
The Best Keying Protocol for Sensor Networks

Taehwan Choi
Department of Computer Science
The University of Texas at Austin

Email: ctlight@cs.utexas.edu

H. B. Acharya
Department of Computer Science
The University of Texas at Austin

Email: acharya@cs.utexas.edu

Mohamed G. Gouda
The University of Texas at Austin
The National Science Foundation

Email: mgouda@nsf.gov

Abstract—Many sensor networks, especially mobile
networks or those networks that are deployed to mon-
itor crisis situations, are deployed in an arbitrary and
unplanned fashion. Thus, any sensor in such a network
may end up being adjacent to any other sensor in the
network. To secure the communications between every
two adjacent sensors in such a network, each sensor x
in the network needs to store n− 1 symmetric keys that
x shares with the other sensors, where n is the number
of sensors in the network. This storage requirement of
the keying protocol is rather severe, especially when
n is large and the available storage in each sensor is
modest. Earlier efforts to redesign this keying protocol
and reduce the number of keys to be stored in each
sensor have produced protocols that are vulnerable to
collusion. In this paper, we present a collusion-proof
keying protocol where each sensor needs to store (n+1)

2
keys, which is much less than the n−1 keys in the original
keying protocol. We also show that in any collusion-proof
keying protocol, each sensor needs to store at least (n−1)

2
keys.

I. INTRODUCTION

In many sensor networks, there is a need for secure
communication; we would like to ensure that one sen-
sor cannot eavesdrop on the communication between
two other sensors. However, the situation is sometimes
complicated by the additional problem that the topol-
ogy of the network is not known before the sensors
are deployed. For example, sensors may be mobile,
so the topology of the network changes continuously
[5]. Or it may be the case that the deployment has to
be carried out immediately, and complete information
about the field of deployment is not available [6], [8].
In such cases, the system designer does not have prior
knowledge of which sensor will need to communicate
with which other sensor. The naive solution to this
problem is to provide each sensor with symmetric keys

so it can communicate with every other sensor; this
leads to each sensor storing (n − 1) symmetric keys,
where n is the number of nodes in the network. As
a sensor has very limited storage and computational
power, for a large network with thousands of nodes,
this naive scheme uses too much storage space.

There are two major approaches to the problem of
reducing the number of keys stored in each node. The
first solution is probabilistic [3]. Every sensor gets a
random group of keys. Adjacent sensors check to see
which keys they have in common. They then use the
combination of their common keys as the shared key
to encrypt messages. The hope is that the probability
is very small that any sensor adjacent to both has all
the same keys. This scheme is vulnerable in general,
though the probability is small; clearly, it becomes far
more vulnerable when some nodes collude and share
all their keys.

The second solution to the key storage problem is
deterministic, and also makes use of multiple part-keys.
The basic idea is that each sensor stores some number
of part-keys, and uses a combination of these keys as
the shared key to encrypt secure communication. Each
node stores a different subset of the set of available
small keys. Hence, for every pair of sensor nodes, we
choose the set of part-keys they have in common, and
use the key formed of all these parts to encrypt their
communication; if no other node has all the required
part-keys, it cannot decrypt the conversation. This idea
is developed in [7], [4], [1] and [2]. Unfortunately, this
idea is also vulnerable to collusion - a small number
of nodes can get together and pool their part-keys, and
thereby obtain all the part-keys in the network; this
enables them to break the security of communication
at will.

This raises the question of whether it is even possible
to solve the problem of key storage without making

the network vulnerable to collusion. In this paper, we
demonstrate that it is indeed possible, and not only
show a lower bound for the number of keys in such
a network, but also develop a keying scheme that
approaches this lower bound. (We store exactly one
key per node more than the lower bound.)

II. SENSOR NETWORKS AND ADVERSARIES

In this paper, we investigate a sensor network whose
topology is not planned in advance, prior to the de-
ployment of the network. Thus, when the network is
deployed, any sensor can end up being adjacent to any
other sensor in the network.

(There are many occasions when a sensor network
needs to be deployed before its topology can be
planned in great detail. For example, when a wildfire
breaks out unexpectedly, a sensor network that moni-
tors the fire may need to be deployed in a hurry, before
the network topology can be planned accurately. A
second example, when a sensor network is deployed in
a battlefield whose perimeter is continuously changing,
the topology of the network cannot be determined fully
until the time when the network is to be deployed.
As a third example, if the deployed sensor network is
mobile, then a detailed plan of the initial topology may
be of little value.)

In this network, when a sensor x is deployed, it first
attempts to identify the identity of each sensor adjacent
to x, then starts to exchange data with each of those
adjacent sensors.

Any sensor z in this network can be an “adversary”,
and can attempt to disrupt the communication between
any two legitimate sensors (say sensors x and y) by
launching the following two attacks:

1) Impersonation Attack:
Sensor z notices that it is adjacent to sensor x
while sensor y is not. Thus, sensor z attempts to
convince sensor x that it (z) is in fact sensor y.
If sensor z succeeds, then sensor x may start to
exchange data messages with sensor z, thinking
that it is communicating with sensor y.

2) Eavesdropping Attack:
Sensor z notices that it is adjacent to both sensors
x and y, and that sensors x and y are adjacent to
one another. Thus, when sensors x and y start to
exchange data messages, sensor z can copy each
exchanged data message between x and y.

To defend against these two types of attacks, sensors
x and y need to share a symmetric key, denoted Kx,y.
The key Kx,y needs to be stored in both x and y, and
not in any other sensor in the network, before these
two sensors are deployed in the network. In Sections
IV and V below, we show how sensors x and y can
use their shared key Kx,y to defend against these two
types of attacks.)

It follows from this discussion that each sensor x
should store a symmetric key Kx,y, for every sensor
y that is adjacent to sensor x in the network, before
the network is deployed. Unfortunately, as mentioned
above, the facts of which sensor is adjacent to which
other sensor can be deduced only after the network
is deployed. Therefore, each sensor x should store a
symmetric key Kx,y for every other sensor y in the
network, before the network is deployed.

If the network has n sensors, then each sensor in the
network needs to store (n− 1) symmetric keys before
the network is deployed. If n is large, then the storage
requirement, just to store the required shared keys, is
relatively large, especially since the size of storage in
each sensor is relatively small.

To solve this problem, we present the following two
results in this paper:

1) Efficiency:
There is a keying protocol, where each sensor
ends up sharing a distinct symmetric key with
every other sensor in the network, and yet each
sensor needs to store exactly n+1

2 symmetric
keys, before the network is deployed.

2) Optimality:
In every keying protocol, where each sensor ends
up sharing a distinct symmetric key with every
other sensor in the network, each sensor needs
to store at least n−1

2 symmetric keys, before the
network is deployed.

III. THE KEYING PROTOCOL

We consider a network of n sensors. Without loss of
generality, we assume that n is an odd positive integer.
Each sensor in the network has a unique identifier in
the range 0 . . . n − 1. We use ix and iy to denote
the identifiers of sensors x and y, respectively, in this
network.

Each two sensors, say sensors x and y, share a
symmetric key denoted Kx,y or Ky,x. Only the two
sensors x and y know their shared key Kx,y. And if

sensors x and y ever become neighbors in the network,
then they can use their shared symmetric key Kx,y to
perform two functions:

1) Mutual Authentication:
Sensor x authenticates y and sensor y authenti-
cates x.

2) Confidential Data Exchange:
Encrypt all the exchanged data messages be-
tween x and y.

(Note that sensors x and y can become neighbors
in the network in two occasions. First, the two sensors
x and y could be mobile and their movements cause
them to become adjacent to one another. Second, the
two sensors could be stationary and they are deployed
adjacent to one another.)

It follows from the above discussion that each sensor
x in the network needs to store n−1 shared symmetric
keys, namely Kx,y for every y different from x.

In the remainder of this section, we show that if
the shared symmetric keys are designed to have a
“special structure”, then each sensor needs to store
only (n+1)

2 shared symmetric keys. But before we
present the special structure of the shared keys , we
need to introduce two new concepts: “universal keys”
and “a circular relation, named below, over the sensor
identifiers”.

Each sensor x in the network stores a symmetric key,
called the universal key of sensor x. The universal key
of sensor x, denoted ux, is known only to sensor x.

Let ix and iy be two distinct sensor identifiers.
(Recall that both ix and iy are in the range 0 . . . n−1,
where n is the odd number of sensors in the sensor
network.) Identifier ix is said to be below identifier iy
iff exactly one of the following two conditions holds:

1) ix < iy and (iy − ix) < n/2
2) ix > iy and (ix− iy) > n/2

The below relation is better explained by an exam-
ple. Consider the case where n = 5. In this case, the
sensor identifier s are 0, 1, 2, 3, and 4, and we have:

• Identifier 0 is below identifiers 1 and 2.
• Identifier 1 is below identifiers 2 and 3.
• Identifier 2 is below identifiers 3 and 4.
• Identifier 3 is below identifiers 4 and 0.
• Identifier 4 is below identifiers 0 and 1.

The next three theorems, concerning the below re-
lation, are in order.

Theorem 1. For any two distinct sensor identifiers ix
and iy, one of the following two statements is true.

1) ix is below iy.
2) iy is below ix.

Proof: Let ix and iy be any two distinct sensor
identifiers. Thus, ix and iy are two distinct integers
in the range 0 . . . (n − 1). Without loss of generality,
assume that ix < iy. Because n is an odd integer,
exactly one of the following two statements holds.

(1) iy − ix < n
2

(2) iy − ix > n
2

If statement (1) holds then ix is below iy. Otherwise
statement (2) holds and iy is below ix.

Theorem 2. For each sensor identifier ix, the number
of distinct sensor identifiers iy, where ix is below iy,
is (n−1)

2 .

Proof: Each of the following (n−1)
2 sensor identi-

fiers is below ix:

(ix− 1) mod n

(ix− 2) mod n

...

(ix− n− 1
2

) mod n

Also, ix is below each of the following (n−1)
2 sensor

identifiers:

(ix + 1) mod n

(ix + 2) mod n

...

(ix +
n− 1

2
) mod n

Thus, the number of distinct sensor identifiers iy,
where iy is below ix, is (n−1)

2 .
Also, the number of distinct sensor identifiers iy,

where ix is below iy, is (n−1)
2 .

Theorem 3. For each sensor identifier ix, the number
of distinct sensor identifiers iy, where iy is below ix,
is (n−1)

2 .

Proof: The proof is similar to that of Theorem 2.

The special structure of the symmetric key Kx,y, in
the case where ix is below iy, is defined as follows:

Kx,y = H(ix|uy)

where

H is a secure hash function
| is the concatenation operator
ix is the identifier of sensor x
uy is the universal key of sensor y

Note that in this case (where ix is below iy), the
symmetric key Kx,y needs to be stored in sensor x only
since sensor y can compute this key (using H, |, ix, and
uy) whenever it needs it.

Note also that in the other case (where iy is below
ix), the special structure of the symmetric key Kx,y is
H(iy|ux). And in this case, Kx,y needs to be stored
in sensor y only since sensor x can compute this key
whenever it needs it.

The correctness of this keying protocol follows from
the next theorem.

Theorem 4. If a sensor identifier ix is below a sensor
identifier iy, then the symmetric key Kx,y = H(ix|uy)
is stored in sensor x and can be computed by sensor
y when needed. No other sensor stores Kx,y or can
compute it.

Proof: Assume that a sensor identifier ix is below
a sensor identifier iy. By our keying protocol the
symmetric key that is shared between sensors x and y,
namely H(ix|uy), is stored in sensor x only. Moreover,
because sensor y is the only one that knows the
universal key uy, only sensor y can compute the key
H(ix|uy).

Theorem 5. Each sensor x stores one universal key
ux and (n−1)

2 symmetric keys Kx,y for every sensor y,
where ix is below iy.

Proof: According to the above keying protocol,
each sensor x stores its universal key ux. Also, each
sensor x stores the symmetric keys Kx,y that sensor x
shares with every sensor y where ix is below iy. From
Theorem 2, there are (n−1)

2 sensors y where ix is below
iy. Therefore, each sensor x stores (n−1)

2 symmetric
keys.

IV. A MUTUAL AUTHENTICATION PROTOCOL

Before our sensors are deployed in the network, each
sensor x is supplied with the following items:

1) One distinct identifier ix in the range 0 . . . n− 1
2) One universal key ux

3) (n−1)
2 symmetric keys Kx,y = H(ix|uy) each of

which is shared between sensor x and another
sensor y, where ix is below iy

After every sensor is supplied with these items,
the sensors are deployed in random locations in the
network.

Now if two sensors x and y happen to become
adjacent to one another, then these two sensors need to
execute a mutual authentication protocol so that sensor
x proves to sensor y that it is indeed sensor x and
sensor y proves to sensor x that it is indeed sensor y.

The mutual authentication protocol consists of the
following six steps.
Step 1: Sensor x selects a random nonce nx and sends
a hello message that is received by sensor y.

x→ y : hello(ix, nx)

Step 2: Sensor y selects a random nonce ny and sends
a hello message that is received by sensor x.

x← y : hello(iy, ny)

Step 3: Sensor x determines whether ix is below
iy. Then it either fetches Kx,y from its memory or
computes it. Finally, sensor x sends a verify message
to sensor y.

x→ y : verify(ix, iy,H(ix|iy|ny|Kx,y))

Step 4: Sensor y determines whether iy is below
ix. Then it either fetches Kx,y from its memory or
computes it. Finally, sensor y sends a verify message
to sensor x.

x← y : verify(iy, ix,H(iy|ix|nx|Kx,y))

Step 5: Sensor x computes H(iy|ix|nx|Kx,y) and
compares it with the received H(iy|ix|nx|Kx,y).
If they are equal, then x concludes that the sensor
claiming to be sensor y is indeed sensor y. Otherwise,
no conclusion can be reached.

Step 6: Sensor y computes H(ix|iy|ny|Kx,y) and
compares it with the received H(ix|iy|ny|Kx,y). If
they are equal, then y concludes that the sensor claim-
ing to be sensor x is indeed sensor x. Otherwise, no
conclusion can be reached.

V. A DATA EXCHANGE PROTOCOL

After two adjacent sensors x and y have
authenticated one another using the mutual
authentication protocol described in the previous
section, sensors x and y can now start exchanging
data messages according to the following protocol.
(Recall that nx and ny are the two nonces that were
selected at random by sensors x and y, respectively,
in the mutual authentication protocol.)

Step 1: Sensor x concatenates the nonce ny with
the text of the data message to be sent, encrypts the
concatenation using the symmetric key Kx,y, and sends
the result in a data message to sensor y.

x→ y : data(ix, iy,Kx,y(ny|text))

Step 2: Sensor y concatenates the nonce nx with
the text of the data message to be sent, encrypts the
concatenation using the symmetric key Kx,y, and sends
the result in a data message to sensor x.

x← y : data(iy, ix,Kx,y(nx|text))

Sensors x and y can repeat Steps 1 and 2 any number
of times to exchange data between themselves.

VI. OPTIMALITY OF KEYING PROTOCOL

According to our keying protocol, described in Sec-
tion III, each sensor in the network is required to store
only (n+1)

2 keys. Thus, the total number of keys that
need to be stored in the sensor network is n(n+1)

2 .
(This is much better than storing n(n − 1) keys in
the sensor network as dictated by the straightforward
keying protocol.)

Despite the big saving in storage, that is achieved
by our keying protocol, one wonders ”Is there another
keying protocol that requires the network to store
much less than n(n+1)

2 keys?” The following theorem
indicates that the answer to this question is ”No”.

Theorem 6. Each keying protocol requires the sensor
network to store at least n(n−1)

2 keys.

Proof: There are n(n−1)
2 distinct symmetric keys

in our sensor network. Thus, to prove that this theorem
holds, it is sufficient to prove that every one of those
symmetric keys, say Kx,y, causes a distinct key to be
stored in sensor x or in sensor y. We carry out this
proof by contradiction.

Assume that some symmetric key Kx,y does not
cause a distinct key to be stored in either sensor x or
in sensor y. In this case, sensor x stores a key kx that
x can use to compute at least two symmetric shared
keys Kx,y and Kw,x as follows.

Kx,y = F (iy, kx) (1)

Kw,x = F (iw, kx) (2)

where F is a well-known function that can be used by
each sensor to compute its shared keys from its stored
keys.

Similarly, sensor y stores a key ky that y can use to
compute at least two symmetric shared keys Kx,y and
Ky,z as follows.

Kx,y = F (ix, ky) (3)

Ky,z = F (iz, ky) (4)

From (1) and (3) above, we have

F (iy, kx) = F (ix, ky) (5)

Sensor x should not be allowed to utilize (5) and
deduce key ky (in order that x be prevented from com-
puting the shared key Ky,z). Therefore, there should
not be any effectively computable function G, such
that

G(ix, F (ix, ky)) = ky (6)

Similarly, sensor y should not be allowed to utilize
(5) and deduce key kx (in order that y be prevented
from computing the shared key Kw,x). Therefore, there
should not be any effectively computable function H ,
such that

H(iy, F (iy, kx)) = kx (7)

From (6) and (7), we conclude the following.
(i) Because there is no effectively computable func-

tion G that satisfies (6), there is no effective
way to compute key ky in sensor y from key
kx in sensor x before the two sensors x and y
are deployed in the network.

(ii) Because there is no effectively computable func-
tion H that satisfies (7), there is no effective
way to compute key kx in sensor x from key ky
in sensor y before the two sensors x and y are
deployed in the network.

From (i) and (ii), we conclude that the two secrets
kx and ky cannot be computed and stored in sensors
x and y respectively. Contradiction!

A keying protocol is called uniform iff this proto-
col requires each sensor in the network to store the
same number of keys. Notice that the keying protocol
described in Section III is uniform. Notice also that
the next theorem, concerning uniform keying protocols,
follows from Theorem 6.

Theorem 7. Each uniform keying protocol requires
each sensor in the network to store at least (n−1)

2 keys.

From Theorem 7, our keying protocol requires each
process to store no more than one key beyond the
number of keys that need to be stored in each process
by the best uniform keying protocol. Thus, for all
practical purposes, our protocol is the best uniform
keying protocol for sensor networks.

VII. CONCLUDING REMARKS

Typically, each sensor in a sensor network with n
sensors needs to store n − 1 shared symmetric keys
to communicate securely with each other. Thus, the
number of shared symmetric keys stored in the sensor
network is n(n − 1). However, the optimal number
of shared symmetric keys for secure communication,
theoretically, is

(
n
2

)
= n(n−1)

2 . Although there have
been many approaches that attempt to reduce the
number of shared symmetric keys, they lead to a
loss of security: they are all vulnerable to collusion.
In this paper, we show the best keying protocol for
sensor networks, that needs to store only (n+1)

2 shared
symmetric keys to each sensor. The number of shared
symmetric keys stored in a sensor network with n

sensors is n(n+1)
2 , which is close to the optimal number

of shared symmetric keys for any key distribution
scheme that is not vulnerable to collusion.

It may be noted that in addition to the low number of
keys stored, and the ability to resist collusion between
sensors, our keying protocol has two further advan-
tages. Firstly, it is uniform: we store the same number
of keys in each sensor. Secondly, it is computationally
cheap, and thus suitable for a low-power computer
such as a sensor: when two sensors are adjacent to
each other, the computation of a shared symmetric key
requires only hashing, which is a cheap computation
and can be done fast. As our protocol has many
desirable properties, such as efficiency, uniformity and

security, we call this protocol the best keying protocol
for sensor networks.

REFERENCES

[1] A. Aiyer, L. Alvisi, and M. Gouda. Key grids: A
protocol family for assigning symmetric keys. Network
Protocols, IEEE International Conference on, 0:178–
186, 2006.

[2] E. S. Elmallah, M. G. Gouda, and S. S. Kulkarni.
Logarithmic keying. ACM Trans. Auton. Adapt. Syst.,
3:18:1–18:18, December 2008.

[3] L. Eschenauer and V. D. Gligor. A key-management
scheme for distributed sensor networks. In Proceedings
of the 9th ACM conference on Computer and communi-
cations security, CCS ’02, pages 41–47, 2002.

[4] L. Gong and D. J. Wheeler. A matrix key-distribution
scheme. Journal of Cryptology, 2:51–59, January 1990.

[5] A. Howard, M. J. Mataric, and G. S. Sukhatme. Mobile
sensor network deployment using potential fields: A dis-
tributed, scalable solution to the area coverage problem.
pages 299–308, 2002.

[6] S. Hynes and N. C. Rowe. A multi-agent simulation for
assessing massive sensor deployment. JOURNAL OF
BATTLEFIELD TECHNOLOGY, 7:23–36, 2004.

[7] S. S. Kulkarni, M. G. Gouda, and A. Arora. Secret in-
stantiation in ad-hoc networks. Special Issue of Elsevier
Journal of Computer Communications on Dependable
Wireless Sensor Networks, 29:200–215, 2005.

[8] S. Sana and M. Matsumoto. A wireless sensor network
protocol for disaster management. In Information,
Decision and Control, 2007. IDC ’07, pages 209 –213,
2007.

