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§1. INTRODUCTION

SupPPOSE M is a closed, aspherical 3-manifold. Then the universal covering space M of M is a
contractible open 3-manifold. For all “known” such M, i.e. M a Haken manifold [15] or a
manifold with a geometric structure in the sense of Thurston [14], M is homeomorphic to R3.
One suspects that this is always the case. This contrasts with the situation in dimension n> 3,
in which Davis [2] has shown that there are closed, aspherical n-manifolds whose universal
covering spaces are not homeomorphic to R".

This paper addresses the simpler problem of finding examples of contractible open 3-
manifolds which do not cover closed, aspherical 3-manifolds. As pointed out by McMillan
and Thickstun [11] such examples must exist, since by an earlier result of McMillan {10]
there are uncountably many contractible open 3-manifolds but there are only countably
many closed 3-manifolds and therefore only countably many contractible open 3-manifoids
which cover closed 3-manifolds. Unfortunately this argument does not provide any
specific such examples.

The first example of a contractible open 3-manifold not homeomorphic to R* was given
by Whitehead in 1935 [16]. It is a certain monotone union of solid tori, as are the later
examples of McMillan [ 10] mentioned above. These examples are part of a general class of
contractible open 3-manifolds called genus one Whitehead manifolds. In this paper it is proven
that none of these manifolds can cover a closed 3-manifoid. In fact a stronger result is
obtained: genus one Whitehead manifolds admit no non-trivial, fixed point free, properly
discontinuous group actions. Thus they cannot non-trivially cover even another non-
compact 3-manifold.

There is some disagreement as to the proper definition of proper discontinuity. If X is a
manifold, G is a group of homeomorphisms of X, and xe X, let G, be the isotropy subgroup of
G at x,ie. G, = {ge Glg(x)=x}. G acts properly discontinuously on X if (i) for each point xe X
there is an open neighborhood U of x such that U ng(U)= & for every ge G\G, and (ii) a
condition on G, which is in dispute. Some authors require that each G, be trivial (see [9],
[13]). Under this definition the phrase “fixed point free” is redundant and G acts properly
discontinuously if and only if the projection X —X/G is a regular covering map. Other
authors may merely require that each G, be finite (see [3]). This allows G to have elements
of finite order with fixed points, such as those occurring in Kleinian groups.

The second definition is of course implied by the first; it in turn implies that for every
compact subset C of X the set {g e G|C ng(C) # &} is finite. This last condition is the working
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definition used in this paper. It will be shown that given any homeomorphism g of a genus
one Whitehead manifold W there is a compact subset C of W such that Cng%C)# & for
infinitely many values of k. Thus if g were an element of a properly discontinuous group G of
homeomorphisms of W, then g would have finite order, which, by passing to a power of g, one
may assume to be a prime p. Then since W is contractible g must have a fixed point. This can
be seen in two ways. First note that g extends to a homeomorphism of order p of the one-
point compactification Wy {cc} of Whaving oo as a fixed point. Since this space is a compact
mod p Cech cohomology sphere, Smith theory [1] implies that its fixed point set is also a
mod p Cech cohomology sphere. Since it is non-empty at least one of its fixed points must be
in W. Alternatively, one can observe that if g had no fixed points, then the projection
W— W/{g> would be a covering map. Hence W/{g) would be a finite dimensional K(Z, 1).
This contradicts the fact that finite groups have infinite cohomological dimension [4].

We shall work throughout in the PL category. The terminology in this paper follows that
of [6] or [7]. In particular if F is a surface in a 3-manifold M, then o (M) denotes the manifold
obtained by splitting M along F. A compact 3-manifold M is simple if it is irreducible, has
incompressible boundary, and every incompressible torus in M is boundary-parallel. A
simple 3-manifold M is atoroidal if every incompressible annulus in M is boundary-parallel.

The original example of Whitehead is easier to deal with than most genus one Whitehead
manifolds because the closure of the region between any two successive solid tori in its
defining sequence is atoroidal. Such manifolds and sequences will be termed excellent. The
proof of the theorem is much easier to follow for excellent genus one Whitehead manifolds,
the proof in the general case being cluttered by details about characteristic Seifert
submanifolds. The paper has therefore been organized so that one may on a first reading
confine oneself to the case of excellent manifolds and sequences, postponing consideration of
the “very good” sequences which arise in the general case.

Section 2 develops basic facts about genus one Whitehead manifolds and their defining
sequences. Section 3 gives conditions under which a homeomorphism of a genus one
Whitehead manifold can be isotoped so as to preserve the defining sequence. Section 4
presents the key insight underlying the proof: the track of a sufficiently complicated simple
closed curve under a sufficiently long ambient isotopy must pass through the core of the
manifold. Section 5 assembles these ideas into the proof of the theorem.

§2. GENUS ONE WHITEHEAD SEQUENCES

A sequence {V,}5., of solid tori is a genus one Whitehead sequence if V, = Int(V, , ,) and
the inclusion map V,—V,., is null-homotopic for each n>0. Let W=uUX,V,. For each
n>0, let T,=08V,, let W,=W\Int(V,), and let J, be a core of V,. For each n>1, let
X, =V\Int(V,_,). For g>p=01let Y, =V \In(V ).

A genus one Whitehead sequence {V,} is good if X, is incompressible in X, foreachn>1.
In this case W is called a genus one Whitehead manifold.

Lemma 2.1. Let {V,} be a genus one Whitehead sequence. The following are equivalent:
1. {V,} is good.

2. For each n>0, J, is not contained in a 3-cell in W.

3. For each n>1, X, is irreducible.

Proof. 1=>2: Suppose some J, is contained in a 3-cell B in W. Then B lies in some V,,
m>n. A meridional disk D for V,, can be chosen missing B. Put D in general position with
respect to all the T, n <k <m, and assume the number of intersection curves to be minimal.
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Then no such curve bounds a disk on a T,. (Otherwise an innermost such disk could be used
to replace the disk on D having the same boundary; after an isotopy one would have a new
meridional disk for V,, having fewer intersection curves with the T,, contradicting
minimality.) An innermost disk on D must therefore compress 0X; for some jn<j<m.

2=>3: Suppose some X, is reducible. Let S be a 2-sphere in X, which does not bound a
3-cell in X,. S does bound a 3-cell B in V,, so B must contain J,_,.

3=>1: Suppose some X, has compressible boundary. The manifold obtained by splitting
X, along a compressing disk has two boundary components, one of which is a 2-sphere. This
2-sphere, when isotoped into Int(X,), separates the components of 0X, and so does not
bound a 3-cell in X,. O

This lemma implies that genus one Whitehead manifolds are not homeomorphic to R3.
For such manifolds standard arguments show that all the ¥, , and W, are irreducible and
that all the T, contained in them are incompressible.

A good genus one Whitehead sequence and the associated genus one Whitehead
manifold are excellent if X ; is atoroidal for each n> 1. Whitehead’s example [16] is excellent.
The genus one examples of McMillan [10] are not excellent.

LEMMA 2.2. Let {V,} be an excellent genus one Whitehead sequence. If T is an
incompressible torus in Y, ,, then T is isotopic to some T,, p<n<gq, via an isotopy with support
in Y, if p<n<gq and support in a regular neighborhood of Y, , if n=p or n=gq.

Proof. Put T in general position with respect to UZ-,T,. Then use the irreducibility of
Y, ,to remove those intersection curves which bound disks on 7. Next use the fact that every
incompressible annulus in X, is boundary-parallel to remove the remaining intersection
curves. Finally isotop T to one of the T, using the fact that every incompressible torusin X , is
boundary-parallel.

The remainder of this section deals with genus one Whitehead manifolds which are not
excellent and may be skipped on a first reading.

We shall need the following well-known facts about Seifert fibered spaces in 3-manifolds.
See [7], [8], and [12] for reference.

Let V be an unknotted solid torus in S* with core J. Let K be a simple closed curve in éV.
If K is knotted in §3, then its exterior is a torus knot space. If K goes around V longitudinally
at least twice, then the exterior of JUK is a cable space. A manifold homeomorphic to
S! x P,, where P, is a disk with n holes, n> 1, is an n-fold composing space. A 1-fold composing
space is homeomorphic to S x §* x I and is called a shell. A surface in a Seifert fibered space
is vertical if it is a union of fibers.

LeMMA 2.3. Let S be a torus knot space, cable space, or composing space.

1. S admits a Seifert fibration having two, one, or no exceptional fibers and decomposition
surface a disk, annulus, or P,, respectively. This Seifert fibration is unique up to isotopy
unless S is a shell.

2. Every incompressible torus in S is isotopic to a vertical torus; it is boundary parallel
unless S is an n-fold composing space with n>3.

3. Every incompressible, non-boundary-parallel annulus in S is isotopic to vertical annulus

unless S is a shell, in which case it is isotopic to J x I for some simple closed curve J in
S'xS'. O

LeMMA 2.4. Suppose X is a compact sub-manifold of the exterior C of a non-trivial knot in
S3 with ¢ X aunion of tori incompressible in C. Let S be a compact submanifold of X such that &S
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is a union of tori, SNOX is a union of components of 8S, and 3S is incompressible in X.

1. IfSis a Seifert fibered space, then S is a torus knot space, cable space, or composing space.

2. If S contains an incompressible non-boundary-parallel annulus but no incompressible,
non-boundary-parallel torus, then S is Seifert fibered.

3. If S is an n-fold composing space, n>2, and T is a component of ¢S, then T bounds a
unique solid torus in S, and each Seifert fiber in T is a meridian of this solid torus.

4. Suppose S’ is another such submanifold meeting S only in a common boundary component
T.If S and §' are Seifert fibered and induce isotopic fibrations of T, then S, S, and SU S’
are composing spaces. [J

LEMMA 2.5. Let X be as in Lemma 2.4. Then there exists a 2-manifold F in X, unique up to
isotopy, such that
1. The components of F are incompressible tori.
No component of F is boundary-parallel.
No two components of F are parallel.
Each component of a(X) is either atoroidal or Seifert fibered.
If S and §' are Seifert fibered components of o¢(X) meeting in a common boundary
component T, then the fibrations of T induced by S and S’ are not isotopic.
6. Every incompressible torus in X is isotopic to a component of F, is isotopic to a vertical
torus in a Seifert fibered component of 6(X), or is boundary-parallel.

AW

Proof. F is the canonical 2-manifold in the Splitting Theorem of [8]. It can be obtained
from the boundary F’ of the characteristic Seifert pair of X by deleting the components of 6X
and one boundary component of each shell in 6, (X). It can also be obtained directly from the
two previous lemmas, as follows.

By Haken’s Finiteness Theorem [5] there is a compact 2-manifold F’ in X whose
components are incompressible, non-boundary-parallel, pairwise non-parallel tori such that
every incompressible non-boundary-parallel torus in X disjoint from F’ is parallel to a
component of F'. It follows that every component S of of. (X) is simple. If S is not atoroidal
then it 1s a torus knot space, cable space, or composing space. If §; and S, are two such
components meeting in a common boundary component 7' on which they induce isotopic
fibrations then delete 7' from F’. Deleting all such tori from F’ gives a 2-manifold F which has
properties 1-5. These properties and the previous lemma imply property 6 and the isotopy
uniqueness of F: Let T be an incompressible torus in X which is in general position with
respect to F. Each component S of g(X) is irreducible; this allows one to remove those
intersection curves which bound disks. The existence of any boundary-parallel annuli among
the components of Fn S also allows one to remove intersection curves. Suppose some
component A of Fn S is not boundary-parallel. Then it is isotopic to a vertical annulus in a
Seifert fibration of S. There is a component §’ of o (X) whose intersection with T contains an
annulus A" having at least one boundary component in common with 4. 4" must be
boundary-parallel in S'; otherwise it would be isotopic to a vertical annulus in a Seifert
fibration of §’, which is impossible since the Seifert fibrations induced by S and S’ on a
common boundary component are not isotopic. Therefore T can be isotoped into a
component of 6(X) and the results follow by Lemma 2.4. [

LeMMa 2.6. Suppose V and V' are solid tori with boundaries T and T', respectively, and
that V' < Int(V'). Suppose S is a Seifert fibered submanifold of V\Int(V')with TU T’ < 8S and
a8 incompressible in W\Int(V'). Then V'—V is not null-homotopic.
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Proof. Choose a knotted embedding of ¥ in S3. Then the incompressibility of ¢S in
\Int(V')and of Tin $*\ Int(V)implies that of T in S\ Int(V'). Therefore V' is knotted in S3.
Let C=83\Int(V') and X = V\Int(V’). Then X and S satisfy the hypotheses of Lemma 2.4.
Hence S is either a cable space or a composing space. Note that there is a vertical annulus A4
joining T to T in S.

Suppose S is a cable space. If the fibers of T are not meridians of ¥, then the Seifert
fibration of S extends to a Seifert fibration of V with decomposition surface a disk and (since
V'is a solid torus) one exceptional fiber. Therefore V' is a standard fibered solid torus and the
core of V' is homotopic to a regular fiber, hence V'— V is not null-homotopic. If the fibers of
T' are meridians of V', then the union of 4 and a meridional disk for V' is a meridional disk
for V' which meets a core of V' exactly once. Hence V' — ¥ is in fact a homotopy equivalence.

Suppose S is a composing space. Then the fibers of T’ are meridians of V' and the result
follows as above. [

Suppose {V,} is a good genus one Whitehead sequence. Let F, be the canonical 2-
manifold of X,. {V,} is very good if (i) no component of F, bounds a solid torus V' in W with
V,-;—= V' and V’'—V, both null-homotopic (so the sequence is in a sense maximal) and
(ii) the component of g (X,) containing 7, is atoroidal (the “top” piece of X, is not Seifert
fibered).

LemmMma 2.7. Every genus one Whitehead manifold admits a very good genus one Whitehead
sequence.

Proof. Let {¥,} be a good genus one Whitehead sequence for W. Form the union of { 7,}
with the set of those components of the F, which bound solid tori in W. The solid tori
bounded by the elements of this set form a sequence {Q, }> , With @y =Toand Q, < Q, .., for
k>0. Define the new Whitehead sequence {V',,} to be a certain subsequence of {Q,}, as
follows. Let Vo= Q,. If '}, has been defined to be Q,, let ¥, ., be the next Q, for which 0, —Q;
is null-homotopic. This new sequence clearly satisfies (i). If it violated (ii), then there would be
a @, i<s<j such that Q\Int(Q;,) contained a Seifert fibered space with 0Q,udQ; in its
boundary. By Lemma 2.6 Q,—Q; would not be null-homotopic, forcing Q;—Q; to be null-
homotopic, in contradiction to the choice of Q - O

Lemma 2.8. Let {V,} be a very good genus one Whitehead sequence. Then the canonical
2-manifold of Y, , is the union of the canonical 2-manifolds F, of X,, p+1<n<gq, and the T,,
p<n<q.

Proof. This set clearly satisfies properties 1-4 of Lemma 2.5. Property 5 of the lemma
follows from property (ii) of the definition of very good. As shown in the proof of Lemma 2.5
properties 1-5 suffice to characterize the canonical 2-manifold. O

§3. THE SHIFT LEMMA

Let W be a genus one Whitehead manifold with good genus one Whitehead sequence
{Va}- This section investigates the extent to which homeomorphisms of W can be isotoped so
as to preserve this sequence.

The first lemma is needed only for very good sequences which are not excellent and can be
skipped on a first reading.
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LeMMa 3.1. Suppose {V,} is very good. Let f W— W be a homeomorphism. Suppose for
somek>0and j>i=0that (Vo) < V, = fIV,) € V. Then f(T,) is isotopic to some T, i <m <,
via anisotopy with support in Y, ;ifi <m<j and support in a regular neighborhood of Y, ;ifm=i
or m=j.

Proof. Let F be the canonical 2-manifold of Y;;, By Lemma 2.5 there are three
possibilities:

Case 1. f(T,) is isotopic in Y, ; to a component T of F. If T were a component of the
canonical 2-manifold F, of some X, i <n<j, then property (i) of the definition of very good
would be violated, so T must be one of the T,,, i<m<j, and we are done.

Case 2. f(T,) is isotopic in Y;; to a vertical torus in a Seifert fibered component S of
oY, ;). Denote the composition consisting of ffollowed by this isotopy again by /. By Cases 1
and 3 we may assume that f(7}) is not boundary-parallel in S. Then § is a composing space
which is split into two components by f(7T;). Let S, be the component contained in f(V}).
Exactly one component T of 35, other than f(T,) bounds a solid torus Vin W.Now f~Y(T)is
an incompressible torus in Y, ,. Let F’ be the canonical 2-manifold of ¥, ;. Then f~Y(T) is
isotopic in Y, to some T,, 0<n<k, to a component of some F,, 0 <n<k, or to a vertical
torus in a Seifert fibered component of o(Y, ;) or is boundary-parallel in Y, ,. These are all
impossible by Lemma 2.6, the definition of very good, and the fact that f~1(S,) is Seifert
fibered.

Case 3. f(T,) is boundary-paraliel in Y, ;. Then we are done. [J

L)

LemMMA 3.2. Suppose {V,} is excellent or very good. Let f W—W be a homeomorphism
such that f(Y,,)=1Y, . Then q—p=r—s and f is isotopic to a homeomorphism f such that
f(T,,)=T,,,; for 0<i<q—p. This isotopy can be chosen with support in Y, ..

Proof. The proof is by induction on g—p.

Suppose g—p=1. Then s—r=1. If {¥,} is excellent this follows from the fact that
Y,,=X, is atoroidal. If {V,} is very good this follows from the fact that if s—r>1 then
fXT,,,) violates part (i) of the definition of very good. Therefore no isotopy is necessary
in this case.

Suppose g—p> 1. Then (T, . ,) is isotopic to some 7, with r<m<s. If {V,} is excellent
this follows from Lemma 2.2. If { V/,} is very good this follows by Lemma 3.1 with i=r, j=s,
and k=p+ 1. Since T, , is not parallel to T, or T,,r <m<q and the isotopy has support in
Y, . The result now follows by the inductive hypothesis. [

LeMMa 3.3. (THE SHIFT LEMMA) Suppose {V,} is excellent or very good. Let g: W— W be a
homeomorphism. Then there exist integers N > 1 and s > 1 — N and a homeomorphism h: W— W
isotopic to g such that h(V,)=V,. for all n>N.

Proof. First choose a p, >0 such that (V,ug(V,)) < V,,. Next choose an N, >0 such that
V,, < g(Vn,)- Then choose a g, > po such that g(Vy ) € Vi, g(Ty,) is incompressible in g(W)
and so is incompressible in W, and hencein Y, ... It can therefore be isotoped to some Ty,
Po<My<gq,, via an isotopy fixed outside a regular neighborhood of Y, ,, in W. This
follows from Lemma 2.2 if {¥,} is excellent and from Lemma 3.1 if {V,} is very good.

Let p, =g, +1. Choose an N, >N, such that V, =g(Vy,) and a g, >p, such that
g(Vy) S V,,. g(Ty,) is incompressible in Y, . and so, as above, is isotopic to some T,
p; <M, <q,, via an isotopy fixed outside a regular neighborhood of Y, , in W.
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Continuing in this fashion one obtains a sequence of isotopies with disjoint supports
(and therefore a single isotopy) whose composition with g results in a homeomorphism g’
such that g'(Ty,)=T,, for some increasing sequences of integers {N,} and {M,}. So
9(Ynens )= YoM, ByLemma 32 M, ., — M, =N, ., — N, and there is an isotopy with
support in Int(g(Yy, »..,) taking g(T;) to T; for N,<i<N,,, and j=i+M,—N,.
The composition of this isotopy with g’ gives the desired homeomorphism g, with N=N,
and s=My—N,. O

§4. THE LONG ISOTOPY LEMMA

Let W be a genus one Whitehead manifold with good genus one Whitehead sequence
{V,}. In this section it will be shown that sufficiently complicated simple closed curves in W
cannot be “isotoped to infinity” without hitting V|, infinitely often.

LemMa 4.1. (THE LonG Isotory LEMMA) Suppose {V,} is excellent or very good. Let J
be a simple closed curve in W which does not lie in a 3-cell. Suppose G: W x [a,b]— W is an
isotopy with g,=G|(W x {a}) and g,=G{(W x {b}). If g(J) = V,, and g(J)= W, ,, then
G(J x[a,b])nJo# .

Proof. Let J,=g,(J), J,=gyJ), and K=G(J x [a,b]). We reduce to the special case
in which one end of the isotopy is the identity, as follows. Define F: Wx[a,b]—-W
by F(x,t)=G(g,; '(x),1). Then F is an isotopy with F{(W x{a})=idy, F(J,x{b})=J,,
and F(J,x[a,b])=K.

Assume K nJ,=¥. Then we may assume K n Vy= . Let N be a regular neighborhood
of Kin W, By the Covering Isotopy Theorem [17] there is anisotopy F': W x [a,b]— W with
support in N such that F'|(J, x [a,b])=F|(J, x [a,b]). Let f=F'|(W x {b}). Thenf| Vo =id,,
and f(J,))=J,.

It will now be shown that the torus f(7,,) is isotopic in the complement of VU J, to a
torus disjoint from T, ,. The resuit of following f by this isotopy will again be denoted by f.

First put f(T,,) in general position with respect to all the 7,. Suppose D is an innermost
disk on f(T,,) with 0D a component of f(7,,)n T, ,. Then, as usual, 9D = 0D’ for a disk D’ in
T,..,and DU D bounds a 3-cell Bin W,. Since J, and hence J,, does not lie in a 3-cell in W
one can isotop D across B, without moving J,, so as to remove 4D from the intersection.
Continuing in this fashion all intersection curves which bound disks on f(7,,) can be removed.
Assume that the intersection is still non-empty.

If {V,} is excellent then since each X, is atoroidal each component of f(T,,) " Y . ; is an
annulus in X,,,; which is parallel to an annulus in T, ,. Thus there is an isotopy with
support in a regular neighborhood of X, which removes the remaining intersection
curves. Since J, lies outside V,, ., it is not moved by the isotopy and the claim is proven.

If {V,} is very good then put f(7,,) in general position with respect to the canonical 2-
manifold F of Y, .. Let Q be the component of (Y, .+ ;) containing 7, ,. Since Q is
atoroidal each component of f(T,, )" Y, ,,+ ; is an annulus in Q which is parallel to an annulus
in T,,+,. The claim now follows as above.

Thus there is a homeomorphism f W— W such that f(V,)= V,, and, since J, is outside
Vst 1 Vs 1 Sf(V,)- Choose j such that f(V,) < V. By Lemma 2.2 (if {V,} is excellent) or
Lemma 3.1 (if {V,} is very good) f(T,,) is isotopic to some T}, m+ 1 <k <}, via an isotopy
which has support in a regular neighborhood of Y,,, , ; and is therefore fixed on V,. Thus
(again calling the new homeomorphism f) one has that f(Y,,)=Y,, with k>m, in
contradiction to Lemma 3.2. O

TOP 27:1-C
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§5. THE NON-EXISTENCE OF GROUP ACTIONS

THEOREM 5.1. Genus one Whitehead manifolds admit no non-trivial, fixed point free,
properly discontinuous group actions, thus cannot be non-trivial covering spaces.

Proof. Let Wbe a genus one Whitehead manifold with excellent or very good Whitehead
sequence { ¥,}. It will be shown that for every homeomorphism g of W there exists a compact
subset C of W such that C ng%(C) # & for infinitely many values of k. We may assume that for
every N >0 and n>0 there exists a K >0 such that g*(V'y) = W, for all k> K, otherwise we
would clearly have our set C. The argument will be easier to follow if it is divided into two
cases, depending on whether or not g is isotopic to the identity.

Special Case. g is isotopic to the identity. Suppose F: W x [0, 1]— W is an isotopy with
F(x,0)=xand F(x, 1)=g(x) for all x € W. In this case it will be shown that F(J, x [0, 1])is the
desired compact set C. Define G: W x [0, c0)— W by G(x, t)=g*(F(x,t—k)) for xe W and
k<t<k+1.Gisa “very long isotopy” which interpolates the sequence of homeomorphisms
{¢*}, k=0. Note that G(J, x [k, k+ 1])=g*(C).

Suppose ¢?(J,) & V,. Then for some g>p, g{J,) € W,.,. GI(W x[p,q]) is an iso-
topy with G(J, x {p})=g"(J,) and G(J,x {q})=g%J,). By the Long Isotopy Lemma
G(Jox[pgDnJo# Q. Since G(Jox[p,ql)=uiz}gd"C), ¢g4C)nJy#F and hence
g{C)NC#F for some k,p<k<qg—1. Repeating the above argument for arbitrarily
high values of p establishes the claim.

General Case. g is not necessarily isotopic to the identity. By the Shift Lemma there exist
integers N > 1 and s> 1 — N and a homeomorphism h isotopic to g such that h(V,)=V, . , for
alln>N.Since g~ ! and h~ ! are isotopic we may assume, replacing g by g~ ! if necessary, that
§>0. Let F: Wx[0,1]— W be an isotopy such that F(x,0)=h(x) and F(x,1)=g(x) for all
x e W. In this case it will be shown that F(Vy x [0, 1]) is the desired compact set C. Define
H:W x [0, 0)— W by H(x,t)=g"(F(h™*(x), t—k)) for xe W and k<t<k+ 1. H interpolates
the sequence of homeomorphisms {h,g,g*h™*, ..., g*h' % ... }. Note that h= (V) < V.
This implies that

H(Jyx[k,k+11) < HVy x [k, k+1])=g"F(h~*(Vy) x [0, 1])) < g4C).
Suppose ¢°h' " P(Jy) <V, For some q>p, giVy)< W,.,. Then (again since
h™Y(Vy) < Vy)
g TN S g R TV S GV E Wi

By the Long Isotopy Lemma H(Jy % [p,q))nJ,# . Since
g—1 q—1
H(Jy x [p,q])=kU H(Jyx[kk+1]) = kU g(C)
=p =p

one sees that g{C)nJ,# & for some k,p<k<g~1.Since Jo & Vo= VyS WVy =C, one
has that g*(C)~ C # . Repeating this argument for arbitrarily high values of p completes the
proof. O
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