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COMPANIONSHIP OF KNOTS AND THE SMITH CONJECTURE

BY

ROBERT MYERS

Abstract. This paper studies the Smith Conjecture in terms of H. Schubert's

theory of companionship of knots. Suppose / is a counterexample to the Smith

Conjecture, i.e. is the fixed point set of an action of Z on S3. Theorem. Every

essential torus in an invariant knot space C(J) of J is either invariant or disjoint from

its translates. Since the companions of / correspond to the essential tori in C(J),

this often allows one to split the action among the companions and satellites of J.

In particular: Theorem. If J is composite, then each prime factor of J is a

counterexample, and conversely. Theorem. The Smith Conjecture is true for all

cabled knots. Theorem. The Smith Conjecture is true for all doubled knots. Theo-

rem. The Smith Conjecture is true for all cable braids. Theorem. The Smith

Conjecture is true for all nonsimple knots with bridge number less than five. In

addition we show: Theorem. If the Smith Conjecture is true for all simple fibered

knots, then it is true for all fibered knots. Theorem. The Smith Conjecture is true for

all nonfibered knots having a unique isotopy type of incompressible spanning surface.

1. Introduction. The Smith Conjecture states that no nontrivial knot is the fixed

point set of a periodic PL homeomorphism of S3. The theory of companionship of

knots studies ways in which a given knot can be constructed from "smaller" knots

in a manner generalizing the familiar process of composition of knots. This paper

investigates the Smith Conjecture via this companionship structure. The main

results relate the problem of whether a given knot can be a counterexample to the

Smith Conjecture to the same problem for the "smaller" knots of which it is

constructed. Using these results the Smith Conjecture is proven for several well-

known classes of knots.

In the interval since the completion of this paper, a completely general proof of

the Smith Conjecture has been discovered. The reader is referred to the announce-

ment by Gordon and Litherland (Notices Amer. Math. Soc. 26 (1978), A-252). This

proof follows from two recent results: an equivariant version of the loop theorem

and Dehn's lemma, proven by Meeks and Yau using minimal surface theory, and

work of Thurston, Bass and Shalen on the existence of non-boundary parallel,

closed incompressible surfaces in certain knot spaces. The latter work depends on

Thurston's existence theorem for hyperbolic structures on 3-manifolds.

The present paper is published in the hope that some of its techniques and

theorems will be of independent interest. The reader should note that Conjecture

9.7 on "symmetric trivial links" is an immediate consequence of the equivariant

Dehn's lemma.

Presented to the Society, June 9, 1978; received by the editors September 22, 1978 and, in revised

form, May 23, 1979.

AMS (MOS) subject classifications (1970). Primary 55A25, 57A10, 57E30; Secondary 55A10, 55C35.
Key words and phrases. Smith Conjecture, knot, companion, periodic transformation, fibered knot,

simple knot, cabled knot, doubled knot, braid, 3-manifold.
© 1980 American Mathematical Society

0002-9947/80/0000-0200/$09.00



2 ROBERT MYERS

In 1939, P. A. Smith [33] proved that the fixed point set AT of a periodic

homeomorphism h of S3 is homeomorphic to a sphere of some dimension r,

-1 < r < 2. Thus if r = 1, K is a simple closed curve and one can ask whether K is

knotted. Examples given by Montgomery and Zippin [26] and Bing [1] of cyclic

actions for which AT is a wild knot indicated that one should restrict the problem to

the PL category. In this setting Moise [24] showed that K is unknotted if and only

if h is conjugate to a rotation. (See also Smith [34].) It follows from the work of

Smith that one need only consider prime periods. One approach to the Smith

Conjecture is to show that for various classes of knots K and periods/» there is no

action of period p having fixed point set K. This was accomplished for K a 2-strand

cable and p = 2 by Montgomery and Samelson [25], for K a torus knot and p

arbitrary by Giffen [12] (see also Fox [11]), for K arbitrary and p even by

Waldhausen [38], and for K a 2-bridge knot and p arbitrary by Cappell and

Shaneson [5]. In addition Kinoshita [20] and Fox [8], [10] found conditions on the

Alexander polynomial of K which allowed them to rule out several combinations of

K and p. These conditions are difficult to apply to large classes of knots; they fail,

for example, to prove the results for torus and 2-bridge knots, and they say nothing

about knots with trivial Alexander polynomials (e.g. untwisted doubled knots).

However, our results show that the applicability of these conditions can often be

considerably extended.

In a sequence of papers [28], [29], [30], [31] in the 1950s H. Schubert developed a

theory of "companionship" of knots which generalized the classical notion of

composition of knots. This theory included the classical constructions of composite

knots (Produktknoten), cabled knots (Schlauchknoten), and doubled knots

(Schlingknoten), as well as a generalization of cabled knots called cable braids

(Schlauchzöpfe). The general construction is roughly as follows: Let L be a simple

closed curve lying in a non trivial fashion in an unknotted solid torus V in S3. Tie V

into a knotted solid torus W with core K and let J be the image of L in W. Then K

is a companion and L a satellite of J. A knot with no companions is called simple.

Companionship induces a partial ordering on the set of nontrivial knot types with

the simple knot types as minimal elements. A given knot type has only finitely

many companions, each appearing with a finite "multiplicity".

Our general program is to reduce the Smith Conjecture as far as is possible to the

study of simple knots. We obtain two principal results in this direction. Theorem

5.1 reduces the problem to the study or prime knots: If the Smith Conjecture is true

for prime knots then it is true for all knots. For fibered knots the program succeeds

completely in Theorem 9.12: If the Smith Conjecture is true for simple fibered

knots, then it is true for all fibered knots. A weaker reduction theorem for

nonfibered knots is given in Theorem 9.2. We also state two conjectures (9.6 and

9.7) which, if true, would complete the program in the general case.

Given an alleged counterexample J to the period p Smith Conjecture with

companion K and satellite L we attempt to split the supposed cyclic action into two

actions having fixed point sets K and L. Since the companions of J correspond to

the essential tori in the exterior C(J) of / (see Proposition 3.10), the torus theorem
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of Waldhausen [37], [7], [18], [19] can be brought to bear on the problem. It is a

consequence of this theorem that C(J) contains an essential torus which is either

invariant or disjoint from its translates under the action. Our main theorem,

Theorem 7.5, establishes the stronger result that every essential torus in C(J) is

isotopic to such a torus. This enables us in many cases to split the action in the

manner desired. Moreover, we obtain not only actions with K and L as fixed point

sets, but also an infinite sequence of actions whose fixed point sets are congruent to

L (in the sense of Fox [9]). Sufficient conditions for a splitting to occur are given in

Theorem 8.2. This theorem is then applied to prove the Smith Conjecture for

cabled knots (Theorem 8.6), doubled knots (Theorem 8.9), cable braids (Theorem

8.10), and the nonsimple knots with bridge number less than five (Theorem 8.11).

Corresponding to the two possibilities given by the main theorem we introduce

two types of equivariant surgery which produce new cyclic actions on S3. In the

first type we split the given action as above to obtain an action with K as fixed

point set. In the second type we construct an action whose fixed point set is a

certain /7-fold iterated satellite of /. We continue performing these surgeries as long

as we have nonsimple knots as fixed point sets. Thus if every sequence of such

surgeries terminates with a nontrivial knot as fixed point set, one has reduced the

Smith Conjecture to the case of simple knots. For the class of fibered knots this is

indeed the case. We show in Proposition 9.11 that every companion and satellite of

a fibered knot is fibered and has smaller genus; this implies that the sequence of

surgeries yields fibered fixed point sets and is finite. In general, the question of

whether the final fixed point set is knotted can be expressed (see Lemma 9.5) as a

question about certain "symmetric trivial links" in 53 which is related to Problem

1.21 posed by Gordon in [21]. Using a deep group theoretic result of Dyer and

Scott [6] we give in Theorem 9.9 a partial answer to this question which suffices to

complete the reduction theorem for fibered knots.

§§2 and 3 of the paper contain definitions, notational conventions, and pre-

liminary lemmas. In §4 we give some results about cyclic actions on solid tori

which are used in the sequel. Two of these may be of independent interest: Lemma

4.5 asserts that every cyclic action on a solid torus having fixed point set a simple

closed curve in the interior leaves some meridian of the solid torus invariant.

Proposition 4.6 states that if the fixed point set of such an action is a closed braid,

then it is equivalent to a standard rotation. In §5 we prove the reduction theorem

for composite knots. §§6 and 7 develop the proof of the main theorem. §8 gives the

applications to cabled knots, doubled knots, cable braids, and nonsimple knots of

bridge number less than five. In addition, Theorem 8.7 establishes the Smith

Conjecture for the class of knots, discovered by Lyon [22], which are nonfibered

but have a unique isotopy type of incompressible spanning surface. §9 develops the

equivariant surgery and reduction theorems described above.

The results in this paper first appeared in the author's Ph.D. Thesis, Rice

University, May 1977, written under the direction of William Jaco.

2. Preliminaries. We shall work throughout in the PL category. All manifolds and

submanifolds are polyhedral. All maps are piecewise-linear. A manifold may or
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may not have boundary. All manifolds are orientable unless otherwise stated. The

boundary and interior of a manifold M are denoted by dM and lnt(M). The

closure of a subspace X of a space Y is denoted by Cl^). A surface is a compact,

connected 2-manifold.

S", D", T" and I denote, respectively, the «-sphere, «-cell, «-torus and the unit

interval [0, 1]. We shall sometimes regard S1 and D2 as the unit circle and disk in

the complex plane.

A codimension one submanifold F of a manifold M is properly embedded if

F n dM = 3F. If N is a regular neighborhood of F in M, then we require that

N n dM be a regular neighborhood of dF in dM. If F is a surface and M a

3-manifold, then F is a surface in M if F is properly embedded in M ; F is a surface

in dM if F is a submanifold of 3AÍ. If F and G are surfaces either in M or in 3M,

then F is parallel to G in A/ if either

(1) there is an embedding of F X 7 in M such that F X {0} = F and 3(F X 7)

- Int(F X {0}) = G, or

(2) there is an embedding of F X I in M such that F X {0} = F, F X {1} = G

and 9F X / ç 3M.

A surface in M is boundary parallel if it is parallel in M to a surface in dM.

Similar terminology is applied to curves embedded in surfaces.

We refer to [16] or [36] for the definitions of incompressible surface, irreducible

3-manifold and sufficiently large 3-manifolds, as well as for the notion of splitting a

3-manifold M along a surface F to obtain a 3-manifold M'. A 3-manifold V is a

homotopy solid torus if there is a disk D in V such that the manifold V obtained by

splitting V along D is a homotopy 3-cell. If V is a 3-cell, then V is a jo/j'í/ torus. In

either case Z) is a meridional disk of K. A simple closed curve K in a solid torus F is

a core of F if there is a product structure Si X D2 on V such that AT = S1 ' X {0}.

Our notation for presentations of groups is that of [23]. If G is a group and S a

subset of G, then gp(S; G) and nm(5; G) denote, respectively, the subgroup and

normal subgroup of G generated by S. Let X ç Y be path connected spaces, /,:

irx(X)—* w,(y) the inclusion induced homomorphism. X is injective (resp. surjec-

tive) in y if f, is monic (resp. epic).

Suppose « is a periodic self-homeomorphism of a manifold M. We denote by

<A) the group of self-homeomorphisms of M generated by h. Two cyclic actions

<«) and <«'> on M are equivalent if they are conjugate in the group of all

self-homeomorphisms of M.

Our terminology on knots and links generally follows that of [27]. We do,

however, make the following conventions: We work only with oriented knot types

in the oriented 3-sphere S3. A knot is never trivial, i.e. never bounds a disk. A

simple closed curve in S3 which bounds a disk is called an unknot. Let F be a solid

torus in S3. A meridian-longitude pair for V is a pair (ju, X) of noncontractible

simple closed curves in 3 V such that ju. bounds a disk in V, X bounds a surface in

S3 — Int(F), and /x n A is a single transverse intersection point. If an oriented core

AT of F is specified, we orient n and X so that X is homologous to AT in F and /x has

linking number +1 with AT in S3. A homeomorphism between solid tori in S3
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having oriented cores is faithful if it preserves oriented meridian-longitude pairs. If

K is knotted, then C(K) = S3 — Int(F) is called a K-knot space. All knot spaces in

this paper will have definite embeddings in S3, so that they have meridian-longi-

tude pairs well defined as those of their complementary solid tori. A 3-manifold

which is either a solid torus or a knot space is called a toral solid. We shall

sometimes consider homotopy solid tori in homotopy 3-spheres. Although there

may be no well-defined core in this case we shall still use language similar to that

above.

Let IF be a solid torus in S3 with oriented core K.lfJ C Int(IF) is an oriented

simple closed curve, then each meridional disk D of IF in general position with

respect to J meets J in at most a finite number of points. The minimum such

number, taken over all such disks, is the order of W with respect to /, denoted

Off^J). Suppose now that J and K are knots in S3 and that J is homologous in W to

a nonnegative multiple of K. If ow(J) =£ 0 and J is not a core of W, then AT is a

companion of J with order ow(J). A knot with no companions is simple.

Let y be a knot and W0, . . . , Wm_x a set of solid tori in S3 with oriented cores

A"0, . . . , Km_,. This set is subordinate to / with order a if for each j, 0 < j < m —

1, A, is a companion of J with order a and S3 - Int(IF,) Ç Int(H^) for all i **>/. A

companion A" of y of order a has multiplicity m if there is a set of m solid tori

subordinate to J with order a whose cores have the knot type of K, but there is no

such set of m + 1 solid tori.

Note that every knot J with companion K can be obtained by the following

construction: Let IF be a solid torus in S3 with core A". Let V be an unknotted

solid torus in S3 with oriented core. Let L be an oriented simple closed curve in

Int( V) such that ov(L) ^ 0 and L is not a core of V. Choose a faithful homeomor-

phism/: K-» W and set / = f(L). We denote this construction by J = J(K, V, L).

L is called a satellite of J.

We now discuss some examples of this construction. Let F be as above with

oriented meridian-longitude pair ( it, X).

Figure 1 Figure 2

(1) Let L be a knot in S3 contained in Int(F) so that ov(L) = 1. (See Figure 1.)

Then J = J(K, V, L) is the composite of K and L.

(2) Let V be a solid torus in Int(F) having the same oriented core as V. Let

(it', X') be a meridian-longitude pair for V. Let (m, n) be a relatively prime pair of
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integers and Tmn an oriented simple closed curve in 3F' which is homologous to

m¡i' + nX'. (See Figure 2.) Tmn is an (w, n)-curve. If \m\ > 1 and |w| > 2, then Tmn

is an (w, n)-cable. If \m\ > 2 and |«| > 2, then Tmn is an (w, n)-torus knot. If Fmn

is an (m, «)-cable, then J = J(K, V, Tmn) is an (m, ri)-cable knot with carrier K.

Figure 3b

(3) Let p and tj be integers, where r¡ = ± 2. Let F(p, tj) be one of the four

oriented simple closed curves in Figure 3. (|p| is the number of full twists in the

lower part of F(p, tj), so that these twists account for 2|p| of the total of 2|p| + 2

crossings.) T(p, tj) is a (p, tj)- twist curve in K. If p ^ 0, then T(p, tj) is a (p, T})-fwi'j/

knot. If F(p, tj) is a (p, Tj)-twist curve, then / = J(K, V, T(p, tj)) is a (p, r¡)-doubled

knot with diagonal K.

Figure 4
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(4) Let ß <Z Int( V) be an oriented simple closed curve homologous to a positive

multiple of the core of V such that for some product structure Sl X D2 on V, ß

meets each {e'9} X D2 transversely in precisely n points. (See Figure 4.) ß is a

closed braid in V. If n > 2, then J = J(K, V, ß) is a cable braid with carrier K. ß is

determined by the conjugacy class of some element ß in the Artin braid group. (See

[3].) Every cable knot is a cable braid. Note that V — ß is a surface bundle over S '

with fiber a disk with n punctures.

A homeomorphism t: V -* F is a simple twist if t( ¡u) is homologous to /i and t(X)

is homologous to ju, + X in dV. If L, and L2 are oriented simple closed curves in

Int(K), then they are congruent along V if L2 = t9(L,) for some integer q and

simple twist t. (Compare [9].) Note that for any integer q the cable Tmn is

congruent along V to the cable Tm+qnn and the twist curve T(p, tj) is congruent

along V to the twist curve T(p + q, tj).

3. Some technical lemmas. In this section we collect some results on surfaces in

3-manifolds which will be used in the sequel. A proof of the first lemma can be

found in [35], that of the next two in [36].

3.1 Lemma. Let F be an incompressible surface in the 3-manifold M and M' the

result of splitting M along F.

(1) M' is irreducible if and only if M is irreducible.

(2) A surface G in M disjoint from F is incompressible in M if and only if it is

incompressible in M'.

3.2 Lemma. Let M = F X I where F is a surface. Every incompressible surface G

in M with 3G in F X {0} is parallel to a surface G' in F X {0}.

3.3 Lemma. Let M = F X I where F is a surface. Let G„ . . . , G„ be disjoint

incompressible annuli in M each of which has one boundary component in F X {0}

and the other in F X {1}. Then there is an isotopy f of M rel (F X {0}) (J (3F X I)

such thatMGJ = (G, n (F X {0})) X /.

The proof of the next lemma is straightforward and is omitted.

3.4. Lemma. Let V be a solid torus and A an annulus in dV. Then A is parallel to

dV — Int(^4) in V if and only if A is surjective in V.

3.5 Lemma. Let V be a solid torus and A an annulus in V whose boundary

components are injective in 3 V. Then A separates V into two components with closures

F, and V2 such that 3F, = A u Bx, dV2 = A u B2, Bx, B2 the closures of the

components ofdV— dA, such that:

(1) If A is injective in V, then F, and V2 are solid tori and A is parallel to Bx in Vx.

If A is also surjective in V, then A is also parallel to B2 in V2.

(2) If A is not injective in V, then F, is a solid torus, V2 is a toral solid, and the

components of dA are meridians of Vv If V2 is also a solid torus, then A is parallel to

B2 in V2.

Proof. (1) follows from Satz 1 on p. 207 of [29] and Lemma 3.4. The first part of

(2) follows from Satz 2 on p. 211 of [29]. Suppose V2 is a solid torus and A is not
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parallel to B2 in V2. Then by Lemma 3.4, either A is not injective in V2 or A is

injective but not surjective in V2. The first possibility implies that itx{V) — Z * Z,

the second that trx{ V) = Z * Zm for some m > 1, both contradicting irx( F) » Z.

The next lemma is Lemma 1 of [2].

3.6 Lemma. Let V be a solid torus, Q C Int(F) a knot space. Then Q Ç \nt{B)for

some 3-cell B C Int( V).

Let M be a 3-manifold. Let A be an annulus. A map/: (A, dA)->(M, dM) is

essential if /,: 77-,(/l) -» w,(A/) and/,: w,(/i, 3/1) —» 7r,(A/, 3M) are monic. Let T be

a torus. A map /: F-» M is essential if /„: ^(F) -» w^Af) is monic and / is not

homotopic to a map with image in dM. An annulus A or torus F in M is essential in

M if it is incompressible and non-boundary parallel in M. It follows from Lemma

5.3 of [36] that if M is irreducible and dM is incompressible, then A or F is

essential in M if and only if its inclusion map into M is essential. The annulus

theorem [37], [4], [18], [19] states that for M as above, the existence of an essential

map of an annulus into M implies the existence of an essential annulus in M. With

the additional hypothesis that dM ¥= 0, the torus theorem [37], [7], [18], [19] states

that the existence of an essential map of a torus into M implies the existence of

either an essential torus or essential annulus in M.

3.7 Lemma. Let M, N be irreducible 3-manifolds with nonempty incompressible

boundaries and f: M ^ N a covering space map. If M has an essential annulus, then

so does N. If M has an essential torus, then N has either an essential torus or annulus.

3.8 Lemma. Let M, N be irreducible 3-manifolds with incompressible boundaries

and f: M —» N a covering space map. If A is an essential annulus in N, then each

component off~l(A) is an essential annulus in M. If T is an essential torus in N, then

each component of f~l(T) is an essential torus in M.

The proofs of Lemmas 3.7 and 3.8 are left to the reader.

The next lemma follows from Lemmas 2.1 and 2.2 of [32].

3.9 Lemma. Let K be a knot in S3,Q its knot space, W = S3 — Int(£?). Suppose A

is an essential annulus in Q. Then A divides Q into Qx and Q2 such that, letting

W¡= S3 - Int(g,), /' = 1, 2, either

(1) Qx and Q2 are knot spaces, dA consists of meridians of the solid tori W, Wx and

W2, and K is the composite of the cores A", and K2 of Wx and W2, or

(2) Qx and Q2 are solid tori, dA does not consist of meridians of the solid tori W,

Wx, W2, Qx and K is a torus knot, or

(3) Qx is a knot space, Q2 is a solid torus, dA does not consist of meridians of the

solid tori W, Wx, or Q2, and K is a cabled knot with carrier the common core Kx of

Wx and Q2.

Conversely, if K is a composite, torus, or cabled knot, then Q contains an essential

annulus A with these respective properties.

3.10 Proposition. (1) Let K be a companion of the knot J, W the solid torus
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containing J and having core K, and C{J) a knot space of J with dW C Int C(J).

Then dW is essential in C(J).

(2) Let J be a knot, C(J) a knot space of J, T an essential torus in C(J), and W the

closure of the component of S3 — T containing J. Then W is a solid torus and a core

K of W is a companion of J.

The proof is straightforward and is therefore omitted.

4. Cyclic actions on solid tori. Let F be a solid torus, <A> a cyclic action of order

ponV with Fix<« > = K C Int( V) a simple closed curve. <A> is standard if there is

a product structure 51 X D2 on V for which h{eie, re^) = (eie, /•e,(<p+2'rí/í,)), where

(P, 1) = 1.

4.1 Lemma Let </i) be a cyclic action on a compact 3-manifold M such that

Fix</i) = A" Q Int(M) is a simple closed curve. Then there is a regular neighborhood

N of K in Int(Af) such that h{N) = N and <A|JV> is standard.

A proof can be found on pp. 344-345 of [34].

Throughout the rest of this section <A> is a cyclic action of order/» on a solid

torus V with Fix<A> = A" Ç Int(F) a simple closed curve. V* = F/<A>, q:

V-> V* is the quotient map, and A"* = q(K). The proofs of the next two lemmas

are straightforward.

4.2 Lemma. <(A> is standard if and only if K is a core of V.

4.3 Lemma. If there is a meridian ¡i of V such that A(ii) = ii, then there is a

standard action <«'> on V such that h\dV = h'\dV.

4.4 Lemma. V* is a homotopy solid torus.

Proof. Let N be the invariant regular neighborhood of K given by Lemma 4.1.

Set N* = q(N), G = irx(V - lnt(N)), G* = ttx{V* - Int(A^*)). We have an exact

sequence

l^G-*G*^Zp^l.

Let m, m* be elements of G, G* represented by meridians of N, N* respectively.

Identifying G with its image in G* and choosing orientations properly we have

(m*Y = m. {1, m*, . . . , (m*Y~1} is a set of coset representatives for G in G*.

Now G/nm(w; G) s 7r,(F) s= Z. Let t £ G represent a generator of Z modulo

nm(m; G). Then G = gp(/; G) • nm(m; G), while G* = G • gp(w*; G*). So if g*

G G*, then g* = g(m*)k for some g G G, hence g* = t'x(m*)k for some x G

nm(/rj; G). Since nm(m; G) Q nm(m*; G*) we see that g* = rfy for>> = x(m*)k G

nm(m*; G*). Hence trx(V*) = G*/nm(m*; G*) is cyclic. Since dV* is a torus,

HX(V*) is infinite, so -nx{V*) = Z. It follows that V* is a homotopy solid torus.

4.5 Lemma. Let /j.* be a meridian of V*; then ¡x = q~\n*) is a connected meridian

ofV.
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Proof. Choose basepoints x£ G /x* and x0 G q l(x$). Let ti0 be the component

of q~\ p.*) containing x0. Consider the commutative diagram

■7rx(dV,x0)      U      ttx(V,x0)

(?|3K).| iqt

TTx(dV*,X$)        "A        77,(F*,X0*)

Since (q\dV) is a covering map (<7|3F)„ is monic. By Lemma 4.4, F* is a homotopy

solid torus and so im( /„) ^ (1). Since im(q\dV)m has index/» in irx{dV*, x%),

im(q„it) = imO't(9|3F)+) =£ (1). Thus im ç„ ¥= {1}, so g, is monic. Now q(no) =

it* implies qJ,([no]) = ./'♦(# F),,^]) - 1, so /„([iij) = 1. So by Dehn's lemma,

itg bounds a disk in V and is thus a meridian. It follows that each component of

q~\n*) is a meridian.

Suppose o~'(ii*) is not connected. Let/: F—> F be the universal cover of Kwith

/ a generator of the group of covering translations. Choose x0 G f'\x0) and let ß0

be the component containing x0. Then (q\dV): 3F-» 3F* is a/»-fold cyclic covering

whose group of covering translations is <A|3F). Then q = (q\dV) ° (f\dV): dV-*

dV* is an infinite cyclic covering whose group of covering translations has a

generator s such that sp = (t\dV). We may assume (by choosing a new generator

for <A>, if necessary) that h lifts to a homeomorphism h:V—>V with (A|3F) = j.

Thus hp = t.

Now choose y G Fix<A> and y G f~\y). Then h\y) = tm(y) for some m. But

r(j7) = hp(y) = t^iy), which implies m/» = 1, contradicting /» > 1. Thus it =

<7"'(/x*) is connected.

4.6 Proposition. If K is a closed braid ß in V, then K is a core of V and <A> is

standard.

Proof. Let N be the invariant regular neighborhood of K given by Lemma 4.1.

Set U = V- lnt(N), N* = q(N) and U* = q{U).

Let D* be a meridional disk in the solid torus V* which is in general position

with respect to K* and is chosen so that the number of components of D* n A"* is

minimal. We may assume that D* n N* consists of meridional disks of N*. Let

F* = D* n U*. We claim that F* is incompressible in U*. If not, then let D be a

compressing disk. There is a disk D' in D* such that dD = dD'. Since 3Z> is not

contractible in F*, D' must contain « > 0 points of D* n AT*. Let (D*)' = (D* -

Int(Z)')) U £>. Then (Z)*)' is a meridional disk of F* in general position with

respect to AT* which meets K* in n fewer points than did D*, contradicting our

choice of D*. This proves the claim.

Now choose x¡ G 3D*, x0 G q~l(x%). Since q~x(dD*) is connected and (ç| U) is a

finite covering, D = <7"'(.D*) and F = q~x(F*) are connected and compact. Since K

is a closed braid in V, there is a product structure 5 ' X D2 on V such that AT is

transverse to each {ei9} X D2 and ({ei9} X D2) n N consists of meridional disks

of N. Let E = {1} X D2 and G = F - Int(F n W). Then {/ is a surface bundle

over S ' with fiber G.
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Now let /: V —> V be the universal covering space of V and choose x0 G f~l(x0).

Set Ü = f~\U) and /0 = (/| Ü). Then (F, t?) is homeomorphic to (F, G) X R.

Thus f0: t/—» {/ is the infinite cyclic covering of t/ corresponding to irx(G, x¿).

Since 3£> is connected, Z) does not separate V, so w,(Z>, x0)—*nx(V, x0) is trivial.

Therefore D lifts to a surface D in V containing x0. Hence F Ç D lifts to F in V

such that x0 G F ç D. The following diagram shows that F and F are incompress-

ible in U and Ö, respectively.

ttx(F,x0)      ->      w,(t/, x0)

(/ol^),l l(/o).

■nx{F,x0)      -h>      trx(U,x0)

(9o\F)ml l(?o),

vx(F*,x*)   ^     trx(U*,x*)

Since F is compact, there is a number í such that F C G X (-s, + s). Since the

components of 3 G X [-s, +s] are annuli, there is an isotopy r, of G X [-í, +5]

such that drx(F) Q Int(G X {-s}). Note that the components of drx(F) are each

parallel to a component of 3G X {-s}. Since F is incompressible in G X R, it is

also incompressible in G X [-s, +s] by Lemma 3.1. By Lemma 3.2, rx(F) is

parallel to a surface H Ç G X {-s}. It follows that // is homeomorphic to G.

Hence F is homeomorphic to G and is thus a planar surface.

The number m of points in D* n K* equals the number of components of

3F* n dN*; hence 3F* has m + 1 components. Since (h\N} is standard, each

component of 3F* n dN* has connected inverse image a disk under q. Hence 3F

has m + 1 components, so that 3 G has m + 1 components and E n K has m

points. Now 1 — m = x(F) = Px(F*) = P(\ ~ m\ which implies m = 1. It follows

that A" is a core of V and by Lemma 4.2, <A > is standard.

5. Composite knots.

5.1 Theorem. Let K be the composite of the knots Kx and K2. Then K is a

counterexample to the period p Smith Conjecture if and only if AT, and K2 are

counterexamples to the period p Smith Conjecture.

Proof. Suppose Kx and K2 are counterexamples. Then there are cyclic actions

<A,> of order/» onS3 with Fix<A,> = A,, i = 1, 2. Let N¡ be the invariant regular

neighborhood of A, given by Lemma 4.1; let C(K¡) = S3 — Int(iV,). Let 11, be an

oriented invariant meridian of N¡ and Ai an invariant regular neighborhood of ju,.

Let/: A, -» A2 be a homeomorphism preserving orientation on the /x, and reversing

orientation on transverse arcs; we choose / so that f ° (A^,) = {h^A^ ° f for

some q, 1 < q < /» — 1. We get an induced action <A) on C = C(A",) Uy C^K^

such that the components of dA are invariant, A being the image of A, and A2in C.

Attach a solid torus N to C so that dA consists of meridians of N and extend

<A|37V> to a standard action on N. The resulting manifold is homeomorphic to S3

and the fixed point set A" of <A > is the composite of Kx and K2.

Suppose A" is a counterexample. By the first part of the proof, it suffices to show
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that the prime factors Jx, . . . , J„ of K are counterexamples, since Kx and K2 are

composites of these factors [28]. We induct on n. For n — 1 there is nothing to

prove so we assume that n > 1 and that the assertion holds for knots having fewer

than n prime factors.

Let N be an invariant neighborhood of A" and ( /x, X) a meridian-longitude pair

on dN, where it is invariant and X is disjoint from its translates; let C = S3 —

lnt(N) and x0 = it n X. Set 23 = S3/<A>, q: S3 -► 23 the quotient map. For X in

S3, let X* = q(X). Let m = [ii], / = [X] in ttx(C, x0), m* = [it*], /* = [X*] in

■nx{C*, x*). Setting q0 = {q\C), we have (?0),(m) = (m*y and (io).(/) = /*.

Since K is composite, C contains an essential annulus by Lemma 3.9. By Lemma

3.7, C* has an essential annulus A*; let c* be an oriented component of dA*. We

may assume x* G c*. Then [c*] = (m*)a(l*)b for (a, A) = 1. Let A be the compo-

nent of q'\A*) containing X0. A is essential by Lemma 3.8 and a component c of

dA contains x0. Orienting c, [c] = mIs in irx(C, x0) and (<70)*([c]) = [c*]? f°r some

nonzero divisor q of p. Thus {m*)aq{l*)'"' = {m*)rp(<l*yi. If A ^= 0, then í =^ 0, and by

Lemma 3.9, A" is cabled, contradicting the fact that cabled knots are prime [29]. So

b = 0 and A = q~l(A) is invariant with dA a pair of meridians. So the closures C

and C" of the components of C — A are invariant knot spaces by Lemma 3.9. The

complementary solid tori IF', IF" of C, C" in S3 have knotted cores A"', K" such

that A" is the composite of K' and K". Extend <A|C'> and <A|C"> to actions <A'>

and <A"> on S3 with Fix<A'> = K' and Fix<A"> = K". Since A"' and K" have

fewer prime factors than A" [28] the result follows by induction.

6. Haken systems of tori. Let C be a knot space in a homotopy 3-sphere. A

Haken system of tori in C is a maximal collection of incompressible, pairwise

disjoint, mutually nonparallel tori in C, one of which is 3C. By Theorem 4 of [14]

every knot space contains a Haken system of tori and every such system is finite.

In this section we examine the relation of an arbitrary essential torus in C to a

given Haken system. We first examine certain possible complementary submani-

folds of a Haken system.

If Tmn is a torus knot in S3, then the torus knot space C{Tmr) is the union of two

solid tori along an annulus injective in both but surjective in neither, conversely,

6.1 Lemma. If the submanifold X of the homotopy 3-sphere 1? is such that

X = Vx U V2 where Vx, V2 are solid tori with A = F, n V2 = dVx n 3F2 an

annulus injective in both Vx and V2 but surjective in neither, then X is homeomorphic

to C(Tmn) for some torus knot Tmn in S3. If23 — In^X) is a solid torus, then this

homeomorphism extends to a homeomorphism from 23 to S3. In this case the annuli

dVx - \nt(A) and dV2 - \ni(A) are parallel in S3 - In«;*).

Proof. For the first statement see pp. 152-153 of [16]. For the second statement

see [15]. The third statement follows from the second since it holds for C(Tmn) in

S3.

If Tmn is an (m, «)-cable in a solid torus IF, then the closure X of the

complement of a regular neighborhood of Tmn in IF is a cable space. If F0 and F,

are the components of dX with F0 = 3 IF, then X is the union of S = T2 X I with
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T0= T2 X {0} and a solid torus V along the annulus A = S n V = (T2 X {I})

n 3 V which is injective but not surjective in S and V. Conversely,

6.2 Lemma. If X = S \j V, where S = T2 X I, V is a solid torus, and S n V =

(F2 X {1}) n 3F = A, an annulus injective but not surjective in S and V, then X is a

cable space.

Proof. Orient the core of V and let ( 11, X) be an oriented meridian-longitude pair

on 3F. The centerline of dV — Int(yl) is homologous in 3V to mp. + nX for some

| m | > 1, |/i | > 2. Let IF be a solid torus and Tmn an (m, «)-cable on 3 IF', W a

concentric solid torus in Int(IF). Let N be a regular neighborhood of Tmn in IF

meeting IF' in an annulus. Then there is a homeomorphism /: V -* W —

Int(Ar n IF') such that/04) = 3IF' - Int(7V n 3IF') and/(3F - lnt(A)) = dN -

Int(IF'). Extend/to a homeomorphism

/: V u (F2 X (1})-»(IF' - Int(iV n IF')) u (N n (IF- Int(IF')))

and then use the product structure to extend / to a homeomorphism /: X —> W —

Int(IF').

If F is a planar surface with three boundary components J0, /„ J2, then X — F

X S' is a composing space. Note that X = Sx U S2, where S¡ = T2 X I, i = 1, 2,

and 5, n S2 = dSx n dS2 = A, an annulus injective in Sx and S2. Conversely,

6.3 Lemma. If X = Sx u S2, where S¡ = T2 X I, i = 1, 2, and Sxn S2 = dSx n

dS2 = A, an annulus injective in Sx and S2, then X is a composing space.

The proof is straightforward.

6.4 Lemma. Let X = F X S1 be an injectively embedded composing space in a knot

space C(K) in S3 with boundary components T¡ = /X S1, 0 < / < 2. FAew each Sl

fiber of T¡ is a meridian of the solid torus W¡ in S3 bounded by T¡.

Proof. S3 - Int(A') consists of three toral solids C0, C„ C2 with 3C, = T¡. We

may assume C0 = IF0. The incompressibility of 3^ in C(A") implies that X u C, u

C2 is in C(A") and that C, and C2 are knot spaces. Let a be an arc in F with 3a in

/„ separating Jx and J2. Let ^ = «x j' and let C'x, C2 be the closures of the

components of (X u C, u C2) — A containing C„ C2. Then C[, C2 are homeo-

morphic to C,, C2. The annulus A is injective in C[ and C2, so by Lemma 3.9 the

components of dA are meridians of IF0. The result follows.

The next lemma can be obtained by modifying the proof of Satz 2.8 of [35].

6.5 Lemma. Let X = F X S1 be a composing space, Ax,. . . , An disjoint essential

annuli in X. Then there exist arcs ax, . . . , an in F and an isotopy ft of X such that

fx(A¡) = a¡ X S1, 1 < / < n. Moreover, if some of the components of dX meet the A¡

in Sl-fibers, then we can choose f fixed on those components.

6.6 Lemma. If X is a torus knot space, cable space or composing space, then X has

no essential tori.

Proof. For torus knot spaces the result follows from Proposition 3.10 and the

fact that torus knots are simple (Satz 2 on p. 250 of [29]). For composing spaces it
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follows from Satz 2.8 of [35]. So suppose A' is a cable space. Then X is the closed

complement of a regular neighborhood N of an (w, n)-cable Tmn in a solid torus F.

Let K be any knot and set J = J(K, V, Tmn). Let /: F -» IF be as in the definition

of J. If F is an essential torus in X, then T' = /(F) is essential in IF — Int/(/V)

and bounds a solid torus IF' in S3 with core A"'. The injectivity of T' in C(J)

implies that IF' contains f(N) and is knotted. Hence K' is a knot with C(A"') = S3

— Int(IF') and so 3 IF' is essential in C(J). Thus by Proposition 3.10, K' is a

companion of J. By Hilfsatz 2 on p. 263 of [29] 3 IF lies in C(AT') and so IF is

essential in C(A"'). By Proposition 3.10, K is a companion of A"'. This contradicts

the fact that K is the unique maximal companion of J (Satz 3 on p. 250 of [29]).

6.7 Proposition. Let 9" = (F0, . . ., F„} be a Haken system of tori in the

irreducible knot space C in the homotopy 3-sphere 1?. Let Xx, . . ., Xm be the closed

complementary domains of T0 u • ■ ■ U Tn. Then

(1) no Xt has an essential torus, and

(2) if X¿ has an essential annulus A, then either

(i) X¡ is a torus knot space with X¡ = Vx U V2, Vx n V2 = A as in Lemma 6.1, or

(ii) X¡ is a cable space with X¡ = S \J V, S n V = A' as in Lemma 6.2, with

either A = A' or A = a X I in S = F2 X I with a a centerline of(T2 X {1}) - A',

or

(iii) X¡ is a composing space with X¡ = F X S ' and A = a X S1 for an arc a in F

as in Lemma 6.3.

Proof. (1) Renumber so that 3A,. = F0 u • • • U Tk for some k, 0 < k < n. If F

is an essential torus in X¡, then F is parallel to some Ty If / < k, then F is boundary

parallel in X¡, a contradiction. Soy > k. There is an embedded F2 X 7 in C with

F2 X {0} = F and F2 X {1} = 7}. Since 7} is not in X¡, there is a F„ / < &, in

F2 X Int(7). By Lemma 3.2, T, is parallel to F in F2 X 7, again contradicting

essentiality.

(2) Set X = X¡ and let c0 and c, be the components of dA. By Lemma 3.1, A" is

irreducible.

Case 1. c0 and c, are in the same component of dX, say F0. Then /I divides X

into A" and A"'. Set T = dX', T" = dX", A' = F0 n A" and /I" = F0 n X". Let

# be a regular neighborhood of F0 u A in A". Set t/' = 3# n Int(A"), U" = dN n

Int(A"'), r = C1(A" - (TV n A")) and Y" = C1(A"' - (N n A"')). TV n A" and

N n X" are homeomorphic to F2 X 7 and intersect in the injective annulus A, so

by Lemma 6.3 N is a composing space.

Subcase (a), t/' is compressible in A\ We claim that A" is a solid torus in which A

is injective but not surjective. Let TJ) be a compressing disk for V". Suppose D is in

Y" u N. Put D in general position with respect to A such that D n A is minimal.

If 7) n A =£ 0, then there is a subdisk F of D with F n ^4 = 3F. If 3F = 3F, F a

subdisk of A, then F u F bounds a 3-cell in A" so that D can be isotoped to remove

3F from D n A, contradicting minimality. Thus D n A = 0. But then 7) is in

TV n A" and so compresses C/' in N n A", contradicting the incompressibility of

Í7' in this product space. Since X' is irreducible, either Y' is a solid torus or
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Y" u TV is a toral solid. The latter is impossible since Y" u N has at least two

boundary components. So ¥', and hence A", is a solid torus. A is injective in A". If

it were surjective, then by Lemma 3.4 it would be parallel to A' in A", contradicting

essentiality.

If U" is compressible in A", then similar arguments show that X" is a solid torus

in which A is injective but not surjective. By Lemma 6.1, X is a torus knot space

with the desired structure.

If U" is incompressible in X, then by (1) U" is boundary parallel in X. If it were

parallel to F0, then N n Y' = F2 X 7 with T0 = T2 X {0} and U" = F2 X {1}.

By Lemma 3.2, A would be parallel to an annulus in F0, a contradiction. So U" is

parallel to a component F, of SA" in Y". Thus 7" and so X" are homeomorphic to

T2 X I. A is injective but not surjective in A" andA"' so by Lemma 6.2, A" is a cable

space with the desired structure.

Subcase (b). U' is incompressible in X. By the previous subcase we may assume

that U" is incompressible in X. By (1), U' and U" are boundary parallel in X.

Moreover, as above, neither is parallel to F0. If U' were parallel to a component F,

of 3X in Y", then JVu i"' would be homeomorphic to F2 X 7, but this is

impossible since N u Y" has at least three boundary components. So U' is parallel

to a component F, of 3 A" in y. Thus X is homeomorphic to TV and so is a

composing space with the desired structure.

Case 2. c0 and c, are in different components F0 and F, of 3X. Let TVq,

A/, be regular neighborhoods of F0, F, in X, N2 a regular neighborhood of

Cl(A n(X - (7V0 u TV,))) in C1(AT - (7V0 u TV,)) such that TV = TV0 u Nx u N2 is

a regular neighborhood of 70 u ^ U F, in Ar. TV0 and (TV, u TV^) are each homeo-

morphic to T2 X I and intersect in the injective annulus TV0 n N2. So by Lemma

6.3, A7 is a composing space. Let U = dN n Int(A") and Y = C\(X - N).

Subcase (a). U is compressible in X. Let D be a compressing disk. If D were in N,

then it would compress U in the product N = T2 X I, which is impossible. Thus D

is in Y and so either y is a solid torus or A7 is a toral solid. The latter is impossible

since N has three boundary components. So Y is a solid torus. N0 is homeomorphic

to T2 X I with T0= T2 X {0} and dNQ - T0 = T2 X {1}. Let d0 and dx be the,

components of 3^,, n TV2), F0 = d0 X I, F, = dx X I, Q = (TV0 n TVj) X 7, and

T? = C1(TV0 - Q). Then F = y u R is a solid torus and S => Nx\j N2U Q is

homeomorphic to F2 X 7. S n V is the annulus /F = F0 u F, u (3TV2 - (N2 n

(N0 U TV,))) U C1(3TV, - (TV, n TV,)).

If A ' were compressible in F or in S with compressing disk G, then there would

be a subannulus H of A' with 377 = G u (d0 X {0}). Let E = G u H. Since

^x {0} is parallel to c0 in F0, it is noncontractible in F0. Thus E compresses F0, a

contradiction. Thus A' is injective in V and 5. If it were surjective in V, then it

would be parallel to R n F0 in F. But this implies that V u 5 is homeomorphic to

S, so that F0 and F, are parallel, a contradiction. Thus A' is not surjective in V and

by Lemma 6.2, A' is a cable space with the desired structure. It is easily seen that A

has the required form.

Subcase (b). U is incompressible in X. By (1), U is boundary parallel in X. U
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cannot be parallel to F0 or F, because A' has three boundary components. So U is

parallel to a component F2 of dX in Y. Thus X is homeomorphic to N and so is a

composing space with the desired structure.

6.8 Lemma. Let C be a knot space in S3, T an incompressible torus in C dividing

S3 into the solid torus W and the knot space IV". Let U be a torus in C such that

F = Un W is an annulus dividing W into W[ and W2 where W{ is a solid torus in

C in which F is injective but not surjective. Set F' = dW2 — Int(F), G' = 3 IF,' —

Int(F) and G = U n IF". Let IF," and W2 be the closures of the components of

W" - G, where 3IF," = G u G' and dW2 = G U F'. Then either G is parallel to

G' in IF," or G is parallel to F' in W2.

Proof. IF,', IF," and W2 lie in C. Lemma 3.4 implies that Fis not parallel to G'

in IF,'. This fact, together with part (2) of Lemma 3.5 and the injectivity of 3F in

3 IF', implies that F is injective in IF' and that W2 is a solid torus. By part (1) of

Lemma 3.5, F is injective in W'2. Since F is not surjective in IF,' it must be

surjective in W2 and so by Lemma 3.4 is parallel to F' in W'2. We conclude that G'

and F' are injective but not surjective in W. Now set IF, = IF,' u IF," and

W2= W¡u W2\

Suppose IF2 is a solid torus. Then IF,' is a solid torus and F' is injective in IF2".

If F' is surjective in IF2", then, by Lemma 3.4, F' is parallel to G in IF2" and we are

done. If F' is not surjective in IF2", then by Lemma 6.1, IF' u IF2" is a torus knot

space and G' is parallel to G in IF," = S3 — Int( IF' u IF2") and we are done.

Suppose IF2 is a knot space. Then IF, is a solid torus and G' an annulus in IF,

with 3G' injective in 3IF,. G' is injective in IF,' since F is. By part (2) of Lemma

3.5, IF," is a solid torus, and since F, and hence G', is not surjective in IF,', Fis not

parallel to G' in IF,'. Thus G' is injective in IF,. By part (1) of Lemma 3.5, G' is

injective in IF," and is thus parallel to G in IF,".

6.9 Proposition. Let C be a knot space in S3, ?T = { F0, . . . , Tn) a Haken system

of tori in C, and S = (A',, . . . , Xm) the closures of the components of C — (F0

U • • • U Tn). If T is an arbitrary essential torus in C, then there is an isotopy of C

rel dC taking T to a torus T' such that either

(1) F' is a member of ?T, or

(2) there is a collection of composing spaces Xx, . . . , Xs in S such that T' is

contained in Xx u • • • A^ and T' n X¡ consists of essential annuli in X¡.

Proof. By an isotopy fixed on 3C move F to a torus T' in general position with

respect to F0 u • • • U F„ with T n (F0 u • • • U F„) minimal. If the intersection

is empty then T' is parallel to a member T¡ of ?T. T¡ ^ 3C, so there is a further

isotopy rel 3C taking T' to F, and we are done. We therefore assume that the

intersection is nonempty. If the intersection contains a simple closed curve con-

tractible in F', then an innermost such curve in T' bounds a disk TJ)' in F'. If dD' is

in T„ then 37)' = 37), D a disk in T¡. Then 7) u 7)' bounds a 3-cell in C and we

can remove 37) from the intersection by an isotopy across this 3-cell, contradicting

minimality. Thus every intersection curve is noncontractible in 7" and by a similar
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argument is also noncontractible in F0 u • • • U Tn.

Let X = X¡ be a member of S meeting F'. Then X n T' consists of annuli.

They must be essential, for otherwise one of them would be boundary parallel in A",

so that we could reduce the intersection by an isotopy. By Proposition 6.7, X is

either a torus knot space, cable space or composing space. Thus we only need to

eliminate the first two cases.

Case 1. X is a torus knot space. Then X = Vx u F2, F,, F2 solid tori with

A = Vx n F2 a component of X n T' which is injective but not surjective is F,

and F2. Let Ax be a component of F' n (53 - Int(A')) adjacent to A on F'. By

Lemma 6.1, dVx - lnt(A) is parallel to 3F2 - lnt(A) in S3 - In^A"). Thus Ax is

injective and surjective in S3 — Int(A"). By Lemma 3.5, Ax divides S3 — Int(Ar)

into solid tori IF, and IF2 in which it is parallel to 3 IF, — lnt(Ax) and dW2 —

lnt(Ax), respectively. One of them, say IF,, lies in C. We isotop F' to move Ax

across IF, to the other side of 3 IF, — Int(^l,), thus removing dAx (and possibly

other curves) from the intersection, contradicting minimality. So X cannot be a

torus knot space.

Case 2. X is a cable space. Then X = S \J V, where S = T2 X I, V is a solid

torus, and 5n F = (F2 X {1}) n 3F = ^4', an annulus injective but not surjective

in S and V. S3 - Int(A") has two components Y and Z, where 3T = F2 x {0} and

3Z = 3A" — 37. One is a knot space and the other a solid torus. Let Bx = 3 F —

Int(^4') and B2 = dZ - Int(7?,). We consider the two possibilities for A given by

Proposition 6.8.

Subcase (a). A = A'. Let c0 and c, be the components of dA. Let Ax be the

component of Z n T' meeting A in c0.

Suppose y is a knot space and Z a solid torus. Then V u Z is a solid torus. A is

not parallel to Bx in V, so by Lemma 3.5, Bx is parallel to B2 in Z. As in Case 1 we

can remove c0 from the intersection by an isotopy, contradicting minimality.

Suppose y is a solid torus and Z a knot space. Let d = dA, - c0. We consider

three possibilities.

(i) d is in dA. Then T' = A u Ax. We now apply Lemma 6.8 with F = 9Z,

W" = Z, U = A \J Ax and IF,' = V to conclude that either Ax is parallel to Tí, in

Z, or A, is parallel to Ti2 in Z. In either case we can isotop T' to remove dA, from

the intersection, contradicting minimality.

(ii) d is in Int(7?,). Let 77 be the annulus joining d and c,. Let G be the annulus

obtained by pushing Ax u TT slightly into the interior of Z so that G n 3Z = 3 G

= dA. We apply Lemma 6.8 with F = 3Z, IF" = Z, U = A u G and IF,' = F to

conclude that G is either parallel to 5, or to B2 in Z. In the first case it follows that

Ax is parallel to Bx — Int(TT) in Z, so that we can remove dAx from the intersection

by an isotopy of 7". In the second case let A2 be the component of Z n T' meeting

c,. If e = dA2 — c, lies in B2, then by Lemma 3.2, A2 is parallel in Z to an annulus

in B2, so that dA2 can be removed by an isotopy. If e lies in TT, then by Lemmas 3.3

and 3.2, A2 is parallel in Z to an annulus in 77 and so dA2 can be removed by an

isotopy.

(iii) d is in Int(7?2). Let 77 be the annulus in 7?2 joining d and c,. Let G be the
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annulus obtained by pushing Ax\j H slightly into the interior of Z so that

G n 3Z = 3G = dA. We apply Lemma 6.8 with F = dZ, W" = Z, V = A u G

and IF,' = F to conclude that G is either parallel to Bx or to B2 in Z. In the first

case let A2 be the component of Z n T' meeting A in c,. If e = dA2 — c, lies in Tí,,

then by Lemma 3.2, A2 is parallel in Z to an annulus in Tí, so that dA2 can be

removed by an isotopy. If e lies in 77, then by Lemmas 3.3 and 3.2, A2 is parallel in

Z to an annulus in 77 and so dA 2 can be removed by an isotopy. In the second case

it follows that Ax is parallel to 7?2 - Int(TT) in Z, so that dAx can be removed by an

isotopy.

Subcase (b). A = a X I in S, where a is a centerline of B2. Suppose y is a knot

space and Z a solid torus. Let Ax be the component of Z n T' meeting A in a.

V u Z is a solid torus. Since Tí, is not parallel to A' in V, Lemma 3.5 implies that

Tí, is parallel to Ti2 in Z. Thus Ax is both injective and surjective in Z and so

divides Z into solid tori IF, and IF2 with A, parallel to 3 IF, — lnt(A,) in IF, and to

dW2 - lnt(A2) in IF2. One of these solid tori is contained in C. Therefore we can

isotop T' to remove dA, from the intersection.

Suppose y is a solid torus and Z a knot space. Let A " be the annulus obtained

by pushing (dA X I) u Bx slightly into Inti*) so that A" n dX = dA" = dA X

{0}. Then A" divides X into a solid torus V" and a space S" homeomorphic to

T2 X I with F2 X {0} = 3Z such that A" is injective but not surjective in S" and

V". Using this new structure on X we can apply the argument of the preceding

paragraph to contradict minimality.

Thus X is not a cable space.

7. The main theorem. Throughout this section <A> is a cyclic action of prime

order/» on S3 having fixed point set a knot J. N is an invariant regular neighbor-

hood of J and C = C(J) the corresponding invariant knot space. 23 = 53/<A>

with q: S3 ->23 the quotient map. /* = q(J), N* = q(N) and C* = q(C). It is

proven in [11] that S3 is a homotopy 3-sphere.

7.1 Lemma. If X* is an injective torus knot space in C* then each component of

q~l(X*) is an injective torus knot space in C.

Proof. X* is the union of two solid tori V* and V* along an annulus A * in their

boundaries which is injective in both V* and V* but surjective in neither. Let

X = q~\X*), F, = q-\V*), V2 = q-\V*) and A = q~\A*). By Lemma 3.8 each

component of A is essential in X. The injectivity of the components of X in C is

clear. We may assume that X is connected since otherwise each component is

homeomorphic to X*.

Case 1. A is connected. Then F, and F2 are solid tori meeting along their

boundaries in A. A is injective in Vx and F2 and by Lemma 3.4 is surjective in

neither, so the result follows from Lemma 6.1.

Case 2. A is not connected. Let A0, . . ., Ap_, be its components. At least one of

F, or V2 is connected, say Vx.

Suppose F2 is connected. Let R = S3 - Int(F,). Let B'q, . . . , Bp_x be the

components of 3F2 - \nt(A0 u • • • L)Ap_x) and B'¿.Bp_x the components
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of dR - lnt(A0 u • • • UAp_x). We claim that, suitably numbered, 37Í,' = 37Í".

Each 7?/ is an annulus in R which divides R into two toral solids. So there must be

an innermost such annulus B'0, i.e., 3/J0 = 3F, F an annulus in 37? such that

F n (Tí; u • • • U Bp_x) = 0. Thus F is either an A} or a B'¿. If F = Ap then

Aj u B'0 = 3F2 since Aj lies in dV2. But this means that /» = 1, which is false.

Therefore F = Tí£. Renumber so that F = B'¿. Now let Tí/ = A'(T30) and Tí/' =

A'(Tí,?). Il follows that 3TÍ/ = 3TÍ/', as claimed. Now note that B[ u Tif divides S3

into two toral solids, one of which, call it W¡, lies in R. These W¡ are pairwise

disjoint and, since A(7?) = R, are cyclically permuted by A. But this is impossible

since one of them must contain the knot J and thus has fixed points.

Therefore F2 is not connected. Let U0, . . . , Up_x be its components, where

£/,- n F, = /!,. Since A0 is essential in A" it is injective in Vx and U0 but not

surjective in U0. Thus, since A cyclically permutes the U¡, trx(X) has the presenta-

tion <i, u0, . . . , up_x: t" = u™ = • • • = i*™,) where t generates trx(Vx), u¡ gener-

ates w,(tr,), n > 1 and m > 2. Thus there is an epimorphism from trx(X) to the

direct sum of /» copies of Zm. But this is impossible since A" is a toral solid with

7T,(A-) » Z.

7.2 Lemma. If X* is an injective cable space in C*, then each component of

q ~ l(X*) is an injective cable space in C.

Proof. X* is the union of a space S* homeomorphic to F2 X 7 and a solid torus

V* along an annulus A* = (F2 X {1}) n 3F* which is injective in S and V* but

not surjective in V*. 23 — Int(A"*) has two components Y* and Z*, with 3y* = F2

X {0} and 3Z* = 3A"* — 3y*. One is a knot space and the other a homotopy solid

torus, but as in Case 2, Subcase (b) of the proof of Proposition 6.9, there is no loss

of generality in assuming that Y* is the knot space and Z* the homotopy solid

torus. Let R* = V* u Z*, Q* = S* u Y* and U* = dR*. For any subset E* of

C*, let E = q~\E*). By Lemma 3.8 each component of A is essential in X. The

injectivity of the components of X in C is trivial. Moreover we may assume that X

is connected, since otherwise each component is homeomorphic to X*.

Case 1. A is connected. Then S is homeomorphic to F2 X T and meets the solid

torus V along the annulus A injective in both. Essentiality implies by Lemma 3.4

that A is not surjective in F, so by Lemma 6.2, A" is a cable space.

Case 2. A is not connected. Let A0, . . . , Ap_, be its components. At least one of

5 or F is connected.

Suppose S and V are both connected. Then we repeat the argument in the first

part of Case 2 of the proof of Lemma 7.1 with V in the place of F2 to get a

contradiction.

Suppose S is connected and F is not connected. Let V0, . . ., Vp_x be its

components with V¡ n S = A¡, which, by essentiality, is injective in S and V¡ but

not surjective in Vt. Let B¡ = dV¡ - Int(,4,). 7Í0 is an annulus in the solid torus R

with 37?0 injective in dR. Since B0 is not parallel to A0 in Fq, Lemma 3.5 implies

that R — Int(F0) is a solid torus in which 7i0 is parallel to dR — lnt(A¿). But

Bx, . . . , Bp_x are incompressible annuli in R — Int(F0) with their boundaries in
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37? - lnt(A0). Thus by Lemma 3.2, B¡ is parallel to A¡ in V, for / > 0, contradicting

the fact that A¡ is essential.

Suppose S is not connected and F is connected. Let SQ, . . ., Sp_x be the

components of S, with 5", n V = A¡. Let Y0, . . . , Yp_x be the components of Y,

with Y, n X = y, n S,. Note that Z and 3Z are connected. The manifold M = (X

U Y) - Int^o u y0) is a toral solid in C. We claim that M is a knot space. If M

were a solid torus, then by Lemma 3.6 each Y¡ is contained in a 3-cell 75, in M. But

this contradicts the fact that 3 Y¡ is injective in C

The knot spaces (S0 u y0) and M meet along the annulus A0 which is injective

in both. Then by Lemma 3.9 the components of dA0 are meridians of the solid

torus Z, and hence the components of dA* are meridians of the homotopy solid

torus Z*. Thus we see that if ii* is a meridian of Z*, it has/» components. But Z* is

the quotient of Z by the cyclic action <A|z> so that by Lemma 4.5, it must be

connected. This contradiction completes the proof.

7.3 Lemma. If X* is an injective composing space in C*, then each component of

q~\X*) is an injective composing space in C. Moreover if q~l(X*) is connected it

admits a product structure F X S1 such that h(x, ei,f) = (x, ei(?f+2'",/p)) for some q,

1 < q < /» - 1.

Proof. X* = F* x S\ F* a disk with two holes. Let J*, J*, J* be the

components of 3F*, Tj* = Jf X Sl, i = 0, 1, 2, the components of dX*. Let Y*,

Y*, Y* be the components of 23 - In^A"*), with 3y* = T*. If E* is any subset of

C*, we let E = q" l(E*). We may assume that X is connected since otherwise each

component is homeomorphic to A"*.

Suppose F is not connected. Then X is homeomorphic to F0 X Sl, where F0 is a

component of F and (q\X): F0 X Sl —» F* X S1 is a homeomorphism on the first

factor and a /»-fold cyclic covering on the second factor. Thus A1 is a composing

space with the required product structure.

Suppose F is connected. Then X is homeomorphic to F X S1 and (^A"):

FxS'1-»F*xS1isa /»-fold cyclic converging on the first factor and a homeo-

morphism on the second factor. We claim that F is a planar surface. Let g and b

be, respectively, the genus and the number of boundary components of F. Then 3A"

has b components and so S3 — Int(A') has b components, each of which is a toral

solid. Thus HX(S3 — A") is free abelian of rank b. By Alexander Duality and

the exact sequence of (S3, S3 - X) we have Hl(X) =* H2(S3, S3 - X) »

T7,(53 - A"). By the Runneth formula 77'(A") a Z 0 TT'(F) and so is free abelian

of rank 2 — x(F) = 2g + A. Thus g = 0 and F is planar.

Note that x(F) = /»x(F) = -/», which implies that A = /» + 2. It follows that

exactly two of the components of 23 - Int(A"*), say Y\* and Y\, have connected

inverse images. Let Z0, . . . , Zp_x be the components of Y0. Since they are

permuted by h, J must be either in Yx or Y2, say Yx. Then X u Y0\j Y2 lies in C

and has boundary 3y, incompressible in C. Thus it is a knot space and so Yx is a

solid torus. By Lemma 6.4, any S'-fiber, iiq in 3y, is a meridian of Yx and so

M* = lith) is a meridian of the homotopy solid torus y*, and it has/» components.

But yf is the quotient of Yx by the cyclic action <A| Yx} with fixed point set J, so
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by Lemma 4.5, 11 must be connected. This contradiction completes the proof.

7.4 Proposition. If 9" * is a Haken system of tori in C*, then the set 9" of the

components of the inverse images of the elements of 9"* under q is a Haken system of

tori in C.

Proof. Clearly the elements of 9" are pairwise disjoint, incompressible, and

include 3C. Suppose F, and 7} are elements of 9" which are parallel in C. Then

there is a submanifold M = T2 X I of C with F2 X {0} = T¡ and F2 X {1} = 7}.

AT is a covering space of the closure M* of one of the complementary domains of

9"* in C*. By Theorem 1 of [17], M* is an 7-bundle over some surface F. F must

either be a torus or a Klein bottle. In the first case M* is homeomorphic to F2 X 7,

contradicting the fact that 9"* is a Haken system. In the second case, AT* is a

twisted 7-bundle over the Klein bottle and so 7T,(M*) a Z © Z2, but this is

impossible since M* has connected boundary and so must be a toral solid with

T7,(Af*) a Z.

So the only way 9" can fail to be a Haken system is for C to contain an

incompressible torus F which neither intersects nor is parallel to any of the

members of 9". If F exists, then there is a complementary domain of 9"* with

closure X* such that F is contained in the interior of some component A" of

q~\X*). Since 3A" lies in 9", F is essential in X. By Lemma 3.7, X* contains either

an essential annulus or an essential torus. By Proposition 6.7, the latter is impossi-

ble and X* must be either a torus knot space, cable space or composing space. By

Lemmas 7.1, 7.2 and 7.3, X must have the same form, but by Lemma 6.6, X then

contains no essential tori, a contradiction.

7.5 Theorem. Let T be an arbitrary essential torus in C, Q the knot space in C

bounded by T. Then there is an isotopy of C rel dC taking T and Q to T' and Q' such

that either h(T') = T and h(Q') = Q' or A'(F') n hJ(T') = 0 and A'(ß') n

h'XQ') = 0far i +J.

Proof. Let 9* be a Haken system of tori in C*. By Proposition 7.4, the set 9" of

inverse images of the components of 9"* under q is a Haken system of tori in C.

Thus by Proposition 6.9, F is isotopic rel 3C to a torus T" which is either a

member of 9" or is contained in X = A", u • ■ • U Xs, where each X¡ is a compos-

ing space which is the closure of a complementary domain of 5 in C and meets F"

in essential annuli. In the first case we are done since the members of 9" have the

required property. Therefore we assume the second case.

Each Xj is a component of q " '(A,*) for the closure A",* of some complementary

domain of 9"* in C*. By Lemma 3.7, X* has an essential annulus, so by Proposition

6.7, Lemmas 7.1 and 7.2, AT* is a composing space. It follows that a given X¡ is

either invariant or disjoint from its translates under A. If X¡ is invariant, then by

Lemma 7.3 so is each of its boundary components. Thus either all the Xt are

invariant or all the X¡ are disjoint from their translates. We claim that the same is

true for their union X. This is clearly the case if each X¡ is invariant, so suppose

each X¡ is disjoint from its translates. Let Y = X u h(X) u ■ ' ■ UAP-1(A'). We

associate to y a graph G having one vertex for each h\X¡) in Y and one edge for
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each boundary component shared by two such submanifolds. A induces a periodic

simplicial map A' on G. Since each torus in S3 separates, the components of G are

trees. If G is connected, then A' has a fixed point, i.e. there is some X¡ invariant

under A, a contradiction. Thus G has p components which are cyclically permuted

by A'. These components correspond to the translates of X, so that X is disjoint

from its translates, as claimed.

If X is disjoint from its translates, then F" is disjoint from its translates, so we let

7" = F". If X is invariant, give Xx the structure F X S1 of Lemma 7.3. By Lemma

6.5, there is an isotopy of A", taking the components of A", n T" to product annuli

and remaining fixed on the components of dXx not meeting F". We extend this

isotopy to one of C rel 3C by an isotopy constant outside a regular neighborhood

of Xx. Suppose A"2 shares a boundary component U with Xx. Give X2 the product

structure of Lemma 7.3. Since U is invariant, these structures agree on U. By

Lemma 6.5, there is an isotopy of A"2 taking the components of A"2 n F" to product

annuli and remaining constant on U and on the components of 3A"2 not meeting

F". We extend this isotopy to C as before, keeping it constant on Xx. We continue

this process until Xi n T" has been moved to a collection of product annuli for all

the A,. Note that since each torus separates, we need never perform an isotopy

twice on an A,-. Let T' be the image of F" under the composition of these

successive isotopies. Since the product annuli A", n F' are invariant under A so is

T.

Now if T is invariant, then either h(Q') = Q' or h(Q') = S3 - lnt(Q). The

latter is impossible since S3 - Int(g) contains the fixed point set /. If T' is disjoint

from its translates and Q' is not, then either Q' is a proper subset of h(Q') or the

converse. We may assume the former. Then by successive applications of A we have

that Q' is a proper subset of hp(Q') = Q', which is absurd. Thus Q' is disjoint

from its translates.

8. Applications. In this section we use Theorem 7.5 to prove the Smith Conjecture

for several classes of knots. Let V be an unknotted solid torus in S3, L a simple

closed curve in Int( V) which neither lies in a 3-cell in V nor is a core of V. Let K

be a knot in S3. (V, L) is K-independent if V — L does not contain an injective

A"-knot space. Let Lq, -oo < q < + oo, be the simple closed curves congruent to L

along V, i.e., Lq = t?(F) for a simple twist r of V. Recall the construction

J = J(K, V, L) where J = f(L),f: V —» IF a faithful homeomorphism, IF a regular

neighborhood of A".

8.1 Lemma. Let J = J(K, V, L). Suppose <A> is a cyclic action of prime order p on

S3 with Fix<A> = J'. If drV is isotopic rel J to a torus T' such that A(F') = F', then

there exist cyclic actions A', hq of order p on S3 with Fix<A'> = K and Fix<A?> =

w
Proof. Clearly we may assume that 3 IF = 7", so that A( W) = W. By Lemma

4.5, W has an invariant meridian. By Lemma 4.3, we can extend A|3IF to a

standard action on W with fixed point set a core of IF, which we may assume to be

K. We let A' be this standard action on IF and A on S3 - Int( IF).
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The homeomorphism /"' ° (A| IF) ° / generates a cyclic action A0 on V with

Fix<A0> = L. The homeomorphisms hq = t9 ° A0 ° t"9 generate cyclic actions of

order/» on V with Fix<A?> = L9. Each hq leaves invariant some meridian of V. It

follows that every simple closed curve on 3 F meeting this meridian at a single

transverse intersection point is isotopic to a curve disjoint from its translates under

hq. In particular this is true for a meridian of S3 — Int(F). It follows that we can

extend hq\dV to a standard free cyclic action on S3 - Int(F)- We let hq be this

action on S3 — Int(F) and hq on F. This completes the proof.

8.2 Theorem. Let J = J(K, V, L). Let p be a prime. Suppose that either (i) the

multiplicity m of K is less than p, or (ii) (V, L) is K-independent, or (iii) V — Int(TV)

has no essential tori, where N is a regular neighborhood of L in V. If J is a

counterexample to the period p Smith Conjecture, then K is a counterexample to the

period p Smith Conjecture and each knot congruent to L along V is a counterexample

to the period p Smith Conjecture.

Proof. We first show that (iii) => (ii) => (i), so that it suffices to assume (i).

Suppose F — Int(TV) has no essential tori. If V — L contains an injective A-knot

space Q, then we may assume Q lies in Int( V — N). Since dQ is injective but not

essential in V - Int(TV) it must be boundary parallel. But this is impossible since

3(F— \n\.(N)) has two components. This proves the first implication. Suppose

V — L is AT-independent. If A" has multiplicity m, then there is a set of solid tori

IF0, . . . , Wm_x inS3 which are subordinate to J with order a^O and whose cores

K0, . . . , Km_x are equivalent to K. Since there is no such system of m + 1 solid

tori, we may assume that W0 = W. If m > p, then m > 2, so that Qx = S3 —

Int(IF,) lies in Int(IF0). dQx is incompressible in IF — J since Qx is a knot space

and a ¥= 0. Thus Q is an injective A"-knot space in IF - / and thus/_1(£)) is an

injective A"-knot space in F - L, contradicting the fact that ( V, L) is A"-indepen-

dent. This proves the second implication.

We now assume that m <p and that <A> is a cyclic action of order /» with

Fix<A) = /. By Lemma 2.1, there is an invariant regular neighborhood A^ of J in

IF. We let C be the corresponding invariant knot space. By Proposition 3.10, 3 IF is

essential in C. So by Theorem 7.5, there is an isotopy fixed on 3C taking 3 IF to a

torus F' which is either invariant or disjoint from its translates under A. In the first

case the theorem follows from Lemma 8.1. We show that the second case is

impossible. Let IF' and Q' be, respectively, the solid torus and knot space bounded

by F' in S3. Then IF', A(IF'), . . ., hp~\W) is a set of solid tori whose cores are

equivalent to K and are companions of / with order a. Since h'(Q') lies in

lnt(hJ(W')) for i =£j, we see that this set of solid tori is subordinate to J with order

a. Hence K has multiplicity at least/», a contradiction. This completes the proof of

the theorem.

We now apply this theorem to prove the Smith Conjecture for several classes of

knots. We shall need the following known results.

8.3 Proposition (Giffen). The Smith Conjecture is true for torus knots.
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8.4 Proposition (Cappell and Shaneson). TAe Smith Conjecture is true for

2-bridge knots.

8.5 Proposition (Kinoshita, Fox). Suppose K is a counterexample to the periodp

Smith Conjecture. Let K* be the image of K in the quotient manifold 23. Let &K(x)

and AK.(x) be the Alexander polynomials of K and K*, respectively.

(1) AK(xp) = W¡ ~o' hK,(c¿'x), where w is a primitivepth root of unity.

(2) If Ajf(x) = (*"" - l)(x - \)/(xm - l)(x" - 1), where (m, n) = 1 and

\m\, \n\ > 2, then (/», mn) = 1.

The proof of the first proposition can be found in [12] or Fox [11], that of the

second in [5], and that of the third in [8] or [10].

In order to illustrate the techniques made available by Theorem 8.2 we shall

prove the conjecture for cabled knots and doubled knots in two different ways. The

first method uses the fact that the conjecture is true for torus knots and twist knots.

The conjecture for twist knots follows either from Proposition 8.4 or from our

Theorem 8.7. The second method uses the Alexander polynomial conditions of

Proposition 8.5.

8.6 Theorem. The Smith Conjecture is true for cabled knots.

Proof. Suppose J = J(K, V, Tmn) is a counterexample. By Lemma 6.6, F —

Int(A/) has no essential tori, where A7 is a regular neighborhood of Tmn in V. By

Theorem 8.2, each knot congruent to Tmn along F is also a counterexample. We

give two proofs that this is not so.

Proof 1. If \m\, \n\ > 2, then Tmn is a torus knot and so by Proposition 8.3

cannot be a counterexample. If \m\ = 1 and \n\ > 2, then Tmn is unknotted.

Choose an integer q > (2 + |w|)/|n|. Then \m + nq\ > 2, and Tm+nqn is a torus

knot congruent to Tmn along V and is a counterexample, again contradicting

Proposition 8.3.

Proof 2. As in Proof 1, we may assume that |w|, \n\ > 2. If /» divides mn, then

by Proposition 8.5, Tmn cannot be a counterexample since it has Alexander

polynomial equal to the expression in part (2) of the proposition. If /» does not

divide mn, then « is a unit modulo /» and so the congruence mn + n2q = 0 mod/»

can be solved for q. It follows that/» divides (m + nq)n. Tm+ is congruent to

Tmn along V and so is a counterexample, again contradicting Proposition 8.5.

8.7 Theorem. Let K be a nonfibered knot all of whose incompressible spanning

surfaces are isotopic. Then the Smith Conjecture is true for K.

Proof. Suppose A" is a counterexample. Let q: S3 —* 23 = S3/<A> where <A> is

some cyclic action of order/» on S3 with Fix<A> = K. Let C be an invariant knot

space of K and C* = q(C). Let F* be an incompressible spanning surface for

A"* = q(K) and set G* = F* n C*. Then q~\F*) has/» components F0, . . ., Fp_x

with G, = F, n C the components of q~\G*). Since all the F, are incompressible,

they are isotopic. It follows from Lemma 5.3 of [36] that they are all parallel and

hence K is fibered, a contradiction.
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8.8 Corollary. FAe Smith Conjecture is true for twist knots.

Proof 1. Twist knots are 2-bridge knots, so the result follows from Proposition

8.4.

Proof 2. Let T(p, tj) be a twist knot. If \p\ > 1, then it is nonfibered and has a

unique isotopy type of incompressible spanning surface by Lyon [22]. If \p\ = 1,

then it is fibered but must be either the trefoil or figure eight knot. The first is ruled

out since it is a torus knot. The second has Alexander polynomial 1 - 3x + x2 so

the only possibilities for A^x) in Proposition 8.5 are 1 — 3x + x2 and 1 — x +

x2, neither of which satisfy equation (1).

8.9 Theorem. The Smith Conjecture is true for doubled knots.

Proof. Suppose J = J{K, V, T(p, tj)) is a counterexample. By Lemma 2.5 of

Whitten [39], V — Int(A/) has no essential tori, where N is a regular neighborhood

of T(p, tj) in V. Thus by Theorem 8.2, each knot congruent to T(p, tj) along F is a

counterexample. We give two proofs that this is not so.

Proof 1. If p ¥= 0, then T(p, tj) is a twist knot and so by Corollary 8.8 is not a

counterexample. If p = 0, then T(p, tj) is unknotted. Choose an integer q ¥= 0. Then

T(p + q, tj) is a twist knot congruent to T(p, tj) along F and so is a counterexam-

ple. This again contradicts Corollary 8.8.

Proof 2. T(p, tj) is congruent to F(2, 2) or to F(2, -2), which has polynomial

2 — 5x + 2x2 or 2 — 3x + 2x2, respectively. But this contradicts Proposition 8.5

since equation (1) implies that the leading coefficient must be a/»th power.

8.10 Theorem. FAe Smith Conjecture is true for cable braids.

Proof. Suppose J = J(K, V, ß) is a counterexample. We claim that V — ß is

A"-independent. If not, then it contains an injective A^-knot space Q which we may

assume to lie in V - lnt(N), N a regular neighborhood of ß in V. Then Q' = f(Q)

is an injective A-knot space in IF - lntf(N), where/: V —» IF is the homeomor-

phism from V to a regular neighborhood of A" such that J = f(ß). Let W = S3 —

Int(ß'). Then IF' is a knotted solid torus in S3 containing J in its interior. Since Q'

is injective in IF — J, 3IF' is incompressible in IF — J and so ow,(J) J= 0. J is not

a core of IF', for if it were then 3 IF' would be parallel to df(N) in C(J). It follows

from Lemma 3.2 that 3 IF is parallel to 3ß' in IF - lnt(f(N)). But this is

impossible since W — \nt(f(N) u Q') has three boundary components. Since 3IF'

lies in Int(IF) it follows from Hilfsatz 2 on p. 263 of [29] that IF' lies in Int(IF), so

that Q ' cannot be in Int( IF). This contradiction establishes that V - ß is ^-inde-

pendent.

From the proof of Theorem 8.2, we see that F admits a cyclic action having ß as

fixed point set. Thus by Proposition 4.6, ß is a core of V. This contradicts the

definition of a cable braid.

8.11 Theorem. FAe Smith Conjecture is true for nonsimple knots J with bridge

number b(J) < 4.

Proof. Suppose J is a counterexample for period/». J has a companion K with
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order a and multiplicity m. If a = 1, then J is the composite of K and some knot

A"! By Theorem 3.1, they are both counterexamples. But by Satz 7 of [30],

b(J) = A(A") + A(AT') - 1, so that either A(A") = 2 or A(A"') = 2. This contradicts

Proposition 8.4. Thus a > 2. By Satz 3 of [30], aA(A") < b(J), so A(AT) = 2. By Satz

2 of [30], am(b(K) - 1) < b(J), so 4 > b(J) > am(b(K) - 1) > 2/», implying/» =

2. This contradicts Waldhausen's theorem [38] that the Smith Conjecture is true for

/» even. Thus m < p. By Theorem 8.2, A" is a counterexample, again contradicting

Proposition 8.4.

9. Reduction theorems. Suppose J = J(K, V, L) is the fixed point set of a cyclic

action <A> of prime order/» on S3. Let IF be the regular neighborhood of K in the

definition of J. If 3 IF is isotopic rel J to an invariant torus F', then by Lemma 8.1,

there is a cyclic action <A'> of order/» on S3 with Fix(A') = K. We say that <A'>

has been obtained by Type I surgery on <A>. If, instead, 3 IF is isotopic rel J to a

torus T' which is disjoint from its translates then we obtain a cyclic action <A'> of

prime order/» on a certain manifold AT via Type II surgery as described in the next

paragraph.

Let Q be the knot space in S3 bounded by F'. Set F, = A'(F') and Q¡ = A'(ß)

for 0 < / < /» — 1. As in the proof of Theorem 7.5, we see that the Q¡ are pairwise

disjoint. Let (ii, X) be a meridian-longitude pair for Q and set pi = A'(it) and

X, = A'(X). Then (p¡,X¡) is a meridian-longitude pair for Q¡. Let V = V0

U • • • U^_|bea disjoint union of solid tori and A: V-» Fa homeomorphism of

period/» taking V¡ to Vi+X (subscripts mod/»). Choose a meridian-longitude pair

(a, ß) for F0 and set a, = A'(a), /i, = A'(yS). Let qp0: 3F0—* F0 be a homeomor-

phism taking a to X and ß to it. Define <p,: 31^ —» F, by <p, = A' ° (p0 ° A-'. Define

m: 3F^>37?, where 7? = S3 - lnt(Q0 u • • • UQ,.,), by <p(x) = <j5,(x) for x G

dV¡. Let Af be the identification space V u,, R. A and A induce a cyclic action <A'>

on M with Fix(A') = /', the image of J in AT.

9.1 Lemma. M is homeomorphic to S3.

Proof. Let W¡ = S3 - Int(g,.), 0 < i < p - 1. We first show that there are

disjoint meridional disks 7), for the IF, such that each 7), is contained in R. Let 7)

be any meridional disk of W0 in general position with respect to the boundaries of

Qv • ■ ■ ' ß/>-i and having minimal intersection with them. We claim that this

intersection is empty. If not, then there is a subdisk E of D with 3F in the

intersection (with, say Qx) whose interior misses the intersection. If E is in Qx, then

there is a disk F' in dQx with 3F' = 3F, since Qx has incompressible boundary.

Replace F by E' and push the result off Qx to get a disk D' with fewer intersection

curves, a contradiction. If E is in R, then Qx u A", X a regular neighborhood of F

in 7?, is a 3-cell and so we can replace D by a disk 7)' missing it and having no

more intersections with the other dQ¡ than did D. This again contradicts minimal-

ity. Now let 7J)0 = 7). Suppose inductively that 7J>0, . . . , Dk_x have been chosen as

desired. Exactly as in the case of 7)0, we can find a meridional disk Dk for Wk

contained in 7?. Put Dk in general position with respect to 7J>0 u • • • V)Dk_x so

that the intersection is minimal. We claim the intersection is empty. If not, there is
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a disk E' on some Z). with 3F' in the intersection and Int(F') missing it. 3F' = 3F,

F a disk in Dk. Replace F by E' and move to one side to get a new disk having

fewer intersection curves. This contradicts minimality. The desired set of 7J>, is

obtained by induction.

Now consider the sequence of manifolds S3 = AT0, AT,, . . . , Mp = AT, where

Mk = Vk_x LíVk¡(Mk_x — Int(g^_,)), 1 < k < />. We show that Mk is homeomor-

phic to S3 by induction on k. Assume Mk_x is homeomorphic to S3. Then

Í4_, = Mk_x - lnt(Qk_x) is a solid torus. Let Dk_x be the meridional disk for

Wk_x found above. Then Dk_x lies in R and hence in Uk_x. Thus Dk_x is a

meridional disk of Uk_x. It follows from the definition of <pk_x that <pk_x de-

termines a genus one Heegaard splitting of S3. Hence Mk is homeomorphic to S3.

Induction completes the proof.

Using Type I surgery alone, via our previous results, we obtain the following

reduction theorem.

9.2 Theorem. Let p be a prime. If the period p Smith Conjecture is true for all

simple knots K with bridge number b(K) < /» - 1, then it is true for all nonsimple

prime knots J with b(J) < 2/> — 1 and all composite knots J with b(J) < 2p — 2.

Proof. Suppose / is a counterexample. We induct on b(J). If J is the composite

of K and K' and b(J) < 2p - 2, then the equaton b(J) = A(A") + b(K') - 1 of

Satz 7 of [30] implies that either A(A") < /» — 1 or A(A"') < /» — 1, say the former.

By Theorem 5.1, AT is a counterexample. By hypothesis, then, A" is nonsimple, so the

result follows by induction. If / is nonsimple and prime, then / has a companion A"

with multiplicity m > 1 and order a > 2. If b(J) < 2/» — 1, then the inequality

aA(A") < b(J) of Satz 3 of [30] implies that A(A") < \b(J) < p - {■. So A(A~) < p -

1. The inequality am(b(K) — 1) < b(J) of Satz 2 of [30] implies that m </», so by

Theorem 8.2, A" is a counterexample. By hypothesis K is nonsimple, so the result

follows by induction.

9.3 Corollary. The period 3 Smith Conjecture is true for nonsimple prime knots J

with b(J) < 5.

Proof. This follows from Theorem 9.2 and Proposition 8.4.

Putting the two types of surgery together we have

9.4 Lemma. Let p be a prime. Suppose <A> is a cyclic action of order p on S3 with

Fix<A> = J, a nonsimple knot. Then there is a sequence of cyclic actions <A> =

<A0), <A,>, <A2), . . . of order p on S3, each of which is obtained from its predecessor

by either Type I or Type II surgery. If the sequence terminates with an action <A'> =

<An), then J' = Fix<(A') is either a simple knot or is unknotted.

Proof. J has a companion AT, so by Proposition 3.10 the invariant knot space

C(J) has an essential torus F. By Theorem 7.5, F is isotopic to a torus T' which is

either invariant or disjoint from its translates under A. In the first case, Lemma 8.1

yields an action <A,> on S3 with Fix<A,> = A" obtained by Type I surgery on <A>.

In the second case, Lemma 9.1 yields an action <A,> on S3 with Fix<A,> = Jx
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obtained by Type II surgery on <A>. We continue this process as long as the

closure C, of the complement of a regular neighborhood of Fix<A,-> contains an

essential torus. Thus if the sequence terminates with <A„>, there are two possibili-

ties. Either C„ is a knot space having no essential tori or it is a solid torus. In the

first case, Proposition 3.10 implies that Fix<A„> is simple, and in the second case,

Fix<A„) is unknotted. This completes the proof.

We now examine what happens if the sequence terminates with an unknotted

simple closed curve. Let/» be a prime and t and a standard rotation of S3 of period

/» about the unknotted simple closed curve A. Let K0 be an unknotted simple

closed curve in S3 — A such that the simple closed curves A, = ¡'(Kq), 0 < / < /»

— 1, are pairwise disjoint and the link L = A"0 u • • • U Kp_x is trivial. Then we

call L a symmetric trivial link of order/». L is standard if L \J A is a trivial link.

9.5 Lemma. Suppose <A') is obtained from <A> by Type II surgery. Let K0 be a

core of V0. If J' = Fix<A'> is unknotted, then L = K0 u A'(A"0)

U • • • U(A'y_1(A"0) is a nonstandard symmetric trivial link.

Proof. We use the notation in the proof of Lemma 9.1. Since /•' is unknotted, A'

is equivalent to a standard rotation about /'. The curves K¡ = (h')'(K0) are cores of

V¡, 0 < i < p — 1, and are pairwise disjoint. As in the proof of Lemma 9.1, there

are pairwise disjoint meridional disks TJ>, for S3 — lnt(Q¡) which lie in 7?. Since

<P,( ßi) — ft> 37), is a longitude of V¡. Join 37), to A, by an annulus in V¡ to get a disk

F, in AT with 3F, = A,. Since the F, are pairwise disjoint, F is a trivial link. L is

clearly symmetric. If it were standard, then there would be a disk E in M with

dE = J' which misses the union of the F,. We may then assume that E misses the

union of the V¡. But then F is in 7?, so that we can regard it as a disk in Af0 = S3

with 3F = /, contradicting the fact that J is a knot. Therefore L is nonstandard.

In view of the previous two lemma we see that the Smith Conjecture reduces to

the case of simple knots provided that the following two conjectures are true.

9.6 Conjecture. Every sequence of Type I and Type II surgeries terminates.

9.7 Conjecture. Every symmetric trivial link is standard.

We note that if the second conjecture is false, then so is the Smith Conjecture.

This can be seen by reversing the steps in the proofs of Lemmas 9.1 and 9.5. This

observation has previously been made by Gordon [13]. We now give a partial result

on this conjecture which will be used in the sequel. First we need the following

result from [6].

9.8 Proposition (Dyer and Scott). Let F be a free group and a an automorphism

of F of prime order p. Then F = F<a> * (* F,) * (* Fx) where each factor is

a-invariant and

(i) for each i G 7, F¡ has a basis xiX, . . . , xiJt such that a(xir) = xjr+x (subscripts

mod/»),

(ii) for each X G A,  Fx  has a basis xxx, . . . , xXj¡_x,  {y^j G Jx)  such  that
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«(*A,r) " *V+l> r=\,...,p-2, a(xXj>_x) = (xx>, • • • xXj,_x)~\ aty) = xxxl ■

(iii) F<a2 ù the fixed point set of a.

9.9 Theorem. Le/ L be a symmetric trivial link with axis A. Then A is contractible

in S3 - L.

Proof. Choose a basepoint a0 on A. It suffices to show that [A] = 1 in

F = trx(S3 — L, a0). Note that [/I] is a fixed point of the automorphism a of F

induced by /|(S3 — L). We claim that F is a free group with basis A0, . . ., bp_x

such that a(b¡) = g,A,+,g,_1, subscripts mod/», for some g0, . .. , gp_x in F. Let F0

be a regular neighborhood of K0 in S3 — A such that F, = f'(F0), 0 </</»— 1,

are pairwise disjoint. Let y0 be a meridian of F0 based at a point y0 in 3F0. Let

7, = F(y0) and.y, = t'(y0). Since L is a trivial link there are arcs e, from a0 to y¡

such that F is the free group with basis elements A, = [e,Y,e,~ ']. Let 80 = e0 and

5,. = F(50).   Let   & = [/(£,)£,-',].   Then

«(A,) = [/(e,Y,e,-')] = WO'(r,)'(*r')]

= [i(e,)7,+ .'(£,)"'] = Mste+iWA+k+ito)-1]
= ['(e,)e,+'i][e, + iV1 + ie,-;,i][e,+ ii(e,)"1] =  «A+ift"'-

By Proposition 9.8 there are two possibilities for the form of a:

(i) there is a basis x0, x„ . . . , xp_, for F such that a(x,) = xj+x, subscripts

mod/», or

(ii) there is a basis x0, xx, . . ., xp_x for F such that a(x^) = x0, a(x¡) = xi+l,

1 </</> — 2 and a^.,) = (x,x2 • • • x?_,)-1.

If a has form (i), then clearly it has no nontrivial fixed points, so [A] = 1.

Therefore assume a has form (ii). Let G be the split extension of F by Zp given by

Zp = <«> -» Aut(F). G has the presentation </0, /„ . . . , £,_„ j: j/j-1 = a(/), s"

= 1>, where/0,/,, . . . ,fp-i is any basis for F.

Choosing the basis xQ, xx, . . ., xp_x given in (ii) we get the presentation <x0,

xx, . . . , xp_x, s: sxqS~1 = x0, sXjS~l = xi+x, 1 </</» — 2, sx xs~l =

(xxx2 ■ • ■ xp_x)~\ sp = 1>. Suppressing the commutator relations, the abeliani-

zation G/G' has the presentation <x0, xx, . . . , xp_x, s: xx = x2 = • • • = xp_x =

(xxx2 • • ■ xp_x)~l, sp = 1> which is equivalent to <x0, xx, s: xp = 1, sp = 1). Thus

G/G' ^ Z®Zp®Xp.
Choosing instead the basis A0, A„ . . . , A , we get the presentation <Aq,

A,, . . . , A^.,, í: jA,í_1 = g,A, + ,g,_1, 0 </</» — 1 (mod/»), i' = 1>. Suppressing

the commutator relations we see that G/G' has the presentation <A0,

A,, . . . , Ap.,, s: A0 = A, = • • • = Ap_„ s' — 1), which is equivalent to <A0, s:

sp = 1>. Thus G/G' a Z 0 Zp.

This contradiction completes the proof.

9.10 Lemma. Let M be a surface bundle over Sl with typical fiber F having

X(F) < 0. Suppose T is an essential torus in Int(Af). FAe« we can deform the fibering

so that if M' = F X I is the manifold obtained by splitting M along F and g:

M' —> M is the gluing back map, then g~l(T) consists of incompressible annuli
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G,, . . . , Gm such that G, = a, X 7 for some simple closed curves a„ . . . , am in

F X {0}.

Proof. By an isotopy of AT rel 3Af we put F into general position with respect to

F such that the number of components of F n F is minimal. Let G = g~l(T).

Claim 1. F n F ^ 0. If not, then by Lemma 3.1, G is an incompressible torus in

AT' and so by Lemma 3.2 is parallel to F X {0}, contradicting the fact that F is not

a torus.

Claim 2. G consists of annuli. If not, then some component G, of G is a disk

with 3G, in, say, F X {0}. 3G, = 37) for some disk D in F X (0). D u G, bounds

a 3-cell in M', so g(7J> u G,) bounds a 3-cell in AT. Isotop g(D) across this 3-cell to

the other side of g(Gx) to reduce the number of intersection curves, thereby

contradicting minimality.

Claim 3. G is incompressible in M'. If not, let D be a compressing disk for some

component G, of G. 37) divides G, into annuli G,' and G2". Since Fis incompressi-

ble in M, dg(D) = dE for some disk E in F. One of g(G[) or g(Gx) lies in E, so

that F n Int(F) 7e 0. Let 7 be an innermost component in E of this intersection.

Then / = 3F' for a disk F' in F with F' n F = 3F'. Thus g~~\E') is a disk

component of G, contradicting Claim 2.

Claim 4. Each G, has one boundary component in F X {0} and the other in

F X {1}. If not, then G,, say, has 3G, in, say, F X {0}. By Lemma 3.2 and Claim

3, G, is parallel to an annulus G[ in F X {0}. Hence g(Gx) is parallel to the annulus

g(G{) in F. Isotop g(G[) across the solid torus bounded by g(Gx u G,') to reduce

the number of intersection curves, contradicting minimality.

Now by Lemma 3.3, there is an isotopy/ of AT' fixed on (F X {0}) u (3F X T)

such that/,(G,) = 3a, X I, where a, = G, n (F X {0}). Replacegbyg»/f' to get

the desired fibration.

9.11 Proposition. Let J = J(K, V, L) be a fibered knot. Then

(i) A" is a fibered knot of smaller genus,

(ii) L is either unknotted or a fibered knot of smaller genus,

(iii) the linking number of K and the core of S3 — Int( V) is nonzero.

Proof. Let /: F —» IF be the homeomorphism between solid tori defining /. Let

TV be a regular neighborhood of J in IF, C(J) = S3 - lnt(N) and Q = S3 -

Int(IF). By 3.10, F = 3IF is essential in C(J). Since J is fibered, so is C(J). Let/':

F X I —> C(J) be the map of Lemma 9.10. Let Xx, . . . , Xn be the components of

g~\Q). If 7?,. = A-,, n (F X {0}) then Jt, = 7?, X 7. Let <p = (g|F X {0})-' o

(g|F X {1}). Number so that cp(7?, X {1}) = 7?, + „ subscripts mod«. Let <p, =

q>\(Rj X {1}). Let X be the identification space Xx u 9i A"2 u ^ • • • U% Xn and

g0: X -* Q be map induced by g| g~'(£))• g0 gives Q the structure of a surface

bundle over S ' with fiber a copy 7? of R¡. From the exact sequence of this fibration

and HX(Q) a Z we see that 7r,(T?) is the commutator subgroup of wx(Q). Thus the

covering space of Q corresponding to trx(R) is the universal abelian covering of Q;

hence 3T? is connected and is a longitude of Q. Extending this fibering to IF — K

we see that K is a fibered knot. Since F is essential, 37?, is not parallel to 3F in
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F X {0}. Thus R has smaller genus than F and so A" has smaller genus than /. This

proves (i).

Now let y = F X T - Intg~\Q) and F = y n (F X {0}). F and Y = F X T

are connected. Construct a space Z by attaching n disjoint 3-cells Bx, . . ., Bn to Y

so that F, n y = 37?, X 7. Let 7),', 7J>," be the closures of the components of

3F,. - (37?,. X 7) with 37)/ = 37?,. X {0} and 37J>," = 37?,. X {1}. Z is homeomorphic

to S X I where 5 = F u D[ u • • • U D'n. Let g, = (f\(V - Int(TV)))-1 ° g. Since

g(37?,) is a longitude of £), g,(37?,), 1 < i < n, is a set of parallel simple closed

curves in 3F, each of which bounds a disk F, in S3 — Int(F). We use these disks to

extend g, to a map g,: Z -> 53 - Int/-1(A0. g, thus gives S3 - Int f~l(N) the

structure of a surface bundle over S ' with fiber 5. Extending the fibering to N — L

we see that L is fibered. If S has genus zero, then L is unknotted. If S has nonzero

genus, then, since F is incompressible in C(J), Rx, . . . , Rn are not disks, so that S

has smaller genus than F and so L has smaller genus than J. This proves (ii).

Choose oriented arcs d¡ in each F, joining 7),' to 7)," so that c =

g,(¿, u ■ • ■ U4i) is a core of 53 — Int(F). Then clearly c has linking number

n ¥= 0 with L. This proves (iii).

9.12 Theorem. Let p be a prime. If the period p Smith Conjecture is true for all

simple fibered knots, then it is true for all fibered knots.

Proof. Using Lemmas 9.1 and 9.4, the theorem will follow from three claims.

Claim 1. If <A> is a cyclic action of order/» on S3 with Fix<A> a fibered knot

and if <A'> is obtained from <A> by Type I or Type II surgery, then Fix<A') is

fibered. For Type I surgery this follows immediately from Proposition 9.11. For

Type II surgery note that there is a sequence of knots Fix<A) = J0, /„..., Jp =

Fix(A'), where J¡ = J(K¡, V¡, /, + ,), 0 </'</> — 1, each A, having the knot type of

K. It then follows from Proposition 9.11 that Fix<A'> is fibered.

Claim 2. Every sequence of Type I and Type II surgeries having fibered fixed

point sets terminates. This follows from Proposition 9.11, which say that the genus

of the fixed point sets are strictly decreasing.

Claim 3. If <A'> is obtained from <A> by Type II surgery and Fix<A> is fibered,

then Fix<A'> is knotted. If /' = Fix(A') were unknotted, then by Lemma 9.5,

L = K0 u h'(K0) u • • • u(A'y-1(A0) is a nonstandard symmetric trivial link,

where K0 is a core of V0. Let J = J0, Jx, . . . ,Jp = J' be a seqence of knots as in

Claim 1. By/» applications of part (iii) of Proposition 9.11 we have that the linking

number of A"0 and J' is nonzero. But this contradicts Theorem 9.9, which says that

J' is contractible in S3 — L. This completes the proof.
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