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$1. INTRODUCTION 

SUPPOSE M is a closed, aspherical 3-manifold. Then the universal covering space @ of M is a 
contractible open 3-manifold. For all “known” such M, i.e. M a Haken manifold [ 151 or a 
manifold with a geometric structure in the sense ofThurston [14], A is homeomorphic to R3. 
One suspects that this is always the case. This contrasts with the situation in dimension n > 3, 
in which Davis [2] has shown that there are closed, aspherical n-manifolds whose universal 
covering spaces are not homeomorphic to R”. 

This paper addresses the simpler problem of finding examples of contractible open 3- 
manifolds which do not cover closed, aspherical 3-manifolds. As pointed out by McMillan 
and Thickstun [l l] such examples must exist, since by an earlier result of McMillan [lo] 
there are uncountably many contractible open 3-manifolds but there are only countably 
many closed 3-manifolds and therefore only countably many contractible open 3-manifolds 
which cover closed 3-manifolds. Unfortunately this argument does not provide any 

specific such examples. 
The first example of a contractible open 3-manifold not homeomorphic to R3 was given 

by Whitehead in 1935 [16]. It is a certain monotone union of solid tori, as are the later 
examples of McMillan [lo] mentioned above. These examples are part of a general class of 
contractible open 3-manifolds called genus one Whitehead manifolds. In this paper it is proven 
that none of these manifolds can cover a closed 3-manifold. In fact a stronger result is 
obtained: genus one Whitehead manifolds admit no non-trivial, fixed point free, properly 
discontinuous group actions. Thus they cannot non-trivially cover even another non- 
compact 3-manifold. 

There is some disagreement as to the proper definition of proper discontinuity. If X is a 
manifold, G is a group of homeomorphisms of X, and XEX, let G, be the isotropy subgroup of 
G at x, i.e. G, = (g E Gig(x) = x). G acts properly discontinuously on X if(i) for each point x E X 
there is an open neighborhood U of x such that U rig(U)) = 0 for every g E G\G, and (ii) a 
condition on G, which is in dispute. Some authors require that each G, be trivial (see [9], 
[13]). Under this definition the phrase “fixed point free” is redundant and G acts properly 

discontinuously if and only if the projection X-+X/G is a regular covering map. Other 
authors may merely require that each G, be finite (see [3]). This allows G to have elements 
of finite order with fixed points, such as those occurring in Kleinian groups. 

The second definition is of course implied by the first; it in turn implies that for every 
compact subset C of X the set (g E GIG n g(C) # a} is finite. This last condition is the working 
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definition used in this paper. It will be shown that given any homeomorphism g of a genus 
one Whitehead manifold W there is a compact subset C of W such that CngL(C) # 0 for 
infinitely many values of k. Thus if g were an element of a properly discontinuous group G of 
homeomorphisms of W, then g would have finite order, which, by passing to a power of g, one 
may assume to be a prime p. Then since W is contractible g must have a fixed point. This can 
be seen in two ways. First note that g extends to a homeomorphism of order p of the one- 
point compactification WV {co} of Whaving CO as a fixed point. Since this space is a compact 
mod p Tech cohomology sphere, Smith theory [l] implies that its fixed point set is also a 
mod p Tech cohomology sphere. Since it is non-empty at least one of its fixed points must be 
in W. Alternatively, one can observe that if g had no fixed points, then the projection 
W-+ W/(g) would be a covering map. Hence W/(g) would be a finite dimensional K(Z,, 1). 
This contradicts the fact that finite groups have infinite cohomological dimension [a]. 

We shall work throughout in the PL category. The terminology in this paper follows that 
of [6] or [7]. In particular if F is a surface in a 3-manifold M, then aAM) denotes the manifold 
obtained by splitting M along F. A compact 3-manifold M is simple if it is irreducible, has 
incompressible boundary, and every incompressible torus in M is boundary-parallel. A 
simple 3-manifold M is atoroidal if every incompressible annulus in M is boundary-parallel. 

The original example of Whitehead is easier to deal with than most genus one Whitehead 
manifolds because the closure of the region between any two successive solid tori in its 
defining sequence is atoroidal. Such manifolds and sequences will be termed excellent. The 
proof of the theorem is much easier to follow for excellent genus one Whitehead manifolds, 
the proof in the general case being cluttered by details about characteristic Seifert 
submanifolds. The paper has therefore been organized so that one may on a first reading 
confine oneself to the case of excellent manifolds and sequences, postponing consideration of 
the “very good” sequences which arise in the general case. 

Section 2 develops basic facts about genus one Whitehead manifolds and their defining 
sequences. Section 3 gives conditions under which a homeomorphism of a genus one 
Whitehead manifold can be isotoped so as to preserve the defining sequence. Section 4 
presents the key insight underlying the proof: the track of a sufficiently complicated simple 
closed curve under a sufficiently long ambient isotopy must pass through the core of the 
manifold. Section 5 assembles these ideas into the proof of the theorem. 

$2. GENUS ONE WHITEHEAD SEQUENCES 

A sequence { Vn)zE,, of solid tori is a genus one Whitehead sequence if V, E Int( V,+ 1) and 
the inclusion map V,-+ V,+ 1 is null-homotopic for each n 20. Let W= uzCO If,. For each 
n 20, let T. =aV,,, let W,= w\Znt( V,), and let J, be a core of V.. For each n> 1, let 
X, = V,\lnt( V,_ 1). For q > p 2 0 let Y,,, = V,\lnt( V,,). 

A genus one Whitehead sequence { Vn} is gobd if dX, is incompressible in X, for each n L 1. 
In this case W is called a genus one Whitehead manifold. 

LEMMA 2.1. Let { V.} b e a genus one Whitehead sequence. The following are equivalent: 

1. { Vn} is good. 

2. For each n 2 0, J, is not contained in a 3-cell in W. 

3. For each n2 1, X, is irreducible. 

Proof 132: Suppose some J, is contained in a 3-cell B in W. Then B lies in some V,,,, 
m > n. A meridional disk D for V,,, can be chosen missing B. Put D in general position with 
respect to all the T,, n <k cm, and assume the number of intersection curves to be minimal. 
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Then no such curve bounds a disk on a Tk. (Otherwise an innermost such disk could be used 
to replace the disk on D having the same boundary; after an isotopy one would have a new 
meridional disk for V,,, having fewer intersection curves with the T,, contradicting 
minimality.) An innermost disk on D must therefore compress 3X, for some j, n <j 5 m. 

2*3: Suppose some X, is reducible. Let S be a 2-sphere in X, which does not bound a 
3-cell in X,. S does bound a 3-cell B in V,, so B must contain J,_ 1. 

3== 1: Suppose some X, has compressible boundary. The manifold obtained by splitting 
X, along a compressing disk has two boundary components, one of which is a 2-sphere. This 
2-sphere, when isotoped into Znt(X,), separates the components of 8X, and so does not 
bound a 3-cell in X,. 0 

This lemma implies that genus one Whitehead manifolds are not homeomorphic to R3. 
For such manifolds standard arguments show that all the Y,,, and W, are irreducible and 
that all the Tk contained in them are incompressible. 

A good genus one Whitehead sequence and the associated genus one Whitehead 
manifold are excellent if X; is atoroidal for each n 2 1. Whitehead’s example [ 163 is excellent. 
The genus one examples of McMillan [lo] are not excellent. 

LEMMA 2.2. Let {V.} b e an excellent genus one Whitehead sequence. If T is an 
incompressible torus in Yp,4, then T is isotopic to some T,,, p <n 5 q, via an isotopy with support 

in Yp,4, if p < n < q and support in a regular neighborhood of Y,,, if n = p or n = q. 

Proof: Put Tin general position with respect to uz,,T,. Then use the irreducibility of 
Y,,, to remove those intersection curves which bound disks on T. Next use the fact that every 
incompressible annulus in X, is boundary-parallel to remove the remaining intersection 
curves. Finally isotop Tto one of the T, using the fact that every incompressible torus in X, is 
boundary-parallel. 0 

The remainder of this section deals with genus one Whitehead manifolds which are not 
excellent and may be skipped on a first reading. 

We shall need the following well-known facts about Seifert fibered spaces in 3-manifolds. 
See [7], [S], and [12] for reference. 

Let V be an unknotted solid torus in S3 with core J. Let K be a simple closed curve in 3 V. 
If K is knotted in S3, then its exterior is a torus knot space. If K goes around Vlongitudinally 
at least twice, then the exterior of JuK is a cable space. A manifold homeomorphic to 
S’ x P,, where P, is a disk with n holes, n 2 1, is an n-fold composing space. A l-fold composing 
space is homeomorphic to S’ x S’ x I and is called a shell. A surface in a Seifert fibered space 
is vertical if it is a union of fibers. 

LEMMA 2.3. Let S be a torus knot space, cable space, or composing space. 

1. S admits a Seifertjbration having two, one, or no exceptionaljbers and decomposition 
surface a disk, annulus, or P,, respectively. This Seifertjibration is unique up to isotopy 
unless S is a shell. 

2. Every incompressible torus in S is isotopic to a vertical torus; it is boundary parallel 
unless S is an n-fold composing space with n 2 3. 

3. Every incompressible, non-boundary-parallel annulus in S is isotopic to vertical annulus 
unless S is a shell, in which case it is isotopic to J x I for some simple closed curve J in 
S’XS’. 0 

LEMMA 2.4. Suppose X is a compact sub-manifold of the exterior C of a non-trivial knot in 
S3 with dX a union of tori incompressible in C. Let S be a compact submanifold of X such that dS 
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is a union of tori, S n dX is a union of comdonents of as, and dS is incompressible in X. 

1. If S is a Seifertjbered space, then S is a torus knot space, cable space, or composing space. 
2. Zf S contains an incompressible non-boundary-parallel annulus but no incompressible, 

non-boundary-parallel torus, then S is Seifert fibered. 
3. If S is an n-fold composing space, n 2 2, and T is a component of ?S, then T bounds a 

unique solid torus in S3, and each Seifert jiber in T is a meridian of this solid torus. 
4. Suppose s’ is another such submantfold meeting S only in a common boundary component 

T. If S and S’ are Segertjbered and induce isotopicjbrations of T, then S, S’, and S v S’ 
are composing spaces. 0 

LEMMA 2.5. Let X be as in Lemma 2.4. Then there exists a 2-mantfold F in X, unique up to 
isotopy, such that 

1. The components of F are incompressible tori. 
2. No component of F is boundary-parallel. 
3. No two components of F are parallel. 

4. Each component of aF(X) is either atoroidal or Seifert jibered. 
5. If S and S’ are Seifert jibered components of aF(X) meeting in a common boundary 

component T, then the fibrations of T induced by S and s’ are not isotopic. 
6. Every incompressible torus in X is isotopic to a component of F, is isotopic to a vertical 

torus in a Seifert Jibered component of a,(X), or is boundary-parallel. 

Proof F is the canonical 2-man$old in the Splitting Theorem of [S]. It can be obtained 

from the boundary F’ of the characteristic Seifert pair of X by deleting the components of aX 

and one boundary component ofeach shell in apz (X). It can also be obtained directly from the 

two previous lemmas, as follows. 

By Haken’s Finiteness Theorem [S] there is a compact 2-manifold F’ in X whose 

components are incompressible, non-boundary-parallel, pairwise non-parallel tori such that 

every incompressible non-boundary-parallel torus in X disjoint from F’ is parallel to a 

component of F’. It follows that every component S of aFG (X) is simple. If S is not atoroidal 

then it is a torus knot space, cable space, or composing space. If S, and S2 are two such 

components meeting in a common boundary component T’ on which they induce isotopic 

fibrations then delete T’ from F’. Deleting all such tori from F’ gives a 2-manifold F which has 

properties 1-5. These properties and the previous lemma imply property 6 and the isotopy 

uniqueness of F: Let T be an incompressible torus in X which is in general position with 

respect to F. Each component S of a,(X) is irreducible; this allows one to remove those 

intersection curves which bound disks. The existence of any boundary-parallel annuli among 

the components of F nS also allows one to remove intersection curves. Suppose some 

component A of F nS is not boundary-parallel. Then it is isotopic to a vertical annulus in a 

Seifert fibration of S. There is a component S’ of ap(X) whose intersection with Tcontains an 

annulus A’ having at least one boundary component in common with A. A’ must be 

boundary-parallel in S’; otherwise it would be isotopic to a vertical annulus in a Seifert 

fibration of S’, which is impossible since the Seifert fibrations induced by S and S’ on a 

common boundary component are not isotopic. Therefore T can be isotoped into a 

component of a,(X) and the results follow by Lemma 2.4. 0 

LEMMA 2.6. Suppose V and V’ are solid tori with boundaries T and T’, respectively, and 
that V’ E Int( V). Suppose S is a Setfertfibered submangold of VJnt( V’) with TV T’ E 8s and 
dS incompressible in fllnt( V’). Then V’+ V is not null-homotopic. 
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Proof: Choose a knotted embedding of V in S3. Then the incompressibility of ?S in 
V\lnt( I”) and of Tin S3\lnt( V) implies that of T’in S3\lnt( V’). Therefore V’ is knotted in S3. 
Let C= S3\Znt( V’) and X = VJnt( V’). Then X and S satisfy the hypotheses of Lemma 2.4. 
Hence S is either a cable space or a composing space. Note that there is a vertical annulus A 

joining T to T’ in S. 
Suppose S is a cable space. If the fibers of T’ are not meridians of I”, then the Seifert 

fibration of S extends to a Seifert fibration of V with decomposition surface a disk and (since 
V is a solid torus) one exceptional fiber. Therefore V is a standard fibered solid torus and the 
core of I” is homotopic to a regular fiber, hence I/’ + V is not null-homotopic. If the fibers of 

T’ are meridians of V’, then the union of A and a meridional disk for I” is a meridional disk 
for V which meets a core of I/’ exactly once. Hence I” + V is in fact a homotopy equivalence. 

Suppose S is a composing space. Then the fibers of T’ are meridians of V’ and the result 
follows as above. 13 

Suppose {I’.} is a good genus one Whitehead sequence. Let F, be the canonical 2- 
manifold of X,. { I’.} is very good if(i) no component of F, bounds a solid torus V’ in W with 
I’,_. 1 + V’ and I”+ I’, both null-homotopic (so the sequence is in a sense maximal) and 
(ii) the component of a,“(X,) containing T, is atoroidal (the “top” piece of X, is not Seifert 
fibered). 

LEMMA 2.7. Every genus one Whitehead manifold admits a very good genus one Whitehead 
sequence. 

Proof: Let { V”} be a good genus one Whitehead sequence for W. Form the union of { T,) 
with the set of those components of the F, which bound solid tori in W. The solid tori 
bounded by the elements of this set form a sequence { Qk}FzO, with Q. = T,, and Qk E Qt+ 1 for 
k 20. Define the new Whitehead sequence { Vi} to be a certain subsequence of { Qk}, as 
follows. Let Vb = Qo. If Vk has been defined to be Qi, let I”,, 1 be the next Qjfor which Qi+Qj 
is null-homotopic. This new sequence clearly satisfies(i). If it violated (ii), then there would be 
a Q,, i <s <j such that Qj\lnt(QJ contained a Seifert fibered space with aQ,uaQj in its 
boundary. By Lemma 2.6 QS~Qj would not be null-homotopic, forcing Qi+Qs to be null- 
homotopic, in contradiction to the choice of QY 0 

LEMMA 2.8. Let ( V,} be a very good genus one Whitehead sequence. Then the canonical 
2-manifold of Y,., is the union of the canonical 2-manqolds F, of X,, p + 1 in I q, and the T,, 
p<n<q. 

Proof: This set clearly satisfies properties l-4 of Lemma 2.5. Property 5 of the lemma 
follows from property (ii) of the definition of very good. As shown in the proof of Lemma 2.5 
properties l-5 suffice to characterize the canonical 2-manifold. q 

$3. THE SHIFT LEMMA 

Let W be a genus one Whitehead manifold with good genus one Whitehead sequence 
{ V,). This section investigates the extent to which homeomorphisms of W can be isotoped so 
as to preserve this sequence. 

The first lemma is needed only for very good sequences which are not excellent and can be 
skipped on a first reading. 
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LEMMA 3.1. Suppose {V,,} is very good. Letf W+ W be a homeomorphism. Suppose.for 
some k > 0 and j > i 2 0 thatf( V,,) c Vi ~f( VJ E VT Then f( T,) is isotopic to some T,,,, i <rn 2 j, 
via an isotopy with support in Yi, j tfi <m <j and support in a regular neighborhood of Yi,j if tn = i 

or m =j. 

Proof: Let F be the canonical 2-manifold of Yi,? By Lemma 2.5 there are three 

possibilities: 

Case 1. f(T,) is isotopic in Yi,j to a component T of F. If T were a component of the 

canonical 2-manifold F, of some X,, i < n sj, then property (i) of the definition of very good 

would be violated, so T must be one of the T,,,, i < m < j, and we are done. 

Case 2.f(T,) is isotopic in Yi,j to a vertical torus in a Seifert fibered component S of 

cF( Yi,j). Denote the composition consisting offfollowed by this isotopy again byf: By Cases 1 

and 3 we may assume thatf( T,) is not boundary-parallel in S. Then S is a composing space 

which is split into two components by f( T,). Let S, be the component contained in .f( V,). 
Exactly one component T of aSo other thanf( Tk) bounds a solid torus V in W. Nowf - ‘(T) is 

an incompressible torus in Y,,,. Let F’ be the canonical 2-manifold of Y,,,. Thenf- ‘(T) is 

isotopic in Y,,, to some T,, 0 < n < k, to a component of some F,, 0 < n I k, or to a vertical 

torus in a Seifert fibered component of uF( Y,,,) or is boundary-parallel in YOTk. These are all 

impossible by Lemma 2.6, the definition of very good, and the fact that f -‘(S,) is Seifert 

fibered. 

Case 3. f(T,) is boundary-parallel in Yi,j. Then we are done. 17 

LEMMA 3.2. Suppose { V,,} is excellent or very good. Let J W+ W be a homeomorphism 
such that f( YP,J = Y,,,. Then q-p = r - s and f is isotopic to a homeomorphism f’ such that 
f’( T,, i) = T,, i for 0 I i I q -p. This isotopy can be chosen with support in Y,,,. 

Proof: The proof is by induction on q-p. 
Suppose q-p= 1. Then s-r = 1. If { Vn} is excellent this follows from the fact that 

Y,,,=X, is atoroidal. If {V”} is very good this follows from the fact that if s-r > 1 then 

f - ‘(T,, 1) violates part (i) of the definition of very good. Therefore no isotopy is necessary 

in this case. 

Suppose q - p > 1. Then f( T,, 1) is isotopic to some T,,, with r < m 5 s. If { V,} is excellent 

this follows from Lemma 2.2. If { V”} is very good this follows by Lemma 3.1 with i = r, j = s, 
and k=p+ 1. Since T,, 1 is not parallel to T, or T,, r < m <q and the isotopy has support in 

Y,,,. The result now follows by the inductive hypothesis. 0 

LEMMA 3.3. (THE SHIFT LEMMA) Suppose { Vn} is excellent or very good. Let g: W+ Wbe a 
homeomorphism. Then there exist integers N 2 1 and s 2 I- N and a homeomorphism h: W-r W 

isotopic to g such that h( V,)= V,+, for all n 2 N. 

Proof First choose a p,, > 0 such that (V, u g( V,,))Z VpO. Next choose an N, > 0 such that 

VP,, E g( VnJ. Then choose a q0 > p0 such that g( VNO) E V,,. g(T,,) is incompressible in g( W,) 
and so is incompressible in W,, and hence in YPo,4a. It can therefore be isotoped to some TM,,, 

p0 I MO<q,,, via an isotopy fixed outside a regular neighborhood of Y,,.,, in W. This 

follows from Lemma 2.2 if { V,} is excellent and from Lemma 3.1 if { V.} is very good. 

Let p1 =q,, + 1. Choose an N, > N, such that VP, E g( VN,) and a q1 >pl such that 

g( VNI) c V,,. g(TNI) is incompressible in YP,,41 and so, as above, is isotopic to some T,,, 
p1 <MI I ql, via an isotopy fixed outside a regular neighborhood of YP,,4, in W. 
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Continuing in this fashion one obtains a sequence of isotopies with disjoint supports 
(and therefore a single isotopy) whose composition with g results in a homeomorphism g’ 
such that g’( T,,) = TM,, for some increasing sequences of integers {N,} and {M,). So 

d( YNk,Nr + ,) = LMr + I. BY Lemma 3.2 Mk+ l - M, = N,, 1 - N, and there is an isotopy with 

support in Int(s’( Y,,,,, + , )) taking g’(T,) to Tj for NI,<i<Nk+l and j=i+M,-N,. 

The composition of this isotopy with g’ gives the desired homeomorphism g, with N = N, 
and s=M,-N,. 0 

$4. THE LONG ISOTOPY LEMMA 

Let W be a genus one Whitehead manifold with good genus one Whitehead sequence 
{V,}. In this section it will be shown that sufficiently complicated simple closed curves in W 

cannot be “isotoped to infinity” without hitting V, infinitely often. 

LEMMA 4.1. (THE LONG ISOTOPY LEMMA) Suppose ( V,} is excellent or very good. Let J 
be a simple closed curve in W which does not lie in a 3-cell. Suppose G: W x [a, b] --* W is an 
isotopy with g. = GI( W x {a}) and gb = G(( W x {b}). If g,(J) c V,,, and gb( J) c W,,,, 1, then 

G(Jx [a,bl)nJ,#0. 

Proof: Let J, = g,,( J), J,, = gb( J), and K = G( J x [a, b]). We reduce to the special case 
in which one end of the isotopy is the identity, as follows. Define F: Wx [a, b]+ W 
by F(x,t)=G(g;‘(x),t). Then F is an isotopy with FJ(Wx{a})=id,, F(J,x{b))=J,, 

and F( J, x [a, b]) = K. 
Assume K n J, = 0. Then we may assume K n V, = 0. Let N be a regular neighborhood 

of K in W, By the Covering Isotopy Theorem Cl73 there is an isotopy F’: W x [a, b] -+ W with 
support in N such that F’ I( J, x [a, b]) = F I( J, x [a, b]). Letf= F’I( W x {b}). Thenfl V, = id,, 
and f( J,) = J,. 

It will now be shown that the torusf( T,) is isotopic in the complement of V0 u J, to a 
torus disjoint from T,,, + 1. The result of followingfby this isotopy will again be denoted byf. 

First putf( T,,,) in general position with respect to all the T.. Suppose D is an innermost 
disk onf(T,,,) with dD a component off(T,,,)n T,,,,,. Then, as usual, dD = dD’ for a disk D’ in 
T m + 1 and D v D’ bounds a 3-cell B in W,. Since J, and hence Jb, does not lie in a 3-cell in W 

one can isotop D across B, without moving J,, so as to remove aD from the intersection. 
Continuing in this fashion all intersection curves which bound disks onf( T,,,) can be removed. 
Assume that the intersection is still non-empty. 

If { V,} is excellent then since each X, is atoroidal each component off(T,,,)n Y,,,, 1 is an 
annulus in X,, l which is parallel to an annulus in T,,,.,. Thus there is an isotopy with 
support in a regular neighborhood of Xm+f which removes the remaining intersection 
curves. Since J, lies outside V,,,+ 1 it is not moved by the isotopy and the claim is proven. 

If ( Vn} is very good then putf(T,,,) in general position with respect to the canonical 2- 
manifold F of YO,, + 1. Let Q be the component of uF( Y,,,+ I) containing T,,,, 1. Since Q is 
atoroidal each component off( T,,,) n Y,,, + 1 is an annulus in Q which is parallel to an annulus 
in T,,,,,. The claim now follows as above. 

Thus there is a homeomorphismfi W+ W such thatf( Vo)= VO and, since Jb is outside 
V m+ 17 V,,,,, cf(V,,,). Cho ose j such that f( V,,,) E VP By Lemma 2.2 (if { V.f is excellent) or 
Lemma 3.1 (if { V,} is very good) f( T,,,) is isotopic to some T,, m f 1 I k 5 j, via an isotopy 
which has support in a regular neighborhood of Y ,,,+ l,j and is therefore fixed on V,. Thus 
(again calling the new homeomorphism f) one has that f( Y,J= Y,,k with k > m, in 
contradiction to Lemma 3.2. 0 

TOP 27:1-c 
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55. THE NON-EXISTENCE OF GROUP ACTIONS 

THEOREM 5.1. Genus one Whitehead manifolds admit no non-trivial, fixed 
properly discontinuous group actions, thus cannot be non-trivial covering spaces. 

point free, 

Proof: Let Wbe a genus one Whitehead manifold with excellent or very good Whitehead 
sequence {I’,}. It will be shown that for every homeomorphism g of W there exists a compact 
subset C of W such that C n gk(C) # @ for infinitely many values of k. We may assume that for 
every N 2 0 and n 20 there exists a K > 0 such that gk( V,) c W, for all k 2 K, otherwise we 
would clearly have our set C. The argument will be easier to follow if it is divided into two 
cases, depending on whether or not g is isotopic to the identity. 

Special Case. g is isotopic to the identity. Suppose F: W x [0, l]-+ W is an isotopy with 
F(x, 0) =x and F(x, 1) = g(x) for all x E W. In this case it will be shown that F( J, x [0, 11) is the 
desired compact set C. Define G: W x [0, oo)-, W by G(x, t) =gk(F(x, t - k)) for x E W and 
k I t I k + 1. G is a “very long isotopy” which interpolates the sequence of homeomorphisms 
{gk}, k20. Note that G(J, x [k, k+ l])=g’(C). 

Suppose gp(JO)c I’,. Then for some q>p, g4(J,,)E W,,,. Gj(Wx[p,q]) is an iso- 
topy with G( J, x {p}) = gp( J,) and G( J, x {q})=g4( J,). By the Long Isotopy Lemma 
G(J, x [p,q])nJ,#jZI. Since G(J, x b,q])=ufZigk(C), gk(C)nJ,#O and hence 
g’(C)n C # 0 for some k, p I k I q- 1. Repeating the above argument for arbitrarily 
high values of p establishes the claim. 

General Case. g is not necessarily isotopic to the identity. By the Shift Lemma there exist 
integers N 2 1 and s 2 1 - N and a homeomorphism h isotopic to g such that h( V,) = V, +s for 
allnZN.Sinceg-’ and h- ’ are isotopic we may assume, replacing g by g-i if necessary, that 
s 2 0. Let F: W x [0, l] -+ W be an isotopy such that F(x, 0) = h(x) and F(x, 1) = g(x) for all 
XE W. In this case it will be shown that F(Vn x [0, 11) is the desired compact set C. Define 
H: Wx [0, co)+ W by H(x, t)=gk(F(h-k(x), t-k)) f or xE W and kltlk+ 1. H interpolates 
the sequence of homeomorphisms {h, g, g2 h- ‘, . . . , g’h’ -‘, . . . }. Note that h- ‘( VN) c V,. 
This implies that 

H(J, x [k, k+ 11) c H(I’, x [k, k+ l])=gk(F(h-k(VN) x [O,l])) sg’(C). 

Suppose gph’ -“( JN) E V,. For some q>p, gq(VN) c W,,,. Then (again since 
h-‘(VN)e Vn) 

g4h1-q(.JN)~gqh1-q(VN)~$(VN)~ W,,,. 

By the Long Isotopy Lemma H( J, x [p, q]) nJ, # 0. Since 

q-1 q-1 
HJ,xCp,d)= U H(J,xCk,k+ll)=k~~gk(C) 

k=p 

one sees that gk(C) n J, # 0 for some k, p I k I q - 1. Since J, E I’, c VN E h( VN) c C, one 
has that g’(C) n C # 0. Repeating this argument for arbitrarily high values of p completes the 
proof. 0 
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