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Expected number of real zeros for random orthogonal

polynomials

Doron S. Lubinsky, Igor E. Pritsker and Xiaoju Xie

Abstract

We study the expected number of real zeros for random linear combinations of
orthogonal polynomials. It is well known that Kac polynomials, spanned by monomials
with i.i.d. Gaussian coefficients, have only (2/π+o(1)) log n expected real zeros in terms
of the degree n. If the basis is given by the orthonormal polynomials associated with a
compactly supported Borel measure on the real line, or associated with a Freud weight
defined on the whole real line, then random linear combinations have n/

√
3 + o(n)

expected real zeros. We prove that the same asymptotic relation holds for all random
orthogonal polynomials on the real line associated with a large class of weights, and give
local results on the expected number of real zeros. We also show that the counting
measures of properly scaled zeros of these random polynomials converge weakly to
either the Ullman distribution or the arcsine distribution.

1 Introduction

The expected number of real zeros E[Nn(R)] for random polynomials of the form Pn(x) =
∑n

k=0 ckx
k, where {ck}nk=0 are independent and identically distributed random variables,

was studied since the 1930’s. In particular, Bloch and Pólya [4] gave an upper bound
E[Nn(R)] = O(

√
n) for polynomials with coefficients selected from the set {−1, 0, 1} with

equal probabilities. Littlewood and Offord [27]-[28] considered several classes of random
coefficients, including standard Gaussian and uniformly distributed in {−1, 1} or in the
interval (−1, 1). Their results indicated that the expected number of real zeros is actually
of logarithmic order in terms of n. Shortly thereafter, Kac [20] established the important
asymptotic result

E[Nn(R)] = (2/π + o(1)) logn as n → ∞,

for polynomials with independent real Gaussian coefficients. In fact, Kac [20]-[21] found the
exact formula for E[Nn(R)] in the case of standard real Gaussian coefficients:

E[Nn(R)] =
4

π

∫ 1

0

√

A(x)C(x)− B2(x)

A(x)
dx,
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where

A(x) =

n
∑

j=0

x2j , B(x) =

n
∑

j=1

jx2j−1 and C(x) =

n
∑

j=1

j2x2j−2.

More precise forms of Kac’s asymptotic for E[Nn(R)] were obtained by many authors, in-
cluding Kac [21], Wang [37], Edelman and Kostlan [11]. Wilkins [38] gave an asymptotic
series expansion for E[Nn(R)] in the case of i.i.d. Gaussian coefficients.

The asymptotic result for the number of real zeros was generalized by Erdős and Offord
[12] to coefficients with Bernoulli distribution (uniform on {−1, 1}), and by Kac [22] to uni-
formly distributed coefficients on [−1, 1]. Later, Stevens [36] showed that Kac’s asymptotic
holds for polynomials with coefficients from a certain general class of distributions. Finally,
Ibragimov and Maslova [18, 19] extended the result to all mean-zero distributions in the
domain of attraction of the normal law. Many additional references and further directions
of work on the expected number of real zeros may be found in the books of Bharucha-Reid
and Sambandham [1], and of Farahmand [13].

We state a result on the number of real zeros for the random linear combinations of
rather general functions. It originated in the papers of Kac [20]-[22], who used the monomial
basis, and was extended to trigonometric polynomials and other bases, see Das [8]-[9] and
Farahmand [13]. We are particularly interested in the bases of orthonormal polynomials,
which is the case considered by Das [8]. Further generalizations of Kac’s integral formula
for the expected number of real zeros were obtained by several authors, see e.g. Cramér
and Leadbetter [7, p. 285]. For any set E ⊂ C, we use the notation Nn(E) for the number
of zeros of random functions (1.1) (or random orthogonal polynomials of degree at most n)
located in E. The expected number of zeros in E is denoted by E[Nn(E)], with E[Nn(a, b)]
being the expected number of zeros in (a, b) ⊂ R.

Proposition 1.1. Let [a, b] ⊂ R, and consider real valued functions gj(x) ∈ C1([a, b]), j =
0, . . . , n, with g0(x) being a nonzero constant. Define the random function

Gn(x) =

n
∑

j=0

cjgj(x), (1.1)

where the coefficients cj are i.i.d. random variables with Gaussian distribution N (0, σ2), σ >
0. If there is M ∈ N such that G′

n(x) has at most M zeros in (a, b) for all choices of
coefficients, then the expected number of real zeros of Gn(x) in the interval (a, b) is given by

E[Nn(a, b)] =
1

π

∫ b

a

√

A(x)C(x)− B2(x)

A(x)
dx, (1.2)

where

A(x) =

n
∑

j=0

g2j (x), B(x) =

n
∑

j=1

gj(x)g
′
j(x) and C(x) =

n
∑

j=1

[g′j(x)]
2. (1.3)
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Clearly, the original formula of Kac follows from this proposition for gj(x) = xj , j =
0, 1, . . . , n. For a sketch of the proof of Proposition 1.1, see [29]. We note that multiple
zeros are counted only once by the standard convention in all of the above results on real
zeros. However, the probability of having a multiple zero for a polynomial with Gaussian
coefficients is equal to 0, so that we have the same result on the expected number of zeros
regardless whether they are counted with or without multiplicities.

2 Random orthogonal polynomials

Let W = e−Q, where Q : R −→ [0,∞) is continuous, and assume that all moments

∫

R

xjW 2(x) dx, j = 0, 1, 2, . . . ,

are finite. For n ≥ 0, let
pn (x) = pn

(

W 2, x
)

= γnx
n + . . .

denote the nth orthonormal polynomial with γn > 0, so that

∫

pn(x)pm(x)W
2(x) dx =

{

1, m = n,
0, m 6= n.

Using the orthonormal polynomials {pj}∞j=0 as the basis, we consider the ensemble of random
polynomials of the form

Pn(x) =
n
∑

j=0

cjpj(x), n ∈ N, (2.1)

where the coefficients c0, c1, . . . , cn are i.i.d. random variables. Such a family is often called
random orthogonal polynomials. If the coefficients have Gaussian distribution, one can apply
Proposition 1.1 to study the expected number of real zeros of random orthogonal polynomials.
In particular, Das [8] considered random Legendre polynomials, and found that E[Nn(−1, 1)]
is asymptotically equal to n/

√
3. Wilkins [39] improved the error term in this asymptotic

relation by showing that E[Nn(−1, 1)] = n/
√
3 + o(nε) for any ε > 0. For random Jacobi

polynomials, Das and Bhatt [10] concluded that E[Nn(−1, 1)] is asymptotically equal to n/
√
3

too. They also stated estimates for the expected number of real zeros of random Hermite and
Laguerre polynomials, but those arguments contain significant gaps. The authors recently
showed [29] that if the basis is given by the orthonormal polynomials associated to a finite
Borel measure with compact support on the real line, then random linear combinations have
n/

√
3 + o(n) expected real zeros under mild conditions on the weight. The second and the

third authors [33] extended this asymptotic to random orthogonal polynomials associated
with the Freud weights W (x) = e−c|x|λ, c > 0, λ > 1. The results of this paper provide
detailed information on the expected number of real zeros for random polynomials associated
with a large class of weights defined on the whole real line. In particular, they cover the case
of random Freud polynomials considered in [33].
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For the orthonormal polynomials {pj(x)}∞j=0, define the reproducing kernel by

Kn(x, y) =
n−1
∑

j=0

pj(x)pj(y),

and the differentiated kernels by

K(k,l)
n (x, y) =

n−1
∑

j=0

p
(k)
j (x)p

(l)
j (y), k, l ∈ N ∪ {0}.

We intend to apply Proposition 1.1 with gj = pj, so that

A(x) = Kn+1(x, x), B(x) = K
(0,1)
n+1 (x, x) and C(x) = K

(1,1)
n+1 (x, x). (2.2)

Universality limits for the reproducing kernels of orthogonal polynomials (see Levin and
Lubinsky [25]-[26]), and asymptotic results on zeros of random polynomials (cf. Pritsker
[32]) allow us to give asymptotics for the expected number of real zeros for a class of random
orthogonal polynomials associated with weights from the class F(C2) [24].

Definition 2.1. Let W = e−Q, where Q : R → [0,∞) satisfies the following conditions:
(a) Q′ is continuous in R and Q(0) = 0.
(b) Q′ is non-decreasing in R, and Q′′ exists in R \ {0}.
(c)

lim
|t|→∞

Q(t) = ∞.

(d) The function

T (t) =
tQ′(t)

Q(t)
, t 6= 0,

is quasi-increasing in (0,∞), in the sense that for some C1 > 0,

0 < x < y ⇒ T (x) ≤ C1T (y).

We assume an analogous restriction for y < x < 0. In addition, we assume that for some
Λ > 1,

T (t) ≥ Λ in R \ {0}.
(e) There exists C2 > 0 such that

Q′′(x)

|Q′(x)| ≤ C2
|Q′(x)|
Q(x)

, x ∈ R \ {0}.

Then we write W ∈ F(C2).

Our main result on the global asymptotic for the expected number of real zeros of random
orthogonal polynomials is below.
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Theorem 2.2. Let W = e−Q ∈ F(C2), where Q is even. If the function T in the definition
of F(C2) satisfies

lim
x→∞

T (x) = α ∈ (1,∞], (2.3)

then the expected number of real zeros of random orthogonal polynomials (2.1) with indepen-
dent real Gaussian coefficients satisfies

lim
n→∞

1

n
E[Nn(R)] =

1√
3
. (2.4)

Theorem 2.2 is a combination of Theorem 2.3 and Corollary 2.5 given below. Define the
Ullman distribution µα for 0 < α < ∞ by

µ
′

α(x) =
α

π

∫ 1

|x|

tα−1

√
t2 − x2

dt, x ∈ [−1, 1],

and for α = ∞, the arcsine distribution µ∞ by

µ
′

∞(x) =
1

π
√
1− x2

, x ∈ [−1, 1],

see [35] and [24]. We use the contracted version of Pn:

P ∗
n(s) := Pn(ans), n ∈ N, (2.5)

where an is the Mhaskar-Rakhmanov-Saff number associated with the weight W , see [24],
[30], [35] and Section 3 below.

For any set E ⊂ C, N∗
n(E) denotes the number of zeros of a random polynomial P ∗

n(s)
located in E. The expected number of zeros of P ∗

n(s) in E is given by E[N∗
n(E)]. We now

state the local result on the asymptotic of E[N∗
n ([a, b])] for intervals [a, b] ⊂ (−1, 1).

Theorem 2.3. Let W = e−Q ∈ F(C2), where Q is even. Assume that the function T in the
definition of F(C2) satisfies (2.3). If [a, b] ⊂ (−1, 1) is any closed interval, then

lim
n→∞

1

n
E [N∗

n ([a, b])] =
1√
3
µα([a, b]). (2.6)

We will establish a generalization of Theorem 2.3 for non-even weights in Section 3. Define
the normalized zero counting measure τn = 1

n

∑n
k=1 δzk for the scaled polynomial P ∗

n(s) of
(2.5), where {zk}nk=1 are its zeros, and δz denotes the unit point mass at z. We determine
the weak limit of τn for random polynomials with quite general random coefficients {cj}∞j=0.

Theorem 2.4. Let the coefficients {cj}∞j=0 of random orthogonal polynomials (2.1) be com-
plex i.i.d. random variables such that E[| log |c0||] < ∞. If W = e−Q ∈ F(C2), where Q is
even, and if the function T in the definition of F(C2) satisfies (2.3), then the normalized zero
counting measures τn for the scaled polynomials P ∗

n(s) converge weakly to µα with probability
one.
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Related results on the asymptotic zeros distribution of random orthogonal polynomials
with varying weights were proved by Bloom [5] and Bloom and Levenberg [6]. Theorem 2.4
permits us to find asymptotics for the expected number of zeros in various sets. In particular,
we need the following corollary for the proof of Theorem 2.2.

Corollary 2.5. Suppose that the assumptions of Theorem 2.4 hold. If E ⊂ C is any compact
set satisfying µα(∂E) = 0, then

lim
n→∞

1

n
E [N∗

n(E)] = µα(E). (2.7)

It is of interest to relax conditions on random coefficients cj , e.g., by considering proba-
bility distributions from the domain of attraction of the normal law as in [18, 19].

3 Proofs

Our proofs require detailed knowledge of potential theory with external fields, see [24] and
[35].

Let W be a continuous nonnegative weight function on R such that W is not identically
zero and lim|x|→∞ |x|W (x) = 0. Set Q(x) := − logW (x). The weighted equilibrium measure
µW of R is the unique probability measure with compact support SW = supp µW ⊂ R that
minimizes the energy functional

I[ν] =

∫∫

1

|z − t| dν(t)dν(z) + 2

∫

Qdν

amongst all probability measures ν with support on R. It satisfies

∫

log
1

|z − t| dµW (t) +Q(z) = C, z ∈ SW ,

and
∫

log
1

|z − t| dµW (t) +Q(z) ≥ C, z ∈ R,

where C is a constant.
For a weight function W (x) = e−Q(x), where Q is often assumed convex on R, the

Mhaskar-Rakhmanov-Saff numbers

a−n < 0 < an

are defined for n ≥ 1 by the relations

n =
1

π

∫ an

a−n

xQ′(x)
√

(x− a−n)(an − x)
dx

6



and

0 =
1

π

∫ an

a−n

Q′(x)
√

(x− a−n)(an − x)
dx.

We also let

δn =
1

2
(an + |a−n|) and βn =

1

2
(an + a−n).

For even Q, a−n = −an, and we may define an by

2

π

∫ 1

0

antQ
′(ant)√

1− t2
dt = n. (3.1)

Existence and uniqueness of these numbers are established in the monographs [24], [30], [35],
but go back to earlier work of Mhaskar, Saff, and Rakhmanov. One illustration of their role
is the Mhaskar-Saff identity:

||PW ||L∞(R) = ||PW ||L∞([a−n,an]),

which is valid for all polynomials P of degree at most n. We define the Mhaskar-Rakhmanov-
Saff interval ∆n as ∆n := [a−n, an]. The linear transformation

Ln(x) =
x− βn

δn
, x ∈ R,

maps ∆n onto [−1, 1]. Its inverse is

L[−1]
n (s) = βn + δns, s ∈ R.

For ε ∈ (0, 1), we let

Jn(ε) = L[−1]
n [−1 + ε, 1− ε] = [a−n + εδn, an − εδn].

The equilibrium density is defined as

σn(x) =

√

(x− a−n)(an − x)

π2

∫ an

a−n

Q′(s)−Q′(x)

s− x

ds
√

(s− a−n)(an − s)
, x ∈ ∆n.

It satisfies the following equilibrium equations [24, p. 41]:
∫ an

a−n

log
1

|x− s|σn(s) ds+Q(x) = C, x ∈ ∆n,

and
∫ an

a−n

log
1

|x− s|σn(s) ds+Q(x) ≥ C, x ∈ R.

Note that the measure σn(x) dx has total mass n on ∆n:
∫ an

a−n

σn(x) dx = n.

7



We also define the normalized version of σn as follows:

σ∗
n(s) :=

δn
n
σn(L

[−1]
n (s)), s ∈ [−1, 1].

Note that σ∗
n(s) ds is a unit measure supported on [−1, 1]:

∫ 1

−1

σ∗
n(s) ds = 1.

For details on σn and σ∗
n, one should consult the book [24].

In particular, the Ullman distribution µ′
α is the normalized equilibrium density for the

standard Freud weight w(x) = e−γα|x|
α

on R, see Theorem 5.1 of [35, p. 240], where

γα =
Γ(α

2
)Γ(1

2
)

2Γ(α
2
+ 1

2
)
,

An alternative formula for the Ullman distribution follows from that for σn above, namely,

µ
′

α(x) =
2
√
1− x2

π2Bα

∫ 1

0

tα − xα

t2 − x2

dt√
1− t2

, x ∈ [−1, 1], (3.2)

where

Bα =
2

π

∫ 1

0

tα√
1− t2

dt.

For n ≥ 1, we also define the square root factor

ρn(x) =
√

(x− a−n)(an − x), x ∈ ∆n. (3.3)

In the sequel C,C1, C2, · · · denote constants independent of n, x, and polynomials of degree
≤ n. The same symbol does not necessarily denote the same constant in different occurrences.
Given sequences {cn}, {dn}, we write

cn ∼ dn

if there exist positive constants C1 and C2 such that for n ≥ 1,

C1 ≤ cn/dn ≤ C2.

Similar notation is used for functions and sequences of functions.
We start with a general result, our only one that allows non-even weights. In this more

general setting, P ∗
n is given by

P ∗
n(s) = Pn

(

L[−1]
n (s)

)

,

rather then by (2.5).

8



Theorem 3.1. If W = e−Q ∈ F(C2) and [a, b] ⊂ (−1, 1) is any given closed interval, then
as n → ∞,

1

n
E [N∗

n ([a, b])] =
1 + o(1)√

3

∫ b

a

σ∗
n+1(y) dy.

Proof. The strategy is to apply Theorem 1.6 of [25]. It states that for all r, s ≥ 0, and any
ε ∈ (0, 1), we have uniformly for x ∈ Jn(ε) as n → ∞,

W 2(x)K
(r,s)
n (x, x)

(σn(x))r+s+1
=

r
∑

j=0

(

r
j

) s
∑

k=0

(

s
k

)

τj,kπ
j+k

(

Q′(x)

σn(x)

)r+s−j−k

+ o(1),

where

τj,k =

{

0, j + k odd,
(−1)(j−k)/2 1

j+k+1
, j + k even.

In particular, uniformly in x ∈ Jn+1(ε),

W 2(x)K
(0,0)
n+1 (x, x)

σn+1(x)
= 1 + o(1),

W 2(x)K
(0,1)
n+1 (x, x)

(σn+1(x))2
=

Q′(x)

σn+1(x)
+ o(1),

and
W 2(x)K

(1,1)
n+1 (x, x)

(σn+1(x))3
=

(

Q′(x)

σn+1(x)

)2

+
π2

3
+ o(1).

Next, from Proposition 1.1, for any closed interval [l, q] ⊂ Jn+1(ε) (where l, q may depend
on n),

1

n
E [Nn ([l, q])] =

1

nπ

∫ q

l

√

√

√

√

K
(1,1)
n+1 (x, x)

K
(0,0)
n+1 (x, x)

−
(

K
(0,1)
n+1 (x, x)

K
(0,0)
n+1 (x, x)

)2

dx.

Substituting the above asymptotics, and cancelling, yields

1

n
E [Nn([l, q])]

=
1

nπ

∫ q

l

σn+1(x)

√

π2

3
+

(

Q′(x)

σn+1(x)

)2

o(1) +
Q′(x)

σn+1(x)
o(1) + o(1) dx as n → ∞.

We note that [25, p. 87, Lemma 5.1(a),(d)] uniformly for x ∈ Jn+1(ε),

σn+1(x) ≥ C1
n + 1

δn+1

and

|Q′(x)| ≤ C2
n+ 1

ρn+1(x)
,

9



so that
∣

∣

∣

∣

Q′(x)

σn+1(x)

∣

∣

∣

∣

≤ C3
δn+1

ρn+1(x)
≤ C3
√

ε(2− ε)
, x ∈ Jn+1(ε).

Thus, uniformly for all intervals [l, q] ⊂ Jn+1(ε), as n → ∞,

1

n
E [Nn([l, q])] =

1

nπ

∫ q

l

σn+1(x)

√

π2

3
+ o(1) dx =

1 + o(1)

n
√
3

∫ q

l

σn+1(x) dx.

Note that the number Nn(E) of real zeros of Pn(x) in E equals the number N∗
n(E

∗) of real
zeros of P ∗

n(s) in E∗ := Ln(E) = {Ln(x) : x ∈ E}, since Ln is a bijection. We recall that an
is increasing to +∞ and a−n is decreasing to −∞ as n → ∞. It is also known that

lim
n→∞

an+1

an
= 1, lim

n→∞

a−(n+1)

a−n
= 1 and lim

n→∞

δn+1

δn
= 1,

see Lemma 3.11(a) of [24, p. 81]. Hence we have

Ln+1

(

L[−1]
n (s)

)

= Ln+1(βn + δns) =
δn
δn+1

s+
βn − βn+1

δn+1

→ s as n → ∞, (3.4)

uniformly for s in compact subsets of R. If [a, b] ⊂ (−1, 1), then for large n ∈ N,

L[−1]
n ([a, b]) = [a−n + δn(1 + a), an − δn(1− b)] ⊂ Jn+1(ε),

provided 0 < ε < min{1 + a, 1− b}. It follows that
1

n
E [N∗

n([a, b])] =
1

n
E
[

Nn

(

L[−1]
n ([a, b])

)]

=
1 + o(1)

(n+ 1)
√
3

∫ L
[−1]
n (b)

L
[−1]
n (a)

σn+1(x) dx

=
1 + o(1)√

3

∫ Ln+1

(

L
[−1]
n (b)

)

Ln+1

(

L
[−1]
n (a)

)

σ∗
n+1(s) ds (where s = Ln+1(x))

=
1 + o(1)√

3

∫ b

a

σ∗
n+1(s) ds as n → ∞,

where we used (3.4) on the last step, and also that

σ∗
n+1(s) ≤

C√
1− s2

, s ∈ (−1, 1),

by Theorem 1.11(V) of [24, p. 18].

Lemma 3.2. Let W = e−Q ∈ F(C2), where Q is even. Let α ∈ (1,∞]. If the function T in
the definition of F(C2) satisfies

lim
x→∞

T (x) = α,

then
lim
n→∞

σ∗
n(x) = µ

′

α(x), x ∈ (−1, 1) \ {0}.

10



Remark 3.3. An equivalent form of

lim
x→∞

T (x) = α ∈ (1,∞)

is that uniformly for t in compact subsets of (0, 1],

lim
x→∞

Q′(xt)

Q′(x)
= tα−1. (3.5)

Indeed, if this last condition holds, then as x → ∞,

T (x)−1 =
Q(x)

xQ′(x)
=

1

xQ′(x)

∫ x

0

Q′(u) du

=

∫ 1

0

Q′(xt)

Q′(x)
dt →

∫ 1

0

tα−1 dt =
1

α
.

Here we also used 0 ≤ Q′(xt)/Q′(x) ≤ 1 and dominated convergence. In the other direction,
as x → ∞,

Q′(xt)

Q′(x)
=

T (xt)

T (x)

Q(xt)

tQ(x)
=

T (xt)

tT (x)
exp

(

−
∫ x

xt

Q′(u)

Q(u)
du

)

=
T (xt)

tT (x)
exp

(

−
∫ x

xt

T (u)

u
du

)

=
T (xt)

tT (x)
exp

(

−
∫ x

xt

α + o(1)

u
du

)

=
1 + o(1)

t
exp

(

−(α + o(1)) log
1

t

)

= tα−1(1 + o(1)).

Given any ε ∈ (0, 1), this holds uniformly for t ∈ [ε, 1].

Proof of Lemma 3.2. We prove the case 1 < α < ∞ first:
From (3.1), as n → ∞,

n

anQ′(an)
=

2

π

∫ 1

0

tQ′(ant)

Q′(an)
√
1− t2

dt

→ 2

π

∫ 1

0

tα√
1− t2

dt = Bα. (3.6)

Indeed, the integrand converges pointwise, and because Q is convex, so Q′(ant)/Q
′(an) ≤ 1,

and we can apply Lebesgue’s Dominated Convergence Theorem. In particular, for n ≥ 1,
and some C1 > 1 independent of n,

C−1
1 n ≤ anQ

′(an) ≤ C1n. (3.7)

11



Next, we know that for x ∈ (0, 1),

σ∗
n(x) =

2
√
1− x2

π2

∫ 1

0

antQ
′(ant)− anxQ

′(anx)

n(t2 − x2)

dt√
1− t2

.

For t ∈ (0, 1) \ {x}, we obtain from (3.5) and (3.6) that

lim
n→∞

antQ
′(ant)− anxQ

′(anx)

n(t2 − x2)

= B−1
α lim

n→∞

antQ
′(ant)− anxQ

′(anx)

anQ′(an)(t2 − x2)

= B−1
α

tα − xα

t2 − x2
.

We need a bound on the integrand so as to apply dominated convergence. First, T (u) is
bounded above. Next, for some ξ between t and x,

∣

∣

∣

∣

antQ
′(ant)− anxQ

′(anx)

n(t2 − x2)

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

d
du
(anuQ

′(anu))|u=ξ

n(t + x)

∣

∣

∣

∣

∣

≤ anQ
′(anξ) + a2nξQ

′′(anξ)

n(t + x)
.

Here (3.7) gives (since Q′ is increasing)

anQ
′(anξ)

n(t + x)
≤ anQ

′(an)

n(t+ x)
≤ C1

x
.

By definition of F(C2) and boundedness of T , we have

0 ≤ Q′′(y)

Q′(y)
≤ C2T (y)

y
≤ C3

y
, y > 0,

so that
a2nξQ

′′(anξ)

n(t+ x)
≤ C3

a2nξQ
′(anξ)

anξn(t+ x)
≤ C3

anQ
′(anξ)

n(t+ x)
≤ C4

x
.

Thus, for all t ∈ (0, 1),
∣

∣

∣

∣

antQ
′(ant)− anxQ

′(anx)

n(t2 − x2)

∣

∣

∣

∣

≤ C5

x
,

and we can apply dominated convergence to deduce that

lim
n→∞

σ∗
n(x) =

2
√
1− x2

π2Bα

∫ 1

0

tα − xα

t2 − x2

dt√
1− t2

= µ
′

α(x).

12



Next, we deal with the case α = ∞:
Let 0 < r < s < 1. We consider x ∈ (0, r] and split

σ∗
n(x) =

2
√
1− x2

π2

(
∫ s

0

+

∫ 1

s

)

antQ
′(ant)− anxQ

′(anx)

n(t2 − x2)

dt√
1− t2

=: I1 + I2. (3.8)

We shall show that the main contribution to σ∗
n comes from I2. Since the integrand in the

integral defining σ∗
n is nonnegative, we have for x ∈ (0, r] that

I2 =
2
√
1− x2

π2

∫ 1

s

antQ
′(ant)− anxQ

′(anx)

n(t2 − x2)

dt√
1− t2

≤ 2
√
1− x2

π2

∫ 1

s

antQ
′(ant)

n(t2 − x2)

dt√
1− t2

≤ 2
√
1− x2

π2(s2 − x2)n

∫ 1

s

antQ
′(ant)

dt√
1− t2

≤
√
1− x2

π(s2 − x2)n

2

π

∫ 1

0

antQ
′(ant)

dt√
1− t2

=

√
1− x2

π(s2 − x2)
. (3.9)

Next, note that by the lower bound in (3.5) of [24, p. 64], for t ∈ [0, r],

0 ≤ antQ
′(ant)

ansQ′(ans)
≤ anrQ

′(anr)

ansQ′(ans)
≤ T (anr)

T (ans)

(r

s

)max{Λ,C6T (anr)}

≤ C7

(r

s

)C8T (anr)

,

since T is quasi-increasing. Our hypothesis

lim
x→∞

T (x) = ∞

gives

lim
n→∞

max
t∈[0,r]

antQ
′(ant)

ansQ′(ans)
= 0. (3.10)

It also then follows easily from (3.1) that for each fixed τ ∈ (0, 1),

lim
n→∞

anτQ
′(anτ)

n
= 0. (3.11)

13



Now uniformly for x ∈ [0, r],

I2 ≥
2
√
1− x2

π2(1− x2)

∫ 1

s

antQ
′(ant)− anxQ

′(anx)

n

dt√
1− t2

≥ 1

π
√
1− x2

2

πn

∫ 1

s

antQ
′(ant)(1 + o(1))

dt√
1− t2

=
1 + o(1)

π
√
1− x2

2

πn

∫ 1

0

antQ
′(ant)

dt√
1− t2

=
1 + o(1)

π
√
1− x2

as n → ∞, (3.12)

by (3.1) and using (3.10). Now we deal with I1 - it clearly suffices to show only an upper
bound. Let s < ρ < 1. By definition of the class F(C2) and (3.11), we have that

I1 =
2
√
1− x2

π2

∫ s

0

antQ
′(ant)− anxQ

′(anx)

n(t2 − x2)

dt√
1− t2

≤ 2
√
1− x2

π2nx
max
u∈[0,s]

∣

∣

∣

∣

d

du
(anuQ

′(anu))

∣

∣

∣

∣

∫ s

0

dt√
1− t2

≤ C9

nx
[anQ

′(ans) + max
u∈[0,s]

a2nuQ
′′(anu)]

≤ o(1) +
C9

nx
max
u∈[0,s]

anQ
′(anu)T (anu) as n → ∞.

Using the fact that T is quasi-increasing and the lower bound in (3.5) of [24, p. 64], we
continue this as

I1 ≤ o(1) +
C9

nx
anQ

′(ans)T (ans)

≤ o(1) +
C9

nx
anQ

′(anρ)
T (ans)

T (anρ)

(

s

ρ

)max{Λ,C6T (ans)}−1

T (ans)

≤ o(1) +
C9

nx
anQ

′(anρ) sup
y∈[0,∞)

(

s

ρ

)max{Λ,C6y}−1

y = o(1) as n → ∞,

by (3.11) and as s/ρ < 1. Together with the fact that I1 ≥ 0, and using (3.8), (3.9), (3.12),
we have shown that for x ∈ (0, r],

1

π
√
1− x2

≤ lim inf
n→∞

σ∗
n(x) ≤ lim sup

n→∞
σ∗
n(x) ≤

√
1− x2

π(s2 − x2)
.

As s is independent of r, we can let s → 1− to deduce that for x ∈ (0, r],

lim
n→∞

σ∗
n(x) =

1

π
√
1− x2

= µ
′

∞(x).
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Proof of Theorem 2.3. We know from Theorem 3.1 that

1

n
E [N∗

n ([a, b])] =
1 + o(1)√

3

∫ b

a

σ∗
n+1(y) dy.

Lemma 3.2 gives for 1 < α ≤ ∞ that

lim
n→∞

σ∗
n+1(y) = µ

′

α(y), y ∈ (−1, 1) \ {0}.

Next, by Theorem 1.11(V) of [24, p. 18],

σ∗
n+1(s) ≤

C√
1− s2

, s ∈ (−1, 1).

Lebesgue’s Dominated Convergence Theorem now implies that

lim
n→∞

1

n
E [N∗

n ([a, b])] =
1√
3

∫ b

a

lim
n→∞

σ∗
n+1(y) dy =

1√
3
µα([a, b]).

Lemma 3.4. If W = e−Q ∈ F(C2) then

lim
n→∞

a1/nn = 1.

Proof. Lemma 3.5(c) of [24, p. 72] implies that there is a constant C > 0 such that

1 ≤ an
a1

≤ Cn1/Λ for all n ≥ 1,

which immediately gives the needed result.

Lemma 3.5. Let W = e−Q ∈ F(C2), where Q is even. If the coefficients {cj}∞j=0 of random
orthogonal polynomials (2.1) are complex i.i.d. random variables such that E[| log |c0||] < ∞,
then

lim
n→∞

‖PnW‖1/nL∞(R) = 1 with probability one.

Proof. Using orthogonality, we obtain for polynomials defined in (2.1) that

∫ ∞

−∞

|Pn(x)|2W 2(x) dx =
n
∑

j=0

|cj|2.

Hence

max
0≤j≤n

|cj| ≤
(
∫ ∞

−∞

|Pn(x)|2W 2(x) dx

)1/2

≤ (n+ 1) max
0≤j≤n

|cj|.
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Lemma 4.2 of [32] (see (4.6) there) implies that

lim
n→∞

(
∫ ∞

−∞

|Pn(x)|2W 2(x) dx

)1/(2n)

= lim
n→∞

(

max
0≤j≤n

|cj |
)1/n

= 1

with probability one. That is,

lim
n→∞

‖PnW‖1/nL2(R) = 1 with probability one. (3.13)

We use the Nikolskii inequalities of Theorem 10.3 of [24, p. 295] stated as

‖PnW‖L∞(R) ≤ C1

(

n

an

)1/2

(T (an))
1/4 ‖PnW‖L2(R)

and
‖PnW‖L2(R) ≤ C2a

1/2
n ‖PnW‖L∞(R) .

Since T (an) = O(n2) by Lemma 3.7 of [24, p. 76], we obtain that

1

C2

1√
an

‖PnW‖L2(R) ≤ ‖PnW‖L∞(R) ≤ C3n ‖PnW‖L2(R) ,

and the result follows by applying Lemma 3.4 and (3.13).

Lemma 3.6. Let W = e−Q ∈ F(C2), where Q is even. If the function T in the definition
of F(C2) satisfies

lim
x→∞

T (x) = ∞,

then
lim
n→∞

γ1/n
n an = 2,

where γn is the leading coefficient of the orthonormal polynomial pn(x) associated with the
weight W 2.

Proof. Theorem 1.22 of [24, p. 25] gives

γn =
1√
2π

(an
2

)−n− 1
2
e

1
π

∫ an
−an

Q(s)√
a2n−s2

ds

(1 + o(1)) as n → ∞,

so that

γ1/n
n an = 2a

− 1
2n

n e

1
nπ

∫ an
−an

Q(s)√
a2n−s2

ds

(1 + o(1)) as n → ∞. (3.14)

Since Q is increasing on (0,∞), we have that

0 ≤ lim
n→∞

1

nπ

∫ an

−an

Q(s)
√

a2n − s2
ds ≤ Q(an)

nπ

∫ an

−an

ds
√

a2n − s2
=

Q(an)

n
≤ C
√

T (an)
→ 0 (3.15)

as n → ∞, by Lemma 3.4 of [24, p. 69]. Thus

lim
n→∞

1

nπ

∫ an

−an

Q(s)
√

a2n − s2
ds = 0,

and (3.14) together with Lemma 3.4 imply the result.
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Lemma 3.7. Let W = e−Q ∈ F(C2), where Q is even. If the function T in the definition
of F(C2) satisfies

lim
x→∞

T (x) = α ∈ (1,∞),

then
lim
n→∞

γ1/n
n an = 2e1/α,

where γn is the leading coefficient of the orthonormal polynomial pn(x) associated with the
weight W 2.

Proof. Considering Lemma 3.4 and (3.14), we only need to show

lim
n→∞

1

nπ

∫ an

−an

Q(s)
√

a2n − s2
ds = lim

n→∞

1

n

∫ 1

−1

Q(ant)

π
√
1− t2

dt = 1/α.

In terms of the function T , we can recast this as

lim
n→∞

1

n

∫ 1

−1

1

T (ant)

antQ
′(ant)

π
√
1− t2

dt = 1/α.

Using our assumption that limt→∞ T (t) = α ∈ (1,∞), we have uniformly for |t| ≥ a
−1/2
n ,

that T (ant) = α(1 + o(1)), so as the integrand is non-negative,

1

n

∫

a
−1/2
n ≤|t|≤1

1

T (ant)

antQ
′(ant)

π
√
1− t2

dt =
1 + o(1)

α

1

n

∫

a
−1/2
n ≤|t|≤1

antQ
′(ant)

π
√
1− t2

dt. (3.16)

The integral over the remaining range is small: for j = 0, 1, using (3.6) and limn→∞ an = ∞,

0 ≤ 1

n

∫

|t|≤a
−1/2
n

1

T (ant)j
antQ

′(ant)

π
√
1− t2

dt

≤ 1

n

a
1/2
n Q′(a

1/2
n )

Λjπ
√

1− a−1
n

2a−1/2
n ≤ C

Q′(a
1/2
n )

n
≤ C

Q′(an)

n
= o(1).

Thus (3.16) and (3.1) yield

1

n

∫ 1

−1

1

T (ant)

antQ
′(ant)

π
√
1− t2

dt =
1 + o(1)

α

1

n

∫ 1

−1

antQ
′(ant)

π
√
1− t2

dt =
1 + o(1)

α
.

Proof of Theorem 2.4. We first deal with the case

lim
x→∞

T (x) = ∞,
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and show that the normalized zero counting measures τn for the scaled polynomials P ∗
n(s)

converge weakly to the arcsine distribution µ∞ with probability one. Theorem 2.1 of [3, p.
310] states that if {Mn}∞n=1 is any sequence of monic polynomials of degree deg(Mn) = n
satisfying

lim sup
n→∞

‖Mn‖1/nL∞([−1,1]) ≤
1

2
, (3.17)

then the normalized zero counting measures τn for the polynomials Mn converge weakly to
µ∞. Note that 1/2 in the above equation is the logarithmic capacity of [−1, 1], see Corollary
5.2.4 of [34, p. 134]. We show that the monic polynomials

Mn(x) := P ∗
n(x)/(cnγna

n
n), n ∈ N,

satisfy (3.17) with probability one, so that the result of Theorem 2.4 follows for α = ∞. We
know from Lemma 3.5 that

lim sup
n→∞

‖PnW‖1/nL∞(R) ≤ 1 with probability one.

Using the contracted weight

wn(s) :=
n
√

W (ans) = e−
Q(ans)

n , s ∈ R,

and the properties of an [24, p. 4], we obtain that

‖P ∗
nw

n
n‖L∞([−1,1]) = ‖PnW‖L∞([−an,an])

= ‖PnW‖L∞(R) .

It follows that
lim sup
n→∞

‖P ∗
nw

n
n‖1/nL∞([−1,1]) ≤ 1 with probability one.

Since limn→∞Q(an)/n = 0 (recall (3.15)), we have that

lim sup
n→∞

‖P ∗
n‖1/nL∞([−1,1]) ≤ lim sup

n→∞
‖P ∗

nw
n
n‖1/nL∞([−1,1]) e

Q(an)/n ≤ 1

with probability one. We use below that limn→∞ γ
1/n
n an = 2 by Lemma 3.6, and that

limn→∞ |cn|1/n = 1 with probability one by Lemma 4.2 of [32]. This implies that

lim sup
n→∞

‖Mn‖1/nL∞([−1,1]) = lim sup
n→∞

∥

∥

∥

∥

P ∗
n

cnγnann

∥

∥

∥

∥

1/n

L∞([−1,1])

= lim sup
n→∞

‖P ∗
n‖1/nL∞([−1,1])

1

|cn|1/n
1

γ
1/n
n an

≤ 1

2

with probability one.
Next, we prove the case

lim
x→∞

T (x) = α ∈ (1,∞).
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Recall that the standard Freud weight with index α is given by

w(s) = e−γα|s|
α

, s ∈ R,

where

γα =
Γ(α

2
)Γ(1

2
)

2Γ(α
2
+ 1

2
)
=

∫ 1

0

tα−1

√
1− t2

dt

see [35, p. 239]. Since γα+1 = Bαπ/2, we apply Γ(1/2) =
√
π and Γ(t+ 1) = tΓ(t) to obtain

that

γαBα = γα
2γα+1

π
=

2

π

Γ(α
2
)Γ(1

2
)

2Γ(α
2
+ 1

2
)

Γ(α+1
2
)Γ(1

2
)

2Γ(α+1
2

+ 1
2
)
=

1

α
.

Note that by [35, p. 240], Fw = log 2 + 1/α is the modified Robin constant and µw = µα

is the equilibrium measure corresponding to w. Following [35], we call a sequence of monic
polynomials {Mn}∞n=1, with deg(Mn) = n, asymptotically extremal with respect to the weight
w if it satisfies

lim
n→∞

‖wnMn‖1/nL∞(R) = e−Fw = e−1/α/2. (3.18)

Theorem 4.2 of [35, p. 170] states that asymptotically extremal monic polynomials have
their zeros distributed according to the measure µw. Namely, the normalized zero counting
measures of Mn converge weakly to µw = µα. On the other hand, by Corollary 2.6 of [35, p.
157] and Theorem 5.1 of [35, p. 240],

‖wnMn‖L∞(R) = ‖wnMn‖L∞([−1,1]).

Together with Theorem 3.6 of [35, p. 46], (3.18) is equivalent to

lim sup
n→∞

‖wnMn‖1/nL∞([−1,1]) ≤ e−Fw = e−1/α/2.

We show that the monic polynomials

Mn(x) := P ∗
n(x)/(cnγna

n
n), n ∈ N,

are asymptotically extremal in this sense with probability one, so that the result of Theorem
2.4 follows. Note that

lim
n→∞

‖PnW‖1/nL∞(R) = 1 with probability one

by Lemma 3.5, and that

‖P ∗
nw

n
n‖L∞([−1,1]) = ‖PnW‖L∞([−an,an])

= ‖PnW‖L∞(R)

by [24, p. 4]. Hence

lim sup
n→∞

‖P ∗
nw

n
n‖1/nL∞([−1,1]) ≤ 1 with probability one.
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By Lemma 3.7, and since limn→∞ |cn|1/n = 1 with probability one by Lemma 4.2 of [32], it
follows that

lim sup
n→∞

‖Mnw
n‖1/nL∞([−1,1]) = lim sup

n→∞
‖P ∗

nw
n‖1/nL∞([−1,1])

1

c
1/n
n γ

1/n
n an

=
1

2e1/α
lim sup
n→∞

‖P ∗
nw

n‖1/nL∞([−1,1])

= e−Fw lim sup
n→∞

‖P ∗
nw

n‖1/nL∞([−1,1]) .

On the other hand,

lim sup
n→∞

‖P ∗
nw

n‖1/nL∞([−1,1]) ≤ lim sup
n→∞

‖P ∗
nw

n
n‖1/nL∞([−1,1]) ‖w/wn‖L∞([−1,1])

≤ lim sup
n→∞

‖w/wn‖L∞([−1,1]) .

Since wn and w are both even, it remains to show that

lim sup
n→∞

‖w/wn‖L∞([0,1]) ≤ 1.

Let ε ∈ (0, 1). For x ∈ [ε, 1], (3.6) and then (3.5) give that

Q(ans)

n
=

1 + o(1)

Bα

∫ s

0

anQ
′(anx)

anQ′(an)
dx =

1 + o(1)

Bα

∫ s

0

xα−1(1 + o(1)) dx

=
sα

αBα
(1 + o(1)) = γαs

α(1 + o(1)) as n → ∞.

This holds uniformly for s ∈ [ε, 1] as (3.5) does. Hence

‖w/wn‖L∞([ε,1]) = sup
s∈[ε,1]

exp

(

Q(ans)

n
− γαs

α

)

→ 1 as n → ∞.

Since Q is increasing, we also have that

‖w/wn‖L∞([0,ε]) ≤ exp

(

Q(anε)

n

)

→ exp(γαε
α).

We finish the proof by letting ε → 0.

Proof of Corollary 2.5. Consider the normalized zero counting measure τn = 1
n

∑n
k=1 δzk for

the scaled polynomial P ∗
n(s) of (2.5), where {zk}nk=1 are the zeros of that polynomial, and

δz denotes the unit point mass at z. Theorem 2.4 implies that the measures τn converge
weakly to µα with probability one. Since µα(∂E) = 0, we obtain that τn|E converges weakly
to µα|E with probability one by Theorem 0.5′ of [23] and Theorem 2.1 of [2]. In particular,
we have that the random variables τn(E) converge to µα(E) with probability one. Hence
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this convergence holds in Lp sense by the Dominated Convergence Theorem, as τn(E) are
uniformly bounded by 1, see Chapter 5 of [17]. It follows that

lim
n→∞

E[|τn(E)− µα(E)|] = 0

for any compact set E such that µα(∂E) = 0, and

|E[τn(E)− µα(E)]| ≤ E[|τn(E)− µα(E)|] → 0 as n → ∞.

But E[τn(E)] = E[N∗
n(E)]/n and E[µα(E)] = µα(E), which immediately gives (2.7).

Proof of Theorem 2.2. Theorem 2.3 gives that

lim
n→∞

1

n
E [N∗

n ([a, b])] =
1√
3
µα([a, b])

for any interval [a, b] ⊂ (−1, 1). Note that both E [N∗
n (H)] and µα(H) are additive functions

of the set H . Moreover, they both vanish when H is a single point by (2.7) and the absolute
continuity of µα with respect to Lebesgue measure on [−1, 1]. Hence (2.7) gives that

lim
n→∞

1

n
E [N∗

n (R \ (−1, 1))] = µα(R \ (−1, 1)) = 0.

It now follows that

lim
n→∞

1

n
E[N∗

n(R)] =
1√
3
µα((−1, 1)) =

1√
3
.

To complete the proof, observe that N∗
n(R) = Nn(R), so that E[N∗

n(R)] = E[Nn(R)], since
Ln(x) = x/an is a bijection for each fixed n. Therefore (2.4) is proved.
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