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1. Introduction

Suppose M is a closed, connected, orientable, irreducible 3-manifold such that

G = �

1

(M) is in�nite. One consequence of Thurston's geometrization conjecture is

that the universal covering space

f

M of M must be homeomorphic to R

3

. This has

been veri�ed directly under several di�erent additional assumptions on G. (See, for

example, [2], [3], [6], [19].) Since

f

M is irreducible [11] and contractible and G is a

torsion free group which acts as a group of covering translations on

f

M , one alter-

native approach to proving that

f

M is homeomorphic to R

3

has been to study such

group actions on Whitehead manifolds (irreducible, contractible open 3-manifolds

which are not homeomorphic to R

3

) in an attempt to show that they cannot cover

compact 3-manifolds. The author showed in [14] that genus one Whitehead mani-

folds (those which are monotone unions of solid tori) cannot admit any non-trivial

such action. Wright generalized this in [21] to the class of eventually end-irreducible

Whitehead manifolds, a class which includes all those which are monotone unions

of cubes with a bounded number of handles. Tinsley and Wright [18] then gave

speci�c examples of non-eventually end-irreducible Whitehead manifolds which ad-

mit no such actions. They also gave a counting argument which shows that there

must exist Whitehead manifolds which are in�nite cyclic covering spaces of other

non-compact 3-manifolds but cannot cover compact 3-manifolds. However, their

argument does not provide any speci�c such examples. In this paper we present

a general method for analyzing torsion free groups G of covering translations on

certain Whitehead manifoldsW and use it to provide speci�c examples of this type.

The method is based on a result of Geoghegan and Mihalik [4] which implies

that there is an isomorphic image of G in the mapping class group H(W ) of W .

The examples are constructed so that every torsion free subgroup of H(W ) which

is isomorphic to the fundamental group of a closed, irreducible 3-manifold M must

be a group for which it is known that

f

M must be homeomorphic to R

3

.

The paper is organized as follows. Section 2 sets up the application of the

Geoghegan-Mihalik theorem to the problem. Section 3 describes the general struc-

ture of the examples and gives three properties which together imply that the
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mapping class group has the appropriate structure. The examples are all obtained

by taking a contractible non-compact 3-manifold V whose boundary consists of two

disjoint planes, gluing these planes together to get a 3-manifold with in�nite cyclic

fundamental group, and then letting W be its universal covering space. It is thus

a union of copies V

i

of V stacked end to end such that V

i

\ V

i+1

is a plane E

i

.

The �rst property is that none of the E

i

are \trivial" in W and no two distinct

E

i

are parallel in W . The second property is that every element of H(W ) has a

representative which preserves this family of planes. The third property is that

H(V ) is a torsion group with a bound on the orders of its elements. Section 4

quotes results of [16] and [17] to give conditions on V which imply the �rst two

properties. Section 5 describes conditions on an exhaustion of V which imply the

third property. Section 6 gives speci�c examples of such exhaustions.

2. The General Method

We refer to [7] or [8] for general de�nitions in 3-manifold topology.

Given an orientable manifold X we let Homeo

+

(X) denote the group of orien-

tation preserving homeomorphisms of X. The mapping class group H(X) is then

the quotient of Homeo

+

(X) by the normal subgroup consisting of those homeo-

morphisms which are isotopic to the identity. We let � : Homeo

+

(X)! H(X) be

the quotient epimorphism. If Y is a submanifold of X we let H(X rel Y ) denote

the group of orientation preserving homeomorphisms of X which are the identity

on Y modulo isotopies which are the identity on Y .

We let Fr

X

Y and Int

X

Y denote the topological boundary and interior of Y in

X, with the subscripts deleted when they are clear from the context. The manifold

theoretic boundary and interior of Y are denoted by @Y and int Y .

An exhaustion fK

n

g for a connected, non-compact manifold W is a sequence

of compact, connected, codimension zero submanifolds of W , indexed by the non-

negative integers, whose union is W such that K

n

� IntK

n+1

, K

n

\ @W is either

empty or a codimension zero submanifold of @W , and W � IntK

n

has no compact

components.

A map f :M ! N between manifolds is end-proper if pre-images of compact

sets are compact. It is @-proper if f

�1

(@N) = @M . It is proper if it has both

these properties. These terms are applied to submanifolds if their inclusion maps

have the given property.

Theorem 2.1 (Geoghegan-Mihalik). Let W be a Whitehead manifold. Sup-

pose G is a torsion free group of covering translations of W . Then the restriction

of � to G is one to one.

Proof. De�ne a space X to be strongly connected at 1 if any two end-proper

rays in X are end-proper homotopic. (A ray in X is a map from [0;1) to X.)

Theorem B of [4] states that if G is a torsion free group of covering translations

of a connected manifold X such that for every g 2 G the quotient X= < g > is

non-compact, and X is not strongly connected at 1, then the restriction of � to

G is one to one.
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In our case W= < g > is non-compact because otherwise it would be homeomor-

phic to S

1

� S

2

(see Theorem 5.2 of [7]), thereby contradicting the asphericity of

W . We claim that W is not strongly connected at 1. Let fK

n

g be an exhaus-

tion for W . Choose an end-proper ray in W for which the image of [n;1) lies in

W �K

n

for all n and use inclusion and change of basepoint along it to de�ne the

sequence of homomorphisms �

1

(W�K

0

)

'

0

 � �

1

(W�K

1

)

'

1

 � �

1

(W�K

2

)

'

2

 � � � � .

If W is strongly connected at 1, then by Proposition 1.1 of [4] this sequence is

semi-stable, i.e. for every m there exists an n � m such that for every k � n the

image of G

k

! G

m

is equal to the image of G

n

! G

m

. This implies that W is

end 1-movable in the sense of Brin and Thickstun [1] and thus by Corollary (A) to

their Theorem 1.1 W is homeomorphic to R

3

. �

We now state a su�cient criterion for a universal cover to be R

3

which we shall

use in the examples.

Theorem 2.2. Let M be a closed, orientable, irreducible 3-manifold with �

1

(M)

in�nite. If �

1

(M) contains a subgroup of �nite index which either has in�nite

abelianization or contains a non-trivial normal abelian subgroup, then the universal

covering space of M is homeomorphic to R

3

.

Proof. By passing to a �nite sheeted covering space we may assume that the sub-

group is �

1

(M). If the abelianization is in�nite then M is Haken, and so the result

follows from Waldhausen [19]. So assume that A is a non-trivial normal abelian

subgroup of �

1

(M). If A contains a Z � Z subgroup then we are done by Hass-

Rubinstein-Scott [6]. If A is Z, then we are done by the proof of the Seifert �bered

space conjecture [2] or [3].

If neither of these hold then A is a subgroup of Q. (See Theorem 9.14 of [7].)

Conjugation by elements of �

1

(M) gives a homomorphism  : �

1

(M) ! Aut(A).

Let I be the ideal Z \ A in Z. Choose a generator m for I. Then for � 2 Aut(A),

�(m) = p=q. If k 2 I, then k = rm, and so �(k) = r�(m) = rp=q = k(p=mq).

Then for k=` 2 A, `�(k=`) = �(k), and so �(k`) = (k=`)(p=mq). This shows that

Aut(A) is a subgroup of Q� f0g.

Let Q

+

be the group of positive rationals, and let K =  

�1

(Q

+

). Then K

has index at most two in �

1

(M) and contains A. If  (K) is non-trivial, then K

has in�nite abelianization and so we are done by Waldhausen. If  (K) is trivial,

then A lies in the center of K, and so we are done by the Seifert �bered space

conjecture. �

3. The Construction and Main Theorem

Construction 3.1. Let V be an irreducible, contractible, non-compact 3-manifold

such that @V consists of two disjoint planes E and E

0

. Let V

�

be the 3-manifold

obtained by identifying E with E

0

by an orientation reversing homeomorphism. Let

E

�

be the image of E in V

�

. Let p : W ! V

�

be the universal covering space of

V

�

. Let fE

i

g be the set of components of E = p

�1

(E

�

). Let fV

i

g be the set of

copies of V into which E splits W . Index so that V

i

\ V

i+1

= E

i

.
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Let X be an open 3-manifold. An end-proper plane P in X is trivial if some

component of X�P has closure homeomorphic to R

2

� [0;1), with P = R

2

�f0g.

Two disjoint end-proper planes P

0

and P

1

in X are parallel if some component

of X � (P

0

[ P

1

) has closure homeomorphic to R

2

� [0; 1], with P

i

= R

2

� fig.

Theorem 3.2. Let W be as in Construction 3.1. Assume that:

(1) No E

i

is trivial, and no distinct E

i

and E

j

are parallel.

(2) Every g 2 Homeo

+

(W ) is isotopic to an h such that h(E) = E.

(3) H(V ) is a torsion group with a bound on the orders of its elements.

Then every torsion free subgroup of H(W ) has a subgroup of �nite index which

either has an in�nite abelianization or a non-trivial normal abelian subgroup.

Corollary 3.3. Let W be as in Theorem 3.2. Then W cannot cover a compact

3-manifold. �

Proof of Theorem 3.2. Let D

1

=< x; y : x

2

= 1; xyx = y

�1

> be the in�nite

dihedral group. Regard it as the group of automorphisms of the simplicial complex

� obtained by triangulatingR using Z as the set of vertices. We associate i 2 Z with

V

i

and [i; i+1] with E

i

. De�ne � : H(W )! D

1

as follows. Given g 2 Homeo

+

(W ),

let �(�(g)) be the automorphism of � determined by the isotopic homeomorphism

h provided by (2). One sees that this is well de�ned as follows. By Theorem 5 of

[20] disjoint, ambient isotopic, non-trivial, end-proper planes in an irreducible 3-

manifold are parallel. Hence by (1) distinct E

i

and E

j

are not ambient isotopic. If

k were a homeomorphism isotopic to g which determined a di�erent automorphism

of �, then k and h would send some E

i

to di�erent planes; hence these planes would

be ambient isotopic.

There is an obvious epimorphism  :

Q

H(V

i

rel @V

i

) ! ker �. There are also

homomorphisms �

i

: H(V

i

rel @V

i

) ! H(V

i

) obtained by allowing isotopies which

need not be the identity on @V

i

. These induce � :

Q

H(V

i

rel @V

i

)!

Q

H(V

i

) with

ker � =

Q

ker �

i

. It follows from Lemma 3.4 below that ker � is abelian. By (3) we

have that

Q

H(V

i

) is a torsion group.

Now suppose G is a torsion free subgroup of H(W ). By passing to a subgroup

of index at most two we may assume that �(G) lies in the subgroup < y > of D

1

.

If �(G) is non-trivial, then G has in�nite abelianization, so assume G � ker �.

The subgroup G\ (ker �) of G is normal and abelian. Suppose it is trivial. Let

 be a non-trivial element of G. Then  =  (�) for some � 2

Q

H(V

i

rel @V

i

). Then

�(�

k

) = �(�)

k

= 1 for some k > 1, so �

k

2 ker �, and so 

k

=  (�)

k

=  (�

k

) = 1,

contradicting the fact that G is torsion free. �

Lemma 3.4. ker �

i

is abelian.

Proof. Let g be a homeomorphism representing an element of ker �. Let C

�

=

@V

i

�[0; 2] be a collar on @V

i

in V

i

, with @V

i

�f0g = @V

i

. By the isotopy uniqueness

of collars we may assume that g is the identity on C

�

. Let C = @V

i

� [0; 1]. Let V

0

i

be the closure of V

i

� C, and let V

�

i

be the closure of V

i

� C

�

.
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We claim that gj

V

0

i

is isotopic to the identity. De�ne k : V

0

i

! V

i

to be the

identity on V

�

i

and to be k(x; s) = (x; 2s� 2) on @V

i

� [1; 2]. Let g

t

be an isotopy

with g

0

the identity of V

i

and g

1

= g. Then k

�1

g

t

k is the required isotopy h

t

with

h

0

the identity of V

0

i

and h

1

= gj

V

0

i

.

We next claim that g is isotopic to a homeomorphism f which is the identity out-

side C. De�ne f

t

to be h

t

on V

0

i

, while on C we have f

t

(x; s) = (ph

(1�s)+st

(x; 1); s),

where p is projection onto the �rst factor. Then f

1

= g and f

0

is the desired f .

Thus ker � is the image of H(C rel @C) in H(V

i

rel @V

i

). The result then follows

from the result below. �

Lemma 3.5. H(R

2

� [0; 1] relR

2

� f0; 1g) is in�nite cyclic.

Proof. Let f be a homeomorphism of R

2

� [0; 1] which is the identity on the bound-

ary. Let fB

n

g be an exhaustion of R

2

by concentric disks. Let C

n

= B

n

� [0; 1]

and F

n

= (@B

n

)� [0; 1].

We may assume that f(C

0

) � IntC

1

, C

1

� Int f(C

2

), and f(C

2

) � IntC

3

.

Since C

3

� IntC

1

is a product S

1

� [0; 1]� [0; 1] with S

1

� [0; 1]� f0g = F

1

and

S

1

� [0; 1]� f1g = F

3

and f(F

2

) is incompressible in this manifold it follows (say

from Corollary 3.2 of [19]) that there is an ambient isotopy in C

3

� IntC

1

, �xed on

the boundary, which carries f(F

2

) to F

2

. We may repeat this argument with C

3k

,

C

3k+1

, C

3k+2

, and C

3k+3

for k � 1 to get an isotopy of f rel R

2

� f0; 1g taking f

to a homeomorphism which carries each C

3k+2

to itself.

Thus we may assume that f(C

n

) = C

n

for all n. The restriction of f to F

n

is then isotopic rel @F

n

to a Dehn twist �('; s) = (' + 2�k

n

s; s), where ' is the

angular variable in S

1

, s 2 [0; 1], and k

n

is an integer. Consider the meridional disk

f0g � [0; 1]� [0; 1] of the solid torus C

n+1

� IntC

n

= S

1

� [0; 1]� [0; 1]. It follows

from the fact that F must carry this disk to another meridional disk that we must

have all k

n

equal to a constant k. The restriction of f to the boundary determines

the isotopy class relative to the boundary of the restriction of f to C

0

and each

C

n+1

� IntC

n

. It follows that f is isotopic rel R

2

� f0; 1g to the homeomorphism

�('; s) = ('+ 2�k; s). Thus H(R

2

� [0; 1] relR

2

� f0; 1g) is cyclic.

Suppose � is isotopic to the identity rel R

2

� f0; 1g. Identify R

2

� f0g with

R

2

� f1g to obtain R

2

� S

1

. Then the map � induced by � is isotopic to the

identity. Let K

n

and T

n

be the images of C

n

and F

n

in R

2

� S

1

. We may assume

that the track of T

1

under the isotopy misses K

0

. Let f�; �g be a basis for H

1

(T

1

),

where � is represented by an S

1

�ber and � bounds inK

1

. Then i

�

(�) = i

�

(�+k�),

where i : T

1

! (R

2

�S

1

)�K

0

is the inclusion. Since i

�

is an isomorphism we have

k = 0. Thus H(R

2

� [0; 1] relR

2

� f0; 1g) is in�nite cyclic. �

4. Planes in W

In this section we assemble results from [16] and [17] to show how to obtain

manfolds V for which Construction 3.1 produces a 3-manifold W with properties

(1) and (2) of Theorem 3.2.

Let V be a non-compact 3-manifold such that @V is either empty or a disjoint

union of planes. V is aplanar if every proper plane P in V is either trivial or @-

parallel (cobounds an end-proper R

2

� [0; 1] with a component of @V ). A partial
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plane is a non-compact, simply connected surface with non-empty boundary. V is

strongly aplanar if it is aplanar and for every proper surface P in V such that

each component of P is a partial plane there is a collar on @V which contains P. V

is anannular at 1 if for every compact subset K of V there is a larger compact

subset L of V such that V � L is anannular, i.e. every proper, incompressible

annulus in V � L is @-parallel.

A plane sum of oriented 3-manifolds V

i

whose boundaries consist of disjoint

planes is a 3-manifold obtained by identifying the boundary planes in pairs via

orientation reversing homeomorphisms, where the pattern of identi�cation is deter-

mined by a countable tree � whose vertices correspond to the V

i

and whose edges

correspond to the pairs of planes. Construction 3.1 is a simple example of such a

plane sum. The plane sum is non-degenerate if none of the summing planes are

trivial or @-parallel and if distinct summing planes are not parallel. A summand V

i

is bad if there is a component E

j

of @V

i

such that E

j

[ int V

i

is homeomorphic to

R

2

� [0;1).

Lemma 4.1. Plane sums which have no bad summands are non-degenerate.

Proof. This is Corollary 3.3 of [17]. �

A plane sum is strong if it is non-degenerate and each summand is strongly

aplanar and anannular at 1.

Lemma 4.2. Let E be the union of the set of summing planes in a strong plane

sum W along a locally �nite tree. Then every homeomorphism g of W is isotopic

to a homeomorphism h such that h(E) = E.

Proof. This is Corollary 4.4 of [17]. �

It follows from Theorem 6.1 of [16] that given any connected, irreducible, one-

ended open 3-manifold U and integer � � 1, there is a non-compact 3-manifold V

such that @V consists of � disjoint planes, V is strongly aplanar and anannular at1,

and int V is homeomorphic to U . We will apply a special case of that construction

to a certain genus one Whitehead manifold U which ensures that H(V ) is a torsion

group with a bound on the orders of its elements. We state the technical result

from [16] that we need to establish that V is strongly aplanar and anannular at1.

Suppose V is a connected, orientable, irreducible, one-ended, non-compact 3-

manifold whose boundary consists of a �nite number � � 1 of disjoint planes. An

exhaustion fC

n

g for V is nice if for all n � 0 one has that C

n

\@V consists of a single

disk in each component of @V , X

n+1

= C

n+1

� IntC

n

is irreducible, @-irreducible,

and anannular, each component of Fr C

n

has positive genus and negative Euler

characteristic, and V � IntC

n

has one component.

Proposition 4.3. If V has a nice exhaustion, then V is strongly aplanar and

anannular at 1.

Proof. This follows from Theorem 5.3 and Lemma 1.3(6) of [16]. �

6



5. The Mapping Class Group of V

Construction 5.1. Let U be a genus one Whitehead manifold with an exhaustion

fK

n

g by solid tori. Let T

n

= @K

n

. Let Y

n+1

= K

n+1

� IntK

n

. Let `

n

be

an oriented non-contractible simple closed curve on T

n

which bounds an oriented

surface in Y

n+1

. Let �

0

n+1

and �

1

n+1

be disjoint proper arcs in Y

n+1

missing `

n

[`

n+1

such that �

j

n+1

joins T

n

to T

n+1

, and �

j

n+1

\ T

n+1

= �

j

n+2

\ T

n+1

. Let N

j

n+1

be

a regular neighborhood of �

j

n+1

in Y

n+1

, chosen so that N

0

n+1

\ N

1

n+1

= ;, and

N

j

n+1

\ T

n+1

= N

j

n+2

\ T

n+1

. Let X

n+1

= Y

n+1

� Int (N

0

n+1

[ N

1

n+1

), C

0

= K

0

,

and C

n+1

= C

0

[X

1

[ � � �[X

n+1

. Let V = [C

n

, F

n

= Fr

V

C

n

, A

j

n+1

= Fr

U

N

j

n+1

,

D

j

= N

j

1

\ C

0

, and E

j

= D

j

[ ([A

j

n+1

).

A compact, connected, orientable 3-manifold is excellent if it is irreducible,

@-irreducible, anannular, and atoroidal (every proper, incompressible torus is @-

parallel).

Theorem 5.2. Let U and V be as in Construction 5.1. Assume that:

(1) X

n+1

and Y

n+1

are excellent.

(2) There is no orientation preserving homeomorphism from Y

1

to Y

2

which

takes `

0

to a curve homologous on T

1

to �`

1

.

(3) There is a partition N

1

[N

2

of the set of positive integers into two in�nite

subsets such that 1 2 N

1

, 2 2 N

2

, and for each n + 1 2 N

i

, there is

an orientation preserving homeomorphism h

n+1

: X

n+1

! X

i

which takes

`

n+1

, F

n

, F

n+1

, A

0

n+1

, and A

1

n+1

to `

i

, F

i�1

, F

i

, A

0

i

, and A

1

i

, respectively.

(4) If n+1 and k+1 are both in the same subset and n+2 and k+2 are both

in the same subset, then h

�1

k+1

h

n+1

and h

�1

k+2

h

n+2

agree on F

n+1

.

(5) There do not exist integers s 6= 0 and k

0

� 1� s such that k and k + s are

in the same subset for all k � k

0

.

Then V is strongly aplanar and anannular at 1, and H(V ) is a torsion group with

a bound on the order of its elements.

Proof. Condition (1) and Proposition 4.3 imply the statement about V . We next

prove a special case of the statement about H(V ).

Lemma 5.3. There is an L > 0 such that if g is an orientation preserving homeo-

morphism of V for which g(C

n

) = C

n

for all n, then g

L

is isotopic to the identity.

Proof. By Proposition 27.1 of [10] the mapping class group of an excellent 3-

manifold is �nite. Let L = jH(X

1

)j � jH(X

2

)j. So g

L

j

X

n+1

is isotopic to the

identity. Since @X

n+1

has genus greater than one the isotopy can be chosen so

that it preserves F

n

, F

n+1

, A

0

n+1

, and A

1

n+1

. Since each F

n+1

has negative Euler

characteristic it follows from [5] that the isotopies can be chosen to match up on

each F

n+1

. Since C

0

is a solid torus with @C

0

= F

0

[D

0

[D

1

one can extend the

isotopy over C

0

. �

The remainder of the proof shows how to reduce to the special case. Let

M

n;n+q

= X

n

[X

n+1

[ � � � [X

n+q

. Conditions (3) and (4) imply that for a �xed q

7



there are only �nitely many homeomorphism types of such manifolds. By Lemma

2.1 of [15] each M

n;n+q

is excellent.

Let F be a torus with two holes. Any collection of disjoint, non-contractible,

non-@-parallel, mutually non-parallel simple closed curves on F has at most two

elements.

There is a result of Haken which states that given an excellent 3-manifoldM and

an integer k, there are, up to isotopy, only �nitely many proper, incompressible,

@-incompressible surfaces S in M with �(S) � k. A proof of this theorem for

the special case in which M is closed is given as Corollary 2.3 of [9]. The proof

of the general case is a straightforward generalization of that proof. We apply

this result to conclude that there is an integer H(M) such that any collection

of proper, incompressible, @-incompressible, mutually non-isotopic surfaces in M

each of which is homeomorphic to F must have at most H(M) elements. Let

H = maxH(M

n�3;n+4

) for n � 4.

Now let g be an orientation preserving homeomorphism of V . There exist q >

p > 0 such that for 0 � t � H one has g

t

(C

0

) � C

p

and g

�t

(C

p

) � C

q

. Consider

n � maxfq; p + 4g. Then g

t

(F

n

) is an incompressible surface F in V � IntC

p

.

Isotop F in V � IntC

p

so that @F misses @F

k

for all k > p and among all such

surfaces F meets [

k>p

F

k

in a minimal number of components.

Claim 1. F \ (X

n

[ X

n+1

) 6= ;. If not, then one can extend g

t

to a home-

omorphism f of U such that f(K

n

) � K

n+1

or f(K

n

) � K

n�1

. Since the Y

k+1

are excellent it follows from Lemma 3.3 of [14] that f can be isotoped so that

f(K

k

) = K

k+s

for some s 6= 0 and all su�ciently large k. In particular by (5) there

is a k+1 2 N

1

and a w+1 2 N

2

such that f takes Y

k+1

to Y

w+1

and T

k+1

to T

w+1

.

Then f(`

k+1

) is homologous on T

w+1

to �`

w+1

. Since h

k+1

and h

w+1

extend to

homeomorphisms from Y

k+1

and Y

w+1

to Y

1

and Y

2

carrying `

k+1

and `

w+1

to `

1

and `

2

, respectively, we have contradicted (2).

Claim 2. F �M

n�2;n+3

If not, then it must meet at least three of the surfaces F

s

with n�3 � s � n+3. Hence either some component of F\([

k>p

F

k

) is contractible

or @-parallel on F or two such components are parallel on F . The irreducibility and

@-irreducibility of the Y

k+1

imply that all contractible components could have been

removed by an isotopy, contradicting minimality. Anannularity implies the same

for @-parallel components. Suppose A is an annulus in F such that @A consists

of components of the intersection. We may assume that A meets no other such

components. If @A � F

k

for some k, then A is parallel to an annulus in F

k

, so

we may assume there are no such annuli. Thus A joins some F

k

to F

k+1

. Since

the components of @A are non-separating there must be another such annulus A

0

.

We may choose A and A

0

so that there is a disk with two holes R in F with one

component each of @R in @V , @A, and @A

0

such that intR contains no intersection

curves. Since A and A

0

are @-parallel in some X

k+1

we can isotop R in the adjacent

X

w+1

containing it so that @R lies in A

0

w+1

[ A

1

w+1

. Suppose @R lies in A

0

w+1

.

It then consists of three concentric simple closed curves. Pushing the disks on E

0

bounded by the two inner curves slightly into int V we obtain a proper embedding

of a disk in V which cobounds a 3-ball in V with a disk on E

0

. It follows that one

of the curves has the opposite orientation from the other two when compared on

8



E

0

. Hence there is a proper torus with one hole embedded in X

w+1

with boundary

a non-contractible curve in A

0

w+1

. Thus there is a torus in Y

w+1

which meets �

0

w+1

transversely in a single point and misses �

1

w+1

, which is impossible. Similar analyses

apply to the other possibilities for @R. Thus there is no such annulus.

Claim 3. F is @-incompressible in M

n�3;n+4

. Suppose D is a @-compressing

disk. Put D in general position with respect to F

n�3

[ F

n+3

. The irreducibility

and @-irreducibility of X

n�3

and X

n+4

allow one to remove all intersections with

this surface. The portion of @D not in F then lies in an annulus whose centerline

is a component of @F and so @D can be isotoped into F , to which we then apply

incompressibility.

We now have H + 1 incompressible, @-incompressible, homeomorphic surfaces

in M

n�3;n+4

consisting of the isotopes of F

n

, g(F

n

), : : : , g

H

(F

n

). At least two of

these are isotopic. Hence g

t

(F

n

) is isotopic to F

n

for some t, 0 � t � H. Thus

g

H!

(F

n

) is isotopic to F

n

. Note that this isotopy can be chosen to have compact

support contained in V � IntC

p

.

We next choose a sequence n

0

< n

1

< n

2

< � � � such that the isotopies of

g

H!

(F

n

k

) to F

n

k

have disjoint supports. Thus we can perform a single isotopy

which simultaneously performs this sequence of isotopies. Let S

n

denote the image

of g

H!

(F

n

) under this isotopy; thus S

N

k

= F

n

k

.

We now consider n

k

< n < n

k+1

. We may assume that @S

n

= @F

n

. The

embedding maps of S

n

and F

n

are homotopic in V � IntC

p

by a homotopy under

which the image of the boundary is in @V � (@V \ C

p

). We may arrange for the

homotopy to be �xed on @S

n

. We claim that it may be chosen so that its image

lies in M

n

k

;n

k+1

. Choose a collection of disjoint proper arcs in S

n

which cut it into

disks. Then use the incompressibility of F

n

k

[ F

n

k+1

to modify the homotopy so

that the images of these arcs miss this surface. Finally use irreducibility to extend

the homotopy over the disks in S

n

. It then follows from Corollary 5.5 of [19] that

S

n

and F

n

are isotopic in M

n

k

;n

k+1

.

Continuing in this fashion one gets that g

H!

is isotopic to a homeomorphism

which carries C

n

to itself for all su�ciently large n. By Lemma 5.3 we have that

g

L�H!

is isotopic to the identity of V . �

6. Specific Examples

Theorem 6.1. There are speci�c examples of Whitehead manifolds each of which

non-trivially covers another non-compact 3-manifold but does not cover a compact

3-manifold.

Proof. Figure 1 shows a 4-component tangle � in a 3-ball B called the true lover's

4-tangle. In [13] it is proven that the exterior of � is excellent. The exterior of the

graph � in Figure 2 is homeomorphic to the exterior of �. By deleting two arcs

from � we obtain the 2-tangle � in Figure 3 which is equivalent to the union of

the second and third components of �. It follows immediately from the proof of

Proposition 4.1 of [12] that the exterior of � is excellent.

We now identify the disks which constitute the left and right sides of the rect-

angular solid B in order to obtain a solid torus K. This is done so that � becomes

9



Figure 1. The 4-tangle �

Figure 2. The graph �

Figure 3. The 2-tangle �

a simple closed curve � and � becomes a graph � consisting of � together with two

disjoint arcs �

0

and �

1

joining � to @K. It follows from Lemma 2.1 of [15] that

the exteriors of � and � in K are excellent. We embed K in S

3

in a standard way

so that a line segment running along the bottom front edge of B becomes a simple

closed curve ` in @K which bounds a disk in S

3

� intK.

If one changes the sense of the central clasp in the �gures by changing the two

overcrossings to undercrossings, thereby obtaining a new � and �, then the same

arguments show that their exteriors in K are also excellent. We denote the old and

new versions by the subscripts 1 and 2, respectively.

We claim that there is no orientation preserving homeomorphism from the exte-

rior of �

1

to the exterior of �

2

which carries ` to �`. If not, then one could extend

the homeomorphism to the exteriors of these knots in S

3

. But the two knots are

the knots 8

5

and 8

19

with normalized Alexander polynomials 5�4(t+ t

�1

)+3(t

2

+

10



t

�2

)� (t

3

+ t

�3

) and 1� (t

2

+ t

�2

) + (t

3

+ t

�3

), respectively, so this is impossible.

Now let L

i

be a regular neighborhood of �

i

in K. Let N

1

and N

2

be as in

Theorem 5.2(5), for example taking N

2

to be the set of positive integers of the

form 2

r

> 1 and N

1

those not of this form. We construct a genus one Whitehead

manifold U with exhaustion fK

n

g by using as models for (K

n+1

; K

n

) the pairs

(K;L

i

) where n + 1 2 N

i

. The graphs �

1

and �

2

provide the arcs �

j

n+1

. It is

then easily checked that the construction can be carried out so as to satisfy the

hypotheses of Theorem 5.2, and so the conclusion follows from Theorem 3.2. One

can also vary the choice of N

1

and N

2

and apply Lemma 3.3 of [14] to obtain

uncountably many non-homeomorphic such examples. �
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