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MOMENT INEQUALITIES FOR EQUILIBRIUM MEASURESIN THE
PLANE

A. BAERNSTEIN I, R. S. LAUGESEN, AND I. E. PRITSKER

ABSTRACT. The equilibrium measure of a compact plane set gives tlaalgte
state distribution of charges on the conductor. We showdbettin moments
of this equilibrium measure, when taken about the eledatigstentroid and de-
pending only on the real coordinate, are extremal for amiateentered at the
origin. This has consequences for means of zeros of polyalepaind for means
of critical points of Green’s functions.

We also study moments depending on the distance from theotarguch as
the electrostatic moment of inertia.

Dedicated to our friend Fred Gehring, on the occasion of ligh&irthday.

1. Introduction

Let K be a compact non-polar subset of the complex pl@nand i x be its
equilibrium measure. For functios: K — R, the integral

/ 6(2) durc (2)
K

is called thep moment of(, or of the probability measune, . For example, when
#(z) = |z|* the  moment is the moment of inertia about the origin.

In this paper we take up some problems involving maximizingnmimizing ¢
moments whenp satisfies certain conditions. In all of our results the cotimge
setsK will have the same logarithmic capacity, which, as a norzadion, we take
to bel. Thatis:

cap(K) = 1.
And we shall usually take theonformal centroid,, z djuux () of K to lie at the
origin:

/K zdug(z) = 0.

In all of our results, the extremalmoment will be achieved by a line segment of
length4. When sets in the class have conformal centroid at the gtigeninterval
L defined by
L=[-2,2]
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will be among the extremals.
In our two main results the functiop will in fact depend only on the real part
of z. Here are those results.

Theorem 1. Supposek’ C R is compact with capacityap(K) = 1, and that its
conformal centroid is at the origin. Then for every convexction¢ : R — R, we
have

/qS(Rez)duK(z) 2/(13(1:{62) dur(z).
K L

Moreover, if K\ L has positive capacity and the restriction ofto L is not a
linear function, then strict inequality holds.

Theorem 2. Supposes’ C C is compact and connected with capagityp(K) =
1, and that its conformal centroid is at the origin. Then foegvconvex function
¢ : R — R, we have

/qS(Rez)duK(z) S/qﬁ(Rez) dur(z).
K L

Moreover, if K # L and the restriction of) to L is not a linear function, then
strict inequality holds.

Theorentill says that among all compact sets on a line with the sanformal
centroid and the same capacity, the least spread out seteasunad by convex
integral means, is a single interval. Contrary-wise, Thagg says that among all
plane continua with the same conformal centroid and the sapacity, the single
interval is the most spread out.

For a lower estimate applicable in both Theoréins 1[and 2, werub

/ o(Re 2) duxc () > 6(0)
K

by Jensen’s inequality, whenevéf is compact with conformal centroid on the
imaginary axis Re fK zdug(z) = 0) andg¢ is convex. Equality is attained when-
everK is contained in the imaginary axis. Theordms 1[and 2 alsdanequly that
the conformal centroid be purely imaginary, but, for brgwite shall continue to
assume the conformal centroid is at the origin.

The proof of Theorerhl2 is modeled on the proof of a theorem efBstein([2],
p.139, about maximizing integral means in certain clas$esivalent functions
in the unit disk. The novelty in the present Theorfegm 2 is thatead of working
with symmetric decreasing rearrangements on circles, {],ione must devise
a “*-function” appropriate to “symmetric increasing reamgements” of functions
defined and unbounded in all &. The proof of Theoreri]1 follows the same
general strategy as that of Theorem 2, but is simpler, inrthdtinctions need to
be rearranged.

Theoren{]l is motivated by considerations in number theonyjli be proved
in §3. Some consequences will be presentedinTheoreni 2, to be proved i,
arose in an attempt to prove a conjecture stateéfliihe conjecture asserts, when
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both¢ and¢’ are convex, that

/ o(log |2]) dpuxc (2) < / o(log |2]) duz (2) 1)
K L

provided K is compact and connected withp(X) = 1 and with its conformal
centroid at the origin, and with the origin belonging &. If true, the conjec-
ture would prove a conjecture of Pommererike [14] about mategeans of univa-
lent functions in the class, and would also prove a conjecture of Pritsker and
Ruscheweyh [17] about lower bounds for factors of polyndsnia

We will present an example showing that (1) is false withia thass of all
convex functions. But if we add t& the assumption, stronger than having the
conformal centroid at the origin, thdt is symmetric with respect to the origin,
then [1) is true for all convex. This is Corollary 6.B. It follows from Theorem 6.2,
which restates a result of Laugesén|[11] (and which is itaetbnsequence of
Baernstein’s integral means result, Theorem 1in [2]).

2. Potential theoretic preliminaries

For potential theoretic notions we shall mostly follow thmgpeoach in[[18]. Let
K be a compact subset @f, and K¢ be the complement ok on the Riemann
sphereC. For a measurg compactly supported ift, the energyl (1) is defined
tobel(u) = [, i log|z — ¢ du(z) du(C). If I(n) = —oo for everyp supported
on K then K is said to bepolar. If K is non-polar, then there is a unique proba-
bility measureux on K, called the equilibrium measure &f, which maximizes
I(n) over all probability measurgson K. Clearly I(ux) is a finite real number,
becausek is bounded. The capaciap(K) of K is defined to be!(#x). For
polar K, definecap(K) = 0. A general set is said to be polar itap(K) = 0
for every compacK C FE.

For non-polark’, denote byy the equilibrium potential of{. Then

9(2) = gx(2) = /K log |2 — (| dux(¢), = €C.

Putg(oco) = +o00. Theng is harmonic inkK¢ except abo, whereg(z) = log |z| +
o(1). By Frostman’s Theorem[([18], p.59),

g > I(ug) = logcap(K)
everywhere irC, with equality onK \ E for some polar sef’. The potentialy is
related to the Green’s function & ¢ with pole atoo by

g(z) =logcap(K) + g(z,00, K¢), ze€C.

Seel[18], pp.107, 132.
Set

B(R)={z€C:|z| <R}, B(R)={z€eC:|z| <R},
and let )
tn = o) = - [ @), m=1.

In particular,a; is the conformal centroid ok'.
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Suppose thak” C B(R). In the definition ofy, take|z| > R and expand thivg
in powers of|(| < R. We obtain

9(z) =log|z| ~Re) anz™", |2| > R. )
n=1

Next, suppose thakt’; and K5 are two non-polar compact subsets(bivith the
same capacity and the same conformal centroid. Definingdtenpialsg;(z) =
fKJ_ log |z — ¢| dux;, (¢), from () it follows that

91(2) — ga(2) = —Re Y b2, (3)
n=2

whereb,, = a, (K1) — a,(K2) and the series converges fat > R whenB(R)
contains bothi; and K». Thusg; (z) — g2(z) = O(272) at oo, and alsog; and
go are bounded on compact subset€oilt follows that the function

w(x) = /OO [91(x + 1y) — ga(x +iy)]dy, =z €R,

—0o0

is well defined as an absolutely convergent integral, andnsimuous orR. (To see
the continuity, split the defining integral into two partsside and outside the disk
B(2R). Outside the diskg; — g2 is represented by the absolutely and uniformly
convergent serie§l(3), and hence the integral is continimusinside the disk, one
can first write down the definitions g@f andg, as potentials, and then use Fubini’s
theorem and integrate the logarithmic kernel with respetifhesgue measure on
the vertical segment inside the disk. This eliminates thgudarity, and thus this
part of the integral is continuous intoo.)

Note that for each complete vertical lidfé not passing througld we have
Jrz""dz =0, n > 2. With @), this implies

w(z) =0, |z =R. 4)
To prove Theorenls 1 and 2, we shall make use of the followinmdita.

Formula. Supposek; and K, are compact non-polar subsets @fhaving the
same capacity and the same conformal centroid, and cordami(R).
Then for eaclu > R and each functiows € C%(R), we have

6(Re2) dure(2) — [ ofRex)dur(2) = - | " w(@)d (@) d.
K K> —a

Proof. Fora > R, b > Rlet@Q = [—a,a] x [—b,b]. In the sense of distributions,
we haveAg = 27 ug in C, whereK denotesK; or K, andg denotesy; or go.
See[[18], Theorem 3.7.4. Fgrc C?(C), Green’s formula gives

277/ Q,Z)d,uK:/Q,Z)Agd:Edy
K Q

_ / g A da dy + / {009 — g0t} |d2]
Q 2Q
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whereg,, denotes outer normal derivative. Thus,

ol [ duse, - /K b dpy)

K1

— [ - A0 dody+ [ (0001~ ) = (o1~ )0
Q Q
Write z = x + iy and takey(z) = ¢(z). Then
2n{ [ é(z)dpr, (2) — P(x) dpx, (2)}
K, K>
= / (91 — 92)(2)¢" (x) dz dy +/ {00n(91 — g2) — (91 — 92)On}|dz].
Q Q

Fix a > R and letb — co. Sinceg;(z) — g2(2) = O(z72) and Vg1 (2) —
92(2)] = O(27?%) asz — oo, the integral over tends to[“ w(z)¢” (x) dz and
the boundary integrals over the horizontal sides ter@ to

Write @ = Q(b) to show the dependence biand denote the right hand vertical
boundary side bpQ™" (b). Then by [B),

lim (g1 — 92)0n ¢ |dz| = —¢'(a) Re/ Z bp(a +iy) ™" dy.
b—oo oQ+(b) R,—y

The last term equal$’(a)w(a) which, by [4), is0. Thus,

lim (91 — 92)On¢ |dz| = 0.

b—oo 2Q+(b)
The three other vertical boundary integrals likewise hawit zero. The formula
is proved wher: > R. By continuity, the formula also holds far= R. O

Our proofs of Theorenis 1 andl 2 will make use of the followingrheas.

Lemma 2.1. With K, K, as in the Formula, suppose thatis a vertical strip
—00 <71 < Rez <y < oo. If ug, (5) = 0 thenw(x) is concave ortyy,y2). If
Ui, (S) = 0 thenw(x) is convex or~yi,y2).

Proof. Assumep, (S) = 0. Let ¢ be a nonnegative&’? function onR with
compact support iy;,v2). Takea € R so large thata > R and (y1,72) C
(—a,a). Then in the Formula, the integral ovéf; is zero. Sincep > 0 and
lr, > 0, the Formula implies that

a 2
0> / w(z)d” (z) dx = / w(z)¢” (v) dz.
—a 71
Sincew is continuous orR, the 1-dimensional version of Weyl's Lemma][9]
or [4], p.127 shows thatv is concave ony;,v2). The proof is similar when
127:¢) (S) = 0. g
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Lemma 2.2. Suppose that a functiomis subharmonic in the upper half plari¢,
is continuous or{ UR and satisfies:(z) > u(z) for all z € H and somex, € R.
Then _
lim inf w(wo) — ulzo +1y) >
y—0+ Yy

Proof. Let D be the open half disk#{ N B(xp,€). Thenu(z) < wu(xg) for all

x € [xg — €,x9 + €] andu(z) < u(xo) for all z in the circular part obD. Letv
solve the Dirichlet problem irD with boundary values. Thenwv is honconstant
on 9D, hence nonconstant if. Also, supyp v = v(zp), and so by the strong
maximum principlep(z¢) > v(z) for all z € D. By Hopf's Lemma, as stated at
the top and bottom of[7], p.34, the lim inf in Lemrhal2.2 is piesi for v. Since
u < win D, the lim inf is also positive fot:. O

0.

3. Proof of Theorem([1]

Let K be a compact subset Bf. We assume also thaip(K) = 1 and that the
conformal centroid of< is at the origin, [, z djux (z) = 0.

Recall thatl = [-2,2]. Thencap(L) = 1 and the conformal centroid df is at
the origin. We shall apply the considerationsj@fwith K; = L and K, = K.

Write G = ¢ andg = g for the respective Green’s functions bf and K¢
with poles atx. The functionw(x) introduced ind2 is defined orR by

w(z) = /R[G(x +is) — g(x +is)]ds, xz€R.

Hence
w(z) = 2/ [G(x +is) — g(x +is)]ds, z€R,
0

by symmetry ofG andg in the real axis, recalling that’, L C R.

As observed ifff2, w is continuous oR and satisfiesv(xz) = 0 for |z| > R,
whereR is so large thaf< and L are contained ifB(R).

Let¢y : R — R be convex. The second distributional derivativepas a non-
negative Borel measure dk call it . Via approximation, one sees that the For-

mula in§2 generalizes to

1
/ d(Rez)dur(z) —/ d(Rez)dug(z) = Py / w dv. (5)
L K T JR
Thus, to prove the inequality in Theoréin 1, it suffices to prthat
w(z) <0, zeR

To accomplish this, we solve the Dirichlet problem#fhwith boundary valuesv
on R (and boundary valu@ at infinity), and call the resulting functiom(z) =
w(z + iy). Thenw is continuous or{ U R, equals) on the real axis near infinity,
and tends t® asz — oo in H. Moreover, we will showw has the representation

w(z):2/M[G(w+is)—g(w+is)]ds, z=xz+iycHUR.  (6)
y
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To see that this representation is valid, call the functiethe rightw. Then, see
(3), w is bounded and continuous 6HU R, and equalsy onR and tends td as
z — oo in H. Further,g andG are harmonic i (sinceK, L C R), from which
it follows thatw,, = 2(G, — g,). Also, differentiation ofw twice with respect to
y giveswy, = 2(gy, — Gy). Thusw is harmonic in#. By uniqueness of solutions
to the Dirichlet problem in the halfplane, we have= w.

As just noted,[(B) gives the identity

wae(2) = 2[Gy(2) — gy(2)], z€H,
and also gives

wy(z) =2[g(z) —G(2)], zeH. (7)
Set
M = sup w.
HUR

ThenM > 0, sincew(z) = 0 for || > R. Suppose that/ > 0. Then by
continuity of w and the strong maximum principle there exists€ R such that
w(zg) = M andw(z) < w(xg) for eachz € H. There are two possible locations
for zg.

Case 1z € (—o0, —2] U [2,00). Sincepy, is supported ofi-2, 2], Lemmd2.1 in
g2 implies thatw is concave on each open bounded subintervét-eb, —2], hence
is concave or{—oo, —2]. Sincew(x) = 0 for all x < —R, it follows thatw < 0
on (—oo, —2]. Soifxg € (—o0, —2], thenM = 0. Similarly, if 2 < zy < oo then
M = 0. This contradicts our assumption thit > 0, and so Case 1 cannot occur.

Case 2 € (—2,2). Sincew is harmonic i, Lemmg2.2 implies that
lim inf 20 ~ W@+ i) 8)
y—0+ Yy

On the other handy(z + iy) is a continuous function of on [0, c0) and is
differentiable on(0, co). By the mean value theorem, for eagh> 0 there exists
y* € (0,y) such that

w(zg) — w(xg + 1y)

= —wy(zo + 1y")

Yy
=2[G(zo +1iy") — g(wo +iy")] by @)
< 2G(zo + iy") sinceg > 0
—0

asy — 0+, becausery € L andG = 0 on L. This contradicts[(8), and so Case 2
cannot occur. The inequality in Theorém 1 is proved.

To prove the strict inequality statement, assuRe, L has positive capacity.
Sinceg is harmonic inC \ supp ux and is nonnegative and nonconstant there, we
have by the strong minimum principle that> 0 on C \ supp ux. Recalling that
g = 0on K \ E for some polar sef/, we deducek \ F C supp ux. Hence, if
supp pux C [—2,2]thenK \ E C [-2,2] = L, which impliesK \ L C E is polar,
meaningK \ L has capacity zero in contradiction to our assumption. Theze
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suppux ¢ [—2,2], so that some > 2 exists with eitherug ([t,o0)) > 0 or
pr ((—oo,—t]) > 0. Say the former holds. Tak&z) = (z —¢)" in (§). Then
the distributional second derivative ¢fis the unit point mass dt so that

w(t) = =27 /K(x — )t dug(x) <O0.

Thus,w is nonconstant in the closed upper half plane, and @lso 0 as we saw
above.

If w(z) = 0 for somex € L, then we can rerun the Hopf’s lemma argument
in the proof of Case 2 to get a contradiction. Sdx) < 0 at everyx € L. If
¢ is convex onR and not linear orl, then the corresponding measwraatisfies
v((—2,2)) > 0. Formula[(5) implies|; ¢(Re z) dur(z) < [ d(Rez)dug (2).
O

4. Applications of Theorem[I

This section contains three direct applications of Thedlehey are related to
the properties of Green'’s function and its derivatives, e as to the asymptotic
zero distribution of polynomials.

4.1. Pointwise boundsfor Green’sfunction and itsderivatives. Suppose as be-
fore thatK C R is a compact setap(K) = 1 and [,  dux (z) = 0, whereux
is the equilibrium measure df. Recall thaty denotes Green’s function @ \ K
and G denotes Green's function @ \ L, with poles atco, where L = [-2,2].
Then the equilibrium measure df is given bydu; = dz/(rmv4 — z2), and
G(z) =log |z + V22 — 4] —log 2.

Corollary 4.1. Letzy € R, zg > 2, be fixed. For any seik as above, with
max K < xg, we have

Mg oG ,
—— < >
S (x0) < B (x0) whenm > 0 is even, 9)
oMg oG .
— > > :
B (x0) > e (o) whenm > 1is odd (10)
Furthermore, ifzg = z¢ + iyo andmax K < xg — |yo|, then
9(20) < G(z0). (11)

Equality holds in@)—(11) if and only if K \ L has zero capacity.

In words, inequality[(9) withm = 0 says that the Green’s function &f¢ is
smaller atr than the Green’s function df¢, which is reasonable sind€ is more
spread out thai, and thus contains points closer:tg.

Clearly, one can considary < —2 by symmetry, and make corresponding ad-
justments in the above corollary.

Proof. Recall thatg(z) = [} log|z — s|duk(s). Sincemax K < xo, we have
thatg € C*° aroundz = zq, and
Mg

0 (w0) = /K(_1)m+1(m — l(wo — 5) " duk(s), meN.
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Note that the integrand can be extended to a strictly conuegtion ofs € R,
for oddm € N. Hence Theorernl1 givek (10). Similarly, the integrand isthgr
concave for evem > 0, so that we obtain the reversed inequalily (9).

For zp = xg + iyg, we have

o) = 5 [ Toa((wo = 5 +38) dus).

Thus the integrand is a strictly concave functiorsd6r s < x¢ — |yo|, and [11) is
again a direct consequence of Theofém 1.

For the case of equality, supposep(K \ L) = 0. Thenug (K \ L) = 0 (since
otherwise the restriction gf x to K \ L would give a finite energy), and g0 is
supported in... Henceg is harmonic inC \ L, so thaty — G is harmonic inC \ L.
Becauseg — G is nonnegative o, and equals zero at infinity, the strong maximum
principle impliesg — G = 0, so that equality holds in{9)=(11). On the other hand,
if cap(K \ L) > 0 then strict inequalities hold ini9)=(1) by Theorem 1. O

4.2. Means of zeros of polynomials. This part is inspired by the problem on the
smallest limit point for the arithmetic means of zeros folypomials with integer
coefficients and positive zeros, considered by Schur [1€] Siegel [20]. They
gave lower bounds for the arithmetic means of zeros, whighrored the standard
arithmetic-geometric means inequality.

We consider certain extremal polynomials on the real lineehéd’he number
theoretic aspects of the problem for integer polynomialkhgitreated in a separate
paper.

Let K C C be an arbitrary compact set. It is well known that for any rooni
polynomial P, of degreen, we have|| P, || x > (cap(K))™, where the norm ot
is the supremum norm (cf.[[1]). Thus a sequence of monic mohjalsP,, n € N,
is calledasymptotically extremdbr the setkK if

. 1/n
Jim ||| = cap(K).

This class includes many polynomials orthogonal with respe various weights
on K, and polynomials minimizing various? norms; see [1] and [21] for numer-
ous examples. Among the classical families on the realVimanention Legendre,
Chebyshev and Jacobi polynomials (hormalized to be moAsymptotically ex-
tremal polynomials have interesting asymptotic zero itfistions. Let{cy, ,,}}_,
be the zeros oF,,. Define the counting measure for the $ej, , };'_, by

1 n
Tn = E Z 50%_’7“
k=1
whered,, , is a unit point mass aty .. If K C R, cap(K) # 0, and theP, are
asymptotically extremal fof, then ther,, form a sequence of positive unit Borel
measures that converge in the weak* topology to the equitibmeasure of<;
see Theorem 1.7 df[1, p. 55]. The definition of weak* convacgestates that

lim [ fdr, = / fduk
C R

n—oo
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for any continuous functiorf on C. This enables us to obtain information on the
limiting behavior of means of zeros @,. In particular, we have the following
result stated fo” normalized byap(K) = 1. (The case of arbitrary capacity can
be reduced to this by a linear change of variable.)

Corollary 4.2. Suppose thap : C — R is continuous, and is convex orR.
Assume thaf{ C R is compactcap(K) = 1 and [, zduk(z) = 0. If Py, n €
N, is a sequence of asymptotically extremal polynomialsifothen we have for
the ¢-arithmetic means of their zeros that

Jim =30k = [ o) dunta) (12)
k=1
2 xX)axr
> [ ot duato) = [ 22— ko)

If K\ L has positive capacity and the restriction@fo L is not a linear function,
then strict inequality holds.

In particular, if¢p(z) = |z|™, m € N, then

my _ om L(m/2+1/2)
(jz[™) =2 AT+ 1)’

because the change of variable- 2t'/? reduces the integral fdi(|z|™) to a beta
integral. Hence/(|z|) = 4/7 and/(z?) = 2.

Proof. Sinceg¢ is continuous oiR, the first equality in[(12) follows from the weak*
convergence of,, to ux. The inequality (and when it becomes equality) is imme-
diate from Theorerl1. O

We also state a version of this result for polynomials witkifiee zeros.

Corollary 4.3. Assumep : [0,00) — R and thatg(z?) is convex orR. Suppose
K C [0,00) is compact andap(K) = 1. If P,, n € N, is a sequence of asymp-
totically extremal polynomials fok', and if eachP,, has all its zeros positive, then

1 4 p(x)da

lim — (ba,n:/qﬁxdu xT) > — = =/, (¢).
n—)oon;(k) K() K() Oﬂ_\/m +()
If K\ [0, 4] has positive capacity and the restrictiongfr?) to [0, 4] is not a linear
function, then strict inequality holds.

In particular, settings(z) = =™, m € N, gives
[t aMda _om L3 (2m 1)
0 m/z(4—x) m! .

The first few values of . (z™) are2 for m = 1, 6 for m = 2, and20 for m = 3.

i (z™)
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Proof. The proof is essentially the same as for Corollary 4.2. Feritiequal-
ity, one should apply the change of variable= t> and define the compact set
VK = {t € R : t* ¢ K}. ThenvK is symmetric about the origin, so
that [ =t du g (t) = 0. Furthermoredy s (t) = dux(t?), t € VK, and
cap(vVK) = 1; see[[18, p. 134]. Now apply Theorémh 140K O

A consequence of Corollafy 4.3 is that we also have informnatin the as-
ymptotic behavior of the coefficients d?,. For example, ifP,(z) = 2" +
12"Vt aon = [[ho (@ — agy) thena, 1, = — > F_; ak.n. Hence

lim 2nhn —/ rdug(r) < -2
K

n—00 n

under the assumptions of Corollary 4.3, with equality 5o [0, 4].

4.3. Equilibrium measure and Green’s function when K isthe union of sev-
eral intervals. Let K = Ufil [a;, b)), wherea; < by < az < by <...<any <
by are real numbers. Define the functi®fz) = [[,(z — a;)(z — b;). Consider
the branch of\/R(z), satisfyinglim, . /R(z)/2" = 1, which is analytic in
C\UX.,[as, by]. For future reference, we describe the valueg/dt(z) on the real

line:
\% ’R(x)‘a T > bN7
1\N+L _
Ry =4 T TiVIE@]L sz <b, l=1,. N,

()N /IR(=)], h<z<ayq;,l=1,...,N—1,

(DY VIR(@), < a.
(13)

Here, the values of /R(z) for = € U [a;, b are the limit values of/R(z)
whenIm z — 0.
WhenK = L = [-2,2], thenR(z) = 2? — 4 and for—2 < z < 2 we have

dpp (z) = dx B dx
HE ™4 —22  wi/R(z)

We give the following explicit representation for the eduium measure of the
setK (see also]21] and [23]).

Proposition 4.4. Let K = J;, [a;,b;] C R. There exists a polynomidl(z) =
—zN=1 4 ... € Ry_1[z], such that the equilibrium measure &fis given by

N
T(x)dx
d T) = —F—, T € ar, byl. 14
1k () i VR l—U1[l 1] (14)
Furthermore, whedV > 2 we havel'(z) = — [}, (z—z;) with z; € (b), aj41), j =

1,...,N—-1,and
N-1

/de,uK(ac):Zal;_bl — Zzl. (15)
=1

=1 =

For the proof of Proposition 4.4, we need the following sienlgmma.
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Lemma4s5. LetK = J;¥ | [a;, bi]. ForanyTy_; € Ry_1[z], we have

1 Ty-a(t)dt :{ 0, ze U, (a,br),
mi Ji (t — 2)\/R(?) Tn-1(2)/\/R(2), z€C\K,

where the integral is understood in the Cauchy principalieasense.

We remind the reader that where R, /R(t) is defined to be
limg_,0+ v/ R(t + is).

Proof of Lemmé&4l5Forz € C\ K definef(z) z)/+/ R(z). Itis easy to
see that the limit values qff R(z) asz tends to a pomt oK from above and from
below are negatives of each other, so the same is trug.fdrhus, with obvious
notation,

(16)

fGe+)=[f(z)=—f(2—), z€K. 17)
Consider a contoul® which consists ofV simple closed curves, one around
each of the intervalgy;, b;], and located close to those intervals. Then

@
2mi Ft—zdt_f(z)

for z in the exterior ofl", and forz € K the integral equals zero.
Takingz € C\ K, lettingT" shrink to K, and using[(1l7), we obtain

f(z):— tff) dt, z¢€ K°,
as asserted by the Lemma.

Next, takez € U (a;,b;). The existence of the Cauchy principal value:at
for the functionf follows from the results in Chapter 2 in [8], which also canta
a discussion of Plemelj’s formula. This formula asserts$ tha Cauchy principal
value satisfies

FON (GRS G

T e t— 2 2 ’
By (17), the right hand side is zero. This completes the pobtiie lemma. [

Proof of Propositio@We shall deducd (14) from Lemma #.5. Selégt) =
SN eit? € Ry_1[t] so that it satisfies the following equations:

(ll+1T ap41 J t
/ Z/ td —o, I=1,...,N —1, (18)
by \/—

N-1
J
) )

The polynomialT'(t) is defined by these equations uniquely, because the corre-
sponding homogeneous system of linear equations (withaetbe right of [(19)),
in the coefficients:; of 7'(t), has only the trivial solution. Indeed, I&},(t) be a

VAS U{il(al, b).

and
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nontrivial solution of this homogeneous system. Since ihe sf \/R(t) is con-
stant on eachiy;, a;11) by (I3), 7,,(t) must change sign on ea¢h, a; 1], | =
1,...,N — 1, by (18). Hencel},(t) has a simple zero in eadlh;, a;11), | =
1,...,N — 1, and its sign alternates on the intervalg b;|, | = 1,..., N. (Note
that the same is true faf(¢).) It follows from (13) thatl},(¢)/(wi\/ R(t)) doesn’t
change sign o, contradicting

1 nmd

ThusT'(t) exists and is unique. In addition, the above argument[ands{i®wv that
T(t)/(mi\/R(t)) keeps positive sign of, that is, [14) actually defines a positive
unit Borel measure ok .
As in the proof of Lemm&4l5, s¢t= T/v/R. Let
1 [ f@)

h(z) = — dt, =zeC.
T Jgt—2

Thenh is the Cauchy transform of 15 in C and is the Hilbert transform of
flg onR. Itis easy to see that € LP(R) for eachl < p < 2. From M.
Riesz’s conjugate function theorem (see for example Siéiss [22]), it follows
thath € LP(R).

From Lemmd 45, we see that= 0 on K except at endpoints, arid= f on
Kc¢. Define

1
u(z) = = | oglz—e)s() e
™ JK
Thenw is continuous orC andu, = — Reh in the open upper half plane. Since

h € LP(R), the functionh(- + iy) converges ta(-) in LP(R) wheny — 0+, and
hence converge thin L' (a1, by). Thus, forz € [ay, by],

u(z +iy) —u(a; +iy) = — Re/ h(t + iy) dt

al

R —Re/ h(t) dt = —/ h(t) dt.
al al

The last equality holds because= 0 on K andh = f with f real in the gaps
between the intervals df. Combining this description df with (18), we see that
if z € K then the last integral is zero. Sineer+iy) — u(x) asy — 0+ for all z,
we conclude that is constant orf<. Then Frostman’s theorem and the uniqueness
of the equilibrium measure imply thgt(z)/(7i) dz = T'(x) dz/(mi\/R(x)) is
the equilibrium measure fdk'.

We now show that the leading coefficient Bfis —1. Observe that (16) gives
for z = 0 andTy_1(z) = 271! that

1 4 dt

— =0, j=0,....,N—2
™ Jx \/R(t)
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Also, recall that near infinity

—1/2 1
(1—9) 14224
z z

Therefore, we have the following Laurent expansion at ityfini
=
VR(z)

Applying the same argument as in the proof of Lenima 4.5 antuatlag the
residue at infinity by[(20), we obtain

1 1
:1—|—§;(al+bl);+.... (20)

1 tN=1qt B 1 2N=1dz B
miJi VR®) 27 Ji= R()
Hencel(19) givesy_; = —1. Similarly, we have
/ rdpg(x) = —i. LN do + CN—2i. o de
K mi Ji \/R(z) 7 Jk /R(x)
f: a; + b B NZ:I a0
1=1 =
becausen o = S0 2. O

We remark that the zeros of the polynontialare exactly the critical points of
the Green’s functiog(z, co, K¢) for the domaink© = C\ K, with pole at infinity.
Indeed, we have fag(z, 0o, K¢) = [} log |z — t| duk (t) — log cap(K) that

gz (x,00, K) = — L / () dt T(z) reR\ K,

@-OVRD  VR@)

by (18). Moreoverg,(z, o0, K¢) is zero onR \ K and is never zero o@ \ R.
Thus we can obtain interesting information about locatibthe critical points.
For the background material on the critical points of Greduahction see Chapter

VIl of Walsh [24] If K = [al,bl] U [ag,bg] and|b1 — a1| = |b2 — (12|, then

it follows by an elementary symmetry argument that= (b; + a2)/2. Also, if
|br — a1| > |ba — as] thenz; > (b1 + a2)/2. But the location of critical points
becomes difficult to predict for three or more intervals.

The following inequality gives information on the averagssition of the critical
points in terms of the midpoints of the gaps between thevaternf K.

Corollary 4.6. Let K = Y, [a, b;] C R satisfycap(K) = 1. With the above

notation, we have
N-1
Z by + aj41 T by —ay
=1 2 )= T

where the sum is interpreted to béor N = 1. Equality holds above if and only if
K is a segment of length 4.
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Proof. We consider the integrgf,- = duux (x), and observe that translating the set
K by a constant € R changes the integral by addingHence we may assume that
a1 = 0, and must show thaf,. = duk (z) > 2, with equality only forK = [0, 4].
DefinevK = {t € R: t?> € K}. Then, as in the proof of Corollafy 4.3/K is
symmetric about the origiry, - « du. /(x) = 0, andcap(v/K) = 1. Moreover,

NCLl+bl i
t2d t:/md T) = —_ = Z
/ﬁ ) = [ wdua) =3 U2 =3

=1 =1
by (I8). Applying Theorerfil1 witkb(¢) = 2, we obtain that

/ t2du = (t) > P_ga 2
VK PR = —o V4 — t2 -
with equality possible only it/K = [~2,2] andK = [0, 4]. O

Using higher moments will give more complicated inequaditinvolving the
endpoints of and zeros (or coefficients) @f.

5. Proof of Theorem[2

Let K be a compact connected subseCofvith cap(K') = 1. The connectivity
of K implies that each boundary point of the domaifiis regular for the Dirichlet
problem inK ¢, which, in turn, implies that the Green function &f is continuous
in C.

We shall assume also that the conformal centroiéa$ at the origin. That is:

/ zdpg(z) = 0.
K
Then by Theorem 1.4 of [15, p.19], we have

K C B(2).

Recall thatl, = [—2,2]. Thencap(L) = 1 and the conformal centroid df is
at the origin. We shall apply the considerationgf@fwith K; = K, K, = L and
R =2.

Write ¢ = g1 andG = g for the respective Green’s functions &f and L¢
with poles atx. The functionw(x) is defined orR by

w(zx) = /R[g(:n +is) — G(x +is)]ds, z€R. (21)

By the Formula irf2, to prove Theoreinl 2 it suffices to prove that
w(z) <0, xe€R.

To accomplish this, we shall extendto a certain functionv(z) which is subhar-
monic in the upper half plang.
For setsEl C R, let E® denote the complement &f in R:

E’=R\E.
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Also, let|E| denote the one-dimensional Lebesgue measukg ahd fory > 0,
let

I(y) = [y, y]-
For boundedt’ C R with |E| = 2y andx € R, set

w(z, E) = /R[]lEb(s)g(w +1is) = Ly (s)G(x +is)] ds

=w(x) + G(x +is)ds — / g(x +1is) ds,
1(y) E
wherel denotes a characteristic or indicator function. The asgtigpbehavior of
g andG (discussed iff2) ensures that the first integral is absolutely convergent.
The second equality follows frorh (P1).
Now takez = x + iy € H, and define

w(z) = supw(z, E), (22)
E

where the sup is taken over all bounded measurabte R with |E| = 2y.

For eachr, we haveg(z + is) > 0 andlim|_, g(x + is) = co. The analysis
on p.149 of[[2] is applicable te-g(x + is) as a function of, and shows that for
eachy € [0, 00) there exists a seéf C R with |E| = 2y for which the supremum
of — [ g(z + is) ds over all E with |E| = 2y is attained. Note the minus sign in
—g. Moreover, there exists a numhep 0 such that{s € R : g(z +is) < t} C
E C {g(x +1is) < t}, andE is bounded. We shall denote such a maximizing set
by E(z). Then

w(z) = /R (Lo (8)9(z + i) — Ly (s)G(z + is)] ds (23)
=w(x) + G(x +is)ds — / g(x +is)ds (24)
1) B
= /| lg(x +1is) — G(x + is)] dx (25)
s[>y

+ / g(x +is)ds — / g(x +is)ds.
I(y) E(z)

The following lemma provides information on the maximizegtsE(z).

Lemma 5.1. With the situation as above, there exist positive constargad k
depending only ot such that whenever = x + iy € H:

(@ ify >bthenE(z) = I(y) +t = [~y + t,y + t], for some with [¢t| < k/y;
(b)ify < bthenE(z) C [—2b,2b].

Proof of Lemma&5I]1By (@), we can write
9(z) = log|z| + h(z) (26)



MOMENT INEQUALITIES FOR EQUILIBRIUM MEASURES 17

whereh is harmonic outsid@(2). The conformal centroid of{ is at the origin,
and so the coefficient; in (2) equalsd. Thus,h satisfies|h(z)| < §|z|—2 and
|Vh(z)| < &|2|72 for |z| > 3, for some positive constanht

From g, = y|z|=2 + hy, it easily follows that there existly > 3 such that
gy(z + 1y) > 0 whenevery > by andg, (z + iy) < 0 whenevery < —by.

Now we establish two estimates:

o) — 9] < 21217, @)
oz +it) = 9() > Syl = K2, (28)

whenz =z + iy € H,|z| > 3 andt € (0, |z|]. The first estimate is obvious from
(26). The second follows similarly, becauRe(it/z) € (0,1] and so

log |(z +it)/z| > log(1 + Re(it/z)) > %Re(z’t/z) = %ty[z\_z.

Moreover, there exists a number> b, > 3 such thatg(x + is) > g(z +
isp) whenever|s| > b and|sg| < by, as we now show. Fofr| < 3 one just
takesb large enough thataxgs, g < minj,<3 g(z & ib) whereSy = [-3,3] x
[—bo, bp], recalling here thag is continuous and finite in the plane. Fat > 3,
one estimatey(x +is) — log |z +is|| < %x‘2 and uses concavity of the function

t — log %Z%,t € [0, o0), together with monotonicity properties gf note that for

our purposes; = =2 € (0,1/9). Details are left to the interested reader.

Now fix € R and visualize the graph @f(s) = g(z + is). The functionp is
strictly increasing offbg, co), strictly decreasing ofroo, —bp], andp(s) > p(so)
for every|sg| < by and|s| > b. Fora > 0, write E, = {s : p(s) < a}. ThenE,
is a maximal set of measut&,|. Setay = min{p(—b), p(b)} andyy = 1|E,,|.
ThenE,, is a single interval which contairis-by, by], andyy < b. Giveny > b,
there is a uniquer > g such that £, | = 2y. ThenE(z + iy) = E,, and thisk,,
also is a single interval containing by, by]. These facts imply thalt'(x + iy) has
the form[—y + ¢,y + t], where|t| < y — by. Further, the maximality of(x + iy)
and continuity ofg imply thatp(—y +t) = p(y + t) = a.

Takez = = + iy € H with y > b. Suppose the numberin the previous
paragraph is nonnegative; the case€ 0 is handled analogously. Let = 2z +
it,z1 = Z +it. Then

1 _ k
§ty|z| 2 - Z|Z| 2 < g(z) — g(2) by (28)

< ()~ g() + 517 by @D

< g(z2) —g(z1) + Z!z\” sinceg(z1) = a < ¢g(z)

because(z2) = g(z1) = « as above. Hencky < k, proving part (a).
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To prove (b), take = z+iy € H withy < b, and letE(z) be a maximizing set
for z, so that E(z)| = 2y. Supposer(z) intersects the intervgRb, co) in a set of
measure > 0. Then the s€0, 2b]\ E(z) has measure at leastSinceg(z+isg) <
g(z +1is) when0 < sy < 2b < s, we can strictly decreasﬁE(z) g(z +is)ds if
we moveE(z) N (2b,00) into some subset of), 2b] \ E(z). This violates the
definition of maximizing set, and shows thA{z) cannot intersect the interval
(2b,00) in a set of positive measure. Similarly it cannot interseeto, —2b).
ThusE(z) C [—2b, 2b], after possibly deleting a set of zero measure fiém

O

Here now is the main ingredient in the proof of the theorem.
Claim. w is subharmonic ir.

Let us carry out the proof of Theordrm 2 assuming the claim.

Firstly, the functionw is continuous orf{ U R. It is continuous also at infinity,
becausev(z) — 0 asz — oo in #H, as we now show. Frori (R5) it suffices to show
that

lim [9(x +is) — G(z +1is)]ds =0

Z—00 |s\>y

lim (/ g(x +is)ds — / g(x +is) ds) =0.

The first is a simple consequence of (3). The second folloms ftemmd 5.1:

wheny > b use part (a) of the lemma, and then decomposifioh (26), arehwh

y < bwith |z| — oo, use part (b) of the lemma and then decompositionh (26). A

key fact for the latter case is thgf(y)| = |I(y)|. Details are left to the reader.
Continuing now with the proof of Theorem 2, set

and

M = sup w,
HUR
where the supremum is finite becausés bounded at infinity. Notd/ > 0, since
from §2 we knoww(z) = 0 for |z| > 2.

If M > 0, then by continuity ofw and the strong maximum principle, there
existszy € R such thatw(zg) = M andw(z) < w(z) for eachz € H. Since
K is connected, its orthogonal projection onto the real axia single interval
[c1, 2], and sincek € B(2) we have|c;, co] C [~2,2]. By LemmaZlw(z) is
concave on every bounded subinterval-ebo, ¢ ), hence is concave dr-oco, ¢1).
Similarly, w is concave or{cz, c0). Sincew(z) = 0 for |z| > 2, we must have
w < 00onR\ [e1,e2]. Thuszy € [c1, c2]. Sincexg is a maximizing point forw,
Lemmd 2.2 implies we must have

lim inf w(zo) — w(xo +1y) >
y—0+ Y
On the other hand, from_(P4), we see thatgas 0,

w(zo) — w(zg + iy) = / g(zo +is) ds — / G(zo +is)ds.  (30)
E(xo+iy) I(y)

0. (29)
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SinceE(xq + iy) maximizes integrals of g, for eachy > 0 and for each bounded
E C Rwith |E| = 2y we have

0< / g(x +1is)ds < / g(x +is)ds. (31)
E(zo+iy) E

Further, because, € [ci, 2] there existssy € R with 2y + isg € K, so that
g(xo +1isp) = 0. Taking E = [sg — v, So + y| and using continuity of, we see
from (31) that

1
lim — / g(zo +is)ds = 0.
E(xzo+iy)

Similarly, G(x0) = 0, and hencdimy o+ ; [y, G(xo + is)ds = 0. Thus, by
30), |
lim w(zo) — w(zo + 1y)
y—0+ Yy
which contradicts[(29).

We conclude that/ > 0isimpossible, and sb/ = 0, meaningy < 0in HUR.
This completes the proof of the inequality in Theofem 2, niodoe Claim.

To prove the strict inequality statement in the theorem/ddbe a compact set
satisfying the hypotheses of Theorem 2 which does not aténeith L. Thenk,
which is contained ifB(2), cannot contain the points2 or 2, because if it did
then it would equal—2, 2] = L by the equality case of [15, Theorem 1.4]. Hence
—2 < ¢1 < ¢y < 2. The argument that gave(t) < 0 for somet > 2 in the proof
of Theorenill works again here, except withand  interchanged, producing that
w(t) < 0foreveryt € (—2,2) \ [e1, c2].

Now we showw(t) < 0 for everyt € [c1, c2]. Suppose instead that(xzy) = 0
for somez( € [c1,c2]. Notew < 0 is not identically zero i, by the preceding
paragraph, and so < 0 in ‘H by the strong maximum principle. Now rerun the
argument used above to rule out the case> 0, to obtain a contradiction. Hence
w < 0onep,cal.

We have shownv < 0 on (—2,2), and so formulal{5) (withK" and L inter-
changed) implies the strict inequality that

/ b(Re 2) duc(2) < / b(Re 2) dur(2),
K L

when¢ is convex orR and is not a linear function on-2, 2.

=0,

Proof of the Claim.Fix z = = + iy € H. Let E(z) be a corresponding maximal
set of measur@y, as in[24). For brevity, we'll write

E(z)=FE
and also
I(y) = 1.
Then [23) says

w(z) = /]R [ (s)g(x + i) — 110(s)G(x + is)] ds. (32)
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Takep € (0,y). To prove subharmonicity ab it suffices to show thaiv(z) is
less than or equal to the mean valuawdver the circle with center and radius.
The functiong is subharmonic ifC andG is harmonic inC \ [—2,2]. Thus

1 [7 , ,
gz +1is) < Py / [g(z +is + pe'®) + g(z + is + pe @) dp, s€R.
0

If |s| > y, then equality holds wheaq is replaced byG. Substitute the inequality
and equality into[(32), and switch the order of integrationttee right. This gives
the inequality

2mu(z) < [ 17(6)+ J(-0)do, (33)
0
where
J(p) = /[]lEb(s)g(ac + s+ pei‘i’) — 1 (s)G(x +is+ pei‘i’)] ds.
R
Fix ¢ € [0, 7] and sek = psin ¢. In J(¢), substitute

z+is+ pe'® =z + pcos ¢ +i(s +e),

then make the change of varialtle- s + ¢, and integrate oveR. We obtain

J(p) = /R[]lEbJre(t)g(w + pcos ¢+ it) — L, (t)G(x + pcos ¢ +it)] dt.

The same equation holds whens changed te-¢ ande to —e. It follows that,
for ¢ € [0, 7],

IO) + 70 = [ {Lpssc+ Lo dt)gta + peos o+ it
—[Lpye+ 1p_J(O)G(x + pcos ¢ +it)} dt.
The argument on the top half of p.148 of [2] shows that for @iFs= E(x +

iy) and for0 < e < y there exist bounded measurable sé@nd B in R such that
|Al =2(y +¢), |[B| =2(y — ¢) and

lpte+1lp-c=1a+1p.
Usingls =1 — 1 4, etc., one sees that this equation also holds when the four

sets are replaced by their complement®RirFurthermore(E +¢)? = E® +¢, and,
recalling that/ = I(y), one can check directly thaty,, . + 1jp_ = Lyyqep +
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]l[(y_ﬁ)b. ThUS,
J(¢) + J(—9)
_ /{[uAb + L |(t)g(x + poos ¢+ it)
R

— [l[(y+e)b + ]l[(y_e)b] (t)G(ﬂi‘ + pcos gb + Zt)} dt

_ / (Lo (B)g(z + peos ¢+ it) — Ly pep (DG (x + peos ¢+ it)] dt
R

+ / [Lpe(t)g(x + peos ¢+ it) — Lyy_p(t)G(x + pcos ¢ +it)] dt
R
<w(x+pcos ¢+ i(y +€)) +w(x+pcos ¢+ i(y —€)),
by the definition ofw as a supremum, il (22). Substitution[inl(33) gives

2mw(z) < /Oﬂ[w(az +pcos ¢ +i(y +€)) +w(z+ pcos ¢ +i(y —€))]| do

= /Oﬂ[w(z + pe®) +w(z + pe'?)] dg,

recallinge = psin ¢. Thus,w satisfies the sub-mean value property,aand the
Claim is proved. O

6. Momentsinvolving |z|

In Theoreni 2 we obtained sharp upper bounds for moments &rime/,. ¢(Re z) dur (2),
where K is a continuum satisfying certain hypotheses. In this sactive again
take K to be a continuum, and seek sharp upper bounds for momerie &rm
[ #(|z]) dur (2). It turns out to be convenient to state the results in terms of
o(log |z|) instead ofp(|z]).

Let K be a compact, connected subseCdhat contains the origin, and satisfies
cap(K) = 1. As before, letk© = C \ K. Also, setQ) = {z € C : 1/z € K°}.
Then the plane domaif? is the image of the unit disB(1) under a functionf
belonging to the clas§ of univalent analytic functions (conformal mappings) in
the disk withf(0) = 0 and f/(0) = 1. See, for example| [18]. The Koebe one-
quarter theorem asserts tifat= f(B(1)) contains the disB(1/4), so that

K C B(4).

The interval
L =10,4]
satisfies all our assumptions @6, and shows that the “4” on the previous line is
the smallest possible constant.
Asin 2, letg(z) = [} log|z — (| duk (¢) be the Green’s function ok with
pole atoo. From [2), we have

o0
g(z) =log |z| — ReZanz_”, |z| > 4,
n=1
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wherea,, = n~! [, (" dug. From the expansion, it follows that

1 (7 ,

o g(re?) df = logr, r> 4, (34)
1 (7 -

o gr(rele) dg =r~t, r>4. (35)
™ —T

Next, we give a representation of logarithmic momentg gfin terms of inte-
grals involvingg.

Proposition 6.1. Assume thaf{ C C is compact and connected, withp(K) =
1. Suppose& € C2(R) is constant near-oco. Then for eachz > 4 we have

1
/ (log |2]) druxe(2) = 5 / [ 9216 Q0B D=2 ey

+ ¢(log R) — ¢'(log R) log R.

Proof. As in the proof of the Formula i§2, we start with2rux = Ag, then
apply Green’s formula to the integral on the left, this timethe diskB(R). Set
¥(z) = ¢(log|z|). Thenw is constant on circles, and frorh (34) and](35) the
boundary terms have the form stated. Also

Ay(z) = ¢"(log |2])|2| %,
so the integral oveB(R) has the form stated. O

Our Theoreni 2 take& to be conformally centered. Our next theorem drops
that assumption, assuming instead thatontains the origin and proving that the

logarithmic moments are maximal whéhequals the segmeiit = [0, 4] with one
endpoiDt at the origin (rather thah= [—2, 2], which is centered at the origin).

Let G denote the Green’s function &f with pole atoo.

Theorem 6.2. SupposeX’ C C is compact, connected, contains the origin, and
hascap(K') = 1. Then for every convex functigh: R — R, we have

/<z>1og\ ) dpuc (= /qslog\ ) dpiz ().

This result is due to Laugesen [11, Corollary 6]. We give tyetobrief version
of that proof, relying on Baernstein’s result on integralams

Proof. Wheng is linear, the theorem holds with equality because

/ log |2 dpurc (2) = g(0) = 0
K

(and similarly forL), using thatd € K by hypothesis and that every point &f

is regular for the Dirichlet problem if&¢. For general convex, we can reduce
by approximation to the case wheteis linear near—oc, and hence to the case
where¢ = 0 near—oo. Then by mollification we may further assurmés smooth.
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Then by Propositiof 611, to prove Theoréml6.2 it suffices msthat for every
r € (0,00),
/ g(re?) do < G(re) de.

As noted in the second paragraph of this section, there isctiéun f in the
classS which mapsB(1) onto the domaif2? = {z € C: 1/z € K°}. Denoting
the Green'’s function of2 with pole at0 by ¢(z, 0, 2), the conformal invariance of
Green'’s functions shows that

9(2,0,Q)=g¢(1/2), ze€C.

Let(2, f andG(z, 0, Q) be the correponding objects far ThenQ = C \ [1/4, co)

andf(z) = ﬁ the Koebe function with omitted set on the positive reasaxi
and

9(2,0,Q) =G(1/z), zeC.
Thus, the conclusion of Theordm 5.2 will hold if for every (0, ),

/ g(re?,0,Q) do < / g(re®,0,9Q) df. (36)

But this inequality is true, since it is the special case- 7 in inequality (35)
of [2]. (The functions called there*(re'™) andv*(re'™) equal the left and right
sides of [(36), respectively.) Theoréml6.2 is proved. O

Corollary 6.3. Suppose thakl' c C is compact, connected, contains the origin
and satisfiesap(K) = 1, and in addition thati" is symmetric with respect to the
origin. Then for every convex functign: R — R, we have

/ b(log |2]) duc (=) < / o(log |2]) dpur (2).
K L

Here, as beforel, = [—2, 2].

Proof. To prove the Corollary, use the same construction as in ihefpiof Corol-
laries/4.B an@416. That s, I&f = {22 : z € K}. ThenK saisfies the hypotheses
of Theoreni 6.2, ang  is the push forward ofix by the mapz — 22, Thus by
Theoreni 6.2,

o(log|z]) duk(z) = | ¢ 1log]z\ dpg(2)
/K /K <2
< [o(Gonlel) duz(e) = [ otton ) dus)

The inequality in the middle is justified sinqﬁ% -) is convex. Corollary 613 is
proved. d

There are strict inequality statements for Theofem 6.2 aowblary[6.3, for
which we refer to[[11].

To get a closer parallel to Theorér 2, it would be nice if in @ary [6.3 we
could drop the symmetry assumption &hand replace it by the much weaker
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assumption that the conformal centroid &fis at the origin. But the example
below shows that no such result can exist.

Example. Hayman|[[8, p. 262] built on work of Jenkins [10] and showedtxice
ofamapf(z) = z+> .2, Apz" in the classS for which A, = 0 andM (r, f) ~
c(1 —r)~2asr — 1, whereM(r, f) = maxg|f(re’)| andc is some positive
constant. LetX’ = {1/z : z ¢ f(B(1))}. ThenK is compact and connected,
contains the origin, anchp(K) = 1. The Green’s functiog(z) = g(z, 0o, K¢) is
related tof by g(z) = log1/|f~1(1/z)|, wheref~! is the inverse function of,
from which one calculates that

a] = —Ag = 0.

We saw in§2 thata; is the conformal centroid ok, and thus the conformal cen-
troid of K is 0.

The behavior ofM (r, f) asr — 1 implies thatM (r, g) ~ ¢;r'/? asr — 0.
Sinceg is subharmonic i, it follows thatg is majorized in any disk by its Poisson
integral over the boundary. Thus,

cor'/? < M(r,g) < 23/ g(2rei?) ds.
™ —T
On the other hand, the Green'’s functi@rof L satisfiesM (r, G) < ¢3r for all
r € [0,00). We conclude that

/ gre®do > [ Gered®)ds, e (0,r),
for somery € (0, 1).

Take a smooth, convex which is constant ofi—oo, 2log rg), strictly convex
on (2log 1o, log ), and linear or(log g, o). Then Propositioh 611 gives

/ o(log |2]) duc (=) > / o(log [2]) djur (2),
K L

which is the reverse of the moment inequality we might hayeekonould be true.

This example shows the full analogue of Corollaryl 6.3 doasol if the sym-
metry constraint is relaxed to the centroid constraint. \dlg propose a substitute,
“averaged” result. Assume thaf is compact, connected, contains the origin, has
cap(K) = 1, and also satisfies the centroid constraint

/K zdpr(z) = 0.

Then, as noted iff5, K C B(2), and thus the formula in Propositibn B.1 is valid
forall R > 2. Fix R > 2, and define

I(ry=1(r,K) = % /7T g(rew)dﬁ, r € [0,00),

—Tr

dt

R
J(r) = J(r K) :/ 1.5) % r e [0,R].
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Conjecture 1. Supposéds C C is compact and connected withp(K) = 1, and
that0 € K and the conformal centroid df lies at the origin. Then for alR > 2
we have

J(r,K)<J(r,L), re€]|0,R].

An equivalent inequality is

/ g(2) |z| 2 dxdy < / G(z)dxdy, r€]0,R].

r<|z|<R r<|z|<R

Sincel(r, K) = logr for r > 2, by (34), it follows that/(r, K) = I(r, L) for
r > 2 and hence another equivalent inequality is

/ o) G ey <0, v 0.00)

There is still another equivalent version of Conjecfurevbiving functionse,
which we’ll call Conjecturé.

Conjecture 2. Suppose/X C C is compact and connected witap(K) = 1,
and that0 € K and the conformal centroid dk lies at the origin. Then for all
functionsg € C1(R) such that bothy and ¢’ are convex, we have

/¢(10g|z|)d,uK§/¢(log|z|)d,uL.
K L

To see the equivalence, first reduce to the case of smbetth ¢ = 0 near
—o0, by arguing as in the proof of Theordm16.2. Then go to Projposh.1 and
express the integral ov@( R) in polar coordinates, and integrate it by parts with
respect to-. The resulting formula is

/ o(log |2]) dux (2)
K

R /11 J(t) /
- / #"(logt) * 1 dt -+ g(1og R) ¢/ (log B) log R

0
whereR > 2. Now it is immediate that Conjecturé 1 implies Conjec{uré2 for
the converse, one need only takg) = [(t — logr)*]?, noting¢ = 0 near—oc
and¢” is a positive point mass &ig r.

To conclude, we describe two special cases of ConjeCiurachwlave appeared
in the literature as separate conjectures.

The first concerns the cladg of all univalent meromorphic functiong in the
exteriorB¢ of the unit diskB, with F(z) = z + O(z7!) asz — oo. The function
Fo(2) = 2z + 27! belongs to%, and maps the exterior of the unit disk onto the
domainL¢ = C\ [-2,2].

Conjecture 3 (Pommerenke [14])If F' € ¥y and0 € K = F(B)¢, then
L " 1Pty a0 < i/ Fy(ci®) o = 2.
2 J_, T

2r ),
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The best known estimate [14] i& (™ _|F(e)|df < 4.02/x. One would like
to replaced.02 by 4.
Note in Pommerenke’s Conjecture thaip(K)= 1 and K satisfies the other

hypotheses of Conjecturé 2. Moreovéyy is the harmonic measure @¢ =
F(B°) atoo andg—e is the harmonic measure BF at oo (see[[18]). By conformal

v

invariance of harmonic measure, we have

1 i 0
— F(e")|df = d
o e = [ 2,
1 & :

Fh (e = )
o _W| o(e")|do /L|Z|duL

Thus if Conjecturé2 is true with(z) = ¥, then so is Pommerenke’s Conjecture.
Incidentally, the case(x) = ¢** of Conjecturé R says

/ 122 dpugc < / 122 dp,
K L

which is equivalent as above to
1

1 [7 . ™ 4
L

2m -7 —T

This case of Conjectufé 2 can be proved as follows: write) = z+> 7 ; b,z "
and observe

1 [ , s
— [ [F(ED)do =1+ b
n=1

27 J_,

[es)
n=1

<2

by the area theorem [15, Theorem 1.3] . Clearly equality ©idlcand only if
|b1] = 1 andb,, = 0 for all n > 2, which meandx is a rotate ofL.

The second special case of Conjecfure 2 concerns norms yiquolals. Let
My be the smallest numbéd such that

m
[T il < M™Iplx
j=1

for all polynomialsp of degreen > 1 and all polynomialsps, ..., p,, such that
[[}~ip; = p. Here| - ||x denotes the sup norm dfi. The constant\/;c was
evaluated in[[16] as

exp (/K log dk (2) dMK(Z)>

M =
K cap(K)
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wheredg (z) = max.e i |z — t| is the farthest point distance function far. (Fur-
ther properties ofix have been studied by Laugesen and Pritdker [12], and Gar-
diner and Netuke [5.16].)

The following natural extremal conjecture fofx was stated in Pritsker and
Ruscheweyh'’s paper [17]:

Conjecture 4. For all compact connected C C with more than one point, we
haveM i < M.

The constantM is invariant under similarity transformations, and so when
studying the conjecture it suffices to assumg(K) = 1 and that the conformal
centroid of K lies at the origin.

Assuming in addition thak” contains its conformal centroid, the authors ofi[17]
showed that\/x < (1.022)M}. In the direction of the conjectured sharp bound
(with constantl), they observed

logMKS/ log(2 + [2]) dpr (2),
K

with equality whenk = L.
Now, the functiong(t) = log(2 + €') is convex onR, and ¢’ is convex on
(—o0,log 2]. Replacinge on (log 2,00) by an appropriate quadratic, we obtain

a function ¢ which, along with its derivative, is convex on all &. Suppose
Conjecturé R is true. Then the inequality in it holds witin place ofp. Moreover,

K C B(2), and so the integrals are the samegﬁcmndg?b, which would establish
Conjecturé 4.
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