moments of the form∫
K φ(|z|) dµK(z). It turns out to be convenient to state the results in terms of
φ(log |z|) instead ofφ(|z|).

LetK be a compact, connected subset ofC that contains the origin, and satisfies
cap(K) = 1. As before, letKc = C \K. Also, setΩ = {z ∈ C : 1/z ∈ Kc}.
Then the plane domainΩ is the image of the unit diskB(1) under a functionf
belonging to the classS of univalent analytic functions (conformal mappings) in
the disk withf(0) = 0 andf ′(0) = 1. See, for example, [18]. The Koebe one-
quarter theorem asserts thatΩ = f(B(1)) contains the diskB(1/4), so that

K ⊂ B(4).

The interval
L̃ = [0, 4]

satisfies all our assumptions onK, and shows that the “4” on the previous line is
the smallest possible constant.

As in §2, let g(z) =
∫
K log |z − ζ| dµK(ζ) be the Green’s function ofKc with

pole at∞. From (2), we have

g(z) = log |z| − Re

∞∑

n=1

anz
−n, |z| > 4,
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wherean = n−1
∫
K ζn dµK . From the expansion, it follows that

1

2π

∫ π

−π
g(reiθ) dθ = log r, r ≥ 4, (34)

1

2π

∫ π

−π
gr(re

iθ) dθ = r−1, r ≥ 4. (35)

Next, we give a representation of logarithmic moments ofµK in terms of inte-
grals involvingg.

Proposition 6.1. Assume thatK ⊂ C is compact and connected, withcap(K) =
1. Supposeφ ∈ C2(R) is constant near−∞. Then for eachR ≥ 4 we have

∫

K
φ(log |z|) dµK(z) =

1

2π

∫

B(R)
g(z)φ′′(log |z|)|z|−2 dx dy

+ φ(logR)− φ′(logR) logR.

Proof. As in the proof of the Formula in§2, we start with2πµK = ∆g, then
apply Green’s formula to the integral on the left, this time in the diskB(R). Set
ψ(z) = φ(log |z|). Thenψ is constant on circles, and from (34) and (35) the
boundary terms have the form stated. Also

∆ψ(z) = φ′′(log |z|)|z|−2,

so the integral overB(R) has the form stated. �

Our Theorem 2 takesK to be conformally centered. Our next theorem drops
that assumption, assuming instead thatK contains the origin and proving that the
logarithmic moments are maximal whenK equals the segment̃L = [0, 4] with one
endpoint at the origin (rather thanL = [−2, 2], which is centered at the origin).

Let G̃ denote the Green’s function of̃Lc with pole at∞.

Theorem 6.2. SupposeK ⊂ C is compact, connected, contains the origin, and
hascap(K) = 1. Then for every convex functionφ : R → R, we have

∫

K
φ(log |z|) dµK(z) ≤

∫

eL
φ(log |z|) dµeL(z).

This result is due to Laugesen [11, Corollary 6]. We give below a brief version
of that proof, relying on Baernstein’s result on integral means.

Proof. Whenφ is linear, the theorem holds with equality because
∫

K
log |z| dµK(z) = g(0) = 0

(and similarly forL), using that0 ∈ K by hypothesis and that every point ofK
is regular for the Dirichlet problem inKc. For general convexφ, we can reduce
by approximation to the case whereφ is linear near−∞, and hence to the case
whereφ ≡ 0 near−∞. Then by mollification we may further assumeφ is smooth.
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Then by Proposition 6.1, to prove Theorem 6.2 it suffices to show that for every
r ∈ (0,∞), ∫ π

−π
g(reiθ) dθ ≤

∫ π

−π
G̃(reiθ) dθ.

As noted in the second paragraph of this section, there is a function f in the
classS which mapsB(1) onto the domainΩ = {z ∈ C : 1/z ∈ Kc}. Denoting
the Green’s function ofΩ with pole at0 by g(z, 0,Ω), the conformal invariance of
Green’s functions shows that

g(z, 0,Ω) = g(1/z), z ∈ C.

Let Ω̃, f̃ andG̃(z, 0, Ω̃) be the correponding objects forL̃. ThenΩ̃ = C\ [1/4,∞)

andf̃(z) = z
(1+z)2

, the Koebe function with omitted set on the positive real axis,
and

g(z, 0, Ω̃) = G̃(1/z), z ∈ C.

Thus, the conclusion of Theorem 6.2 will hold if for everyr ∈ (0,∞),
∫ π

−π
g(reiθ, 0,Ω) dθ ≤

∫ π

−π
g(reiθ, 0, Ω̃) dθ. (36)

But this inequality is true, since it is the special caseϕ = π in inequality (35)
of [2]. (The functions called thereu∗(reiπ) andv∗(reiπ) equal the left and right
sides of (36), respectively.) Theorem 6.2 is proved. �

Corollary 6.3. Suppose thatK ⊂ C is compact, connected, contains the origin
and satisfiescap(K) = 1, and in addition thatK is symmetric with respect to the
origin. Then for every convex functionφ : R → R, we have

∫

K
φ(log |z|) dµK(z) ≤

∫

L
φ(log |z|) dµL(z).

Here, as before,L = [−2, 2].

Proof. To prove the Corollary, use the same construction as in the proofs of Corol-
laries 4.3 and 4.6. That is, let̃K = {z2 : z ∈ K}. ThenK̃ saisfies the hypotheses
of Theorem 6.2, andµ eK is the push forward ofµK by the mapz 7→ z2. Thus by
Theorem 6.2,
∫

K
φ(log |z|) dµK(z) =

∫

eK
φ

(
1

2
log |z|

)
dµ eK(z)

≤
∫

eL
φ

(
1

2
log |z|

)
dµeL

(z) =

∫

L
φ(log |z|) dµL(z).

The inequality in the middle is justified sinceφ(12 ·) is convex. Corollary 6.3 is
proved. �

There are strict inequality statements for Theorem 6.2 and Corollary 6.3, for
which we refer to [11].

To get a closer parallel to Theorem 2, it would be nice if in Corollary 6.3 we
could drop the symmetry assumption onK and replace it by the much weaker
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assumption that the conformal centroid ofK is at the origin. But the example
below shows that no such result can exist.

Example. Hayman [8, p. 262] built on work of Jenkins [10] and showed existence
of a mapf(z) = z+

∑∞
n=2Anz

n in the classS for whichA2 = 0 andM(r, f) ∼
c(1 − r)−2 asr → 1, whereM(r, f) = maxθ |f(reiθ)| andc is some positive
constant. LetK = {1/z : z /∈ f(B(1))}. ThenK is compact and connected,
contains the origin, andcap(K) = 1. The Green’s functiong(z) = g(z,∞,Kc) is
related tof by g(z) = log 1/|f−1(1/z)|, wheref−1 is the inverse function off ,
from which one calculates that

a1 = −A2 = 0.

We saw in§2 thata1 is the conformal centroid ofK, and thus the conformal cen-
troid ofK is 0.

The behavior ofM(r, f) asr → 1 implies thatM(r, g) ∼ c1r
1/2 asr → 0.

Sinceg is subharmonic inC, it follows thatg is majorized in any disk by its Poisson
integral over the boundary. Thus,

c2r
1/2 ≤M(r, g) ≤ 3

2π

∫ π

−π
g(2reiθ) dθ.

On the other hand, the Green’s functionG of Lc satisfiesM(r,G) ≤ c3r for all
r ∈ [0,∞). We conclude that

∫ π

−π
g(reiθ) dθ >

∫ π

−π
G(reiθ) dθ, r ∈ (0, r0),

for somer0 ∈ (0, 1).
Take a smooth, convexφ which is constant on(−∞, 2 log r0), strictly convex

on (2 log r0, log r0), and linear on(log r0,∞). Then Proposition 6.1 gives
∫

K
φ(log |z|) dµK(z) >

∫

L
φ(log |z|) dµL(z),

which is the reverse of the moment inequality we might have hoped would be true.

This example shows the full analogue of Corollary 6.3 does not hold if the sym-
metry constraint is relaxed to the centroid constraint. We now propose a substitute,
“averaged” result. Assume thatK is compact, connected, contains the origin, has
cap(K) = 1, and also satisfies the centroid constraint

∫

K
z dµK(z) = 0.

Then, as noted in§5,K ⊂ B(2), and thus the formula in Proposition 6.1 is valid
for all R ≥ 2. FixR ≥ 2, and define

I(r) = I(r,K) =
1

2π

∫ π

−π
g(reiθ) dθ, r ∈ [0,∞),

J(r) = J(r,K) =

∫ R

r
I(t,K)

dt

t
, r ∈ [0, R].
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Conjecture 1. SupposeK ⊂ C is compact and connected withcap(K) = 1, and
that0 ∈ K and the conformal centroid ofK lies at the origin. Then for allR ≥ 2
we have

J(r,K) ≤ J(r, L), r ∈ [0, R].

An equivalent inequality is
∫

r<|z|<R
g(z) |z|−2 dx dy ≤

∫

r<|z|<R
G(z) dx dy, r ∈ [0, R].

SinceI(r,K) = log r for r ≥ 2, by (34), it follows thatI(r,K) = I(r, L) for
r ≥ 2 and hence another equivalent inequality is

∫

r<|z|<∞
[g(z) −G(z)]|z|−2 dx dy ≤ 0, r ∈ [0,∞).

There is still another equivalent version of Conjecture 1 involving functionsφ,
which we’ll call Conjecture 2.

Conjecture 2. SupposeK ⊂ C is compact and connected withcap(K) = 1,
and that0 ∈ K and the conformal centroid ofK lies at the origin. Then for all
functionsφ ∈ C1(R) such that bothφ andφ′ are convex, we have

∫

K
φ(log |z|) dµK ≤

∫

L
φ(log |z|) dµL.

To see the equivalence, first reduce to the case of smoothφ with φ ≡ 0 near
−∞, by arguing as in the proof of Theorem 6.2. Then go to Proposition 6.1 and
express the integral overB(R) in polar coordinates, and integrate it by parts with
respect tor. The resulting formula is

∫

K
φ(log |z|) dµK(z)

=

∫ R

0
φ′′′(log t)

J(t)

t
dt+ φ(logR)− φ′(logR) logR,

whereR ≥ 2. Now it is immediate that Conjecture 1 implies Conjecture 2.As for
the converse, one need only takeφ(t) = [(t − log r)+]2, notingφ ≡ 0 near−∞
andφ′′′ is a positive point mass atlog r.

To conclude, we describe two special cases of Conjecture 2 which have appeared
in the literature as separate conjectures.

The first concerns the classΣ0 of all univalent meromorphic functionsF in the
exteriorBc of the unit diskB, with F (z) = z + O(z−1) asz → ∞. The function
F0(z) = z + z−1 belongs toΣ0, and maps the exterior of the unit disk onto the
domainLc = C \ [−2, 2].

Conjecture 3 (Pommerenke [14]). If F ∈ Σ0 and0 ∈ K = F (Bc)c, then

1

2π

∫ π

−π
|F (eiθ)| dθ ≤ 1

2π

∫ π

−π
|F0(e

iθ)| dθ = 4

π
.
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The best known estimate [14] is12π
∫ π
−π |F (eiθ)| dθ ≤ 4.02/π. One would like

to replace4.02 by 4.
Note in Pommerenke’s Conjecture thatcap(K)= 1 andK satisfies the other

hypotheses of Conjecture 2. Moreover,dµK is the harmonic measure ofKc =
F (Bc) at∞ and dθ

2π is the harmonic measure ofBc at∞ (see [18]). By conformal
invariance of harmonic measure, we have

1

2π

∫ π

−π
|F (eiθ)| dθ =

∫

K
|z| dµK ,

1

2π

∫ π

−π
|F0(e

iθ)| dθ =

∫

L
|z| dµL.

Thus if Conjecture 2 is true withφ(x) = ex, then so is Pommerenke’s Conjecture.
Incidentally, the caseφ(x) = e2x of Conjecture 2 says

∫

K
|z|2 dµK ≤

∫

L
|z|2 dµL,

which is equivalent as above to

1

2π

∫ π

−π
|F (eiθ)|2 dθ ≤ 1

2π

∫ π

−π
|F0(e

iθ)|2 dθ = 2.

This case of Conjecture 2 can be proved as follows: writeF (z) = z+
∑∞

n=1 bnz
−n

and observe

1

2π

∫ π

−π
|F (eiθ)|2 dθ = 1 +

∞∑

n=1

|bn|2

≤ 1 +
∞∑

n=1

n|bn|2

≤ 2

by the area theorem [15, Theorem 1.3] . Clearly equality holds if and only if
|b1| = 1 andbn = 0 for all n ≥ 2, which meansK is a rotate ofL.

The second special case of Conjecture 2 concerns norms of polynomials. Let
MK be the smallest numberM such that

m∏

j=1

‖pj‖K ≤Mn‖p‖K

for all polynomialsp of degreen ≥ 1 and all polynomialsp1, . . . , pm such that∏m
j=1 pj = p. Here‖ · ‖K denotes the sup norm onK. The constantMK was

evaluated in [16] as

MK =

exp

(∫

K
log dK(z) dµK(z)

)

cap(K)
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wheredK(z) = maxt∈K |z− t| is the farthest point distance function forK. (Fur-
ther properties ofdK have been studied by Laugesen and Pritsker [12], and Gar-
diner and Netuka [5, 6].)

The following natural extremal conjecture forMK was stated in Pritsker and
Ruscheweyh’s paper [17]:

Conjecture 4. For all compact connectedK ⊂ C with more than one point, we
haveMK ≤ML.

The constantMK is invariant under similarity transformations, and so when
studying the conjecture it suffices to assumecap(K) = 1 and that the conformal
centroid ofK lies at the origin.

Assuming in addition thatK contains its conformal centroid, the authors of [17]
showed thatMK < (1.022)ML. In the direction of the conjectured sharp bound
(with constant1), they observed

logMK ≤
∫

K
log(2 + |z|) dµK(z),

with equality whenK = L.
Now, the functionφ(t) = log(2 + et) is convex onR, andφ′ is convex on

(−∞, log 2]. Replacingφ on (log 2,∞) by an appropriate quadratic, we obtain
a function φ̃ which, along with its derivative, is convex on all ofR. Suppose
Conjecture 2 is true. Then the inequality in it holds withφ̃ in place ofφ. Moreover,
K ⊂ B(2), and so the integrals are the same forφ and φ̃, which would establish
Conjecture 4.
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