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AN ALGEBRAIC DETERMINATION OF CLOSED

ORIENTABLE 3-MANIFOLDS

BY

WILLIAM JACO* AND ROBERT MYERS

Abstract. Associated with each polyhedral simple closed curve j in a

closed, orientable 3-manifold M is the fundamental group of the comple-

ment otj in M, v^M — j). The set, 3C(Ai), of knot groups of M is the set of

groups vx(M — j) asj ranges over all polyhedral simple closed curves inM.

We prove that two closed, orientable 3-manif olds M and N are homeomor-

phic if and only if 3C(M) = %(N). We refine the set of knot groups to a

subset 9(M) of fibered knot groups of M and modify the above proof to

show that two closed, orientable 3-manif olds M and N are homeomorpbic if

and only if ^(M) - 9(N).

Associated with each polyhedral simple closed curve j in a closed orient-

able 3-manifold M is the fundamental group of the complement of j in M,

irx(M — j). Hence, any closed orientable 3-manifold M has associated with it

a set of groups %(M) defined to be precisely the groups irx(M — j) as j

ranges over all polyhedral simple closed curves in M. The set of groups

%(M) is the set of knot-groups of M.

It was proposed by R. H. Fox at the Princeton Bicentennial Conference of

1946 [7, p. 24] that certain 3-manif olds may be distinguished by their

knot-groups. In fact, Fox used this method [8] to reprove the PL-classification

of lens spaces, established earlier by K. Reidemeister [17]. E. J. Brody [3]

extended the methods of Fox to establish a topological classification of lens

spaces without reference to the Hauptvermutung, as well as a topological

classification of the connected sum of two lens spaces.

In this paper we prove that closed orientable 3-manif olds are topologically

determined by their knot-groups. This is our Theorem 6.1 which states that

two closed orientable 3-manifolds M and N axe homeomorphic if and only if

%(M) = %(N).

At the Georgia Topology Conference in 1969, A. C. Conner announced

that if N is a homotopy 3-sphere and %(N) = %(S3), then N is homeomor-

phic to S3. The following year Conner announced, via an abstract in the

Notices [5], the result that we prove in Theorem 6.1. He also circulated a
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manuscript [6] in which he claimed to prove the theorem, but only in the case

that N is a homotopy 3-sphere and %(N) = %(S3). Our proof is modeled on

this theorem of Conner as reworked by J. Simon in [19] and [20].

The second paper of Simon [20] refines the claim of Conner for homotopy

spheres to the consideration of fibered knots in homotopy spheres. A polyhe-

dral simple closed curve j in the closed, orientable 3-manifold M is a

fibered-knot in M if M admits an open book decomposition with binding j

[16]. It follows from the work of [9] and [16] that any closed, orientable

3-manifold contains fibered-knots. Hence, analogous to the set of knot groups

of a closed orientable 3-manifold, each closed, orientable 3-manifold M has

associated with it a set of groups W(M) defined to be precisely the groups

ttx(M — j) asj ranges over all fibered-knots in M. The set of groups ^(M) is

the set of fibered-knot groups of M. Simon [20] proved that if N is a homotopy

3-sphere and if W(N) = *3(S3), then N is homeomorphic to S3.

In §7 we prove that the result of Simon extends to arbitrary closed,

orientable 3-manif olds. Our Theorem 7.1 states that two closed, orientable

3-manifolds M and N are homeomorphic if and only if ^(M) = ^(N).

A result similar to our Theorem 6.1 has recently been announced by Harry

Row (Abstract No. 77T-G75, Notices Amer. Math. Soc. 24 (1977), p. A-398).

1. Preliminaries. Throughout, we will work in the PL-category. If M is a

manifold we use dM and Int M for the boundary of M and the interior of M,

respectively. If X is a space and y is a subspace of X, then ~(Y) is the

closure of Y in X. If X is a polyhedron and y is a subpolyhedron of X, then

U(Y) is homeomorphic to an open derived neighborhood of y in some

sufficiently small subdivision of X where y is a full subcomplex.

If M is a 3-manifold, F is a two-sided surface embedded in M and G is

either a two-sided surface embedded in M or a surface embedded in dM, we

say that F is parallel to G in M ii there exists an embedding H: F X / -» M

such that h\F X {0}: Fx{0}->fisa homeomorphism, h\F X {1}: F X

{1} -> G is a homeomorphism and h\dF X /: 3F X / -» dM is an embedding.

A mapping

f:(Sl X /, S1 X dI)-+(M, dM)

is essential if / induces injections on both itx(S 'x/)-> itx(M) and irx(S ' X

I, S1 X dl) -» itx(M, dM). Our uses of the notions of incompressible 2-mani-

fold in the 3-manifold M, an irreducible 3-manifold, a 3-incompressible

3-manifold and a sufficiently-large 3-manifold are standard; e.g., see [21].

Notice that if M is an irreducible 3-manifold with incompressible boundary

and/: (S1 X /, Sl X 9I)->(M, dM) induces an injection of «•,(£' X /)-»

irx(M) and/is not essential, then/is homotopic (reliS1 X dl)) to a mapping

/': Sl X /-» M such that f'(Sl X /) c dM. If A is an annulus properly



CLOSED ORIENTABLE 3-MANIFOLDS 151

embedded in M, then A is essential in M if the inclusion map A <^> M is

essential. Hence, if M is irreducible and A is a properly embedded incom-

pressible annulus in M and dM is incompressible, then either A is parallel to

an annulus in dM or A is essential in M.

If Y c X and Y' c A" and A: Y -» ¡r" is a homeomorphism, then A" uA A"

is the identification space obtained from the disjoint union of X and X' via

the identification y = h(y),y G y. If Mx and M2 are closed, oriented 3-mani-

folds, B¡ c M¡ is a 3-cell and h: dBx-*dB2 is an orientation reversing

homeomorphism, then Mx # M2 is the manifold ~(MX — Bx) UA ~(M2 —

B^. The manifold Mx # M2 is called the connected sum of Mx and A/2. The

manifold M is prime if M = A/j # M2 always implies that either 3/, or M2 is

homeomorphic to S3. It is known that any closed, orientable 3-manifold M

admits a decomposition M = Mx # • • • # Af„ where each M¡ is prime

(1 </'<«) and that this decomposition is unique up to order and homeomor-

phism of the factors [14], [15].

We use a minimal amount of information about Seifert fibered spaces. For

our purposes [10] and [12] are satisfactory references.

2. Essential annuli in knot-manifolds. A compact, orientable 3-manifold L is

called a knot-manifold if 3L is connected, incompressible and homeomorphic

to 5 ' X Sl. A consequence of the definition, which will be used later without

explicit reference, is that a homotopy solid torus is not a knot-manifold.

In this section we study essential annuli embedded in knot-manifolds and

make the appropriate definitions which generalize the concept of composite

knots, prime knots and cabled knots of the classical theory.

A knot-manifold L is a composite knot-manifold if there exists an essential

annulus A embedded in L such that A separates L into two components Lx

and L2 where ~(L¡) (i = 1, 2) is a knot-manifold. A knot-manifold L is a

generalized composite knot-manifold if either L is a composite knot-manifold

or there exists an annulus A embedded in L such that A does not separate L.

The knot-manifold L is a prime knot-manifold if it is not a generalized

composite knot-manifold.

A knot-manifold L is a cabled knot-manifold if there exists an essential

annulus A embedded in L such that A separates L into two components

where the closure of one is a homotopy solid torus (this does not exclude the

closures of both being homotopy solid tori). Notice that if L is a cabled

knot-manifold, A is an essential annulus embedded in L and J is a compo-

nent of L — A such that ~(T) is a homotopy solid torus, then the inclusion

induced homomorphism itx(A) "•* ttx~(T) is injective; however, it is not surjec-

tive. This follows from the fact that A is essential in L. Also, recall that a

cabled knot-manifold in S3 is prime (a proof of this fact appears in [18] or

can be constructed from the proof of our Lemma 2.4). This fact is not true for
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cabled knot-manifolds as we have defined here.

2.1. Lemma. If L is an irreducible knot-manifold and A and A' are essential

annuli embedded in L, then either

(i) L is a twisted I-bundle over a Klein bottle, or

(ii) there exists an ambient isotopy h, (0 < t < 1) of L such that hx(dA') n dA

= 0, and each component, if any, of hx(A') n A is a noncontractible simple

closed curve.

Proof. Assume that L is not a twisted /-bundle over a Klein bottle.

Now, let h, (0 < t < 1) be an ambient isotopy of L such that hx(A') is

transverse to A and that among all such ambient isotopies of L, the number

of components of hx(A') n A is minimal. We shall prove that h, (0 < t < 1) is

the desired isotopy by proving (under the assumption that L is not a twisted

/-bundle over a Klein bottle) that either h ¡(A1) n A = 0 or each component

of A,(^4') n A is a simple closed curve which is not contractible in either

hx(A') or A. We prove this by establishing three claims.

Claim (a). hx(A') n A does not contain a simple closed curve J which is

contractible in either hx(A') or A.

Suppose that there exists a simple closed curve / contained in hx(A') n A

such that / is contractible in (say) A. Then / bounds a disk D in A and there

is no loss of generality in assuming that D n hx(A') = /. Since both A and

A,(^4') are essential (so, irx(hx(Ar))<LJ* irx(L) and itx(A) *+ irx(L) are injective) it

follows that J is contractible in hx(A') as well as in A. Hence / bounds a disk

D' in hx(A'). Since L is irreducible and D n D' = J, D \j D' is a 2-sphere

and bounds a 3-cell in L; hence we can construct an ambient isotopy of L

moving hx(A') and reducing the number of components of h^A1) n A. This

contradicts our assumption about the niinimality of the number of compo-

nents of hX(A') n A.

We say that a spanning arc a in an annulus A is essential if A — a is

connected; otherwise we say that the spanning arc is inessential.

Claim (b). hx(A') n A does not contain a spanning arc a which is inessential

in either hx(A') or A.

Suppose that there exists a spanning arc a in h^A') n A which is inessen-

tial in (say) A. Then a is parallel in A to an arc ß in dA. It follows that a u ß

bounds a disk D in A and there is no loss of generality in assuming that

D n A,(^4') = a. Since both A and h^A1) are essential annuli, it follows that

a is parallel in hx(A') to an arc ß' in dhx(A'). Hence, a u ß' bounds a disk D'

in hx(A') and D u D' is a properly embedded disk in L with d(D u />') = ß

\J ß'. Since L is 3-incompressible it follows that ß u ß' bounds a disk A in
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dL. We now use the fact that L is irreducible and that D u D' U A is a

2-sphere (we use here the fact that no intersections occur as in Claim (a)) to

construct an ambient isotopy of L moving hx(A') and reducing the number of

components of the intersection with A. This contradicts our assumption about

the minimality of the number of components of hx(A') f) A.

Claim (c). hx(A') n A does not contain a spanning arc a which is an essential

spanning arc in either hx(A')or A.

Since no intersections as in Claim (a) or Claim (b) can occur and we are

assuming that L is not a twisted /-bundle over a Klein bottle, then either our

conclusion is satisfied or each component of A n hx(A') is an essential

spanning arc in either A or hx(A'). Hence, either conclusion (ii) is satisfied or

we have that each component of A n h^A1) is a spanning arc which is

essential in both A and hx(A').

Let us assume that each component of A n hx(A') is a spanning arc which

is essential in both A and hx(A').

Each component of the closure of hx(A') — U(A n hx(A')) is a disk;

furthermore, such a disk may be given the structure of a product / X / where

3/ X / c A and / X 3/ c dL. Let D denote the closure of a component of

hx(A') — U(A n hx(A')) and let L' denote the closure of the component of

L — U(A) containing D. Then D is a properly embedded disk in L'.

If 3Z> is contractible in dL', then 3D bounds a disk D' in 3L' and it follows

that L' has two components. Now, by our above observation as to the

intersection of D with A and the fact that L is irreducible and A is

incompressible, which implies that L' is irreducible, we can construct an

ambient isotopy of L reducing the number of components of hx(A') n A.

Since we are assuming that the components of hx(A') n A are essential

spanning arcs, it follows from the preceding that if D is the closure of a

component of hx(Ar) — U(A n hx(A')) and L' is the closure of the component

of L — U(A) containing D, then D is a properly embedded disk in L' and dD

is not contractible in 3L'. Now, 3L' is a torus and L' is irreducible. It follows

that L' is a solid torus. We consider two cases depending on whether or not A

separates L.

If A separates L, let Lx and Z^ denote the closures of the components of

L — U(A). Each of L, and L2 is a solid torus; furthermore, L, contains an

annulus A¡ c dL¡ (i = 1, 2) such that itx(A¡) -» itx(L¡) is injective and

Let D¡ (i = 1, 2) denote the closure of a component of hx(A') — U(A n

hx(A')) such that D¡ c L¡. By our above observations about the structure of

D¡, it follows that 3D, n A¡ consists of two arcs and therefore ttx(A,) has index
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two in itx(L¡). Hence, L is a twisted /-bundle over a Klein bottle. This

contradicts our first assumption about L.

If A does not separate L, let L' denote the closure of L — U(A). Then L' is

a solid torus and L' contains two annuli A0 and Ax in dL' such that L is

obtained from L' by identifying A0 to Ax. Let D be the closure of a

component of hx(A^ — U(A n hx(A')) in L'. Again by our above observa-

tions about the structure of D, it follows that 3D n A¡ consists of a single arc

and therefore L' has the structure of a product Sl X / X / with A0 = S ' X /

X {0} and Ax = S1 X I X {I}. It follows that L is an annulus bundle over

S1. However, L is a knot-manifold and therefore must have connected

boundary. It follows that L is a twisted /-bundle over a Klein bottle. Again

this contradicts our first assumption about L.

This completes the proof of Lemma 2.1.

Recall that a twisted /-bundle over a Klein bottle admits the structure of a

Seifert fibered space with decomposition surface a disk and having two

singular fibers. In our next lemma the exceptional case is a Seifert fibered

space with decomposition surface a disk and having three singular fibers.

2.2. Lemma. If L is an irreducible, prime knot-manifold and A and A' are

essential annuli embedded in L, then either

(i) L admits the structure of a Seifert fibered space with decomposition surface

a disk and having three singular fibers, or

(ii) there exists an ambient isotopy h, (0 < t < 1) of L such that hx(A') D A

= 0.

Proof. Assume that L does not admit the structure of a Seifert fiber space

with decomposition surface a disk and having three singular fibers.

As in the proof of Lemma 2.1, let ht (0 < t < 1) be an ambient isotopy of L

such that the number of components of hx(A') n A is minimal. We shall

prove that under these assumptions hx(A') n A = 0.

It follows from Lemma 2.1 that either (i) L is a twisted /-bundle over a

Klein bottle, or (ii) we may assume that if hx(A') n A ¥=0, then each

component of hx(A') n A is a simple closed curve / which is not contractible

in either A or hx(A').

However, case (i) is not a possibility since we have assumed that L is a

prime knot-manifold and a twisted /-bundle over a Klein bottle is not prime

(it contains a nonseparating essential annulus). Hence, we may assume that

case (ii) holds.

If hx(A') n A ¥= 0 and / is a component of hx(A') n A, then it follows

from the argument in Claim (a) of the proof of Lemma 2.1 that / is a

noncontractible simple closed curve in both A and hx(A'). Since A is an

essential annulus in the prime knot-manifold L, it follows that A separates L
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into two submanifolds and the closure of one is a solid torus. Let T and L'

denote the closures of the components of L — A where we choose notation so

that T is a solid torus. Furthermore, we have that irx(A)'L^irl(T) is not

surjective.

Each component of hx(A') n T must be an annulus. Furthermore, if C is

such a component, then 3C n dhx(A') = 0 (otherwise, we could reduce the

number of components of A n hx(A') via an ambient isotopy of L since each

annulus in T is parallel to an annulus in 37").

Let X denote the closure of a component of hx(Ar) — (An h^A')) such

that dX n dhx(A') ¥^ 0 (i.e., X is an "outer most" component of hx(A') - (A

n hx(A'))). It follows from the above that X c L'. Furthermore, A" is a

properly embedded annulus in L'.

2.3. Claim. X is not essential in L'.

Proof. Since L is prime the annulus X must separate L' (otherwise, from

X u A we could construct an annulus not separating L).

Now suppose that X is essential in L' and let L\ and L2 denote the closures

of the components of L' — X. If one of the L[ (i = 1, 2) is not a solid torus

(say Lj), then T u L\ is a knot-manifold and L'2 is a knot-manifold. It follows

that L is not prime. This contradicts our hypothesis. Hence, we may assume

that both L\ and L^ are solid tori. However, if A" is essential in L', then L

admits the structure of a Seifert fiber space with decomposition surface a disk

and having three singular fibers (L is a union of three solid tori meeting

pairwise in annuli). This contradicts our first assumption. This contradiction

establishes our claim that X is not essential in L'.

Now, since X is not essential in L' we can construct an ambient isotopy of

L moving X into T and thereby reducing the number of components of

A n hx(A'). This contradicts our minimality assumption on the number of

components of A n hx(A') up to ambient isotopy of L.

It follows that A n h^A1) = 0 and this establishes the proof of Lemma

2.2.
Notice in the exceptional case of Lemma 2.1 (Case (i)) that there exists

essential annuli A and A ' embedded in L such that no ambient isotopy of L

moves dA' off of dA. Similarly, in the exceptional case of Lemma 2.2 (Case

(i)) there exist essential annuli A and A' embedded in L such that no ambient

isotopy of L moves A ' off of A.

Our next lemma is analogous to the situation for classical cabled knots in

S3. However, in the general case we must hypothesize that the knot-manifold

is prime.

2.4. Lemma. If L is an irreducible, prime, cabled knot-manifold, then either

(i) L admits the structure of a Seifert fiber space with decomposition surface a

disk and having three singular fibers, or
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(ii) there exists a unique (up to ambient isotopy of L) essential annulus

embedded in L.

Proof. Suppose that L does not admit the structure of a Seifert fiber space

with decomposition surface a disk and having three singular fibers.

By hypothesis, the knot-manifold L is cabled; hence L contains an essential

annulus. Let A and A' be essential annuli embedded in L. Since L is

irreducible and prime, it follows from Lemma 2.2 that we may assume that

A n A' = 0. Furthermore, both A and A' separate L. Let T and L' denote

the closures of the components of L — A with notation chosen so that T is a

solid torus (at least one of the manifolds T or L' must be a solid torus since L

is prime and irreducible). We consider the two cases where we have either

A' a Tot A' c L'.
Case (a). A' c T. Since A' is incompressible, it follows that A' is parallel in

T to an annulus in 37\ However, A' n A = 0 and A' is essential in L. It

follows that A' is parallel to A in T. Therefore, we may construct an ambient

isotopy of L taking A ' into A.

Case (b). A' <z L'. Since A' separates L, A' separates L'. Let 7" and L"

denote the closures of the components of L' — A' in L' where notation is

chosen so that 7" is a solid torus (since L is prime at least one of the

manifolds T or L" must be a solid torus).

Suppose that A c dT'. Since A is essential in L, irx(A) <^ itx(T) is not onto;

similarly if L" is a solid torus, then ir^A1) *■* trx(L") is not onto. It follows

that either 7" admits the structure of a product S1 X I X I with A = Sl X I

X {0} and A' = Sl X / X {1} or L admits the structure of a Seifert fiber

space with decomposition surface a disk and having three singular fibers

(otherwise, L would be the union of the two knot-manifolds T u 7" and L"

and therefore would not be prime). By our own first assumption the latter

situation cannot happen. Hence, there exists an ambient isotopy of L taking

A ' onto A.

Suppose that A c 3L". If L" is a solid torus, then we argue as above

replacing L" with 7". Therefore, we may assume that L" is not a solid torus.

Now, since A' is essential in L, it follows that vl(Ar)c-*vl(Tr) is not

surjective. Let X be an annulus in 3L such that X n A = 3A" n dA is a

component of each, and X n A' = 3A" n dA' is a component of each. Let T"

denote a small product neighborhood of X in L" and let L'" denote the

closure of L" - T" in L". Then L'" is homeomorphic to L" and L is the

union of the two knot-manifolds L'" and Tu T" u 7". This contradicts the

hypothesis that L is prime.

This completes the proof of Lemma 2.4.

The next lemma is well known.
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2.5. Lemma. Let L be a twisted I-bundle over a Klein bottle. Then

(i) every essential torus embedded in L is parallel to dL, and (ii) there exist

precisely two essential annuli embedded in Lup to ambient isotopy of L.

Let L' be a knot-manifold and let T be a solid torus. Let/: Sl X /-> 3L'

be an embedding such that

Uirx(S' X/)-»*,(!/)

is injective. Let g: Sl X I-* dTbe an embedding such that

g,:«l(SlXl)-+w1(T)

is injective, but not surjective. Let h = f ° g~x. The manifold L = T uA L' is

said to be a cabled knot-manifold about the knot-manifold L'.

2.6. Lemma. Let L' be an irreducible knot-manifold. If L is a cabled

knot-manifold about the knot-manifold L', then L is irreducible and dL' is an

incompressible torus in the knot-manifold L.

Proof. It is standard that L is irreducible. Hence, we need only prove that

dL' is incompressible in L.

To the contrary, suppose that 3L' is not incompressible in L. Then there

exists a disk D c L such that D n dL' = 3D is a noncontractible simple

closed curve in 3L'. By assumption L' is a knot-manifold and therefore 3L' is

incompressible in L'. It follows that D n L' «■ D n 3L' = 3D. However,

L = T u L' where T is a solid torus and T n L' = 3T n 3L' = A is an

annulus. Since 3D c L' and D C T, it follows that dD <zA. However,

ir^A)*-* 7TX(T) is injective by hypothesis. The only possibility is that 3D is

contractible in A. This contradicts our assumption that 3D is noncontractible

in 3L'. Hence 3L' must be incompressible in L.

2.7. Lemma. Let L' be an irreducible knot-manifold. If L is a cabled

knot-manifold about the knot-manifold L', then L is not homeomorphic to a

twisted I-bundle over a Klein bottle.

Proof. By Lemma 2.6, the torus 3L' is incompressible in L. If L is

homeomorphic to a twisted /-bundle over a Klein bottle, then by Lemma 2.5,

3L' is parallel to 3L. This would contradict the assumption that L is a cabled

knot-manifold about the knot-manifold U.

3. Surgery on composite knot-manifolds. Let Kbea knot-manifold and let T

be a solid torus. Suppose that h: dT—*dK is a homeomorphism. The

manifold M = T u h X is said to be obtained by surgery on the knot-manifold

K. Notice that M is a closed, orientable 3-manifold. Furthermore, if D is a

meridianal disk in T, i.e., if D is a disk properly embedded in T and 3D is not

contractible in 37", then for a = 3D, the homeomorphism type of M is



158 WILLIAM JACO AND ROBERT MYERS

completely determined by h(a). That is, if h'\ 3r~» dK is a homeomorphism

and h'(a) is homotopic in dK to h(a), then the manifold M' = T uA -K" is

homeomorphic to M. Hence, if K is a knot-manifold and /? is a simple closed

curve in dK which is not contractible in dK and h: dT-* dK is a homeomor-

phism such that h(a) is homotopic in dK to /?, where a is as above, then we

say that M = T uA K is obtained by surgery along ß.

In the proof of Theorem 6.1 we shall have a 3-manifold M which we know

has been obtained by surgery on the knot-manifold K. However, we shall

need to know exactly (up to homotopy) which simple closed curve ß in dK

determines the surgery. We give a condition in Proposition 3.3 which is

satisfactory for our needs. We then generalize to knot-manifolds the well-

known result that a classical composite knot space has Property P [2].

First we make a definition which is a slight generalization of the notion in

§2 of cabling a knot-manifold. Let K' be any 3-manifold with nonempty

boundary. Let T be a solid torus. Let/: S' X / -» dK' be an embedding such

that /,: iTx(Sl X I)^*irx(Kr) is injective and let g: S1 X I->dT be an

embedding such that g^: wx(Sl X I)->irx(T) is injective. Let ß = f(Sl X

{1/2}). Then ß is a simple closed curve in dK' and ß is not contractible in

K'. Let h = / ° g~\ The manifold K = T uA K' is said to be obtained from

K' by adding a root along ß (or simply obtained from K' by adding a root). If

gm: irx(Sx X I)-+ttx(T) is not surjective we say that the root is nontrivial;

otherwise, we say that the root is trivial. In this terminology, if K' is a

knot-manifold and K is a cabled knot-manifold about the knot-manifold K',

then K is obtained from K' by adding a nontrivial root.

3.1. Lemma. Let K' be an orientable 3-manifold with incompressible

boundary. Suppose that K is obtained from K' by adding a root along a

noncontractible simple closed curve in dK'. Then dK is incompressible. Further-

more, if K' is irreducible, then K is irreducible.

Proof. Since K is obtained from K' by adding a root along a noncontract-

ible simple closed curve in dK', there exists an annulus A properly embedded

in K such that A separates K into two components with closures T and K'

where T is a solid torus. Furthermore, A is incompressible in both T and K',

and therefore, A is incompressible in K.

It follows from [21] that K is irreducible if K' is irreducible. Also, if the

root is trivial, then K is homeomorphic to K' and hence by hypothesis dK is

incompressible. Therefore, we may assume, in what follows, that the root is

nontrivial.

Suppose that dK is compressible. Then there exists a disk D c K such that

D n dK = 3D is a noncontractible simple closed curve in dK. Now, consider

all such disks in K which are transverse to A, and let D be one such that
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D n A has a minimal number of components. We shall prove that D n A =

0 which leads to a contradiction of the existence of D consistent with dK'

incompressible. We prove this by establishing two claims.

Claim (a). D n A does not contain a component which is a simple closed

curve.

Suppose that / is a simple closed curve in D n A. Since / is contractible in

D (and hence in K) and A is incompressible, it follows that 7 bounds a disk

in A. There is no loss in assuming that / bounds a disk D' c A where

D' n D = /. It is now easy to construct a disk E c K such that dE = 3D

and E n A contains fewer components than D n A. This contradicts our

minimality assumption on the number of components of A n D and estab-

lishes Claim (a).

Claim (b). D (~\ A does not contain a component which is a spanning arc.

By Claim (a) each component of D n A is a spanning arc or D n A = 0.

Hence, suppose that a is a component of D n A such that there exists an arc

ß c 3D with a n ß = da n dß = da and a \J ß bounds a disk D' <z D

where D' n A — a.

Suppose that D' c T. We now use the fact that the root is nontrivial to

conclude that a u ß bounds a disk in 37". We use this disk to construct a new

disk E in K such that E n A has the same number of components as D n A ;

however, it exchanges a spanning arc component for a simple closed curve

component. By Claim (a), E, and therefore D, is not a minimal disk. This

contradicts our nxinimahty assumption on the number of components of

A n D.
Suppose that D' c K'. By assumption dK' is incompressible in K'; hence,

a u ß bounds a disk in dK'. The argument now duplicates the preceding

argument. This completes the proof of Lemma 3.1.

If K is a composite knot-manifold, then there exists an essential annulus A

embedded in K such that the closure of each component of K — A is a

knot-manifold. If K¡ (i = 1, 2) denotes the closure of a component of K — A,

we shall say that A" is a composite of the knot-manifolds Kx and K2 along A.

3.2. Proposition. Suppose that K is a composite of the knot-manifolds Kx

and K2 along A. Suppose that M is obtained by surgery on the knot-manifold K.

Let Fi = dK¡ (i = 1, 2) and let ß denote a component ofdA. If either Fx or F2 is

compressible in M, then both Fx and F2 are compressible in M and M is

obtained by surgery along ß.

Proof. Since M is obtained by surgery on the knot-manifold K, there exists

a solid torus T and a homeomorphism h: 3T-» K such that M = T \jh K.

Suppose that Fx is compressible in M. If M is not obtained by surgery along

ß, then K2\J T is obtained from K2 by adding a root along the noncontract-
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ible simple closed curve ß. Since K2 is a knot-manifold, dK2 is incompressible.

It follows from Lemma 3.1 that d(T \J K^ is incompressible in (T u K^.

However, in M, we have d(T u K^ = 3/sf, and since Kx is a knot-manifold

3Kx is incompressible in jRf,. It follows that M is obtained from the union

(Tu Kj) u Kx where 3(Iu K^ — 3A, is incompressible in each factor and

therefore incompressible in M. This contradicts our hypothesis; therefore, the

manifold M is obtained by surgery along ß.

If F2 = dK2 is compressible in M, the argument is exactly symmetric. This

completes the proof.

Let M be a closed 3-manifold and let A" be a compact 3-manifold. An

embedding A: J-+M is an injective embedding if hn: ttx(X)^>itx(M) is

injective. If there exists an injective embedding h: X -» M, then we say that X

injectivefy embeds in M.

3.3. Proposition. Suppose that K is a composite of the knot-manifolds Kx

and K2 along A. Suppose that K can be embedded in the closed, orientable

3-manifold M so that ~(M — K) is irreducible and that K2 cannot be injectivefy

embedded in M. Let ß denote a component of dA. Then ~(M — K) is a solid

torus and M is obtained by surgery along ß.

Proof. Since K can be embedded in M, we assume that K c M. We first

prove that M is obtained by surgery on the knot-manifold K; i.e., that

~(M — K)isa solid torus.

Let F = dK. If irx(F) -» ttx(M) is injective, then ttx(K) -» itx(M) is injec-

tive; and hence it^K^ —» irx(M) is injective. It follows from the fact that K2

cannot be injectively embedded in M that F is compressible in M. Thus there

exists a disk D c M such that D n K = D n dK is a noncontractible curve

in dK. Since ~(M — K) is irreducible, it follows that ~(M — K) is a solid

torus, say T.

If M is not obtained by surgery along ß, then it follows from Proposition

3.2 that d(K^ is incompressible in M. Hence vt(J^) -» irx(M) is injective.

This contradiction establishes the proof of Proposition 3.3.

The significance of Proposition 3.3 will be more evident after the results of

the next section.

Our next result is our generalization to knot-manifolds of the notion of

Property P. It is not used in the sequel; however, it has independent interest.

3.4. Proposition. Suppose that K is a composite of the irreducible knot-mani-

folds Kx and K2 along A. Suppose that M is obtained by surgery on the

knot-manifold K. Let ß denote a component of dA. Then either

(i) M is irreducible and sufficiently-large, or

(ii) M is obtained by surgery along ß.
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Proof. Since M is obtained by surgery on the knot-manifold K, there exists

a solid torus T and a homeomorphism h: dT-± dK such that M = T \jh K.

Suppose that M is not both irreducible and sufficiently-large.

We shall prove that both Fx and F2 (F¡ = dK¡ (i = 1, 2)) are compressible

in M. The argument is symmetric; hence, we shall prove that Fx is compress-

ible in M.

If Fx is incompressible in M, then the surgery could not be along ß. Hence,

T u Kx is obtained from Kx by adding a root along the noncontractible

simple closed curve ß. It follows from Lemma 3.1 that T u Kx is irreducible

and that d(T u Kx) is incompressible in T u AT,. In M we have 3(T u A\) =

8(^2). Hence, 3/ is a union of two irreducible 3-manifolds joined along their

incompressible boundaries. It follows that M is irreducible and that d(T u

Kx) — d(K^ is an incompressible surface in M. Hence, M is also sufficiently-

large. This contradicts our assumption about M. The only possibility left is

that Fx is compressible in M. Now, by Proposition 3.2 M is obtained by

surgery along ß. This completes the proof of Proposition 3.4.

4. Torus knot spaces in closed, orientable 3-manifolds. Let (p, q) be a

coprime pair of positive integers with 1 < q <p. Let Tpiq denote the (p, qy

torus knot space in S3, i.e. T is the complement in 53 of an open tubular

neighborhood of a (p, #)-torus knot. In this section we prove that if M is a

closed 3-manifold, then there exists at most a finite number of pairs of

coprime positive integers (p, q) with 1 < q <p such that T can be injec-

tively embedded in M. We believe that it is probably true that there exists at

most a finite number of such pairs (p, q) such that there exists an injection of

irx(Tpq) into irx(M). However, in trying to prove this result one confronts the

problem of irreducible 3-manifolds which are not sufficiently-large and this

prevents the application of Theorem 4.2. Actually, in the sequel we do not

really need more than the fact that when M is closed, irreducible and

sufficiently-large, then there exists at most a finite number of pairs (p, q) such

that irx(Tp^) injects into irx(M). However, to prove the weaker result here then

requires more work (additional cases) for the proof of Theorem 6.1.

It has been pointed out to us by the referee that the main result that we

need from this section is that if M is a closed, orientable 3-manifold, then

there exists a classical, fibered knot space which does not injectively embed in

M. This is an obvious corollary to our work. However, the referee informed

us of a relatively easy proof (due to H. Row) that is sufficient for this result.

In view of this we advise the reader that there does exist an easier route to a

proof of Theorem 6.1. On the other hand our results in this section do

introduce the reader to characteristic Seifert manifolds. We also raise the

question of how many classical knot groups can be embedded in the funda-
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mental group of a closed, orientable 3-manifold; and it is not too difficult to

extend our methods to prove that iî M is a closed, orientable 3-manifold, then

there exists at most a finite number of classical knot spaces which injectivefy

embed in M.

4.1. Lemma. Let S be a Seifert fiber space. Then there exists at most a finite

number of pairs of coprime positive integers (p, q) with 1 < q < p such that

itx(Tpq) injects into itx(S).

Proof. Suppose that irx(Tpq) injects into irx(S). Let f denote the center of

ir,(21A Let C denote the normal subgroup of itx(S) corresponding to the

fiber (C is well defined up to conjugacy) [12]. Since irx(Tpq) does not contain

an abelian subgroup of index < 2, it follows from Lemma 2.4 of [12] that f

injects into C; and in fact, the image of irx(Tpq) in irx(S) meets C in precisely

the image of £.

Now, irx(S)/ C is isomorphic to one of the following groups:

(i) F * Zai * • • • * Z^ where F is a free group and Z^ is the finite cyclic

group of order a¡,

(ii) (F * Zai * ■ ■ ■ * Z^)/^!*,., y¡] = Wxz¡y where F is the free group on

{*„ y„ . .., xn,y„), [*,., v,J = xf Vf'Ay, and Z^ is the finite cyclic group of

order a, generated by z¡,

(iii) (F * Z0i » • • • * Z^/dLlxf = Wxz¡y where F is the free group on

{xx, . . ., xn) and Z^ is the finite cyclic group of order a, generated by z¡.

Both the integer n and the integers r, a„ .. ., a, axe homotopy invariants of

S. From the above arguments, if irx(Tpq) injects into irx(S), then irx(Tp^)/Ç is

isomorphic to Zp * Zq injects into ttx(S)/C. Hence p divides some a, (1 < i

< r) and q divides some oç (1 < j < r). There are only finitely many pairs of

positive integers (p, q), 1 < q < p, that satisfy this condition. This establishes

Lemma 4.1.

If M is a 3-manifold and S is a Seifert fiber space, then a mapping /:

S -» M is essential if fm is injective. The Seifert fiber space S is degenerate if

irx(S) is cyclic (this includes irx(S) = 1). Otherwise, the Seifert fiber space S is

nondegenerate.

Let M be a closed, irreducible and sufficiently-large 3-manifold. The

compact, codimension zero submanifold S of M is a characteristic Seifert

manifold for M if

(a) each component of S is a Seifert fiber space,

(b) each component of 3 S is an incompressible torus in M (in particular, S

is injectively embedded in M),

(c) each essential mapping of a nondegenerate Seifert fiber space into M

can be homotoped into S, and

(d) no proper collection of components of S satisfies (a)-(c).
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The following theorem is proved in [11].

4.2. Theorem. If M is a closed orientable irreducible and sufficiently-large

3-manifold, then a characteristic Seifert manifold for M exists and is unique up

to ambient isotopy of M.

4.3. Theorem. Let M be a closed, orientable irreducible and sufficiently-large

3-manifold. Then there exists at most a finite number of pairs of coprime

positive integers (p, q) with 1 < q <p such that tTx(Tpq) injects into irx(M).

Proof. Let S be the characteristic Seifert manifold of M. If irx(Tpq) injects

into ttx(M) then there exists a mapping /: Tp^ —* M such that /, is injective.

Since T is a nondegenerate Seifert fiber space and / is an essential map of

Tpjq into M, there must exist a component S of S and a mapping/': Tpq -> S

such that/' is homotopic to/in M. Hence,

is injective. By Lemma 4.1 there exists at most a finite number of pairs of

coprime integers (p, q) with 1 < q <p such that itx(Tpq) injects into itx(S).

Since S has only a finite number of components, the conclusion of Theorem

4.3 follows.

4.4. Lemma. Let M be a closed orientable 3-manifold and suppose that

M = Mx # • • • # Mn is a prime decomposition of M. If T injectivefy embeds

in M, then T injectivefy embeds in M ¡for some i (1 < i < n). (Hence, for that

i, the closed, orientable 3-manifold M¡ is irreducible and sufficiently-large.)

Proof. Suppose that T injectively embeds in M. Then we may assume

that Tpq c M and ir,(7^4)-> irx(M) is injective. Hence 9TM is an incom-

pressible torus in M. It is standard to get a prime decomposition of M as

M = M¡# ■ • • #M¿ such that 37^ c MJ for some./' (1 < j < m); e.g., the

proof of Theorem 4 of [23]. Since Tpq is irreducible, it follows that T c MJ.

However, by uniqueness of the prime decomposition of M up to order and

homeomorphism, it follows that m = n and MJ is homeomorphic to M¡ for

some i (1 < i < n). This completes the proof of Lemma 4.4.

4.5. Theorem. Let M be a closed orientable 3-manifold. Then there exists at

most a finite number of pairs of coprime positive integers (p, q) with 1 < q < p

such that Tpq injectivefy embeds in M.

Proof. The proof follows immediately from Theorem 4.3 and Lemma 4.4

using the parenthetical statement at the end of the statement of Lemma 4.4.

4.6. Remark. Theorem 4.5 extends to all compact orientable 3-manifolds.

To prove Theorem 4.5 in the bounded case requires a stronger relative version

of Theorem 4.2 which was proven in [12]. This relative version allows
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/-bundles as well as Seifert fiber spaces to appear and then the /-bundles

disappear since irx(Tpq) does not inject into the fundamental group of an

/-bundle. Also, if irx(Tpq) injects into irx(M) and M = M,# • • • #Mn then

irx(Tpq) injects into itx(M¡) for some i (1 < i < n). However, we do not get the

parenthetical statement as in our Lemma 4.4 since indeed there are irreduc-

ible 3-manifolds N which are not sufficiently-large and ttx(Tp/J) injects into

5. Deforming homotopy equivalences of knot-manifolds. In this section we

prove that homotopy equivalences between certain types of knot-manifolds

can "almost" be deformed to homeomorphisms. Our theorem is a special case

of a theorem announced by K. Johannson in [13]. Since the proof is rather

elementary and the proof of Johannson's result is not yet in print, we include

a proof. The word "almost" will become evident after the statement of our

theorem.

The reader will observe that the method of proof of Theorem 5.1 does not

use the standard "binding ties" argument most often employed in such

situations. This is for a good reason; while it works very easily if one is

dealing with homotopy spheres, we could not apply it directly in the general-

ity needed for our work.

5.1. Theorem. Let K and L be irreducible knot-manifolds. Suppose that L is

a prime knot-manifold which is cabled about the knot-manifold L' and that L is

not a Seifert fiber space with decomposition surface a disk having three singular

fibers. If f: K-> L is a homotopy equivalence, then K is a knot-manifold which

is cabled about the knot-manifold K' and there exists a map /': K-* L such

that

(i)f is homotopic tof,

(ii)f'\K': K' -» L' is a homeomorphism, and

(iii)/'| ~(K — K') -» ~(L — L') is a homotopy equivalence.

Proof. Since/: K-* L is a homotopy equivalence, there exists a map g:

L-> K which is a homotopy inverse to / Now, it follows from Lemma 2.4

that up to ambient isotopy of L there exists a unique essential annulus A

embedded in L. Using standard techniques, there is no loss in assuming that

each component of f~l(A) is an essential annulus embedded in K. Further-

more, if 31' = f~x(A), we may also assume that each component of g-1(3I') is

an essential annulus embedded in L. Let 31 = g-1(3r). Then it follows (again

from Lemma 2.4) that each component of 31 is parallel in L to A. Hence, the

components of 31 may be indexed asAx,...,Ak such that A, separates L into

two components the closures of which are L, and T¡ where L, is homeomor-

phic to L' and T¡ is a solid torus and Ax, . . ., A¡_x are contained in L, while

Ai+X,... , Ak are contained in T, (1 < i < k). Furthermore, we may assume
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thaM, = A (after possbily a small deformation off). Hence L, = L'.

Let K' denote the closure of the component of K — W such that g(¿0 c

K'. Since L is not a Seifert fiber space with decomposition surface a disk and

having three singular fibers and L is cabled about the knot-manifold L', it

follows that U is not a Seifert fiber space with decomposition surface a disk

and having two singular fibers; hence, L' is not a twisted /-bundle over a

Klein bottle. Furthermore, since L' is a knot-manifold, L' is not homeomor-

phic to either S1 X I X I or Sl X S1 X I. Now, since g\L' induces a

monomorphism on fundamental groups and each A¡ is incompressible, it

follows by [21] that K' is not a twisted /-bundle over a Klein bottle or

homeomorphic to S1 X S1 X I.

Let T be a component of dK'. Then T is a torus. Furthermore, T n 31' ¥•

0. Let B be the closure of a component of T — 3Í'; then B is an annulus. The

mapping f\B maps 5 into L' such that /|35-*3^4. Now, f\B induces an

injection of irx(B) into nx(L'). If f\B is essential (i.e.,/|jB induces an injection

of ttx(B, dB) into irx(L', dL')), then it follows from the relative version of the

Annulus Theorem [4] or [22] that there exists an essential annulus B' em-

bedded in L' such that dB' n dA = 0. This contradicts Lemma 2.4 which

says that each annulus B' in L' with dB' n dA — 0 is parallel into 3L'. It

follows that f\B is not essential. Since L' is a knot-manifold, 3L' is incom-

pressible. Also, by assumption L' is irreducible. Thus there exists a deforma-

tion of/fixed off of a small neighborhood of B taking B into 3L'.

By the preceding we may assume that f\ K': (K', Süf)-»(£', 3L'). Now,

f\K' induces an injection of itx(K') into itx(L') and thus f\dK': dK' -*dL'

induces an injection of irx(dK') into irx(dL'). It follows that f\dK' may be

deformed to a covering map of dK' into dL'. This deformation may be

performed on the map /: K -» L by possibly having to "flip" / along certain

components of 31' n K'. Therefore, we may assume that f\ K': (K', 8f)->

(U, dL') induces an injection of itx(K') into irx(L') and that/|3A:': dK' -ne dL'

is a covering map. Since K' is not an /-bundle, it follows from [21] that/ may

be deformed only on In^K') to a mapping/': A"-»L such that f'\K'\

K' -» L' is a covering map.

Since /'|AT': K' ^> L' is a covering map and L' contains no essential

annulus C such that 3C n dA = 0, it follows that if A' = W n 3A" (A' is a

collection of annuli), then A' contains no essential annulus C" such that

3C n 3^' = 0
By symmetry of the argument, we may now assume that there exists a

mapping g'\ L-* K which is homotopic to g and g'\L': L' -» K' is a covering

map.

Let A = /' » g'. Then h: L-+ Lis homotopic to the identity on L and A|L':

L' -» L' is a covering map. The map A|L' is homotopic, as a map of L' into L,
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to the identity mapping of L into L'. However, it is not difficult to see that

the homotopy between h\L' and the identity on L' through L may actually be

taken as a homotopy between h\L' and the identity on U through L' (for

example, pass to the covering space of L corresponding to ttx(L')). Hence,

deg(AlL') = 1. However,

deg(A|L') - deg(/'|#')deg(g'|L').

It follows that the covering map f'\K' is actually a homeomorphism. AU

parts of the conclusion to Theorem 5.1 now follow.

6. Algebraic determination of closed orientable 3-manifolds. In this section

we prove our main theorem, which is that closed, orientable 3-manifolds are

topologically determined by their knot groups. In the next section we refine

this theorem to the class of fibered knot-groups.

6.1. Theorem. Let M and N be closed, orientable 3-manifolds. Then %(M)

= %(N) if and only if M is homeomorphic to N.

Proof. It follows from Theorem 4.5 that there exists a coprime pair of

positive integers (p, q) with 1 < q <p such that Tpq does not injectively

embed in M.

Let j0 be a simple closed curve in N such that N — j0 is irreducible. The

existence of such a simple closed curve is well known [1] or [16]. We may

assume that j0 is a full subcomplex of some triangulation 5" of A^. Let e

denote an edge of j0 and let E = st(e, S") be the star of e in 5". Since _/'<, is a

full subcomplex of 5", E n j0 = e. Furthermore, E is a 3-cell and the ball pair

(e, E) is unknotted. Let e, denote an arc in E such that e, n dE = e n dE

and the ball pair (ex, E) is knotted such that E — U(ex) is homeomorphic to

T   .

If ttx(N - Jo) « Z, let/, = U - e) U ev If irx(N -j¿) « Z, letj'x = (Jo ~
e) U ex. Then let (e', E') be a ball pair as (e, E) above where e' is an edge of

/, and (e\, E') is a ball pair as (ex, E). Lety, = (j\ - e") u e\. Let L' = N -

U(j\)- Then U is an irreducible knot-manifold. Furthermore, L' is a com-

posite of the knot-manifolds L0 and Tp along an annulus A where L0 is

homeomorphic to N minus a tubular neighborhood of j0 or/', as the case may

be. Furthermore, if ß denotes the homotopy class in dL' of a component of

dA, then N is obtained by surgery along ß.

Since T cannot be injectively embedded in the twisted /-bundle over a

Klein bottle for any coprime pair of positive integers (p, q), it follows from

Lemma 2.1 that if A' is any essential annulus in L, then each component of

dA' is homotopic in 3L' to ß.

Let ß determine a framing of dL' and let y be an (r, j)-curve in this

framing, where (r, s) is a coprime pair of integers with 1 < r < s. Letj be the



CLOSED ORIENTABLE 3-MANIFOLDS 167

simple closed curve obtained by moving y slightly into U(ji)- Then j is a

nontrivial cable knot about jx, i.e., if L = N — U(j), then L is a cable

knot-manifold about L' and if T is the solid torus such that L = L' u T,

where

L' n 7* = 81/ n 37-

is the annulus C, then a component of 3C is not homotopic on 3L' to ß.

6.2. Claim. L is an irreducible, prime knot-manifold which is cabled about the

knot-manifold L' and L is not a Seifert fibered space with decomposition surface

a disk having three singular fibers.

Proof. We only need to prove that L is a prime knot-manifold. All of the

other conditions follow from the above construction of L.

We have that L = L' \j T where T is a solid torus, L' n T = dL' n dT =

C is an annulus, ttx(C) —* itx(T) and itx(C) -* itx(L') are injective and ttx(C)

-* itx(T) is not surjective. Suppose that C is an essential annulus embedded

in L. It follows from Lemma 2.1 and the fact that L is not a twisted /-bundle

over a Klein bottle that we may assume that 3C n 3C = 0.

Under the above conditions, if there does not exist an ambient isotopy h,

(0 < t < 1) of L such that hx(C) n C = 0, then from the union of C and C

we can construct an essential annulus C" in L such that C" n C = 0 and

C" is not parallel in L to C. In any case either there exists an ambient isotopy

h, (0 < t < 1) of L taking C onto C or there exists an essential annulus C" in

L such that C" C\ C = 0 and C" is not parallel in L to C. We shall show

that this latter situation cannot occur.

This is certainly clear if C" c T. If C" c L' and C" is essential in L and

not parallel into C, then C" is essential in L'. Hence each component of 3C"

is homotopic in dL' to ß. This contradicts our construction of L as a

nontrivial cable knot-manifold about L' in a framing determined by /?. This

contradiction establishes our Claim 6.2.

By assumption there exists a simple closed curve K in M such that

irx(M — k) is isomorphic to irx(N — j). Let K = M — U(k). Since L is

irreducible and ^(L) is not cyclic, irx(L) is neither infinite cyclic nor a

nontrivial free product. Since itx(K) is isomorphic to itx(L), dK is incompress-

ible and K is a knot-manifold.

Now, it may be the case that K is not irreducible. However, by the above

arguments about irx(K) it follows that at the very worst K = K # 2 where K

is irreducible and 2 is a homotopy 3-sphere. Since irx(K) ¡=» itx(L) and both

manifolds are irreducible and have infinite fundamental groups there exists a

homotopy equivalence /: K-^* L. It follows from Theorem 5.1 that AT is a

cabled knot-manifold about the knot-manifold K' and that/ can be deformed
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to a map /': K-*L such that /'|L': K' -» L' is a homeomorphism and

/'| '(K - K'):  -(K - K') -+ '(L - U) is a homotopy equivalence.

The knot-manifold K' is a composite of the irreducible knot-manifolds K0

and 21. along A' where AT0 is homeomorphic to L0. Let Af' denote the

manifold such that M = M' # 2. If the closure of Af' — K' is irreducible,

then it follows from Proposition 3.3 that if /?' is the homotopy class in dK' of

a component of dA', then M' is obtained by surgery along ß'. Hence f'\K'

can be extended to a homeomorphism of M' onto N.

If the closure of M ' — K' is not irreducible, then it is a connected sum of a

lens space L(m, n) and a solid torus T. Let M" = K' u T. Then again by

Proposition 3.3 A/" is obtained by surgery along ß'. Hence, f'\K' can be

extended to a homeomorphism of M" onto N.

In any case we have proved that either

(i) M is homeomorphic to N, or

(ii) M is homeomorphic to N # 2 where 2 is a homotopy 3-sphere, or

(iii) A/ is homeomorphic to N # L(m, ri) where L(m, n) is a lens space, or

(iv) M is homeomorphic to N # 2 # L(m, n) where 2 and L(w, /t) are as

in case (ii) and (iii), respectively.

However, symmetry of the argument gives us that either

(i') N is homeomorphic to M, or

(ii') N is homeomorphic to Af # A where A is a homotopy 3-sphere, or

(iii') Af is homeomorphic to M # L(m!, n') where L(m', n') is a lens space,

or

(iV) N is homeomorphic to M # A # L(m', «') where A and L(m', n1) are

as in (ii') and (iii'), respectively.

It now follows from the uniqueness of the prime decomposition of a closed

3-manifold that the only possibilities that can happen are (i) and (ï).

Hence, M is homeomorphic to N and this completes the proof of Theorem

6.1.

7. Fibered knot-groups and closed, orientable 3-manifolds. In this section we

refine Theorem 6.1 to the consideration of fibered-knots. This is analogous to

the work of J. Simon in [20] for homotopy spheres.

Recall that if (p, q) is a coprime pair of positive integers, then the

(p, ç)-torus knot in S3 is a fibered knot.

7.1. Theorem. Let M and N be closed orientable 3-manifolds. Then ^(M) =

&(N) if and only if M is homeomorphic to N.

Proof. Let j0 be a fibered-knot in AT such that irx(N — j£ sé Z. As

remarked in the introduction a closed 3-manifold N contains a fibered-knot.

To obtain the additional condition that irx(N — j¿) sé Z we may use the
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adjustment we did in the proof of Theorem 6.1 using the fact that a

(p, q)-tonis knot is fibered.

Now, beginning with j0 we then build a simple closed curve./' in N as in the

proof of Theorem 6.1. It follows precisely as in [20] that j is a fibered knot in

N.

Let A: be a fibered-knot in Af such that irx(M — k) « irx(N — j). Since

Af — k fibers over S ' with fiber a noncompact surface, it follows that Af — k

is irreducible.

We proceed precisely as in the proof of Theorem 6.1 only now since M — k

is irreducible, we conclude that either

(i) Af is homeomorphic to N, or

(ii) Af is homeomorphic to N # L(m, n) where L(m, ri) is a lens space.

We again use the symmetry of the argument to conclude that either

(i') Af is homeomorphic to Af, or

(ii') N is homeomorphic to Af # L(m', n') where L(m', n') is a lens space.

As in the proof of Theorem 6.1, the uniqueness of the prime decomposition

of a closed 3-manifold excludes all possibilities except (i) and (i').

This completes the proof.
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