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(Communicated by Ronald A. Fintushel)

Abstract. In this paper it is proven that if the group of covering translations
of the covering space of a compact, connected, P2-irreducible 3-manifold corre-
sponding to a non-trivial, finitely-generated subgroup of its fundamental group
is infinite, then either the covering space is almost compact or the subgroup
is infinite cyclic and has normalizer a non-finitely-generated subgroup of the
rational numbers. In the first case additional information is obtained which is
then used to relate Thurston’s hyperbolization and virtual bundle conjectures
to some algebraic conjectures about certain 3-manifold groups.

1. Introduction

A non-compact 3-manifold V is almost compact if it is homeomorphic to a com-
pact 3-manifold W minus a closed subset of its boundary; if g : V → W is the
corresponding embedding, then the pair (W, g) is called a manifold compactifica-
tion of V ; this term is also applied to W itself. Simon has conjectured [29] that
if M is a compact, connected, P2-irreducible 3-manifold (possibly with non-empty
boundary) and H is a finitely-generated subgroup of π1(M), then the covering space
M̃ of M corresponding to H is almost compact. The case in which H is trivial has
received considerable attention. (See, for example, [34], [12], [10], [31], [1], and
[20].) For H non-trivial the conjecture is known to hold if M is Haken and H is
abelian or peripheral [29], [16], if M is hyperbolic and H is indecomposable with
respect to free products [2], if H is Z⊕ Z [12], if M is laminar and H is Z [8], and
if π1(M) is automatic and H is regular [19].

The situation in which H is a non-trivial normal subgroup of π1(M), i.e. in
which p : M̃ → M is a non-universal regular covering, is well understood. (See
[30], [14], [13].) If M̃ is non-compact, then M must either be a bundle over S1

with fiber a compact surface F , a union of two copies of a twisted I-bundle over a
compact surface F along the associated ∂I-bundles, or a Seifert fibered space. In
the first two cases H is conjugate to a subgroup of π1(F ). In the third case it is
conjugate to a subgroup of the infinite cyclic group generated by a regular fiber. It
then follows easily that M̃ is almost compact.
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In making his conjecture Simon expressed the hope “that the regularities inherent
even in irregular covering spaces” would ensure that M̃ is almost compact. This
paper considers one obvious sort of regularity which sometimes occurs, namely the
condition thatH has infinite index in its normalizerN(H) = {g ∈ π1(M) | gHg−1 =
H}, i.e. in which the group of covering translations Aut(p) ∼= N(H)/H is infinite.

Theorem 1. Let M be a compact, connected, P2-irreducible 3-manifold. Let H be
a non-trivial, finitely-generated subgroup of π1(M). Let p : M̃ →M be the covering
map such that p∗(π1(M̃)) = H. Suppose the group of covering translations is
infinite. Then one of the following holds:

(1) M̃ has manifold compactification (F × [0, 1], g), where F is a compact, con-
nected surface (possibly with non-empty boundary); hence H ∼= π1(F ). In
addition one has the following commutative diagram.

M̃
h̃−−−−→ F ×R `−−−−→ F × [0, 1]

q

y ys
M∗

h−−−−→ E

r

y
M

In this diagram r ◦ q = p, ` ◦ h̃ = g, ` is the standard embedding with
image F × (0, 1), q and s are infinite cyclic covering maps, (E, h) is a
manifold compactification of M∗, E is a bundle over S1 with fiber F , and
h∗(q∗(π1(M̃))) = π1(F ) = s∗(π1(F ×R)). Moreover either
(a) M∗ is compact, r is finite sheeted, and h and h̃ are homeomorphisms

(hence M is finitely covered by a surface bundle over S1), or
(b) M∗ is non-compact, r is infinite sheeted, r∗(π1(M∗)) has a Z⊕ Z sub-

group A, and H is a free group. Moreover either
(i) A is not conjugate to a subgroup of the fundamental group of an

incompressible component of ∂M , or
(ii) A is conjugate to such a subgroup, and H is an infinite cyclic sub-

group of A.
(2) H is infinite cyclic, N(H) is a non-finitely-generated subgroup of the additive

group of rational numbers, and the group of covering translations is a non-
finitely-generated infinite torsion group.

The proof of this theorem occupies sections 2 and 3. In section 2 it is shown
that if the group of covering translations has an element of infinite order, then case
(1) holds. In section 3 it is shown that if this group does not have an element of
infinite order, then case (2) holds.

Note that if M is orientable and π1(M) contains a Z⊕ Z subgroup, then either
M contains an incompressible torus or M is Seifert fibered [34], [11], [27], [18], [3],
[6]. If M is non-orientable and π1(M) contains a Z⊕ Z subgroup, then since M is
Haken [13] it must contain an incompressible torus or Klein bottle [27], [16].

Note also that if M is orientable and satisfies the conclusion of Thurston’s ge-
ometrization conjecture [32], i.e. M is Haken, hyperbolic, or Seifert fibered, then
case (2) cannot occur since Haken manifold groups [28] and hyperbolic groups [23]
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cannot have infinitely divisible elements and Seifert fibered spaces with infinite fun-
damental groups are finitely covered by Haken manifolds [5]. If M is non-orientable,
then it is Haken, and so again case (2) cannot occur. These observations immedi-
ately imply the following result.

Corollary 1. Let M be a compact, connected, P2-irreducible 3-manifold. Suppose
∂M has a component with negative Euler characteristic and for each Z⊕ Z subgroup
A of π1(M) there is an incompressible component T of ∂M such that A is conjugate
to a subgroup of π1(T ). Then each non-trivial, finitely-generated subgroup of π1(M)
either has finite index in its normalizer or is an infinite cyclic subgroup of such an
A.

As another application of this theorem we give a pair of conjectures about certain
3-manifold groups which, taken together, are equivalent to the hyperbolic case
of the geometrization conjecture, taken together with the conjecture that closed
hyperbolic 3-manifolds are finitely covered by surface bundles over S1. We also give
an analogous conjecture which is equivalent to the bounded case of this “virtual
bundle conjecture.” This material is contained in section 4.

We remark that several of the compactification results mentioned earlier can be
given short, elegant proofs using the Tucker compactification theorem [33], which
states that a connected, P2-irreducible, non-compact 3-manifold is almost compact
if and only if each component of the complement of each compact polyhedron in the
manifold has finitely generated fundamental group. In [19] Mihalik generalizes this
criterion to the group theoretic notion of a tame pair (G,H), where G is a finitely
presented group and H is a finitely generated subgroup of G. In our context it
turns out that the pair (π1(M), H) is tame if and only if M̃ is almost compact. It
seems unlikely that the element of infinite order case of Theorem 1 generalizes as
stated to the context of tame pairs, but it might be interesting to find conditions
under which a generalization is possible.

2. The element of infinite order case

Lemma 1. If Aut(p) has an element ϕ of infinite order, then case (1) holds.

Proof. Let M∗ = M̃/〈ϕ〉. Then p factors as M̃
q→M∗

r→M . By [17] and [4] M∗ is
P2-irreducible. π1(M∗) has a finitely-generated normal subgroup q∗(π1(M̃)) ∼= H
with infinite cyclic quotient. If M∗ is compact, then by the Stallings fibration
theorem [30] it is a bundle over S1 with fiber a compact surface F such that π1(F ) =
q∗(π1(M̃)). Thus (1)(a) follows. So assume that M∗ is not compact.

Let C be the Scott compact core of M∗ [25], i.e. C is a compact, connected, 3-
dimensional submanifold of intM∗ such that π1(C)→ π1(M∗) is an isomorphism.
Since M∗ is irreducible we may assume by, if necessary, adjoining 3-balls in M∗ −
intC along 2-sphere components of ∂C, that C is irreducible. Then as above C
is a surface bundle over S1. In particular ∂C consists of tori and Klein bottles.
If some component S of ∂C is compressible in C, then the 2-sphere obtained by
compressing S bounds a 3-ball in C, and hence C is a solid torus or solid Klein
bottle, and so π1(M∗) ∼= Z. But this implies that H is trivial, a contradiction.
Thus ∂C is incompressible in C and hence in M∗.

Fix a component S of ∂C. Let X be the component of M∗−intC which meets S.
Then S → X is a homotopy equivalence. If X is compact, then it is homeomorphic
to S × [0, 1], where S × {0} = S and S × {1} is a component of ∂M∗ [34], [13].
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Suppose now that X is non-compact.
Assume that S is a torus. Let f : M̂ → M be the covering map such that

f∗(π1(M̂)) = r∗(π1(S)). If M is closed, then by [12] M̂ is homeomorphic to S1 ×
S1 × R. If ∂M 6= ∅, then M is Haken, and so by [29] or [16] one has that M̂
is almost compact. Thus in each of these cases M̂ has manifold compactification
S1×S1× [0, 1]. Now f factors as M̂ u→M∗

r→M . The embedding of X in M∗ lifts
to a copy X̂ of X in M̂ . By Corollary 3.2 of [34] the lifting Ŝ of S is isotopic to
S1× S1 ×{0}. Thus X̂ has manifold compactification, say, S1 × S1 × [0, 1]. Hence
the same is true of X .

Now assume that S is a Klein bottle. We let k : M+ → M∗ be the orientable
double cover of M∗. Then (X,S) is double covered by the pair (X+, S+), where S+

is a torus and S+ → X+ is a homotopy equivalence. We apply the argument of the
previous paragraph to conclude that X+ has manifold compactification S1 × S1 ×
[0, 1]. We can then see that X is almost compact as follows. Let K be a compact
polyhedron in X , and let U be a component of X −K. Choose a component U+

of k−1(U). Then U+ is a component of X+ − k−1(K). Since k−1(K) is a compact
polyhedron in the almost compact manifold X+ we have that π1(U+) is finitely
generated. Since (k|U+)∗(π1(U+)) has finite index in π1(U), we have that π1(U) is
finitely generated. Thus by the Tucker compactification theorem [33] X is almost
compact.

We have shown that each component X of M∗ − intC has manifold compact-
ification homeomorphic to S × [0, 1], where S = X ∩ C. Thus M∗ has manifold
compactification E homeomorphic to the surface bundle C with fiber F . This es-
tablishes the existence of the maps h, h̃, s, and g in the statement of the theorem.

Since M∗ is non-compact, some component S of ∂C must cut off a non-compact
component X of M∗− intC. Suppose S is a torus. Let A = r∗(π1(S)). Suppose A
is conjugate in π1(M) to a subgroup of π1(T ) for some incompressible component of
∂M . It follows that π1(S) is conjugate in π1(M∗) to a subgroup of π1(T ∗) for some
component T ∗ of r−1(T ). By Lemma 5.1 of [34] there is an embedding of S×[0, 1] in
M∗ with S×{0} = S and S×{1} = T ∗. Since X is non-compact, S× [0, 1] contains
C. Thus A = π1(M∗) and we are done. If S is a Klein bottle, we take the orientable
double cover k : (M+, S+)→ (M∗, S) as above, let A = (r◦k)∗(π1(S+)), and apply
this argument to get a product I bundle in M+ joining S+ to a component T+ of
(r ◦ k)−1(T ). By Proposition 4 of [15] this covers a product I bundle in M∗ joining
S to a component T ∗ of r−1(T ). Again this I bundle contains C. Any normal
subgroup of the Klein bottle group which has infinite cyclic quotient must be an
infinite cyclic subgroup of the orientation preserving subgroup, and thus we are
done.

Thus case (1)(b) holds.

3. The torsion group case

Lemma 2. If Aut(p) is a finitely generated infinite group, then it has an element
of infinite order.

Proof. Suppose Aut(p) is a torsion group Γ. N(H) is finitely generated, and so by
[24] is isomorphic to π1(R) for some compact 3-manifold R. We thus have the exact
sequence

1→ H → π1(R)→ Γ→ 1.
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By Lemma 2.2 of [14] (see also Lemma 11.9 of [13]) we must have H ∼= Z.
If R is orientable, then it must be a Seifert fibered space (see e.g. [13]) and H

must be conjugate to a subgroup of the subgroup generated by a regular fiber. It
follows that there is an exact sequence

1→ K → Γ→ G→ 1

where K is a finite cyclic group and G is an infinite Fuchsian group. G must have
an element of infinite order (see e.g. Theorems 12.1 and 12.2 of [13]), and thus so
does Γ, contradicting our assumption.

If R is non-orientable, let k : R+ → R be the orientable double covering. Let
H+ = H ∩ k∗(π1(R+)). Then H+ has index at most two in H and so is infinite
cyclic. Thus π1(R+) has an infinite cyclic normal subgroup with quotient group
Γ+ a subgroup of index at most two in Γ. The previous argument shows that Γ+

has an element of infinite order, and we are done.

Lemma 3. If Aut(p) does not have an element of infinite order, then case (2)
holds.

Proof. By Lemma 2 we may assume that Aut(p) is not finitely generated, hence
neither is N(H). By Theorem 3.2 of [26] H must be infinite cyclic. Moreover by [5]
N(H) must be isomorphic to a subgroup of Q, where Q is the unique non-trivial
split extension of the additive group Q of rational numbers by Z2. Since M is
P2-irreducible, π1(M) is torsion-free [4], [13], and thus N(H) must lie in Q. Thus
case (2) holds.

4. Some equivalent sets of conjectures

In the following conjectures M denotes a closed, connected, P2-irreducible 3-
manifold with infinite fundamental group. The first two of these conjectures ap-
peared in [32].

Conjecture 1 (Hyperbolization Conjecture). If π1(M) contains no Z⊕ Z sub-
group, then M is hyperbolic.

Conjecture 2 (Closed Virtual Bundle Conjecture). If M is hyperbolic, then there
is some finite sheeted covering space of M which is a surface bundle over S1.

Conjecture 3 (Closed Normalizer Conjecture). π1(M) has a non-trivial, finitely
generated subgroup which has infinite index in its normalizer.

Conjecture 4 (Q Conjecture). Every subgroup of π1(M) which embeds in Q is
cyclic.

Corollary 2. Conjectures 1 and 2, taken together, are equivalent to Conjectures 3
and 4, taken together.

Proof. First note that if M is non-orientable, then M is hyperbolic, M is finitely
covered by a surface bundle over S1, π1(M) has a Z⊕ Z subgroup, or π1(M)
contains a non-cyclic subgroup of Q, respectively, if and only if the corresponding
statement is true for its orientable double covering space. (In the hyperbolic case
apply Mostow rigidity [21], the Waldhausen-Heil theorem [34], [15], and the fact
that M is Haken.) Hence, we may assume that our manifolds are orientable.

Suppose Conjectures 1 and 2 are true. If π1(M) has no Z⊕ Z subgroup, then
clearly Conjectures 3 and 4 hold for M . If π1(M) has a Z⊕ Z subgroup, then
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clearly Conjecture 3 holds for M . Moreover as pointed out in the introduction, M
either is Seifert fibered or contains an incompressible torus and hence Conjecture
4 holds for M .

Now suppose that Conjectures 3 and 4 are true. If π1(M) has no Z⊕ Z subgroup,
then by Theorem 1 we have that M is finitely covered by a surface bundle M∗ over
S1. Since π1(M∗) also has no Z⊕ Z subgroup, the fibered case of Thurston’s
hyperbolization theorem [32] (see also [22]) implies that M∗ is hyperbolic. As has
been pointed out by Thurston [32] and Gabai [7] the Mostow rigidity theorem [21]
implies that M is homotopy equivalent to a hyperbolic 3-manifold. Hence by the
topological rigidity of hyperbolic 3-manifolds [9] one has that M is hyperbolic.
Thus Conjecture 1 holds for M . Now if we start with a hyperbolic 3-manifold M ,
then π1(M) has no Z⊕ Z subgroup [23], and so Theorem 1 again implies that M
is finitely covered by a bundle. Thus Conjecture 2 holds for M .

We now let N denote a compact, connected, P2-irreducible 3-manifold such that
∂N is a non-empty collection of incompressible tori and Klein bottles. We further
assume that each Z⊕ Z subgroup of π1(N) is peripheral and that N is not an
I bundle over a torus or Klein bottle. Note that by Thurston’s hyperbolization
theorem [32] N satisfies this second set of conditions if and only if its interior
admits a complete hyperbolic metric of finite volume.

Conjecture 5 (Bounded Virtual Bundle Conjecture). There is some finite sheet-
ed covering space of N which is a surface bundle over S1.

Conjecture 6 (Bounded Normalizer Conjecture). π1(N) has a non-cyclic,
finitely-generated subgroup which has infinite index in its normalizer.

Corollary 3. Conjectures 5 and 6 are equivalent.

Proof. Suppose Conjecture 5 is true. Let H be the image in π1(N) of the funda-
mental group of the fiber. If H were cyclic, then the fiber would be a disk, annulus,
or Möbius band, and N would be a solid torus, solid Klein bottle, or an I bundle
over a torus or Klein bottle.

Suppose Conjecture 6 is true. Since N is Haken, case (2) of Theorem 1 cannot
occur. Since the subgroup is not cyclic, neither can case (1)(b).
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