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HEIGHTS OF POLYNOMIALS OVER LEMNISCATES

IGOR PRITSKER

Dedicated to the memory of Peter Borwein

Abstract. We consider a family of heights defined by the Lp norms of polynomials with
respect to the equilibrium measure of a lemniscate for 0 ≤ p ≤ ∞, where p = 0 corresponds
to the geometric mean (the generalized Mahler measure) and p = ∞ corresponds to the
standard supremum norm. This special choice of the measure allows to find an explicit
form for the geometric mean of a polynomial, and estimate it via certain resultant. For
lemniscates satisfying appropriate hypotheses, we establish explicit polynomials of lowest
height, and also show their uniqueness. We discuss relations between the standard results
on the Mahler measure and their analogues for lemniscates that include generalizations of
Kronecker’s theorem on algebraic integers in the unit disk, as well as of Lehmer’s conjecture.

1. Polynomials of small height over lemniscates

Let µ be a positive unit Borel measure with compact support S = supp µ in the complex
plane C. For any polynomial P , one can define the standard Lp(µ) norms by setting

‖P‖p :=

(
∫

|P |p dµ

)1/p

, 0 < p < ∞, and ‖P‖∞ := sup
S

|P |, p = ∞.(1)

The other endpoint p = 0 of this range corresponds to the geometric mean with respect to
the measure µ:

‖P‖0 = M(P ) := exp

(
∫

log |P | dµ

)

.(2)

It is well known that these norms are subordinated as follows:

M(P ) ≤ ‖P‖p ≤ ‖P‖∞, 0 < p < ∞,(3)

where the first inequality is a consequence of Jensen’s inequality [10, pp. 138, 152], and the
second one is immediate.

A particular choice of the measure µ in (1) and (2) certainly depends on the problem one
wants to consider. Perhaps the most classical and popular choice is the uniform distribution
dµ(eiθ) = dθ/(2π) on the unit circumference T. This provides us with a very important
tool in the study of algebraic numbers, namely with the Mahler measure. For an arbitrary
polynomial P (z) = cn

∏n
k=1(z − zk) with cn 6= 0, the Mahler measure is given by

M(P ) := exp

(

1

2π

∫

log |P (eiθ)| dθ

)

= |cn|
n
∏

k=1

max(1, |zk|),(4)
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where the second equality is a well known consequence of Jensen’s formula, see [3] and [6]
for background and applications.

The goal of this paper is to construct a natural family of polynomial heights over lemnis-
cates that generalizes and includes the full range of the above Lp norms on the unit circle
T. In many important cases, we solve the problem of finding integer polynomials of smallest
height over a lemniscate, and show their uniqueness. The generalized Mahler measure we
introduce here is used to study algebraic integers on and near lemniscates, and obtain results
that directly correspond to Kronecker’s theorem on algebraic integers in the unit disk [16],
and other standard results related to the Mahler measure.

For a polynomial V (z) = am
∏m

k=1(z − ζk) ∈ C[z] with am 6= 0, and for any r > 0, define
its lemniscate as

L := {z ∈ C : |V (z)| = r}.(5)

We also use the filled-in lemniscate E, i.e., the union of lemniscate L and its interior in C:

E := {z ∈ C : |V (z)| ≤ r}.(6)

It is clear that if r = 0 then both L and E degenerate to the set of zeros of V . If r > 0 is
sufficiently small, then L consists of analytic closed curves, with each curve surrounding a
zero of V . In particular, if all zeros of V are simple, then we have exactly m analytic non-
intersecting components of L. When r increases, those components monotonically increase
in size because of the Maximum Modulus Principle for V , and they eventually meet at the
critical points of V . For sufficiently large r, the lemniscate L is always a single analytic
curve that approaches infinity as r → ∞. More details on the properties and geometry
of lemniscates can be found in [34, pp. 17–22]. Some of the most historically important
lemniscates include Cassini ovals and the lemniscate of Bernoulli, where both examples are
defined by V (z) = z2 − 1 with respective values r ∈ (0, 1) and r = 1. While lemniscates
are rather special curves, they can approximate essentially arbitrary geometric shapes by
Hilbert’s Lemniscate Theorem, see [22, p. 158].

We now specify the measure µ in the definitions for the polynomial heights (1) and (2)
as the equilibrium measure of the lemniscate L in the sense of logarithmic potential theory
(see [22] and [33]), which is a unit measure supported on L expressing the steady state
distribution of charge if L is viewed as conductor. This equilibrium measure is defined for
general compact sets in potential theory and complex analysis, and it already found many
applications in number theory, e.g., in connection with asymptotic distribution of algebraic
numbers. For example, the equilibrium measure was used to define generalizations of the
Weil height in [27] and [7], and of the Mahler measure in [21]. It is known that in our case
the equilibrium measure of the lemniscate L of (5) is given explicitly by

dµ(z) =
|V ′(z)|

2πmr
|dz|, z ∈ L,(7)

see [31, p. 350]. Thus the support of µ is L, and the heights we use in this paper are defined
by the integrals with respect to this measure in (1) and (2). Note that the supremum norm
in (1) is actually the maximum of |P | over L. It is immediately clear that for V (z) = z and
r = 1 the above measure reduces to the familiar dθ/(2π) on T. In fact, one does not need to
know potential theory to understand the results of this paper, which is primarily due to the
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direct generalization of (4) in the explicit version of Jensen’s formula for lemniscates stated
below.

Proposition 1.1. Let L be the lemniscate {z ∈ C : |V (z)| = r} defined by (5). If P (z) =
cn
∏n

k=1(z − zk) ∈ C[z] is any polynomial with cn 6= 0, then the generalized Mahler measure
ML(P ) with respect to the equilibrium measure µ of L in (7) is given by

ML(P ) = |cn| |am|
−n/m

(

n
∏

k=1

max(r, |V (zk)|)

)1/m

.(8)

Furthermore, we have

ML(P ) ≥ |am|
−n/m |Res(P, V )|1/m,(9)

where Res(P, V ) is the resultant of P and V .

We observe once again that if V (z) = z and r = 1, then L = T and (8) reduces to the
regular Mahler measure (4). It is also transparent from either (2) or (8) that the generalized
version of the Mahler measure inherits many properties of the classical one. For example,
it is multiplicative, i.e., ML(PQ) = ML(P )ML(Q) for any pair of polynomials P,Q. In all
subsequent results, we consider polynomials that are not identically zero, but one can also
set ML(P ) = 1 for P ≡ 0, following the standard agreement for the classical Mahler measure.

Problems on minimizing certain norms or heights by polynomials are abundant in math-
ematics in general and in number theory in particular. A selection of extremal problems on
polynomials with integer coefficients can be found, for example, in [3]. We are primarily in-
terested in the problem of minimizing the heights (1) and (2), defined by the measure µ of (7)
on lemniscates, for polynomials with integer coefficients. This group of problems has a long
history, going back to the work of Hilbert [15] on integer polynomials with small L2 norm
on an interval of the real line, some results of Schur [28] and Fekete [8] for the supremum
norm on general sets of the real line and the complex plane, and numerous applications, see,
e.g., [3], [19], [11], [32], and references therein. Despite this long history and extensive work,
finding exact solutions and extremal polynomials is usually out of reach, and even providing
good estimates proved difficult. Nevertheless, we give the exact values for the lowest heights
and exhibit the smallest polynomials, under the hypothesis that V ∈ Z[z] is irreducible, on
many important classes of lemniscates.

Theorem 1.2. Let L be defined by (5), where V (z) = amz
m + . . . ∈ Z[z] is irreducible and

0 < r ≤ 1/|am|. The smallest value of heights (1) and (2), with respect to µ of (7), for the
family of all polynomials P ∈ Z[z] of degree deg(P ) ≤ km, k ∈ N, such that P 6≡ 0, is given
by

inf{‖P‖p : P ∈ Z[z], P 6≡ 0, deg(P ) ≤ km} = rk, 0 < p ≤ ∞,(10)

and

inf{ML(P ) : P ∈ Z[z], P 6≡ 0, deg(P ) ≤ km} = rk.(11)

Furthermore, we have the following uniqueness results:
(i) If r < 1/|am| then equality holds in (10) or (11) if and only if P (z) = ±V k(z);
(ii) If r = 1/|am| < 1, then equality holds in (10) if and only if P (z) = ±V k(z);
(iii) For |am| = r = 1, equality holds in (10) if and only if P (z) = ±V k(z) or P (z) = ±1.
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In the special case V (z) = z, this result states that the extremal polynomials for circles
L centered at the origin are the monomials, which was certainly known before. For general
lemniscates, Theorem 1.2 is completely new for all p ∈ [0,∞). If p = ∞ then (10) was
already stated in Theorem 1.5 of [20], but the uniqueness of extremal polynomials part is
new even in this case. From the number theoretic point of view, the most interesting cases
of Theorem 1.2 are p = ∞ that corresponds to the integer Chebyshev (or integer transfinite
diameter) problem, and p = 0 that corresponds to the generalized Mahler measure. A
selection of references on the integer Chebyshev problem include [1], [2], [3], [4], [5], [12],
[13], [19], [20], but we do not attempt to give a comprehensive up-to-date survey. A more
or less general discussion of the integer Chebyshev problem is contained in [20]. The most
studied case of the integer Chebyshev problem is related to the interval [0, 1] ⊂ R, however
even this instance of the problem remains open to a large extent. As far as we know, the
only non-trivial case when the integer Chebyshev problem is explicitly solved (by finding the
smallest value of the supremum norm on the corresponding set and exhibiting the extremal
integer polynomials) is contained in Theorem 1.2. It is interesting that in the latter case the
polynomials of the smallest supremum norm are unique (up to a change of sign, of course).
This is not true for the integer Chebyshev problem on [0, 1], see [4, p. 665] for an example of
two different extremal polynomials of degree 4. While Theorem 1.2 does not give uniqueness
results for the polynomials P minimizing ML(P ) when r = |am| = 1 in (ii) and (iii), we fill
this gap below in Theorem 2.1. It is certainly of interest to study the remaining cases that
are not covered by Theorem 1.2 and other results of this paper, e.g., when r = |am| > 1.

For r/|am| > 1, the problem can be handled by purely analytic methods, and we find that
the smallest height polynomials on a lemniscate defined by any polynomial V with complex
coefficients are P (z) = ±1, as stated below in Proposition 1.3. One can easily see from (8)
that

ML(P ) ≥ |cn|

(

r

|am|

)n/m

≥

(

r

|am|

)n/m

,(12)

where P (z) = cnz
n + . . . ∈ Z[z], cn 6= 0. Combining this with (3), we obtain the following

result:

Proposition 1.3. Let L be defined by (5), where V (z) = amz
m+ . . . ∈ C[z] and r/|am| ≥ 1.

The smallest value of heights (1) and (2), with respect to µ of (7), for the family of all
polynomials P ∈ Z[z] such that P 6≡ 0, is given by

infML(P ) = inf ‖P‖p = 1.(13)

For r/|am| > 1, equality holds in (13) if and only if P (z) = ±1.

We give a detailed analysis for the polynomials of lowest height is the sense of the gener-
alized Mahler measure in the next section. Section 3 contains proofs of all results.

2. Generalized Mahler measure and algebraic integers

The importance of the Mahler measure (4) in number theory is primarily related to its
role in the study of algebraic numbers on and near the unit circle T, see [3], [6], [29], [30],
etc. We show in this section that the generalized Mahler measure can be used in the same
fashion to understand the distribution of algebraic numbers on or near lemniscates.
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It is immediate from (4) that the (classical) Mahler measure satisfies M(P ) ≥ 1 for any
P ∈ Z[z], P 6≡ 0, with equality holding if and only if ±P is monic and has all roots in the
closed unit disk. Since the Mahler measure is multiplicative, we obtain that M(P ) = 1 iff
M(Q) = 1 for every irreducible factor of P . Hence we can restrict our attention to irreducible
polynomials. Kronecker’s theorem [16] now gives for a monic irreducible P ∈ Z[z] that
M(P ) = 1 if and only if either P is cyclotomic or P (z) = z. In particular, the polynomials
of smallest Mahler measure are not unique in this case. Note that Theorem 1.2 does not
provide uniqueness information as V (z) = z with am = r = 1 here, but we fill this gap below.

Suppose that the polynomial V defining the lemniscate L in (5) is monic, but not neces-
sarily irreducible. Following the same argument as above in the generalized Mahler measure
case, we observe from (8) and (12) thatML(P ) ≥ rn/m for any P ∈ Z[z], P 6≡ 0, deg(P ) = n.
Moreover, ML(P ) = rn/m if and only if ±P is a monic polynomial with all roots in the filled-
in lemniscate E defined by (6). Since the generalized Mahler measure is multiplicative,
we can restrict the argument to irreducible polynomials, as before. The following version
of Kronecker’s theorem holds for ML(P ) on the lemniscate L of a polynomial V , which is
stated in terms of the composition Φ ◦ V for a cyclotomic polynomial Φ.

Theorem 2.1. Let L be defined by (5), where V (z) = zm + . . . ∈ Z[z] is monic, and r = 1.
The generalized Mahler measure (8) satisfies

ML(P ) ≥ 1, P ∈ Z[z], P 6≡ 0.(14)

Equality is attained above if and only if P has leading coefficient ±1, and all roots of P are
located in E defined by (6).

More precisely, we have ML(P ) = 1 for a monic irreducible P ∈ Z[z] if and only if either
P | V or P | Φ◦V for a cyclotomic polynomial Φ. Hence if α is an algebraic integer contained
in E together with all of its conjugates, then we have two possibilities:
(i) α is a root of V when α ∈ E◦;
(ii) α is a root of Φ ◦ V , for a cyclotomic polynomial Φ, when α ∈ L.

One interesting consequence of this result is the description of all complete sets of conjugate
algebraic integers located on a lemniscate satisfying conditions of Theorem 2.1. The fact that
we have infinitely many complete sets of conjugate algebraic integers was already observed
by Fekete and Szegő in [9, p. 162], in the form of roots for the equation V n(z) = 1, n ∈ N,
but they did not give a full description of such sets on a lemniscate.

Corollary 2.2. Let L be defined by (5), where V (z) = zm + . . . ∈ Z[z] and 0 < r ≤ 1.
(i) If 0 < r < 1 then there are no complete sets of conjugate algebraic integers located on L;
(ii) For r = 1, {αk}

n
k=1 ⊂ L is a complete set of conjugate algebraic integers if and only

if {αk}
n
k=1 is a (complete conjugate) subset of the roots of Φ ◦ V , where Φ is a cyclotomic

polynomial.

The problem of describing complete sets of conjugate algebraic integers located in a given
set is another old question that remains open in many basic cases. For example, it is known
from the same work of Kronecker [16] that complete sets of conjugates in an interval [a, a+4],
with a ∈ Z, are roots of the scaled Chebyshev polynomial 2Tn((x− a)/2). However, if a 6∈ Z
then the description of complete sets of conjugates is not known, nor it is known whether
there are infinitely many such sets in [a, a + 4]. For more information on this problem see
[24], [25], [26] and the survey [18], where one can find many additional references.

5



Our next logical step is an analogue of the celebrated Lehmer’s conjecture. The original
version appeared in [17], and it is very well known and thoroughly studied, see [3], [6], [29],
[30] for references. Since M(P ) ≥ 1 for any P ∈ Z[z], P 6≡ 0, Lehmer was interested in a
natural question on how close the Mahler measure of a non-cyclotomic polynomial can be
to 1. In fact, he observed from computations that the smallest such measure seems to be
achieved by the polynomial L(z) = z10 + z9 − z7 − z6 − z5 − z4 − z3 + z + 1:

M(P ) ≥ M(L) ≈ 1.176280818,

where P ∈ Z[z] andM(P ) 6= 1.We do not attempt to prove the original Lehmer’s conjecture,
but instead relate it to an analogous statement for lemniscates. Theorem 2.1 gives that
ML(P ) ≥ 1, P ∈ Z[z], P 6≡ 0, essentially as in the classical case L = T, and also explains
when the value 1 is achieved. Thus we are led to the question on the greatest lower bound
for the generalized Mahler measure of all polynomials P with ML(P ) > 1:

BL := inf{ML(P ) : P ∈ Z[z], ML(P ) > 1},(15)

where L is defined by (5), with V (z) = zm + . . . ∈ Z[z] and r = 1. One can rephrase the
original Lehmer’s question as whether BT = M(L), or, in a weaker form, whether BT > 1
(with V (z) = z). We show that BT > 1 is equivalent to BL > 1, i.e., the weaker form of
Lehmer’s conjecture holds if and only if its analogue holds for any lemniscate.

Theorem 2.3. Let L be defined by (5), with V (z) = zm + . . . ∈ Z[z] and r = 1. Then

(BT)
1/m ≤ BL ≤ BT.(16)

Thus BT > 1 implies BL > 1 for all lemniscates L satisfying the above assumptions, and
BL > 1 for a single such lemniscate implies BT > 1. It is clear from the proof of Theorem
2.3 that most of known lower bounds for the Mahler measure can be translated into the
corresponding analogues for the generalized Mahler measure.

3. Proofs

Proof of Proposition 1.1. We obtain from (2) that

logML(P ) =

∫

log |P | dµ = log |cn|+
n
∑

k=1

∫

log |t− zk| dµ(t),(17)

where we used that the equilibrium measure µ defined in (7) is a unit measure. We recall
some well known properties of the equilibrium potential

∫

log |t−z| dµ(t), such as [22, p. 59]
∫

log |t− z| dµ(t) = log cap(L), z ∈ E,

where cap(L) is the logarithmic capacity of L known explicitly [22, pp. 134–135] as

cap(L) =

(

r

|am|

)1/m

.

Another important fact we need is the connection between the equilibrium potential and
the Green function g(z,∞) for the complement of E with logarithmic pole at infinity [22, p.
107]:

∫

log |z − t| dµ(t) = g(z,∞) + log cap(L), z ∈ C \ E.
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Since the Green function is also known explicitly in this case [22, p. 134] as

g(z,∞) =
1

m
log

|V (z)|

r
, z ∈ C \ E,

we can summarize these findings in the following formula for the equilibrium potential:
∫

log |z − t| dµ(t) =

{

1
m
log r

|am|
, z ∈ E;

1
m
log |V (z)|

|am|
, z ∈ C \ E.

=
1

m
log

max(r, |V (z)|)

|am|
, z ∈ C.

Applying the latter explicit evaluation of the equilibrium potential in (17), and passing to
the exponential form, we verify (8).

It is immediate from (8) that

ML(P ) = |cn| |am|
−n/m

(

n
∏

k=1

max(r, |V (zk)|)

)1/m

≥ |am|
−n/m

(

|cn|
m

n
∏

k=1

|V (zk)|)

)1/m

= |am|
−n/m |Res(P, V )|1/m,

so that (9) is also proved. �

We state a simple fact needed in the proof of Theorem 1.2.

Lemma 3.1. Let L be defined by (5) with V (z) = amz
m + . . . ∈ Z[z], am 6= 0.

If Q ∈ Z[z], deg(Q) = l ∈ N, satisfies

|am|
l(ML(Q))m < 1,

then Res(Q, V ) = 0. If, in addition, V is irreducible, then V | Q.

Proof. It follows from (9) that

|Res(Q, V )| ≤ |am|
l(ML(Q))m < 1.

Since Q, V ∈ Z[z], we have that Res(Q, V ) ∈ Z, and therefore Res(Q, V ) = 0. The last claim
is clear. �

Proof of Theorem 1.2. Note that if P = V k, k ∈ N, then ‖P‖p = ML(P ) = rk. Thus to
prove (10) and (11) we need to show that ‖P‖p < rk or ML(P ) < rk is not possible for
P ∈ Z[z], P 6≡ 0, deg(P ) = n ≤ km. If ‖P‖p < rk then ML(P ) < rk by (3), so that we
assume the latter inequality holds and reach a contradiction. For that purpose, suppose that
P = V dR, where d ≥ 0 and R ∈ Z[z], V ∤ R, deg(R) = n − dm ≤ (k − d)m. Observe that
d < k here, because otherwise P = cV k, |c| ∈ N, and ‖P‖p = ML(P ) = |c|rk ≥ rk. Since
ML(P ) = ML(V

d)ML(R) = rdML(R) and ML(P ) < rk by our assumption, we conclude that
ML(R) < rk−d. But |am|r ≤ 1 gives that

|am|
n−dm(ML(R))m ≤ |am|

(k−d)m(ML(R))m < (|am|r)
(k−d)m ≤ 1.

It follows from Lemma 3.1 with Q = R that V | R, contradicting our assumption.
We now turn to the proof of uniqueness statements (i)-(iii).
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Proof of (i) Note first that ‖P‖p = rk impliesML(P ) = rk by (3) and (11). If |am|r < 1 and
ML(P ) = rk, then we let P = V dR, where R ∈ Z[z], V ∤ R, deg(R) = n− dm ≤ (k − d)m,
as in the first part of this proof. This yields ML(P ) = ML(V

d)ML(R) = rdML(R) and
ML(R) = rk−d. If d < k then |am|r < 1 gives that

|am|
n−dm(ML(R))m ≤ |am|

(k−d)m(ML(R))m = (|am|r)
(k−d)m < 1,

and Lemma 3.1 leads us to the contradiction V | R. Hence d = k and R is a constant
polynomial, which must be ±1 to satisfy ML(P ) = rk.

Proof of (ii) Here we have |am|r = 1, r < 1 and ‖P‖p = rk, 0 < p ≤ ∞. If ML(P ) <
‖P‖p = rk then we proceed in essentially the same way as before by assuming that P = V dR,
where R ∈ Z[z], V ∤ R, deg(R) = n − dm ≤ (k − d)m. Since ML(P ) = ML(V

d)ML(R) =
rdML(R) and ML(P ) < rk, we obtain that ML(R) < rk−d and d < k. This gives again that

|am|
n−dm(ML(R))m ≤ |am|

(k−d)m(ML(R))m < (|am|r)
(k−d)m = 1.

Applying Lemma 3.1, we obtain that V | R, contradicting our assumption.
It remains to handle the case when ML(P ) = ‖P‖p. From the equality case in Jensen’s

inequality, see [10, p. 138], we know that ML(P ) = ‖P‖p is possible if and only if |P (z)| is
constant for all z ∈ L. The latter means that |P (z)| = rk, z ∈ L, and P is not a constant, as
r < 1. Once again, we set P = V dR, where R ∈ Z[z], V ∤ R, deg(R) = n− dm ≤ (k − d)m,
which implies |R(z)| = rk−d, z ∈ L. Since the roots of V denoted by {ζj}

m
j=1 are all located

inside L, the Maximum Modulus Principle implies that |R(ζj)| < rk−d, j = 1, . . . , m. We
obtain directly from the resultant formula that

|Res(R, V )| = |am|
n−dm

m
∏

j=1

|R(ζj)| < |am|
(k−d)mr(k−d)m = 1.

Thus Res(R, V ) = 0, and the polynomials V and R have a common root. Since V is
irreducible, we obtain that V | R in contradiction to our assumption.

Proof of (iii) This proof is almost identical to that of case (ii), with one additional pos-
sibility that an extremal polynomial P may be constant. But if P ≡ c then c = ±1, as
‖P‖p = rk = 1. �

Proof of Proposition 1.3. As we already noted before the statement of this proposition, a
combination of (3) and (12) gives (13). Indeed,

‖P‖p ≥ ML(P ) ≥ |cn|

(

r

|am|

)n/m

≥

(

r

|am|

)n/m

≥ 1,

where P (z) = cnz
n + . . . ∈ Z[z], cn 6= 0. Equality is always achieved in (13) by P = ±1. But

if n > 0 and r/|am| > 1, then the above estimate shows that such a polynomial P cannot be
extremal for (13). Thus any extremal P must be constant when r/|am| > 1, and obviously
P = ±1. �

Proof of Theorem 2.1. Inequality (14) follows from (8) and (12) as was already explained
before the statement of this theorem. In the case of equality in (14), we have under our
assumptions that for P (z) = cn

∏n
k=1(z − zk) ∈ Z[z] with cn 6= 0 the generalized Mahler
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measure

ML(P ) = |cn|

(

n
∏

k=1

max(1, |V (zk)|)

)1/m

= 1.

The above equality holds if and only if |cn| = 1 and |V (zk)| ≤ 1, k = 1, . . . , n, which is
equivalent to {zk}

n
k=1 ⊂ E.

Suppose now that P (z) =
∏n

k=1(z − αk) ∈ Z[z] is irreducible, i.e., it is the minimal
polynomial for a complete set of conjugate algebraic integers {αk}

n
k=1. We showed that

ML(P ) = 1 if and only if {αk}
n
k=1 ⊂ E, which is the same as |V (αk)| ≤ 1, k = 1, . . . , n.

Define the monic polynomial Q(w) =
∏n

k=1(w − V (αk)), and note that its coefficients are
symmetric polynomials in {αk}

n
k=1 with integer coefficients. Hence the coefficients of Q

are integer polynomials in elementary symmetric functions of {αk}
n
k=1, and are ultimately

integers. Thus Q is a monic polynomial with integer coefficients and roots {V (αk)}
n
k=1

located in the closed unit disk. Kronecker’s theorem now implies that either V (αk) = 0
(when |V (αk)| < 1) or V (αk) is a root of unity (when |V (αk)| = 1). In the first case
V (αk) = 0, we have that αk is also a root of the irreducible monic polynomial P , so that
P | V and V (αk) = 0 for all k = 1, . . . , n. In the second case |V (αk)| = 1, there is a
cyclotomic polynomial Φ such that Φ(V (αk)) = 0, which means that Φ ◦ V ∈ Z[z] shares
a root with the irreducible polynomial P ∈ Z[z]. Hence we obtain that P | Φ ◦ V and
Φ(V (αk)) = 0 for all k = 1, . . . , n. This completes the proof of Theorem 2.1, and also of part
(ii) for Corollary 2.2. �

Proof of Corollary 2.2. We start with part (i). If a complete set of conjugate algebraic
integers {αk}

n
k=1 is located on L then

ML(P ) =

(

n
∏

k=1

max(r, |V (αk)|)

)1/m

= rn/m

for the minimal polynomial P (z) =
∏n

k=1(z − αk). Since V (z) is assumed monic, we obtain
that

|am|
n(ML(P ))m = rn < 1,

and applying Lemma 3.1, we conclude that Res(P, V ) = 0 and P | V. It follows that all roots
of P coincide with some roots of V , and are located inside L.

Part (ii) was already established in the proof of Theorem 2.1. �

Proof of Theorem 2.3. If Q(w) = bn
∏n

k=1(w − βk) ∈ Z[w] is any polynomial such that
M(Q) > 1, then we either have |bn| > 1 or |bn| = 1 and |βj| > 1 for some j, 1 ≤ j ≤ n. Con-
sider P (z) = Q(V (z)) ∈ Z[z], deg(P ) = mn, with roots {αi,k}, i = 1, . . . , m, k = 1, . . . , n,
that satisfy V (αi,k) = βk, i = 1, . . . , m, for all k = 1, . . . , n. Note that |βj | > 1 implies that
αi,j 6∈ E for all i = 1, . . . , m. Thus we have

ML(P ) = |bn|

(

n
∏

k=1

m
∏

i=1

max(1, |V (αi,k)|)

)1/m

= |bn|

n
∏

k=1

max(1, |βk|) = M(Q).

9



It is clear now that ML(P ) > 1, and so ML(P ) ≥ BL by (15). Hence M(Q) ≥ BL and we
obtain BT ≥ BL by taking infimum over all Q.

Let P (z) = cn
∏n

k=1(z − αk) ∈ Z[z] be any polynomial such that ML(P ) > 1, which
means that either |cn| > 1 or |cn| = 1 and αj 6∈ E for some j, 1 ≤ j ≤ n, by Theorem
2.1. Consider Q(w) = cmn

∏n
k=1(w − V (αk)) and observe that the coefficients of Q/cmn are

symmetric polynomials in {αk}
n
k=1 with integer coefficients, whose degree in each αk does not

exceedm. Hence these coefficients are integer polynomials in elementary symmetric functions
of {αk}

n
k=1, of degree at most m, and therefore they become integers after multiplying by

cmn . Thus Q ∈ Z[w]. We also note that either |cn| > 1 or |V (αj)| > 1 implies M(Q) > 1. It
follows that

ML(P ) = |cn|

(

n
∏

k=1

max(1, |V (αk)|)

)1/m

= (M(Q))1/m ≥ (BT)
1/m ≥ 1.

Thus we obtain BL ≥ (BT)
1/m from the definition (15). �
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(Grenoble) 40 (1990), 885–911.

[2] F. Amoroso, f -transfinite diameter and number theoretic applications, Ann. Inst.

Fourier (Grenoble) 43 (1993), 1179–1198.

[3] P. Borwein, Computational Excursions in Analysis and Number Theory, Springer-

Verlag, New York, 2002.
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