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Approximation of conformal mapping via the

Szegő kernel method
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Abstract

We study the uniform approximation of the canonical conformal map-

ping, for a Jordan domain onto the unit disk, by polynomials generated

from the partial sums of the Szegő kernel expansion. These polynomi-

als converge to the conformal mapping uniformly on the closure of any

Smirnov domain. We prove estimates for the rate of such convergence on

domains with piecewise analytic boundaries, expressed through the small-

est exterior angle at the boundary. Furthermore, we show that the rate

of approximation on compact subsets inside the domain is essentially the

square of that on the closure. Two standard applications to the rate of

decay for the contour orthogonal polynomials inside the domain, and to

the rate of locally uniform convergence of Fourier series are also given.

Keywords. Conformal mapping, Szegő kernel, orthogonal polynomials,

Fourier series.
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1 Convergence of the Szegő kernel expansion

and approximation of conformal maps

Let G be a Jordan domain in the complex plane. There are two well known
kernel methods used for approximation of the canonical conformal mappings of
G onto a disk. The Bergman kernel method is associated with the L2 spaces and
orthogonal polynomials with respect to the area measure, while the Szegő kernel
method is based on the inner product and orthogonal polynomials with respect to
the arclength measure on the boundary of G (see Gaier [7], Smirnov and Lebedev
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[19]). The approximations related to the area orthogonality approach were first
introduced by Bieberbach [5] through an extremal problem for polynomials. The
first result about the uniform convergence of the Bieberbach polynomials was
proved by Keldysh [14], for domains with sufficiently smooth boundaries. The
uniform convergence of the Bieberbach polynomials has been extensively studied
since then (see Gaier [8] and references therein). A selection of further results
on this subject is in the papers of Andrievskii [1], Gaier [9]-[11], Andrievskii and
Gaier [3], and Andrievskii and Pritsker [4]. In contrast, the method based on the
Szegő kernel did not receive such a comprehensive attention. The goal of this
paper is to show that the Szegő kernel method is also very useful for the uniform
approximation of conformal mappings.

Suppose that G has rectifiable boundary L of length l. We consider the Smirnov
spaces Ep(G), 1 ≤ p < ∞, of analytic functions in G, whose boundary values
satisfy

‖f‖p =
(

1

l

∫

L

|f(z)|p|dz|
)1/p

<∞

(see Duren [6], Smirnov and Lebedev [19]). Our interest is focused on the Hilbert
space E2(G), equipped with the inner product

(f, g) :=
1

l

∫

L

f(z)g(z)|dz|, f, g ∈ E2(G).

Polynomials are dense in Ep(G), 1 ≤ p < ∞, if and only if G is a Smirnov
domain [6]. Keldysh and Lavrentiev [15] characterized Smirnov domains by the
property that, for a conformal mapping ψ of the unit disk D onto G, log |ψ| is
represented by the Poisson integral of its boundary values. Although no com-
plete geometric description of Smirnov domains is known, this class is suffi-
ciently wide. In particular, it contains (in the decreasing order of generality)
all Ahlfors-regular domains, Lavrentiev (cord-arc) domains, Lipschitz domains,
domains with bounded boundary rotation (Radon domains), piecewise smooth
and smooth domains (cf. Pommerenke [17, Chap. 7]). Applying Gram-Schmidt
orthonormalization to monomials {zn}∞n=0 in the Smirnov domain G, we obtain
a complete orthonormal system of polynomials {pn(z)}∞n=0 in E2(G) (see Szegő
[21]). Next, we introduce the Szegő kernel

K(z, ζ) =
∞
∑

k=0

pk(ζ)pk(z), z, ζ ∈ G, (1.1)

where convergence of this bilinear series is uniform in z and ζ on compact subsets
in G [21], [19], [7]. The importance of the Szegő kernel lies in its reproducing
property

f(ζ) =
1

l

∫

L

f(z)K(z, ζ)|dz|, ζ ∈ G, (1.2)
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which holds for any f ∈ E2(G). Equivalently, every f ∈ E2(G) can be represented
by its Fourier series

f(ζ) =
∞
∑

k=0

akpk(ζ) =
∞
∑

k=0

(

1

l

∫

L

f(z)pk(z)|dz|
)

pk(ζ), (1.3)

convergent in E2(G) norm and, consequently, locally uniformly convergent in G
(see Chapter 4 of [19]).

It is well known that the Szegő kernel is closely connected with the canonical
conformal mapping ϕ of G onto the unit disk D:

K(z, ζ) =
l

2π

√

ϕ′(z)ϕ′(ζ), (1.4)

where ϕ(ζ) = 0 and ϕ′(ζ) > 0 (cf. [19] and [21]). Hence we have that

ϕ′(ζ) =
2π

l
K(ζ, ζ) =

2π

l

∞
∑

k=0

|pk(ζ)|2, (1.5)

by (1.1) and (1.4). It follows that

ϕ′(z) =
2π

l

(K(z, ζ))2

K(ζ, ζ)
=

2π

l

(

∞
∑

k=0

pk(ζ)pk(z)

)2

∞
∑

k=0

|pk(ζ)|2
, z ∈ G, (1.6)

where ζ ∈ G is regarded as a fixed point. We now introduce the following
sequence of approximating polynomials:

J2n+1(z) =
2π

l

∫ z

ζ

(

n
∑

k=0

pk(ζ)pk(t)

)2

dt

n
∑

k=0

|pk(ζ)|2
, n ∈ N. (1.7)

Note that the degree of J2n+1(z) is 2n+1. The sequence {J2n+1}∞n=0 converges to
ϕ uniformly on compact subsets of G, which is inherited from the partial sums
of the Szegő kernel. Similar approximating polynomials, but with a different
normalization, were introduced via an extremal problem for any Ep(Γ), 1 ≤
p < ∞, by Keldysh and Lavrentiev (see [13] and [15]). They developed the
ideas of Julia [12], who earlier considered the same extremal problem for the
conformal mapping. Further study of the convergence properties in E2(G) is due
to Warschawski [22] (also see Gaier [7] for a survey). Convergence questions for
general Fourier expansions in contour orthogonal polynomials were considered in
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Rosenbloom and Warschawski [18], Smirnov and Lebedev [19] and Suetin [20].
However, all of these studies impose quite strict smoothness assumptions on the
boundary of G. We prove the first uniform convergence results for domains
with corners, and give explicit rates of approximation in terms of the geometric
properties of G.

We start with a general estimate for the uniform (sup) norm of the approximation
error on G. A similar result was proved by Warschawski [22], but in a somewhat
different form (see also [7, pp. 130-131]).

Theorem 1.1 Let G be a Smirnov domain, with ζ ∈ G fixed. If ϕ : G → D is

a conformal mapping normalized by ϕ(ζ) = 0 and ϕ′(ζ) > 0, then

‖ϕ− J2n+1‖∞ ≤ 8π

∥

∥

∥

∥

∥

K(·, ζ)−
n
∑

k=0

pk(ζ)pk(·)
∥

∥

∥

∥

∥

2

→ 0 as n→ ∞. (1.8)

Recall that
∑n

k=0 pk(ζ)pk(z) is the Fourier sum for K(z, ζ), i.e., it is the best
E2(G) approximation from the subspace of polynomials of degree n. Hence we
can give an upper estimate for the rate of convergence by appropriately choosing
a sequence of approximating polynomials for K(z, ζ). The rate of convergence
necessarily depends on the geometric properties of the domain G. We consider
a class of domains with piecewise analytic boundaries, which is important in
applications. An analytic arc is defined as the image of a segment under a
mapping that is conformal in an open neighborhood of the segment. Thus a
domain has piecewise analytic boundary if it is bounded by a Jordan curve
consisting of a finite number of analytic arcs.

Theorem 1.2 Let ∂G be piecewise analytic, with the smallest exterior angle

λπ, 0 < λ < 2, at the junction points of the analytic arcs. If ζ ∈ F , where

F ⊂ G is compact, then
∥

∥

∥

∥

∥

K(·, ζ)−
n
∑

k=0

pk(ζ)pk(·)
∥

∥

∥

∥

∥

2

≤ C1(G,F ) n
− λ

4−2λ , n ∈ N. (1.9)

Here, the constant C1(G,F ) > 0 depends only on G and F .

Combining Theorems 1.1 and 1.2, we obtain the main result on the uniform
approximation of conformal mappings.

Theorem 1.3 Let ∂G be piecewise analytic, with the smallest exterior angle

λπ, 0 < λ < 2, at the junction points of the analytic arcs. Suppose that ζ ∈ F ,
where F ⊂ G is compact. For the conformal mapping ϕ : G→ D, normalized by

ϕ(ζ) = 0 and ϕ′(ζ) > 0, we have

‖ϕ− J2n+1‖∞ ≤ C2(G,F ) n
− λ

4−2λ , n ∈ N, (1.10)

where the constant C2(G,F ) > 0 depends only on G and F .
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It is interesting to compare the convergence properties of our sequence {J2n+1}∞n=0

with those of the Bieberbach polynomials {Bn}∞n=0. Gaier [10] proved for domains
with piecewise analytic boundaries that

‖ϕ−Bn‖∞ ≤ C3 log n n− λ
2−λ , n ≥ 2.

Later, Andrievskii and Gaier [3] replaced log n by
√
log n, and relaxed the im-

posed geometric condition to piecewise quasianalytic boundary. Their estimate
for the rate of uniform convergence of the Bieberbach polynomials remains the
most precise known. Although (1.10) gives a slower rate of convergence, the poly-
nomials J2n+1 have some advantages over the Bieberbach polynomials. They are
free from the convergence anomalies exhibited by Keldysh’s example [14], where
only one singular point, at otherwise very smooth boundary, destroys the uniform
convergence of the Bieberbach polynomials. (One can find further information
about this example of Keldysh in [4].) In fact, Smirnov domains include any
imaginable domain arising in numerical applications, guaranteeing the uniform
convergence of {J2n+1}∞n=0 by Theorem 1.1. In addition, this sequence is easier
to generate numerically, because the inner products defined by the boundary
integrals are easier to compute than the area inner products in Gram-Schmidt
orthonormalization.

We show that the rate of convergence for J2n+1 on compact subsets of G is better
than on the whole domain, i.e., it is essentially squared comparing to (1.10).

Theorem 1.4 If the conditions of Theorem 1.3 are satisfied, then

max
z∈F

|ϕ(z)− J2n+1(z)| ≤ C4(G,F ) n
− λ

2−λ , n ∈ N, (1.11)

where C4(G,F ) > 0 depends only on G and F .

Gaier [11] posed the question of possible improvement in locally uniform conver-
gence rates for the Bieberbach polynomials and other approximations for con-
formal maps. The above theorem provides a partial answer for his question in
the case of the Szegő kernel method. Furthermore, it is possible to give similar
improvements for the Bieberbach polynomials too, by following the ideas of this
paper.

Clearly, it was not our goal to achieve the highest possible level of generality here.
Thus Theorem 1.2 is true for domains with piecewise quasianalytic boundaries
[3] (therefore, all other results are valid for these domains too). One only needs
to fill in a number of technical details on the behavior of

√
ϕ′ near corners, in

our proof, to reach this conclusion. We are also able to prove Theorems 1.2-1.4
for Lavrentiev (cord-arc) domains, with the rates of convergence of the order
n−γ , γ > 0. Finally, we have analogues of these results in Ep(G) for p 6= 2.
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2 Orthogonal polynomials and Fourier series

We give two standard applications for approximation of the Szegő kernel here.
Since polynomials {pn}∞n=0 form a complete orthonormal system, we can restate
(1.9) in the following form:

(

∞
∑

k=n+1

|pk(ζ)|2
)1/2

≤ C1(G,F ) n
− λ

4−2λ , n ∈ N, (2.1)

by (1.1). It is well known that pn converge to zero on compact subsets of G as
n→ ∞ (cf. Chapter XVI of [21]). Equation (2.1) immediately gives an estimate
for the rate of decay of pn inside G.

Theorem 2.1 Let ∂G be piecewise analytic, with the smallest exterior angle

λπ, 0 < λ < 2, at the junction points of the analytic arcs. If ζ ∈ F , where

F ⊂ G is compact, then

|pn(ζ)| ≤ C1(G,F ) n
− λ

4−2λ , n ∈ N. (2.2)

The second application is related to the rates of convergence of the Fourier series
(1.3) for f ∈ E2(G) on compact subsets of G. Observe that

‖f‖2 =
(

∞
∑

k=0

|ak|2
)1/2

.

Hence we have from (1.3) and Cauchy-Schwarz inequality that
∣

∣

∣

∣

∣

f(ζ)−
n
∑

k=0

ak pk(ζ)

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∞
∑

k=n+1

ak pk(ζ)

∣

∣

∣

∣

∣

≤
(

∞
∑

k=n+1

|ak|2
)1/2( ∞

∑

k=n+1

|pk(ζ)|2
)1/2

=

∥

∥

∥

∥

∥

f −
n
∑

k=0

ak pk

∥

∥

∥

∥

∥

2

(

∞
∑

k=n+1

|pk(ζ)|2
)1/2

≤ ‖f‖2
(

∞
∑

k=n+1

|pk(ζ)|2
)1/2

.

Thus we obtain the following result from (2.1):

Theorem 2.2 Let ∂G be piecewise analytic, with the smallest exterior angle

λπ, 0 < λ < 2, at the junction points of the analytic arcs. Suppose that f ∈
E2(G) has the Fourier expansion (1.3). If ζ ∈ F , where F ⊂ G is compact, then

∣

∣

∣

∣

∣

f(ζ)−
n
∑

k=0

ak pk(ζ)

∣

∣

∣

∣

∣

≤ C1(G,F ) n
− λ

4−2λ

∥

∥

∥

∥

∥

f −
n
∑

k=0

ak pk

∥

∥

∥

∥

∥

2

, n ∈ N. (2.3)

Results of this kind for domains with smooth boundaries were previously proved
by Szegő [21], Rosenbloom and Warschawski [18], Smirnov and Lebedev [19],
Suetin [20], and others.
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3 Proofs

Proof of Theorem 1.1. Let ψ := ϕ−1. We have

|ϕ(z)− J2n+1(z)| =
∣

∣

∣

∣

∫ z

ζ

(

ϕ′(t)− J ′
2n+1(t)

)

dt

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∫ ϕ(z)

0

(

ϕ′(ψ(u))− J ′
2n+1(ψ(u))

)

ψ′(u)du

∣

∣

∣

∣

∣

≤
∫ ϕ(z)

0

∣

∣

(

ϕ′(ψ(u))− J ′
2n+1(ψ(u))

)

ψ′(u)
∣

∣ |du|,

where the integration is carried over the segment connecting 0 and ϕ(z) in D.
Note that the function

(

ϕ′(ψ(u))− J ′
2n+1(ψ(u))

)

ψ′(u) = 1 − J ′
2n+1(ψ(u))ψ

′(u)
belongs to the Hardy class H1(D), because L is rectifiable. Hence we obtain by
Fejér-Riesz inequality (cf. Theorem 3.13 of [6]) that

|ϕ(z)− J2n+1(z)| ≤
1

2

∫

|u|=1

∣

∣

(

ϕ′(ψ(u))− J ′
2n+1(ψ(u)

)

ψ′(u)
∣

∣ |du|

=
1

2

∫

L

∣

∣ϕ′(t)− J ′
2n+1(t)

∣

∣ |dt|.

Denote

Qn(z) :=

(

l

2π

n
∑

k=0

|pk(ζ)|2
)−1/2 n

∑

k=0

pk(ζ)pk(z),

so that J ′
2n+1(z) = Q2

n(z). We continue with this notation, by using Cauchy-
Schwarz and Minkowski inequalities:

|ϕ(z)− J2n+1(z)| ≤
1

2

∫

L

∣

∣

∣

∣

(

√

ϕ′(t)
)2

−Q2
n(t)

∣

∣

∣

∣

|dt|

=
1

2

∫

L

∣

∣

∣

√

ϕ′(t)−Qn(t)
∣

∣

∣

∣

∣

∣

√

ϕ′(t) +Qn(t)
∣

∣

∣
|dt|

≤ l

2
‖
√

ϕ′ −Qn‖2 ‖
√

ϕ′ +Qn‖2

≤ l

2
‖
√

ϕ′ −Qn‖2
(

‖
√

ϕ′‖2 + ‖Qn‖2
)

.

Observe that

‖
√

ϕ′‖2 =
(

1

l

∫

L

|ϕ′(z)| |dz|
)1/2

=

(

1

l

∫

|w|=1

|dw|
)1/2

=

√

2π

l
,

and that

‖Qn‖2 =
(

l

2π

n
∑

k=0

|pk(ζ)|2
)−1/2( n

∑

k=0

|pk(ζ)|2
)1/2

=

√

2π

l
,
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by orthonormality of the polynomials pk. Thus

‖ϕ− J2n+1‖∞ ≤
√
2πl ‖

√

ϕ′ −Qn‖2. (3.1)

We now estimate the norm on the right of the above inequality. Recall that

√

ϕ′(z) =

√

2π

l

K(z, ζ)
√

K(ζ, ζ)
,

by (1.6). Therefore,

√

ϕ′(z)−Qn(z) =

√

2π

l





K(z, ζ)
√

K(ζ, ζ)
−
(

n
∑

k=0

|pk(ζ)|2
)−1/2 n

∑

k=0

pk(ζ)pk(z)





=

√

2π

lK(ζ, ζ)

(

K(z, ζ)−
n
∑

k=0

pk(ζ)pk(z)

)

+

√

2π

lK(ζ, ζ)

(

1−
(

K(ζ, ζ)
∑n

k=0 |pk(ζ)|2
)1/2

)

n
∑

k=0

pk(ζ)pk(z).

It follows that

‖
√

ϕ′ −Qn‖2 ≤
√

2π

lK(ζ, ζ)

∥

∥

∥

∥

∥

K(·, ζ)−
n
∑

k=0

pk(ζ)pk(·)
∥

∥

∥

∥

∥

2

+

√

2π

lK(ζ, ζ)

(

(

K(ζ, ζ)
∑n

k=0 |pk(ζ)|2
)1/2

− 1

)(

n
∑

k=0

|pk(ζ)|2
)1/2

=

√

2π

lK(ζ, ζ)

∥

∥

∥

∥

∥

K(·, ζ)−
n
∑

k=0

pk(ζ)pk(·)
∥

∥

∥

∥

∥

2

+

√

2π

lK(ζ, ζ)



(K(ζ, ζ))1/2 −
(

n
∑

k=0

|pk(ζ)|2
)1/2



 .

Since

(K(ζ, ζ))1/2 −
(

n
∑

k=0

|pk(ζ)|2
)1/2

= ‖K(·, ζ)‖2 −
∥

∥

∥

∥

∥

n
∑

k=0

pk(ζ)pk(·)
∥

∥

∥

∥

∥

2

≤
∥

∥

∥

∥

∥

K(·, ζ)−
n
∑

k=0

pk(ζ)pk(·)
∥

∥

∥

∥

∥

2

,

we obtain that

‖
√

ϕ′ −Qn‖2 ≤ 2

√

2π

lK(ζ, ζ)

∥

∥

∥

∥

∥

K(·, ζ)−
n
∑

k=0

pk(ζ)pk(·)
∥

∥

∥

∥

∥

2

.
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Equation (3.1) now gives that

‖ϕ− J2n+1‖∞ ≤ 4π
√

K(ζ, ζ)

∥

∥

∥

∥

∥

K(·, ζ)−
n
∑

k=0

pk(ζ)pk(·)
∥

∥

∥

∥

∥

2

. (3.2)

Recall that

K(ζ, ζ) =
l

2π
ϕ′(ζ),

by (1.5). Using Corollary 1.4 of [17, p. 9], we have

|ϕ′(ζ)| ≥ 1

4

1− |ϕ(ζ)|2
dist(ζ, L)

=
1

4 dist(ζ, L)
,

where dist(ζ, L) is the distance from ζ to L. Clearly, l ≥ 2π dist(ζ, L), so that

K(ζ, ζ) =
l ϕ′(ζ)

2π
≥ ϕ′(ζ) dist(ζ, L) ≥ 1

4
.

Combining this with (3.2), we obtain (1.8).

Proof of Theorem 1.2. We start by recalling that the partial sum
∑n

k=0 pk(ζ)pk(z)
for K(z, ζ) is its best approximation in E2(G) (with ζ ∈ G fixed) among all poly-
nomials of degree at most n. Thus we construct a sequence of polynomials with
good approximative properties, which gives the desired upper bound (1.9).

It is clear from (1.4) that approximation of K(z, ζ) is equivalent to approxima-
tion of

√

ϕ′(z). We use a method resembling that of Andrievskii and Gaier [3].
We first continue the mapping ϕ conformally beyond the boundary L, by using
reflections across the analytic arcs Li, L = ∪m

i=1Li. Suppose that τi is a mapping
such that Li = τi([0, 1]), which is conformal in an open neighborhood of [0, 1].
Then we can find a symmetric lens shaped domain Si, bounded by two circular
arcs subtended by [0, 1], whose closure is contained in this open neighborhood of
[0, 1]. Defining

G̃ := G ∪ (∪m
i=1τi(Si)) ,

we extend ϕ into G̃ as follows:

ϕ(z) :=
1

ϕ
[

τi

(

τ−1
i (z)

)]

, z ∈ τi(Si)\G,

where i = 1, . . . , m. The boundary ∂G̃ consists of m analytic arcs Γi that share
endpoints with the arcs Li of ∂G:

∂G̃ ∩ ∂G = {zi}mi=1,
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which are clearly the corner points of ∂G. Since each τi, i = 1, . . . , m, is conformal
and has bounded derivative (together with its inverse) on Si, we obtain the
inequalities

dist(z, ∂G) ≥ c1 min
1≤i≤m

|z − zi|, z ∈ ∂G̃, (3.3)

where dist(z, ∂G) is the distance from z to ∂G, and

|γ| ≤ c2|z − t|, z, t ∈ ∂G̃, (3.4)

where |γ| is the length of the shorter arc γ ⊂ ∂G̃, connecting z and t. We denote
various positive constants by c1, c2, etc.

Let Γj be an arc of ∂G̃, with the endpoints zj and zj+1, and let ζj ∈ Γj be a
fixed point, j = 1, . . . , m. Note that ζj divides Γj into Γ1

j and Γ2
j , so that ∂G̃ =

⋃m
j=1

⋃2
i=1 Γ

i
j. We obtain from Cauchy’s integral formula for the continuation of√

ϕ′ into G̃ that

√

ϕ′(z) =
1

2πi

∫

∂G̃

√

ϕ′(t)

t− z
dt =

1

2πi

m
∑

j=1

2
∑

i=1

∫

Γi
j

√

ϕ′(t)

t− z
dt, z ∈ G̃. (3.5)

Hence the problem is reduced to approximation of functions of the form

g(z) :=

∫

γ

√

ϕ′(t)

t− z
dt (3.6)

in E2(G) norm, where γ is any of the arcs Γi
j , with i = 1, 2 and j = 1, . . . , m.

Let Ω := C \ G. Consider the standard conformal mapping Φ : Ω → ∆, where
∆ := {w : |w| > 1}, normalized by Φ(∞) = ∞ and Φ′(∞) > 0. We define the
level curves of Φ by

Ln := {z : |Φ(z)| = 1 + 1/n}, n ∈ N.

Denote by γ2 the part of γ from its endpoint ζj ∈ Γj to the first point ξ of
intersection with Ln, so that γ2 ⊂ {z : |Φ(z)| > 1 + 1/n}. Then γ1 := γ \ γ2
connects ξ with the corner point zj of L. Write

g(z) :=

∫

γ1

√

ϕ′(t)

t− z
dt+

∫

γ2

√

ϕ′(t)

t− z
dt =: g1(z) + g2(z). (3.7)

We show that ‖g1‖2 → 0 sufficiently fast as n→ ∞, while g2 is well approximated
by polynomials of degree n. To estimate the norm of g1, we need to know the
behavior of

√
ϕ′ near the corner point zj ∈ L. This is conveniently found from the

asymptotic expansion of Lehman [16]. Assume that zj = 0 and that λjπ, 0 <
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λj < 2, is the exterior angle formed by L at this point. Then we have in a
neighborhood of zj = 0 that

ϕ(z)− ϕ(0) = b z
1

2−λj + o
(

z
1

2−λj

)

as z → 0,

where b 6= 0, and

ϕ′(z) =
b

2− λj
z

1

2−λj
−1

+ o
(

z
1

2−λj
−1
)

as z → 0.

Hence there exists a constant c3 > 0 such that
∣

∣

∣

√

ϕ′(z)
∣

∣

∣ ≤ c3 |z|α, z ∈ G̃ ∪ ∂G̃, (3.8)

where we set

α :=
1

4− 2λj
− 1

2
.

For the endpoints ξ ∈ Ln and 0 of γ1, we let

dn := |ξ − 0| = |ξ|.

It follows from (3.4) that
|γ1| ≤ c2dn.

We now estimate that

‖g1‖22 =
1

l

∫

L

∣

∣

∣

∣

∣

∫

γ1

√

ϕ′(t)

t− z
dt

∣

∣

∣

∣

∣

2

|dz| ≤ c4

∫

L

(
∫

γ1

|t|α|dt|
|t− z|

)2

|dz|, (3.9)

by (3.7) and (3.8). Note that if z ∈ L satisfies |z| ≥ dn, then |t − z| ∼ |z| by
(3.3). Consequently,

∫

L∩{|z|≥dn}

(
∫

γ1

|t|α|dt|
|t− z|

)2

|dz| ≤ c5

∫

L∩{|z|≥dn}

(

dα+1
n

|z|

)2

|dz| ≤ c6 d
2α+1
n .

(3.10)

On the other hand, if z ∈ L satisfies |z| ≤ dn, then |t − z| ∼ |t| + |z| by (3.3),
and we obtain with help of (3.4) that

∫

L∩{|z|≤dn}

(∫

γ1

|t|α|dt|
|t− z|

)2

|dz| ≤ c7

∫ c8dn

0

(∫ c9dn

0

sαds

s+ r

)2

dr (3.11)

≤ c7

∫ c8dn

0

(
∫ r

0

sα

r
ds+

∫ c9dn

r

sα−1ds

)2

dr

= c7

∫ c8dn

0

(

rα

α + 1
+

(c9dn)
α − rα

α

)2

dr

≤ c10 d
2α+1
n ,
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for α 6= 0. If α = 0 then we estimate

∫

L∩{|z|≤dn}

(
∫

γ1

|dt|
|t− z|

)2

|dz| =
∫

L∩{|z|≤dn}

(
∫

γ1

|t|1/2 |t|−1/2 |dt|
|t− z|

)2

|dz|

≤ c2 dn

∫

L∩{|z|≤dn}

(
∫

γ1

|t|−1/2 |dt|
|t− z|

)2

|dz|

≤ c2 dn c10 d
2(−1/2)+1
n = c2 c10 dn,

as above. Combining (3.9)-(3.11), we have that

‖g1‖2 ≤ c11 d
α+1/2
n ≤ c11 d

1

4−2λ
n , (3.12)

where λ = min1≤j≤m λj.

The next step is the construction of approximating polynomials Pn for g2. This
is accomplished by using Dzjadyk kernels (see, e.g., [2]) of the form

Kn(t, z) =

n
∑

i=0

ai(t)z
i, n ∈ N,

which approximate the Cauchy kernel. It was proved in Lemma 5 of [3] that a
sequence of such kernels can be selected, so that for any fixed m ∈ N, and for all
t ∈ γ with |Φ(t)| ≥ 1 + 1/n, we have

∣

∣

∣

∣

1

t− z
−Kn(t, z)

∣

∣

∣

∣

≤ c12
dmn

|t− z|m+1
, z ∈ L, (3.13)

for all sufficiently large n ∈ N. In particular, (3.13) holds for t ∈ γ2. Define the
polynomials

Pn(z) :=

∫

γ2

√

ϕ′(t)Kn(t, z) dt,

and estimate

‖g2 − Pn‖22 =
1

l

∫

L

∣

∣

∣

∣

∫

γ2

(

1

t− z
−Kn(t, z)

)

√

ϕ′(t) dt

∣

∣

∣

∣

2

|dz|

≤ c13d
2m
n

∫

L

(
∫

γ2

|t|α|dt|
|t− z|m+1

)2

|dz|,

by (3.13) and (3.8). Observe that |t− z| ∼ |t|+ |z| for t ∈ γ2. Therefore, we have
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for m > α that

∫

L

(
∫

γ2

|t|α|dt|
|t− z|m+1

)2

|dz| ≤ c14

∫ c15

0

(
∫ c17

c16dn

sαds

(s+ r)m+1

)2

dr

≤ c14

∫ c16dn

0

(
∫ c17

c16dn

sα−m−1 ds

)2

dr

+ c14

∫ c15

c16dn

(

r−m−1

∫ r

c16dn

sα ds+

∫ c17

r

sα−m−1 ds

)2

dr

≤ c18 d
2(α−m)+1
n + c19

∫ c15

c16dn

r2(α−m) dr

≤ c20 d
2(α−m)+1
n .

It follows that

‖g2 − Pn‖2 ≤ c21 d
α+1/2
n ≤ c21 d

1

4−2λ
n . (3.14)

Collecting (3.12), (3.14) and (3.7) together, we obtain

‖g − Pn‖2 ≤ ‖g1‖2 + ‖g2 − Pn‖2 ≤ c22 d
1

4−2λ
n . (3.15)

Recall that dn = |ξ|, where ξ ∈ Ln ∩ γ1. Applying the results of [16] to the
conformal mapping Ψ := Φ−1, we obtain

z = Ψ(Φ(z))−Ψ(Φ(0)) = a (Φ(z)− Φ(0))λj + o
(

(Φ(z)− Φ(0))λj

)

as z → 0,

where λjπ is the exterior angle at zj = 0, and a 6= 0. Thus

dn = |ξ| ≤ c23 min
z∈Ln

|z| ≤ c24 n
−λj ≤ c24 n

−λ, n ∈ N,

and

‖g − Pn‖2 ≤ c25 n
− λ

4−2λ , n ∈ N, (3.16)

by (3.15). Hence there exists a sequence of polynomials Qn such that

‖
√

ϕ′ −Qn‖2 ≤ c26 n
− λ

4−2λ , n ∈ N. (3.17)

Since

K(z, ζ) =
l

2π

√

ϕ′(z)ϕ′(ζ),

we obtain (1.9) from the previous estimate:

∥

∥

∥

∥

K(·, ζ)− l

2π

√

ϕ′(ζ) Qn

∥

∥

∥

∥

2

≤ c26l

2π

√

ϕ′(ζ) n− λ
4−2λ , n ∈ N,
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where ζ ∈ G was fixed throughout this proof. We now lift this restriction and
allow ζ vary within a compact set F ⊂ G. Note that |ϕ′(ζ)| is uniformly bounded
on F , and so are other constants in the above proof. Indeed, we only need to
verify this for the constant c3 of (3.8), arising from the first term in the expansion
of ϕ′(z). One can obtain a conformal mapping ϕ̃ of G onto D with ϕ̃(ζ̃) = 0 and
ϕ̃′(ζ̃) > 0, for any ζ̃ ∈ F , by composing ϕ with a Möbius self-map of the unit
disk, which is conformal in an open neighborhood of D. It follows that (3.8) holds
for all such mappings ϕ̃ with a constant c3 uniformly bounded for ζ̃ ∈ F .

Proof of Theorem 1.4. We proceed as in the proof of Theorem 1.1, denoting

Qn(z) :=

(

l

2π

n
∑

k=0

|pk(ζ)|2
)−1/2 n

∑

k=0

pk(ζ)pk(z),

so that J ′
2n+1(z) = Q2

n(z). It follows from (1.6) that

√

ϕ′(z)−Qn(z) =

√

2π

l





K(z, ζ)
√

K(ζ, ζ)
−
(

n
∑

k=0

|pk(ζ)|2
)−1/2 n

∑

k=0

pk(ζ)pk(z)





=

√

2π

lK(ζ, ζ)

(

K(z, ζ)−
n
∑

k=0

pk(ζ)pk(z)

)

+

√

2π

lK(ζ, ζ)

(
∑n

k=0 |pk(ζ)|2)
1/2 − (K(ζ, ζ))1/2

(
∑n

k=0 |pk(ζ)|2)
1/2

n
∑

k=0

pk(ζ)pk(z).

Recall that

lim
n→∞

n
∑

k=0

pk(ζ)pk(z) = K(z, ζ),

where convergence is uniform for z, ζ ∈ F, and that

0 < c1 < |K(z, ζ)| < c2 < +∞, z, ζ ∈ F.

Hence

max
z∈F

|
√

ϕ′(z)−Qn(z)| ≤ c3max
z∈F

∣

∣

∣

∣

∣

K(z, ζ)−
n
∑

k=0

pk(ζ)pk(z)

∣

∣

∣

∣

∣

+ c4



(K(ζ, ζ))1/2 −
(

n
∑

k=0

|pk(ζ)|2
)1/2



 .
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The first term is estimated by (1.9)-(2.1) and Cauchy-Schwarz inequality:

max
z,ζ∈F

∣

∣

∣

∣

∣

K(z, ζ)−
n
∑

k=0

pk(ζ)pk(z)

∣

∣

∣

∣

∣

= max
z,ζ∈F

∣

∣

∣

∣

∣

∞
∑

k=n+1

pk(ζ)pk(z)

∣

∣

∣

∣

∣

≤
(

∞
∑

k=n+1

|pk(z)|2
)1/2( ∞

∑

k=n+1

|pk(ζ)|2
)1/2

≤ (C1(G,F ))
2 n− λ

2−λ , n ∈ N.

Thus for the second term we also have

(K(ζ, ζ))1/2 −
(

n
∑

k=0

|pk(ζ)|2
)1/2

≤ c5

(

K(ζ, ζ)−
n
∑

k=0

|pk(ζ)|2
)

≤ c5 (C1(G,F ))
2 n− λ

2−λ , n ∈ N.

Combining these estimates, we obtain that

max
z∈F

|
√

ϕ′(z)−Qn(z)| ≤ c6 n
− λ

2−λ , n ∈ N.

It immediately follows that

max
z∈F

|ϕ′(z)−Q2
n(z)| ≤ max

z∈F
|
√

ϕ′(z) +Qn(z)| max
z∈F

|
√

ϕ′(z)−Qn(z)|

≤ c7 n
− λ

2−λ , n ∈ N,

and that

max
z∈F

|ϕ(z)− J2n+1(z)| ≤ max
z∈F

∫ z

ζ

|ϕ′(t)−Q2
n(t)| |dt| ≤ c8 n

− λ
2−λ , n ∈ N,

where all constants in this proof are independent of z, ζ ∈ F and n ∈ N.
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