

UNIVERSITY OF OKLAHOMA

GRADUATE COLLEGE

A User-Friendly Wrapper for DSIDES

(Decision Support in the Design of Engineering Systems)

A THESIS

SUBMITTED TO THE GRADUATE FACULTY

in partial fulfillment of the requirements for the

Degree of

MASTER OF SCIENCE

By

SARA HAJIHASHEMI

Norman, Oklahoma

2023

A User-Friendly Wrapper for DSIDES

(Decision Support in the Design of Engineering Systems)

A THESIS APPROVED FOR THE

SCHOOL OF INDUSTRIAL AND SYSTEMS ENGINEERING

BY THE COMMITTEE CONSISTING OF

 Dr. Janet K. Allen, Chair

 Dr. Farrokh Mistree, Co-Chair

 Dr. Doyle Dodd

© Copyright by SARA HAJIHASHEMI 2023

All Rights Reserved.

iv

I extend my heartfelt gratitude to my parents for being my

constant motivation and to my supportive husband and children

for their unwavering support in my pursuit of graduate school.

Their encouragement and belief in me have been invaluable

throughout my academic journey.

v

Acknowledgements

I express my heartfelt gratitude to several individuals who have played

instrumental role in shaping my academic journey:

Professors Farrokh Mistree and Janet K. Allen have been unwavering pillars

of support and guidance throughout my master’s program. Their mentorship

and profound wisdom have been invaluable in shaping my academic and

research pursuits. Their unwavering belief in my abilities, their nurturing

guidance, and their encouragement have been instrumental in my academic

growth. They have not only imparted their knowledge but also instilled in me

the art of research, mentorship, and the invaluable skill of critical thinking.

Their recognition of my latent potential and their relentless efforts to help me

improve and acquire competencies have had a transformative impact on my

academic journey.

Siavash Mandegari and Dr. Rajlakshmi Nayak have been essential in

validating the effectiveness and usability of my Wrapper. Their support and

contributions have been pivotal in ensuring the success of this project.

I extend special thanks to Gehendra Sharma, Mathew Baby, and Dr. Lin Guo

for providing problems that allowed me to rigorously test the functionality of

the Wrapper.

Your collective contributions have been indispensable to my academic

vi

success, and I am deeply appreciative of your guidance, mentorship, and

unwavering support.

I gratefully acknowledge the financial support that I received from the :John and

Mary Moore Chair and the L.A. Comp Chair held by Professors Allen and Mistree,

respectively.

Finally, and most importantly, I thank my family members, who mean everything to

me.

vii

Table of Contents

Contents

Acknowledgements ... v

Table of Contents .. vii

List of Figures ... ix

List of Tables .. xi

Abstract: .. xii

Part One: DSIDES Software and cDSP Construct: An Introduction .. 1

I.1 Overview of Part 1 ... 1

I.2 On the Realization of Complex Systems: ... 1

I.3 A Brief History of The Compromise Decision Support Problem (cDSP) Construct 2

I.4 Formulating Compromise Decision Support Problems .. 4

I.5 Descriptors of the Compromise DSP Formulation ... 6

I.5.1 System Variables and System Constraints ... 7

I.5.2 Deviation Variables and System Goals .. 8

I.5.3 Range of Values for Deviation Variables ... 12

I.5.4 Bounds on System and Deviation Variables .. 15

I.5.5 The Deviation Function .. 16

I.6 Archimedean and Preemptive Form : Comparing Solutions .. 16

I.7 Expanded cDSP Examples : The Two Coal Problem .. 29

I.7.1 Case A: The Word Problem .. 32

I.7.2 Case A: Derivation of the Constraints and the Objective Function 33

I.7.3 Case A: The Mathematical Form of the Word Problem ... 40

I.7.4 Case A: The Graphical Solution .. 41

I.7.5 Case A: Recommendation .. 43

I.7.6 Case A: Post-solution Analysis ... 44

I.7. 7 Case B: Formulation and Graphical Solution .. 52

I.7. 8 General Formulation .. 53

I.7.9 Case C: The Word Problem.. 55

I.7.10 Case C: The Mathematical Form of the Word Problem ... 56

viii

I.7.11 Case C: Graphical Solution .. 57

I.7.12 General Formulation of the Linear, Multigoal Compromise DSP 58

I.7.13 Case D: The Mathematical Form of the Word Problem .. 60

I.7.14 Case D: Graphical Solution .. 62

I.7.15 Case E: Mathematical Formulation .. 62

I.7.16 Case E: Graphical Solution ... 65

I.8 DSIDES Software .. 68

I.8.1 History of DSIDES 1976 to 2023 ... 68

I.8.2 DSIDES: A Historic Compiled Program in FORTRAN ... 73

I.8.3 Programming with Punched Cards .. 76

I.8.4 Comparing the DSIDES Versions: Evolution and User Experience 79

I.9 PDSIDES ... 84

I.10 The Path Forward: Future Plans for Wrapper Improvement .. 85

I.11 Summary and Way Forward .. 87

Part Two: Designing the User-Friendly Wrapper for DSIDES ... 89

Overview of Part 2 .. 89

Glossary .. 89

II.1 Understanding Front-End, Back-End, and Wrapper: Enhancing User Experience and

Functionality .. 91

II.2 Preparing Input for DSIDES in Different Sheets in the Wrapper 101

II.2.1 Linear Archimedean Sheet ... 108

II.2.2 Linear Preemptive Sheet .. 135

II.2.3 Nonlinear Sheet ... 138

II.2.4 Ternary Plot Sheets ... 155

II.3 Interpret the Output File .. 158

II.4 Verification and Validation .. 169

II.4.1 Elephant Stand Problem in Archimedean Form .. 170

II.4.2 One-Stage Reduction Gearbox in Preemptive Form ... 199

II.4.3 Hot rod rolling problem in Archimedean Form .. 218

II.5 Summary and Way Forward .. 230

Part Three: Program Manuals and Improvement of DSIDES ... 232

ix

preamble about Part 3: ... 232

Overview of Part 3: ... 232

III.1 Overview of DSIDES Program's Nested Subroutines and their Versatility....................... 233

III.2 Main Input Files .. 238

III.2.1 ALPLIM Subroutine... 239

III.2.2 ALPDAT Subroutine .. 242

III.2.3 ALPMOD Subroutine and its Flowchart .. 282

III.2.4 COPYTX (ALPUTL) Subroutine .. 285

III.2.5 ALPCTL Subroutine and Its Flowchart... 286

Summary OF Part 3: .. 289

Summary of Thesis .. 289

Appendix ... 300

ALPMOD Subroutine:... 300

Detailed Flowchart of ALPMOD: .. 301

ALPMOD Subroutine: ... 303

ALPCTL Subroutine .. 321

References: ... 342

List of Figures

Figure I. 1: Typical Design Space For A Two Variable Compromise DSP 7

Figure I. 2: The System Goal ... 12

Figure I. 3: Design Space, For Example Problem ... 27

Figure I. 4: Conveyor capacity ... 35

Figure I. 5: Pulverizer capacity .. 36

Figure I. 6: Limit on sulfur oxides ... 37

Figure I. 7: Smoke constraint .. 38

Figure I. 8: The objective function .. 40

Figure I. 9: Case A feasible design space ... 42

Figure I. 10: Case A solution ... 43

Figure I. 11: Change in slope of objective function ... 46

Figure I. 12: Change in right hand side coefficient .. 48

Figure I. 13: Case B solution ... 53

x

Figure I. 14: Case C design space .. 58

Figure I. 15: Case D solution space ... 62

Figure I. 16: Case E design space .. 66

Figure I. 17: Computer CDC 6600 | Old computers, Old technology

https://www.pinterest.com/pin/10907224075942812 .. 74

FigureI. 18: Punch Card in Punch Card Machine

(https://www.computerhope.com/jargon/p/punccard.htm) ... 75

Figure I. 19: IBM FORTRAN Punch Cards (https://www.are.na/block/1023150) 76

Figure I. 20: Punch Card (https://twitter.com/dannsimmons/status/1063412986189094912) . 77

Figure I. 21: PDSIDES Overview .. 85

Figure I. 22: Different Types of Visualization Techniques ... 86

Figure II. 1: Integration Diagram: Front-end and Back-end Connection in DSIDES 92

Figure II. 2: Flowchart of DSIDES Wrapper ... 101

Figure II. 3: Overview of Elephant stand problem. ... 102

Figure II. 4: Files Included in the Main Folder ... 108

Figure II. 5: Overview of LinearArchimedian sheet ... 110

Figure II. 6: Overview of Nonlinear sheet ... 140

Figure II. 7: Overview of TernaryPlot sheet .. 156

Figure II. 8: Overview of Linear sheet in Elephant stand problem. ... 177

Figure II. 9: Overview of NonLinear sheet in Elephant stand problem. 178

Figure II. 10: Overview of final result in Elephant stand problem ... 179

Figure II. 11: Overview of TernaryPlot1 sheet in Elephant Stand Problem 180

Figure II. 12: Ternary plot for goal 1 in Elephant Stand Problem .. 181

Figure II. 13: Overview of TernaryPlot2 sheet in Elephant Stand Problem 181

Figure II. 14: Ternary plot for goal 2 in Elephant Stand Problem .. 182

Figure II. 15: Overview of TernaryPlot3 sheet in Elephant Stand Problem 182

Figure II. 16: Ternary plot for goal 3 in Elephant Stand Problem .. 183

Figure II. 17: Satisficing space for goal 1 in the Elephant Stand Problem 186

Figure II. 18: Satisficing space for goal 2 in Elephant Stand Problem 186

Figure II. 19: Satisficing space for goal 3 in Elephant Stand Problem 187

Figure II. 20: No Superimposed region of three goals in the Elephant Stand Problem 187

Figure II. 21: Satisficing space for goal 1 in the Elephant Stand Problem after implementing the

Altering Designer's Preferences method. .. 191

Figure II. 22: Satisficing space for goal 2 in the Elephant Stand Problem after implementing the

Altering Designer's Preferences method. .. 191

Figure II. 23: Satisficing space for goal 3 in the Elephant Stand Problem after implementing the

Altering Designer's Preferences method. .. 192

Figure II. 24: Satisficing space for all goal in Elephant Stand Problem , after implementing

Altering Designer's Preferences method. .. 193

xi

Figure II. 25: Comparison of Design Scenarios; Original Problem Formulation vs. Modified

Problem Specifications in Elephant Stand Problem .. 194

Figure II. 26: Modified Elephant Stand Problem Formulation .. 195

Figure II. 27: Refined Feasible Space for Goal 1 in Elephant Stand Problem; Adjusted Problem

Specifications .. 197

Figure II. 28: Refined Feasible Space for Goal 2 in Elephant Stand Problem; Adjusted Problem

Specifications .. 197

Figure II. 29: Refined Feasible Space for Goal 3 in Elephant Stand Problem; Adjusted Problem

Specifications .. 198

Figure II. 30: Final Satisficing Result for All Three Goals in Elephant Stand Problem with

Adjusted Problem Specifications ... 198

Figure II. 31: Overview of LinearPreemptive Sheet in Design of Gearbox Problem 210

Figure II. 32: Overview of NonLinear Sheet in Design of Gearbox Problem 214

Figure II. 33: Overview of Final Result in Design of a Gearbox ... 217

Figure II. 34: Overview of Linear sheet for hot rod rolling problem. .. 226

Figure II. 35: Overview of Nonlinear sheet for hot rod rolling problem. 228

Figure III. 1: General Flowchart of ALPMOD Subroutine .. 283

Figure III. 2: Block STOPCR in the DAT file .. 285

Figure III. 3: Flowchart of ALPCTL Subroutine... 289

Summary Figure 1: Comparison of Optimization and Satisficing Assumptions Regarding KKT

Conditions ... 292

Summary Figure 2: Relation between the optimal, satisficing, and near-optimal solutions 293

Summary Figure 3: Flowchart of Thesis Layout ... 299

Summary Figure 4: Detailed Flowchart of ALPMOD .. 303

List of Tables

Table I.1: Deviation Function Values For Archimedean Solution ... 28

Table I.2: Coal and material handling characteristics ... 30

Table II.1: Mandatory Blocks in LinearSheet ... 111

Table II.2: Optional Blocks in LinearSheet ... 111

Table III.1: List of Subroutines and Functions in the DSIDES Program 233

Summary Table 1: Summary of Satisficing in Managing Engineering Design Problems at Each

Step ... 293

xii

Abstract:

When dealing with complex systems, we need to consider that these systems have behaviors that

are hard to predict or control, and uncertainties are always present since computational models

are abstracts of reality. It is recognized that in many situations, it may not be possible to

simultaneously optimize all objectives due to inherent conflicts, resource limitations, or

uncertainty. As George E.P. Box said: "All models are wrong, but some are useful." The

consequences of these observations are significant. We need to accept that our models might

not capture everything and that uncertainties are a part of the picture. Hence, we must accept

and deal with uncertainty instead of ignoring it and find solutions that are relatively insensitive

to the uncertainties.

When choosing a method to work with, we need to consider the quality of our data. To make this

all work, we need a method to find solutions that achieve a reasonable compromise or balance

among the objectives and identify a set of solutions that are relatively insensitive to uncertainties.

Also, be able to facilitate the exploration of solution space to support human decision-making.

This ties into the problems we face in supporting decisions for complex systems. These problems

involve choosing between options and making compromises.

The compromise Decision Support Problem (cDSP) construct and the Adaptive Linear

Programming algorithm has been developed as a result, which was first introduced by Mistree

and co-authors (1993). It is a domain-independent, multiobjective decision model based on

mathematical and goal programming. They effectively deal with multiobjective problems

involving bounds, linear and nonlinear constraints, goals, and consisting of Boolean and

continuous variables. The requirements for this construct are:

xiii

1) Identify a set of solutions that are relatively insensitive to uncertainties

2) Facilitate the exploration of solution space to support human decision-making

Mistree and co-authors also designed a computer program to implement cDSP construct. It has

been written in FORTRAN to identify robust satisficing solutions to design problems when the

models are abstractions of reality. It is called DSIDES (Decision Support in the Design of

Engineering Systems).

DSIDES is a software tool developed to help engineers and designers make better decisions in the

design of complex engineering systems and provides decision support for the design of complex

engineering systems.

In this thesis, our primary objective is to enhance the accessibility and user-friendliness of DSIDES

by designing a user-friendly wrapper. Three key areas of focus are included in this thesis:

1) Exploration of cDSP Construct: In this part, the examination of the cDSP (Compromise

Decision Support Problem) construct, including its structural components and the

formulation of problem statements within the cDSP framework, has been discussed.

2) Comprehensive Analysis of the DSIDES Wrapper: A detailed exploration of the DSIDES

wrapper and a step-by-step walkthrough of the wrapper's functionalities are covered.

3) DSIDES Software Program Manuals: Program manuals for the DSIDES software has been

created. These manuals are helpful resources for individuals seeking to enhance, expand,

or modify the software.

Based on these key areas of focus, there are three different parts to this thesis:

1) Part One: DSIDES Software and cDSP Construct: An Introduction.

2) Part Two: Designing the User-Friendly Wrapper for DSIDES.

xiv

3) Part Three: Program Manuals and Improvement of DSIDES.

In the following sections, all three parts and their related details are discussed, respectively.

1

A User-Friendly Wrapper for DSIDES
(Decision Support in the Design of Engineering Systems)

 Part One: DSIDES Software and cDSP Construct: An Introduction

I.1 Overview of Part 1

In the first part of this thesis, enhanced information about the compromise Decision Support

Problem (cDSP) and formulation of a problem in cDSP, including Archimedean and preemptive

forms in detail with some examples, a short description about DSIDES software and platform of

DSIDES are provided. Upon reading the first part, the reader will have learned the necessary

information to formulate a problem in cDSP, allowing them to start using the software effectively.

I.2 On the Realization of Complex Systems:

When dealing with complex systems, it is important to consider that these systems have

behaviors that are difficult to predict or control. Additionally, uncertainties are always present

since computational models are abstracts of reality. It is recognized that in many situations, it

may not be possible to simultaneously optimize all objectives due to inherent conflicts, resource

limitations, or uncertainty. Also, as George E.P. Box said: "All models are wrong, but some are

useful." The consequences of these observations are significant. We need to accept that our

models might not capture everything and that uncertainties are a part of the picture. When

choosing a method to work with, it is important to consider the quality of our data. To make this

all work, we need a method to find solutions that achieve a reasonable compromise or balance

among the objectives and identify a set of solutions that are relatively insensitive to

uncertainties. Also, be able to facilitate the exploration of solution space to support human

2

decision-making. This ties into the problems when faced with supporting decisions for complex

systems. These problems involve choosing between options and making compromises.

The compromise Decision Support Problem (cDSP) construct and the Adaptive Linear

Programming algorithm were developed by Mistree and co-authors (1993). It is a domain-

independent, multiobjective decision model based on mathematical and goal programming.

These tools effectively deal with multiobjective problems involving bounds, linear and nonlinear

constraints, goals, and consisting of Boolean and continuous variables.

In the next section, the compromise decision support problem (cDSP) construct will be discussed

in detail to learn more about it and understand how to formulate the problem statement in the

cDSP construct to find solutions that are relatively insensitive to uncertainty. In Part Two of this

thesis, in Sections II.4.1, II.4.2, and II.4.3, three different examples are used that start from the

problem statement and are followed by steps to convert it to the cDSP construct and, finally, how

to implement them in the user-friendly wrapper. They could be good sources to practice and

ensure learning this construct.

I.3 A Brief History of The Compromise Decision Support Problem (cDSP)

Construct

In 1981, Mistree, Hughes, and Phuoc presented an algorithm titled SLIP2 (Sequential Linear

Programming 2nd Generation). Since then, this stand-alone version has been significantly

improved and is now a major component of the DSIDES (Decision Support In the Design of

Engineering Systems) system. The SLIP2 algorithm was extended to solve multilevel, hierarchical

problems and was then called SLIPML (Sequential Linear Programming Multilevel). Refinements

to the SLIPML resulted in the Adaptive Linear Programming (ALP) algorithm and the compromise

3

Decision Support Problem formulation. Multiobjective problems involving bounds, both linear

and nonlinear constraints and goals, and consisting of Boolean and continuous variables are now

effectively dealt with by the compromised DSP. Goal Programming and Sequential Linear

Programming respectively are the basis for the compromise Decision Support Problem and the

Adaptive Linear Programming algorithm for multiobjective decision support problems.

The Compromise DSP involves the improvement of an alternative through modification. It is a

class of decision problems in which multiple conflicting objectives or criteria must be considered

simultaneously to find satisfactory compromise solutions in engineering design. Compromise DSP

is taken into account when there are trade-offs between different design objectives or

performance measures, and a decision-maker seeks to balance them. In other words,

compromise DSP is used to determine values of design variables that satisfy a set of constraints

and simultaneously achieve, as well as possible, a trade-off between a set of conflicting goals.

The goal is to assist decision-makers in exploring the design space, understanding the trade-offs

between conflicting objectives, and ultimately selecting compromise solutions that align with

their preferences and constraints.

It is worth noting that the cDSP construct is closely related to the field of multiobjective decision

support problems and decision-making under uncertainty. The need to consider multiple

objectives, manage conflicts, and handle uncertainty in decision-making is recognized by cDSP

and applied in various domains.

In the following section, the process of formulating the problem into the cDSP construct will be

discussed.

4

I.4 Formulating Compromise Decision Support Problems1

The preceding formulation of a compromise DSP is a hybrid formulation in that it incorporates

concepts from traditional mathematical programming and goal programming (GP) and uses some

new ones. It is similar to goal programming in that the multiple objectives are transformed into

system goals (involving both system and deviation variables), and the deviation function is solely

a function of the goal deviation variables. (This is in contrast to traditional mathematical

programming, where multiple objectives are modeled as a weighted function of the system

variables only.) However, the concept of system constraints is retained from the traditional

constrained optimization formulation. Special emphasis is placed on the bounds of the system

variables, unlike in traditional mathematical programming and goal programming. In effect, the

traditional formulation is a subset of the compromise DSP - an indication of the generality of the

compromise formulation.

The Compromise DSP - involves improvement of an alternative through modification. It is stated

in words as follows:

Given

• An alternative that is to be improved through modification. Assumptions used to model

the domain of interest.

• The system parameters.

• The goals for the design.

1 Learning How to Design: A Minds-On, Hands-On, Decision-Based Approach.
Farrokh Mistree, Janet K. Allen, Harshavardhan Karandikar, Jon A. Shupe, and Eduardo Bascaran, 1995. It is
available on Research Gate
https://www.researchgate.net/publication/2818887_Learning_How_to_Design_A_Minds-On_Hands-On_Decision-
Based_Approach

5

 Find

• The values of the independent system variables (they describe the attributes of an

artifact).

• The values of the deviation variables (they indicate the extent to which the goals are

achieved).

Satisfy

• The system constraints that must be satisfied for the solution to be feasible.

• The system goals that must achieve a specified target value as much as possible.

Bounds

• The lower and upper bounds on the system variables.

Minimize

• The deviation function which is a measure of the deviation of the system performance

from that implied by the set of goals and their associated priority levels or relative

weights.

The preceding formulation of a compromise DSP is a hybrid formulation in that it incorporates

concepts from both traditional mathematical programming and goal programming (GP) and

makes use of some new ones. It is similar to goal programming in that the multiple objectives are

transformed into system goals (involving both system and deviation variables) and the deviation

function is solely a function of the goal deviation variables. (This is in contrast to traditional

mathematical programming where multiple objectives are modeled as a weighted function of

the system variables only.) The concept of system constraints, however, is retained from the

traditional constrained optimization formulation. Special emphasis is placed on the bounds on

6

the system variables unlike in traditional mathematical programming and goal programming. In

effect the traditional formulation is a subset of the compromise DSP - an indication of the

generality of the compromise formulation.

I.5 Descriptors of the Compromise DSP Formulation

System descriptors are used to define a compromise DSP.

Parameters - are used to complete the modeling of the compromise DSP. For example, in the

case of the design of a structure, the material properties are invariably treated as parameters,

that is, their values are needed to enable solution but they are not affected by the solution

process itself. Parameters are sometimes called "fixed variables".

Variables

❑ System variables.

❑ Deviation variables.

System constraints

 (Equivalent to rigid goals in the GP formulation).

System goals

(Equivalent to soft goals in the GP formulation).

Bounds

❑ On system variables (formulated as rigid goals in the GP formulation).

Deviation function

In this section, the system descriptors for a compromise DSP are described. The descriptors are

illustrated in Figure I.1 for a two dimensional compromise DSP.

7

Figure I. 1: Typical Design Space For A Two Variable Compromise DSP

I.5.1 System Variables and System Constraints

System Variables

 X = (X1, X2, ..., Xn), Xi  0.

System Constraints

 Ci(X) , or = Di(X) ; i = 1, 2, 3 ..., m.

Compromise DSPs have a minimum of two system variables. Consider a set of 'n' design variables

represented by X. The vector of variables includes continuous variables and Boolean variables

(1 if TRUE, 0 if FALSE). System variables are, by their nature, independent of the other

descriptors and can be changed as required by the designer to alter the state of the system.

8

System variables that define the physical attributes of an artifact are always nonzero and positive.

In Figure I.1 the system variables X1 and X2, being independent, are represented by the abscissa

and ordinate, respectively. Each member of the set X represents an axis of an 'n' dimensional

space.

A system constraint is a constraint placed on the design. The set of system constraints must be

satisfied for the feasibility of the design. Mathematically, system constraints are functions of

system variables only. They are rigid and no violations are allowed. They relate the demand

placed on the system D(X) to the capability of the system C(X) to meet the demand. The

region of feasibility defined by the system constraints is called the feasible design space.

The set of system constraints may be all linear, nonlinear or consist of both linear and nonlinear

functions. In engineering problems the system constraints are invariably inequalities. However,

occasions requiring equality constraints may arise. All system constraints shown in Figure I.1

are inequalities.

I.5.2 Deviation Variables and System Goals

A set of system goals is used to model the aspiration a designer has for the design. It relates

the goal (aspiration level), Gi, of the designer to the actual attainment, Ai(X), of the goal.

Three conditions need to be considered:

1. Ai(X)  Gi ; we wish to achieve a value of Ai(X) that is equal to or less than Gi.

2. Ai(X)  Gi; we wish to achieve a value of Ai(X) that is equal to or greater than Gi.

3. Ai(X) = Gi; we would like the value of Ai(X) to equal Gi.

We will now introduce the concept of a deviation variable. Consider the third condition, namely,

9

i

we would like the value of Ai(X) to equal Gi. The deviation variable is defined as: d = Gi - Ai(X).

The deviation variable d can be negative or positive. Considerable simplification of the solution

algorithm is effected if one can assert that all the variables in the problem being solved are

positive. Therefore, the deviation variable d is replaced by two variables:

 d= di
- - di

+

where

 di
- . di

+ = 0

and

 di
- , d + 0 .

The preceding ensures that the deviation variables never take on negative values.

The system goal becomes:

Ai(X) + di
- - di

+ = Gi ; i = 1, 2, ..., m (1.1)

where

di
- , di

+  0 and di
- . di

+ = 0

The product condition ensures that one of the deviation variables will always be zero. If the

problem is solved using an algorithm that provides a vertex solution as a matter of course then

the condition is automatically satisfied, making its inclusion in the formulation redundant. Since,

the solution scheme described in this book and the software that is available for solution makes

use of an algorithm that provides a vertex solution we will assume that this condition is

satisfied. For completeness we include this condition as a constraint in the mathematical forms

of the compromise DSP given later in this chapter and for brevity will omit this constraint from

10

all subsequent formulations.

Note that a system goal is always expressed as an equality. It is possible that the designer's

aspiration levels are inordinately high, or the system constraints are much too restrictive to

attain the desired levels of achievement. The deviation variables di
- and di

+ are used to allow

the designer a certain degree of latitude in making decisions. The deviation variables therefore

relate the actual performance of the design to the aspired level of performance. These variables

serve to "anchor" the aspiration levels to realistic achievement levels. When considering

Equation 1.1, the following will be true:

IF Ai  Gi (underachievement) THEN di
- > 0 and di

+ = 0.

 IF Ai Gi (overachievement) THEN di
- = 0 and di

+ > 0,

IF Ai = Gi (exact achievement) THEN di
- = 0 and di

+ = 0

How do we model the three conditions listed earlier using Equation 1.1?

1 To satisfy Ai(X)  Gi, we must ensure that the positive deviation di
+ is zero. The negative

deviation di
- will measure how far is the performance of the actual design from the goal.

2 To satisfy Ai(X) Gi, the negative deviation di- must be made equal to zero. In this case, the

degree of overachievement is indicated by the positive deviation di
+.

3 To satisfy Ai(X) = Gi, both deviations, di- and di
+ must be zero.

The difference between a system variable and a deviation variable is that the former represents

a distance in the ith dimension from the origin of the design space, whereas the latter

originates on the surface of the system goal. This is illustrated in Figure I.2. The value of the

11

ith deviation variable is determined by the degree to which the ith goal is achieved. It depends

upon the value of Ai(X) alone (since Gi is fixed by the designer). Ai(X) in turn is dependent

upon the system variables X. The set of deviation variables can be all continuous, all Boolean or

some can be Boolean and others continuous. Obviously, both the deviation variables

associated with a particular system goal will be of the same type.

The system goal represents an equation for a family of either parallel linear or nonlinear

functions. In Figure I.2, goal i (represented by line A) is the target goal to be achieved. Assume

that lines B and C represent the maximum acceptable excursion that is possible from the target

goal. In other words, the system variables can achieve any value in the shaded region. Three

representations for lines B and C are shown in the figure, as follows,

1. In terms of system variables.

2. In terms of the system variables and the nonzero deviation variable.

3. In terms of the system variables and both the deviation variables.

In 1 (see Figure I.2) the right hand sides for the equations for A, B and C are different. In 2 and 3

the right hand sides for both B and C are the same (b1) however the deviation variables are

different. In 3 both B and C are expressed in terms of the system variables and the two

deviation variables. For B, the underachievement d1
- is nonzero and the overachievement

d1
+ is zero. For C it is the other way around. Since only one deviation variable, by definition,

can be nonzero we are able to write the equation for the family of system goals B through C.

This is analogous to Equation 1.1.

12

I.5.3 Range of Values for Deviation Variables

The objective of a traditional single objective optimization problem requires the maximization or

minimization of a certain function. This function is in terms of the system variables. In a

compromise DSP formulation, each of the objectives is converted into a goal (using Equation 1.1)

with its corresponding deviation variables. The resulting formulation is similar to a single

objective optimization problem but with the following differences:

❑ The objective is always to minimize a function.

❑ The objective function is expressed using deviation variables only.

Figure I. 2: The System Goal

13

The objective in the compromise DSP formulation is called the deviation function. As indicated

earlier, the deviation variables are associated with system goals and therefore their ranges of

values depend on the goal itself. Goals are not equally important to a designer. Therefore

to solve the problem, given a designer's preferences, the goals are rank ordered into priority

levels. Within a priority level it is imperative that the deviation variables are of the same

order of magnitude. This is achieved by normalizing the goals. If this is not done the deviation

variable with the larger numeric value will dominate the solution process without regard to the

designer- established preference for the set of goals.

A solution to the order of magnitude problem is to normalize the achievement Ai(X) with

respect to the target value Gi before the deviation variables are introduced. The following rules

are used to formulate the system goals in a way that ensures that all the deviation variables will

range within the same values (0 and 1 in this case).

a. To maximize the achievement, Ai(X) , choose a target value Gi greater or equal to the

maximum expected value of Ai(X) , so that the ratio Ai(X) /Gi is always less or equal than

1. For example, if Ai(X) is the reference stress then Gi could be the yield stress. Consider

the following:

Ai(X)  Gi  Ai(X) /Gi  1

Transform the expression into a system goal by adding and subtracting the corresponding

deviation variables (which in this case will range between zero and one).

 Ai (X) / Gi + di
-- di

+ = 1 (1.2)

In this case, the overachievement variable, di
+, will always be zero, as indicated in Section 4.2.2.

14

Then minimize the underachievement deviation, di
-, to ensure that the performance of the

design will be as close as possible to the desired goal.

b. To minimize the achievement, Ai(X), the following steps are in order:

i. Choose a target value, Gi, less than or equal to the minimum expected value of Ai(X) . In this

case, the ratio Gi / Ai(X) will be less than or equal to one.

Ai(X)  Gi  Gi / Ai(X)  1

Transform the expression into a system goal (note the inversion of G and A) and flip the signs

of the deviation variables (to account for the inversion). The deviation variables will vary

between 0 and 1.

 Gi / Ai (X) - di
- + di

+ = 1 (1.3)

The underachievement deviation, di
-, will be zero as indicated in Section I.5.2. Minimizing the

overachievement deviation, di
+, will ensure that the performance of the design is as close as

possible to the desired goal.

i. If the target value, Gi, is taken as zero, get an estimate of the maximum value that the

achievement, Ai(X) , can obtain within the bounds set for the system variables,

Aimax(X).Then divide the inequality by this maximum value and convert into a system goal

with the following result:

 Ai (X) / Aimax(X). + di
- - di

+ = 0 (1.4)

The deviation variables will now vary between 0 and 1. Note that the signs of the deviation

variables remain as in the original Equation 1.1. In this case, the underachievement deviation di
-

15

will always be zero. Minimize then the

overachievement deviation di
+ to ensure that the

performance of the design will be as close as possible to the desired value of zero.

c. If it is desired that Ai(X) = Gi, and

i. If the target value Gi is approached from below by Ai(X) , use Equation 1.2 and

minimize the sum (di
-+ di

+).

ii. If the target value Gi is approached from above by Ai(X) , use Equation 1.3 and

minimize the sum (di
-+ di

+).

iii. If the target value Gi is equal to zero, use Equation 1.4 and minimize the sum (di
-+ di

+).

I.5.4 Bounds on System and Deviation Variables

Bounds are specific limits placed on the magnitude of each of the variables. Each variable has

associated with it a lower and an upper bound. Bounds are important for modeling real-world

problems because they provide a means to include the experience-based judgment of a

designer in the mathematical formulation. Unfortunately, in most engineering design

textbooks that encourage the notion of using optimization techniques in design there has been

a tendency to ignore bounds. Bounds on the system variables take the form

L  X  U

where L and U represent the set of lower and upper bounds, respectively. The bounds on the

system variables demarcate the region in which a search is to be made for a feasible solution.

In engineering design, the lower bounds are always nonzero and positive, reflecting physical

limitations.

16

Deviation variables are by definition nonnegative (see Section I.5.2) and therefore a lower

bound of zero is always associated with them.

I.5.5 The Deviation Function

In the compromise DSP formulation, the aim is to minimize the difference between that which is

desired and that which can be achieved. This is done by minimizing the deviation function, Z(d-,

d+), which is always written in terms of the deviation variables.

A designer sets an aspiration level for each of the goals. It may be impossible to obtain a design

that satisfies all the levels of aspiration. Therefore, a compromise solution must be accepted by

the designer. It is desirable, however, to obtain a design whose performance matches the

aspiration levels as closely as possible. This in essence is the objective of a compromise solution.

The difference between the goals and achievement is expressed by a combination of appropriate

deviation variables, Z(d-, d+). This deviation function provides an indication of the extent to which

specific goals are achieved.

All goals may not be equally important to a designer and the formulations are classified as

Archimedean or Preemptive - based on the manner in which importance is assigned to satisficing

the goals.

In the following section, we will delve into both of these forms, examining their applications in

optimization and cDSP construct , and ultimately, we will compare their respective outcomes.

I.6 Archimedean and Preemptive Form : Comparing Solutions

Archimedean In the context of multiobjective optimization: In the context of multiobjective

optimization, a mathematical framework that allows the combination of multiple objectives into

a unified objective function has been provided in the Archimedean form. With the Archimedean

17

form, compromise solutions can be identified by decision-makers, taking into account conflicting

objectives.

The Archimedean form is characterized by the aggregation of individual objectives using an

Archimedean aggregation operator. This operator incorporates the relative weights or

importance assigned to each objective by the decision-maker, enabling the expression of

preferences and the reflection of the relative significance of different objectives in the

optimization process.

One of the commonly used Archimedean aggregation operators is the weighted sum operator. It

involves the linear combination of individual objectives by multiplying each objective with its

corresponding weight and summing the results. The weighted sum operator is expressed as

follows:

The aggregated objective function, F(x), is given by the equation:

F(x) = w1 * f1(x) + w2 * f2(x) + ... + wn * fn(x)

Here, F(x) represents the aggregated objective function, while f1(x), f2(x), ..., fn(x) denote the

individual objective functions. The weights w1, w2, ..., wn are associated with each objective and

reflect their relative importance.

Determining the weights is subjective and relies on the decision-makers preferences, priorities,

and domain knowledge. Techniques such as direct elicitation, pairwise comparisons, or the

analytic hierarchy process (AHP) can be employed to assign appropriate weights.

In addition to the weighted sum operator, other Archimedean aggregation operators can be

utilized based on the decision-makers preferences and the nature of the objectives. For example,

the weighted product operator considers the product of individual objectives raised to their

18

corresponding weights. The weighted power mean operator computes a weighted average of

individual objectives using a power

function.

Once the objectives are aggregated into a single objective function, optimization algorithms can

be employed to search for optimal or near-optimal solutions. The objective is to identify solutions

on the Pareto front, representing the set of non-dominated solutions. A solution on the Pareto

front cannot be improved in one objective without sacrificing at least one other objective.

Decision-makers could get a structured framework for handling multiobjective optimization

problems with Archimedean form. By converting multiple objectives into a single objective

function, the complexity of analyzing and comparing objectives is simplified. Adjusting the

weights allows decision-makers to explore different trade-offs and identify solutions that align

with their preferences and requirements.

Archimedean In the context of cDSP: A significant role is played by the Archimedean form in the

context of the Compromise Decision Support Problem (cDSP) by providing a mathematical

framework to handle conflicting objectives and facilitate decision-making. In the cDSP, the focus

is on finding compromise solutions that balance multiple objectives, considering the inherent

conflicts, resource limitations, and uncertainties present in real-world decision scenarios.

The cDSP formulation is aimed at minimizing the difference between desired goals and

achievable goals in the Archimedean form. In this formulation, weights can be assigned to each

goal by the designer based on their level of importance and satisfaction.

In the Archimedean formulation, the deviation function, denoted as Z(d-, d+), is used to express

the difference between the desired goals and their achievement.

19

The underachievement and overachievement of each goal are represented by the deviation

variables (d-, d+) in the Archimedean form.

The deviation function is defined as follows:

Z(d-, d+) = ∑(Wi(di
- + Wi(di

+)) for i = 1,...,m

In this formulation, m represents the number of goals, and Wi denotes the weight assigned to the

i-th goal. The weights reflect the level of desire to achieve each goal, and they should satisfy the

following conditions:

∑Wi = 1, and Wi ≥ 0 for all i.

The representation of aspiration levels for each goal, which signifies the desired performance, is

enabled by the Archimedean formulation. However, the recognition that it may be impossible

to simultaneously achieve all aspiration levels is acknowledged by the Archimedean

formulation. Therefore, a compromise solution must be accepted. In the Archimedean

formulation, the deviation function is minimized by considering the weighted sum of the

deviation variables for each goal. The objective is to find a solution that closely matches the

desired aspiration levels for all goals.

Various methods can be used to determine the appropriate weights, such as pairwise comparison

techniques. These methods involve comparing the goals in pairs and expressing the preference

between them. Overall, balancing multiple goals in the compromise, DSP is facilitated by the

framework provided by the Archimedean formulation, allowing informed decisions to be made

by the designer based on the relative importance of each goal and the extent to which they are

achieved.

20

The formulation classifies the goals into different priority levels. The designer can determine the

importance of goals either by using Archimedean weights or by rank ordering the goals in a

preemptive approach. The previous discussion covered the Archimedean formulation of the

compromise Decision Support Problem (cDSP). Now, let us delve into the preemptive form of the

cDSP, which provides an alternative approach to solving such problems.

Preemptive In The Context Of Multiobjective Optimization: In the context of multiobjective

optimization, the preemptive form involves rank-ordering goals or objectives based on their

priority levels. The sequential optimization of goals is permitted by this approach, with higher

priority goals being achieved before lower priority goals are addressed. The preemptive form is

particularly useful when assigning weights or preferences to the goals is difficult.

In the preemptive form, goals are organized into priority levels, and the optimization process

aims to minimize the deviations or underachievement of each goal at its respective priority level.

Once a goal is fully satisfied, the optimization focuses on the next priority-level goal. This process

continues until all goals have been addressed.

The formulation of the preemptive form involves defining deviation variables for each goal and

constructing a deviation function that captures the deviations at each priority level. The deviation

function is designed to minimize the deviations at each priority level while maintaining the

achieved levels of higher priority goals.

A structured approach to multiobjective optimization, allowing for systematic consideration of

goal priorities, has been provided by the preemptive form. It is particularly useful when there is

limited information available to assign precise weights or preferences to the goals. By prioritizing

higher priority goals first, a way is provided to achieve a satisfactory compromise solution while

21

considering the relative importance of different objectives. Note that the preemptive form is just

one of the approaches in multiobjective optimization, and the choice of the approach depends

on the problem characteristics, available information, and the preferences of the decision-maker.

Preemptive In The Context Of cDSP: In the preemptive formulation, the emphasis is placed on

rank-ordering the goals rather than assigning explicit weights to them. This approach is

particularly useful when it is challenging to assign meaningful weights or when there is limited

information available in the early stages of design or in an industrial environment. The

preemptive form is one of the approaches in multiobjective decision support problems, and the

choice of the approach depends on the problem characteristics, available information, and the

preferences of the decision-maker.

In the Preemptive approach, the difficulty of assigning weights is circumvented by rank ordering

the goals. The measure of achievement is obtained in terms of the lexicographic minimization of

an ordered set of goal deviations, wherein within each set of goals at a particular rank, weights

may be used. Goals are ranked lexicographically, and an attempt is made to achieve a more

important goal before considering other goals.

The mathematical definition of lexicographic minimum follows,

LEXICOGRAPHIC MINIMUM Given an ordered array f of nonnegative elements, fk's, the

solution, given by f(1), is preferred to f(2) if

fk
(1) < fk

(2)

and all higher-order elements (i.e., f1, ... , fk-1) are equal. If no other solution is preferred to f,

then f is the lexicographic minimum.

22

 The goals are ranked in order of priority, and the aim is to achieve the higher-ranked goals before

considering the lower-ranked ones. This ranking represents the preference of one goal over

another without quantifying the degree of preference or importance.

To illustrate this concept, consider a set of goals with associated deviation variables: goal 1 (d1
-,

d1
+), goal 2 (d2

-, d2
+), goal 3 (d3

-, d3
+), and so on. The preemptive deviation function can be

expressed as:

Z = [f1(d1
-, d1

+), f2(d2
-, d2

+), f3(d3
-, d3

+), ...]

In this formulation, each priority level, represented by f1, f2, f3, etc., is minimized sequentially.

The priority levels are determined by the rank order of the goals. The objective is to find a solution

that minimizes the deviation variables at each priority level while maintaining the achieved goals

at the higher priorities. Formulation of the preemptive form in cDSP involves the following

steps:

Goal Ranking: The first step is to rank the goals in order of priority. This ranking is typically based

on the preferences and importance assigned by the decision-maker. Higher-ranked goals are

considered more important and should be achieved before lower-ranked goals.

Deviation Variables: Deviation variables are introduced to quantify the deviation between the

desired goal values and the achieved values. For each goal, two deviation variables are defined:

di
- (underachievement) and di

+ (overachievement). The extent to which a particular goal is not

fully satisfied or exceeds the desired level is represented by these variables.

Deviation Function: The deviation function, denoted as Z(d-, d+), is formulated to measure the

overall deviation between the desired goals and their actual achievement. In the preemptive

form, the deviation function is written as:

23

Z = [f1(di
-, di

+), ..., fk(di
-, di

+)]

Where k represents the number of goals or priority levels, the deviation variables corresponding

to each priority level are included in the deviation function.

Minimization: The objective is to minimize the deviation function while satisfying the constraints

of the problem. The solution is sought by finding a set of values for the decision variables that

minimize the deviations for the highest-priority goal and then sequentially minimize the

deviations for lower-priority goals.

Mathematical Representation: The preemptive form can be mathematically represented using

cDSP techniques. The formulation includes the goal constraints, system constraints, and the

deviation function. The goal constraints specify the desired levels of achievement for each goal,

while the system constraints represent the limitations or requirements of the problem.

By solving the preemptive form of cDSP, a solution that achieves the highest-priority goal as

closely as possible while considering the subsequent goals in the ranked order is obtained.

Example:

As an example, consider two solutions, f(r) and f(s), where

f(r) = (0, 10, 400, 56)

f(s) = (0, 11, 12, 20)

In this example, note that f(r) is preferred to f(s). The value 10 corresponding to f2
(r) is smaller than

the value 11 corresponding to f2
(s). (Since the objective is to minimize or achieve smaller values

for the second element, f(r) is preferred over f(s) because f2
(r) (10) is smaller than f2

(s) (11)) .Once

a preference is established, then all higher-order elements are assumed to be equivalent. Hence,

the deviation function for the Preemptive formulation is written as

24

Z = [f1(di
-,di

+), ..., fk(di
-,di

+)] .

For a four goal problem, the deviation function may look like

Z(d-, d+) = [(d1
- + d2

-), (d3
-), (d4

+)]

In this case, three priority levels are considered. The deviation variables, d1
- and d2

-, have to be

minimized preemptively before variable d3
- is considered, and so on. These priorities are

represented by rank, indicating the preference for one goal over another. No conclusions can be

drawn with respect to the amount by which one goal is preferred or is more important than

another. This approach is, therefore, suitable when there is little information available. For a

simple problem with only two system variables, a graphical solution can be easily found by

satisficing the goals in a logical manner. This is in contrast to the Archimedean approach, in which

the numerical evaluation of the deviation function is required even for the simplest case. The

numerical solution of a Preemptive formulation requires the use of a special optimization

algorithm developed to solve these types of problems. One such algorithm has been developed

by Ignizio [J. P. Ignizio, "Multiobjective Mathematical Programming via the MULTIPLEX Model and

Algorithm," European Journal of Operational Research, 22, 1985, 338-346.]. It is also possible to

solve the Preemptive formulation by reformulating the deviation function into a pseudo-

preemptive form, as suggested by Schniederjans [M. J. Schniederjans, Linear Goal Programming,

Petrocelli Books, Princeton, N.J, 1984.]. Schniederjans' notion is to force the deviation function

to satisfy the priorities by multiplying each priority level by a quantity Pi, whose numerical value

is much larger than the corresponding one associated with the next priority level. The deviation

function for the example problem presented earlier expressed in a pseudo-preemptive fashion

looks like

25

Z(d-, d+) = P1 (d1
- + d2

-) + P2 (d3
-) + P3 (d4

+) where P1 >> P2 >> P3,

In the preceding, the >> implies preference, and the Pi's represent rank-ordered priorities that

are modeled numerically. Lexicographic preference is modeled numerically on a computer only

if the numerical values between the priorities are substantial. For example, let us try to model

the following numerically:

 P1 >> P2 >> P3.

Consider the following series of numbers:

3 >> 2 >> 1

300 >> 200 >> 100

1037 >> 1020 >> 1010 .

Which of the three series models is the preference the best? The correct answer is the third set

of numbers.

In the subsequent section, an illustrative example is employed to provide a more detailed

explanation of the contrast in solutions achieved through the utilization of preemptive and

Archimedean formulations.

Comparing Solutions: Preemptive and Archimedean Formulations

The following example is presented to illustrate the difference in the solution obtained by using

the preemptive and Archimedean formulations. The design space for the example problem is

shown in Figure I.3.

The algorithms that have been developed to solve the compromise DSPs provide vertex solutions.

Therefore, we will restrict our discussion to vertex solutions only. Further, we are seeking a

solution that achieves all three goals completely.

26

Find

System Variables X1, X2

Deviation Variables d1
-, d1

+, d2
-, d2

+, d3
-, d3

+

Satisfy

System Constraints

2X1 + 3X2 ≤ 30 [c1]

6X1 + 4X2 ≤ 60 [c2]

System Goals (Dimensionless, Normalized)

X1/10 + X2/10 + d1
- - d1

+ = 1 [g1]

X2/ 7 + d2
- - d2

+ = 1 [g2]

X1/8 + d3
- - d3

+ = 1 [g3]

Bounds omitted for brevity.

Minimize

Case a: Using the Preemptive approach (lexicographic minimum).

Z = [(d1
-+ d1

+), (d2
-+ d2

+), (d3
-+ d3

+)]

All deviation variables are considered due to equality goals.

Case b: Using the Archimedean approach.

Z = W1(d1
-+ d1

+), + W2(d2
-+ d2

+), + W3(d3
-+ d3

+),

 where W1 = W2 = W3 = 1/3 (assumed values)

27

Figure I. 3: Design Space, For Example Problem

The solution to the preceding compromise DSP using both the Preemptive and Archimedean

approaches follows:

Case A: Preemptive

• The goal with the highest priority is considered first (Goal 1). This goal lies completely within

the feasible design space, and consequently, any point satisfying the goal is considered to be

a solution, namely, vertices A, B, E, and G.

• We next move to priority level 2, which requires the minimization of d2
- and d2

+. Notice that

in Figure 1.2, these deviations may be set to zero at point B without reducing the value of the

solution obtained for priority 1. That is, d2
- and d2

+ may be set to zero without any increase in

either d1
- or d1

+. Therefore, vertex A is the second preferred solution, with the first priority

still being satisfied (d1
-, d1

+ = 0) and a minimum value for the overachievement of the second

goal d2
+.

• Moving to priority level 3, we attempt to minimize d3
- and d3

+ without degrading the solution

for the other priority levels. In this case, the solution point that comes closer is once again

28

point B, with d1
-, d1

+, d2
-, d2

+, and d3
+= 0 and a minimum value of the third goal

underachievement d3
-.

• If the priorities were changed to goals 1, 3, and 2 in that order, the preferred solution

would be at point E. We suggest that you solve this as an exercise.

Case B : Archimedean

In Table I.1, the values of the deviation variables and the deviation function at different vertices

are summarized. It follows from the table that the best solution is at 'C' where Z is a minimum

Z=0.196).

The solutions obtained in the two cases are different. The Preemptive approach is suitable when

less is known about the design, and consequently, a designer can only rank-order the preferences

for the goals. Using the Archimedean approach is warranted when it is possible to determine the

relative importance of the goals using a pairwise comparison method.

Should all the deviation variables be included in the formulation of the deviation function?

Deviation variables will be zero; consequently, we can exclude them from the deviation function.

If one is interested in varying the target values to study the sensitivity of the solution, it is

necessary to include all the deviation variables in the deviation function.

Table I.1: Deviation Function Values For Archimedean Solution

Acceptable Value of Solution

Vertices Normalized Dev. Var. Sum
Func.
(coord.) d1

- d1
+ d2

- d2
+ d3

- d3
+ ∑(di

-+ di
+)

Z

A = (0, 10) 0 0 0 0.429 1 0 1.429 0.476

B = (3, 7) 0 0 0 0 0.625 0 0.625 0.208

29

C = (4.5,

7)

0 0.150 0 0 0.438 0 0.588 0.196

D = (8, 3) 0 0.100 0.571 0 0 0 0.671 0.224

E = (8, 2) 0 0 0.714 0 0 0 0.714 0.238

F = (6, 6) 0 0.200 0.143 0 0.250 0 0.593 0.198

G = (10, 0) 0 0 1 0 0 0.250 1.250 0.417

Subsequent to the deliberation on the compromise decision support problem, the following

section, the DSIDES software, a developed tool designed for the implementation of the cDSP

construct, has been described.

I.7 Expanded cDSP Examples : The Two Coal Problem

Recent revisions of pollution control laws have had a direct influence on the running of a power

station. These revisions have reduced the allowable emission of pollutants into the atmosphere

from the plant’s exhaust gases. To comply with these new regulations expeditiously and

eliminate downtime it is desired, now, to control the emission rates by the appropriate use of

coal.

Historically, coal has been bought from two sources, say A and B. Both types of coal are

transported to the plant and stored in separate stockpiles. From there they are fed by a

mechanical conveyer into a pulverizer, crushed into fine particles, mixed at a specified rate and

burnt in a combustion chamber.

Coal from source A, Coal A, is relatively hard, clean burning, has a low sulfur content and is more

expensive than Coal B which is soft, smoky when burnt, and has a high sulfur content. The thermal

30

value, in terms of steam produced, is 24,000 lbs/ton for Coal A and 20,000 lbs/ton for Coal B.

Since Coal A is hard, the pulverizer can handle 16 tons/hr of it. Since Coal B is soft, the pulverizer

can handle 24 tons/hr of it. The capacity of the conveyer is 20 tons/hr for both types of coal.

There is a limit to the amount of coal that can be stockpiled. This limit translates to a maximum

of 25 tons/hr for any type of coal that can be burnt.

The new pollution regulations limit sulfur oxide emissions to 3,000 parts per million and the

particulate emissions (smoke) to 12 kg/hr. The characteristics of the two types of coal are

summarized in Table I.2.

Case A: A Linear Single Objective Optimization Problem.

Problem Statement: Determine the most efficient combination of the two types of coal to be

burnt that satisfies the constraints and bounds and maximizes the rate of production of

electricity. No information is given in the story about the lower bounds on the rates of

consumption of the two types of coal. It is reasonable to assume, initially, that the lower bounds

are zero. The implication of this assumption is that a solution that requires the burning of a single

type of coal, in our case coal from a single vendor, is acceptable.

Table I.2: Coal and material handling characteristics

PROPERTIES Coal A Coal B Units
Thermal value 24,00

0
20,000 lbs steam / ton

Sulfur oxides emission 1,800 3,800 ppm
Particulate emission 0.5 1.0 kg / ton
Pulverizer coal handling

capacity 16 24 tons / hour
Conveyer coal handling

capacity 20 20 tons / hour

Case B: The Linear Single Objective Optimization Problem - Revisited.

31

Problem Statement: The power company does not want to rely on a single source for its supply

of coal. The purchasing department has determined that there is a minimum order quantity for

the coal. This minimum order quantity translates to a lower bound of 5 tons of each type of coal

per hour. Determine the most efficient combination of the two types of coal to be burnt that

satisfies the constraints and bounds and maximizes the rate of production of electricity.

This problem is used to illustrate the algorithm for solving the most general linear single objective

optimization problem. The preceding requires the introduction of two nonzero lower bounds on

the system variables and the introduction of artificial variables to get an initial solution by

inspection. Unlike Case A, in this case it is inappropriate to drop the lower bounds at the very

outset.

Case C: A Linear Single Goal Compromise Decision Support Problem.

Problem Statement: The demand for steam is likely to increase to 432,000 lbs/hr during the

summer months. Can this be achieved without violating any of the constraints and bounds?

This problem is formulated as a single goal compromise DSP, and the solution compared to that

of the single objective optimization problem, Case A.

Case D: A Linear, Multigoal Compromise Decision Support Problem.

Problem Statement: The demand for steam is going to increase to at least 432,000 lbs/hr during

the summer months. Management is prepared to violate some of the pollution constraints and

pay a fine, if necessary, to get this amount of steam from the plant. Company executives have

identified one viable scenario as putting out as much sulfur oxides and smoke as is permissible

and maximizing the amount of steam produced.

This problem is used to illustrate the solution of a multigoal compromise DSP.

32

Case E: A Nonlinear, Multigoal Compromise Decision Support Problem.

Problem Statement: The plant is being modified and access to the warehouse is limited. For a

short period the management would like to hold the stockpiling down so as not to exceed 10

tons/hr of Coal A and 5 tons/hour of Coal B. The cost for stockpiling per ton is assessed

proportionally to the excess capacity, over the desired capacities, and is equal to $3/(excess ton

of Coal A) and $4/(excess ton of Coal B). The prices reflect the difficulties in stockpiling the softer

Coal B. An incentive

is provided in stockpiling less coal than available capacity and is equal to $3/(surplus ton of Coal

A) and $4/(surplus ton of Coal B). It is desirable to limit the total stockpiling costs to $30/hr.

Linear Single Objective Optimization: Formulation and Graphical Solution

I.7.1 Case A: The Word Problem

Given

❑ The properties of Coal A and Coal B.

❑ The capacity of the conveyer unit.

❑ The capacity of the pulverizer unit.

❑ Emission limit on sulfur oxides.

❑ Emission limit on particulates.

❑ Upper limits on the amount of coal that is stockpiled.

Assumptions

❑ Uninterrupted supply of coal is available.

❑ The combustion chamber can handle any amount of coal supplied from the pulverizer.

33

❑ The maximization of the rate of electricity produced is equivalent to the maximization of

the rate of steam generated.

❑ The coal prices are stable.

Find

Independent System Variables

The rate of consumption of Coal A: X1 [tons/hr]

The rate of consumption of Coal B: X2 [tons/hr]

Satisfy

System Constraints

❑ The conveyer capacity is 20 tons/hr for any type of coal.

❑ The pulverizer can process 16 tons of Coal A and 24 tons of Coal B per hour.

❑ The emission of sulfur oxides is limited to 3,000 parts per million.

❑ The emission of particulates (smoke) is limited to 12 kg/hr.

Bounds on the System Variables

❑ The system variables should be nonnegative

❑ The maximum of any one type of coal that can be burnt is 25 tons/hr.

Maximize

❑ The rate of steam generated and therefore, the electricity produced.

I.7.2 Case A: Derivation of the Constraints and the Objective Function

The system variables. In the short run the plant's facilities are fixed. It is quite appropriate that

management has decided to affect the output of electricity by using the best combination of

the two types of coal. Therefore, let X1 be the number of tons of Coal A burnt per hour, and

34

X2 be the number of tons of Coal B burnt per hour. These variables

have two characteristics. One, they are physical quantities and are therefore nonnegative. Two,

these variables are continuous, that is, any value that is feasible is acceptable from a

mathematical standpoint.

The system constraints and bounds. The system constraints are written in terms of the system

variables. In engineering, system constraints are invariably inequalities. The system constraints

and bounds must be satisfied for feasibility. System constraints generally model the physics

of the problem. The bounds, on the other hand, are the product of experience-based insight.

They represent what is acceptable to the designer without regard to the physics of the

problem. A constraint invariably has two or more system variables. A bound contains only one

system variable and is always parallel (geometrically) to the axis represented by the system

variable. Rarely is a constraint specified in terms of a single system variable. In this case the

constraint plays the same role as a bound in the design space even though it may represent

the physics of the problem.

1 The constraint on conveyer capacity

The conveyer has a capacity of 20 tons/hour. This capacity is independent of the type of coal that

is placed on the conveyer. Therefore, the constraint is written as:

X1 + X2  20 [tons/hr]

The constraint is shown in Figure I.4.

35

Figure I. 4: Conveyor capacity

2 The constraint on pulverizer capacity

The pulverizer capacity constraint is shown in Figure I.5. The maximum capacity of the unit is 16

tons of Coal A or 24 tons of Coal B per hour or any corresponding combination of the two. The

right hand side for this constraint has not been specifically given in the problem statement. It

has to be figured out. In this case, consider the amount that can be pulverized in one hour: it

takes 1/16 of an hour to pulverize a ton of Coal A and 1/24 of an hour to pulverize a ton of Coal

B.

Therefore, the constraint is written as:

X1/16 + X2/24  1

36

Figure I. 5: Pulverizer capacity

Therefore, the pulverizer capacity for one 24 hour day is (multiplying through by 24 [hrs/day]):

1.5X1+ X2  24 [day]

Notice the units. Normally, multiplying through does not result in meaningful units. In this case,

because there are 24 hours in a day, the second form of the constraint has meaningful units.

3 The limit on sulfur oxides emission

The maximum emission of sulfur oxides is limited to 3,000 ppm. This constraint is shown in

Figure I.6. There may be an urge to specify the constraint as:

1,800X1 + 3,800X2  3,000.

What is wrong with the constraint? The units on the left hand side and the right hand side of

the equation do not match. What is to be done? The units of 1,800, 3,800 and 3,000 are

parts per million. If only the X1 and X2 were dimensionless the preceding constraint

would be acceptable. The way around this problem is to normalize X1 and X2 and make them

dimensionless. How? Given that the two coals are burnt simultaneously, assume that a

37

combination of X1 tons/hr of Coal A and X2 tons/hr of Coal B is fed into the combustion chamber

as a homogeneous mixture.

Figure I. 6: Limit on sulfur oxides

Then,

The proportion of Coal A in the total mixture is

X1/(X1 + X2), and

The proportion of Coal B in the total mixture is

X2/(X1 + X2).

Now the constraint on the sulfur oxides emission level is equal to the weighted average of

the individual levels, i.e.,

1,800X1/(X1 + X2) + 3,800X2/(X1 + X2)  3,000 [ppm]

The preceding can be rewritten as:

-1,200X1 + 800X2  0 [NMU]

38

The second form of the constraint, though algebraically simpler than the first has no

meaningful units (NMU). The second form is more convenient to use from a computational

standpoint. Since the second form has no meaningful units associated with it, it will not be

possible to gain much meaningful insight through post-solution analysis. Since the first form has

meaningful units, it is preferred over the second form for the post-solution analysis.

Figure I. 7: Smoke constraint

4 The limit on particulate (smoke) emission

According to the information given, each ton of Coal A produces 0.5 kg of smoke and each

ton of Coal B, 1 kg of smoke. The amount of smoke that can be emitted per hour is limited

to 12 kg. Therefore, this constraint is stated as:

0.5X1 + X2  12 [kg/hr]

This constraint is shown in Figure I.7

5 The lower bounds on the system variables

Nothing is mentioned explicitly in the problem statement about lower bounds. Since this problem

deals with physical quantities and they are always nonnegative, the lower bounds on the system

39

variables are stated as follows:

X1  0 [tons/hr]

X2  0 [tons/hr]

6 The upper bounds on the system variables

The upper bounds on the system variables are explicitly stated in the problem statement and

these are as follows:

X1  25 [tons/hr]

X2  25 [tons/hr]

The objective (deviation) function. The objective (see Figure 4.8) is to maximize the electricity

produced at the plant. Since electricity is produced by using steam to drive the turbines, there is

a direct relationship between the amount of electricity that is produced and the amount of steam

that is produced in a specified length of time. What is the amount of steam produced for any

arbitrary combination of coal used in any hour?

 Coal Steam (lbs/ton) Fuel used (tons/hr) Steam (lbs/hr)

A 24,000 X1 24,000X1

B 20,000 X2 20,000X2

The total amount of steam (lbs/hr) = 24,000X1 + 20,000X2. The objective function therefore is,

Z = 24,000X1 + 20,000X2 [lbs/hr]

40

Figure I. 8: The objective function

I.7.3 Case A: The Mathematical Form of the Word Problem

Given

As stated in the word problem.

Find

System Variables

X1 - the rate of consumption of Coal A [tons/hr]

X2 - the rate of consumption of Coal B [tons/hr]

Satisfy

System Constraints

1. Conveyer capacity

X1 + X2  20 [tons/hr]

2. Pulverizer capacity

 X1/16 + X2/24  1 [tons/hr] or

41

 1.5X1 + X2  24 [tons/day]

3. Sulfur oxides emission

 1,800X1/(X1 + X2) + 3,800X2/(X1 + X2)  3,000 [ppm]

or

-1,200X1 + 800X2  0 [NMU]

4. Smoke emission

0.5X1 + X2  12 [kg/hr]

Bounds on system variables

5. Lower bounds on system variables

X1  0 [tons/hr]

X2  0 [tons/hr]

6. Upper bounds on system variables

X1  25 [tons/hr]

X2  25 [tons/hr]

Maximize

7. The rate of steam produced

 Z = 24,000X1 + 20,000X2 [lbs/hr]

 = 24 X1 + 20 X2 [1000 lbs/hr]

I.7.4 Case A: The Graphical Solution

The set of all combinations of the system variables that satisfy all constraints and bounds

simultaneously is called the set of feasible solutions and the space consisting of the feasible

42

solutions is called the feasible design space. This is shown in Figure I.9. A solution that results in

the violation of any of the constraints or bounds is called an infeasible solution. A constraint or

bound that does not border the feasible design space is called a redundant constraint or bound.

In this example, the upper bounds and the conveyer constraint are redundant.

Figure I. 9: Case A feasible design space

The graphical solution is shown in Figure I.10. Pay particular attention to the following:

❑ The independent system variables are the axes of the design space.

❑ The system constraints and bounds form the feasible design space.

❑ The direction of feasibility is indicated, with arrows, on each constraint and bound.

Experience has shown that many errors are avoided if students do not omit this simple

step.

❑ The constraints and bounds are labelled in a way that makes it easy to refer back to

the word problem and its mathematical form. A one-to-one correspondence should

exist between the word problem, its mathematical form and the graphical solution.

Experience has shown that the errors made by students are fewer if this is checked as a

43

matter of course.

❑ The best solution for the model, at which the objective has the highest value (when

maximizing), is at a vertex of the feasible design space.

❑ The solution to the problem consists of not just the values of the system variables and

the objective function but also the active and inactive constraints, etc. The solution is

shown on the graph and a recommendation is made, as required, to management.

Figure I. 10: Case A solution

I.7.5 Case A: Recommendation

If 12 tons of Coal A and 6 tons of Coal B are burnt per hour, 408,000 lbs of steam will be

generated per hour. This will result in the maximum amount of electricity being produced

with all the constraints and bounds being satisfied.

The best solution for the model occurs at vertex C in Figure I.10. At vertex C the smoke

44

constraint, constraint 4, and the pulverizer constraint, constraint 2, are active. The maximum

amount of particulates that can be emitted into the air are being emitted and there is no reserve

capacity for the pulverizer.

I.7.6 Case A: Post-solution Analysis

Post-solution analysis deals with the “What is the impact on ... if ...” questions. For example,

❑ What happens if there is a change in the coefficient of a variable in the objective

function?

❑ What happens if there is a change in the right hand side of a constraint?

❑ What is the impact on the solution of adding a variable, i.e., another type of coal?

❑ What happens if one of the coefficients on the left hand side of a constraint changes?

The first three will be answered in this section.

Slack and surplus variables. For any feasible solution, the difference between the left hand side

and the right hand side of the constraint is called the amount of slack (for inequalities) or

surplus (for inequalities). In system constraints, this difference is represented by the inclusion

of slack or surplus variables. For Case A, after the introduction of the slack and surplus variables,

the mathematical form is as follows (note the form used for constraint 3):

Find

X1, X2, S1, S2, S3, S4, S5, S6, S7, S8

Satisfy

1. X1 + X2 + S1 = 20 [tons/hr]

2. 1.5 X1 + X2 + S2 = 24 [hours]

3. 1,800 X1/(X1+X2) + 3,800X2/(X1 + X2) + S3 = 3,000 [ppm]

45

4. 0.5 X1 + X2 + S4 = 12 [kg/hr]

5. X1 - S5 = 0 [tons/hr]

6. X2 - S6 = 0 [tons/hr]

7. X1 + S7 = 25 [tons/hr]

8. X2 + S8 = 25 [tons/hr]

Maximize

Z = 24 X1 + 20 X2 [1,000 lbs/hr]

Slack and surplus variables represent unused resource or capacity. If either the slack or surplus

variable is zero for a particular constraint, then that constraint is active. If the slack or surplus

variable for a constraint is nonzero, then the corresponding constraint is inactive. For Case A,

with X1 = 12 and X2 = 6 tons/hour the slacks and surplus variables are:

Conveyer S1= 2 [tons/hr] Inactive

 Pulverizer S2 = 0 [hours] Active

 Sulfur S3 = 533.33 [ppm] Inactive

 Smoke S4 = 0 [tons/hr] Active

The nonzero slacks indicate the amount of reserve capacity or resources. For Case A, the amount

of reserve conveyer capacity is 2 tons per hour and the additional amount of sulfur oxides that

can be emitted into the atmosphere without penalty is 533 parts per million.

Change in the slope of the objective function. What happens if the values of the coefficients

of the objective function change? Assume that the thermal value of Coal A is 32,000 pounds

of steam per ton. The objective function changes to

46

Z = 32 X1 + 20 X2 [1000 lbs/hr].

Figure I. 11: Change in slope of objective function

The change in the coefficient changes the slope of the objective function and if this slope is

sufficiently large the solution will move to another vertex, Figure 4.11. This will alter the values

of the system variables, the objective function and the slack and surplus variables. In Case A, the

solution moves to vertex B. Ranging or parametric analysis of the objective function is the

answer to the following question: By how much can we change the coefficient of the objective

function and still keep the same solution? Ranging involves identifying the range of change of

a coefficient for which the solution remains the same. For example, if C1 is the coefficient of

X1, then the solution will be at vertex C or include vertex C as long as C1 satisfies the following

10  C1  30

Change in the right hand side value of a constraint. Suppose the management is contemplating

the installation of emission control equipment that would reduce smoke emission from the

smoke stack by 25 percent. This would allow legal emission standards to be met by

47

“uncontrolled” emission of smoke at the furnace of up to 15 kg/hr. How much would this be

worth per hour in terms of steam output?

Assume, for the present, that the limit on particulate emission is raised by 1 kg/hr. In this case

the right hand side of the smoke constraint goes from 12 to 13 and the smoke constraint

becomes:

0.5X1 + X2  13.

As seen from Figure I.12, the solution moves from vertex C to vertex C'. The net change in

the amount of steam produced is calculated as follows:

Old Solution
Point C

New Solution

Point C'

Difference Change in Z

X1 = 12 X1 = 11 -1 (-1) 24

X2 = 6 X2 = 7.5 +1.5 (1.5) 20

 Net change in Z

The new value of the objective function is (408 + 6), i.e., 414. So, 414,000 lbs of steam is

generated per hour. This change in value of the objective for a unit change in the value of the

right hand side is called imputed value, opportunity cost, shadow price, dual price or dual

variable.

48

Figure I. 12: Change in right hand side coefficient

As the right hand side of the smoke constraint is further relaxed to 14, 15, etc., the value of the

objective function continues to increase until a maximum steam production of 432,000 lbs. of

steam per hour is reached at a right hand side value of 16. Further increase in the right

hand side coefficient of the constraint has no impact on the value of the objective function

since smoke constraint becomes inactive and the conveyer and sulfur constraints become

active. The pulverizer constraint continues to remain active. At C", the imputed value for relaxing

the smoke constraint goes to zero. The imputed value for tightening the smoke constraint is

 -6.

Slacks, imputed values and insight. The imputed value for an active constraint is nonzero. For

an inactive constraint it is zero and therefore the impact of the constraint on the objective,

after a change in its right hand side, will remain zero. Therefore, it is adequate to compute the

imputed values for the active constraints. These values provide insight into the stability of the

49

solution from the standpoint of the active constraints. The slack or surplus variable is zero

for an active constraint and nonzero for an inactive constraint. The nonzero slacks provide

insight into the stability of the solution from the stand- point of the inactive constraints. For

Case A, the information used to understand the stability of the solution is as follows:

Constraint Slack/Surplus Imputed Value Constraint Status
Conveyer 2 0 Inactive
Pulverizer 0 14 Active7
Sulfur 533.33 0 Inactive
Smoke 0 6 Active

A constraint is said to be tightened if by changing the right hand side value of the constraint,

the feasible design space is reduced. A constraint is said to be relaxed if changing the right hand

side value increases the size of the feasible design space. With this by way of definition, what if

it becomes necessary to reduce the design space (say because of maintenance of equipment),

which constraint should be tightened? If on the other hand it is possible to increase the size

of the feasible design space by investing in some equipment, which constraint should be relaxed?

The addition of another system variable.

Problem Statement: Plant management is evaluating the possible use of a third type of coal,

Coal C. This coal has the following properties:

Pulverizer 1/20 hour pulverizer time/ton

 Sulfur oxide emission rate 2,000 ppm

Smoke emission rate 0.8 kg/ton

 Equivalent thermal value 21,000 lbs/ton.

The questions are:

❑ Should this coal be used? If no,

50

❑ What should be the properties of a coal that is likely to be selected?

The mathematical form for the Three Coal Problem follows.

Find

System Variables

X1 - the rate of consumption of Coal A [tons/hr]

X2 - the rate of consumption of Coal B [tons/hr]

X3 - the rate of consumption of Coal C [tons/hr]

Satisfy

System Constraints

❑ Conveyer capacity

 X1 + X2 + X3  20 [tons/hr]

❑ Pulverizer capacity

1.5 X1 + X2 + 1.2 X3  24 [hours]

❑ Sulfur oxides emission

-1,200 X1 + 800 X2 - 1000 X3  0 [NMU]

❑ Smoke emission

0.5 X1 + X2 + 0.8 X3  12 [kg/hr]

Bounds on System Variables

❑ Lower bounds on system variables

X1  0 [tons/hr]

X2  0 [tons/hr]

51

X3  0 [tons/hr]

❑ Upper bounds on system variables

X1  25 [tons/hr]

X2  25 [tons/hr]

X3  25 [tons/hr]

Maximize

❑ The rate of steam produced

Z = 24 X1 + 20 X2 + 21 X3 [1000 lbs/hr]

The preceding can be solved by starting afresh or by using the imputed values from the Two Coal

Problem solution, Case A.

Let us assume (arbitrarily) that 1 ton of Coal C is burnt per hour. This has the same effect of

reducing the right hand sides of the system constraints as follows:

1. Conveyer capacity

X1 + X2  20 - 1 [tons/hr]

2. Pulverizer capacity

1.5 X1 + X2  24 - 1.2 [hours]

3. Sulfur oxides emission

-1,200 X1 + 800 X2  0 + 1000 [NMU]

4. Smoke emission

0.5 X1 + X2  12 - 0.8 [kg/hr]

The change in the value of the objective function on using 1 unit of Coal C is computed as

52

follows:

Constraint Imputed value Change in RHS Change in Z
1. Conveyer 0 -1 0
2. Pulverizer 14 -1.2 -16.8
3. Sulfur 0 1,000 0
4. Smoke 6 -0.8 - 4.8

Total change in steam output -21.6

Steam produced by 1 unit of Coal C 21.0

Net change in steam output [1000 lbs/hr] -0.6

Since the steam output decreases, Coal C is not competitive and should not be used. For Coal C

to be competitive its thermal value should be greater than 21,600 lbs/hr.

I.7. 7 Case B: Formulation and Graphical Solution

The mathematical form of Case B is identical to that of Case A. In Case B, however, the

lower bounds on the system variables are nonzero:

X1  5 [tons/hr]

X2  5 [tons/hr]

The solution space, for Case B, is shown in Figure I.13. Because of the nonzero lower bounds

in Case B, the feasible design space in Figure I.13 is smaller than the feasible design space for

Case A in Figure I.11. The best solution occurs at vertex C and is the same as that for Case

A. The active constraints are also the same in both cases. Why then are the two cases being

presented?

The reason is principally pedagogical. Case A is used to illustrate the method of formulating

a linear single objective optimization problem so that the pivoting operations required for

solving the problem using the pre-multiplication technique are possible. For Case B, it is

53

assumed that a person knows how to pivot, the formulation is extended so that the pre-

multiplication technique can be used to solve any linear single objective optimization problem.

Figure I. 13: Case B solution

The Single Goal Compromise Decision Support Problem

In this section, the single objective optimization problem is reformulated and solved as a single

goal compromise DSP. It will be shown that single objective optimization problems that call for

the minimization or the maximization of an objective can be reformulated and solved as single

goal compromise DSP.

I.7. 8 General Formulation

The linear optimization problem can be rewritten as a single goal compromise DSP. A target

value is first assigned to the objective which can then be written as a goal. Then depending on

the objective the appropriate deviation variable is included in the minimizing deviation function.

54

Find

The Independent System Variables

 X1, X2

The Deviation Variables

 d-, d+

Satisfy

System Constraints

 a11 X1 + a12 X2  b1

 a21 X1 + a22 X2  b2

 a31 X1 + a32 X2  b3

System Goal (Normalized)

 (c1/T)X1 - (c2/T)X2 + d- - d+ = 1 (T = Target value)

Bounds on System Variables

X1  X1
min

X2  X2
min

X1
 X1

max

X2
 X2

max

Minimize

The Deviation Function

Z = d- + d+ or d- or d+.

55

The formulation here is different from the single objective case in that it includes deviation

variables and a system goal. Also the “objective” here is in terms of the deviation variables only.

The target value T has to be set to an appropriate value.

I.7.9 Case C: The Word Problem

Given

Same as in Section for Case A.

Target value, T, of steam to be produced [lbs/hr]

Assumption

The maximization of the rate of electricity produced is equivalent to the maximization of the rate

of steam generated.

Find

Independent System Variables

The rate of consumption of Coal A: X1 [tons/hr]

The rate of consumption of Coal B: X2 [tons/hr]

Deviations from the target amount of steam to be produced

d- underachievement of the rate of steam production [-]

 d+ overachievement of the rate of steam production [-]

Satisfy

System Constraints

1. The capacity constraint on the conveyer unit.

2. The capacity constraint on the pulverizer unit.

3. The emission of sulfur oxides is limited.

56

4. The emission of particulates (smoke) is limited.

System Goal

5. It is desirable to achieve the target value of steam, T, to be produced.

Bounds on the System Variables

6. The system variables should not be less than a specified value.

7. The system variables should not exceed a specified upper limit.

Minimize

Underachievement of the steam production target, d-.

I.7.10 Case C: The Mathematical Form of the Word Problem

Given

 As stated in the word problem

 T= 432000 lbs/hr

Find

System Variables

 X1 - the rate of consumption of Coal A [tons/hr]

 X2 - the rate of consumption of Coal B [tons/hr]

Deviations from the Target Amount of Steam to be Produced

 d- underachievement of the rate of steam production

 d+ overachievement of the rate of steam production

Satisfy

System Constraints

57

1 Conveyer
capacity

X1 +

X2

 20

[tons/hr]

2 Pulverizer
capacity

1.5X1 +

X2

 24

[hours]

3 Sulfur oxides emission

-1200X1 + 800X2

 0

[NMU]

4 Smoke emission

0.5X1 + X2

 12

[kg/hr]

System Goal

 Steam generation

 (24,000/T) X1 + (20,000/T) X2 + d- - d+ = 1

Bounds on System Variables

 X1  0, X2  0 [tons/hr]

 X1  25, X2  25 [tons/hr]

Minimize

 The deviation from the target rate of steam production, T.

 Z = d-

I.7.11 Case C: Graphical Solution

The solution space is shown in Figure 4.14. The following points are pertinent to the solution:

❑ The compromise solution is at point C in the figure.

❑ The rate of consumption of Coal A (X1) is 12 tons/hour.

❑ The rate of consumption of Coal B (X2) is 6 tons/hour.

❑ The pulverizer constraint, constraint 2, and the particulate emission constraint,

58

constraint 4, are active.

❑ The slack capacity of the conveyer constraint (S1) is 2 tons/hour.

❑ The slack in the sulfur oxides emission limit is (S3) 533.33 ppm.

❑ The target amount of steam cannot be generated without violating at least one of the

other constraints. The shortfall of steam generated, d-, is 24,000 lbs/hour. Therefore,

only 408,000 lbs of steam can be generated without violating any of the constraints.

Figure I. 14: Case C design space

The Linear, Multigoal Compromise Decision Support Problem

I.7.12 General Formulation of the Linear, Multigoal Compromise DSP

Given

Same as in Section I.7. 8

Assumption

The maximization of the rate of electricity produced is equivalent to the maximization of

the rate of steam generated.

59

Find

Independent System Variables

The rate of consumption of Coal A: X1 [tons/hr]

The rate of consumption of Coal B: X2 [tons/hr]

Deviations from the rate of sulfur oxides emission

d1
- surplus capacity to emit sulfur oxides without penalty.

d1
+ sulfur oxides emitted over specified limit.

Deviations from rate of smoke emission

d2
- surplus capacity to emit smoke without penalty.

d2
+ smoke emitted over limit.

Deviations from the target amount of steam to be produced

d3
- underachievement of the rate of steam production.

 d3
+ overachievement of the rate of steam production.

Satisfy

System Constraints

1. The capacity constraint on the conveyer unit.

2. The capacity constraint on the pulverizer unit.

System Goals

3. The emission of sulfur oxides is limited.

4. The emission of particulates (smoke) is limited.

5. It is desirable to achieve the target value of steam, T, to be produced.

Bounds on the System Variables

60

6. The system variables should be greater than the specified lower limit.

7. The system variables should not exceed a specified upper limit.

Minimize

 A function of the deviation variables. All goals have the same importance.

I.7.13 Case D: The Mathematical Form of the Word Problem

The derivation of all the constraints and the goals in the mathematical formulation has been

covered in Section 4.5. Of special interest is the adjustment of the coefficients of constraint 3 to

ensure that the deviation variables of all goals vary within the same range. The constraint was

divided by 10 to make the coefficients on its left hand side of the same order as in the other

system goals.

Find

System Variables

 X1 - the rate of consumption of Coal A [tons/hour]

 X2 - the rate of consumption of Coal B [tons/hour]

Deviations from the Target Rate of Sulfur Oxides Emission (normalized)

 d1
- surplus capacity to emit sulfur oxides without penalty

 d1
+ sulfur oxides emitted above limit

Deviations from the Target Rate of Smoke Emission (normalized)

 d2
- surplus capacity to emit smoke without penalty

 d2
+ smoke emitted above limit

Deviations from the Target amount of steam to be generated (normalized)

 d3
- underachievement of the rate of steam production

61

 d3
+ overachievement of the rate of steam production

Satisfy

System Constraints

Conveyer capacity X1 + X2  20 [tons/hour]

Pulverizer capacity 1.5X1 +X2  24 [hours]

System Goals

 Sulfur oxides emission

 -0.1X1 + 0.0667X2 + d1
- - d1

+ = 0

 Smoke emission

 (0.5/12)X1 + (1/12)X2 + d2
- - d2

+ = 1

 or

 0.0417X1 + 0.0833X2 + d2
- - d2

+ = 1

 Steam generation (Target value, T = 432,000)

 (24,000/T) X1 + (20,000/T) X2 + d3
- - d3

+ = 1

 or

 0.0556X1 + 0.0463X2 + d3
- - d3

+ = 1

Bounds on System Variables

 X1  0, X2  0 [tons/hour]

 X1  25, X2  25 [tons/hour]

Minimize

 The deviation function

62

 Z = W1 d1
+ + W2 d 2

+ + W3 d3 -

 where W1 + W2 + W3 = 1 and W1 = W2 = W3 = W.

The value of W = 0.33 is used in this case.

I.7.14 Case D: Graphical Solution

The design space for Case D is shown in Figure I.15. The feasible design space has been identified.

In this case the solution lies at point P on the boundary of the feasible design space. The solution

is the same as the one obtained in Cases A, B and D. The smoke emission goal is exactly satisfied

at this point. The sulfur oxide emission and steam generation target values are underachieved.

Note that because of fewer system constraints the feasible design space is larger.

Figure I. 15: Case D solution space

The Nonlinear, Multigoal Compromise Decision Support Problem

I.7.15 Case E: Mathematical Formulation

The modification to the story introduces a new, nonlinear, constraint in the original formulation.

The constraint deals with the upper limit on the stockpiling costs.

63

It reads:

3X1(X1 - 10) + 4X2 (X2 - 5)  30 ($/hour)

The mathematical formulation for the nonlinear problem is given next. An additional system

constraint is added and the lower bounds on the system variables are taken as zero.

Given

Same as for Cases A and B.

The penalties (gains) from stockpiling coal above (below) the desired limits. A maximum

stockpiling cost of $30/hour.

Assumption

The maximization of the rate of electricity produced is equivalent to the

maximization of the rate of steam generated.

Find

System Variables

 X1 The rate of consumption of Coal A [tons/hour]

 X2 The rate of consumption of Coal B [tons/hour]

Deviations from the target rate of sulfur oxides emission (normalized)

 d1
- Surplus capacity to emit sulfur oxides without penalty

 d1
+ Sulfur oxides emitted above limit

64

Deviations from the target rate of smoke emission (normalized)

 d2
- Surplus capacity to emit smoke without penalty

 d2+ Smoke emitted above limit

Deviations from the target amount of steam to be generated (normalized)

d3
- underachievement of the rate of steam production

 d3
+
 overachievement of the rate of steam production

Satisfy

System Constraints

 Conveyor capacity

 X1 + X2  20 [tons/hour]

 Pulverizer capacity

1.5 X1 + X2  24 [hours]

 Stockpiling cost

 3 X1 (X1 - 10) + 4 X2 (X2 - 5)  30 [$/hour]

System Goals

 Sulfur oxides emission

 -0.1X1 + 0.0667X2 + d1
- - d1

+ = 0

 Smoke emission

 0.0417X1 + 0.0833X2 + d2
- - d2

+ = 1

 Steam generation

65

 0.0556X1 + 0.0463X2 + d3
- - d3

+ = 1

Bounds on system variables

 X1  0, X2  0 [tons/hour]

 X1  25, X2  25 [tons/hour]

Minimize

 The deviation function

 Z = W1 d1
+ + W2 d2

+ + W3 d3
-

 W1 + W2 + W3 = 1 and W1 = W2 = W3 = W (= 0.33)

I.7.16 Case E: Graphical Solution

The design space for this problem is shown in Figure 4.16. The feasible design space is shown by

hatched lines. The new constraint, constraint 3, is also shown. The graphical solution is obtained

by linearizing constraint 3. The method for linearizing equations is described in greater detail in

Volume 2.

Step 1

Rewrite constraint as f(X)  0

 f(X) = 30 - 3X1(X1 - 10) - 4X2(X2 - 5)  0

Step 2

 Choose an initial starting point, Xo

 Xo = { X1
o = 0, X2

o = 0 }

Step 3

Evaluate the following coefficients at Xo

66

 A = f(X) = 30

 B1 = f(X)/X1 | x0 = 30 B2 = f(X)/X2 | x0 = 20

 C1 = 2f(X)/X12 | x0 = -6 C2 = f(X)/X22 | x0 = -8

Step 4

 Evaluate secant plane derivatives

 a1 = (AC1/B1)/(1 - (1-2AC1/B12)0.5) = 32.748

 a2 = (AC2/B2)/(1 - (1-2AC2/B22)0.5) = 24.832

Step 5

 This step is skipped because the roots are real.

Step 6

 Evaluate the right hand side of the linearized constraint.

 b = a1X1
o + a2X2

o - A = -30

Figure I. 16: Case E design space

Step 7

 Establish the linearized constraint

67

a1X1 + a2X2  b

 i.e.,

 32.748 X1 + 24.832 X2  -30

This constraint, when plotted in the design space makes the entire first quadrant of the design

space feasible and therefore is redundant.

Step 8

Choose C, Figure I.16, as the next initial point.

Xo = { X1 = 12, X2 = 6 }

Step 9

Evaluate the following coefficients.

A = -66

B1 = -42 B2 = -28

 C1 = -6 C2 = -8

Step 10

Evaluate the secant plane derivatives.

a1 = -36.588

a2 = -18.857/(1- (-0.3469)0.5)

 Step 11

Are a1 and a2 real?

 a2 is imaginary Set a2 = B2 = -28

Step 12

Evaluate the right hand side of the linearized constraint. Hence,

68

b = -541.06

Step 13

Establish the linearized constraint, viz.,

36.588 X1 - 28 X2  -541.06 or

36.588 X1 + 28 X2  541.06

This constraint is plotted, line 3', in Figure 4.16. As determined by the set of linearized

constraints, the optimum is found to be at C' = {X1 = 9.08, X2 = 7.46}. However, this solution

is approximate. It is in the vicinity of the optimum. To obtain a more accurate solution, a new

starting point needs to be chosen and steps 1 through 8 repeated to obtain solutions close to

the actual optimal. Point C'' {X1 = 10, X2 = 5.75} is determined to be the true optimum.

The algorithm is cumbersome when calculations are done by hand.

I.8 DSIDES Software

I.8.1 History of DSIDES 1976 to 2023

The acronym DSIDES stands for Decision Support In the Design of Engineering Systems. It was

developed to provide a comprehensive decision support environment for all decision makers,

whether engineers or not. The foundation for DSIDES is the Decision Support Problem Technique

(DSPT) as developed under the direction of Farrokh Mistree at the Systems Design Laboratory,

University of Houston[1] . In turn, the DSPT is itself built on the fundamental paradigm that design

is a decision-based activity. Much has been written about the DSPT and Decision-Based Design

(DBD) . [2,3,4]

In 1974, Farrokh Mistree started as a Post-doctoral research fellow under the mentorship of the

69

late Professor Owen F. Hughes at the University of New South Wales, Sydney, Australia. The

Sequential Linear Programming 2nd order (SLIP2) algorithm was jointly developed by Owen

Hughes and Farrokh Mistree during their years of research collaboration (1974-1980) at the

University of New South Wales in Sydney, Australia.

The SLIP2 algorithm was specially developed for a ship structural optimization program called

AUSTROSHIP. The development of AUSTROSHIP was funded by the Department of Defence

(NAVY), Canberra (1974-1976). The American Bureau of Shipping (ABS) continued support for the

ship structural optimization work (1977-1980). The ABS sponsored structural optimization

program is called SHIPOPT. In 1979 a grant was received from the Australian Research Grants

Committee to develop a stand-alone version of the optimization program. H.B. Phuoc was

supported by these funds and he collaborated with Farrokh Mistree in the development of the

stand-alone version of SLIP2 (which now stood for Sequential Linear Programming 2nd

generation).

Many people have contributed to the development of SLIP2 over the years. The first attempt to

develop this algorithm was made by Brian Morley an undergraduate student at the University of

New South Wales under the supervision of Dr. Owen Hughes in 1973-74. Morley, in his

undergraduates honors thesis, identified the problems that needed to be solved. Rigby Gilbert,

in his honors thesis (1976) provided insight which lead to the use of a "convex approximation"

for modeling the nonlinear constraint function. Dr. Vedran Zanic (University of Zagreb)

contributed significantly to overcoming some major obstacles.

- particularly in the area of data management. He also contributed the routines to formulate the

Simplex tableau and parts of the input routine (1976).

70

The multi-objective feature was introduced by Farrokh Mistree in 1980. This work was started

and completed at the University of New South Wales in 1980. Some refinements were introduced

by Farrokh Mistree after he moved to the University of Houston in 1981. In 1983, Tim Lyon

(Department of Defense (Navy), Canberra), assisted in the validation of this feature and also

introduced the feature for post-solution analysis, while he was a graduate student at the

University of Houston. In 1985, the feature to solve hierarchical decision support problems was

introduced and the SLIPML (Sequential Linear Programming: Multi-Level) algorithm was born.

The multilevel feature was validated by Warren Smith (Department of Defense (Navy), Canberra),

Azim Jivan and Jon Shupe.

In 1979 Andrew Cawsey, for his undergraduate honors thesis at the University of New South

Wales under the supervision of Farrokh Mistree, developed a stand-alone program (Program

SELECT) for solving selection decision support problems. Saiyid Kamal was responsible for the

integration of DSIDES into a single unit. In 1987, Eduardo Bascaran and Harshavardhan Karandikar

implemented the feature for automatically determining a suitable starting solution. This feature

was refined by Ravi Reddy in 1988. In 1988 Eduardo Bascaran wrote the code for the multiplex

algorithm and integrated it into DSIDES [5] . This algorithm is used to solve the true-Preemptive

formulation (not the pseudo­ preemptive formulation) of the compromise and coupled DSPs.

Adaptive linear programming was introduced by Bert Bras in 1989 [6] . This was based on some

work done at MARIN, (Maritime Research Institute Netherlands, Wageningen, Netherlands). Bert

Bras and Harshavardhan Karandikar made a number of modifications to improve the robustness

and convergence speed of the ALP algorithm. In 1990 Stan Abeln created a graphic post-

processor for the SUN based on the X-Windows system.

71

The UH team transformed the card based input to terminal based input, provided options for

various levels of output, and included XPLORE [7] to find a good starting solution for DSIDES. The

UH team standardized the code to FORTRAN 77 and ensured that the code ran on the mainframe

at the University of Houston and also on the Vax/VMS and later on the SUN/OS/UNIX mini

computers. The UH team made it possible to solve not only the compromise Decision Support

Problem (cDSP) but also the selection DSP (sDSP), the heuristic DSP (hDSP), and the coupled

Decision Support Problems using the Archimedean and Preemptive formulations of the cDSP in

a synergistic manner.

In April 1991, it was decided to undertake a major rewrite of the entire program. This represented

the first major restructuring of the program since its inception in 1976. The changes implemented

in this rewrite were the creation of simpler formats for user files, the modularization of the

output, the use of the MULTIPLEX algorithm as the primary solver, the incorporation of a robust

adaptive reduced move limit scheme for improved convergence, and a feature for preliminary

exploration of the design space. This process was coordinated by Warren Smith, with Bert Bras

serving as a consultant to the group. The rewrite was carried out by Warren Smith and Ravi

Reddy, with Srinivas Vadde creating the new output routines. The new data input modules were

designed and created by Ravi Reddy. The adaptive reduced move limit algorithm was

implemented by Ravi Reddy. The option for creating tab-delimited text files (for exporting to

spreadsheet programs) was created by Warren Smith. The new interface for coupled problems

was created by Warren Smith. The sensitivity analysis for selection problems was added by Ravi

Reddy. Uwe Lautenschlager performed a lot of testing during this phase.

In March 1992, a manual for DSIDES 4.0 was released. This manual represents the work of many

72

people. Ravi Reddy coordinated its creation. The authors and contributors in alphabetical order

are Bert Bras, Wei Chen, Stein Erikstad, Samir Karandikar, Badrinath Krishnakumar, Uwe

Lautenschlager, Aashish Malhotra, Farrokh Mistree, Sangram Mudali, Bharat Patel, Rama Pakala,

Ravi Reddy, Warren Smith, Srinivas Vadde.

In the late nineties, Mathew Marston (graduate student at the Georgis Institute of Technology)

created a stripped down version of DSIDES in Java to run on an IBM PC. Lin Guo (University of

Oklahoma 2021), in her doctoral dissertation, added the following functionalities to DSIDES [8] :

• Adaptive Linear Programming with Parameter Learning (ALPPL) to replace heuristics with

knowledge about the behavior of the system.

• Adaptive Leveling-Weighting Clustering Algorithm (ALWC) a method to facilitate

subsystem reorganization.

• Adaptive Scenario Planning a method to capture emergent properties of a complex

system while it is being designed.

She also created videos to help novices learn how to prepare input files.

In 2023, Sara Hajihashemi, for her MS thesis to facilitate ease of input created a wrapper for

DSIDES. To be consistent, DSIDES is used by Sara Hajihashemi in her thesis to refer to various

versions and manifestation of SLIPML.

Upon translating the problem statement into a mathematical formulation within the cDSP

construct, this mathematical representation can be seamlessly incorporated into the DSIDES

software to obtain results. Notably, DSIDES is coded in FORTRAN. In this thesis, we design a user-

friendly wrapper for DSIDES, aiming to harness the computational speed advantages of FORTRAN

while ensuring user-friendliness akin to Excel. Additionally, we are establishing a connection

73

between Excel and MATLAB for post-processing analysis; all details are discussed in Part 2 of this

thesis.

To gain a clearer understanding of my thesis contribution and to compare the initial DSIDES

version with the DSIDES Wrapper I have developed, it is essential to delve more into the history

of DSIDES.

I.8.2 DSIDES: A Historic Compiled Program in FORTRAN

The Age of Batch Processing

DSIDES was developed in FORTRAN in the early 70 on a CDC 6600 mainframe with 120k RAM.

The program was written for batch processing. On account of 120k RAM the program was heavily

overlayed. The program was written on cards, complied and the complied version was executed.

The data input was also via cards. The CDC 6600 was in use in the 1960s and early 1970s. It was

one of the fastest computers of its time. The picture of CDC 6600 is shown in Figure I.17.

74

Figure I. 17: Computer CDC 6600 | Old computers, Old technology
https://www.pinterest.com/pin/10907224075942812

 In this context:

Compilation: DSIDES, like many programs of its time, was compiled. The source code, written in

FORTRAN, was transformed into an executable file using a compiler. By this process, the

computer's processor could execute the program without the need for interpreting the source

code each time it ran.

Memory Limitations: DSIDES operated under severe memory constraints. Mistree and Hughes2

had a mere 120 K (kilobytes) of memory at their disposal, and through determined effort, they

2 In 1974, Farrokh Mistree started as a Post-doctoral research fellow under the mentorship of the late Professor
Owen F. Hughes at the University of New South Wales, Sydney, Australia. The early version of DSIDES was called
SLIPML and was co-developed by Hughes and Mistree. SLIPML was an integral part of AUSEVAL a ship structural
design program. AUSEVAL has morphed into MAESTRO a commercial naval ship and submarine program being
used by several navies around the world. In the early eighties, SLIPML was extracted from AUSEVAL and
transformed into DSIDES by Warren F. Smith and Bert A. Bras (PhD students at the University of Houston). To be
consistent DSIDES is used in this thesis to refer to various versions of SLIPML.

75

managed to secure an extra 4 K for overnight use. By modern standards, this amount of memory

is extraordinarily limited, emphasizing the ingenuity needed to make the most of it.

Compilation Overlays: Overlay techniques were employed by the compiled version of DSIDES to

operate efficiently within these memory limitations. This involved loading different segments of

the program into memory as needed, swapping them in and out to make the best use of the

available space. This was a challenging and meticulous process.

Handling the Physical Medium: Punch Cards

DSIDES operated during an era where computer input and output were managed through

punched cards. A figure of punch card machine is presented in Figure I.18.

FigureI. 18: Punch Card in Punch Card Machine
(https://www.computerhope.com/jargon/p/punccard.htm)

This presented its own set of unique challenges:

Punched Card Deck: To run DSIDES, a deck of punched cards was prepared as the program input.

Each card contained specific instructions or data, and the order of the cards was crucial for the

compilation and correct execution of the program. A stack of IBM FORTRAN punch cards is

represented in Figure I.19.

76

Figure I. 19: IBM FORTRAN Punch Cards (https://www.are.na/block/1023150)

Fragility: Punched cards were fragile and required careful handling. Dropping or mis-ordering the

cards could lead to errors during program execution, making the process laborious and error-

prone.

As previously mentioned, DSIDES, originating in the 1970s, was initially coded in the punch card

format. Let Us Let us delve into the world of programming with punched cards to gain a deeper

understanding of this unique and historical method of software development.

I.8.3 Programming with Punched Cards

In the early days of computer programming, especially in the 1960s and 1970s, programmers

used punched cards for writing and storing computer programs. The historic method of coding

and inputting computer programs using physical cards with holes punched in them is referred to

as programming with punch cards. These punched cards contained holes that represented

instructions or data and were used to input programs and data into early computer systems.

77

Punched Card Format

Punched cards were typically 80 columns wide and 12 rows tall. Each column could represent a

character, digit, or a control character. FORTRAN program statements had this format:

Column 1 – Comment - usually marked with a “C”

Column 1-5 - Line Number – usually used with format statements

Column 6 - Continuation of statement on previous card

Column 7-72 - the actual FORTRAN code (latter systems used 7-80)

Column 72-80 – Sequence or Identification number

Creating Punched Cards

• Writing Code: Programmers wrote their code on coding sheets, with each line of code

corresponding to a single punch card. A figure of punch card is shown in Figure I.20.

• Punching the Cards: After writing the code, it was transferred to punch cards using

keypunch machines. Programmers created holes in the cards, representing binary data.

The pattern of holes encoded the instructions and data.

Figure I. 20: Punch Card
(https://twitter.com/dannsimmons/status/1063412986189094912)

78

Compilation and Execution

Once the punch cards were ready, they were fed into card readers, and the code was compiled or

interpreted by the computer. This process turned the punched holes into executable instructions.

Programming Process

• Card Sorting: Programs were typically written on stacks of punched cards, with each card

representing a line of code. The sequence of cards determined the program's flow. To

make changes to the program, programmers created new cards or updated existing ones

and re-sorted the entire deck of cards.

• Card Numbering: It was common practice to number each card to maintain the correct

sequence. Card numbers were typically in columns 73-80, used for debugging and version

control.

• Languages Used: Various programming languages were used with punch cards, including

assembly language, FORTRAN, COBOL, and others, depending on the computer and the

application. FORTRAN was a popular language used with punched cards.

Challenges and Handling

• Error Handling: If a card were damaged, misplaced, or dropped, it could result in errors

when running the program. Therefore, careful handling of the cards was essential.

• Deck Management: Managing a deck of punched cards was a critical aspect of

programming. Large programs could result in stacks of cards that needed to be kept in

order, making it easy to introduce errors when making changes.

79

• Batch Processing: Early computers operated in batch mode. Programmers submitted their

card decks to a computer operator who fed the cards into the computer for processing.

The results, often printed output, were returned to the programmer at a later time.

• Debugging: Debugging programs was a laborious process. If an error was discovered, the

programmer had to locate the erroneous card, correct it, and then recompile the program,

often by generating a new deck of cards.

The limitations and the unique challenges associated with punched card programming, such as

the specific card format and the need to avoid card mishandling, were characteristic of this era.

However, punched card systems were eventually replaced by text-based programming on

terminals and personal computers, significantly simplifying the programming process and

eliminating many of the inconveniences associated with punched cards.

I.8.4 Comparing the DSIDES Versions: Evolution and User Experience

Following the initial release of DSIDES, a series of iterative improvements were made. The

culmination of these enhancements, which introduced the Preemptive form into the software,

occurred in 1982. The DSIDES wrapper has been crafted based on DSIDES 1982. In this section, a

concise comparison between the DSIDES 1982 and the modern DSIDES Wrapper 2023 is provided.

The significant improvements in user experience and functionality offered by the DSIDES Wrapper

are underscored by this comparison.

Input File Preparation and Interface

In the DSIDES 1982, users faced the challenge of preparing input files within plain Notepad

documents. This process lacked descriptions and required users to refer to multiple documents

to ensure they considered all necessary data blocks. In contrast, this process has been streamlined

80

by the DSIDES Wrapper through the adoption of an Excel-based interface. All required data blocks

are readily available, and each cell is accompanied by a description, making it easier for users to

understand and input data accurately.

Execution and User-Friendliness

Running the DSIDES 1982 was a multi-step process. Users had to save Notepad files in specific

folders, obtain file paths, navigate through command prompts, and adhere to specific file

structures. This complex process is simplified by the DSIDES Wrapper through the implementation

of a user-friendly interface. Users can now achieve the same results by merely clicking a "Run"

button, eliminating the need for intricate command-line operations.

Normalization and Post-Processing

In the DSIDES 1982, after obtaining results, users faced additional challenges. They had to

manually calculate normalized values for each scenario (including 13 different scenarios) and then

switch to MATLAB to import data and create ternary plots for post-processing analysis. In contrast,

the normalization process is automated by the DSIDES Wrapper, and a seamless connection to

MATLAB is established. With just one click, users can generate colorful or black-and-white ternary

plots, providing a more efficient and user-friendly post-processing experience.

In summarizing, a substantial enhancement is represented by the DSIDES Wrapper over the

original DSIDES 1982 version. Notably, the following changes are deemed pivotal in this

transformation:

Reducing the Number of Steps in the Process:

 DSIDES 1982:

1) Generate a plain-text document with linear information, ensuring adherence to the

81

specified block structure and input data order crucial for the software. Save the file at the

designated location in the ".DAT" format.

2) Generate a text document containing nonlinear information and save it to a specified

location with the file extension ".f."

3) Navigate to the specific address on your server (Computer/LocalDisk/MinGW/msys).

4) Select the file named 'msys.'

5) In the popped-up command window, type 'cmd' and press 'Enter.'

6) Navigate to your problem's directory by typing 'cd XXXX' and pressing 'Enter' (where

'XXXX' is the path to your problem).

7) Run DSIDES to solve the model by typing 'runalp XXXX' and pressing 'Enter' (where 'XXXX'

is your model's name).

8) Return to the main folder to find the output file.

 DSIDES Wrapper 2023:

1) Open the main folder and select the Excel file located in this folder.

2) Fill out the Linear sheet and click the RUN button. All necessary information and

descriptions are provided in the sheet.

3) Fill in the Nonlinear sheet and click the RUN button. The output file will appear on the

screen.

In summary, the steps to obtain the final result for cDSP have been reduced from 8 in DSIDES

1982 to 3 in DSIDES 2023.

Minimizing the Occurrence of Errors:

In DSIDES 1982, users were prone to errors during command prompt operations, file imports, and

82

when filling out the linear and nonlinear sheets due to specific formatting requirements. These

challenges are addressed by DSIDES 2023, with potential mistakes being eliminated through the

provision of a user-friendly interface that standardizes input formats and is accompanied by

detailed instructions.

Enhancing Time Efficiency:

The reduction of steps and the addition of information and descriptions to the linear and

nonlinear sheets in DSIDES 2023 result in a significant enhancement of time efficiency. Users can

now navigate through the streamlined process more swiftly, reducing the time required for input

preparation and execution.

Facilitating Post-Process Analysis:

DSIDES 2023 streamlines post-process analysis by automating normalization and simplifying

connectivity to MATLAB. The generation of ternary plots is facilitated with a single click, providing

a more efficient and user-friendly experience for users engaged in post-processing tasks.

Overall, data input, execution, and post-processing tasks are simplified, resulting in an enhanced

overall user experience and making it a valuable tool for engineering systems in the modern era.

Having highlighted the significant enhancements in the DSIDES Wrapper, let us now delve into my

key contributions as “I statement” in making these improvements a reality.

I Statement

Learning FORTRAN Language

One of the foundational steps in understanding DSIDES was learning the FORTRAN programming

language. Since the program was originally coded in FORTRAN, I needed to familiarize myself with

83

its syntax and structure. I acquired this knowledge, allowing me to comprehend the different

subroutines and intricacies of the program.

Understanding Punch Card Logic

To bridge the gap between the archaic punch card era and modern computing, I had to schedule

the logic of the program. This involved understanding how programming was executed through

punch cards. Importantly, I did not modify the punch cards themselves; instead, I created a front-

end interface designed to seamlessly integrate with this legacy format.

Learning VBA Language

Visual Basic for Applications (VBA) was another essential skill I had to acquire. I developed the

user-friendly wrapper within Microsoft Excel, enhancing the program's accessibility and ease of

use with VBA.

Connecting Excel and FORTRAN

DSIDES is compiled, making it impossible to make direct alterations to the original code. To

overcome this challenge, I had to learn how to establish a connection between Excel and

FORTRAN. I enabled data transfer and interaction between the two platforms, preserving the

integrity of the original DSIDES code.

Integrating Excel and MATLAB

In addition to connecting Excel and FORTRAN, I learned how to integrate Excel with MATLAB for

post-process analysis. I further extended the capabilities of DSIDES by enabling the analysis and

interpretation of results.

In summary, my work on the DSIDES Wrapper encompassed an adequate learning journey, from

mastering the FORTRAN language to understanding the logic of punch cards and effectively

84

connecting Excel with FORTRAN and MATLAB. A more user-friendly and accessible version of

DSIDES has been achieved through these efforts, granting engineers access to a powerful tool for

addressing complex design challenges in the modern era.

I.9 PDSIDES

DSIDES will fit in the PDSIDES platform. PDSIDES, the Platform for Decision Support in the

Design of Engineering Systems, is a smart system designed to help designers work faster and

create better, cost-effective designs. The tricky part of making decisions during the design

process, especially when dealing with complex engineering systems, is addressed by PDSIDES.

Previous work that employed templates and ontologies to capture decision-related knowledge

is built upon PDSIDES. But now, it takes these templates and turns them into a handy computer

tool. This tool is useful for different users involved in design work, whether creating, editing, or

implementing templates. Various design scenarios, like starting from scratch, adapting existing

designs, or making variations, are covered by it.

Its worth is demonstrated by PDSIDES through its successful assistance in the design of a hot rod

rolling system (HRRS), illustrating how design work can be made more efficient and top-notch

results can be ensured without breaking the bank.

An overview of PDSIDES is illustrated in Figure I.21. PDSIDES is divided into three parts:

knowledge, users, and decision-based design. What follows is the description of the platform

from the bottom up, including how these three parts are connected to enable the functionalities.

(Ming, Z., Nellippallil, A. B., Yan, Y., Wang, G., Goh, C. H., Allen, J., & Mistree, F. July 2018,

PDSIDES—A Knowledge-Based Platform for Decision Support in the Design of Engineering

Systems. Journal of Computing and Information Science in Engineering, DOI: 10.1115/1.4040461.

85

Figure I. 21: PDSIDES Overview

I.10 The Path Forward: Future Plans for Wrapper Improvement

In response to the inherent limitations of traditional visualization methods, including Ternary

Plots, which are characterized by a restriction in representing conflicting goals to only three

variables, a commitment has been made to advancing the capabilities of the wrapper, extending

to addressing challenges associated with other prominent techniques. Different types of

visualization techniques and their limitation has been represented in Figure I.22.

86

Figure I. 22: Different Types of Visualization Techniques

Notably, the relationship between two categorical variables is displayed using rectangular tiles in

a tile plot, also known as a mosaic plot, where the proportion of data in each category is

represented by the area of each tile. However, there are some limitations, such as challenges in

interpretation when there are numerous categories, and it may not be well-suited for visualizing

relationships between more than two categorical variables.

Also, the Parallel Axis Plot, a method employed for visualizing multivariate data through multiple

parallel axes, has limitations in the form of potential clutter when faced with numerous variables.

The resulting complexity may make interpretation difficult, especially in the context of complex

datasets.

Similarly, challenges are faced as the number of nested variables increases in the Nested Axis

Plot, despite its effectiveness in showcasing relationships between multiple variables through

nested axes. Increased visual complexity may be introduced, potentially complicating the

87

interpretation, particularly in scenarios with a substantial number of nested variables.

Moreover, the Ternary Plot, specifically designed for three variables, has constraints when

applied to datasets exceeding this dimensionality. This limitation has restricted its utility for

scenarios involving more than three conflicting goals, thereby underscoring the necessity for a

more adaptive and encompassing visualization approach.

In light of these considerations, a machine learning-based visualization technique, specifically the

interpretable self-organizing maps (ISOM), is incorporated into the future path. Positioned as an

unsupervised neural network structure, excelling at transforming high-dimensional data into a

two-dimensional space is a characteristic of ISOM. Through this strategic integration, users are

granted access to a robust and interpretable visualization platform capable of accommodating

and elucidating multiple conflicting goals simultaneously, with the aim of overcoming the

limitations posed by traditional methods. A proactive response to the challenges posed by

existing visualization techniques is indicated by the adoption of ISOM, ensuring a more

comprehensive exploration of complex solution spaces within the wrapper.

I.11 Summary and Way Forward

In Part 1 of this thesis, We focus on the introduction of the compromise Decision Support

Problem (cDSP) construct and DSIDES. Moving forward, in Part 2 of this thesis, our focus is on the

practical implementation of a user-friendly interface for DSIDES. The implementation includes

the provision of a user manual, guiding users through the functionalities and features of the

wrapper. Users can interact seamlessly with the DSIDES wrapper and effectively utilize it to

address complex decision problems.

Furthermore, the interpretation of output results from DSIDES is discussed, enabling users to

88

analyze and comprehend the solutions provided by the DSIDES wrapper. The post-process

analysis in the decision-making process is explained to enhance users' understanding of the

results generated by DSIDES. To validate the effectiveness of the wrapper and demonstrate its

capabilities, three example problems are presented.

In conclusion, in Part 1, we learn how to formulate the problem in the form of mathematics in

cDSP construct; in Part 2, we implement and convert math formulation from Part 1 to the

template. Initially, we focus on mastering the skill of translating problem statements into the

cDSP construct. Subsequently, we apply this understanding within the DSIDES wrapper for

implementation.

89

Part Two: Designing the User-Friendly Wrapper for DSIDES

Overview of Part 2

In the second part of this thesis, the main focus is on introducing a user-friendly wrapper that has

been designed and implemented for DSIDES. In Part 2, detailed information about how to work

with the DSIDES’s Wrapper effectively, including the Front-end that has been designed to prepare

the input for DSIDES and the Back end that is designed to support the exploration of the solution

space to find solutions that are relatively insensitive to uncertainty, is provided. There is

information on interpreting the results and verifying and validating the DSIDES’s Wrapper in Part

2. To this end, three problems are presented that demonstrate how to start from scratch,

formulate the problem in cDSP, and finally implement the problem in the wrapper. This section

is a useful document for users to practice and learn how to use the software effectively.

Glossary

DSP: The Decision Support Problem (DSP) is a framework used to help make better decisions

when different goals conflict with each other. Solutions that balance these goals fairly are sought

by the DSP. A structured way to analyze and choose the best option from different choices is

provided by the DSP. Complex situations are guided by decision support systems, which utilize

data, models, and criteria, facilitating informed choices that align with our needs and priorities.

cDSP: The compromise Decision Support Problem (cDSP) is a hybrid model combination of

mathematical programming and goal programming techniques that are provided to offer

structure and support for decision-making that involves multiple conflicting goals or objectives.

The objective of cDSP is to enhance the design of a system by modifying its variables, taking into

90

account system constraints, goals, and bounds. The goal of cDSP is to minimize the deviation

between the system's performance and the desired target values specified in the problem

requirements list.

DSIDES: (Decision Support in the Design of Engineering Systems). It is written in FORTRAN to

implement the cDSP construct to identify robust satisficing solutions to design problems when

the models are abstractions of reality.

Wrapper: Wrapper is a protective layer. The underlying functionality of a component or system

has been simplified with the use of a wrapper. The core functionality is wrapped around, and a

simplified interface for interacting with the underlying front-end or back-end systems is provided.

In our work, we have designed a user-friendly Wrapper for DSIDES.

Interface: A set of rules or specifications is defined by an interface, which determines how

different front-end or back-end components can communicate and interact with each other.

Compatibility is ensured, and seamless communication between different parts of the system is

facilitated by the interface, which acts as a bridge.

Front-End: The user-facing part of a software application or website, known as the Front-end, is

where content is presented, user input is facilitated, and an intuitive and engaging user

experience is provided. It includes visual elements, user interface, and interactive features

directly interacted with by users in Front-End. In our work, Front-end has been designed to

prepare the input for DSIDES.

Back-End: In general, the server-side of a software application or website, known as the back

end, is where data processing, business logic, and communication with the Front-end are

handled. It includes components, databases, and logic that are responsible for managing and

91

storing data, executing complex calculations or operations, and providing the necessary

information and functionality to the Front-end for a seamless user experience. In our work, Back-

end is designed to support exploring the solution space to find solutions relatively insensitive to

uncertainty.

II . Introduction To the Wrapper for DSIDES

The second part of this thesis is about the user-friendly wrapper of DSIDES, which is designed to

implement the formulated problem and find solutions that are relatively insensitive to

uncertainty. Building upon the material presented in Part 1 of the thesis, in Part 2, detailed

instructions on effectively using the wrapper, including working with the interface, interpreting

the output results, and verifying and validating the software, have been provided. To illustrate

the process, three problems are presented that demonstrate how to start from scratch,

formulate the problem in cDSP, and ultimately implement it in the wrapper ace. By combining

the theoretical foundations established in the first part with practical examples and step-by-step

guidance, this section is designed to serve as a valuable resource for users to become proficient

in utilizing DSIDES for their research purposes.

 II.1 Understanding Front-End, Back-End, and Wrapper: Enhancing User

Experience and Functionality

Front-end and back-end are terms used by programmers and computer professionals to illustrate

the layers that make up hardware, a computer program, or a website, which are defined based

on how accessible they are to a user. The Front-end and back-end can also be used to describe

situations where the customer has access to one view and employees have access to another.

Front-end components are customer-facing, while rights to the back end are exclusively for

92

authenticated users. In other words, Professionals usually handle the front-end aspect of a

project, while engineers and developers handle the back end. Integration Diagram: Front-end

and Back-end Connections have been represented in Figure II.1. In this figure, specifically, the

DSIDES’s wrapper has been considered. (In Figure II.1, "HTC" stands for "Human-Technology

Collaboration. The collaboration and interaction between humans (users or designers) and

technology (software or systems) to achieve a specific goal or outcome are signified by HTC. In

the context of wrapper design and programming, the combined efforts of designers and

programmers working together to create a wrapper that meets the needs and expectations of

users are referred to as HTC, which means the importance of considering both the human aspect

(user experience, usability, visual design, etc.) and the technological aspect (programming,

functionality, data processing, etc.)).

Figure II. 1: Integration Diagram: Front-end and Back-end Connection in DSIDES

In this section, we explore what front-end and back-end are and their importance and explain

the wrapper concept and role in integrating the front and back-end.

The Front-end refers to the user-facing parts of an application, while the back end refers to the

93

parts of an application that operate without user accessibility. Typically, front-end development

involves designing and implementing the elements that users interact with, such as buttons,

menus, forms, and other graphical elements.

Front-End: Front-end development is a critical part of software development as it directly

impacts an application's usability and overall user experience. Designing a good user interface is

one of the essential aspects of front-end development. The designer must consider the

application's purpose, target audience, and other factors that affect the user experience when

creating the user interface. A good user interface should be intuitive and easy to navigate,

allowing users to perform tasks quickly and efficiently.

Front-end development has evolved significantly in recent years, with new technologies, tools,

and techniques emerging every day. However, the basic principles of front-end development

remain the same. The primary goal of front-end development is to create an attractive, intuitive,

and user-friendly interface that engages users and meets their needs.

Front-end development also involves optimizing the application's performance, such as reducing

the size of files and images, compressing code, and minimizing the number of server requests. By

doing so, the application can load faster, providing a better user experience.

Several popular front-end frameworks, such as React, Angular, and Vue.js, provide developers

with pre-built components and structures, making it easier to create complex user interfaces

quickly. Additionally, they often have a strong community of developers who contribute to their

development, providing resources and support to other developers.

Front-end development also involves integrating the user interface with back-end systems, which

requires an understanding of how data is stored, retrieved, and processed. In many cases, front-

94

end developers work closely with back-end developers to ensure the user interface and back-end

systems are compatible and work seamlessly together.

Testing is another critical aspect of front-end development. Front-end developers must test their

code thoroughly to ensure that the user interface functions correctly and provides a positive user

experience. This involves testing the application on different devices and browsers and testing

for accessibility and performance.

To illustrate the importance of front-end development, let us consider an example. Imagine that

you are building a website for an e-commerce store. The website's Front-end must be intuitive

and easy to use, with clear navigation and a simple checkout process. If the Front-end is poorly

designed or difficult to use, users may abandon their shopping carts and go to a competitor's

website instead. In contrast, a well-designed and user-friendly Front-end can increase user

engagement, improve customer satisfaction, and ultimately lead to more sales and revenue for

the store.

In conclusion, front-end development is a constantly evolving field critical to the success of

software applications. It is an essential part of web development that involves designing and

implementing a website's visual and interactive elements. It requires combining technical skills,

design knowledge, and communication skills. In addition, a good front-end developer must

understand user interface design, accessibility, and performance optimization. Software

applications can provide a seamless and enjoyable user experience by considering these key

aspects of front-end development.

Back-End: The back end refers to parts of a computer application or a program's code that let it

operate Without user accessibility. In other words, it refers to any system that supports back-

95

office applications and manages orders, inventory, and supply processing. The back end gets

input from front-end applications, supports user services, and interfaces with required resources.

It may interact directly with the Front-end or be called from an intermediate program that

intercedes front-end and back-end activities.

 Most data and operating syntax are saved and accessed in the back end of a computer system.

Usually, the code is comprised of one or more programming languages. It is also called the data

access layer of software or hardware and comprises any functionality that requires to be

accessed and navigated to by digital means.

The processing and management of data, execution of core functionality, and performance of

calculations are handled by the back end of a software system. The back end operates on the

server-side and collaborates with the Front-end to ensure users are provided with a

comprehensive and interactive experience.

Tasks and operations involved in back-end processing are executed behind the scenes to process

data and perform complex calculations. This includes the handling of user inputs, interaction with

databases, execution of computations, and generation of results. Achieving efficient and

accurate execution to attain the desired functionality of the software system is the main focus.

Data management within the back end encompasses the software system's organization,

storage, retrieval, and manipulation of data. Activities such as database management, data

validation, integration, and security are included. Data integrity is ensured by the back end,

suitable storage solutions are implemented, and efficient mechanisms for data access and

retrieval are provided.

A seamless and efficient user experience is delivered by collaborating the back end with the

96

Front-end. Behind the scenes, the back-end processes data and executes complex operations

necessary for the functioning of the software application. Data is retrieved and processed,

computations are performed, and results are presented to the users by the Front-end through

communication with the back end. Back-end processing takes place on the server-side and

remains concealed from direct user interaction. It is responsible for handling the heavy lifting of

data processing, calculations, and core functionality execution. Efficient data processing and

generation of accurate results are ensured by the back end for the smooth operation of the

software system.

Maintaining the integrity of the system's data and organizing it is crucial, and this is accomplished

through data management in the back end. It involves tasks such as managing databases,

validating data inputs, integrating data from various sources, and implementing security

measures to safeguard sensitive information. Effective data manipulation and access by the

Front-end and other system components are enabled by providing efficient mechanisms for data

storage and retrieval by the back end.

Overall, the back end of a web application is responsible for managing data and providing the

necessary functionality to the Front-end. It is a complex system that requires a range of skills and

expertise to build and maintain.

Wrapper: In programming, a wrapper is a piece of code or software designed to simplify or

enhance the use of an existing functionality or component. It wraps around the original code or

component and provides a more user-friendly or convenient interface to work with.

Think of it like a gift wrapper. The gift inside may have its own shape, size, and packaging, but the

wrapper makes it easier to handle and present. Similarly, a programming wrapper makes it easier

97

for developers to interact with complex code by providing a simpler and more intuitive interface.

It hides the complexity of the underlying code and exposes a more straightforward way to use it.

A wrapper can also add extra features or functionality to the original code. It may include

additional methods or functions that extend the capabilities of the wrapped code, making it more

versatile and adaptable for different purposes. In other words, a wrapper in programming is a

convenient and user-friendly layer that simplifies the use of existing code or components, making

them easier to work with and enhancing their functionality if needed.

The wrapper concept in software development is a piece of code or software component that is

acted upon as an intermediary layer between the front and back-end of an application. Its

primary role is played by facilitating the integration and communication between these two

components.

The bridge is served by the wrapper between the user interface and the underlying functionality

or data processing logic (back-end). It is acted upon as an encapsulator of complex operations

and is provided with a simplified and standardized interface for the Front-end to be interacted

with by the back end.

Some Key Roles of a Wrapper in Integrating the Front-End and Back-End:

Abstraction and Simplification: The underlying complexity of the back end is abstracted by the

wrapper, as it is provided with a simplified and user-friendly interface for interaction with the

Front-end. A set of functions or methods are presented by it, which can be utilized by the Front-

end without needing to understand the intricacies of the back-end implementation.

Data Transformation and Validation: The tasks of data transformation and validation are

handled by the wrapper, ensuring that the data passed between the Front-end and back-end is

98

in the correct format and meets the required specifications. The data is converted and prepared

from the format used by the Front-end to the format expected by the back end and vice versa.

Communication and Interfacing: Communication channels are established between the Front-

end and back-end by the wrapper, thus facilitating the exchange of data and commands. The

transmission of requests from the Front-end to the back end is handled by it, and the

corresponding responses are received, ensuring smooth interaction and data flow between the

two components.

Error Handling and Exception Management: Mechanisms for handling errors and exceptions

that may occur during the interaction between the Front-end and back-end are included within

the wrapper. Errors or exceptions raised by the back end are captured and processed by it,

providing appropriate feedback or error messages to the Front-end.

Security and Access Control: Security measures and access control policies can be enforced by

the wrapper, ensuring that only authorized requests and data are passed between the Front-end

and back-end. User credentials can be authenticated and validated, access to specific

functionalities or data can be authorized, and data privacy and protection can be enforced.

Overall, the integration of the Front-end and back-end is facilitated by the wrapper, providing a

simplified and standardized interface, handling data transformation and validation, managing

communication, handling errors, and ensuring security. Seamless collaboration between the user

interface and the underlying functionality is enabled by it, contributing to the overall efficiency,

usability, and robustness of the software application.

After learning about the front-end, back-end, and Wrapper, we can now delve into the detailed

workings of the wrapper and provide users with a detailed user manual. In these next sections,

99

we will explore the various features and functionalities of the wrapper step by step, guiding

users on how to navigate and utilize its capabilities effectively.

Before proceeding to the next section, we will present the steps of the DSIDES wrapper in the

form of a flowchart in Figure II.2. This will allow the user to easily and quickly review the process,

ensuring a better understanding of the DSIDES wrapper workflow. As represented in Figure II.2,

the user needs to follow the following steps:

Step 1: Formulate the problem in the cDSP construct. (Elephant Stand Problem has been

represented as an example in part II.2)

Step 2: Open the main folder.

1) It could have any name based on user preference. (Suggestion is to select the project’s

name.)

2) This folder includes 2 folders (OutPut_Files and TernaryPlot) and one excel file

(DSIDES_Wrapper.xlsm).

Step 3: Is the problem in Archimedean form?

1) If yes: Import the required information into the LinearArchimedean sheet. (Section II.2.1)

2) If No: Import the required information into the LinearPreemptive sheet. (Section II.2.2)

Step 4: After importing the data in the proper sheet, Save the data and press the Run button.

After this step, DSIDES.dat will be built in the Output_Files folder."

Step 5: Import the required information into the NonLinear sheet. (Section II.2.3).

Step 6: Save the imported information and press the Run button. After this step, several files will

be built in the Output_Files folder.“ They are DSIDES.f, DSIDES.out, DSIDES.O, DSIDES.exe,

DSIDES.ppi, DSIDES.ppc

100

Note: if you press the Run button for the second time, the output file (DSIDES.out) will pop up

on the screen

Step 7: Ternary Plot for Goal 1: Import the required input into the TernaryPlot1 sheet to generate

the ternary plot for the first goal (Section II.2.4)

Step 8: Ternary Plot for Goal 2: Import the required input into the TernaryPlot2 sheet to generate

the ternary plot for the second goal (Section II.2.4)

Step 9: Ternary Plot for Goal 3: Import the required input into the TernaryPlot3 sheet to generate

the ternary plot for the third goal (Section II.2.4)

101

Figure II. 2: Flowchart of DSIDES Wrapper

II.2 Preparing Input for DSIDES in Different Sheets in the Wrapper

As outlined in Part 1 and shown in Figure II.2, it is necessary to formulate the problem as a

Compromise Decision Support Problem (cDSP) construct before utilizing the DSIDES wrapper. To

demonstrate the functionality of the DSIDES wrapper, the Elephant Stand problem, as an

illustrative example, has been represented. Consequently, various steps to address this example

have been presented, including defining the problem statement, formulating the cDSP (both in

word and mathematical form), and finally implementing it within the DSIDES wrapper.

Elephant Stand Problem in Archimedean Form

Problem Statement:

In the late 1800s, Ringling Bros and Barnum and Baily Circus were looking to establish dimensions

of a new pedestal for their circus elephant Jumbo. They would play a trick that involved a support

pedestal where Jumbo would perform a one-legged hand stand. The cost of manufacturing must

be minimized, which depends on its thickness, width, and the amount of material it consumes.

102

And it must be as tall as possible for a wow factor. And finally, the pedestal must be wide enough

to ensure Jumbo has enough room to safely stand on one foot. This means the goals of the design

are to minimize the manufacturing cost, maximize the height, and maximize the outer radius. A

material of 2014 Aluminum with a modulus of 10600 ksi and a density of 0.1 lb/in^3 has been

selected.

Jumbo's foot is approximately 25" in diameter, so the pedestal must also be greater than 25".

Jumbo weighs 13,560lb and stands 13.5ft tall. Use a factor of safety of 1.5.

Figure II. 3: Overview of Elephant stand problem.

Given a certain type of material, design a cylinder (the “elephant stand”). The cylinder has two

parts joined together. The upper half is a tube, and the designer’s interest is to determine its

thickness, radius, and height that best satisfies the goals identified. The lower half is a 4-inch-

height solid base. The goals identified by the designer include Minimizing the manufacturing cost,

maximizing the height, and maximizing the outer diameter. Requirements include the upper and

lower limit of the parameters that the cylinder can physically reach. The overview of the elephant

stand problem is represented in Figure II.3.

cDSP Formulation:

103

Word Formulation:

Given

System parameters

Material – 2014 Aluminum

The elastic modulus for the material

Safety factor

Yield stress for the material

Density of the material

Load (elephant’s weight)

Moment of inertia for the cylindrical section

Maximum normal stress

Maximum buckling stress for a fixed free column

Cost target

Height target

OR target

Find

System variables

Radius, Thickness, Height

Satisfy

System constraints

 Reaching the minimum outer diameter.

Not exceeding a certain height-to-width ratio.

104

Reaching the stress requirement.

Not exceeding the maximum weight.

Not exceeding the maximum load in stand.

System goals

Goal 1: reaching minimum cost target.

Goal 2: reaching maximum height target.

Goal 3: reaching maximum outer radius target.

Bounds

The upper and lower limit of Radius, Thickness and Height

Minimize

The deviation function.

cDSP Math Formulation:

Given

E = 10600000.

OR=R+T

SF = 1.5

SIGY = 11000.

P = 12000.

PI = 2*ACOS(0.0)

RHO = 0.1

I =
π

4
∗ [(R + T)4 − R4]

W1 = π ∗ [(R + T)2 − R2] ∗ (H − 4)

105

W2 = π ∗ [(R + T)2] ∗ 4

W=(W1+W2)∗RHO

STR=P/(π∗[(R+T)^2−R^2])

PCR=(π^2∗E∗I)/ 4∗(H^2)

COST=e^(2.5/T)∗e^(3/R)∗W

Cost target = 5000

Height target = 180

OR target = 15

Find

 System variables

- R Radius

- T Thickness

- H Height

 Deviation variables

- di
+ over achievement of Goal i, where i=1,2,3

- di
− under-achievement of Goal i, where i=1,2,3

Satisfy

 System constraints

- minOD: minimum outer diameter

2 ∗ R + 2 ∗ T ≥ 6 (CO1)

- heiwid: height to width ratio

R + T − 0.03 ∗ H ≥ 0 (CO2)

106

- stress : minimum stress in stand

SIGY

SF
− STR ≥ 0 (CO3)

- weight: maximum weight

1000 − W ≥ 0 (CO4)

- buckle: maximum load in stand

PCR

F
− P ≥ 0 (CO5)

System goals

- Goal 1: minimum cost

cost target

cost
+ d1

− − d1
+ = 1 (G1)

- Goal 2: maximum height

height

height target
+ d2

− − d2
+ = 1 (G2)

- Goal 3: maximum outer radius

OR

OR target
+ d3

− − d3
+ = 0 (G3)

Bounds

3 ≤ R ≤ 45

0.5 ≤ T ≤ 2.5

100 ≤ H ≤ 120

Minimize

The deviation function.

 Z = ∑ wi ∙3
i=1 (di− + di+),∑ wi = 13

i=1

Implementation in DSIDES Wrapper:

107

In this section, a detailed description of the wrapper is provided. The work is initiated with a main

folder that contains two subfolders: TernaryPlot and Output_Files. Additionally, an Excel file

named DSIDES_Wrapper will be included in this folder.

The TernaryPlot folder encompasses all the necessary files for generating the ternary plot,

eliminating the need for user intervention. The second folder, named OutPut_Files, contains all

the required files for establishing the connection with the DSIDES software and executing the

program to obtain the final solution. Following the execution of the Linear sheet, the DSIDES.dat

file is generated within this folder. Subsequently, upon executing the Nonlinear sheet, six

additional files are generated in this folder, all named DSIDES. These files are of different types,

including Fortran Source (.f), Out File, PPI File, PPC File, O file, and Application. The OUT file

contains all output information described in Section II.3, "Interpret the Output File."

Regarding the name of the main folder, users can choose the naming of this folder based on their

preference. For instance, they may use the project name for clarity in future reference. As

illustrated in Figure II.4, the folder is referred to as DSIDES_ElephantStand.

Note: It is important to note that the folder name should consist of a single word without any

spaces between alphabets.

108

Figure II. 4: Files Included in the Main Folder

In the folder, there is an Excel sheet named "DSIDES_Wrapper." This file is the primary working

file for our Wrapper, and it contains six different sheets, namely LinearArchimedian,

LinearPreemptive, NonLinear, TernaryPlot1, TernaryPlot2, and TernaryPlot3.

In the subsequent sections, a detailed description of each sheet, outlining the necessary steps

for importing the required information into each sheet to enable efficient use of the software

based on the Elephant stand problem, is provided.

II.2.1 Linear Archimedean Sheet

As mentioned in Figure II.2 (Flowchart of DSIDES Wrapper), the third step after defining the

problem in cDSP form and opening the DSIDES_Wrapper.xlsm file, the initial sheet is titled "Linear

Archimedean Sheet." We will go through this sheet if our problem is Archimedean form. The

general layout of this sheet is displayed in Figure II.5. To solve an Archimedean problem (Such

109

as Elephant Stand Problem), the user must incorporate the linear information of the compromise

decision support problem from this source. Therefore, this sheet will be discussed in detail in this

section, thoroughly describing its contents and functionalities (the Elephant Stand Problem has

been implemented as an example in this section).

110

Figure II. 5: Overview of LinearArchimedian sheet

The data file for compromise Decision Support problems is divided into several blocks. Each block

has a six-character name, e.g., PTITLE, NUMSYS, etc. The user is allowed to organize the problem-

111

related information into logically arranged chunks of information by the blocks. Certain blocks

are mandatory, i.e., they have to be specified for any problem. These blocks constitute the bare

minimum amount of information required for a problem. Other optional blocks provide the user

with further control of the solution procedure. Advanced users are expected to use more optional

blocks than novice users. The various blocks are listed in this section. Mandatory blocks and

Optional blocks have been represented in Table II.1 and Table II.2, respectively.

Table II.1: Mandatory Blocks in LinearSheet

Table II.2: Optional Blocks in LinearSheet

NLINCO 9 Names of Nonlinear Constraints (default names: NLCO##)

NL I NGO 10 Names of Nonlinear Goals (default names: NLGO##)

ALP OUT 11 Flags for Output Level, Post Processor, and Time Statistics

USRMOD 12 Flags for User Modules (USRINP, USROUT, USRMON, USRLIN)

OPTIMP 13 Optimization Parameters (VIOLIM, REMO, STEP)

INITFS 14 Automatic Generation of Initial Feasible Solution

USRDAT 15 User Data Block for Access From USRINP

ADPCTL 16 Nonlinear Inequality Constraint Adaption Flag (LADAP)

US ERAN 17 Information for USRANA (maximum cycles - NANCY, NSYCY)

FIXVAR 18 Fixing of Variables

SUPCON 19 Suppression of Nonlinear Constraints

PVALFX 20 Particular Values for Stationarity of System Variables

PVALFZ 21 Particular Values for Stationarity of Deviation Function Levels

PVSTEP 22 Particular Values for STEP

PTITLE 1 Problem title

NUMSYS 2 Number of System Variables

SYSVAR 3 Description of System Variables - name, type, bounds, and guess value

NUMCAG 4 Number of Constraints and Goals

LINCON 5 Linear Constraints - names and data (if specified in NUMCAG)

LINGOL 6 Linear Goals- names and data (if specified in NUMCAG)

DEVFUN 7 Deviation Function - number of levels and weights of deviation variables

STOPCR 8 Stopping Criteria (run and principal print flags, NITER, EPSZ, EPSX)

112

PVCVIL 23 Particular Values for VIOLIM

PVREMO 24 Particular Values for REMO

ADREMO 25 Adaptive Reduced Move Parameters

XPLORE 26 Explore the design space for best initial points

ENDPRB 27 End of Problem Definition

DESCRIPTION OF DATA BLOCKS:

Subsequent to familiarizing oneself with the significance of the various data blocks, including

mandatory and optional fields present in different cells of the Excel sheet, In the subsequent

paragraphs, a comprehensive overview of each data block will provide.

PTITLE (Mandatory):

Purpose: Define the problem title and other user information (name, date, etc.)

Format:

 Textline1 (80 characters maximum)

 textline2 (80 characters maximum)

Variables:

 Textline1: string (80 characters maximum)

 textline2: string (80 characters maximum)

Example:

As depicted in the figure above, a small red indicator is visible in a specific cell. Placing the

mouse cursor over the red indicator will reveal a pop-up text box that contains the description

of the cell.

NUMSYS (Mandatory):

Purpose: Define the number of system variables - real and Boolean.

113

Format:

 i k j

Variables:

 i: integer Number of Real variables

 k: integer Number of Boolean (selection) variables

 j: integer Number of Integer variables

 Example:

Notes:

If you do not have any variables of one type, you must indicate this by specifying a value of

zero. In other words, three integers (i, k, and j) must be specified on the second line of the

block. (Line 5)

SYSVAR (Mandatory):

Purpose: Define system variable information.

Format:

 Name Serial number LB UB guess

Variables:

 Name: string Name of variable (6 characters long)

 Serial number: integer Serial number of variable

 LB: (real/integer) Lower bound for variable

 UB: (real/integer) Upper bound for variable

114

 guess: (real/integer) Initial guess value for variable (Starting point)

Example:

Notes:

• Real variables must precede the integer variables, and the Boolean variables should follow the

integer variables.

• If the variable name is not given, a default name is assigned to the variable. This is of the form

X## where## is the serial number of the variable, e.g., Xl, X45, etc.

• Variable types are assigned based on the serial number of the variable and are shown in the

output file.

• Lower and upper bounds for Boolean variables are O and 1, respectively. The guess value can

be either O or 1.

• If the initial guess value is out of the specified bounds, a default value of[min max] is assumed,

and a warning is printed in the output file.

• It is possible to add as many variables as necessary. If the available space in a spreadsheet is

insufficient, additional rows can be inserted to accommodate new variables. This can be done by

right-clicking on the empty cell and selecting the "Insert" option to add a new row. In this way,

the data set can be expanded to include any number of variables required for the problem at

hand.

4. NUMCAG (Mandatory):

115

Purpose: Define the number of constraints and goals.

Format:

 i j k m n

Variables:

 i: integer Number of linear constraints

 j: integer Number of nonlinear inequality constraints

 k: integer Number of nonlinear equality constraints

 m: integer Number of linear goals

 n: integer Number of nonlinear goals

Example:

Notes:

• The absence of a particular type of constraint or goal must be explicitly specified by using a

zero for the corresponding argument. For instance, zero indicates that there are no nonlinear

equality constraints in the above example.

• If linear constraints are specified (i.e., i* 0), then the LINCON block has to be specified.

• If linear goals are specified (i.e., m* 0), then the LINGOL block has to be specified.

• It is assumed that all the nonlinear constraints and nonlinear goals are defined in the user-

supplied FORTRAN module USRSET.

• This block must be specified before any of the other blocks relating to constraints and goals.

116

• The default names for the deviation variable names are assigned based on the total number of

goals (=m+n) specified in this block. These names are printed in the output file.

5. LINCON (Mandatory if Required by NUMCAG):

Purpose: Define linear constraints.

Format: (for each linear constraint)

 Name n

 (ivar1,cof1) (... , ...) ... (ivarn,cofn)

 Lc rhs

Variables:

 name: string Name of linear constraint (6 characters long)

 n: integer Number of terms to follow / Number of variables in this constraint.

 ivar: integer System variable number / Serial number of Variable

 cof: real Coefficient for system variable

 Lc: chr*2 Logical connector, any one of the following: le, LE, <=, ge, GE, >=,

eq, EQ, ==

 rhs: real Right hand side value for constraint

Example:

The example shows the following two linear constraints.

minOD: minimum outer Diameter : 2*R +2*T >= 6

heiwid : height to width ratio : R+T -0.03 *H >= 0

117

Notes:

• The inequality constraints must precede all equality constraints.

• If the name is not specified, a default name of the form LICO## is assigned to the constraint,

e.g., LICO1, LICO37 etc.

• The order of the terms does not matter as can be seen in the specification of the second

constraint.

• All other coefficients for the linear constraint are set equal to zero.

• It is possible to add as many constraints as necessary. If the available space in a spreadsheet is

insufficient, additional rows can be inserted to accommodate new constraints. This can be done

by right-clicking on the empty cell and selecting the "Insert" option to add a new row. In this way,

the data set can be expanded to include any number of constraints required for the problem at

hand.

6. LINGOL (Mandatory if required by NUMCAG):

Purpose: Define linear goals.

Format: (for each linear goal)

 Name k n

 (ivarl,cofl) (..,..) … (ivarn ,cofn)

 rhs

118

Variables:

 name: string Name of linear goal (6 characters long)

 k: int Serial number of goal.

 n: int Number of terms to follow.

 ivar: int System variable number

 cof: real Coefficient for system variable

 rhs: real Right-hand side value for goal

Example:

Since in Elephant Stand Problem, there is no linear goal; another example has been

represented. The example shows the following linear goal :

0.3 X2 +0.7 X5 +d- - d+ = 27.5

Notes:

• The serial number of the goal is necessary for the specification of the achievement function.

• If the name is not specified, a default name of the form LIGO## is assigned to the goal, e.g.,

LIGO1, LIGO37, etc.

• The order of the terms does not matter.

• All unspecified coefficients for the linear goal are set equal to zero.

• It is possible to add as many goals as necessary. If the available space in a spreadsheet is

insufficient, additional rows can be inserted to accommodate new goals. This can be done by

119

right-clicking on the empty cell and selecting the "Insert" option to add a new row. In this way,

the data set can be expanded to include any number of goals required for the problem at hand.

7. DEVFUN (Mandatory):

Purpose: Define Deviation Function - number of levels and weights of deviation variables. It is

used in Archimedean form. In Preemptive form, ACHFUN will be used.

Format: (for each linear goal)

 K

 L n

 (m1,w1) (... , ...) ... (mk,Wk)

Variables:

 k: int Number of levels

 L: int Level number.

 n : int Number of goals in this level.

 m: integer signed integer indicating deviation variable.

 (+m for overachievement and -m for underachievement)

 w: real weight for deviation variable

Example:

One priority level.

Z1 = 0.3d1
- + 0.6 d2

- + 0.1d3
+

120

8. STOPCR(Mandatory):

Purpose: Define the stopping criteria.

Format:

 i j k a b

Variables:

 i: integer = 1, perform calculations

 = 0, dry run only, no calculations performed

 j: integer = 1, print final solution only, no intermediate results printed.

 = 0, print intermediate results

 k: integer Maximum number of synthesis cycles (NITER)

 a: real Desired stationarity of deviation function (EPSZ)

 b: real Desired stationarity of system variables (EPSX) { Recommended value: 0.05}

Example:

Notes:

• The iterations are stopped if the change in any level of the deviation function is less than EPSZ.

Values for individual levels can be changed using the block PVEPSZ.

• The iterations are stopped if the following condition is met by the system variables,

| Xi,old - Xi,new | <= FRACi

Where:

FRACi = EPSX * [Xi,max - Xi,min]

121

• Particular values for FRAC can be set in the block PVALFX.

9. NLINCO (Optional):

Purpose: Define the names of nonlinear constraints (inequality constraints first).

Format: (for each constraint)

 name k

Variables:

 name: string Name of nonlinear constraint (6 characters long)

 k : integer Number of the nonlinear constraint

Example:

Notes:

• If the name is not specified (i.e., six spaces are specified as the name) or if the NLINCO block is

not specified, a default name of the form NLCO## is assigned to the nonlinear constraint, e.g.,

NLCO1, NLC037 etc.

• The user has the responsibility of matching the numbering scheme for the constraints in the

data file with the numbers used in the FORTRAN file (in module USRSET).

• It is possible to add as many names as necessary. If the available space in a spreadsheet is

insufficient, additional rows can be inserted to accommodate new names. This can be done by

right-clicking on the empty cell and selecting the "Insert" option to add a new row. In this way,

122

the data set can be expanded to include any number of names for nonlinear constraints required

for the problem at hand.

10. NLINGO (Optional):

Purpose: Define the names of nonlinear goals.

Format: (for each goal)

 name k

Variables:

 name: string name of nonlinear goal(6 characters long)

 k: integer number of the nonlinear goal

Example:

11. ALPOUT (Optional):

Purpose: Output control.

Format:

 kl k2 k3 k4 k5 k6 k7 k8 j m

Variables:

 kl: integer = 1, print system variables (Default)

 = 0, do not print system variables

 k2: integer = 1, print deviation variables(Default)

 = 0, do not print deviation variables

123

 k3: integer = 1, print deviation function(Default)

 = 0, do not print deviation function

 k4: integer = 1, print bound information

 = 0, do not print bound information(Default)

 k5: integer = 1, print linear constraint information

 = 0, do not print linear constraint information(Default)

 k6: integer = 1, print nonlinear constraint information

 = 0, do not print nonlinear constraint information(Default)

 k7: integer = 1, print linear constraint activity for a linear solution

 = 0, do not print linear constraint activity for linear

solution(Default)

 k8: integer = 1, print nonlinear constraint activity for a linear solution

 =0, suppress nonlinear constraint activity for linear

solution(Default)

 j: integer = 1, print postprocessor information

 = 0, do not print postprocessor information(Default)

 m: integer = 1, print time statistics

 = 0, do not print time statistics(Default)

Example:

12. USRMOD (Optional):

Purpose: User module-related flags.

124

Format:

 i j k l

Variables:

 i: integer = 1, User module USRINP to be used.

 = 0, USRINP not used (Default)

 j: integer = 1, User module USROUT to be used

 = 0, USROUT not used (Default)

 k: integer = 1, User module USRMON to be used

 = 0, USRMON not used (Default)

 l: integer = 1, User module USRLIN to be used

 = 0, USRLIN not used (Default)

 Example:

Call USRINP only:

Notes:

• The user module USRINP is called before any computations are performed. It can be used to

read problem specific data.

• The user module USROUT is called after all computations are performed. It can be used to

perform customized output.

• The user module USRMON is called after every synthesis cycle. It can be used to obtain extra

problem-specific output after each cycle.

125

• The user module USRLIN is called when the linear goals or coefficients have variable

coefficients.

13. OPTIMP (Optional):

Purpose: Define optimization parameters.

Format:

 a b c

Variables:

 a: real Acceptable violation of nonlinear constraints (VIOLIM).

 Negative real number.{ Default value: -0.001}

 b: real Reduced move limit (REMO)

 Real value between O and 1(Default value: 0.5)

 c:real Perturbation step for linearization (STEP) specified as a fraction of the variable

range.

 Real value between O and 1(Default value: 0.005)

Example:

Notes:

VIOLIM defines the acceptable range by which a nonlinear constraint may be violated and yet be

considered as being satisfied by SLIPML.

A larger value of REMO (e.g., REMO=l) will usually lead to faster convergence.

If the solution shows large fluctuations between cycles, use a small value of reduced move (e.g., 0.1).

126

The value of VIOLIM is used for all nonlinear constraints. To specify individual values for constraints,

use the PVCVIL block.

The value of the reduced move is used for all system variables (except Boolean variables). To specify

individual values for variables, use the PVREMO block. The optional PVREMO block is designed to

provide users with the ability to select specific values for REMO when utilizing the advanced model

feature. Due to its optional nature, this block has not been included in the main wrapper, and

therefore no specific cell has been allocated for it. To utilize this feature, users will need to manually

add a cell to the end of the sheet before the ENDPRB block. This can be done by clicking on the cell

and selecting the "insert" option, followed by selecting the "entire row" to add a new line. Once

the new row has been added, users can import the relevant data based on the instructions provided

in PVREMO blocks.

The value of the perturbation step is used for all nonlinear functions. To specify individual

values for functions, use the PVSTEP block.

Additional Optional Blocks:

The additional blocks described below are optional and may be useful for advanced users who

require greater customization of their model. As such, these blocks have not been included in the

main wrapper, and no specific cell has been allocated for them. If users wish to utilize these

advanced features, they will need to manually add a cell to the end of the sheet before the

ENDPRB block. This can be done by clicking on the desired cell and selecting the "insert" option,

followed by selecting the "entire row" to add a new line. Users can then import the relevant data

based on the instructions provided. We hope this information is helpful to our users who require

greater flexibility and customization in their modeling. Since the following blocks are optional

127

and we did not consider them in the Elephant Stand problem, some other examples have been

presented.

14.. INITFS:

Purpose: Automatic generation of initial feasible solution.

Format:

 n a b c d e

Variables:

 n: integer Maximum allowable number of calls to USRSET.

 a: real Expansion factor for pattern search > 1 (Recommended value 2.0)

 b: real Contraction factor for pattern search < 1 (Recommended value 0.5)

 c: real Acceptable value for the sum of violations (Small value)

 d: real Step size as a fraction of range (0 <d < 1)

 e: real Minimum allowable fraction of the initial step.

Notes:

• The very presence of the INITFS block acts as a flag for the pattern search to be executed. If

you need to tum this option off, remove the block from your data file or inactivate it by placing

it after the ENDPRB block.

• The initial feasible solution is generated using the Hook-Jeeves pattern search algorithm with

ridge adaptation.

• The pattern search will call the user module USRSET at most n times. When the analysis

is time-consuming, this number can be kept small (e.g., 40). Otherwise, use a large number like

400.

128

• The pattern search is terminated if the sum of absolute violations is smaller than c.

• The pattern search is initialized with a step size based on the bounds and the parameter d.

STEPi = Step size* (Maxi - Mini)

• The pattern search is terminated if the step size multiplier becomes smaller than e. The initial

multiplier is taken as unity (=1). This parameter governs the accuracy of the final solution of the

pattern search.

15. USRDAT (Optional):

Purpose: This block contains data that can be read from USRINP.

Format:

 K

 textline1

 …

 textlinek

Variables:

 k: integer Number of lines of text to follow.

 textline 80 characters (maximum) of text

Note:

• This should only be used when a relatively small amount of data needs to be read by USRINP

and when the effort of maintaining an additional data file is considered unnecessary.

16. ADPCTL (Optional):

Purpose: Nonlinear inequality constraint adaption flag.

Format:

129

 j

Variables:

 j: integer = 1, Use nonlinear constraint/goal adaptation

 = 0, No adaptation used (Default)

17. USERAN (Optional):

Purpose: Parameters related to the user analysis module USRANA.

Format:

 1

 k1 k2 ... ki

Variables:

 i: integer Number of analysis cycles (NANCY)

 k: integer Number of synthesis cycles within each analysis cycle (NYSCY)

Example:

USERAN : USRANA related parameters

3 : NASC # of synthesis cycles
20 30 15 : NANSYC(I)

 18. FIXVAR (Optional):

Purpose: Fix system variables to initial guess values.

Format:

 1

 k1 k2 ... ki (free format list)

Variables:

 i: integer Number of system variables to be fixed.

 k: integer Serial number of variable to be fixed.

130

 Example:

 FIXVAR : Fixing Variables

 2
 1 4 Fix X1 and X4 to constant Values.

19. SUPCON (Optional):

Purpose: Suppress nonlinear constraints.

Format:

 i

 k1 k2 ... ki (free format list)

Variables:

 i: integer Number of system constraints to be fixed.

 k: integer Serial number of constraint to be suppressed.

Example:

SUPCON : Suppressing constraints.

1
2 : suppress the stress constraint.

20. PAVALFX (Optional):

Purpose: Particular values for stationarity of system variables.

Format:

 k

 (i1, r1) (... , ...) ... (ik, rk)

Variables:

 k: integer Number of values to follow.

 i: integer Serial number of variable

131

 r: real Particular value of FRACX as a fraction of variable range defined by the

bounds.

21. PVALFZ (Optional):

Purpose: Particular values for stationarity of deviation function level.

Format:

 k

 (i1, ri) (... , ...) ... (ik, fJc)

Variables:

 k: integer Number of values to follow

 i: integer Priority level number

 r:real Particular value of EPSZ for this level

Example:

PVALFZ Stationarity of deviation function

1
(1,0.001) Need accurate convergence for first level goals

22. PVSTEP (Optional):

Purpose: Perturbation step size for particular set of variables.

Format:

 k

 (f1,s1) (... , ...) ... (fk,Sk)

Variables:

 k: integer Number of values to follow.

 f: integer Serial number of system variable being perturbed.

 s: real Perturbation step size specified as a fraction of the variable range.

132

Example:

PVSTEP : particular values for steps

1
(2, 0,02) : step size for variable 2

 23. PVCVIL (Optional):

Purpose: Particular values for nonlinear constraint satisfaction (VIOLIM).

Format:

 k

 (m1,s1) (..., ...) ... (mk,Sk)

Variables:

 k: integer Number of values to follow.

 m: integer Serial number of nonlinear constraint.

 s: real acceptable violation for nonlinear constraint (< 0.0)

Example:

PVCVIL : Nonlinear constraint violations

1
(3, -0.005) : strict control for constraint #3

24. PVREMO (Optional):

Purpose: Particular values for the reduced move.

Format:

 k

 (i1, ri) (... , ...) ... (ik, fk)

Variables:

 k: integer Number of values to follow.

133

 i: integer Serial number of variable.

 r: real Reduced move size.

Example:

PVREMO :particular values for reduced move

(1,0.1) (3,0.1) : Reduced move for variables 1 and 3

Note:

• This can be useful when a small number of variables are not converging, but most of the

variables are converging. Set the reduced move for these variables at a small value.

25. ADREMO (Optional):

Purpose: Use adaptive reduced move algorithm.

Format:

 k a

Variables:

 k: integer Maximum number of calls to USRSET in each cycle

 a: real Convergence criterion for the reduced move, R.

 { Recommended value: 0.05}

Example:

ADREMO : adaptive reduced move

10 0.05 : Max . calls, deltaR

Notes:

• The adaptive reduced move is performed using a combination of linear search and a Golden

section Search algorithm to find the value of Rbest (0≤ R ≤1) which will minimize the deviation

function along the line joining the old solution point, Xold, to the new solution point, Xnew·

Xbest = Xold + Rbest [Xnew - Xold] where O ≤ Rbest≤ 1

134

If point Xnew is infeasible, the search range is contracted to lie between O and 0.5. This contraction

is repeated until a feasible value of R is found or the interval becomes smaller than the

convergence criterion given by a.

• The maximum number of calls to USRSET, to achieve convergence to a given value of a, can be

calculated from the following equation

Nmax = 4.82 log10 (1/a) + 2

The maximum number of times that USRSET is actually called is the smaller of the two numbers

- k and Nmax.

26. XPLORE (Optional):

Purpose: Explore the solution space to find a feasible starting point.

Format:

 j1 j2 j3 j4

 i

 k1 k2 ... ki (free format list)

Variables:

 j1: integer Number of points to be generated (NPTGEN)

 j2: integer Number of best points to be selected.

 j3: integer Flag to print best points in standard output file.

 = 0, do not print best points

 = 1, print best points

 j4: integer Integer seed number for pseudo-random number generation (positive

integer less than 2531)

135

 i: integer Number of system variables to be fixed at initial values during the search

procedure.

 k: integer Serial number of variable to be fixed.

Example:

 XPLORE : Exploring Design space

3000 20 1 1233
3
1 4 : fix X1 and X4 to constant values during search

Notes:

• The points in the design space are generated using two different methods depending on the

number of points requested. If NPTGEN > 2m, then we use the systematic search algorithm of

Aird and Rice (1977) to generate the points. Otherwise, we generate points using random

numbers. Here mis the number of variables which are not fixed.

• The best points are stored in a file named ALPPTS.DAT.

At this stage, all the necessary information regarding the Linear Archimedean sheet has been

described. The focus will now shift to the Linear Preemptive sheet, which shares many similarities

with the previous sheet, but with some minor differences to be discussed in the subsequent

section. The forthcoming section will provide a comprehensive overview of the Linear

Preemptive sheet, highlighting its distinct features and functionalities.

II.2.2 Linear Preemptive Sheet

In this sheet we are importing linear information regarding the preemptive form. As we

described in Section 1.3.6, in the Preemptive approach, the goals are rank ordered to avoid the

difficulty of assigning weights. The measure of achievement is obtained in terms of the

lexicographic minimization of an ordered set of goal deviations. Weights may be used within each

136

set of goals at a particular rank, but the goals are ranked lexicographically, and an attempt is

made to achieve a more important goal before considering other goals. The deviation function in

the Preemptive formulation is written as an ordered array of nonnegative elements. In other

words, to define the formulation, everything is exactly the same; the only difference is in defining

goals. We need to define levels for preemptive since, in Archimedean, levels are equal to 1.

To implement the formulation in this sheet, follow all the rules mentioned in the

LinearArchimedian sheet. The difference is to define the deviation function. In the

LinearArchimedian sheet, there is a DEVFUN option, which includes only one level, but there is

an ACHFUN section in this sheet.

ACHFUN:

Purpose: Define Deviation Function - number of levels and weights of deviation variables. It is

used in Preemptive form.

Format: (for each linear goal)

 K

 L n

 (m1,w1) (... , ...) ... (mk,Wk)

Variables:

 k: int Number of levels

 L: int Level number.

 n: int Number of goals in this level.

 m: integer signed integer indicating deviation variable.

 (+m for overachievement and -m for underachievement)

137

 w: real weight for deviation variable

Example:

In the following example, the 3-level preemptive form has been represented, which includes one

goal in the first level, three goals in level two (all weights are assigned to the third goal), and one

goal in level three.

Deviation functions (pre-emptive form):

z = [e1
- , ∑ 𝑤𝑖3

𝑖=1 . (di
– + di

+), d4
-], ∑ 𝑤𝑖3

𝑖=1 = 1 (wi are weights of the various compromise goals)

where deviation variables are: e1
−, e1

+, d1
+, d1

−, d2
+, d2

− , d3
+, d3

−, d4
−, d4

+

Note:

• It is possible to add as many levels as necessary. If the available space in a spreadsheet is

insufficient, additional rows can be inserted to accommodate new levels. This can be done by

right-clicking on the empty cell and selecting the "Insert" option to add a new row. In this way,

the data set can be expanded to include any number of levels and the information required for

the problem at hand.

All other information would be the same as LinearArchimedian and follow the same rules.

At this stage, all the necessary input information for the linear aspect of the problem has been

described. The subsequent section will shift the focus toward the nonlinear portion of the

problem, wherein its intricate details will be thoroughly examined. This forthcoming section will

138

provide an in-depth analysis of the nonlinear component, covering its various intricacies and

complexities.

II.2.3 Nonlinear Sheet

To formulate and solve a Compromise DSP, in addition to the LinearArchimedian or

LinearPreemptive sheet that is described in Sections II.2.1 and II.2.2, we need to input the

required information in the third sheet, which is the Nonlinear sheet. In this part of the program,

the following six user specified subroutines are required:

• USRINP (for user specific input),

• USRSET (for evaluating nonlinear constraints and nonlinear goals),

• USRLIN (for updating linear constraint and linear goal coefficients),

• USRMON (for user specific monitoring of the solution process),

• USRANA (for relevant analysis cycle calculations), and

• USROUT (for user specific output).

In order to streamline the user experience and facilitate quick identification of the necessary

input information, the NonLinear sheet incorporates distinct visual elements. These include

specific sections highlighted in larger font sizes and colored in red. Within these prominent red

sections, users are required to import essential information such as local variables, details

pertaining to nonlinear constraints, and specifications for nonlinear goals (those are related to

the Subroutine USRSET). This design approach aims to enhance user efficiency and ensure that

the crucial input parameters are readily apparent for the user's attention and completion.

To provide users with a comprehensive understanding of the NonLinear sheet, I have included

visual representations in the form of images for this sheet in Figure II.6. With this image, users

139

could have a holistic view of the layout to grasp the appearance and structure of the NonLinear

sheet at a glance.

140

Figure II. 6: Overview of Nonlinear sheet

Important Note:

When importing input data into the sheet, it is crucial to adhere to the formatting rules, which

follow the convention of Fortran, the primary language used in the DSIDES program. According

to this convention, it is necessary to begin each line with 8 empty spaces before adding the

content.

To illustrate, let us consider a scenario where we need to define integer variables named "a" and

"b." To properly adhere to the formatting rules, we would begin by inserting 8 empty spaces at

141

the start of each line. Following that, we would write "Integer" to indicate the variable type and

then import "a" and "b" on separate lines. Adhering to this specific formatting ensures

compatibility with the DSIDES program and maintains consistency with the Fortran language

conventions. By incorporating 8 empty spaces at the beginning of each line before adding

content, we can effectively import the input data in a manner that aligns with the requirements

of the system.

It is essential to know that the absence of any of these six subroutines will result in a warning

and/or error message at link time, depending on the system being utilized. The consequence of

not providing a subroutine is system dependent. In order to avoid problems, the user should

provide at least a "dummy" subroutine within a DSP template such that all external calls are

satisfied. The recommended "dummy" routines are defined in Section II.2.3.7.

Since these subroutines are essentials to be in this sheet, we will go through each of them to

describe how they will work in the main program.

II.2.3.1 SUBROUTINE USRINP

Subroutine USRINP provides the user with a data input wrapper. By defining a user common

block, the relevant data read through this wrapper can then be made available to other user

specified subroutines (i.e., the other 5 ALP mandatory user supplied routines or any appropriate

additional analysis routines). The desire to actively call subroutine USRINP is flagged through the

optional ALP Data Block USRMOD that has been described in Section II.2.1. The first Boolean flag

(0/1) specified in USRMOD accommodates the USRINP switch.

To minimize the number of files a user has to provide and maintain, the data to be read by USRINP

can be written into the ALP Data Block USRDAT . Again, for details of USRDAT, see II.2.1 in part

142

12. If USRDAT is included in the active portion of the standard compromise data file, the lines of

"text" are written to a temporary file. This file is then rewound, and the unit number of this

temporary file is passed in the USRINP argument list . It is then necessary for the user to write in

USRINP a set of matching read statements for these lines of "text".

Alternatively, if the ALP Data Block USRDAT is not to be used, all other legal FORTRAN 1/0

constructs could be used in USRINP. For example, USRINP could be written to query the user

interactively during runtime or to access some other file or set of files.

C***
C Subroutine USRINP
C
C Purpose: To facilitate the input of domain dependent information
 which can be stored in a COMMON (e.g., COMMON/USER/ ...)
C and shared with other user specified routines as required.
c---

c Arguments Name Type Description
C ---------
C Input: NDESV int number of design variables
C NINP int unit number of the input data file
C NOUT int unit number of the output data file
C DESVAR real vector of design variables

C Output : none

C Input/Output: none
c---
C Common Blocks: none
C
C Include Files: none
C
C Called from: ALPCTL
C
C Calls to: none
c---
C Development History
C
C Author:

143

C Date:
C
C Modifications:
C
C***
c
 SUBROUTINE USRINP (NDESV, NINP, NOUT, DESVAR)
C
c---------------------------------------
c Arguments:
c---------------------------------------
 INTEGER NDESV, NINP, NOUT
 REAL DESVAR(NDESV)
C---------------------------------------
c Local variables:
c---------------------------------------
C
COMMON/USER/ ...
C
C
 Any legal FORTRAN statements.
C
 RETURN
 END

 II.2.3.2 SUBROUTINE USRSET

The following subroutine is implemented within the NonLinear sheet of the wrapper, allowing

users to import essential data. Its purpose is to evaluate the nonlinear constraints and goals

effectively. This subroutine is used to evaluate the nonlinear constraints and goals. It is important

that in specifying the constraints, the inequality constraints precede the equality constraints.

Failure to do so will result in misinterpretation of the evaluation results by the main program. As

far as possible, it is recommended to formulate the constraints so that an increase in x represents

an increase in feasibility. All nonlinear constraints must be specified in the form LHS > 0. 0 or LHS

= 0. 0. That is, the returned value (CONSTR) should be greater equal than 0.0 for feasibility.

144

Numbering of the indices for constraints and goals within Subroutine USRSET should begin with

1 and run to NNLCON and NNLGOA, respectively.

In this subroutine, there are specific sections highlighted in larger font sizes and colored in red

on the sheet. Within these prominent red sections, users are required to import essential

information such as local variables, Set the values of the local design variables (optional), Perform

analysis relevant to nonlinear constraints and goals, evaluate nonlinear constraints, and evaluate

nonlinear goals.

Once the necessary information has been imported into the NonLinear sheet, the user can initiate

the computation process by clicking the "Run" button. This action triggers the program to execute

the calculations based on the provided input. Subsequently, an output file is generated,

encompassing the values of all variables involved in the analysis. This output file is automatically

saved in the main folder of the software. In the event that the user decides to run the analysis

again by clicking the "Run" button for the second time, the output file is conveniently displayed

on the screen. This enables the user to access and review the results promptly, facilitating a

seamless and iterative workflow.

C***
C Subroutine USRSET
c
C Purpose: Evaluate nonlinear constraints and goals.
C NOTE - Do not specify the deviation variables
c---
c Arguments Name Type Description
C ---
C Input: IPATH int = 1 evaluate constraints and goals
C = 2 evaluate constraints only
C = 3 evaluate goals only

C NDESV int number of design variables
C MNLNCG int maximum number of nonlinear constraints

145

and goals
C NOUT int unit number of output data file
C DESVAR real vector of current system variables

C Output : CONSTR real vector of constraint values
C GOALS real vector of goal values
C Input/Output: none
c---
c Common Blocks: USER
C Include Files: none
 C Called from: GCALC
c Calls to: none
c---
c Development History
C
C Author:
c Date:
C
C Modifications:
C***
c-
 SUBROUTINE USRSET (IPATH, NDESV, MNLNCG, NOUT, DESVAR,
 & CONSTR, GOALS)
C
c---------------------------------------
c Arguments:
c---------------------------------------

 INTEGER IPATH, NDESV, MNLNCG, NOUT
 REAL DESVAR(NDESV)
 REAL CONSTR(MNLNCG), GOALS(MNLNCG)
C
c---------------------------------------
c Local variables:
c---------------------------------------
C
 COMMON/USER/ ...
C
C 1.0 Set the values of the local design variables (optional)
C
 Any legal FORTRAN statements.
C
C 2.0 Perform analysis relevant to nonlinear constraints and goals
C

146

 Any legal FORTRAN statements
C
C
C 3.0 Evaluate nonlinear constraints
C
 IF (IPATH .EQ. 1 .OR. IPATH .EQ. 2) THEN
C
 Any legal FORTRAN statements.
 Perform analysis relevant to nonlinear constraints.
 Specify CONSTR(J) for each constraint where J = 1, NNLCON
C
 END IF
C
C
C 4.0 Evaluate nonlinear goals
C
 IF (IPATH .EQ. 1 .OR. IPATH .EQ. 3) THEN
C
 Any legal FORTRAN statements.
C
 Perform analysis relevant to nonlinear goals
C
 Specify GOALS(J) for each goal where J = 1, NNLGOA
C
 END IF
C
C 5.0 Return to calling routine
C
 RETURN
 END

II.2.3.3 SUBROUTINE USRLIN

The Purpose of this subroutine is to facilitate the modification of linear constraint and linear goal

coefficients that are functions of system variables. One example of use is the revision of merit

function values in coupled problems involving selection.

C***
C Subroutine USRLIN
C

147

C Purpose: To facilitate the modification of linear constraints and
C linear goal coefficients that are functions of the system
C variables. One example of use is the revision of merit
 C function values in coupled problems involving selection.
c---
C Arguments Name Type Description
C Input: MLINCG int maximum total number of linear constraints and
goals
C NLINCO int number of linear constraints
C NDESV int number of design variables
C NLINGO int number of linear goals
C NOUT int unit number of the output data file
C DESVAR real vector of current system variables

C Output: none
C Input/Output: COFLIN real matrix of coefficients of linear constraints and
goals
C RHSLIN real vector of RHS values for linear constraints and goals
c---
C Common Blocks: USER
C Include Files: none
C Called from DFCALC
C Calls to none
c---
C Development History
C
C Author:
C Date:
C
C Modifications:
C***
c-
 SUBROUTINE USRLIN (MLINCG, NDESV, NLINCO, NLINGO, NOUT,
& DESVAR, COFLIN, RHSLIN)
C
c---------------------------------------
c Arguments:
c---------------------------------------
c
 INTEGER MLINCG, NDESV, NLINCO, NLINGO, NOUT
 REAL DESVAR(NDESV), COFLIN(MLINCG,NDESV), RHSLIN(NLINCO+NLINGO)
C
c---------------------------------------
c Local variables:

148

c---------------------------------------
c
 COMMON/USER/ ...
C
 Any legal FORTRAN statements.
C
 RETURN
 END

II.2.3.4 SUBROUTINE USRMON

C***
C Subroutine USRMON
C
C Purpose: To facilitate monitoring of the solution process and
C to provide the opportunity to generate additional output
C (Called from within ALPMOD prior to calling linear solver)
c---

c Arguments Name Type Description
C ---------
C Input: NDESV int number of design variables
C NMPRI int number of priority levels
C NNLCON int number of nonlinear constraints
C NNLGOA int number of nonlinear goals
C NOUT int unit number of output data file
C CONDEV real total constraint violation
C DESVAR real vector of current system variables
C DEVFUN real vector of deviation function values
C DEWAR real vector of deviation variables
C GVAL real vector of nonlinear constraint and goal
values

C Output : none

C Input/Output: none
c---·---------------
Common Blocks: USER
C Include Files: none
C Called from: ALPMOD
C Calls to: none
c---
C Development History

149

C
C Author:
C Date:
C
C Modifications:
C***
c-
 SUBROUTINE USRMON (NDESV, NDEVAR, NMPRI, NNLCON, NNLGOA, NOUT,
& DESVAR, DEVVAR, CONDEV, DEVFUN, GVAL)
C
c---------------------------------------
c Arguments:
c---------------------------------------
c
 INTEGER NOUT, NDESV, NDEVAR, NMPRI, NNLCON, NNLGOA
 REAL DESVAR(NDESV), DEVVAR(NDEVAR),
 & CONDEV, DEVFUN(NMPRI), GVAL(NNLCON+NNLGOA)
C
c---------------------------------------
c Local variables:
c---------------------------------------
c
COMMON/USER/ ...
C
 Any legal FORTRAN statements.
C
 RETURN
 END

II.2.3.5 SUBROUTINE USRANA

C***
C Subroutine USRANA
C
C Purpose: To facilitate access to analysis packages too costly to C call within a synthesis
cycle
c---
 c Arguments Name Type Description

C Input: NDESV int number of design variables
 NOUT int unit number of output data file
 DESVAR real vector of current system variables

150

C Output: none

C Input/Output: none
c---
C Common Blocks: USER
C Include Files: none
C Called from: ALPCTL
C Calls to: none
c---
C************** **
SUBROUTINE USRANA (NDESV, NOUT, DESVAR)
C
c---------------------------------------
c Arguments:
c---------------------------------------
 INTEGER NDESV, NOUT
 REAL DESVAR(NDESV)
C
c---------------------------------------
c Local variables:
c---------------------------------------
c
C
COMMON/USER/
C
 Any legal FORTRAN statements.
C
 RETURN
 END

II.2.3.6 SUBROUTINE USROUT

C***
C Subroutine USROUT
C
C Purpose: To facilitate the customization of the final output
c---

c Arguments Name Type Description
C Input: NOUT int unit number of output data file
C DESVAR real vector of design variables

151

C LCONDF lgcl TRUE if deviation function converged.
C LCONSV lgcl TRUE if design variables converged
C LXFEAS lgcl TRUE if vector of design variables represents
a feasible design
C Output: none
C Input/Output: none
C
C Common Blocks: none
Include Files: none
 Called from: ALPCTL
Calls to: none

c---
C***
c
 SUBROUTINE USROUT (NDESV, NOUT, DESVAR, LCONDF, LCONSV, LXFEAS)
C
c---------------------------------------
c Arguments:
c---------------------------------------
 INTEGER NDESV, NOUT
 REAL DESVAR(NDESV)
 LOGICAL LCONDF, LCONSV, LXFEAS
C
c--------------------.------------------
c Local variables:
c---------------------------------------
C
COMMON/USER/
C
C
Any legal FORTRAN statements.
C
 RETURN
 END

II.2.3.7 MINIMUM DUMMY SUBROUTINES

The minimum user specified "dummy" subroutines are defined as given below.

Minimum USRINP "dummy" subroutine

152

 SUBROUTINE USRINP (NDESV, NINP, NOUT, DESVAR)
C
C*** DUMMY ROUTINE. Not used.
C
 INTEGER NDESV, NINP, NOUT
 REAL DESVAR(NDESV)
C
 RETURN
 END

Minimum USRSET "dummy" subroutine

 SUBROUTINE USRSET (IPATH, NDESV, MNLNCG, NOUT, DESVAR,
& CONSTR, GOALS)
C
C*** DUMMY ROUTINE. Not used in the formulation
C
 INTEGER IPATH, NDESV, MNLNCG, NOUT
 REAL DESVAR(NDESV)
 REAL CONSTR(MNLNCG), GOALS(MNLNCG)
C
 RETURN
 END

Minimum USRLIN "dummy" subroutine

 SUBROUTINE USRLIN (MLINCG, NDESV, NLINCO, NLINGO, NOUT,
& DESVAR, COFLIN, RHSLIN)
C
C*** DUMMY ROUTINE. Not used in the formulation
C
 INTEGER MLINCG, NDESV, NLINCO, NLINGO, NOUT
 REAL DESVAR(NDESV), COFLIN(MLINCG,NDESV), RHSLIN(NLINCO+NLINGO)
C
 RETURN
 END

Minimum USRMON "dummy" subroutine

 SUBROUTINE USRMON (NDESV, NDEVAR, NMPRI, NNLCON, NNLGOA, NOUT,
& DESVAR, DEVVAR, CONDEV, DEVF.UN, GVAL)
C

153

C*** DUMMY ROUTINE. Not used in the formulation
C
 INTEGER NOUT, NDESV, NDEVAR, NMPRI, NNLCON, NNLGOA REAL DESVAR(NDESV),
DEVVAR(NDEVAR),
& CONDEV, DEVFUN(NMPRI), GVAL(NNLCON+NNLGOA)
C
 RETURN
 END

Minimum USRANA "dummy" subroutine

 SUBROUTINE USRANA (NDESV, NOUT, DESVAR)
C
C*** DUMMY ROUTINE. Not used in the formulation
C
 INTEGER NDESV, NOUT REAL DESVAR(NDESV)
C
 RETURN
 END

Minimum USROUT "dummy" subroutine

 SUBROUTINE USROUT (NDESV, NOUT, DESVAR, LCONDF, LCONSV, LXFEAS)
C
C*** DUMMY ROUTINE. Not used in the formulation
C
 INTEGER NDESV, NOUT
 REAL DESVAR(NDESV)
 LOGICAL LCONDF, LCONSV, LXFEAS
C
 RETURN
 END

II.2.3.7 LIST OF RESERVED NAMES

The following is a list of symbols (SUBROUTINE names, FUNCTION names and COMMON block

names) which are reserved for use by DSIDES and should not be used in the user's FORTRAN

program.

ADNUPT GETNAM PRBNDS SELPRl

154

ADREMO HJLIMS PRDESV SELPRT

ADVUSl HJMAIN PRDEW SELPRT

ALPDAT HJTEMP PRDEW SELREA

ALPMOD IARFIL PRDFUN SELSEN

BLKCHK INITAB PRFACT SPLITC

CGRAPH INITSL PRICEV SRAN

CHKROW INJFND PRLINA SRCH

COEFF2 INTMUL PRLINC STRNEW

CONACC INVERS PRNLNA STROLD

CONCHK IQSIGN PRNLNC TIMER

CONCOR LEXSML PRPNT TRFORM

CONLIN LUBKSB PRPPCF UPDTAB

CONVER LUDCMP PRPPIF VECMAX

CONVIL LVCEQU PTRAND VECSUM

COPYTX MATMUL PTSRCH XPLORE

DCOMP MKNAME RANCOM ZERONE

DELACC MLINOP RDCOST ZSRCH

DERIV MPLEX REINVR SELDAT

DEVCAL MPLEX RTEST· SELCYC

DFCALC MSETUP SEIGHT PRADPC

ECOMP MULTI1 SELCAL PCIMPR

EIGEN MULTI2 SELCHR NEWVAR

155

ENTVAR ETAVEC EXPTAB NEWRHS

FDATE GCALC NEWINV SELINT

SELLOG SELMER

At this juncture, all the necessary information and sheets have been described, enabling the

smooth execution of the DSIDES software. Upon running the linear and nonlinear sheets, an

output file is generated, either in the form of a popup Notepad file displayed on the screen to or

saved as an outfile type in the main folder. A comprehensive description of the output file can be

found in Section II.3, which elucidates how to interpret its contents. Before delving into the

intricacies of the output file, it is imperative to address the remaining three sheets in Section

II.2.4, which revolve around ternary plots. These forthcoming sections will provide a thorough

exploration of ternary plots, encompassing their functionalities and guiding users on effectively

utilizing them.

II.2.4 Ternary Plot Sheets

Within the DSIDES’s wrapper, there are six sheets available to users: LinearArchimedean,

LinearPreemptive, NonLinear, TernaryPlot1, TernaryPlot2, and TernaryPlot3. In this section, our

focus will be on the last three sheets, specifically dedicated to the plotting of ternary diagrams

for each individual goal. Figure II.7 is the general looking of Ternary Plot sheet.

156

Figure II. 7: Overview of TernaryPlot sheet

In order to facilitate human-based decision-making, users would be able to consider various

scenarios and have weights for each goal imported based on their preferences.

Each sheet contains two different tables. The first table on the left side of the sheet consists of

four columns and 13 rows (the user can define up to 13 variations by assigning different weights

to the goals). In the first three columns the user could assign different weights to each goal,

ensuring that the sum of the weights for the three goals is equal to one. ∑ 𝑤𝑖3
𝑖=1 = 1

 The last column calculates the goal value based on the defined weights and the value of variables

that calculated and represented in the output file output file has been interpret in the Section

II.3. After importing the weights and the corresponding results for each goal, the user can save

the data. Then by pressing the "Calculate the Normalized Value" button, the system calculates

the normalized value for each goal based on the defined scenarios. The results are displayed in

the second table on the right-hand side of the sheet.

157

Once the necessary information for plotting the ternary plots is ready, the user is presented with

two options: a colorful plot or a gray plot. By simply pressing the respective buttons, the program

automatically connects to MATLAB, retrieves the input data from the Excel sheet, and generates

the chosen plot. The user can then save the plot for further analysis and documentation. (User

could follow same rules for all three sheets for goal 1 and goal 2 and Goal 3.)

Using DSIDES’s wrapper engineers and designers are able to visualize the trade-offs among

multiple goals in a decision-making process. A graphical representation of the relationships

between the goals is offered by the ternary plots, providing valuable insights into the decision

space. These plots are used as a tool for understanding the impact of different weight

assignments and scenarios, aiding users in making informed decisions based on their

preferences.

A visually appealing representation is provided by the colorful plot option, with distinct colors

assigned to each region within the ternary diagram and users could quickly identify the dominant

goal for specific scenarios or combinations of weights. On the other hand, a simplified,

monochromatic representation is offered by the gray plot option, which may be preferred in

cases where color differentiation is not necessary or desired.

DSIDES is integrated with MATLAB, utilizing its power for data analysis and visualization. Efficient

data transfer and accurate plotting of ternary diagrams are enabled by the connection between

DSIDES and MATLAB. The user experience is enhanced, and the advanced analytical features

provided by MATLAB are leveraged through this integration.

Once the ternary plot is generated, the next step in the DSIDES workflow involves identifying

satisficing solutions. However, it is important to note that manual intervention is required to

158

obtain the satisficing space from the ternary plot. This manual process is thoroughly explained in

Section II.5.1.4 of the software documentation, which provides detailed step-by-step instructions

for users to follow.

In Section II.5.1.4, users are guided through a comprehensive procedure to identify and define

the satisficing space within the ternary plot. This process involves visually analyzing the plotted

data points and determining the desired range or region that represents satisfactory solutions

based on the specific project requirements and constraints.

The step-by-step instructions provided in this section aim to ensure that users effectively

navigate through the identification of the satisficing space. The manual intervention required in

this stage allows users to exercise their expertise and judgment to determine which solutions

within the ternary plot align with their desired criteria for success.

By carefully following the detailed instructions outlined in Section II.5.1.4, users can confidently

identify the subset of solutions that meet their predefined thresholds and objectives. This manual

approach empowers users to make informed decisions based on their domain knowledge and

experience, further refining the solution space to align with their specific project goals.

Before proceeding with the verification and validation section and implementing all the

information provided, it is important to evaluate the overall content of the output file. A

thorough review of the file will help ensure its accuracy, professionalism, and relevance to the

intended purpose.

II.3 Interpret the Output File

Before proceeding with the verification and validation section and implementing all the

information provided, it is important to evaluate the overall content of the output file. This

159

output file provides a comprehensive summary of the analysis, results, and key findings obtained

through the software's various features and processes. By carefully examining the contents of

the output file, users can gain a holistic understanding of the decision-making outcomes and

validate the effectiveness of their design choices. The output file consolidates all relevant

information, including imported data, calculated values, and other pertinent details, providing a

comprehensive record of the user's decision-making journey. By evaluating the output file, users

can assess the accuracy, consistency, and reliability of the software's calculations, ensuring that

the obtained results align with their expectations and meet the desired project objectives.

Additionally, the output file serves as a valuable resource for documentation purposes, allowing

users to track and communicate the rationale behind their design decisions. Users could find the

output file in the main folder that we have talked about in Section II.2 after running the linear

and nonlinear sheet. The file would be in the format of notepad with the name of "DSIDES.out"

and the type is Out file. The snapshot of the file has been attached here.

The output file begins by specifying the problem size limits, such as the maximum number of

system variables, linear and nonlinear constraints and goals, accumulated constraints, goal

priority levels, synthesis and analysis cycles, and other relevant parameters.

The subsequent sections of the output file provide detailed information about the problem being

solved. This includes the title of the design problem and the system variable details, such as the

number of real variables, discrete variables, and selection (Boolean) variables.

The file also presents information about linear constraints, nonlinear constraints, linear goals,

and nonlinear goals. It provides data on the number of terms in each constraint or goal, their

160

respective equations, and any associated deviation variables.

Additionally, the output file includes information on the stop criteria for synthesis cycles, values

for stationarity of design variables, names of nonlinear constraints and goals, and other

parameters related to optimization. (The additional details originate from the user-provided data

in the Linear and Nonlinear sheets.)

Furthermore, the file mentions the output information that will be printed, such as system

variables, deviation variables, deviation function, bound information, linear and nonlinear

constraint information, and activity for linear and nonlinear solutions.

The output file also provides details about the current point's feasibility, design variables and

their values, deviation variables and their values, deviation function value, and bounds on design

variables.

It further includes information on linear constraints and goals, nonlinear constraints and goals,

and the coefficients and RHS values associated with them.

Also, the file lists any accumulated constraints, suppressed constraints, and additional notes or

warnings that may be relevant to the decision base problem process.

Also, as mentioned in Section II.2.1, the Linear sheet user could select that wants to see the final

result or result for each iteration. The output typically includes the following information in each

iteration:

Design Variables:

The values of design variables for the current synthesis cycle number.

Example:

161

Deviation Variables:

The values of deviation variables associated with the design. These variables quantify the

deviations from the desired goals or constraints.

Example:

Deviation Function Value:

The value of the deviation function for the current point. This function represents the overall

measure of how well the design satisfies the specified goals and constraints. A lower value

indicates a better solution.

Example:

162

Bounds on Design Variables:

The lower and upper bounds for each design variable. These bounds define the acceptable range

of values for the variables during the process.

Example:

Linear Constraints and Goals:

The linear constraints and goals for the current synthesis cycle. These constraints and goals

represent the linear relationships among the design variables and are specified with

corresponding coefficients and RHS (right-hand side) values.

Example:

163

Nonlinear Constraints and Goals:

The nonlinear constraints and goals for the current synthesis cycle. These constraints and goals

involve nonlinear relationships among the design variables and are often represented with

linearized values and nonlinear values.

Example:

Note:

164

"Active constraints" refer to the constraints that are currently influencing the decision support

process. These constraints are taken into account during the synthesis cycle and can impact the

solution.

The term "active" is used to indicate that these constraints are affecting the current iteration and

may be restricting the values or relationships of the design variables. Active constraints are

typically those that are not satisfied or are close to being violated.

In the given output, the line "4 ACTIVE CONSTRAINT(S)" indicates that there are four constraints

that are currently active in synthesis cycle number 2. These constraints are influencing the

process and may need to be considered when evaluating the feasibility and quality of the design

solution.

The specific constraints mentioned in the output, such as NLCO1, NLCO2, stress, minwt, maxht,

and maxor, have corresponding LHS (linearized value) and RHS (nonlinear value) values. The LHS

represents the computed or calculated value based on the current design variables, while the

RHS represents the desired or specified value for that constraint.

The asterisk (*) next to NLCO2, minwt, maxht, and maxor indicates that these constraints are

active, meaning they are currently affecting the decision support process. The "A" in the last two

rows for NLCO1 and NLCO2 indicates that these constraints are accumulated constraints, which

means they were active in previous synthesis cycles and are still influencing the current cycle.

Overall, the presence of active constraints in the output file indicates that the algorithm is

considering and working to satisfy these constraints in order to find a feasible and satisficing

design solution.

Dual Variables (Shadow Prices):

165

The section provides an overview of the dual variables or shadow prices associated with each

constraint or goal in the decision support problem. These Lagrangian multipliers indicate the

sensitivity and impact of the constraints and goals on the overall problem. They quantify the rate

of change of the objective function in response to small perturbations in the corresponding

constraints or goals. The number of constraint multipliers is categorized according to the solver's

A matrix, distinguishing between linear and nonlinear goals, linear and nonlinear constraints, and

various types of nonlinear constraints such as inequality, equality, accumulated, and new

(adapted) constraints. These dual variables offer valuable insights into the direction, magnitude,

and influence of each constraint or goal on the current solution, with a value of 0 indicating

minimal influence.

166

Note:

For example, let us focus on the first constraint "minwt" in the table:

The "minwt" constraint has dual variable or shadow price values of 0.00000 for the design

variables "CONLEV," "PLEV1," This indicates that the objective function is not significantly

affected by small changes in these variables with respect to the "minwt" constraint.

However, the "minOD" constraint has a dual variable value of -1.00000 for the design variable

"CONLEV." This suggests that a small increase or decrease in the "CONLEV" variable would have

a significant impact on the objective function, resulting in changes in the shadow price of the

167

"minOD" constraint. The same interpretation applies to other constraints and goals listed in the

table.

The provided information corresponds to the final solution of a design problem obtained after

the specified synthesis cycle. The convergence criteria have been achieved based on the

stationarity of variables and deviation function.

Final Solution:

Bounds:

The section begins by presenting the bounds on the design variables for the given synthesis cycle.

It includes the active lower and upper bounds for each variable, denoted by an asterisk (*). The

variables are listed along with their respective minimum and maximum bounds.

Example:

168

Active constraints:

 A summary of the active constraints follows, indicating the constraints that are currently active.

This section distinguishes between active linear constraints, active nonlinear constraints, and

active nonlinear goals. It provides insights into which constraints or goals are affecting the current

solution.

Example:

Deviation variables:

Next, the deviation variables for the synthesis cycle are provided. These variables represent the

deviation from the desired values for each goal or objective. The deviation variables are labeled

and associated with specific goals or objectives, and their corresponding values are given.

Example:

169

Deviation function:

The deviation function value for the synthesis cycle is presented, indicating the level of

deviation or objective function value.

This value provides an indication of the solution's performance with respect to the desired

goals or objectives.

Example:

Finally, the section concludes with any additional relevant information, such as the total time

required for the problem and the completion details of the job, including the date and time. This

information helps assess the computational effort and provides a sense of completion for the

problem-solving process.

II.4 Verification and Validation

The developed wrapper is a powerful tool for facilitating various tasks, and it is crucial to ensure

its accuracy and reliability. A comprehensive verification process has been undertaken to confirm

its performance as intended and ensure that the specified requirements have been met. The

wrapper's functionality and performance have been evaluated against predefined benchmarks

and user expectations through thorough testing and analysis. The verification process is carried

out to validate the implemented features' correctness and ensure that all input and output

interactions are functioning as expected. Our goal of this verification step is to ensure that users'

170

needs are effectively addressed by the wrapper, productivity is enhanced, and meaningful

solutions are provided for the intended problems. Through successful verification and validation,

reliability is established by the wrapper, and it could be used as a reliable platform for users to

efficiently and effectively accomplish their tasks. A robust approach has been adopted to verify

and validate the system, ensuring its accuracy, reliability, and user-friendliness. Three examples

have been presented in preemptive and Archimedean forms, each consisting of a problem

statement, cDSP formulation, and wrapper implementation. To ensure thorough evaluation,

multiple individuals execute these examples, rigorously assessing the system's performance in

terms of accuracy, reliability, and user-friendliness. There are two important purposes for this

verification and validation. Firstly, for validation of the functionality and effectiveness of the

wrapper, confirming its ability to meet the intended objectives and providing reliable solutions.

Secondly, it is a valuable learning opportunity for users to practice and gain proficiency in thesis

Parts 1 and 2, enhancing their understanding of the system and its capabilities. The Elephant

Stand Problem example, which was used in Section II.2 to demonstrate how different sheets

would function and how input should be prepared for DSIDES, is presented in the next section.

II.4.1 Elephant Stand Problem in Archimedean Form

The provided example was utilized to illustrate the wrapper section within the introduction of

various sheets. However, given its relevance to the post-solution analysis, it becomes necessary

to reiterate it in this context.

171

II.4.1.1 Problem statement

In the late 1800s, Ringling Bros and Barnum and Baily Circus were looking to establish dimensions

of a new pedestal for their circus elephant Jumbo. They would play a trick that involved a support

pedestal where Jumbo would perform a one-legged hand stand. The cost of manufacturing must

be minimized, which depends on its thickness, width, and the amount of material it would

consume. And it must be as tall as possible for a wow factor. And finally, the pedestal must be

wide enough to ensure Jumbo has enough room to safely stand on one foot. This means the goals

of the design are to minimize the manufacturing cost, maximize the height, and maximize the

outer radius. A material of 2014 Aluminum with a modulus of 10600 ksi and a density of 0.1

lb/in^3 has been selected.

Jumbo's foot is approximately 25" in diameter, so the pedestal must also be greater than 25".

Jumbo weighs 13,560lb and stands 13.5ft tall. Use a factor of safety of 1.5.

Given a certain type of material, design a cylinder (the “elephant stand”). The cylinder has two

parts joined together. The upper half is a tube, and the designer’s interest is to determine its

thickness, radius, and height that best satisfies the goals identified. The lower half is a 4-inch-

height solid base. The goals identified by the designer include Minimizing the manufacturing cost,

maximizing the height, and maximizing the outer diameter. Requirements include the upper and

lower limits of the parameters that the cylinder can physically reach. The overview of the

elephant stand problem is represented in figure II.6.

II.4.1.2 cDSP Formulation

Word Formulation:

172

Given

System parameters

Material – 2014 Aluminum

Elastic modulus for the material

Safety factor

Yield stress for the material

Density of the material

Load (elephant’s weight)

Moment of inertia for the cylindrical section

Maximum normal stress

Maximum buckling stress for a fixed free column

Cost target

Height target

OR target

Find

System variables

Radius, Thickness, Height

Satisfy

System constraints

 Reaching the minimum outer diameter.

Not exceeding a certain height-to-width ratio.

Reaching the stress requirement.

173

Not exceeding the maximum weight.

Not exceeding the maximum load in the stand.

System goals

Goal 1: reaching minimum cost target.

Goal 2: reaching maximum height target.

Goal 3: reaching maximum outer radius target.

Bounds

The upper and lower limit of Radius, Thickness, and Height

Minimize

The deviation function.

cDSP Math Formulation:

Given

E = 10600000.

OR=R+T

SF = 1.5

SIGY = 11000.

P = 12000.

PI = 2*ACOS(0.0)

RHO = 0.1

I =
π

4
∗ [(R + T)4 − R4]

W1 = π ∗ [(R + T)2 − R2] ∗ (H − 4)

W2 = π ∗ [(R + T)2] ∗ 4

174

W=(W1+W2)∗RHO

STR=P/(π∗[(R+T)^2−R^2])

PCR=(π^2∗E∗I)/ 4∗(H^2)

COST=e^(2.5/T)∗e^(3/R)∗W

Cost target = 5000

Height target = 180

OR target = 15

Find

 System variables

- R Radius

- T Thickness

- H Height

 Deviation variables

- di
+ over achievement of Goal i, where i=1,2,3

- di
− under-achievement of Goal i, where i=1,2,3

Satisfy

 System constraints

- minOD: minimum outer diameter

2 ∗ R + 2 ∗ T ≥ 6 (CO1)

- heiwid: height to width ratio

R + T − 0.03 ∗ H ≥ 0 (CO2)

- stress : minimum stress in stand

175

SIGY

SF
− STR ≥ 0 (CO3)

- weight: maximum weight

1000 − W ≥ 0 (CO4)

- buckle: maximum load in stand

PCR

F
− P ≥ 0 (CO5)

System goals

- Goal 1: minimum cost

cost target

cost
+ d1

− − d1
+ = 1 (G1)

- Goal 2: maximum height

height

height target
+ d2

− − d2
+ = 1 (G2)

- Goal 3: maximum outer radius

OR

OR target
+ d3

− − d3
+ = 0 (G3)

Bounds

3 ≤ R ≤ 45

0.5 ≤ T ≤ 2.5

100 ≤ H ≤ 120

Minimize

The deviation function.

 Z = ∑ wi ∙3
i=1 (di− + di+),∑ wi = 13

i=1

176

II.4.1.3 Implementation in DSIDES wrapper

1) Linear sheet

Once the mathematical cDSP formulation is ready, the next step is to finalize the Linear sheet. In

this particular problem, which is Archimedean and consists of a single level, we will choose the

LinearArchimedean sheet to complete the process. Once the LinearArchimedean sheet is filled

with the necessary information, we proceed to press the "Run" button. Executing this command

will generate a file named "DSIDES" in the form of a “.dat” file. This file will be automatically

saved in the main folder of our project. The overview of the Linear sheet for the Elephant stand

problem is represented in Figure II.8

177

Figure II. 8: Overview of Linear sheet in Elephant stand problem.

2) NonLinear sheet

After this step, we need to fill the Nonlinear sheet form. Once we have completed the previous

step, the next task is to complete the Nonlinear sheet form. After filling out the required

information in the form, we need to proceed by pressing the "run" button. This action will

initiate a process that generates several files, such as "DSIDES.f" and DSIDES.out. The "DSIDES.f"

file is in the Fortran format and serves a specific purpose within the system. On the other hand,

the DSIDES.out contains all the output information that we require. Upon pressing the "run"

button again, the system will display the " DSIDES.out " on the screen, making it easily

accessible for further analysis or utilization. The overview of the NonLinear sheet for the

Elephant stand problem is represented in Figure II.9.

178

Figure II. 9: Overview of NonLinear sheet in Elephant stand problem.

179

3) Output file

The final result of these formulations has been represented in Figure II.10

Figure II. 10: Overview of final result in Elephant stand problem

180

4) Ternary Plot

After performing the linear and nonlinear analysis, an output file is generated. The

comprehensive description of this file can be found in Section II.3, titled "Interpretation of the

Output File." In this section, users are instructed to carefully examine the output file, taking into

account the values of variables, deviation variables, and the weights assigned based on the

designer's preferences. By utilizing these factors, users can calculate the results for each goal.

Three separate sheets are provided to aid the analysis, each presenting a ternary plot for an

individual goal. These ternary plots are elaborated upon in Section II.2.4, titled "Ternary Plot."

They visually represent the results of each goal and facilitate a clearer understanding of the data.

Furthermore, the overview of each sheet has been represented in Figure II.11, II.13, and II.15

that illustrating the calculated results in a graphical format. The ternary plot for goals 1, 2, and 3

is represented in Figures II.12 , II.14, and II.16, respectively.

Figure II. 11: Overview of TernaryPlot1 sheet in Elephant Stand Problem

181

Figure II. 12: Ternary plot for goal 1 in Elephant Stand Problem

Figure II. 13: Overview of TernaryPlot2 sheet in Elephant Stand Problem

182

Figure II. 14: Ternary plot for goal 2 in Elephant Stand Problem

Figure II. 15: Overview of TernaryPlot3 sheet in Elephant Stand Problem

183

Figure II. 16: Ternary plot for goal 3 in Elephant Stand Problem

II.4.1.4 Find Satisficing Space in Elephant Stand Problem Based on the Ternary

Plots

To obtain the satisficing space from the ternary plot, manual intervention is required. The

following steps outline the process in a detailed and understandable manner:

• Identify Acceptable Values: Drawing upon their experience and knowledge, the designer

should determine the acceptable value range for each goal. These values have

represented the desired outcomes for the design problem. While there might be some

variations among different designers' perspectives, the focus here is on determining a

range of values that represent the desired outcomes rather than seeking a single optimal

solution. Given the nature of the satisficing space analysis, where the goal is to find

feasible combinations of variables that meet or exceed the acceptable values for all goals,

184

a broader range of acceptable values can be considered. Flexibility and acknowledgment

that multiple solutions within the acceptable range can still be considered satisfactory are

achieved by this approach.

• Normalize Acceptable Values: Normalize the acceptable values to bring them to a

consistent scale. This step ensures that all goals are treated equally during the analysis.

• Draw Contour Lines: Plot the contour lines of the normalized acceptable values on each

ternary plot. The boundaries of the acceptable values for each goal are represented with

these contour lines. Connect the points with equal normalized values to form the contour

lines.

• Identify Feasible Space: The region on each ternary plot that reaches or exceeds the

acceptable value of a particular goal is considered the feasible space for that goal.

Combinations of variables that satisfy or surpass the designer's expectations for that

specific goal are represented by this region.

• Determine Satisficing Space: Superimpose the feasible spaces of all three goals on the

ternary plot. The overlapping region, where the feasible spaces intersect, is the satisficing

space of the design problem. Combinations of variables that simultaneously satisfy or

exceed the acceptable values for all three goals are represented by overlapping region.

• Iterate if Necessary: If there is no superimposed region initially, we could realize that the

acceptable values set in the first step may need adjustment. Revisit the first step and

redefine the acceptable values until a superimposed region is formed in the ternary plot.

With this iterative process, the designer ensures that the design goals are adequately

balanced and achievable.

185

Following the outlined steps, designers can manually analyze the ternary plot to identify the

satisficing space, representing the feasible and desirable design solutions. However, it is

important to acknowledge that there might be situations where no satisficing space is found

initially.

Suppose no superimposed region is observed in the ternary plot, indicating that there is no

overlap between the feasible spaces of the individual goals. In that case, the initially defined

acceptable values for the goals may need adjustment.

The described steps for identifying the satisficing space were implemented for the elephant stand

problem. The ternary plots corresponding to each goal were created, and the results of the

analysis were visually presented in Figures II.17, II.18, and II.19.

The ternary plot illustrating the feasible space for the first goal has been presented in Figure II.17,

while the ternary plot for the feasible space for the second goal has been represented in Figure

II.18. Similarly, the ternary plot of the feasible space for the third goal has been shown in Figure

II.19.

The superimposed region of the feasible spaces from the three goals is presented in Figure II.20.

186

Figure II. 17: Satisficing space for goal 1 in the Elephant Stand Problem

Figure II. 18: Satisficing space for goal 2 in Elephant Stand Problem

187

Figure II. 19: Satisficing space for goal 3 in Elephant Stand Problem

Figure II. 20: No Superimposed region of three goals in the Elephant Stand Problem

NO Satisficing Space in This Case:

In the case where no superimposed region is observed in Figure II.20, the absence of a

satisficing space that satisfies all three goals simultaneously is indicated. There are two

potential approaches to consider in order to expand or identify a satisficing space:

188

Altering Designer's Preferences: One approach is reassessing the designer's preferences

regarding goal achievements. The range is selected based on the designer’s

experience/knowledge/preference. It is not a pure “eye-balled” value; instead, it should be due

to the combination of stakeholders’ requirements and the ternary space generated. A human

designer uses his/her domain knowledge and experience to make the final decision based on

preference. Then, the designer carries out the relaxations on the acceptable values based on

his/her judgment.

Through this iterative process, designers can potentially identify a larger satisficing space that

aligns with their revised preferences.

Modifying Problem Specifications/Formulation: Another approach is about the reevaluating the

problem specifications or formulation. By revisiting the problem constraints, variables, or

functional relationships, designers can discover opportunities to redefine the problem to get a

larger, satisfying space. This may involve considering alternative design criteria, relaxing certain

constraints, or introducing new variables. In addition, designers could have the opportunity to

explore different design possibilities and expand the potential solution space by Modifying the

problem formulation.

It is important to note that both approaches require careful consideration and analysis. Altering

the designer's preferences or modifying the problem formulation should be guided by a

comprehensive understanding of the design problem, its requirements, and the potential

implications of any changes made. Iterative refinement and experimentation may be necessary

189

to determine the most suitable adjustments that result in an expanded or identified satisficing

space.

By exploring these two approaches in detail, designers can gain insights into potential avenues

for expanding or identifying a satisficing space, allowing for a more comprehensive exploration

of design solutions that meet their goals and requirements.

Altering Designers' Preferences for Elephant Stand Problem:

When considering the option of altering the designer's preference, it is important to emphasize

that the selection of acceptable value ranges is not based solely on subjective judgment or

"eyeballing." Instead, it involves a combination of stakeholders' requirements, the ternary space

generated, and the designer's domain knowledge and experience. Various factors and

considerations are taken into account in the process of defining acceptable values for each goal.

The designer draws upon their expertise and understanding of the design problem, incorporating

stakeholders' requirements and constraints. The acceptable values are determined through a

thoughtful analysis that considers the design's feasibility, practicality, and desired outcomes.

For example, let us consider Goal 2. The designer assigns an initial normalized value of "0.67"

based on the original value of "113.4". However, due to their experience and judgment, the

designer may choose to relax the acceptable value to "112.8", resulting in a normalized value of

"0.64". This relaxation is made with careful consideration of the impact on the design, balancing

the desired outcome with practical constraints. (Figure II.22)

190

Similarly, the designer can apply similar relaxations to the acceptable values of all other goals.

These relaxations are carried out based on the designer's judgment, considering the trade-offs,

constraints, and requirements of the design problem.

It is crucial to highlight that the designer's role in adjusting the acceptable values is critical to the

design process. Their domain knowledge, experience, and understanding of the project context

enable them to make informed decisions that align with the stakeholders' requirements while

considering the feasible design space. By incorporating these relaxations and adjustments to the

acceptable values, designers can explore alternative design possibilities and potentially expand

the satisficing space. That the design solution is well-informed, balanced, and aligned with the

goals and preferences of the designer and stakeholders is ensured by this iterative process.

The steps described earlier have been successfully implemented and visualized in Figures II.21,

II.22, and II.23. The adjustments made to the acceptable value ranges for each goal in order to

explore a potentially expanded satisficing space are illustrated by these figures.

In Figure II.21, we depict the updated ternary plot representing the feasible space for the first

goal after the relaxation of acceptable values. Similarly, in Figure II.22, the ternary plot of the

modified feasible space for the second goal, reflecting the adjustments made based on the

designer's judgment, has been shown. In Figure II.23, the ternary plot illustrating the revised

feasible space for the third goal, incorporating the relaxations made to the acceptable values,

has been represented.

191

Figure II. 21: Satisficing space for goal 1 in the Elephant Stand Problem after
implementing the Altering Designer's Preferences method.

Figure II. 22: Satisficing space for goal 2 in the Elephant Stand Problem after

implementing the Altering Designer's Preferences method.

192

Figure II. 23: Satisficing space for goal 3 in the Elephant Stand Problem after
implementing the Altering Designer's Preferences method.

To provide a comprehensive overview, the superimposed region of the updated feasible spaces

for all three goals is presented in Figure II.24. In this figure, the intersecting region that defines

the expanded satisficing space, where all three goals are simultaneously satisfied or exceeded, is

demonstrated. By examining these figures, designers gain valuable insights into the effects of

adjusting the acceptable value ranges on the feasible solution space. In addition, the clear

identification and comprehension of the expanded satisficing space by designers, enabling the

exploration of design solutions that better align with their preferences and stakeholder

requirements, is facilitated by the visual representation of the ternary plots and their

superimposition in Figure II.24.

193

Figure II. 24: Satisficing space for all goal in Elephant Stand Problem , after
implementing Altering Designer's Preferences method.

Figures II.21, II.22, II.23, and II.24 are presented as crucial tools for decision-making, offering

designers a visual representation of the adjusted feasible spaces and the resulting satisficing

space. With these figures, designers can gain insights into the design problem and support the

exploration of improved design solutions within an expanded solution space, facilitating a deeper

understanding of the design problem and supporting the exploration of improved design

solutions within an expanded solution space.

Modifying Problem Specifications/Formulation for Elephant Stand Problem.

The second approach to obtaining a satisficing space is modifying the problem specifications. A

practical example is demonstrated through the comparison of two result tables representing

various design scenarios in Figure II.25

194

Figure II. 25: Comparison of Design Scenarios; Original Problem Formulation vs.
Modified Problem Specifications in Elephant Stand Problem

Based on Figure II.25, In the original problem formulation (top table), specifically concerning Goal

2, out of the 13 scenarios, six have values below 0.6 (indicated by the red entries in the yellow

column on the top). To expand the solution space for this goal, a modification is made to the

problem by focusing on adjusting the height to be closer to the target value of 120.

195

To achieve this, the upper bound of the radius is reduced, aiming for a "tall and thin" pedestal

rather than a "short and flat" one. It is observed that even though the range of the radius was

initially set as [3, 45], the results predominantly fall within the range of [3, 10]. Consequently, the

range of the radius is changed to [3, 10]. The modified problem formulation has been presented

in Figure II.26.

Figure II. 26: Modified Elephant Stand Problem Formulation

By implementing this modification, more results with larger heights are obtained. The number of

scenarios where Goal 2 has a normalized value below 0.6 is reduced from six to four (represented

by the red entries in the yellow column on the second table in Figure II.25). A similar outcome is

observed for Goal 3.

The results of implementing the modified problem specifications are depicted in Figures II.27 (for

196

goal 1), II.28 (for goal 2), and II.29 (for goal 3). Visual representations of the refined feasible

spaces for each respective goal have been provided in these figures. The refined feasible space

for goal 1, highlighting the adjustments made to the problem specifications, is illustrated in Figure

II.27. Similarly, in Figure II.28, the modified feasible space for Goal 2 is showcased, reflecting the

impact of the problem specification modifications. The revised feasible space for goal 3, which

incorporates the changes made to the problem formulation, is represented in Figure II.29.

The final satisficing result has been presented in Figure II.30 presents, combining the refined

feasible spaces for all three goals. The achieved satisficing space, where all three goals are

simultaneously satisfied or exceeded, is demonstrated in this figure.

By examining these figures, designers can gain valuable insights into the effects of modifying the

problem specifications on the feasible solution space. A clearer understanding of the refined

design space and the resulting satisficing solution that meets the goals and requirements of the

design problem is enabled by the visual representations. These figures, namely II.27, II.28, II.29,

and II.30 are critical visual aids for decision-making, as designers could get a comprehensive

representation of the refined feasible spaces and the overall satisficing solution. A deeper

understanding of the design problem is facilitated, and the exploration of improved design

solutions within the modified solution space is supported through these figures.

197

Figure II. 28: Refined Feasible Space for Goal 2 in Elephant Stand Problem; Adjusted

Problem Specifications

Figure II. 27: Refined Feasible Space for Goal 1 in Elephant Stand Problem; Adjusted
Problem Specifications

198

Figure II. 29: Refined Feasible Space for Goal 3 in Elephant Stand Problem; Adjusted

Problem Specifications

Figure II. 30: Final Satisficing Result for All Three Goals in Elephant Stand Problem

with Adjusted Problem Specifications

The importance of even a small adjustment in the acceptable value that can lead to a significant

expansion of the solution space is highlighted in this example. By fine-tuning specific problem

199

specifications, designers can satisfy the design outcomes and achieve a larger satisficing space.

Through careful analysis and iterative modifications, designers can identify opportunities to

redefine problem constraints, variables, or functional relationships to better align with their

design objectives. An exploration of alternative design possibilities is enabled by this process, and

the chances of finding a satisficing space that accommodates the desired outcomes within the

revised problem specifications are enhanced.

Following a thorough and detailed description of the first example, the Elephant Stand problem,

which was presented in Archimedean form, our attention now turns towards the second

problem, the One-Stage Reduction Gearbox, presented in preemptive form. This particular

example is a part of a paper that was published in 2022. In the forthcoming section, we will delve

into the intricacies of the One-Stage Reduction Gearbox problem.

II.4.2 One-Stage Reduction Gearbox in Preemptive Form

The paper titled "Designing concurrently and hierarchically coupled engineered systems,"

authored by Gehendra Sharma, Janet K. Allen, and Farrokh Mistree, was published in 2022. (

Sharma, G., Allen, J.K. and Mistree, F., 2022, ”Designing Concurrently and Hierarchically Coupled

Engineered Systems, Engineering Optimization”, Pages 1556-1576. DOI:

10.1080/0305215X.2022.2098953) The field of engineering optimization is contributed to by this

paper, which investigates the design process for concurrently and hierarchically coupled

engineered systems. It presents a comprehensive framework and methodology for addressing

complex design problems involving interconnected and interdependent components. Valuable

insights into the challenges and considerations involved in designing such systems are provided

by the paper, with an emphasis on the importance of concurrent and hierarchical design

200

approaches. By citing this article in the verification section of our DSIDES Wrapper, we

acknowledge the foundational work and research conducted in this area and leverage the

example presented in the paper to support and validate our own work. To link to this article:

https://doi.org/10.1080/0305215X.2022.2098953

II.4.2.1 Problem statement

The problem statement is about the design of a one-stage reduction gearbox with specific

requirements and objectives. The goal is to recommend gear design decisions (gear material and

dimensions) and shaft design decisions (shear shaft material strength and dimensions) that result

in a high-quality design with low weight, low height, and high torque transmission capability.

Note: From the problem perspective, the decision problem involves two sib problems (the gear

decision problem and the shaft decision problem). The gear decision problem in itself involves

two decisions (geometry decision and material decision). Hence, the formulation has three

decision problems (three levels).

The problem includes the following aspects:

• Required gear ratio of 4.

• Minimum input torque of 80 Nm at 3500 rpm.

• Endurance of at least 10^7 fatigue cycles.

• Gear cutting using a rack cutter with a pressure angle of 20°.

• Required reliability of at least 99%.

• Design goals of low weight and low height while achieving maximum torque transmission

capability.

https://doi.org/10.1080/0305215X.2022.2098953

201

The problem involves the coupled design of gears and shafts, where gear dimension design,

material selection, and shaft dimension design are interconnected. The gear design decisions

(material and dimensions) form a compromise decision, while the shaft design decision forms a

separate compromise decision. The gear material selection decision is horizontally coupled with

the compromise decisions, and the compromise decisions are vertically coupled to the shaft

design decision.

The mathematical formulations for gear and shaft design are based on the work of Budynas and

Nisbett (2019). The problem formulation involves defining the interactions between decisions,

considering correction factors for material properties, and exploring the design space through

multiple decision scenarios.

The limitations, boundaries, variables, and constraints in this problem include:

• Gear material alternatives and their properties.

• Gear dimensions, such as number of teeth, pitch diameter, and face width.

• Shaft dimensions, such as diameter and length.

• Material strength and fatigue properties.

• Bending stress and contact stress numbers.

• Speed, fatigue cycles, and reliability requirements.

• Weight assignment for decision scenarios.

• Constraints on achieving the desired gear ratio, torque transmission capability, weight,

height, and reliability.

II.4.2.2 cDSP Formulation

Word Formulation:

202

Given

System parameters

Torque (T) ≥ 80 Nm

Gear reduction ratio (G) = 4

Pressure angle (α) = 200

Density (δ) = 7800 kg/m3

Speed (N) = 3500 rpm

Overload factor, Ko = 1

Dynamic factor, Kv = 1

Size factor, Ks = 1

Load distribution factor, KH = 1

Rim thickness factor, KB = 1

Geometry factor for bending strength, YJ = 1

Elastic coefficient, ZE = 1

Surface condition factor, ZR = 1.25

Geometry factor for pitting resistance, ZI = 1

AGMA factor of safety for bending, SF = 1

AGMA factor of safety for contact, SH = 1

Stress cycle factor for bending stress, YN = 1

Temperature factor, Y = 1

Reliability factor, YZ = 1

Stress cycle life factor for contact, ZN = 1

203

Hardness ratio factor for pitting, ZW = 1

Required gear ratio: The desired gear ratio for the reduction gearbox is 4.

Input torque: The input torque, denoted as T, should be at least 80 Nm at 3500 rpm.

Fatigue cycles: The gears must endure at least 10^7 fatigue cycles.

Pressure angle: The gears are cut using a rack cutter with a pressure angle (α) of 20°.

Reliability requirement: The gearbox should have a reliability of at least 99%.

Find

system variables

Gear design variables:

m: Gear module (a parameter that determines the size of the gear teeth)

Z: Number of teeth (the number of teeth on the gear)

b: Face width (the width of the gear tooth)

T: Input torque (the torque applied to the gearbox)

Shaft design variables:

Di: Input shaft diameter (the diameter of the hole in the center of the gear)

Do: Output shaft diameter (the overall diameter of the gear)

Sy: Shear strength for shaft material (a material property representing the maximum stress a

material can withstand before undergoing permanent deformation in shear)

X1, X2, X3, X4, X5 : bending stress number and contact stress number for the five Gear materials.

Deviation Variables:

e1
-: under-achievement for gear selection goal

e1
+: over achievement for gear selection goal

204

d1
-: under-achievement for gear mass goal

d1
+: over achievement for gear mass goal

d2
-: under-achievement for gear size goal

d2
+: over achievement for gear size goal

d3
-: under-achievement for gear torque goal

d3
+: over achievement for gear torque goal

d4
-: under-achievement for shaft mass goal

d4
+: over achievement for shaft mass goal

Satisfy

system constraints

Selection constraint for gear material alternatives: The sum of the gear material selection

variables (x1, x2, x3, x4, x5) must equal 1.

Maximum allowable bending stress constraint: A constraint ensuring the bending stress in the

gear is within the allowable limit.

Maximum allowable contact stress constraint: A constraint ensuring the contact stress in the

gear is within the allowable limit.

Maximum allowable shear stress constraint for shafts: Constraints on the shear stress in the

shafts to ensure they are within the allowable limit.

Constraints on deviation variables: Constraints ensuring the deviation variables (di-, di
+) for

various compromise goals are non-negative and their product is zero.

system goals

205

G1: Coupled selection goal : Maximize the merit function (MF) considering the gear material

selection, subject to a deviation constraint.

Coupled compromise gear goals:

G2: Minimize the mass of the gear, subject to a deviation constraint.

G3: Minimize the size of the gear, subject to a deviation constraint.

G4: Maximize the torque of the gear, subject to a deviation constraint.

G5: Coupled compromise shaft goal : Minimize the mass of the shafts, subject to a deviation

constraint.

Bounds

The upper and lower limit of system variables

Minimize

The deviation function.

Mathematic Formulation

Given

Material attributes

 St1 = 184.2
 St2 = 266.9
 St3 = 301.5
 St4 = 342.8
 St5 = 380.0
 Sc1 = 600.0
 Sc2 = 944.0
 Sc3 = 1088.0
 Sc4 = 1034.0
 Sc5 = 1241.0
Merit function Calculations

 I1 = 0.0
 I2 = 0.0

206

 I3 = 0.5
 I4 = 0.5
 P1 = 0.161
 P2 = 0.177
 P3 = 0.212
 P4 = 0.242
 P5 = 0.218
 a12 = 0.068
 a13 = 0.270
 a14 = 0.235
 a22 = 0.170
 a23 = 0.225
 a24 = 0.235
 a32 = 0.218
 a33 = 0.180
 a34 = 0.235
 a42 = 0.238
 a43 = 0.216
 a44 = 0.176
 a52 = 0.306
 a53 = 0.108
 a54 = 0.118
 C1=P1*(b*m**2*z**2)
 C2=P2*(b*m**2*z**2)
 C3=P3*(b*m**2*z**2)
 C4=P4*(b*m**2*z**2)
 C5=P5*(b*m**2*z**2)
 a11 = 0.4 - (C1/(C1+C2+C3+C4+C5))
 a21 = 0.4- (C2/(C1+C2+C3+C4+C5))
 a31 = 0.4- (C3/(C1+C2+C3+C4+C5))
 a41 = 0.4- (C4/(C1+C2+C3+C4+C5))
 a51 = 0.4- (C5/(C1+C2+C3+C4+C5))
 MF1= I1*a11+I2*a12+I3*a13+I4*a14
 MF2= I1*a21+I2*a22+I3*a23+I4*a24
 MF3= I1*a31+I2*a32+I3*a33+I4*a34
 MF4= I1*a41+I2*a42+I3*a43+I4*a44
 MF5= I1*a51+I2*a52+I3*a53+I4*a54
Select material properties.
 St = X1*St1+X2*St2+X3*St3+X4*St4+X5*St5
 Sc = X1*Sc1+X2*Sc2+X3*Sc3+X4*Sc4+X5*Sc5
 TorC=((Sc*m*z)**2*b)/(29810*191**2)
Find:

 System variables

207

Gear material, x1, x2,, x5

Gear design variables :

Module (m)

Number of teeth (z)

Face width (b)

T: Input torque (the torque applied to the gearbox)

 Shaft design variables:

Shear strength for shaft material (Sy)

Input shaft diameter (Di)

Output shaft diameter (Do)

 Deviation variables

e1−, e1+ , d1+ , d1− , d2+ , d2− , d3+ , d3− , d4− , d4+

Satisfy

System constraints

Selection constraint for gear material alternatives

∑ Xi = 1

5

i=1

Maximum allowable bending stress constraint

1 − 10.76 YZ (T /St ・m2・z2・b)≥ 0 → St is the maximum allowable bending stress

Maximum allowable contact stress constraint

1 – (186.42 YZ /Sc) √(3.88 (T / m・z) (1/ b・m・z))≥ 0 → Sc is the maximum allowable contact

stress

208

Maximum allowable shear stress constraint for shafts

1 – (25.46T / Di
3 * Sy) ≥ 0 → Di is the input shaft diameter

1 – (101.86 T / Do
3 *Sy) ≥ 0 → Do is the output shaft diameter

Compromise system constraints

Constraints on deviation variables

di
+ ≥ 0 , di

− ≥ 0 and di
+ · di

− = 0 for i = 1, 2 and 3

System goals

Coupled selection goal

G1: Maximize merit function (MF) : Alt 1

MFi (m,b,z) xi +e1
− − e1

+ = 1

Coupled compromise gear goals

G2: Minimize mass of gear → mgear 2

𝐺𝑒𝑎𝑟 𝑚𝑎𝑠𝑠 𝑡𝑎𝑟𝑔𝑒𝑡

𝐺𝑒𝑎𝑟 𝑚𝑎𝑠𝑠
+ d1

− − d1
+ = 1

G3: Minimize size of gear → sgear 3

𝑆𝑖𝑧𝑒 𝑡𝑎𝑟𝑔𝑒𝑡

𝑆𝑖𝑧𝑒
+ d2

− − d2
+ = 1

G4: Maximize torque of gear → Torque 4

𝑇

𝑡𝑜𝑟𝑞𝑢𝑒 𝑡𝑎𝑟𝑔𝑒𝑡
+ d3

− − d3
+ = 1

Coupled compromise shaft goal.

G5: Minimize mass of shafts → mshaft 5

𝑆ℎ𝑎𝑓𝑡 𝑚𝑎𝑠𝑠 𝑡𝑎𝑟𝑔𝑒𝑡

𝑆ℎ𝑎𝑓𝑡 𝑚𝑎𝑠𝑠
+ d4

− − d4
+ = 1

where

209

MFi (m, b, z) = ∑ 𝐼𝑗𝑅𝑖𝑗(𝑚, 𝑏, 𝑧)4
j=1

Bounds:

B1: 24 ≤ b ≤ 72 (mm) B4: 200 ≤ Sy ≤ 400 B7: 0 ≤ x1 ≤ 1 B10: 0 ≤

x4 ≤ 1

B2: 3 ≤ m ≤ 6 (mm) B5: 20 ≤ Di ≤ 40 B8: 0 ≤ x2 ≤ 1 B11: 0 ≤

x5 ≤ 1

 B3: 18 ≤ z ≤ 30 B6: 30 ≤ Do ≤ 50 B9: 0 ≤ x3 ≤1

Minimize

The deviation function (pre-emptive form)

 Z = [𝑒1
− ∑ wi ∙3

i=1 (𝑑𝑖
− + 𝑑𝑖

+), 𝑑4
−], ∑ wi = 13

i=1 → wi are weights of the various

compromise goals.

II.4.2.3 Implementation in DSIDES Wrapper

At this stage, we have transformed the problem into a compromise decision support problem

(cDSP) form. Our next step is to implement the cDSP using the DSIDES Wrapper. The first sheet

we need to complete is the LinearSheet. Since it is a preemptive form, the user needs to prepare

the input for the LinearPreemptive sheet, which is depicted in Figure II.31 of our documentation.

210

Figure II. 31: Overview of LinearPreemptive Sheet in Design of Gearbox Problem

Once the LinearSheet has been completed and run, a DAT file in the form of a notepad file will

be generated in the output folder.

Now, the next step is about completing the NonlinearSheet. The NonlinearSheet, as represented

in Figure II.30 of our documentation, is where the incorporation of nonlinear components into

the cDSP construct takes place.

To use the NonlinearSheet, the functions or equations that describe the behavior of the nonlinear

components within the cDSP will be specified using the graphical interface of the DSIDES

211

software. The inclusion of nonlinear aspects in the system can be simulated and analyzed using

the NonlinearSheet. To complete the NonlinearSheet, reference should be made to Figure II.32

in the documentation, in which an overview of the sheet's structure and organization has been

provided. By inputting the appropriate equations and parameters into the NonlinearSheet, the

nonlinear dynamics of the cDSP can be effectively modeled and studied.

212

213

214

Figure II. 32: Overview of NonLinear Sheet in Design of Gearbox Problem

Note:

There is one important consideration to keep in mind. When importing the data into the

NonlinearSheet form, allocating a space of eight characters for each data entry is important.

Considering that the Wrapper will link these sheets as input to the primary DSIDES software,

written in Fortran, it is important to note that the initial 8 characters will be disregarded by the

program. If the user neglects these 8 empty spaces, it may lead to an error in the Wrapper's

operation, resulting in the failure to generate the final results.

Final Result:

After the execution of the LinearSheet and NonlinearSheet, an output file will be generated in

the Output_Files folder. The output file containing the simulation results will appear as a pop-up

on the screen, providing immediate access to the results. Furthermore, a copy of the output file

215

will be saved in the output_file folder of the project, ensuring that the results are easily accessible

and can be reviewed at a later time if required.

For the purpose of presenting the final results visually, an image capturing the contents of the

output file has been attached in Figure II:33 . A Snapshot of the simulation outcomes for a quick

overview of the obtained results has been represented in this figure.

By having the output file readily available and with the attached image for reference, the

obtained results of the cDSP model's simulation can be conveniently analyzed and interpreted.

216

217

Figure II. 33: Overview of Final Result in Design of a Gearbox

To accurately generate the ternary plot and identify the satisficing space, users should refer to

the guidelines outlined in Section II.2.4 Ternary Plot and Section II.4.1.4 Find Satisficing Space

Based on the Ternary Plot. The visual representations of the ternary plots and satisficing space

have been provided in the paper, which users can utilize as a reference to validate their results

and ensure they are following the correct steps for identifying the satisficing space accurately.

Following the description of the first and second examples, presented in Archimedean and

Preemptive form, our attention now turns towards the third problem, the hot rod rolling problem

involving sequential decisions, presented in preemptive form. This particular example is a part of

a paper published in 2022. In the forthcoming section, we will delve into the details of the Hot

rod rolling problem.

218

II.4.3 Hot rod rolling problem in Archimedean Form

The paper titled "An Information-Decision Framework to Support Cooperative Decision Making

in the Top-Down Design of Cyber-Physical-Manufacturing Systems" was presented at the ASME

2022 International Design Engineering Technical Conferences and Computers and Information in

Engineering Conference (IDETC/CIE2022) held in St. Louis, Missouri from August 14-17, 2022. An

innovative framework designed to facilitate cooperative decision-making in the top-down design

process of cyber-physical manufacturing systems is introduced in the paper (IDETC2022-90836).

A structured approach for integrating information and decision-making processes is provided by

the framework to enhance collaboration and satisfying system design. By leveraging this

information-decision framework, researchers and practitioners can effectively address the

challenges associated with the design of complex manufacturing systems in the era of cyber-

physical integration. This example has been used for verification of our wrapper.

II.4.3.1 Problem statement

The hot rolling process is an essential manufacturing technique used to shape metal sheets or

rods by passing them through a sequence of heated rollers. The objective of the hot rolling

process is to achieve specific product dimensions while considering various constraints and

objectives to ensure high-quality and efficient production.

The problem involves determining the satisfy configuration of process parameters, including

roller speeds, roller temperatures, material properties, and other relevant factors, to achieve the

desired product specifications. These specifications typically include dimensions such as

thickness, width, and length, as well as properties like surface finish and mechanical strength. In

219

addition to the desired product dimensions, the hot rolling process must take into account a

range of constraints and considerations. Material properties, such as the type of metal being

rolled, its initial temperature, and its mechanical properties, affect the behavior of the metal

during the rolling process and impose limitations on the achievable product dimensions.

A crucial role in hot rolling is played by temperature conditions, as they are influential in the

material's plasticity and thermal expansion. Maintaining optimal temperature profiles

throughout the rolling process is vital to controlling material flow, preventing defects, and

ensuring uniformity of the final product. Furthermore, the production throughput requirements,

such as the desired production rate or the number of products to be manufactured within a

specific timeframe, must be considered to efficiently meet production targets. The hot rolling

problem is involved addressing challenges related to process stability, energy consumption, and

equipment limitations. For instance, the selection of appropriate roller speeds and temperatures

should take into account the mechanical limits of the rolling equipment and the need to avoid

excessive strain on the material.

The problem at hand is involved optimizing the hot rod rolling process for C-Mn steels to produce

steel rods with specific mechanical properties. The goal is to achieve target values of Yield

Strength (YS) of 330 MPa, Tensile Strength (TS) of 750 MPa, and Hardness (HV) of 170The process

is comprised of sequential stages, including reheating, rolling, and cooling. Decisions made at

each stage impact subsequent stages due to the interconnected nature of the process. A

compromise decision support problem approach is employed, considering microstructural

characteristics such as Ferrite grain size, Ferrite fraction, and Pearlite interlamellar spacing. The

challenge is managing conflicts between the cooling process and the desired mechanical

220

properties, seeking a satisficing solution that balances objectives and constraints. The goal is to

develop a cooperative decision-making method that satisfy the process while considering the

interconnected decisions and achieving the specified mechanical property targets.

II.4.3.2 cDSP Formulation

Word Formulation:

 Given

Yield Strength (YS):

 YS1 is calculated based on certain input variables.

 YS2 is determined by a combination of input variables.

 YS3 is obtained through a combination of input variables.

 The overall Yield Strength (YS) is the sum of YS1, YS2, and YS3.

Tensile Strength (TS):

 TS1 is computed using specific input variables.

 TS2 is determined by a combination of input variables.

 TS3 is calculated based on certain input variables.

 The overall Tensile Strength (TS) is the sum of TS1, TS2, and TS3.

Hardness (HV):

 HV1 is obtained through a combination of input variables.

 HV2 is determined based on a specific input variable.

 The overall Hardness (HV) is the sum of HV1 and HV2.

• Ferrite fraction – Xf : The proportion or percentage of ferrite present in the microstructure

after the cooling process.

221

• Ferrite grain size - dα (μm): The size or average diameter of individual ferrite grains in the

microstructure after cooling.

• Pearlite interlamellar spacing - S0 (μm): The distance between adjacent layers or plates of

pearlite in the microstructure after cooling.

• Silicon concentration - [Si] (%): The amount or concentration of silicon in the material after

cooling.

• Nitrogen concentration - [N] (%) : The amount or concentration of nitrogen in the material

after cooling.

• Manganese concentration - [Mn] (%): The amount or concentration of manganese in the

material after cooling.

Find

 Design Variables

 Ferrite Fraction : Ferfrc

 Ferrite Grain Size (microns) : FGrnSz

 Pearlite Inter-lamellar Spacing (microns) : Peaspc

 Si Concentration (%) : Si

 N Concentration (%) : N

 Mn Concentration () : Mn

Deviation variables

- di
+ over achievement of Goal i, where i=1,2,3

- di
− under-achievement of Goal i, where i=1,2,3

Satisfy

222

System constraints

Yield Strength (YS) constraint: The Yield Strength value should be within the range of 220 to 330

MPa.

Tensile Strength (TS) constraint: The Tensile Strength value should fall between 450 and 750

MPa.

Hardness (HV) constraint: The Hardness value should be within the range of 131 to 170.

System goals

Goal 1: Maximize YS [MPa] : Yield Strength (YS)

Goal 2: Maximize TS [MPa] : Tensile Strength (TS)

Goal 3: Maximize HV : Hardness (HV)

Bounds

The upper and lower limit of design variables.

Minimize

The deviation function.

Mathematic Formulation:

Given

 Yield Strength (YS) target = 330 MPa,

 Tensile strength (TS) target = 750 MPa

 Hardness (HV), target = 170

 YS1=(478.*N**0.5)+(1200.*0.024)

 YS2=FERFRC*(77.7+(59.9*MN)+(9.1*(FGRNSZ*0.001)**(-0.5)))

223

 YS3=(1.-FERFRC)*(145.5+(3.5*PEASPC**(-0.5)))

 YS=YS1+YS2+YS3

 TS1=FERFRC*(20.+(2440.*N**0.5)+(18.5*(0.001*FGRNSZ)**(- 0.5)))

 TS2=(750.*(1.-FERFRC))+(92.5*SI)

 TS3=(3.*((1.-FERFRC)**0.5)*(PEASPC**(-0.5)))

 TS=TS1+TS2+TS3

 HV1=FERFRC*(361.-0.357*700.+(50.*SI))

 HV2=175.*(1.-FERFRC)

 HV=HV1+HV2

Find

Design Variables

X1: Ferrite fraction – Xf

X2: Ferrite Grain size - dα (μm)

X3: Pearlite interlamellar spacing - S0 (μm)

X4: Silicon conc. - [Si] (%)

X5: Nitrogen conc. - [N] (%)

X6: Manganese conc. after cooling - [Mn] (%)

Deviation variables

- di
+ over achievement of Goal i, where i=1,2,3

- di
− under-achievement of Goal i, where i=1,2,3

Satisfy

System constraints

224

 CONSTR(1)= (YS/220.)-1 → Minimum Yield Strength

 CONSTR(2)=1.-(YS/330.) → Maximum Yield Strength

 CONSTR(3)=(TS/450.)-1 → Minimum Tensile Strength

 CONSTR(4)=1.-(TS/750.) → Maximum Tensile Strength

 CONSTR(5)=(HV/131.)-1 → Minimum Hardness

 CONSTR(6)=1.-(HV/170.) → Maximum Hardness

System goals

{YS (Xj)/YS target} + d1
- - d1

+ = 1

{TS (Xj)/TS target} + d2
- - d2

+ = 1

{HV (Xj)/HV target} + d3
- - d3

+ = 1

Bounds

Variable bounds

0.1 ≤ X1 ≤ 0.9

8 ≤ X2 ≤ 25 (μm)

 0.15 ≤ X3 ≤ 0.25 (μm)

0.18 ≤ X4 ≤ 0.3 (%)

0.007 ≤ X5 ≤ 0.009 (%)

 0.7 ≤ X6 ≤ 1.5 (%)

Deviation variable bounds

di
+, di

- >= 0 and di
+ * di

- = 0 i = 1, 2, 3

Minimize

The deviation function given below needs to be minimized.

225

Min Z1 = 𝜮 Wi (di
+ + di

-), where 𝜮 Wi = 1 and i = 1, 2, 3

II.4.3.3 Implementation in DSIDES Wrapper

At this stage, we have transformed the problem into a compromise decision support problem

(cDSP) construct. Our next step is to implement the cDSP using the DSIDES Wrapper. The first

sheet we need to complete is the Linear Sheet, which is depicted in Figure II.34 of our

documentation.

226

Figure II. 34: Overview of Linear sheet for hot rod rolling problem.

Once the LinearSheet has been completed and run, a DAT file in the form of a notepad file will

be generated in the output_files folder. The required input information from the linear

simulation for DSIDES software is contained in this DAT file.

Now, the next step involves completing the NonlinearSheet. The NonlinearSheet, as represented

in Figure II.35 of our documentation, is where the incorporation of nonlinear components into

the cDSP model takes place.

To proceed with the NonlinearSheet, the DSIDES software's graphical wrapper will be utilized to

define the nonlinear equations and parameters relevant to the system. The inclusion of nonlinear

aspects in the system to be simulated and analyzed is enabled by the NonlinearSheet. By

completing this sheet, a more comprehensive understanding of the system's behavior can be

obtained, taking into account the nonlinearities present. To complete the NonlinearSheet,

reference should be made to Figure II.35 in the documentation, which is an overview of the

sheet's structure and organization. By inputting the appropriate equations and parameters into

227

the NonlinearSheet, the nonlinear dynamics of the cDSP can be effectively modeled and studied.

228

Figure II. 35: Overview of Nonlinear sheet for hot rod rolling problem.

Final Result:

After the execution of the LinearSheet and NonlinearSheet, an output file will be generated in

output_files. The output file containing the simulation results will appear as a pop-up on the

screen, providing immediate access to the results. Furthermore, a copy of the output file will be

saved in the output_file folder of the project, ensuring that the results are easily accessible and

can be reviewed at a later time if required.

For the purpose of presenting the final results visually, an image capturing the contents of the

output file has been attached in Figure II:36 . A Snapshot of the simulation outcomes for a quick

overview of the obtained results has been represented in this figure. By having the output file

readily available and with the attached image for reference, the obtained results of the cDSP

model's simulation can be conveniently analyzed and interpreted.

229

Figure 2:36 . Snapshot of the simulation outcomes in hot rod rolling problem

To accurately generate the ternary plot and identify the satisficing space, users should refer to

230

the guidelines outlined in Section II.2.4 Ternary Plot and Section II.4.1.4 Find Satisficing Space

Based on the Ternary Plot. The visual representations of the ternary plots and satisficing space

have been provided in the paper, which users can utilize as a reference to validate their results

and ensure they are following the correct steps for identifying the satisficing space accurately.

II.5 Summary and Way Forward

In Part 2, we have focused on designing a user-friendly wrapper for the DSIDES software. We

have provided a comprehensive description of the wrapper, ensuring that all the necessary

details are covered. The user manual created in this part is a valuable resource for users to

understand and navigate the wrapper effectively.

Furthermore, to ensure the correctness and usability of our wrapper, three different examples in

both preemptive and Archimedean forms have been presented. These examples are intended as

verification and validation documents, allowing the functionality and user-friendliness of the

wrapper to be assessed. Additionally, practical scenarios are offered to users, enabling them to

apply their learnings from Part 1 and further enhance their understanding.

Moving forward, our thesis's next part(Part 3) is about developing a programmer's manual for

DSIDES. This manual is helpful for programmers and technical users who require in-depth

knowledge about the software. We provide program manuals, flowcharts, coding guidelines, and

input/output subroutines that will improve user understanding and simplify comprehension.

One of the key objectives in part 3 is to consolidate all programs and subroutines in one place,

creating a comprehensive documentation resource. Multiple purposes are served by this

consolidation, including the facilitation of ease of access and reference, the promotion of better

organization, and the enhancement of the overall clarity of the programming aspects of DSIDES.

231

By providing a programmer's manual, we aim to enhance the accessibility and usability of DSIDES,

enabling programmers and technical users to utilize the software more efficiently and effectively.

This manual will be a valuable asset for both the development team and users, ensuring a smooth

and seamless experience with DSIDES.

232

Part Three: Program Manuals and Improvement of DSIDES

preamble about Part 3:

The main objective of creating Part Three is to provide in-depth material for users seeking to

enhance or modify the code. The modification could include improving or changing only a single

part or purpose of the program or considering changes in the whole program to another

programming language. Since this software includes 90 subroutines, each with its specific role,

understanding them becomes essential. Hence, I have compiled all these subroutines in a table,

providing their names and specific purpose. With this setup, it is easier for users who want to

modify or change specific parts to find the exact subroutine. Additionally, getting to know the

different purposes of the subroutines is helpful to understand how the whole program works.

Also, because there are five main input files in the program where these subroutines are used,

users can understand these input subroutines better. I have also added flowcharts for two of the

more complicated input subroutines that might be harder to grasp. Furthermore, I have included

some observations based on my understanding after certain input subroutines, which could be

beneficial for other users.

Overview of Part 3:

In the third part of this thesis, the programmer manuals, flowcharts, coding, and information

about input subroutines in DSIDES are provided. The main focus of this section is on providing

information about the input files and their respective purposes (Output files have been covered

in Part two Section 2.3). The objective is to simplify their comprehension of the users by

presenting their flowcharts. Additionally, other subroutines that are called through the main files

will be cover in this part. This information is necessary for users wanting to improve the software

233

and understand how the programs work. In this section, readers will have access to all the

necessary information to improve the software and their work in the future. The focal objective

of this section is to consolidate information about the programs and subroutines of DSIDES in a

single location for documentation purposes. In the following section, the purposes of all

subroutines in the program is outlined to assist users who wish to enhance the software. This will

highlight the key aspects addressed by the program and identify specific subroutines that can be

improved to cater to changes in particular domains. By providing this information, users will gain

a deeper understanding of the program's functionalities and potential areas for refinement,

enabling them to make informed decisions when customizing the software to suit their specific

needs and requirements.

III.1 Overview of DSIDES Program's Nested Subroutines and their Versatility

The DSIDES program has a complete set of smaller routines, five of them are considered as main

input files. Within each of these core subroutines /functions , a hierarchical structure of

additional subroutines exists, each serving specific purposes as outlined in Table III.1. These

nested subroutines/functions have been designed to fulfill various specialized functions,

contributing to the overall effectiveness and versatility of the DSIDES program.

A compilation of 90 subroutines and their respective main purposes has been presented in Table

III.1. The aim of this compilation is to provide users with a cohesive overview of each subroutine,

thereby facilitating a better understanding of their functionalities.

Table III.1: List of Subroutines and Functions in the DSIDES Program

Name of Subroutine /
FUNCTION

Main Purpose

1) ALPLIM Set the limits of the arrays.

234

2) ALPDAT This routine reads the ALP data file for compromise DSPs and sets
the necessary defaults.

3) ALPMOD Perform the synthesis cycles.

4) COPYTX(ALPUTL) This routine copies the contents of input vector array into the
output vector array.

5) ALPCTL A main program for DSIDES.

6) ADREMO Adaptive reduced move using a Golden Section line search. If no
improvement is found in the initial design, a fixed reduced move is
applied to the design point.

7) COEFF2 Determine coefficients of linearized constraint using second-order
terms.

8) CONACC Constraint accumulation of nonlinear inequality constraints and
"NEW" constraints as generated via adaptation of the nonlinear
constraints.

9) CONCHK Determine and record which nonlinear constraints are to be
suppressed. Also, determines the right-hand side value of linearized
constraints.

10) CONCOR Subroutine CONCOR performs the adaption of the nonlinear
constraints.

11) CONLIN This subroutine performs the linearization of constraints and goals.
(The deviation variables are not considered here.)

12) CONVER Check for convergence. This is done in several steps.

13) DERIV Calculate gradients of nonlinear constraints and goals.

14) DEVCAL This subroutine calculates the values of the deviation variables.

15) DFCALC Calculate the deviation function for a new set of system variables.

16) DISCRT Solves the discrete problem.

17) EXPCTL Read ALP postprocessor files (control and information) and
generate a tab-delimited file, ALPEXP.DAT, suitable for export to a
spreadsheet.

18) FORAGEMV Solves the discrete problem.

19) GCALC This subroutine calculates the values of the nonlinear constraints
and goals for the current set of design variables. The nonlinear
constraints are evaluated in one block, and the goals are evaluated
in another.

20) HJMAIN This routine performs pattern search using the Hook and Jeeves
algorithm.

21) INITAB Initialize constant portions of Simplex Tableau.

22) INITSL Find an initial feasible solution using the Hook-Jeeves pattern
search algorithm.

23) MLINOP Solve the L.P. problem using MULTIPLEX, recording the basis to be
used in the next synthesis cycle. The algorithm has integer (branch
and bound variation) capability to handle 0/1 "selection" variables.

235

24) TRFORM Performs the required transformation in the tableau (AMAT) to
account for (negative) RHS and (nonzero) lower bounds on the
system variables.

25) MSETUP Initial basis setup. MSETUP is called with LITK = 1; that is the
initializations are performed for the first priority level.

26) ZERONE The purpose of this routine is to modify the earlier
solution such that the selection variables are forced to go to
zero/one values. This is in case they deviate from the zero/one
solution in the earlier phase (this may happen due to the influence
of constraints).

27) MPLEX PRIMAL MULTIPLEX: Algorithm by J.P. Ignizio

28) CHKBXB This function checks if a reinversion of the basis is required. It
returns the absolute value of the largest error.

29) CALCXB This function calculates the basic vector XB according to XB=
[BINV][B] - [BINV][Ns][Vs].
XB = MULTIPLEX vector corresponding to the vector formed by
multiplying the old RHS by the current inverse. XB is also referred
to as Beta.
 BINV = MULTIPLEX inverse matrix of the present basis.
 B = MULTIPLEX "b" vector of RHS values.

30) ECOMP Calculate the deviation function priority levels NP1 to NP2 for
variables NV1 to NV2.
NP1 = MULTIPLEX number of starting priorities.
NP2 = MULTIPLEX number of ending priority level.
NV1 = MULTIPLEX number of starting variables.
NV2 = MULTIPLEX number of ending variable.

31) PRICEV Subroutine PRICEV calculates the pricing vector PIVEC according to
the formula [PI] = [CB][BINV]
(For details see "Introduction to Linear Goal Programming" by J.P.
Ignizio, SAGE Publications, 1985, page 40.)

32) RDCOST 1 - The subroutine RDCOST calculates the vector DJ, which is known
as the shadow price or reduced cost.
2- The subroutine RDCOST determines the entering nonbasic
variable based on the highest absolute value of Dj.

33) ENTCOL Update the column [aq] for entering the nonbasic variable IQ.
The resulting column vector is ALPHA. The formula is [Alphaq] =
[Binv][aq]
 IQ = MULTIPLEX variable denoting the
 ALPHA = MULTIPLEX vector corresponding to the updated
entering column for IQ.
 BINV = MULTIPLEX inverse matrix of the present basis.

34) RTEST Ratio test, which determines the leaving variable.

236

35) UPDBAS Updates the basis when there is a leaving variable IP and entering
variable IQ.

36) NEWRHS The subroutine updates the XB vector for the case where the
entering variable does not enter the basis but is set to one of its
bounds.

37) PFRINV Compute new basis inverse according to the product form of the
inverse method.

38) SEIGHT Step 8 of the LGP algorithm.

39) REINVR Subroutine for reinversion. The current basis matrix is identified,
and then the call to the inversion subroutine is made. Variables are
used in DOUBLE PRECISION in the latter.

40) INVERS I do not have information about its purpose.

41) LUDCMP I do not have information about its purpose.

42) LUBKSB I do not have information about its purpose.

43) PARCMP This routine determines the relative importance of attributes
using the reciprocal pairwise comparison matrix method.
(Reference: Saaty, T. L., "A Scaling Method for Priorities in
Hierarchical Structures", J. of Mathematical psychology, Vol. 15,
1977, pp. 234-281.C)

44) EIGEN Calculate the maximum eigenvalue and the corresponding
eigenvector of a matrix using iteration.
(Reference: Shoup, T. E., "Applied Numerical Methods for the
Personal Computer", Prentice-Hall, 1984.)

45) MATMUL Matrix multiplication B = A*X
B = real vector of length of the number of variables
A = number of variables matrix
X = real vector of length number of variables

46) PCIMPR This routine is called when the consistency ratio is poor. It provides
some additional information regarding each of the decisions made
by the user.

47) PRMULT Print the linear solution constraint and goal multipliers
(Lagrangians).

48) PRPPCF Create a postprocessor control data file.

49) PRPPIF Create a postprocessor information data file.

50) PRDESV Print design variables.

51) PRDEVV Print deviation variables.

52) PRDFUN Print values of current deviation function.

53) PRBNDS Print bound activity information for a linear solution.

54) PRLINC Print information on linear constraints and goals.

55) PRNLNC Print nonlinear constraint/goal information.

56) PRLINA Print linear constraint activity for a linear solution.

57) PRNLNA Print nonlinear constraint activity for a linear solution.

58) PRADPC Print adapted constraint information.

237

59) PRFACT Print final solution linear and nonlinear constraint activity.

60) SELCAL Perform the selection DSP calculations
 - Normalization of ratings
 - Calculation of merit function

61) SELCTL Perform the selection DSP.

62) SELCYC This routine determines the relative importance of
attributes using the reciprocal pairwise comparison matrix method.

63) SELDAT This routine reads the data file for
selection DSPs and sets the necessary defaults.

64) SELHLO This routine determines the relative importance of
attributes using the reciprocal pairwise comparison matrix method.

65) SELMER Provide an interface to the Selection Routines.

66) SELPRT Selection DSP printing

67) SELSEN Perform the sensitivity analysis for selection Decision Support
problems using interval arithmetic.

68) USRSET Evaluate nonlinear constraints and goals.

69) TIMER This routine contains the timer routines for:
Sun/O.S. systems.

70) UPDTAB Update multiobjective goal formulation tableau arrays.

71) IQSIGN It is a FUNCTION. This routine returns an integer flag for the
inequality sign

72) MKNAME It is a FUNCTION. This routine returns a name by appending an
integer to a character string.

73) SPLITC Splits a complex number into an integer and a real value.

74) BLKCHK Splits a complex number into an integer and a real value.

75) IARFIL Fill the IADCON and IACTVR arrays.

76) GETNAM This routine allows for names to be read from data file when the
text line has leading blanks.

77) LEXSML Perform lexicographic comparison of two vectors.

78) LVCEQU It is a FUNCTION. Compare the two vectors for convergence.

79) VECSUM It is a FUNCTION. To return the absolute norm of a vector.

80) VECMAX It is a FUNCTION. To return the maximum absolute value from a
vector.

81) EXPTAB Export Table printing.

82) USRANA for user provided analysis routine.

83) USROUT user provided output routine.

84) XPLORE Find initial feasible solutions.

85) PTSRCH Return a vector of length N in an N-dimensional cube.

86) ZSRCH To generate K points in an N dimensional space.

87) PTRAND Return a random vector of length N in an N-dimensional cube.

88) SRAN Return a pseudo-random number between 0.0 and 1.0

89) ADNUPT This routine calculates the design point given by REMO Only the
real variables are perturbed.

238

90) USRMON Monitor process .

Learning about all subroutines and their purpose could help the user to have a better

understanding of how a program is working. In the next section five main input files are described

in more detail with their program and show how other subroutines are used in these five main

input files.

Obtaining knowledge about all the subroutines and their purposes is crucial for users to gain a

comprehensive understanding of the DSIDES program's functionality in the subsequent section

of this document, in-depth descriptions of the five main input files are provided, offering valuable

insights into their respective programs and demonstrating the seamless integration of various

subroutines. By exploring these detailed explanations, users can enhance their comprehension

of the program's inner workings and the strategic utilization of subroutines within the context of

these five main input files.

 III.2 Main Input Files

The Fortran program includes five main input files, each with its principle. Before delving into the

specifics of each subroutine, we will introduce the main objective of each one:

1) ALPLIM: Its purpose is to Consider the limit for the arrays.

2) ALPDAT: The ALP data file for compromise DSPs is read by this routine, and the necessary

defaults are set.

3) ALPMOD: Its purpose is to perform the synthesis cycles. (it's about stopping criteria)

4) COPYTX (ALPUTL): Its purpose is to copy the contents of the Y (input vector) array into

the X (output vector) array. This subroutine is about the synthesis cycle. So, it keeps the

information of the last cycle and uses it to start the next cycle.

239

5) ALPCTL: A main program for DSIDES that other subroutines will call here.

Following the introduction of the five main input files, the subsequent subsections will delve into

the details of each mentioned input subroutine, providing further clarification and

understanding.

III.2.1 ALPLIM Subroutine

One of the main input subroutines is ALPLIM. In the ALPLIM subroutine, the limit for arrays has

been determined. It has a crucial role in other input subroutines. If a user does not specify initial

values for variables, the program will rely on ALPLIM to set default initial values. In simpler terms,

ALPLIM is like a helper function that sets default values for variables when needed. In this

subroutine, the important variables, their definition, and their initial values are identified. I have

included the subroutine here, which simply assigns initial values to variables. I did not add a

flowchart since the process is straightforward..

 C <<<<<<<<<*>>>>>>>>>

C ALPLIM.CMM

C <<<<<<<<<*>>>>>>>>>

C Last update: 28MAR92

C***

C Set the limits of the arrays.

C***
C Compromise DSP limits:
 INTEGER MDESV, MDSCV, MLINCG, MNLNCG, MAXACC
 INTEGER MAXCAG, MDEVV, MVARMX, MGOLMX
 INTEGER MLEVEL, MNSYCY, MNANCY, MTITER
C Selection DSP limits:
 INTEGER MATTRB, MSELPR, MPAIRS
C
C Module XPLORE limit:
C

240

 INTEGER MPTBST
C Threshold values:
C
 REAL SMALL, THDIFF, TINY, VLINCO
C
C New name Description
C -------- -----------
C MDESV Max. number of design variables
C
C MDSCV Max. number of discrete variables values
C
C MLINCG Max. number of linear constraints + goals
C
C MNLNCG Max. number of nonlinear constraints + goals
C
C MAXACC Max. number of accumulated constraints
C
C MAXCAG Max. number of constraints + goals (MAXCAG = MLINCG + MNLNCG)
C
C MDEVV Max. number of deviation variables (MDEVV = 2*MAXCAG)
C
C MVARMX Max. number of variables for Multiplex (MVARMX = MDESV + 2*(2*MAXCAG +
MAXACC))
C
C MGOLMX Max. number of goals for multiplex (MGOLMX = MAXCAG + MAXACC + maxnew=

2*MAXCAG + MAXACC)
C

C (NOTE: bounds not included)
C
C MLEVEL Max. number of priority levels including
C constraint level
C MNSYCY MAX. number of synthesis cycles
C
C MNANCY MAX. number of analysis cycles
C
C MTITER MAX. number of total iterations (MTITER = MNSYCY * MNANCY)
C Currently set to 100
C
 PARAMETER (MDESV = 40)
 PARAMETER (MDSCV = 50)
 PARAMETER (MLINCG = 50)
 PARAMETER (MNLNCG = 50)
 PARAMETER (MAXACC = 20)

241

 PARAMETER (MAXCAG = 100)
 PARAMETER (MDEVV = 200)
CCCCC (Based on the formulation MVARMX should be 480 but, in the program, sets as a
640, since they set the range larger than needed.)
 PARAMETER (MVARMX = 640)
 PARAMETER (MGOLMX = 220)
C
C Limits increased from preceding values by Bert Bras, 10 August 1993. (Even the limits
increased in 1993 but still the previous amount in used in the subroutine)
CCCCC PARAMETER (MDESV = 200)
CCCCC PARAMETER (MLINCG = 50)
CCCCC PARAMETER (MNLNCG = 450)
CCCCC PARAMETER (MAXACC = 150)
CCCCC PARAMETER (MAXCAG = 500)
CCCCC PARAMETER (MDEVV = 1000)
CCCCC PARAMETER (MVARMX = 2500)
CCCCC PARAMETER (MGOLMX = 1150)

 PARAMETER (MLEVEL = 9)
 PARAMETER (MNSYCY = 50)
 PARAMETER (MNANCY = 25)
 PARAMETER (MTITER = 100)
C
C MATTRB MAX. number of attributes
C
C MSELPR MAX. number of selection problems
C
C MPAIRS MAX. number of pairs for pairwise comparison
C MPAIRS = MATTRB * (MATTRB-1)/2

 PARAMETER (MATTRB = 20)
 PARAMETER (MSELPR = 5)
 PARAMETER (MPAIRS = 190)
C
C MPTBST MAX. number of points (best) saved within
C module XPLORE
C
CCCCC PARAMETER (MPTBST = 200)
C
 PARAMETER (MPTBST = 1000)
C
C SMALL Threshold for activity of constraints and variable bounds
C
C THDIFF Threshold for general differences

242

C
C TINY Threshold to avoid underflow
C
C VLINCO Magnitude of small violation as a function of the RHS in linear constraints to be
ignored Default magnitude of small violations ignored in non- linear constraints
C
 PARAMETER (SMALL = 1.0E-4)
 PARAMETER (THDIFF = 1.0E-5)
 PARAMETER (TINY = 1.0E-10)
 PARAMETER (VLINCO = 1.0E-3)
In the subsequent section, an additional key input subroutine known as ALPDAT is introduced.

III.2.2 ALPDAT Subroutine

The main purpose of this subroutine is to read the ALP data file for compromise DSPs and set the

necessary defaults. This subroutine is about all blocks that we have in LinearArchimedian and

LinearPreemptive sheet, as they are represented in Table II.1 and Table II.2 in Part Two, there are

8 mandatory blocks and 27 optional blocks which are described in detail in Part Two, Sections

II.2.1 and II.2.2.

As it is represented in the two mentioned tables, we have the following blocks in the linear sheets

:

1) PTITLE: Problem title

2) NUMSYS: Number of System Variables

3) SYSVAR : Description of System Variables - name, type, bounds, and guess

value

4) NUMCAG: Number of Constraints and Goals

5) LINCON : Linear Constraints - names and data (if specified in NUMCAG)

6) LINGOL : Linear Goals- names and data (if specified in NUMCAG)

7) DEVFUN: Deviation Function - number of levels and weights of deviation variables

8) STOPCR : Stopping Criteria (run and principal print flags, NITER, EPSZ, EPSX)

9) NLINCO : Names of Nonlinear Constraints (default names: NLCO##)

243

10) NL I NGO: Names of Nonlinear Goals (default names: NLGO##)

11) ALP OUT: Flags for Output Level, Post Processor, and Time Statistics

12) USRMOD: Flags for User Modules (USRINP, USROUT, USRMON, USRLIN)

13) OPTIMP: Optimization Parameters (VIOLIM, REMO, STEP)

14) INITFS: Automatic Generation of Initial Feasible Solution

15) USRDAT: User Data Block for Access From USRINP

16) ADPCTL : Nonlinear Inequality Constraint Adaption Flag (LADAP)

17) USERAN: Information for USRANA (maximum cycles - NANCY, NSYCY)

18) FIXVAR : Fixing of Variables

19) SUPCON: Suppression of Nonlinear Constraints

20) PVALFX : Particular Values for Stationarity of System Variables

21) PVEPSZ : Particular Values for Stationarity of Deviation Function Levels

22) PVSTEP : Particular Values for STEP

23) PVCVIL : Particular Values for VIOLIM

24) PVREMO: Particular Values for REMO

25) ADREMO: Adaptive Reduced Move Parameters

26) XPLORE : Explore the design space for best initial points.

27) ENDPRB: End of Problem Definition

Subroutine ALPDAT will go through all the blocks, and if the user defines the value for each block,

it will assign it to the required variables; otherwise, will use the default value that has been

assigned with the ALPLIM subroutine that has been described in section III.1.1. So ALPLIM is

included in this subroutine as well. All the variables have been defined at the beginning of the

subroutine in different types like single integers or real numbers, constants, matrices, or arrays.

The ALPLIM subroutine has been called to assign the default value if the user did not define the

value to some variables and wants to use the default value. Then the program will go through

block 1 to block 27 with an if statement; if the if statement is true, the program will execute the

specific block of code.

244

The ALPDAT subroutine is added Below. Several other subroutines are called in ALPDAT, such as

IQSIGN, MKNAME, SPLITC, BLKCHK, and IARFIL, which have been introduced in Section III.1.

C***
**
C
C Subroutine ALPDAT
C
C Purpose: This routine reads the ALP data file for
C compromises DSPs and sets the necessary defaults.
C
C---
--
C Arguments Name Type Description
C --------- ---- ---- -----------
C Input: NUINP int unit number of the input data file
C NUOUT int unit number of the output data file
C NUSER int unit number of the scratch user data
file
C
C Output: NDESV int number of design variables
C NDEVAR int number of deviation variables
C NRELV int number of real (continuous)
variables
C *************KL NDISV int number of discrete variables (inc.
integer)
C DSTEP int/real step for discrete variables (1
default)
C NVALUS int number of discrete values (override
step)
C MAX = 50
C NUMNGH int number of variables to have tabu Nghbrhd
C INDEX int index of initial discrete vars (for tabu)
C NEIGH int counter to set up tabu with DSTEP = 1.0
C TABUN real tabu neighborhood (MDESV, 50)
C NVINT int number of integer variables
C NVSEL int number of selection (boolean)
C variables
C NMPRI int number of goal priority levels
C NLINCO int number of linear constraints
C NLINGO int number of linear goals
C NNLEQU int number of nonlinear equalities
C constraints

245

C NNLINQ int number of nonlinear inequalities
C constraints
C NNLCON int number of nonlinear constraints
C NNLGOA int number of nonlinear goals
C NNLTOT int total number of nonlinear
constraints
C and goals
C = NNLINQ+NNLEQU+NNLGOA
C NANCY int maximum number of analysis cycles
C performed
C NHJMAX int maximum calls to USRSET from INITSL
C NSYCY int vector indicating the maximum number
C of synthesis cycles performed within
C each analysis cycle
C NADREM int ADREMO - maximum number of calls to
C be made to GCALC.
C NPTGEN int number of points to be generated.
C NPTBST int number of best points to be printed.
C IGSEED int seed for the pseudo-random number
generator
C IGENFX int vector of variables to be kept
fixed.
C during point generation
C IACTVR int vector of flags for active variables
C IADCON int vector of flags for admissible
C nonlinear constraints
C = 0 if suppressed by the user
C = J if admissable
C = -n if suppressed by the program
C IDDEVR chr6 vector of deviation variable names
C IDLICO chr6 vector of linear constraint names
C IDLIGO chr6 vector of linear goal names
C IDNLCO chr6 vector of nonlinear constraint names
C IDNLGO chr6 vector of nonlinear goal names
C IDDESV chr6 vector of design variable names
C PTITLE chr80 problem title
C COFLIN real matrix of coefficients of linear
C constraints and goals
C LISIGN int vector indicating sign for linear
C inequality constraints
C RHSLIN real vector of RHS values for linear
C constraints and goals
C PESTEP real vector of perturbation steps for
C nonlinear constraints and goals
C REDMOV real reduced move step sizes
C VBOUNS real matrix of lower and upper bounds for

246

C design variables
C DESVAR real vector of design variables
C DFNCOF real matrix of weights for deviation
C function
C DELREM real acceptable convergence criterion for
C reduced move
C HJCONT real pattern search - contraction factor
C HJDELT real pattern search - minimum allowable
C step
C HJEPSY real pattern search - maximum allowable
C violation
C HJEXPA real pattern search - expansion factor
C HJSTEP real pattern search - step size
C FRACX real vector: convergence criteria for X,
C the design variables
C FRACZ real vector: convergence criteria for Z,
C the deviation function
C VILCN real vector of acceptable nonlinear
C constraint violations
C LDRYRN lgcl effect dry run only
C LPRFIN lgcl print final output only
C LPROUT lgcl vector of flags for output control
C LPPROC lgcl create ALP postprocessor files
C LADAP lgcl use constraint adaptation
C LADREM lgcl use adaptive reduced move
C LINIT lgcl generate initial feasible solution
C LTIME lgcl generate time statistics
C LMON lgcl call user supplied subroutine USRMON
C LUINP lgcl call user supplied subroutine USRINP
C LUOUT lgcl call user supplied subroutine USROUT
C LVCOF lgcl call user supplied subroutine USRLIN
C LXPLOR lgcl explore design space
C LPRGEN lgcl print the best points generated in
C exploring design space
C FATAL lgcl failure status in ALPDAT
C
C Input/output: none
C---
--
C Common Blocks: none
C
C Include Files: alplim.cmm
C
C Calls to: IQSIGN, MKNAME, SPLITC, BLKCHK, IARFIL
C---
--

247

C Development History
C
C Author: Ravi P. Reddy
C Date: February 14, 1991
C
C Modifications:
C Bert Bras, July 1993.
C The same default and user-specified values for FRACX are
C used for ALL variables (real and Boolean).
C Prior to this modification, FRACX was set to 1.0 for
nonreal
C variables. This caused the (Boolean) variable convergence
C check in CONVER() to be incorrectly satisfied in all
cases.
C
C***
**
 SUBROUTINE ALPDAT(NUOUT, NUINP, NUSER,
 & NRELV, NDISV, NVINT, TABUN, NVALUS, INDEX, NVSEL,
 & NDESV, NDEVAR,
 & NLINCO, NLINGO, NMPRI,
 && NNLCON, NNLEQU, NNLGOA, NNLINQ, NNLTOT,
 & NANCY, NSYCY,
 & NHJMAX, NADREM, IACTVR, IADCON, LISIGN,
 & NPTGEN, NPTBST, IGSEED, IGENFX,
 & IDDESV, IDDEVR, IDLICO, IDLIGO, IDNLCO, IDNLGO,
 & PTITLE, COFLIN, RHSLIN, DFNCOF,
 & PESTEP, REDMOV, VBOUNS, DESVAR,
 & HJEXPA, HJCONT, HJSTEP, HJEPSY, HJDELT, DELREM,
 & FRACZ, FRACX, VILCN,
 & FATAL, LDRYRN, LPRFIN,
 & LPROUT, LPPROC, LTIME, LADREM, LADAP, LINIT,
 & LMON, LUINP, LUOUT, LVCOF, LXPLOR, LPRGEN, LVDISC)
C
 INCLUDE 'alplim.cmm'
C
C---------------------------------------
C Arguments:
C---------------------------------------
C Logical Unit numbers for I/O
C
 INTEGER NUOUT, NUINP, NUSER
C
C
 INTEGER NRELV, NDISV, NVALUS(MDESV), DSTEP, INDEX(MDESV),
NUMNGH,

248

 & NVINT, NVSEL, NDESV, NDEVAR,
 & NLINCO, NLINGO, NMPRI,
 & NNLCON, NNLEQU, NNLGOA, NNLINQ, NNLTOT,
 & NANCY, NSYCY(MNANCY),
 & NHJMAX, NADREM, IACTVR(MDESV), IADCON(MNLNCG),
 & LISIGN(MLINCG),
 & NPTGEN, NPTBST, IGENFX(MDESV), IGSEED
C
 CHARACTER*6 IDDESV(MDESV), IDDEVR(MDEVV),
 & IDLICO(MLINCG), IDLIGO(MLINCG),
 & IDNLCO(MNLNCG), IDNLGO(MNLNCG)
C
 CHARACTER*80 PTITLE(2)
C
 REAL COFLIN(MLINCG,MDESV), RHSLIN(MLINCG),
 & DFNCOF(MLEVEL,MDEVV),
 & PESTEP(MDESV), REDMOV(MDESV),
 & VBOUNS(2,MDESV), DESVAR(MDESV),
 & HJEXPA, HJCONT, HJSTEP, HJEPSY, HJDELT, DELREM,
 & FRACZ(MLEVEL), FRACX(MDESV), VILCN(MNLNCG),
 & TABUN(MDESV,MDSCV)
C
 LOGICAL FATAL,
 & LDRYRN, LPRFIN,
 & LPROUT(8), LPPROC, LTIME,
 & LADREM, LADAP, LINIT,
 & LMON, LUINP, LUOUT, LVCOF,
 & LPRGEN, LXPLOR, LVDISC
C
C---------------------------------------
C Local variables:
C---------------------------------------
C
 CHARACTER*6 MKNAME
 EXTERNAL MKNAME
 INTEGER IQSIGN
C
 CHARACTER*80 DUM, DUMOUT
 CHARACTER*6 BLKNAM,DUMNAM
 CHARACTER*1 VTYPE,ONE
 CHARACTER*2 CCSIGN
C
 LOGICAL BKIN(30), LNONAM
C
C Modification: Following line was COMPLEX CIR(50)
C

249

 COMPLEX CIR(MDESV)
C
 INTEGER JDUM(MDESV), J1, J2, IPR(9), KONT
 INTEGER NUM, IVAR, IOUSER, IOUT
 INTEGER IMON, JVARC, ML, IADAP, II
 INTEGER NPSTEP, NREMOV, NFRAC
 INTEGER KDUM, NDUM, NTERMS, NLEVEL
 INTEGER KMIN, KMAX, KGES, KSGN, I, J, K, L, KST
C
 REAL REMOVS, PSTEP, VIOLIM, NEIGH
 REAL VAL, EPSZ, EPSX
 REAL XMIN, XMAX, XGES
C
C***
**
C Initialize Logical Flags
C***
**
C
 LUINP = .FALSE.
 LUOUT = .FALSE.
 LVCOF = .FALSE.
 LTIME = .FALSE.
 LINIT = .FALSE.
 LADREM = .FALSE.
 LADAP = .FALSE.
 LMON = .FALSE.
 LXPLOR = .FALSE.
 LVDISC = .FALSE.
 LPRGEN = .FALSE.
 FATAL = .FALSE.
C
 LPROUT(1) = .TRUE.
 LPROUT(2) = .TRUE.
 LPROUT(3) = .TRUE.
 LPROUT(4) = .FALSE.
 LPROUT(5) = .FALSE.
 LPROUT(6) = .FALSE.
 LPROUT(7) = .FALSE.
 LPROUT(8) = .FALSE.
C
C Set other defaults
C
 NANCY = 0
 REMOVS = 0.5
 PSTEP = 0.005

250

 VIOLIM = -VLINCO
C--
C No blocks have been read.
C
 D.O. 2 J=1,30
 BKIN(J)=.FALSE.
 2 CONTINUE
C
C Beginning of main GOTO loop
C Read next block name
C
 1111 READ(NUINP,FMT='(A)',END=9000,ERR=8888)DUM
 CALL GETNAM(DUM, BLKNAM, KST, LNONAM)
C
 IF(LNONAM)THEN
 GO TO 1111
 ENDIF
C
 WRITE(NUOUT,3)BLKNAM
 3 FORMAT(/,X,'BLOCK ',A6,X,54('-'),/)
C
CC BLOCK1 ------- PTITLE ---
C Read Problem Title & User Information
C
 IF(BLKNAM.EQ.'PTITLE')THEN
 CALL BLKCHK(NUOUT,BKIN(1))
C
 DO 4 J = 1,2
 READ(NUINP,FMT='(A)',ERR=8888) PTITLE(J)
 WRITE (NUOUT, '(A)') PTITLE(J)
 4 CONTINUE
C
 GO TO 1111
 ENDIF
C
CC BLOCK2 ------- NUMSYS ---
C ***KL
C Read number of design variables - Real, and dicrete
C
C NRELV = number of real variables
C NDISV = number of discrete variables
C NVINT = number of integer variables
C NVSEL = number of selection (boolean) variables
C NDESV = number of standard variables
C = NRELV+NDISV
C --

251

C Programmer's Note
C -----------------
C The current version of the program does not have the capability
C of handling INTEGER variables. If and when this aspect of the
C program is developed, the variable NVINT should be made active
C in the READ statement and the echo FORMAT.
C Remember that the integer variables must follow the real
C variables and precede the selection variables.

C --
C
 IF(BLKNAM.EQ.'NUMSYS')THEN
 CALL BLKCHK(NUOUT,BKIN(2))
C
 NVINT = 0
 READ(NUINP,FMT=*,ERR=8888)NRELV,NDISV,NVSEL
C
 IF (NDISV.GT.0) THEN
 LVDISC = .TRUE.
 ENDIF

 NDESV = NRELV+NDISV+NVSEL
 WRITE(NUOUT,20)NRELV,NDISV,NVSEL,NDESV
 20 FORMAT(3X,' Number of real variables = ', I5/,
 & 3X,' Number of discrete variables = ', I5/,
 & 3X,' Number of selection (Boolean) variables = ', I5/,
 & 3X,' Total number of design variables = ', I5)
C
 IF(NDESV.GT.MDESV)THEN
 WRITE(NUOUT,21)MDESV,NDESV
 GO TO 9999
 ENDIF
 21 FORMAT(' E ** Problem Size',/
 & 3X,' Maximum number of design variables = ',I5,/
 & 3X,' Specified = ',I5)
C
 GO TO 1111
 ENDIF
C
CC BLOCK3 ------- SYSVAR ---
C Read design variable information
C
 IF(BLKNAM.EQ.'SYSVAR')THEN
 CALL BLKCHK(NUOUT,BKIN(3))
C
C Check if NUMSYS has been read.

252

 IF(.NOT.BKIN(2))THEN
 WRITE(NUOUT,700)
 GO TO 9999
 ENDIF
C
 WRITE(NUOUT,30)
 30 FORMAT(2X,' Number Name Type Minimum Maximum
',
 & 3X,'Guess Value',/,
 & 2X,' ------ ------ ---- ------------ ------------
',
 & 3X,'------------')
C
 DO 35 K=1,NDESV
 READ(NUINP,'(A)',ERR=8888)DUM
 CALL GETNAM(DUM, DUMNAM, KST, LNONAM)
 IF (LNONAM) DUMNAM = MKNAME('X',K)
C
 READ(DUM(KST:80),FMT=*,ERR=8888)J,XMIN,XMAX,XGES
C
C Variable type assigned using serial number
C
C **K.L. changed this to NDISV and 'D'
 IF(J.LE.NRELV)THEN
 VTYPE='R'
 ELSEIF(J.GT.(NRELV+NDISV))THEN
 VTYPE='B'
 ELSE
 VTYPE='D'
 ENDIF
C
C Check if values are within bounds
C
 IF((XGES.LT.XMIN).OR.(XGES.GT.XMAX))THEN
 XGES=0.5*(XMIN+XMAX)
 WRITE(NUOUT,32)J
 32 FORMAT(/,' I ** Guess value out of bounds, ',
 & 'reset to (XMIN+XMAX)/2 for variable number ',I3)
 ENDIF
C
 IDDESV(J) = DUMNAM
 VBOUNS(1,J) = XMIN
 VBOUNS(2,J) = XMAX
 DESVAR(J) = XGES
C
C THIS SETS up the tabu neighborhood from the bounds.

253

 DSTEP = 1

 IF (J.GT.NRELV.AND.J.LT.(NRELV+NDISV+1)) THEN
 NVALUS(J) = VBOUNS(2,J) - VBOUNS(1,J) + 1

C This sets the index number as the guess index.
 INDEX(J)=(DESVAR(J)-VBOUNS(1,J))/DSTEP + 1

C SETS up the temporary counter for set of discrete values.
C STARTS at the lower bound.

 NEIGH = VBOUNS(1,J)

 DO 37 L=1,NVALUS(J)
 TABUN(J,L) = NEIGH
 NEIGH = NEIGH + DSTEP
 37 CONTINUE
 ENDIF
C
C Use different formats for REAL and other variables.
C
 IF(VTYPE.EQ.'R')THEN
 WRITE(NUOUT,33)J,IDDESV(J),VTYPE,VBOUNS(1,J),
 & VBOUNS(2,J),DESVAR(J)
 33 FORMAT(4X,I3,5X,A6,4X,A1,2X,G12.5,3X,G12.5,3X,G12.5)
 ELSE
 IF(VTYPE.EQ.'D')THEN
 WRITE(NUOUT,38)J,IDDESV(J),VTYPE,VBOUNS(1,J),
 & VBOUNS(2,J),DESVAR(J)
 38 FORMAT(4X,I3,5X,A6,4X,A1,2X,G12.5,3X,G12.5,3X,G12.5)
 ELSE
 KMIN=XMIN+0.5
 KMAX=XMAX+0.5
 KGES=XGES+0.5
 WRITE(NUOUT,34)J,IDDESV(J),VTYPE,KMIN,KMAX,KGES
 34 FORMAT(4X,I3,5X,A6,4X,A1,2X,I10,5X,I10,5X,I10)
 ENDIF
 ENDIF
C
 35 CONTINUE
C
 GO TO 1111
 ENDIF

C

254

CC BLOCK4 ------- DISCRETE ---
--
C Read discrete design variable information
C
 IF(BLKNAM.EQ.'PVDISC')THEN
 CALL BLKCHK(NUOUT,BKIN(28))
C
 LVDISC = .TRUE.
 WRITE(NUOUT,285)
C
 READ(NUINP,FMT=*,ERR=8888)NUMNGH

 DO 284 J=1,NUMNGH

 READ(NUINP,FMT=*,ERR=8888)NUM,NVALUS(NUM),XGES
 IF (NUM .LE. NRELV) THEN
 WRITE(NUOUT,282)NUM
 GO TO 9999
 ENDIF
 IF (NUM .GT. NRELV+NDISV) THEN
 WRITE(NUOUT,282)NUM
 GO TO 9999
 ENDIF
 IF (XGES.LT.1 .OR. XGES.GT.NVALUS(NUM)) THEN
 GO TO 9999
 ENDIF
 IF (NUM .GT. 0) THEN
 READ(NUINP, FMT=*, ERR=8888)
(TABUN(NUM,I),I=1,NVALUS(NUM))
C Guess value is read is as initial DESVAR
 INDEX(NUM) = XGES
 DESVAR(NUM) = TABUN(NUM,INDEX(NUM))
CORIGINAL DESVAR(NUM) = TABUN(NUM,XGES)
 WRITE(NUOUT,281)NUM,IDDESV(NUM)
 WRITE(NUOUT,*)(TABUN(NUM,I),I=1,NVALUS(NUM))
 WRITE(NUOUT,286)DESVAR(NUM)
 ENDIF
 284 CONTINUE

 281 FORMAT (4X,'Variable No. ', I2, ' (', A, ')'
 & ' has the following discrete values possible.')
 282 FORMAT(' E ** Variable number ',I3,' is not discrete')
 285 FORMAT(' I ** User inputted discrete data will be used',//)
 286 FORMAT(5X,'and the initial value is:',F6.4)

C WRITE(NUOUT,283)

255

C 283 FORMAT(2X,' Number Name Type values ',
C & 2X,' ------ ------ ---- ------------ ------------
',
C & 3X,'------------')

 GO TO 1111

 ENDIF

C
CC BLOCK4 ------- NUMCAG ---
C Read number of constraints and goals
C NEW VARIABLES LINCON,LINGOL
C NLINCO Number of linear constraints
C NNLINQ Number of nonlinear inequality constraints
C NNLEQU Number of nonlinear equality constraints
C
C NLINGO Number of linear goals
C NNLGOA Number of nonlinear goals
C
 IF(BLKNAM.EQ.'NUMCAG')THEN
 CALL BLKCHK(NUOUT,BKIN(4))
C
 READ(NUINP,FMT=*,ERR=8888)NLINCO,NNLINQ,NNLEQU,NLINGO,NNLGOA
 WRITE(NUOUT,40) NLINCO,NNLINQ,NNLEQU,NLINGO,NNLGOA
 40 FORMAT(3X,
 & ' Number of linear constraints = ', I5/,
 & 3X,' Number of nonlinear inequality constraints = ', I5/,
 & 3X,' Number of nonlinear equality constraints = ', I5/,
 & 3X,' Number of linear goals = ', I5/,
 & 3X,' Number of nonlinear goals = ', I5)
C
 NDEVAR = (NLINGO+NNLGOA)*2
 NNLTOT = NNLINQ+NNLEQU+NNLGOA
 NNLCON = NNLINQ+NNLEQU
C
C Check against maximum limits
C
 IF(NDEVAR.GT.MDEVV)THEN
 WRITE(NUOUT,44)MDEVV,NDEVAR
 GO TO 9999
 ENDIF
 44 FORMAT(' E ** Problem Size',/
 & 3X,' Maximum number of deviation variables = ',I5,/
 & 3X,' Specified = ',I5)
C

256

 IF(NNLTOT.GT.MNLNCG)THEN
 WRITE(NUOUT,45)MNLNCG,NNLTOT
 GO TO 9999
 ENDIF
 45 FORMAT(' E ** Problem Size',/
 & 3X,' Maximum number of nonlinear constraints + goals = ',I5,/
 & 3X,' Specified = ',I5)
C
 IF((NLINCO+NLINGO).GT.MLINCG)THEN
 WRITE(NUOUT,46)MLINCG,NLINCO+NLINGO
 GO TO 9999
 ENDIF
 46 FORMAT(' E ** Problem Size',/
 & 3X,' Maximum number of linear constraints + goals = ',I5,/
 & 3X,' Specified = ',I5)
C
C Set Default names for nonlinear constraints
C
 DO 47 J=1,NNLCON
 IDNLCO(J)=MKNAME('NLCO',J)
 47 CONTINUE
C
C Set Default names for nonlinear goals
C
 DO 48 J=1,NNLGOA
 IDNLGO(J)=MKNAME('NLGO',J)
 48 CONTINUE
C
C Create names of Deviation Variables
C
 DO 41 J=1,NDEVAR
 KSGN=MOD(J,2)
 IF(KSGN.EQ.1)THEN
 ONE='-'
 ELSE
 ONE='+'
 ENDIF
 KDUM = (J+1)/2
 DUMNAM = MKNAME('D',KDUM)
 IF(KDUM.LE.9)THEN
 IDDEVR(J)=DUMNAM(1:2)//ONE//' '
 ELSE
 IDDEVR(J)=DUMNAM(1:3)//ONE//' '
 ENDIF
 41 CONTINUE
 WRITE(NUOUT,42)

257

 42 FORMAT(/,3X,' Names of deviation variables:',/)
 WRITE(NUOUT,43)(J,IDDEVR(J),J=1,NDEVAR)
 43 FORMAT(4(4X,I3,2X,A6))
C
 GO TO 1111
 ENDIF
C
CC BLOCK5 ------- LINCON ---
C Reading in data for linear constraints
C
 IF(BLKNAM.EQ.'LINCON')THEN
 CALL BLKCHK(NUOUT,BKIN(5))
C
C Check if NUMCAG has been read
C
 IF(.NOT.BKIN(4))THEN
 WRITE(NUOUT,710)
 GO TO 9999
 ENDIF
C
 WRITE(NUOUT,50)
 50 FORMAT(3X,' Linear constraints data:')
C
 DO 59 J=1,NLINCO
 READ(NUINP,'(A)',ERR=8888)DUM
 CALL GETNAM(DUM, DUMNAM, KST, LNONAM)
 IF(LNONAM) DUMNAM = MKNAME('LICO',J)
 IDLICO(J)=DUMNAM
C
C Initialize all cofs. to zero
C
 DO 51 K=1,NDESV
 COFLIN(J,K)=0.0
 51 CONTINUE
C
C Read constraint information
C
 READ(DUM(KST:80),FMT=*,ERR=8888)NTERMS
 WRITE(NUOUT,52)J,IDLICO(J),NTERMS
 52 FORMAT(/,4X,I3,2X,A6,': Number of terms = ',I3)
C
 READ(NUINP,FMT=*,ERR=8888)(CIR(K),K=1,NTERMS)
C
 DUMOUT = ' '
 KONT = 0
C

258

 DO 54 K=1,NTERMS
 KONT = KONT+1
 CALL SPLITC(CIR(K),NDUM,VAL)
C
 COFLIN(J,NDUM) = VAL
C
 IF(VAL.GE.0.0)THEN
 ONE='+'
 IF(K.EQ.1)ONE=' '
 ELSE
 VAL = -VAL
 ONE='-'
 ENDIF
C
 J1 = (KONT-1)*23 + 11
 J2 = KONT *23 + 11
 WRITE(DUMOUT(J1:J2),53)ONE,VAL, IDDESV(NDUM)
 53 FORMAT(X,A,' (',G11.5,'*',A6,')')
C
 IF((KONT.EQ.2) .OR. (K.EQ.NTERMS))THEN
 WRITE(NUOUT,FMT='(A)') DUMOUT
 DUMOUT = ' '
 KONT = 0
 ENDIF
C
 54 CONTINUE
C
 READ(NUINP,FMT='(A)',ERR=8888)DUM
 CALL GETNAM(DUM,DUMNAM,KST,LNONAM)
 READ(DUMNAM(1:2),FMT='(A)',ERR=8888)CCSIGN
 KSGN=IQSIGN(CCSIGN)
C
 IF(KSGN.LT.1 .OR. KSGN.GT.3)THEN
 WRITE(NUOUT,55)
 55 FORMAT(' E ** Unidentified sign for linear constraint')
 GO TO 9999
 ENDIF
C
 LISIGN(J)=KSGN
 READ(DUM(KST:80),FMT=*,ERR=8888)VAL
 RHSLIN(J)=VAL
C
 WRITE(NUOUT,56)CCSIGN,VAL
 56 FORMAT(55X,A,X,G12.5)
C

259

 59 CONTINUE
C
 GO TO 1111
 ENDIF
C
CC BLOCK6 ------- LINGOL ---
C Reading in data for linear goals
C
 IF(BLKNAM.EQ.'LINGOL')THEN
 CALL BLKCHK(NUOUT,BKIN(6))
C
C Check if NUMCAG has been read.
C
 IF(.NOT.BKIN(4))THEN
 WRITE(NUOUT,710)
 GO TO 9999
 ENDIF
C
 WRITE(NUOUT,61)
 61 FORMAT(3X,' Linear goals data')
C
 DO 69 J=1,NLINGO
 READ(NUINP,'(A)',ERR=8888)DUM
 CALL GETNAM(DUM, DUMNAM, KST, LNONAM)
 READ(DUM(KST:80),FMT=*,ERR=8888)K,NTERMS
 IF(LNONAM)DUMNAM=MKNAME('LIGO',K)
 IDLIGO(K)=DUMNAM
 WRITE(NUOUT,62)K,IDLIGO(K),NTERMS
 62 FORMAT(/,2X,I3,2X,A6,' : Number of terms = ',I3)
C
C Initialize all cofs. to zero
C
 DUM = ' '
C
 DO 65 K=1,NDESV
 COFLIN(J+NLINCO,K)=0.0
 65 CONTINUE
C
 READ(NUINP,FMT=*,ERR=8888)(CIR(K),K=1,NTERMS)
C
 DUMOUT = ' '
 KONT = 0
C
 DO 68 K=1,NTERMS
 KONT = KONT+1
 CALL SPLITC(CIR(K),NDUM,VAL)

260

C
 COFLIN(J+NLINCO,NDUM)=VAL
C
 IF(VAL.GE.0.0)THEN
 ONE='+'
 IF(K.EQ.1)ONE=' '
 ELSE
 VAL = -VAL
 ONE='-'
 ENDIF
C
 J1 = (KONT-1)*23+11
 J2 = KONT *23+11
C
 WRITE(DUMOUT(J1:J2),53)ONE,VAL, IDDESV(NDUM)
C
 IF((KONT.EQ.2) .OR. (K.EQ.NTERMS)) THEN
 WRITE(NUOUT,FMT='(A)')DUMOUT
 DUMOUT = ' '
 KONT = 0
 ENDIF
C
 68 CONTINUE
C
 READ(NUINP,FMT=*,ERR=8888)VAL
 RHSLIN(J+NLINCO)=VAL
 WRITE(NUOUT,67)IDDEVR(2*J-1),IDDEVR(2*J),VAL
 67 FORMAT(10X,' + (',A,') - (',A,')',22X,'= ',G12.5)
C
 69 CONTINUE
C
 GO TO 1111
 ENDIF
C
CC BLOCK7 ------- DEVFUN ---
C Reading goal priorities and weights for deviation function
C
 IF((BLKNAM.EQ.'DEVFUN') .OR. (BLKNAM.EQ.'ACHFUN'))THEN
 CALL BLKCHK(NUOUT,BKIN(7))
C
C Check if NUMCAG has been read.
C
 IF(.NOT.BKIN(4))THEN
 WRITE(NUOUT,710)
 GO TO 9999
 ENDIF

261

C
 READ(NUINP,FMT=*,ERR=8888)NMPRI
C
 IF(NMPRI.GT.MLEVEL-1)THEN
 WRITE(NUOUT,79)MLEVEL-1,NMPRI
 GO TO 9999
 ENDIF
C
 79 FORMAT(' E ** Problem Size',/
 & 3X,' Maximum number of goal priority levels = ',I5,/
 & 3X,' Specified = ',I5)
C
 WRITE(NUOUT,70)NMPRI
 70 FORMAT(3X,' Deviation Function data',//
 & 3X,' Number of priority levels = ',I3,//
 & 3X,' Level Dev.Var. Weight',/
 & 3X,' ----- -------- ------')
C
 DO 74 J=1,NMPRI
 READ(NUINP,FMT=*,ERR=8888)NLEVEL, NTERMS
C
C Set default weights to zero.
C
CC DO 71 K=1,NDEVAR
CC DFNCOF(NLEVEL,K)=0.0
CC 71 CONTINUE
C
 READ(NUINP,FMT=*,ERR=8888)(CIR(K),K=1,NTERMS)
 DO 73 K=1,NTERMS
 CALL SPLITC(CIR(K),NUM,VAL)
 IF(NUM.LT.0)THEN
 KSGN=0
 NUM = -NUM
 ELSE
 KSGN=1
 ENDIF
 IVAR=2*NUM-1+KSGN
C
 DFNCOF(NLEVEL,IVAR)=VAL
C
 WRITE(NUOUT,72)NLEVEL,IDDEVR(IVAR),VAL
 72 FORMAT(4X,I3,5X,A6,2X,G12.5)
 73 CONTINUE
 74 CONTINUE
C
 GO TO 1111

262

 ENDIF
C
CC BLOCK8 ------- STOPCR ---
C Read Stopping criteria
C
 IF(BLKNAM.EQ.'STOPCR')THEN
 CALL BLKCHK(NUOUT,BKIN(8))
C
 READ(NUINP,FMT=*,ERR=8888)J1 , J2, NUM, EPSZ, EPSX
C
C Flag for dry run
C
 IF(J1 .EQ. 1)THEN
 LDRYRN = .FALSE.
 ELSE
 LDRYRN = .TRUE.
 WRITE(NUOUT, 87)
 ENDIF
C
C Flag for printing final output only.
C
 LPRFIN = .FALSE.
 IF(J2 .EQ. 1)THEN
 LPRFIN = .TRUE.
 WRITE(NUOUT, 88)
 ENDIF
C
 IF(NUM.LE.0)THEN
 WRITE(NUOUT,84)
 GO TO 9999
 ENDIF
C
 NSYCY(1) = NUM
C
 WRITE(NUOUT, 82) NUM, NPTGEN, EPSX
C
 WRITE(NUOUT,86)
C
 DO 80 K = 1,NDESV
CCCC IF (K.LE.NRELV) THEN
 FRACX(K) = EPSX * (VBOUNS(2,K) - VBOUNS(1,K))
CCCC ELSE
CCCC FRACX(K) = 1.0
CCCC ENDIF
 WRITE(NUOUT,83)K,IDDESV(K),FRACX(K)
 80 CONTINUE

263

C
 DO 81 K = 1,NMPRI + 1
 FRACZ(K) = EPSZ
 81 CONTINUE
C
 82 FORMAT (3X,' Permitted No. of synthesis cycles = ', I7/
 & 3X,' Obj. func. value stationarity (EPSZ) = ', G12.4/
 & 3X,' Design variable stationarity (EPSX) = ', G12.4//)
 83 FORMAT (8X, I3, 8X, A6, 2X, G12.5)
 84 FORMAT (' W ** Synthesis cycles must be > 0')
 86 FORMAT (3X,' Values for stationarity of design',
 & ' variables (FRACX): ',//
 & 3X,' FRACX(variable) = EPSX * variable range',//
 & 3X,' Variable No. Name FRACX Value'/
 & 3X,' ------------ ------ ------------')
 87 FORMAT (' I ** Dry run, no computations will be performed',/)
 88 FORMAT (' I ** Only the final results will be printed',/)
C
 GO TO 1111
 ENDIF
C
CC BLOCK9 ------- NLINCO ---
C Reading in names of nonlinear constraints
C
 IF(BLKNAM.EQ.'NLINCO')THEN
 CALL BLKCHK(NUOUT,BKIN(9))
C
C Check if NUMCAG has been read.
C
 IF(.NOT.BKIN(4))THEN
 WRITE(NUOUT,710)
 GO TO 9999
 ENDIF
C
 WRITE(NUOUT,91)
 91 FORMAT(4X,'Names of nonlinear constraints:',/)
C
 DO 99 J=1,NNLINQ+NNLEQU
 READ(NUINP,FMT='(A)',ERR=8888)DUM
 CALL GETNAM(DUM, DUMNAM, KST, LNONAM)
 READ(DUM(KST:80),*)K
 IF(LNONAM) DUMNAM=MKNAME('NLCO',K)
 IDNLCO(K)=DUMNAM
C
 WRITE(NUOUT,92)J, IDNLCO(K)
 92 FORMAT(6X,'Nonlinear Constraint Number ',I3,' is ',A6)

264

 99 CONTINUE
C
 GO TO 1111
 ENDIF
C
CC BLOCK10------- NLINGO ---
C Reading in names of nonlinear goals
C
 IF(BLKNAM.EQ.'NLINGO') THEN
 CALL BLKCHK(NUOUT,BKIN(10))
C
C Check if NUMCAG has been read.
C
 IF(.NOT.BKIN(4)) THEN
 WRITE(NUOUT,710)
 GO TO 9999
 ENDIF
C
 WRITE(NUOUT,101)
 101 FORMAT(4X,'Names of nonlinear goals:',/)
C
 DO 109 J = 1, NNLGOA
 READ(NUINP,'(A)',ERR=8888) DUM
 CALL GETNAM(DUM, DUMNAM, KST, LNONAM)
 READ(DUM(KST:80),FMT=*,ERR=8888) K
C
 IF((K-NLINGO) .LE. 0) THEN
 WRITE(NUOUT, 106) NLINGO
 GO TO 9999
 ENDIF
C
 IF(LNONAM) DUMNAM = MKNAME('NLGO',K)
 IDNLGO(K - NLINGO) = DUMNAM
 WRITE(NUOUT,102) K, IDNLGO(K - NLINGO)
 102 FORMAT(6X,'Nonlinear Goal Number ',I3,' is ',A6)
 109 CONTINUE
C
 106 FORMAT(' E ** Nonlinear goal numbers must be > NLINGO = ',I5)
C
 GO TO 1111
 ENDIF
C
CC BLOCK11------- INITFS ---
C IINIT = 0: Initial feasible solution not generated
C = 1: Generate initial feasible solution
C

265

 IF(BLKNAM.EQ.'INITFS')THEN
 CALL BLKCHK(NUOUT,BKIN(11))
C
 LINIT =.TRUE.
C
 WRITE (NUOUT, 110)
 110 FORMAT (' I ** Auto. initial solution generation, based on
user',
 & ' provided guess.')
C
 READ(NUINP,FMT=*,ERR=8888)NHJMAX,HJEXPA, HJCONT,
 & HJEPSY,HJSTEP,HJDELT
 WRITE(NUOUT,111)NHJMAX,HJEXPA,HJCONT,HJEPSY,HJSTEP,HJDELT
 111 FORMAT (3X/,' Pattern search parameters:',//,
 & 3X,' Maximum number of calls to USRSET = ', I4/,
 & 3X,' Expansion factor = ', G12.4/,
 & 3X,' Contraction factor = ', G12.4/,
 & 3X,' EPSY = ', G12.4/,
 & 3X,' Minimum step = ', G12.4/,
 & 3X,' DELTA = ', G12.4/)
C
 GO TO 1111
 ENDIF
C
CC BLOCK12------- ALPOUT ---
C
C Flags to control various blocks of output
C Flag = 1 print output data block
C = 0 do not print
C
C LPROUT(1) : design variables
C LPROUT(2) : deviation variables
C LPROUT(3) : deviation function
C LPROUT(4) : bound information
C LPROUT(5) : linear constraint information
C LPROUT(6) : nonlinear constraint information
C LPROUT(7) : linear constraint activity for linear solution
C LPROUT(8) : nonlinear constraint activity for linear solution.
C
C LPPROC : postprocessor information
C LTIME : time statistics
C
 IF(BLKNAM.EQ.'ALPOUT')THEN
 CALL BLKCHK(NUOUT,BKIN(12))
 WRITE(NUOUT,120)
C

266

C Reset all flags
C
 DO 1277 K=1,8
 1277 LPROUT(K) = .FALSE.
C
 LPPROC = .FALSE.
 LTIME = .FALSE.
C
 READ(NUINP,FMT=*,ERR=8888)(IPR(K),K=1,8),J1, J2
C
 IF (IPR(1).EQ.1) LPROUT(1) =.TRUE.
 IF (IPR(2).EQ.1) LPROUT(2) =.TRUE.
 IF (IPR(3).EQ.1) LPROUT(3) =.TRUE.
 IF (IPR(4).EQ.1) LPROUT(4) =.TRUE.
 IF (IPR(5).EQ.1) LPROUT(5) =.TRUE.
 IF (IPR(6).EQ.1) LPROUT(6) =.TRUE.
 IF (IPR(7).EQ.1) LPROUT(7) =.TRUE.
 IF (IPR(8).EQ.1) LPROUT(8) =.TRUE.
C
 IF (LPROUT(1)) WRITE (NUOUT, 121)
 IF (LPROUT(2)) WRITE (NUOUT, 122)
 IF (LPROUT(3)) WRITE (NUOUT, 123)
 IF (LPROUT(4)) WRITE (NUOUT, 124)
 IF (LPROUT(5)) WRITE (NUOUT, 125)
 IF (LPROUT(6)) WRITE (NUOUT, 126)
 IF (LPROUT(7)) WRITE (NUOUT, 127)
 IF (LPROUT(8)) WRITE (NUOUT, 128)
C
 IF (J1 .EQ.1) LPPROC = .TRUE.
 IF (J2 .EQ.1) LTIME = .TRUE.
C
 IF (LPPROC) WRITE (NUOUT, 720)
 IF (LTIME) WRITE (NUOUT, 730)
C
 120 FORMAT (4X,'The following output information will be
printed:',/)
 121 FORMAT (6X,'1. System variables')
 122 FORMAT (6X,'2. Deviation variables')
 123 FORMAT (6X,'3. Deviation function')
 124 FORMAT (6X,'4. Bound information')
 125 FORMAT (6X,'5. Linear constraint information')
 126 FORMAT (6X,'6. Nonlinear constraint information')
 127 FORMAT (6X,'7. Linear constraint activity ',
 & 'for linear solution')
 128 FORMAT (6X,'8. Nonlinear constraint activity ',
 & 'for linear soln.')

267

 720 FORMAT (/,6X,'Post processor information will be printed')
 730 FORMAT (/,6X,'Time statistics will be printed')
C
 GO TO 1111
 ENDIF
C
CC BLOCK13------- USRMOD ---
C Read flags related to user supplied subroutines.
C IOUSER = 0: User has not provided input routine/s
C = 1: User has provided input routine/s (LUINP)
C IOUT = 0: User has not provided output routine/s
C = 1: User has provided output routine/s (LUOUT)
C IMON = 0: Subroutine USRMON is not called
C = 1: Subroutine USRMON is called
C JVARC = 0: Subroutine USRLIN is not called
C = 1: Subroutine USRLIN is called
C
 IF(BLKNAM.EQ.'USRMOD')THEN
 CALL BLKCHK(NUOUT,BKIN(13))
C
 READ(NUINP,FMT=*,ERR=8888)IOUSER,IOUT,IMON,JVARC
 IF (IOUSER.EQ.1) LUINP=.TRUE.
 IF (IOUT.EQ.1) LUOUT=.TRUE.
 IF (IMON.EQ.1) LMON =.TRUE.
 IF (JVARC.EQ.1) LVCOF=.TRUE.
C
 IF (LUINP) WRITE (NUOUT, 130)
 IF (LUOUT) WRITE (NUOUT, 131)
 IF (LVCOF) WRITE (NUOUT, 132)
 IF (LMON) WRITE (NUOUT, 133)
C
 130 FORMAT(' I ** User provided input routine USRINP used.')
 131 FORMAT(' I ** User provided output routine USROUT used.')
 132 FORMAT(' I ** User provided update routine USRLIN used.')
 133 FORMAT(' I ** User provided monitoring routine USRMON used.')
C
 GO TO 1111
 ENDIF
C
CC BLOCK14------- USRDAT ---
C User provided information to be read in Subroutine USRINP
C Required only if USRINP is called.
C
 IF(BLKNAM.EQ.'USRDAT')THEN
 CALL BLKCHK(NUOUT,BKIN(14))
C

268

C ML = Number of lines of user data to be read by USRINP.
C
 READ(NUINP,FMT=*,ERR=8888)ML
 WRITE(NUOUT,145)ML,NUSER
145 FORMAT(' I ** ',I3,' lines of data written to unit number
',I3)
C
 IF (ML .GT. 0) THEN
 DO 140 I = 1, ML
 READ (NUINP, FMT='(A)', ERR=8888) DUM
 WRITE (NUOUT, FMT='(A)') DUM
 WRITE (NUSER, FMT='(A)') DUM
140 CONTINUE
 ENDIF
C
 GO TO 1111
 ENDIF
C
CC BLOCK15------- OPTIMP ---
C Optimization control parameters.
C
 IF(BLKNAM.EQ.'OPTIMP')THEN
 READ(NUINP,FMT=*,ERR=8888)VIOLIM, REMOVS, PSTEP
 CALL BLKCHK(NUOUT,BKIN(15))
C
C * Error traps for VIOLIM and PSTEP values, reset to default if
C * wrong values given.
C
 IF (VIOLIM .GT. -VLINCO) THEN
 WRITE(NUOUT,153) -VLINCO, -VLINCO
 VIOLIM = -VLINCO
 ENDIF
C
 IF (PSTEP .LE. 0.0) THEN
 WRITE (NUOUT, 154)
 PSTEP = 0.005
 ENDIF
C
 IF ((REMOVS .LE. 0.) .OR. (REMOVS .GT. 1.0)) THEN
 REMOVS = 0.5
 WRITE (NUOUT, 155)
 ENDIF
C
 WRITE (NUOUT, 156) VIOLIM, REMOVS, PSTEP
C
 DO 150 I=1,NNLCON

269

 150 VILCN(I)=VIOLIM
C
 DO 151 I=1,NRELV
 151 REDMOV(I) = REMOVS
C
 DO 152 I = 1, NDESV
 152 PESTEP(I) = PSTEP * (VBOUNS(2,I) - VBOUNS(1,I))
C
 153 FORMAT (' W ** VIOLIM must not be greater ',
 & 'than ',F8.4,', value reset to ',F8.4/)
 154 FORMAT (' W ** Fractional step size cannot be less than ',
 & 'or equal to zero, default set to .005 '/)
 155 FORMAT (' W ** Reduced move limit is out of range, ',
 & ' default value used.')
 156 FORMAT (4X,'Relaxation for nonlin. const. (VIOLIM) = ', F8.4/
 & 4X,'Reduced move coefficient (REMO) = ', F8.4/
 & 4X,'Linearization step size (STEP) = ', F8.4//
 & 4X,'PESTEP(variable) = STEP * variable range')
C
 GO TO 1111
 ENDIF
C
CC BLOCK16------- ADPCTL ---
C Read adaptive control parameters.
C These are primarily for the advanced user.
C
 IF(BLKNAM.EQ.'ADPCTL')THEN
 CALL BLKCHK(NUOUT,BKIN(16))
C
 LADAP = .FALSE.
C
 READ(NUINP,FMT=*,ERR=8888)IADAP
C
 IF (IADAP .EQ. 1) THEN
 LADAP = .TRUE.
 WRITE(NUOUT,163)
 ENDIF
 163 FORMAT(' I ** Constraint and goal adaptation will be used.')
C
 GO TO 1111
 ENDIF
C
CC BLOCK17------- USERAN ---
C Read adaptive control parameters.
C These are primarily for the advanced user.
C

270

 IF(BLKNAM.EQ.'USERAN')THEN
 CALL BLKCHK(NUOUT,BKIN(17))
C
 READ(NUINP,FMT=*,ERR=8888)NANCY
 WRITE(NUOUT,170)NANCY
 170 FORMAT(' I ** Number of synthesis cycles = ',I3,/)
C
 READ(NUINP,FMT=*,ERR=8888)(NSYCY(J),J=1,NANCY)
 WRITE(NUOUT,171)(J,NSYCY(J),J=1,NANCY)
 171 FORMAT(4X,'Number of analysis cycles for synthesis cycle',I3,
 & ' = ',I3)
C
 GO TO 1111
 ENDIF
C
CC BLOCK18------- FIXVAR ---
C Read and print fixing of variables information.
C
 IF(BLKNAM.EQ.'FIXVAR')THEN
 CALL BLKCHK(NUOUT,BKIN(18))
C
 READ(NUINP,FMT=*,ERR=8888)NUM
 IF (NUM .GT. 0) THEN
 READ (NUINP, FMT=*, ERR=8888) (JDUM(I), I=1,NUM)
 DO 180 J = 1, NUM
 II = JDUM(J)
 IF(II.GT.NDESV)THEN
 WRITE(NUOUT,182)II
 GO TO 9999
 ENDIF
 WRITE (NUOUT, 181) II, IDDESV(II)
 180 CONTINUE
 ENDIF
C
 CALL IARFIL (NUM, JDUM, NDESV, IACTVR)
C
 181 FORMAT (4X,'Variable No. ', I2, ' (', A, ')'
 & ' has been fixed at initial guess.')
 182 FORMAT(' E ** Variable number ',I3,' is unknown')
C
 GO TO 1111
 ENDIF
C
CC BLOCK19------- SUPCON ---
C Read and print constraint suppression information.
C

271

 IF(BLKNAM.EQ.'SUPCON')THEN
 CALL BLKCHK(NUOUT,BKIN(19))
C
 WRITE(NUOUT,191)
C
 READ(NUINP,FMT=*,ERR=8888)NUM
 IF (NUM .GT. 0) THEN
 READ (NUINP, FMT=*, ERR=8888) (JDUM(K), K=1,NUM)
 DO 190 J = 1, NUM
 WRITE (NUOUT, 192) JDUM(J)
 190 CONTINUE
 ENDIF
 191 FORMAT (4X,'Nonlinear Constraint Suppression Information: ',/)
 192 FORMAT (4X,'Suppress nonlinear constraint number: ', I4)
C
 CALL IARFIL(NUM,JDUM,NNLCON,IADCON)
C
 GO TO 1111
 ENDIF
C
CC BLOCK20------- PVALFX ---
C If FRACX for individual variables to be specified read
C and print these values
C
 IF(BLKNAM.EQ.'PVALFX')THEN
 CALL BLKCHK(NUOUT,BKIN(20))
C
 READ(NUINP,FMT=*,ERR=8888)NFRAC
 IF (NFRAC .GT. 0) THEN
C
 READ (NUINP, FMT=*, ERR=8888) (CIR(K), K=1,NFRAC)
 WRITE (NUOUT, 201)
C
 DO 200 K = 1, NFRAC
 CALL SPLITC(CIR(K),II,VAL)
CCCC IF (II.LE.NRELV) THEN
 FRACX(II) = VAL * (VBOUNS(2,II) - VBOUNS(1,II))
CCCC ELSE
CCCC FRACX(II) = 1.0
CCCC ENDIF
 200 WRITE (NUOUT, 202) II, IDDESV(II), FRACX(II), VAL
 ENDIF
C
 201 FORMAT (4X,'Particular values for stationarity of design',
 & ' variables (FRACX): ',//
 & 4X,'FRACX(variable) = Fraction * variable range'//

272

 & 4X,'Variable No. Name Fraction FRACX Value'/
 & 4X,'------------ ------ ------------ ------------')
 202 FORMAT (4X,' ', I3, 9X, A6, 3X, G12.4, 3X, G12.4)
C
 GO TO 1111
 ENDIF
C
CC BLOCK21------- PVALFZ ---
C If FRACZ for individual variables to be specified read
C and print these values
C
 IF(BLKNAM.EQ.'PVALFZ')THEN
 CALL BLKCHK(NUOUT,BKIN(21))
C
 READ(NUINP,FMT=*,ERR=8888)NFRAC
 IF (NFRAC .GT. 0) THEN
C
 READ (NUINP, FMT=*, ERR=8888) (CIR(K), K=1,NFRAC)
 WRITE (NUOUT, 211)
C
 DO 210 K = 1, NFRAC
 CALL SPLITC(CIR(K),II,VAL)
 WRITE (NUOUT, 212) II, VAL
 210 FRACZ(II+1) = VAL
 ENDIF
C
 211 FORMAT (4X,'Particular values for stationarity of deviation',
 & ' function (FRACZ): '//
 & 4X,'Priority Level FRACZ Value'/
 & 4X,'-------------- ------------')
 212 FORMAT (4X,' ',I3, 11X, G12.4)
C
 GO TO 1111
 ENDIF
C
CC BLOCK22------- PVSTEP ---
C Perturbation step specification for nonlinear constraints and
goals.
C
 IF(BLKNAM.EQ.'PVSTEP')THEN
 CALL BLKCHK(NUOUT,BKIN(22))
C
 WRITE(NUOUT,224)PSTEP
C
 DO 225 I = 1, NDESV
 225 PESTEP(I) = PSTEP * (VBOUNS(2,I) - VBOUNS(1,I))

273

C
 READ (NUINP, FMT=*, ERR=8888) NPSTEP
C
 IF (NPSTEP .GT. 0) THEN
 READ (NUINP, FMT=*, ERR=8888) (CIR(K), K=1,NPSTEP)
 WRITE (NUOUT, 221)
C
 DO 220 J = 1, NPSTEP
 CALL SPLITC(CIR(J),NUM,VAL)
 IF (VAL .LE. 0.0) THEN
 WRITE (NUOUT, 222)
 VAL = 0.005
 ENDIF
 PESTEP(NUM) = VAL * (VBOUNS(2,NUM) - VBOUNS(1,NUM))
 WRITE (NUOUT, 223) NUM, IDDESV(NUM), PESTEP(NUM), VAL
 220 CONTINUE
C
 ENDIF
C
 221 FORMAT (4X,'Perturbation step size for linearizing',
 & ' nonlinear constraints & goals:')
 222 FORMAT (' W ** Fractional step size cannot be less than ',
 & 'or equal to zero default set to .005 '/)
 223 FORMAT (' Variable No.', I3, ', Name: ', A,
 & ' linearization step size = ', F7.4,
 & ' (fraction = ',F7.4,')')
 224 FORMAT (3X,' Default value of STEP = ',G12.5,//
 & 3X,' PESTEP(variable) = STEP * variable range')
C
 GO TO 1111
 ENDIF
C
CC BLOCK23------- PVCVIL ---
C If FRAC3 for individual nonlinear constraints to be
C specified read and print these values
C
 IF(BLKNAM.EQ.'PVCVIL')THEN
 CALL BLKCHK(NUOUT,BKIN(23))
C
 WRITE(NUOUT,233) VIOLIM
 233 FORMAT(4X,'Default value of VIOLIM = ',G12.5)
 DO 234 I=1, NNLCON
 234 VILCN(I) = VIOLIM
C
 READ(NUINP,FMT=*,ERR=8888)NFRAC
 IF (NFRAC .GT. 0) THEN

274

 READ (NUINP, FMT=*, ERR=8888) (CIR(K), K=1,NFRAC)
 WRITE (NUOUT, 231)
C
 DO 230 K = 1, NFRAC
 CALL SPLITC(CIR(K),NUM,VAL)
 WRITE (NUOUT, 232) NUM, IDNLCO(NUM), VAL
 230 VILCN(NUM) = VAL
 ENDIF
C
 231 FORMAT (' '/4X,'Particular values for nonlinear constraint',
 & ' satisfaction (VILCN):'//
 & 4X,'Nonlinear NAME VILCN'/
 & 4X,'Constraint No.'/
 & 4X,'-------------- ------ --------')
 232 FORMAT (8X, I3, 10X, A, 3X, F8.2)
C
 GO TO 1111
 ENDIF
C
CC BLOCK24------- PVREMO ---
C If different move limit required for variables.
C
 IF(BLKNAM.EQ.'PVREMO')THEN
 CALL BLKCHK(NUOUT,BKIN(24))
C
 WRITE(NUOUT,243)REMOVS
 243 FORMAT(3X,' Default value of reduced move = ',G12.5)
C
 DO 244 I=1,NRELV
 244 REDMOV(I) = REMOVS
C
 READ(NUINP,FMT=*,ERR=8888) NREMOV
C
 IF (NREMOV .GT. 0) THEN
 READ (NUINP, FMT=*, ERR=8888) (CIR(J), J=1,NREMOV)
 WRITE (NUOUT, 241)
 DO 240 J = 1, NREMOV
 CALL SPLITC(CIR(J),NUM,VAL)
 WRITE (NUOUT, 242) NUM, IDDESV(NUM), VAL
 REDMOV(NUM) = VAL
 240 CONTINUE
 ENDIF
C
 242 FORMAT (' Variable No.', I3, ', Name: ', A, ', Reduced ',
 & 'move limit is = ', F7.4)
 241 FORMAT (' Reduced move limits for variables: ')

275

C
 GO TO 1111
 ENDIF
C
CC BLOCK25------- ADREMO ---
C Parameters for adaptive reduced move.
C
 IF(BLKNAM.EQ.'ADREMO')THEN
 CALL BLKCHK(NUOUT,BKIN(25))
C
 LADREM = .TRUE.
C
 WRITE(NUOUT,250)
 250 FORMAT(' I ** Adaptive reduced move limit will be used',//)
C
 READ(NUINP,FMT=*,ERR=8888)NADREM, DELREM
 WRITE(NUOUT,252)NADREM, DELREM
 252 FORMAT(' I ** Maximum number of calls to USRSET = ',I3,/,
 & ' Minimum reduced move = ',G10.2)
C
 GO TO 1111
 ENDIF
C
CC BLOCK27------- ENDPRB ---
C Special block to indicate termination.
C
 IF(BLKNAM.EQ.'ENDPRB')THEN
 WRITE(NUOUT,260)
260 FORMAT(' I ** Stop reading data file',
 & ' - Rest of data file will be ignored',//)
 GO TO 9000
 ENDIF
CC BLOCK26------- XPLORE ---
C Read and print fixing of variables information.
C
 IF (BLKNAM.EQ.'XPLORE') THEN
 CALL BLKCHK(NUOUT,BKIN(26))
C
 LXPLOR = .TRUE.
C
 DO 275 J = 1, NDESV
 IGENFX(J) = 0
 275 CONTINUE
C
 READ(NUINP,FMT=*,ERR=8888)NPTGEN,NPTBST,J1,IGSEED
C

276

 IF (J1.EQ.1) THEN
 LPRGEN = .TRUE.
 WRITE (NUOUT, 278)
 ELSE
 WRITE (NUOUT, 279)
 ENDIF
C
 WRITE (NUOUT, 2711) NPTGEN, NPTBST
C
 IF (IGSEED .GT. 2530) THEN
 WRITE (NUOUT, 274) IGSEED
 IGSEED = 2530
 ELSE
 IF (IGSEED .LT. 1) THEN
 WRITE (NUOUT, 276) IGSEED
 IGSEED = 1
 ELSE
 WRITE (NUOUT, 277) IGSEED
 ENDIF
 ENDIF
C
 READ(NUINP,FMT=*,ERR=8888)NUM
C
 IF(NUM.GT.NDESV)THEN
 WRITE(NUOUT,273)NUM,NDESV
 GO TO 9999
 ENDIF
C
 IF (NUM .GT. 0) THEN
 READ (NUINP, FMT=*, ERR=8888) (JDUM(I), I=1,NUM)
 DO 270 J = 1, NUM
 II = JDUM(J)
C
 IF(II.GT.NDESV)THEN
 WRITE(NUOUT,272)II
 GO TO 9999
 ENDIF
C
 IGENFX(II) = 1
 WRITE (NUOUT, 271) II, IDDESV(II)
 270 CONTINUE
 ENDIF
C
 271 FORMAT (4X,'Variable No. ', I2, ' (', A, ')'
 & ' will be fixed at initial guess.')
 272 FORMAT(' E ** Variable number ',I3,' is unknown')

277

 273 FORMAT(' E ** Number of fixed variables = ',I4,/,
 & ' Number of design variables = ',I4)
 274 FORMAT(' I ** User supplied integer seed = ',I6,/,
 & ' Seed reset to maximum value = 2530')
 276 FORMAT(' I ** User supplied integer seed = ',I6,/,
 & ' Seed reset to minimum value = 1')
 277 FORMAT(4X,'User supplied integer seed = ',I6,/)
 278 FORMAT(4X,'Data printed to standard output file',/)
 279 FORMAT(4X,'Data NOT printed to standard output file')
 2711 FORMAT(4X,'Total number of points to be generated = ',I6,/
 & 4X,'Number of best points recorded = ',I6)
C
 GO TO 1111
 ENDIF
C
C------------------------------------
CCC* Fall through option for bad block name
C
 WRITE(NUOUT,987)BLKNAM
987 FORMAT(' E ** Fatal error: Invalid blockname >> ',A)
 GO TO 9999
C------------------------------------
 9000 CONTINUE
C
C Successful end of data file input indicated by
C end-of-file or the ENDPRB block
C
C Consistency checks:
C
C Check if all mandatory blocks have been read.
C
 IF(.NOT.BKIN(1))THEN
 WRITE(NUOUT,510)'PTITLE'
 GO TO 9999
 ENDIF
C
 IF(.NOT.BKIN(2))THEN
 WRITE(NUOUT,510)'NUMSYS'
 GO TO 9999
 ENDIF
C
 IF(.NOT.BKIN(3))THEN
 WRITE(NUOUT,510)'SYSVAR'
 GO TO 9999
 ENDIF
C

278

 IF(.NOT.BKIN(4))THEN
 WRITE(NUOUT,510)'NUMCAG'
 GO TO 9999
 ENDIF
C
 IF((NLINCO.NE.0).AND.(.NOT.BKIN(5)))THEN
 WRITE(NUOUT,510)'LINCON'
 GO TO 9999
 ENDIF
C
 IF((NLINGO.NE.0).AND.(.NOT.BKIN(6)))THEN
 WRITE(NUOUT,510)'LINGOL'
 GO TO 9999
 ENDIF
C
 IF(.NOT.BKIN(7))THEN
 WRITE(NUOUT,510)'ACHFUN'
 GO TO 9999
 ENDIF
C
 IF(.NOT.BKIN(8))THEN
 WRITE(NUOUT,510)'STOPCR'
 GO TO 9999
 ENDIF
C
 510 FORMAT(' E ** Mandatory block ',A,' not specified')
C
C Default print settings
C
 IF(.NOT.BKIN(12))THEN
 WRITE(NUOUT,120)
 WRITE(NUOUT,121)
 WRITE(NUOUT,122)
 WRITE(NUOUT,123)
 ENDIF
C
C Default names for nonlinear constraints if NLINCO not given
C
 IF((NNLCON.GT.0).AND.(.NOT.BKIN(9)))THEN
 WRITE(NUOUT,520)
 520 FORMAT(/,3X,' Default names of nonlinear constraints')
 DO 540 J=1,NNLCON
 IDNLCO(J)=MKNAME('NLCO',J)
 WRITE(NUOUT,530)J,IDNLCO(J)
 530 FORMAT(3X,I3,2X,A)
 540 CONTINUE

279

 ENDIF
C
C Default names for nonlinear goals if NLINGO not given
C
 IF((NNLGOA.GT.0).AND.(.NOT.BKIN(10)))THEN
 WRITE(NUOUT,550)
 550 FORMAT(/,3X,' Default names of nonlinear goals')
 DO 570 J=1,NNLGOA
 IDNLGO(J)=MKNAME('NLGO',J)
 WRITE(NUOUT,560)J,IDNLGO(J)
 560 FORMAT(3X,I3,2X,A)
 570 CONTINUE
 ENDIF
C
C Other default values to be set
C
C Default VILCN values
C
 IF((.NOT.BKIN(15)).AND.(.NOT.BKIN(23)))THEN
 WRITE(NUOUT,*)
 WRITE(NUOUT,233) VIOLIM
 DO 580 I=1,NNLCON
 580 VILCN(I) = VIOLIM
 ENDIF
C
C Default REDMOV values
C
 IF((.NOT.BKIN(15)).AND.(.NOT.BKIN(24)))THEN
 WRITE(NUOUT,*)
 WRITE(NUOUT,243)REMOVS
 DO 590 I=1,NRELV
 590 REDMOV(I) = REMOVS
 ENDIF
C
C
C Default PESTEP values
C
 IF((.NOT.BKIN(15)).AND.(.NOT.BKIN(22)))THEN
 WRITE(NUOUT,*)
 WRITE(NUOUT,224)PSTEP
 DO 600 I = 1, NDESV
 600 PESTEP(I) = PSTEP * (VBOUNS(2,I) - VBOUNS(1,I))
 ENDIF
C
C
C Default IACTVR values or

280

C modify corresponding linear terms to appear as constants
C and transfer values to the RHS
C
 IF (.NOT.BKIN(18))THEN
 DO 610 J = 1, NDESV
 IACTVR(J) = J
 610 CONTINUE
 ELSE
 IF (NLINCO+NLINGO .GT. 0) THEN
 DO 630 J = 1, NDESV
 IF (IACTVR(J) .LE. 0) THEN
 DO 620 I = 1, NLINCO+NLINGO
 IF (COFLIN(I,J) .NE. 0.0) THEN
 RHSLIN(I) = RHSLIN(I) - COFLIN(I,J)*DESVAR(J)
 COFLIN(I,J) = 0.0
 IF (I .LE. NLINCO) THEN
 WRITE (NUOUT, 625) IDLICO(I), IDDESV(J)
 ELSE
 WRITE (NUOUT, 625) IDLIGO(I-NLINCO), IDDESV(J)
 ENDIF
 ENDIF
 620 CONTINUE
 ENDIF
 630 CONTINUE
 ENDIF
 ENDIF
C
C
C Default IADCON values
C
 IF (.NOT.BKIN(19))THEN
 DO 650 J = 1, NNLCON
 IADCON(J) = J
 650 CONTINUE
 ENDIF
C
C
C Sucessful completion of data input
 FATAL = .FALSE.
 WRITE(NUOUT,*)
 WRITE(NUOUT,*)
C
 RETURN
C
C
C-------------------------------------

281

C
C FORTRAN read error encountered
C
 8888 CONTINUE
C
 WRITE(NUOUT,988)BLKNAM
 GO TO 9999
C -------------------------------------
C
C Unsuccesful data input for any reason
C
 9999 CONTINUE
C
 WRITE(NUOUT, 777)
 FATAL = .TRUE.
 WRITE(NUOUT,*)
 WRITE(NUOUT,*)
C
C
 RETURN
C
C***
**
C
C Formats:
C
 625 FORMAT(' I ** ', A6,' - COFLIN and RHSLIN modified due to
fixed',
 & ' variable, ',A6)
 700 FORMAT(' E ** NUMSYS block must precede SYSVAR')
 710 FORMAT(' E ** NUMCAG must precede this block')
 777 FORMAT(/,' E ** Fatal error reading data file. END OF JOB.')
 988 FORMAT(' E ** Error reading data in block ',A)
C
C***
**
C End of Subroutine ALPDAT
C***
**
C
 END

Up to this point, two input subroutines have been encompassed in our study: ALPLIM, where all

other main input subroutines are invoked, and ALPDAT, where information from all linear sheet

282

blocks is meticulously processed. The third input subroutine, ALPMOD, will be introduced in the

next section.

III.2.3 ALPMOD Subroutine and its Flowchart

The purpose of this subroutine is to perform the synthesis cycles. (It is about stopping criteria).

To better view this subroutine, I have considered two flowcharts. The first one is more general

to give a big picture to the user, and the second flowchart is in more detail. The general

flowchart of ALPMOD is represented in Figure III.1, but the detailed flowchart and the

subroutine have been added in the appendix.

283

Figure III. 1: General Flowchart of ALPMOD Subroutine

284

Note about some variables in ALPMOD:

1) REDMOV real reduced move step sizes

 Variable REDMOV is defined as a real variable(reduced move step sizes), But it is

considered as a vector with length MDESV (maximum number of design variables) in the

subroutine.

2) FRACX real vector: convergence criteria for X, the design variables

3) FRACZ real vector: convergence criteria for Z, the deviation function

The FRACX vector has n dimensions, similar to the dimensionality of the vector of

variables X. If, in any one or more dimensions, the difference between Xi (1 <= i <= n) is

less than 0.005 (or 0.5%), then we stop the program. Therefore, FRACX probably means

"fraction of X," so it is a percentage of the absolute value of Xi.

However, in DSIDES Manual Chapter 9, Section 9.12 (8. STOPCR) (Figure 3.2), the

definition is EPSZ (desired stationarity of deviation function) and EPSX (desired

stationarity of system variables). EPSZ is not a vector, as the deviation function always

yields a single value. Thus, if the difference in Z between two consecutive iterations is no

more than 0.02, the program will terminate. However, EPSX, in my understanding, is a

vector; if we set it as 0.02, it means when any Xi (one dimension of vector X) in two

iterations in a row is not more different than 0.02, then we stop the program.

The difference between FRACX and EPSX is that FRACX is the real fractional difference

(%), but EPSX is a threshold. For example, see the Notes in Figure 3.2. the program will

stop if the real fractional difference is less than or equal to the threshold.

285

Figure III. 2: Block STOPCR in the DAT file

Following the discussion and representation of the ALPMOD flowchart, the subsequent section

is about ALPUTL, which is denoted as ALPUTL in the files but referred to as COPYTX in all other

subroutines.

III.2.4 COPYTX (ALPUTL) Subroutine

 The main purpose of this subroutine is to copy the contents of the Y (input vector) array into the

X (output vector) array. This subroutine is about the synthesis cycle. So it keeps the information

of the last cycle and uses it to start the next cycle. For instance, if the user wants to do 20 cycles

and now, we are in the 10th cycle, it will save the information on the 10th cycle in an array and

pass it to the program to start the 11th cycle.

C Subroutine COPYTX (ALPUTL)
C

286

C Purpose: This routine copies the contents of the Y array into the X
array.
C
C---
--
C Arguments Name Type Description
C --------- ---- ---- -----------
C Input: N int length of vectors
C Y real input vector
C
C Output: X real output vector
C
C Input/Output: none
C
C***
**
C-
 SUBROUTINE COPYTX (N, X, Y)
C
 INTEGER N, K
 REAL X(N), Y(N)
C
 DO 100 K = 1, N
 X(K) = Y(K)
 100 CONTINUE
C
 RETURN

III.2.5 ALPCTL Subroutine and Its Flowchart

This subroutine is the main program for DSIDES and is a central module that other subroutines

will invoke. By comprehending this subroutine, users can gain a clearer insight into the overall

functionality and operation of the program. The flowchart and outline of the sequence of

execution for the ALPCTL subroutine has been displayed in Figure III.3, and the subroutine is in

the appendix since it is a long subroutine.

287

288

289

Figure III. 3: Flowchart of ALPCTL Subroutine

Summary OF Part 3:

In this part, we have covered the main input subroutines and also reviewed all the subroutines

and their purpose. This part could be helpful for anyone who has a plan to improve and consider

changes in the program in the future. All the subroutines are located on the server of the System

Realization Laboratory in OU. (Following address in the server of SRL lab : C:\Sara_DSIDES)

Summary of Thesis

The summary section of my thesis comprises five distinct components: the preamble, an

introduction and an overview of the three main parts, a thesis layout flowchart, and closing

remarks.

1: Preamble:

When dealing with complex systems, we need to consider that these systems have behaviors that

are hard to predict or control, and uncertainties are always present since computational models

290

are abstracts of reality. It is recognized that in many situations, it may not be possible to

simultaneously optimize all objectives due to inherent conflicts, resource limitations, or

uncertainty. Also, as George E.P. Box said: "All models are wrong, but some are useful." The

consequences of these observations are significant. We need to accept that our models might

not capture everything and that uncertainties are a part of the picture. Hence, we must accept

and deal with uncertainty instead of ignoring it and find solutions that are relatively insensitive

to the uncertainties.

When choosing a method to work with, we need to consider the quality and the amount of our

data. To make this all work, we need a method to find solutions that achieve a reasonable

compromise or balance among the objectives and identify a set of solutions that are relatively

insensitive to uncertainties. Also, be able to facilitate the exploration of solution space to support

human decision-making. This ties into the problems we face in supporting decisions for complex

systems. These problems involve choosing between options and making compromises.

The compromise Decision Support Problem (cDSP) construct, and the Adaptive Linear

Programming algorithm has been developed as a result, which was first introduced by Mistree

and co-authors (1993). It is a domain-independent, multiobjective decision model based on

mathematical and goal programming. They effectively deal with multiobjective problems

involving bounds, linear and nonlinear constraints, goals, and consisting of Boolean and

continuous variables. The requirements for this construct are:

1) Identify a set of solutions that are relatively insensitive to uncertainties.

2) Facilitate the exploration of solution space to support human decision-making.

Why do We Use Satisfying Strategy?

291

We choose a satisfying strategy because it is more flexible and realistic and we are able to manage

uncertainty to give robust design. The fact that our math isn't perfect is acknowledged by the

satisficing strategy, but it is still capable of assisting us in crafting robust designs. In contrast, the

optimizing strategy is based on the assumption that math is flawless and necessitates the

fulfillment of specific conditions, which may not always align with circumstances.

In the context of the difference between optimization and satisficing in terms of assumptions

regarding the KKT conditions, we present Summary Figure 1.

Gradient based optimization means we must reach both necessary and sufficient KKT conditions,

which contain 3 different assumptions for optimizing strategy:

1) The mathematical models are 100% complete and accurate abstraction of physical

problems. (Only using in optimization). It is like thinking our math is always right, even though

we know it is not always true. With optimizing, when we find the best solution, we believe it'll

work perfectly in any problem, any time, any situation, because our math is perfect.

2) All equations of the problems are differentiable. (Common for satisfying strategy and

optimizing strategy). This condition is integral to mathematical programming, as it necessitates

the utilization of first or second-order derivatives to facilitate solution derivation.

In essence, the need for differentiability across all equations in the problem is underscored by

this assumption.

3) the convexity degree of at least one nonzero linear combination of all constraints is

higher than the convexity degree of objective function. (Only using in optimization). This

specific assumption becomes relevant when an optimizing approach is chosen, indicating that a

higher level of convexity than the primary objective function is exhibited by certain constraints.

292

Summary Figure 1: Comparison of Optimization and Satisficing Assumptions

Regarding KKT Conditions

Relation Between The Optimal, Satisficing, And Near-Optimal Solutions:

As it is represented in Summary Figure 2 , in the quest for an optimal solution, the use of KKT

conditions is crucial, demanding adherence to both necessary and sufficient KKT conditions. In

this, the satisfaction of the first-order conditions and the Lagrange function is entailed, with these

being key components. Additionally, there are sufficient KKT conditions, represented in the

second-order Lagrange function, which must be met.

In contrast, satisfying solutions remain solely to the necessary KKT conditions, typically

represented by the first Lagrange equation. Another concept, frequently encountered in

evolutionary and generic algorithms, is the 'near-optimal’ solution. These solutions, although

falling short of optimality, exhibit minimal distance from the optimal solution. The exact definition

of 'near' optimal varies depending on the context.

Interestingly, the encompassing of optimal solutions by satisfying solutions can occur, as the

293

sufficient KKT conditions may be unintentionally met by some satisfying solutions. Typically, these

solutions are often outperformed by most near-optimal ones due to their proximity to the optimal

solution. Consequently, the concept of 'good enough' is defined.

In contrast, the objective of optimization is to reach the peak of a precise model. However, it is

important to know that sometimes the model itself can be flawed.Now, in the context of the

satisfying strategy, as implemented in cDSP, we shift our focus to a flat region. It is not a pinpoint

spot but more like an area. Our aim is to consistently include this 'ball' within that flat area. This

approach ensures that we always have a solution that works and is practical.

Summary Figure 2: Relation between the optimal, satisficing, and near-optimal solutions

A summary of the unique features of satisficing in terms of its application to managing

engineering design problems at each step has been presented in Summary Table 1.

Summary Table 1: Summary of Satisficing in Managing Engineering Design Problems at Each

Step

Stage Feature Advantage

294

Formulation

Using Goals and
Minimizing Deviation
Variables Instead of
Objectives

At a solution point, only the necessary KKT
conditions are met, whereas the sufficient KKT
conditions do not have to be met.
Therefore, designers have a higher chance of
finding a solution and a lower chance of losing a
solution due to parameterizable and
unparameterizable uncertainties.

Approximation Using second-order
sequential
linearization

Designers can have a balance between
linearization accuracy and computational
complexity.

Using accumulated
linearization

Designers can manage nonconvex problems in a
way, and deal with highly convex, nonlinear
problems relatively more accurately.

Exploration

Combining interior-
point searching and
vertex searching

Designers can avoid being stuck into local optimum
to some extent and identify satisficing solutions
relatively insensitive to starting points changing.

Evaluation

Allowing some
violations of soft
requirements, such as
the bounds of
deviation variables

Designers can manage rigid requirements and soft
requirements in different ways to ensure feasibility.
As a result, goals and constraints with different
scale can be managed

Mistree and co-authors designed a computer program to implement cDSP construct. It has been

written in FORTRAN to identify robust satisficing solutions to design problems when the models

are abstractions of reality. It is called DSIDES (Decision Support in the Design of Engineering

Systems).

DSIDES is a software tool developed to help engineers and designers make better decisions in the

design of complex engineering systems and provides decision support for the design of complex

engineering systems.

In this thesis, our primary objective is to enhance the accessibility and user-friendliness of DSIDES

by designing a user-friendly wrapper. Three key areas of focus are included in this thesis:

295

4) Exploration of cDSP Construct: In this part, the examination of the cDSP (Compromise

Decision Support Problem) construct, including its structural components and the

formulation of problem statements within the cDSP framework, has been discussed.

5) Comprehensive Analysis of the DSIDES Wrapper: A detailed exploration of the DSIDES

wrapper and a step-by-step walkthrough of the wrapper's functionalities are covered.

6) DSIDES Software Program Manuals: Program manuals for DSIDES software are provided.

These manuals are helpful resources for individuals seeking to enhance, expand, or

modify the software.

2: Introduction and Overview of Three Parts

As mentioned earlier, a complex system has emergent properties that cannot be predicted or

controlled, and uncertainties are always present since computational models are abstracts of

reality; they cannot eliminate uncertainties that are a significant factor in any design problem.

Therefore, we need to accept the incompleteness of the models, manage the uncertainty

embodied therein, and identify a set of solutions that are relatively insensitive to uncertainties.

Also, it could facilitate the exploration of solution space to support human decision-making. The

compromise Decision Support Problem(cDSP) and the Adaptive Linear Programming algorithm

have been developed, which was first introduced by Mistree and co-authors (1993).

They also designed a computer program to implement cDSP construct. It has been developed in

FORTRAN to identify robust satisficing solutions to design problems when the models are

abstractions of reality. It is called DSIDES (Decision Support in the Design of Engineering Systems).

296

Our focus in this thesis is on designing a user-friendly interface for DSIDES, providing information

on the software, the necessary information to work with it effectively, and program manuals to

improve the software for future use. Based on that, there are three different parts to this thesis:

4) Part One: DSIDES Software and cDSP Construct: An Introduction.

5) Part Two: Designing the User-Friendly Wrapper for DSIDES.

6) Part Three: Program Manuals and Improvement of DSIDES

Overview of Part 1: DSIDES Software and cDSP Construct: An Introduction.

In the first part of this thesis, enhanced information about the compromise Decision Support

Problem (cDSP) and formulation of a problem in cDSP, including Archimedean and preemptive

forms in detail with some examples, a short description about DSIDES software and platform of

DSIDES are provided. Upon reading the first part, the reader will have learned the necessary

information to formulate a problem in cDSP, allowing them to start using the software effectively.

Overview of Part 2: Designing the User-Friendly Wrapper for DSIDES

In the second part of this thesis, the main focus is on the user-friendly interface that has been

designed for DSIDES. In this part, detailed information about how to work with the wrapper

effectively, including implementing the formulated cDSP construct into the DSIDES wrapper to

find solutions that are relatively insensitive to uncertainty, is provided. This section also includes

an interpretation of the output results and verification and validation for the software. To this

end, three problems are presented that demonstrate how to start from scratch, formulate the

problem in cDSP, and finally implement the problem in the wrapper. This Section is a useful

document for users to practice and learn how to use the DSIDES wrapper effectively.

297

Overview of Part 3: Program Manuals and Improvement of DSIDES

In the third part of this thesis, the program manuals, flowcharts, coding, and information about

input subroutines in DSIDES are provided. The main focus of this part is on providing information

about the input files and their respective purposes. The objective is to simplify their

comprehension of the users by presenting their flowcharts. Additionally, other subroutines that

are called through the main files will be covered in this part. This information is necessary for

users who want to improve the software and understand how the programs work. In this part,

readers will have access to the necessary information to improve the software and their work in

the future. (The focal objective of this Section is to consolidate all the functions and subroutines

of DSIDES in a single location for documentation purposes.)

3: Thesis Layout Flowchart

An understanding of the organization and flow of the thesis is offered by an illustrative

representation in Figure A, in which its sequential structure is outlined. A concise overview of the

chapters, sections, and their interconnections is provided within this illustrative representation

to enhance clarity and facilitate navigation.

298

299

Summary Figure 3: Flowchart of Thesis Layout

After providing an overview of the thesis layout through the flowchart presentation, the detailed

table of contents is presented in the subsequent section to enumerate all sections and

subsections.

300

5: Closing Remarks

Our goal in this thesis is the development of a user-friendly Wrapper for DSIDES software, with a

focus on addressing the challenges posed by uncertainty and complexity in design problems.

Within the field of engineering design, a significant contribution is sought through the integration

of MATLAB and Excel to facilitate the exploration of the solution space, supporting human

decision-making.

 Multiobjective problems, which encompass bounds, linear and nonlinear constraints, goals, and

a combination of Boolean and continuous variables, are effectively managed by the software.

Substantial impact is expected, encompassing improvements in efficiency, increased

productivity, and an enhanced user experience in engineering design. Furthermore, validation of

the software's performance and functionality, utilizing both empirical and theoretical methods,

ensures reliability and efficiency. In summary, this thesis's contribution lies in the provision of a

practical and efficient solution to tackle the challenges associated with uncertainty and

complexity in engineering design.

Appendix

ALPMOD Subroutine:

For this subroutine, one detailed flowchart and the program are added here.

301

Detailed Flowchart of ALPMOD:

302

303

Summary Figure 4: Detailed Flowchart of ALPMOD

ALPMOD Subroutine:

+
C***
**
C
C Subroutine ALPMOD
C
C Purpose: Perform the synthesis cycles
C
C---
--
C Arguments Name Type Description
C --------- ---- ---- -----------
C Input: NANCY int maximum number of analysis cycles
C performed
C INUMAN int analysis cycle number
C NTITER int total number of iterations performed
C NUOUT int unit number of output data file
C NUPPI int unit number of postprocessor
C information data file
C NRELV int number of real (continuous)
variables
C NVINT int number of integer variables
C NVSEL int number of selection (Boolean)
C variables
C NDESV int number of design variables
C NDEVAR int number of deviation variables
C NLINCO int number of linear constraints
C NLINGO int number of linear goals
C NNLINQ int number of nonlinear inequalities
C constraints
C NNLEQU int number of nonlinear equalities
C constraints
C NNLCON int number of nonlinear constraints
C NNLGOA int number of nonlinear goals

304

C NNLTOT int total number of nonlinear
constraints
C and goals
C NMPRI int number of goal priority levels
C NSYCY int vector indicating the maximum number
C of synthesis cycles performed within
C each analysis cycle
C IACTVR int vector of flags for active variables
C IADCON int vector of flags for admissible
C nonlinear constraints
C = 0 if suppressed by user
C = J if admissible
C = -n if suppressed by program
C LISIGN int vector indicating sign for linear
C inequality constraints
C JSYCY int synthesis cycle number corresponding
C to X* (within a given analysis
cycle)
C NADREM int ADREMO - maximum number of calls to
C be made to GCALC
C CONDEV real total constraint violation
C DELREM real acceptable convergence criterion for
C reduced move
C COFLIN real matrix of coefficients of linear
C constraints and goals
C DESVAR real vector of design variables
C DFNCOF real matrix of weights for deviation
C function
C DEVFUN real vector of deviation function values
C DEVVAR real vector of deviation variables
C FRACX real vector: convergence criteria for X,
C the design variables
C FRACZ real vector: convergence criteria for Z,
C the deviation function
C GVAL real vector of nonlinear constraint and
C goal values
C PESTEP real vector of perturbation steps for
C nonlinear constraints and goals
C REDMOV real reduced move step sizes
C RHSLIN real vector of RHS values for linear
C constraints and goals
C VBOUNS real matrix of lower and upper bounds for
C design variables
C VILCN real vector of acceptable nonlinear
C constraint violations
C LADAP lgcl use constraint adaptation

305

C LADREM lgcl use adaptive reduced move
C LMON lgcl call user supplied subroutine USRMON
C LVCOF lgcl call user supplied subroutine USRLIN
C LPRFIN lgcl print final output only
C LPROUT lgcl vector of flags for output control
C LPPROC lgcl create ALP postprocessor files
C LCONDF lgcl TRUE if deviation function converged
C LCONSV lgcl TRUE if design variables converged
C LIMPRV lgcl TRUE if point 2 is better than point
1
C IDDESV chr6 vector of design variable names
C IDDEVR chr6 vector of deviation variable names
C IDLICO chr6 vector of linear constraint names
C IDLIGO chr6 vector of linear goal names
C IDNLCO chr6 vector of nonlinear constraint names
C IDNLGO chr6 vector of nonlinear goal names
C
C Output:
C
C Input/Output:
C
C---
--
C Common Blocks: none
C
C Include Files: alplim.cmm
C
C Calls to:
C---
--
C Development History
C
C Author: Warren Smith
C Date: November 15, 1991
C
C Modifications: Bert Bras, July 13, 1993.
C Added NRFIX for INITAB() and MLINOP().
C Added MODIF() for PRNLNC().
C
C***
**
C-NVINT---KL** Watch changing all NVINT to NDISV
C NVINT int number of integer variables
C *************KL NDISV int number of discrete variables (inc.
integer)

306

C
 SUBROUTINE ALPMOD (NANCY, INUMAN, NTITER, NUOUT, NUPPI,
 & NRELV, NDISV, NVSEL, NDESV, NDEVAR,
 & NLINCO, NLINGO,
 & NNLINQ, NNLEQU, NNLCON, NNLGOA, NNLTOT,
 & NMPRI, NSYCY, IACTVR, IADCON, LISIGN,
 & JSYCY, NADREM,
 & CONDEV, DELREM,
 & COFLIN, DESVAR, DFNCOF,
 & DEVFUN, DEVVAR, FRACX, FRACZ, GVAL,
 & PESTEP, REDMOV, RHSLIN, VBOUNS, VILCN,
 & LADAP, LADREM, LMON, LVCOF, LPRFIN, LPROUT,
 & LPPROC, LCONDF, LCONSV, LIMPRV,
 & IDDESV, IDDEVR, IDLICO, IDLIGO, IDNLCO,
IDNLGO)
C
 INCLUDE 'alplim.cmm'
C
C---------------------------------------
C Arguments:
C---------------------------------------
C
 INTEGER NANCY, INUMAN, NTITER, NUOUT, NUPPI,
 & NRELV, NDISV, NVINT, NVSEL, NDESV, NDEVAR,
 & NLINCO, NLINGO, NNLINQ, NNLEQU, NNLCON, NNLGOA, NNLTOT,
 & NMPRI, NSYCY, IACTVR(MDESV), IADCON(MNLNCG),
LISIGN(MLINCG),
 & JSYCY, NADREM
C
 REAL CONDEV, DELREM,
 & COFLIN(MLINCG,MDESV), DESVAR(MDESV), DFNCOF(MLEVEL,MDEVV),
 & DEVFUN(MLEVEL), DEVVAR(MDEVV),
 & FRACX(MDESV), FRACZ(MLEVEL),
 & GVAL(MNLNCG), PESTEP(MDESV), REDMOV(MDESV),
 & RHSLIN(MLINCG), VBOUNS(2,MDESV), VILCN(MNLNCG)
C
 LOGICAL LADAP, LADREM, LMON, LVCOF,
 & LPRFIN, LPROUT(8), LPPROC,
 & LCONDF, LCONSV, LIMPRV
C
 CHARACTER*6 IDDESV(MDESV), IDDEVR(MDEVV), IDLICO(MLINCG),
 & IDLIGO(MLINCG), IDNLCO(MNLNCG), IDNLGO(MNLNCG)
C
C---------------------------------------
C Local variables:

307

C---------------------------------------
C
 INTEGER INUMSY, IPATH, J, JJ, KON1, NFIX, NRFIX, NCOL, NROW,
 & NACCUM, NDEVUS, NDVUSR, NMODCN, NNLCUS, NNLGUS,
 & NNUCON, NOUT, NPRUSR, NZ, MODIF(MNLNCG),
 & MODCON(MNLNCG), MODGDX(MNLNCG,MDESV), MODSEQ(MNLNCG),
 & NEWCON(MNLNCG), NEWDG(MNLNCG,MDESV), NEWSEQ(MNLNCG),
 & NACCIT(MAXACC), NACCON(MAXACC)
C
 REAL CONVX1, CONVX2, DELTA, DUMCON,
 & AMATX(MGOLMX,MVARMX), BLO(MVARMX), BUP(MVARMX),
 & BRHS(MGOLMX), CTWO(MLEVEL,MVARMX), CONVEX(MNLNCG),
 & DESVX1(MDESV), DESVX2(MDESV),
 & DEVVX1(MDEVV), DEVVX2(MDEVV),
 & DFUNX1(MLEVEL), DFUNX2(MLEVEL),
 & DG(MNLNCG,MDESV), DGTNGT(MNLNCG,MDESV),
 & D2GDX2(MNLNCG,MDESV),
 & DGACC(MAXACC,MDESV), DGNEW(MNLNCG,MDESV),
 & DJMAT(MLEVEL,MVARMX),
 & DUMDEV(MDEVV), DUMDFN(MLEVEL),
 & DUMGVL(MNLNCG), DUMVAR(MDESV),
 & GVALX1(MNLNCG), GVALX2(MNLNCG),
 & RHS(MNLNCG), RHSACC(MAXACC), RHSNEW(MNLNCG),
 & XVAL(MVARMX), ZVAL(MLEVEL),
 & ZSTAR(MLEVEL), Z1(MLEVEL), Z2(MLEVEL)
C
 LOGICAL LPRCOV, LCOVIL
C
C***
**
C
C Initializations
C ---------------
C
C Initialize accumulation constraint counter, NACCUM
 NACCUM = 0
C
C Initialize the synthesis cycle number corresponding to X*
 JSYCY = 0
 NVINT = 0
C
C
C Initialize constant portions of Simplex Tableau
C (CTWO, AMATX, BUP, BLO)
C - CALL INITAB

308

C Subroutine INITAB
C
C Purpose: Initialize constant portions of Simplex Tableau
C - BUP, BLO, AMATX, BRHS and CTWO

C
 CALL INITAB (NDESV, NRELV, NDISV, NDEVAR,
 & NLINCO, NLINGO, NMPRI, NNLGOA,
 & IACTVR, LISIGN,
 & COFLIN, DFNCOF, RHSLIN, VBOUNS, LVCOF,
 & NFIX, NRFIX, AMATX, BLO, BUP, BRHS, CTWO)
C
C
C Establish nonlinear characteristics of DESVAR.
C (DESVAR and its associated arrays (CONDEV, DEVFUN, DEVVAR,
C GVAL) correspond to the current best design (X*))
C - CALL DFCALC
C (if NANCY = 0; otherwise values are passed in via argument)
C
 IF (NANCY .EQ. 0) THEN
 IPATH = 1
 LPRCOV = .TRUE.
 LCOVIL = .FALSE.

C Subroutine DFCALC
C
C Purpose: Calculate the deviation function for a new set of
C system variables.
C
C IPATH = 1: Evaluate both constraints and goals
C Return CONDEV and DEVFUN(CONDEV real total
constraint violation
 DEVFUN real vector of
deviation function values

C IPATH = 2: Evaluate constraints only
C Return CONDEV
C IPATH = 3: Evaluate goals only
C Return DEVFUN
C
C (The subroutine updates the linear constraint coefficients
C if required via a call to the user supplied routine, USRLIN.
C This call is made after the call to GCALC. This ordering
C enables the advanced user to pass selected nonlinear information

309

C from USRSET to USRLIN via a user defined common block.)

C
 CALL DFCALC (NUOUT, IPATH, NDESV, NMPRI,
 & NLINCO, NLINGO, NNLINQ, NNLCON, NNLGOA,
 & IADCON, LISIGN, LPRCOV, LCOVIL, LVCOF,
 & COFLIN, RHSLIN, DESVAR, DFNCOF, VILCN,
 & CONDEV, DEVFUN, DEVVAR, GVAL)
 ENDIF
C
C Copy values into corresponding X1 arrays
C - i.e., CONVX1, DESVX1, DEVVX1, DFUNX1 AND GVALX1
C
 CONVX1 = CONDEV
 CALL COPYTX (NDESV, DESVX1, DESVAR)
 CALL COPYTX (NDEVAR, DEVVX1, DEVVAR)
 CALL COPYTX (NMPRI, DFUNX1, DEVFUN)
 IF (NNLCON+NNLGOA .GT. 0) THEN
 CALL COPYTX (NNLCON+NNLGOA, GVALX1, GVAL)
 ENDIF
C
C
C Start Synthesis Cycling
C -----------------------
 DO 1000 INUMSY = 1, NSYCY
C
 NTITER = NTITER + 1
 NNUCON = 0
C
C Print header 'cycle number(s)'
C
 IF (.NOT. LPRFIN) THEN
 IF (NANCY .EQ. 0) THEN
 WRITE (NUOUT, 1010) INUMSY
 ELSE
 WRITE (NUOUT, 1020) INUMAN, INUMSY
 ENDIF
 ENDIF
C
C
C Linearize nonlinear constraints and goals
C - CALL DERIV (Purpose: Calculate gradients of nonlinear
constraints and goals)

C
 CALL DERIV (NUOUT, NDESV, NNLCON, NNLGOA, NVSEL, IACTVR,

310

 & DESVX1, GVALX1, PESTEP, VBOUNS,
 & IADCON, KON1, MODIF,
 & CONVEX, DG, DGTNGT, D2GDX2, RHS)
C
C
C Update multiobjective goal formulation tableau arrays
C (AMATX, CTWO, RHS)
C - CALL UPDTAB

C Subroutine UPDTAB
C
C Purpose: Update multiobjective goal formulation tableau arrays:
C
C Arrangement of rows in A and RHS matrices:
C Linear goals NLINGO
C Nonlinear goals NNLGOA
C Linear constraints NLINCO
C Nonlinear inequality constraints NNLINQ
C Nonlinear equality constraints NNLEQU
C Nonlinear accumulated constraints NACCUM
C Nonlinear new (adapted) constraints NNUCON
C
C NOTE: Bounds are not considered explicitly.
C
C Arrangement of rows in CTWO matrix:
C Constraint deviation coefficients 1
C Goal deviation coefficients 2 to (NMPRI+1)

C
 CALL UPDTAB (NACCUM, NDESV, NLINCO, NLINGO, NNLEQU,
 & NNLGOA, NNLINQ, NNUCON,
 & IACTVR, IADCON, NEWCON,
 & COFLIN, DG, DGACC, DGNEW,
 & RHS, RHSACC, RHSLIN, RHSNEW,
 & LVCOF,
 & NCOL, NROW,
 & AMATX, BRHS, CTWO)
C print *,"after UPDTAB, NCOL = ",NCOL
C print *,"NROW = ",NROW
C
C
C Monitor process if required
C - CALL USRMON
C
 IF (LMON) THEN
 NDVUSR = NDESV

311

 NDEVUS = NDEVAR
 NPRUSR = NMPRI
 NNLCUS = NNLCON
 NNLGUS = NNLGOA
 NOUT = NUOUT
 DUMCON = CONVX1
 CALL COPYTX (NDESV, DUMVAR, DESVX1)
 CALL COPYTX (NDEVAR, DUMDEV, DEVVX1)
 CALL COPYTX (NMPRI, DUMDFN, DFUNX1)
 IF (NNLCON+NNLGOA .GT. 0) THEN
 CALL COPYTX (NNLCON+NNLGOA, DUMGVL, GVALX1)
 ENDIF
C
 CALL USRMON (NDVUSR, NDEVUS, NPRUSR, NNLCUS, NNLGUS, NOUT,
 & DUMVAR, DUMDEV, DUMCON, DUMDFN, DUMGVL)
 ENDIF
C
C
C Print input of linearized synthesis cycle
C - Design variables (if LPROUT(1) is true)
C - Deviation variables (if LPROUT(2) is true)
C - Deviation function (if LPROUT(3) is true)
C - Bound information (if LPROUT(4) is true)
C - Linear constraint coefficients (if LPROUT(5) is true)
C - Nonlinear constraint coefficients (if LPROUT(6) is true)
C
 IF (.NOT. LPRFIN) THEN
 WRITE (NUOUT, 1030)
 IF (CONVX1 .EQ. 0.0) THEN
 WRITE (NUOUT, 1040)
 ELSE
 WRITE (NUOUT, 1050)
 ENDIF
 IF (LPROUT(1)) THEN
 CALL PRDESV (NUOUT,INUMSY, IDDESV, DESVX1, NDESV)
 ENDIF
 IF (LPROUT(2)) THEN
 CALL PRDEVV (NUOUT, INUMSY, NLINGO, NNLGOA,
 & DEVVX1, IDLIGO, IDNLGO, IDDEVR)
 ENDIF
 IF (LPROUT(3)) THEN
 CALL PRDFUN (NUOUT, INUMSY, NMPRI, NDEVAR,
 & CONVX1, DFUNX1)
 ENDIF
 IF (LPROUT(4) .AND. INUMSY .EQ. 1) THEN
 CALL PRBNDS (NUOUT, INUMSY, NDESV,

312

 & VBOUNS, DESVX1, IDDESV)
 ENDIF
 IF (LPROUT(5)) THEN
 CALL PRLINC (NUOUT, INUMSY, NDESV, NLINCO, NLINGO,
 & COFLIN, LISIGN, RHSLIN, IDDESV,
 & IDLICO, IDLIGO, IDDEVR)
 ENDIF
 IF (LPROUT(6)) THEN
 CALL PRNLNC (NUOUT, INUMSY, IADCON, MODIF, NDESV,
NNLTOT,
 & NACCUM, NNLINQ, NNLEQU, NLINGO, NNLGOA,
 & NACCON, GVALX1, DG, DGACC,
 & DESVX1, RHS, RHSACC,
 & IDDESV, IDNLCO, IDNLGO, IDDEVR)
 ENDIF
 ENDIF
C
C
C Write postprocessor information file if requested
C - Call PRPPIF
C
 IF (LPPROC) THEN
 CALL PRPPIF (NSYCY, NTITER, NDESV, NDEVAR,
 & NNLINQ, NNLEQU, NNLGOA, NMPRI,
 & CONVX1, DESVX1, DFUNX1, DEVVX1,
 & GVALX1, RHS, DG, DGTNGT, D2GDX2)
 ENDIF
C
C
C Solve LP problem, exit with X2
C - CALL MLINOP(Solve the LP problem using MULTIPLEX,
recording the basis to be used in the next synthesis cycle.)
C
 CALL MLINOP (NUOUT, NCOL, NDESV, NFIX, NRFIX,
 & NMPRI, NROW, NVSEL,
 & AMATX, BLO, BUP, BRHS, CTWO,
 & DJMAT, XVAL, ZVAL)
C
C Write XVAL into DESVX2
C
 JJ = 0
 DO 10 J = 1, NDESV
 IF (IACTVR(J) .GT. 0) THEN
 JJ = JJ + 1
 DESVX2(J) = XVAL(JJ)
 ELSE

313

 DESVX2(J) = DESVAR(J)
 ENDIF
 10 CONTINUE

C
C
C Adapt constraints if requested
C - CALL CONCOR (Subroutine CONCOR performs the adaption of
the nonlinear constraints according to: “Goal Programming, the
Compromise Decision Support Problem and Adaptive Linear Programming"

C
 IF (LADAP) THEN
C
 CALL CONCOR (NDESV, NNLINQ, NRELV, IACTVR, IADCON,
 & CONVEX, DESVX1, DESVX2, DG, DGTNGT, D2GDX2,
 & RHS,
 & NMODCN, NNUCON,
 & MODCON, MODGDX, MODSEQ,
 & NEWCON, NEWDG, NEWSEQ,
 & DGNEW, RHSNEW)
C
C
C Print adapted (new and modified) constraints if requested
C - supplimentary input
C
 IF (.NOT. LPRFIN .AND. LPROUT(6)) THEN
 CALL PRADPC (NUOUT, INUMSY, NDESV, NMODCN, NNUCON,
 & MODCON, MODGDX, NEWCON, NEWDG,
 & GVALX1, DG, DGNEW, RHSNEW, RHS, DESVX1,
 & IDDESV, IDNLCO)
 ENDIF
C
C
 IF ((NMODCN .GT. 0) .OR. (NNUCON .GT. 0)) THEN
C
C
C Update multiobjective goal formulation tableau arrays
C (AMATX, CTWO, RHS)
C - CALL UPDTAB
C
 CALL UPDTAB (NACCUM, NDESV, NLINCO, NLINGO, NNLEQU,
 & NNLGOA, NNLINQ, NNUCON,
 & IACTVR, IADCON, NEWCON,
 & COFLIN, DG, DGACC, DGNEW,
 & RHS, RHSACC, RHSLIN, RHSNEW,

314

 & LVCOF,
 & NCOL, NROW,
 & AMATX, BRHS, CTWO)
C
C
C Solve LP problem ,exit with new X2
C - CALL MLINOP (Purpose: Solve the LP problem using
MULTIPLEX, recording the basis to be used in the next
synthesis cycle. Algorithm has integer (branch and bound variation)
capability to handle 0/1 "selection" variables.

C
 CALL MLINOP (NUOUT, NCOL, NDESV, NFIX, NRFIX,
 & NMPRI, NROW, NVSEL,
 & AMATX, BLO, BUP, BRHS, CTWO,
 & DJMAT, XVAL, ZVAL)
C
C
C Write XVAL into DESVX2
C
 JJ = 0
 DO 20 J = 1, NDESV
 IF (IACTVR(J) .GT. 0) THEN
 JJ = JJ + 1
 DESVX2(J) = XVAL(JJ)
 ELSE
 DESVX2(J) = DESVAR(J)
 ENDIF
 20 CONTINUE

C
 ENDIF
C
 ENDIF
C
C
C Write DEVVX2, CONVX2 and DFUNX2 corresponding to the
C linear solution
C
 DO 30 J = 1, NDEVAR
 JJ = JJ + 1
 DEVVX2(J) = XVAL(JJ)
 30 CONTINUE
 CONVX2 = ZVAL(1)
 DO 40 J = 2, NMPRI + 1
 DFUNX2(J-1) = ZVAL(J)

315

 40 CONTINUE
C
C Print output of linearized synthesis cycle
C - Design variables (if LPROUT(1) is
true)
C - Deviation variables (if LPROUT(2) is
true)
C - Deviation function (if LPROUT(3) is
true)
C - Bound activity (linear) (if LPROUT(4) is
true)
C - Linear constraint activity (linear) (if LPROUT(7) is
true)
C - Nonlinear constraint activity (linear) (if LPROUT(8) is
true)
C
C - Shadow Prices/Dual Variables/Multipliers
C (if LPROUT(7) is true .OR. LPROUT(8) is true)
C
 IF (.NOT. LPRFIN) THEN
 WRITE (NUOUT, 1060)
 IF (LPROUT(1)) THEN
 WRITE (NUOUT, 1061)
 CALL PRDESV (NUOUT,INUMSY, IDDESV, DESVX2, NDESV)
 ENDIF
 IF (LPROUT(2)) THEN
 WRITE (NUOUT, 1061)
 CALL PRDEVV (NUOUT, INUMSY, NLINGO, NNLGOA,
 & DEVVX2, IDLIGO, IDNLGO, IDDEVR)
 ENDIF
 IF (LPROUT(3)) THEN
 WRITE (NUOUT, 1061)
 CALL PRDFUN (NUOUT, INUMSY, NMPRI, NDEVAR,
 & CONVX2, DFUNX2)
 ENDIF
 IF (LPROUT(4)) THEN
 WRITE (NUOUT, 1061)
 CALL PRBNDS (NUOUT, INUMSY, NDESV,
 & VBOUNS, DESVX2, IDDESV)
 ENDIF
 IF (LPROUT(7)) THEN
 WRITE (NUOUT, 1061)
 CALL PRLINA (NUOUT, INUMSY, NDESV, NLINCO,
 & NLINGO, LISIGN, DESVX2, COFLIN,
 & DEVVX2, RHSLIN, IDLICO, IDLIGO)
 ENDIF

316

 IF (LPROUT(8)) THEN
 WRITE (NUOUT, 1061)
 CALL PRNLNA (NUOUT, INUMSY, NDESV, NNLINQ, NNLEQU,
 & NNLTOT, NACCUM, NLINGO, MODCON, MODGDX,
 & NEWCON, NEWDG, NACCON, IADCON,
 & DG, DGNEW, DGACC, RHS, DESVX2, DEVVX2,
 & RHSNEW, RHSACC, IDNLCO, IDNLGO)
 ENDIF
C IF (LSHPRC) THEN
C Subroutine PRMULT (Purpose: Print the linear solution constraint
and goal multipliers
C (Lagrangians)
C The Lagrangian Multiplier is equal to the Dual Variable
C that is associated with each constraint or goal.
C
C The shadow price vectors for each original basic variable
C (i.e., the Dn- variables) in the primal correspond to the
C transformed dual variable vector. Thus, the first row of
C Y* (dual solution) corresponds to the shadow price vector
C for D1-, the second row to the shadow price vector for
C D2-, and so on.

 IF (LPROUT(7) .OR. LPROUT(8)) THEN
 WRITE (NUOUT, 1061)
 CALL PRMULT(NDESV, NFIX, NMPRI, NUOUT, INUMSY,
 & NACCUM, NLINCO, NLINGO, NNLEQU,
 & NNLGOA, NNLINQ, NNUCON,
 & IADCON, NACCON, NEWCON, DJMAT,
 & IDLICO, IDLIGO, IDNLCO, IDNLGO)
 ENDIF
C ENDIF
 ENDIF
C
C
C Effect reduced move algorithm between X1 and X2
C and overwrite X2 with new point
C Subroutine ADREMO
C Purpose: Adaptive reduced move using a Golden Section line search.
C If no improvement is found in initial design, a fixed
C reduced move is applied to the design point.
C
C Default minimum reduced move = 2 * DELREM
 (DELREM = real acceptable convergence criterion for reduced
move)

317

C
 IF (LADREM) THEN
C
 CALL ADREMO (NUOUT, NDESV, NRELV, NMPRI,
 & NNLINQ, NLINCO, NLINGO, NNLCON, NNLGOA,
 & IADCON, LISIGN, LVCOF, COFLIN, RHSLIN,
 & DFNCOF, VILCN, NADREM, DELREM, CONVX1,
 & DESVX1, DESVX2, DFUNX1, DFUNX2)
C
 ELSE
C
 IF (NRELV+NDISV .GT. 0) THEN
 DO 50 J = 1, NRELV+NDISV+NVINT
 IF (IACTVR(J) .GT. 0) THEN
 DELTA = (DESVX2(J) - DESVX1(J)) * REDMOV(J)
 IF (J .GT. (NRELV+NDISV)) THEN
 DELTA = FLOAT(INT(DELTA + 0.5))
 ENDIF
 DESVX2(J) = DESVX1(J) + DELTA
 ENDIF
 50 CONTINUE
 ENDIF
 ENDIF
C
C
C Print new point after reduced move if requested
C - Design variables (if LPROUT(1) is true)
C
 IF (.NOT. LPRFIN .AND. LPROUT(1)) THEN
 WRITE (NUOUT, 1070)
 CALL PRDESV (NUOUT,INUMSY, IDDESV, DESVX2, NDESV)
 ENDIF
C
C
C Establish nonlinear characteristics of X2
C GVALX2 and DFUNX2
C - CALL DFCALC
C
 IPATH = 1
 LPRCOV = .TRUE.
 LCOVIL = .FALSE.
C
 CALL DFCALC (NUOUT, IPATH, NDESV, NMPRI,
 & NLINCO, NLINGO, NNLINQ, NNLCON, NNLGOA,
 & IADCON, LISIGN, LPRCOV, LCOVIL, LVCOF,

318

 & COFLIN, RHSLIN, DESVX2, DFNCOF, VILCN,
 & CONVX2, DFUNX2, DEVVX2, GVALX2)
C
C
C Subroutine CONVER
C
C Purpose: Check for convergence. This is done in several steps.
C
C Given X1 the current starting vector (with dev. fun. = Z1)
C X2 the new vector (with dev. fun. = Z2)
C & X* the best vector (with dev. fun. = Z* found at iteration
J*)
C
C 1. Check for convergence of deviation function.
C 2. Check for convergence of design variables.
C 3. If X2 is better than X1, move X1 to X2.
C 4. If X1 is better than X*, move X* to X1 and J* to J2.

C Test for convergence using nonlinear information
C - compare X1 and X2
C - CALL CONVER
C - Write X2 data into X1
C - Write X1 data into X* if X1 better than X*
C [- DESVAR == X*
C - DEVFUN == DEVFUN of (X*)
C - GVAL == GVAL of (X*)]
C
C Build Z vectors for X*, X1 and X2
C
 ZSTAR(1) = CONDEV
 Z1(1) = CONVX1
 Z2(1) = CONVX2
 DO 60 J = 2, NMPRI + 1
 ZSTAR(J) = DEVFUN(J-1)
 Z1(J) = DFUNX1(J-1)
 Z2(J) = DFUNX2(J-1)
 60 CONTINUE
 NZ = NMPRI + 1
C
 CALL CONVER (NDESV, NZ, INUMSY,
 & JSYCY, DESVAR, DESVX1, DESVX2,
 & ZSTAR, Z1, Z2,
 & FRACX, FRACZ,
 & LCONSV, LCONDF, LIMPRV)
C
 CONVX1 = Z2(1)

319

 CALL COPYTX (NDESV, DESVX1, DESVX2)
 CALL COPYTX (NDEVAR, DEVVX1, DEVVX2)
 DO 70 J = 2, NMPRI + 1
 DFUNX1(J-1) = Z2(J)
 70 CONTINUE
 IF (NNLCON+NNLGOA .GT. 0) THEN
 CALL COPYTX (NNLCON+NNLGOA, GVALX1, GVALX2)
 ENDIF
C
 IF (JSYCY .EQ. INUMSY) THEN
 CONDEV = ZSTAR(1)
 CALL COPYTX (NDEVAR, DEVVAR, DEVVX1)
 DO 80 J = 2, NMPRI + 1
 DEVFUN(J-1) = ZSTAR(J)
 80 CONTINUE
 IF (NNLCON+NNLGOA .GT. 0) THEN
 CALL COPYTX (NNLCON+NNLGOA, GVAL, GVALX1)
 ENDIF
 ENDIF
C
C
C Return to calling routine if convergence achieved
C
 IF (LCONSV .AND. LCONDF) THEN
C
 GOTO 1001
C
 ELSE
C
C Accumulate constraints if X1 is feasible
C - CALL CONACC
C
 IF (CONVX1 .EQ. 0.0) THEN
C
 CALL CONACC (INUMSY, NACCUM, NDESV, NNLINQ, NNUCON,
 & IADCON, NACCIT, NACCON, NEWCON,
 & CONVEX, DG, DGNEW, RHS, RHSNEW,
 & LADAP,
 & DGACC, RHSACC)
C
 ENDIF
 ENDIF
C
 1000 CONTINUE
C
 1001 CONTINUE

320

C
C
C Return to calling routine
C
C
 RETURN
C
C***
**
C FORMATS
C
 1010 FORMAT ('1',' S Y N T H E S I S C Y C L E'
 & ' N U M B E R: ',I3/,
 & ' ',' -----------------------------'
 & '-------------------')
 1020 FORMAT ('1',' A N A L Y S I S C Y C L E'
 & ' N U M B E R: ',I3/,
 & ' ',' ---------------------------'
 & '-------------------'//,
 & ' ',' S Y N T H E S I S C Y C L E'
 & ' N U M B E R: ',I3/,
 & ' ',' -----------------------------'
 & '-------------------')
 1030 FORMAT (/' ',' *** I N P U T ***'/
 & ' ',' ---------------------')
 1040 FORMAT (/' ',' Current point is FEASIBLE'/
 & ' ',''//)
 1050 FORMAT (/' ',' Current point is INFEASIBLE'/
 & ' ',''//)
 1060 FORMAT (//' ',' *** O U T P U T F R O M L I N E A R '
 & 'S O L V E R ***'/
 & ' ',' --'
 & '-----------------'///)
 1061 FORMAT (' << Reminder: Following output is from linear solver
>>')
 1070 FORMAT (//' ',' *** O U T P U T A F T E R R E D U C E D
'
 & 'M O V E ***'/
 & ' ',' --'
 & '-------------'///)
C
C***
**
C End of Subroutine ALPMOD
C***
**

321

C
 END

ALPCTL Subroutine

C
C Program ALPCTL
C
C Purpose: A main program for DSIDES: SLIPML Version 4.80 /
C ALP Release 1.0
C
C---
--
C Common Blocks: ADVUS1/ IDV, IPERTB
C
C IDV int index of design variable being
C perturbed
C IPERTB int flag indicating current perturbation
C = 1 if 1st (for 1st order approx.)
C = 2 if 2nd (for 2nd order approx.)
C
C INTFLAG int Number of calls to foraging search for
C discrete variables: Kemper Lewis
C
C
C ADINTE/ NRELV, NDISV, NVSEL, NDESV, NDVUSR, NDEVAR,
C NLINCO, NLINGO, NMPRI,
C NNLINQ, NNLEQU, NNLCON, NNLGOA, NNLTOT
C
C
C ADREAL/ VBOUNS
C
C
C ADLOGI/ LMON, LUINP, LUOUT, LVCOF
C
C
C ADCHAR/ PTITLE,
C IDDESV, IDDEVR, IDLICO, IDLIGO, IDNLCO,
IDNLGO
C
C
C Include Files: alplim.cmm

322

C
C Calls to: TIMER, ALPDAT, USRINP, XPLORE, USRANA, COPYTX,
INITSL,
C DFCALC, ALPMOD, CONVER, PRDESV, PRDEVV, PRDFUN,
DISCRT,
C PRBNDS, PRPPCF, PRFACT, and USROUT
C---
--
C Development History
C
C Author: Warren Smith
C Date: November 15, 1991
C
C Modifications:
C June 16, 1993 (Bert Bras):
C - Correction of user analysis cycle convergence check
C
C***
**
C-
 PROGRAM ALPCTL
C
 INCLUDE 'alplim.cmm'
C
C---------------------------------------
C Advanced User Common Blocks:
C---------------------------------------
C
 COMMON/ADVUS1/ IDV, IPERTB

 INTEGER IDV, IPERTB

 INTEGER INTFLAG
C
C
C *****KL added NDISV in all commons
 COMMON/ADINTE/ NRELV, NDISV, NVSEL, NDESV, NDVUSR, NDEVAR,
 & NLINCO, NLINGO, NMPRI,
 & NNLINQ, NNLEQU, NNLCON, NNLGOA, NNLTOT
 INTEGER NRELV, NDISV, NVINT, INDEX(MDESV),
 & NVSEL, NDESV, NDVUSR, NDEVAR, NDSCC(MDESV)
 INTEGER NLINCO, NLINGO, NMPRI
 INTEGER NNLINQ, NNLEQU, NNLCON, NNLGOA, NNLTOT
C
C
 COMMON/ADREAL/ VBOUNS(2,MDESV)

323

 REAL VBOUNS
C
C
 COMMON/ADLOGI/ LMON, LUINP, LUOUT, LVCOF
 LOGICAL LMON, LUINP, LUOUT, LVCOF
C
C
 COMMON/ADCHAR/ PTITLE,
 & IDDESV, IDDEVR, IDLICO, IDLIGO, IDNLCO, IDNLGO
 CHARACTER*80 PTITLE(2)
 CHARACTER*6 IDDESV(MDESV), IDDEVR(MDEVV), IDLICO(MLINCG),
 & IDLIGO(MLINCG), IDNLCO(MNLNCG), IDNLGO(MNLNCG)
C
C---------------------------------------
C Other Local variables:
C---------------------------------------
C
 INTEGER NUINP, NUOUT, NUPPC, NUPPI, NUSER, NOUT, NUSR
 INTEGER NANCY, NSYCY(MNANCY), NTITER
 INTEGER NHJMAX, NADREM
 INTEGER IACTVR(MDESV), IADCON(MNLNCG), LISIGN(MLINCG)
 INTEGER IGSEED, NPTBST, NPTGEN, NUPTS, IGENFX(MDESV)
 INTEGER I, INUMAN, IPATH, J, JANCY, JSYCY, JSYCST, NLEVEL, K
C
 REAL DESVAR(MDESV), DUMVAR(MDESV), CONDEV, DEVFUN(MLEVEL),
 & DEVVAR(MDEVV), GVAL(MNLNCG), Z2(MLEVEL), TABUN(MDESV,MDSCV)
 REAL DESVX1(MDESV), CONVX1, DFUNX1(MLEVEL),
 & DEVVX1(MDEVV), Z1(MLEVEL)
 REAL DESVST(MDESV), CONVST, DFUNST(MLEVEL), DEVVST(MDEVV),
 & GVALST(MNLNCG), ZSTAR(MLEVEL)
 REAL COFLIN(MLINCG,MDESV), DFNCOF(MLEVEL,MDEVV),
 & FRACX(MDESV), FRACZ(MLEVEL), PESTEP(MDESV), REDMOV(MDESV),
 & RHSLIN(MLINCG), VILCN(MNLNCG), GOALS(MNLNCG),
CONSTR(MNLNCG)
 REAL HJEXPA, HJCONT, HJSTEP, HJEPSY, HJDELT
 REAL DELREM
C
 LOGICAL LFATAL, LDRYRN, LPRFIN, LPROUT(8), LPPROC, LADREM,
LADAP,
 & LINIT, LPRGEN, LTIME, LXPLOR
 LOGICAL LCONDF, LCDF, LCONSV, LCSV, LIMPRV, LXFEAS
 LOGICAL LPRCOV, LCOVIL, LVDISC
C
 CHARACTER CURTIM*24, TIMCOM*75
 REAL INITIM(3), EXETIM(3)
C

324

C***
**
C ******* WARNING *******
C
C ****** INPUT AND OUTPUT UNIT NUMBER ASSIGNMENTS ******
C
 NUINP = 11
 NUOUT = 13
 NUSER = 99
 NUPPC = 98
 NUPPI = 97
 NUPTS = 96
C
C Open files:
C 1 - ALP input data file - ALPINP.DAT (Unit #
NUINP)
C 2 - ALP output data file - ALPOUT.DAT (Unit #
NUOUT)
C 3 - ALP USRINP scratch file (Unit #
NUSER)
C 4 - ALP postprocessor control file - ALPPPC.DAT (Unit #
NUPPC)
C 5 - ALP postprocessor information file - ALPPPI.DAT (Unit #
NUPPI)
C 6 - ALP point generate/explore file - ALPPTS.DAT (Unit #
NUPTS)
C
 OPEN (UNIT=NUOUT, FILE='ALPOUT.DAT', ACCESS='SEQUENTIAL',
 & FORM='FORMATTED', STATUS='UNKNOWN')
C
CSYS**
**
CSYS ******* WARNING *******
CSYS
CSYS ******* SYSTEM DEPENDENT ROUTINES *******
CSYS
CSYS The routine TIMER is system dependent.
CSYS
CSYS NUOUT : unit number of output data file
CSYS KODE : indicates the timer option to be used.
CSYS CURTIM : contains the current date plus time and is CHARACTER*24
CSYS TIMCOM : contains an input string to be printed with the timer
CSYS results
CSYS EXETIM : returns the time in (CPU)seconds.
CSYS The contents of EXETIM may differ when the system
CSYS is installed on different operating systems.

325

CSYS Check the comments in the timer routine for an
CSYS explanation of the contents of EXETIM.
CSYS INITIM : contains a reference time used to calculate
CSYS the elapsed time since the start of execution.
CSYS
CSYS The initial time (starting time) is stored in INITIM.
CSYS This initial time may be required by subroutine TIMER in
CSYS order to calculate the elapsed time since the start of
CSYS execution. For instance, this is required
CSYS for the VAX/VMS timer routine, but not for the Sun/OS timer
CSYS routine
CSYS
CSYS
 CURTIM = ' '
 TIMCOM = ' '
CSYS
 CALL TIMER (NUOUT, 2, TIMCOM, CURTIM, INITIM, INITIM)
CSYS
CSYS**
**
C
C Record current date and time.
C
 CALL TIMER (NUOUT, 0, TIMCOM, CURTIM, INITIM, EXETIM)
C
C Write output program title block
C
 WRITE (NUOUT, 1010) CURTIM
 WRITE (NUOUT, 1020)
 WRITE (NUOUT, 1030)
 WRITE (NUOUT, 1031) MDESV, MLINCG, MNLNCG, MAXACC,
 & MLEVEL, MNSYCY, MNANCY, MTITER,
 & MATTRB, MSELPR, MPTBST
 WRITE (NUOUT, 1020)
C
C
C Initializations
C ---------------
C
 IDV = 0
 IPERTB = 0
C
C Read in control information and initialize values
C - Call ALPDAT
C
 OPEN (UNIT=NUINP, FILE='ALPINP.DAT', ACCESS='SEQUENTIAL',

326

 & FORM='FORMATTED', STATUS='OLD')
C
 OPEN (UNIT=NUSER, STATUS='SCRATCH',
 & FORM='FORMATTED', ACCESS='SEQUENTIAL')
C
 CALL ALPDAT (NUOUT, NUINP, NUSER,
 & NRELV, NDISV, NVINT, TABUN, NDSCC, INDEX, NVSEL,
 $ NDESV, NDEVAR,
 & NLINCO, NLINGO, NMPRI,
 & NNLCON, NNLEQU, NNLGOA, NNLINQ, NNLTOT,
 & NANCY, NSYCY,
 & NHJMAX, NADREM, IACTVR, IADCON, LISIGN,
 & NPTGEN, NPTBST, IGSEED, IGENFX,
 & IDDESV, IDDEVR, IDLICO, IDLIGO, IDNLCO, IDNLGO,
 & PTITLE, COFLIN, RHSLIN, DFNCOF,
 & PESTEP, REDMOV, VBOUNS, DESVAR,
 & HJEXPA, HJCONT, HJSTEP, HJEPSY, HJDELT, DELREM,
 & FRACZ, FRACX, VILCN,
 & LFATAL, LDRYRN, LPRFIN,
 & LPROUT, LPPROC, LTIME, LADREM, LADAP, LINIT,
 & LMON, LUINP, LUOUT, LVCOF, LXPLOR, LPRGEN, LVDISC)
C
 CLOSE (NUINP)
C
C STOP program if fatal errors encountered during reading
C
 IF (LFATAL) THEN
 CLOSE (NUSER)
 GOTO 9999
 ENDIF
C
C
C Read and write user provided data
C - Call USRINP
C
 IF (LUINP) THEN
 REWIND (NUSER)
 NDVUSR = NDESV
 NUSR = NUSER
 NOUT = NUOUT
 CALL COPYTX (NDESV, DUMVAR, DESVAR)
 CALL USRINP (NDVUSR, NUSR, NOUT, DUMVAR)
 ENDIF
C
 CLOSE (NUSER)
C

327

C
C Search bounded design space for feasibile or near feasible
C starting point
C - Call XPLORE
C
 IF (LXPLOR) THEN
 OPEN (UNIT=NUPTS, FILE='ALPPTS.DAT', ACCESS='SEQUENTIAL',
 & FORM='FORMATTED', STATUS='UNKNOWN')
C
 CALL XPLORE (IGSEED, NDESV, NLINCO, NLINGO, NMPRI, NNLINQ,
 & NNLCON, NNLGOA, NPTBST, NPTGEN, NUOUT, NUPTS,
 & IADCON, IGENFX, LISIGN,
 & COFLIN, DFNCOF, RHSLIN, VBOUNS, VILCN,
 & LPRGEN, LVCOF, IDDESV, PTITLE,
 & DESVAR)
C
 CLOSE (NUPTS)
 ENDIF
C
C
C End of input and initialization
C Obtain timer results if required
C
 IF (LTIME) THEN
 TIMCOM = 'Time required for input and initialization:'
 CALL TIMER (NUOUT, -1, TIMCOM, CURTIM, INITIM, EXETIM)
 ENDIF
C
C
C STOP program if dry run printout requested only
C
 IF (LDRYRN) THEN
 IF (LUOUT) THEN
 NDVUSR = NDESV
 NOUT = NUOUT
 CALL COPYTX (NDESV, DUMVAR, DESVAR)
 LCDF = .FALSE.
 LCSV = .FALSE.
 LXFEAS = .FALSE.
 CALL USROUT (NDVUSR, NOUT, DUMVAR, LCDF, LCSV, LXFEAS)
 ENDIF
 WRITE (NUOUT, 1040)
 GOTO 9999
 ENDIF
C
C

328

C Open the postprocessor information file if required and
C write the problem title as a file header
C
 IF (LPPROC) THEN
 OPEN (UNIT=NUPPI, FILE='ALPPPI.DAT', ACCESS='SEQUENTIAL',
 & FORM='FORMATTED', STATUS='UNKNOWN')
 WRITE (NUPPI, *) PTITLE(1)
 WRITE (NUPPI, *) PTITLE(2)
 ENDIF
C
C
C Generate Initial Feasible Solution
C ----------------------------------
C - Call USRANA (for user supplied/default starting point only)
C - Call INITSL
C
 IF (LINIT) THEN
 IF (LTIME) THEN
 CALL TIMER (NUOUT, 2, TIMCOM, CURTIM, INITIM, EXETIM)
 ENDIF
C
C Call user provided analysis routine USRANA, if required
C
 IF (NANCY .GT. 0) THEN
 NDVUSR = NDESV
 NOUT = NUOUT
 CALL COPYTX (NDESV, DUMVAR, DESVAR)
 CALL USRANA (NDVUSR, NOUT, DUMVAR)
 ENDIF
C
 CALL INITSL (NUOUT, LVCOF, NLINCO, NNLINQ, NNLCON,
 & NRELV, NDESV, IACTVR, IADCON,
 & NHJMAX, HJEXPA, HJCONT, HJSTEP, HJEPSY, HJDELT,
 & DESVAR, VBOUNS, COFLIN, LISIGN, RHSLIN, VILCN,
 & CONDEV)
C
 WRITE (NUOUT, 1050) CONDEV
 IF (NANCY .GT. 0) THEN
 WRITE (NUOUT, 1060)
 ENDIF
 WRITE (NUOUT, 1020)
C
 IF (LTIME) THEN
 TIMCOM = 'Time required for generation of initial
solution:'
 CALL TIMER (NUOUT, -3, TIMCOM, CURTIM, EXETIM, EXETIM)

329

 ENDIF
 ENDIF
C
C
C
C Perform appropriate cycling
C ---------------------------
C
 NTITER = 0
C
C NANCY = NUMBER OF ANALYSIS CYCLES!!

 IF (NANCY .GT. 0) THEN
C
C ANALYSIS CYCLES
C '''''''''''''''
C
C Obtain and record current timer values
C
 CALL TIMER (NUOUT, 2, TIMCOM, CURTIM, INITIM, EXETIM)
C
C Establish nonlinear characteristics of DESVAR.
C (DESVST and its associated arrays (CONVST, DFUNST, DEVVST,
C GVAL) correspond to the current best design (X*))
C - Call USRANA
C - Call DFCALC
C
 NDVUSR = NDESV
 NOUT = NUOUT
 CALL USRANA (NDVUSR, NOUT, DESVAR)
C
 IPATH = 1
 LPRCOV = .TRUE.
 LCOVIL = .FALSE.
C
 CALL DFCALC (NUOUT, IPATH, NDESV, NMPRI,
 & NLINCO, NLINGO, NNLINQ, NNLCON, NNLGOA,
 & IADCON, LISIGN, LPRCOV, LCOVIL, LVCOF,
 & COFLIN, RHSLIN, DESVAR, DFNCOF, VILCN,
 & CONDEV, DEVFUN, DEVVAR, GVAL)
C
C Copy values into corresponding X* arrays
C - i.e., CONVST, DESVST, DEVVST, DFUNST AND GVALST
C
 CONVST = CONDEV
 CONVX1 = CONDEV

330

 CALL COPYTX (NDESV, DESVST, DESVAR)
 CALL COPYTX (NDEVAR, DEVVST, DEVVAR)
 CALL COPYTX (NMPRI, DFUNST, DEVFUN)
 CALL COPYTX (NDESV, DESVX1, DESVAR)
 CALL COPYTX (NDEVAR, DEVVX1, DEVVAR)
 CALL COPYTX (NMPRI, DFUNX1, DEVFUN)
 IF (NNLCON+NNLGOA .GT. 0) THEN
 CALL COPYTX (NNLCON+NNLGOA, GVALST, GVAL)
 ENDIF
C
C
 JANCY = 0
C
C
C Start Analysis Cycling
C ----------------------
 DO 1000 INUMAN = 1, NANCY
C
C
C Perform Synthesis cycles
C - Call ALPMOD
C - Returned DESVAR corresponds with best nonlinear
C synthesis cycle solution
C - Record best results in arraysST()
C - Record previous analysis cycle results inX1()
C - JANCY, JSYCST identify best analysis and corresponding
C synthesis number
C
 CALL ALPMOD (NANCY, INUMAN, NTITER, NUOUT, NUPPI,
 & NRELV, NDISV, NVSEL, NDESV, NDEVAR,
 & NLINCO, NLINGO,
 & NNLINQ, NNLEQU, NNLCON, NNLGOA, NNLTOT,
 & NMPRI, NSYCY, IACTVR, IADCON, LISIGN,
 & JSYCY, NADREM,
 & CONDEV, DELREM,
 & COFLIN, DESVAR, DFNCOF,
 & DEVFUN, DEVVAR, FRACX, FRACZ, GVAL,
 & PESTEP, REDMOV, RHSLIN, VBOUNS, VILCN,
 & LADAP, LADREM, LMON, LVCOF, LPRFIN, LPROUT,
 & LPPROC, LCONDF, LCONSV, LIMPRV,
 & IDDESV, IDDEVR, IDLICO, IDLIGO, IDNLCO,
IDNLGO)
C
C
C Calculate characteristics of new DESVAR
C - Call USRANA

331

C - Call DFCALC
C
 NDVUSR = NDESV
 NOUT = NUOUT
 CALL USRANA (NDVUSR, NOUT, DESVAR)
C
 IPATH = 1
 LPRCOV = .TRUE.
 LCOVIL = .FALSE.
C
 CALL DFCALC (NUOUT, IPATH, NDESV, NMPRI,
 & NLINCO, NLINGO, NNLINQ, NNLCON, NNLGOA,
 & IADCON, LISIGN, LPRCOV, LCOVIL, LVCOF,
 & COFLIN, RHSLIN, DESVAR, DFNCOF, VILCN,
 & CONDEV, DEVFUN, DEVVAR, GVAL)
C
C
C Test for convergence using nonlinear information
C - compare DESVST and DESVAR
C - CALL CONVER
C - Write DESVAR data into DESVST
C if DESVAR better than DESVST
C
C Build Z vectors for DESVST, DESVX1 and DESVAR
C (See ALPMOD, build Z vectors for X*, X1 and X2)
C
 NLEVEL = NMPRI + 1
 ZSTAR(1) = CONVST
 Z1(1) = CONVX1
 Z2(1) = CONDEV
 DO 61 J = 2, NMPRI + 1
 ZSTAR(J) = DFUNST(J-1)
 Z1(J) = DFUNX1(J-1)
 Z2(J) = DEVFUN(J-1)
 61 CONTINUE
C
 CALL CONVER (NDESV, NLEVEL, INUMAN,
 & JANCY, DESVST, DESVX1, DESVAR,
 & ZSTAR, Z1, Z2,
 & FRACX, FRACZ,
 & LCONSV, LCONDF, LIMPRV)
C
 IF (JANCY .EQ. INUMAN) THEN
 JSYCST = JSYCY
 CONVST = ZSTAR(1)
 CALL COPYTX (NDEVAR, DEVVST, DEVVAR)

332

 DO 81 J = 2, NMPRI + 1
 DFUNST(J-1) = ZSTAR(J)
 81 CONTINUE
 IF (NNLCON+NNLGOA .GT. 0) THEN
 CALL COPYTX (NNLCON+NNLGOA, GVALST, GVAL)
 ENDIF
 ENDIF
C
C Copy current synthesis results into previous result
arrays.
C
 CONVX1 = CONDEV
 CALL COPYTX (NMPRI, DFUNX1, DEVFUN)
 CALL COPYTX (NDESV, DESVX1, DESVAR)
 CALL COPYTX (NDEVAR, DEVVX1, DEVVAR)
C
C Print analysis cycle output if requested
C - Design variables (if LPROUT(1) is true)
C - Deviation variables (if LPROUT(2) is true)
C - Deviation function (if LPROUT(3) is true)
C
 IF (.NOT. LPRFIN) THEN
 WRITE (NUOUT, 1070) INUMAN
 IF (LPROUT(1)) THEN
 CALL PRDESV (NUOUT, JSYCY, IDDESV, DESVAR, NDESV)
 ENDIF
 IF (LPROUT(2)) THEN
 CALL PRDEVV (NUOUT, JSYCY, NLINGO, NNLGOA,
 & DEVVAR, IDLIGO, IDNLGO, IDDEVR)
 ENDIF
 IF (LPROUT(3)) THEN
 CALL PRDFUN (NUOUT, JSYCY, NMPRI, NDEVAR,
 & CONDEV, DEVFUN)
 ENDIF
 ENDIF
C
C
C Print message 'End analysis/synthesis cycle number' and
C obtain timer results for current analysis cycle
C
 WRITE (NUOUT, 1080) INUMAN
 IF (LTIME) THEN
 TIMCOM = 'Time required to complete analysis cycle:'
 CALL TIMER (NUOUT, -3, TIMCOM, CURTIM, EXETIM, EXETIM
)
 ENDIF

333

C
 IF (LCONSV .AND. LCONDF) THEN
C
C Print final analysis/synthesis cycle output - FINAL
C SOLUTION header information
C
 WRITE (NUOUT, 1090) (PTITLE(J), J = 1, 2)
 WRITE (NUOUT, 1100) JANCY, JSYCST
 IF (CONVST .GT. 0.0) THEN
 WRITE (NUOUT, 1111)
 WRITE (NUOUT, 1113)
 WRITE (NUOUT, 1114)
 WRITE (NUOUT, 1113)
 WRITE (NUOUT, 1115)
 ENDIF
 GOTO 1001
 ENDIF
C
 1000 CONTINUE
C
C
C Print best analysis/synthesis cycle output - BEST SOLUTION
C header information
C
 WRITE (NUOUT, 1090) (PTITLE(J), J = 1, 2)
 WRITE (NUOUT, 1110) JANCY, JSYCST
 WRITE (NUOUT, 1111)
 WRITE (NUOUT, 1112)
 IF (CONVST .GT. 0.0) THEN
 WRITE (NUOUT, 1113)
 ENDIF
 WRITE (NUOUT, 1114)
 IF (CONVST .GT. 0.0) THEN
 WRITE (NUOUT, 1113)
 ENDIF
 WRITE (NUOUT, 1112)
 WRITE (NUOUT, 1115)
C
C
 ELSE
C
C SYNTHESIS CYCLES ONLY
C '''''''''''''''''''''
C
C Obtain and record current timer values.
C

334

 CALL TIMER (NUOUT, 2, TIMCOM, CURTIM, INITIM, EXETIM)
C
C******Discrete Part of solution -> Call TABU/FORAGING Algorithm
C
 IPATH = 1

 IF(LVDISC) THEN
 INTFLAG = 1
 ELSE
 INTFLAG = 50
 ENDIF

 83 IF (INTFLAG.LT.14) THEN

 CALL FORAGEMV(INTFLAG,DESVAR,NDESV,NRELV,NDISV,TABUN,
NDSCC,
 & IPATH,NNLTOT,NOUT,NNLCON, NNLGOA,
 & DFNCOF, NMPRI, INDEX, VBOUNS, IACTVR)

 print *,"DESVAR(pre-alp) = ",(DESVAR(I),I=1,NDESV)
C SET INACTIVE vars to discrete ones
 DO 82 K=NRELV+1,NRELV+NDISV
 IACTVR(K) = 0
 82 CONTINUE
 ENDIF
C
C
C
C Perform Synthesis cycles
C - Call ALPMOD
C - Returned DESVAR corresponds with best nonlinear solution
C
 INUMAN = 0
C
 CALL ALPMOD (NANCY, INUMAN, NTITER, NUOUT, NUPPI,
 & NRELV, NDISV, NVSEL, NDESV, NDEVAR,
 & NLINCO, NLINGO,
 & NNLINQ, NNLEQU, NNLCON, NNLGOA, NNLTOT,
 & NMPRI, NSYCY, IACTVR, IADCON, LISIGN,
 & JSYCY, NADREM,
 & CONDEV, DELREM,
 & COFLIN, DESVAR, DFNCOF,
 & DEVFUN, DEVVAR, FRACX, FRACZ, GVAL,
 & PESTEP, REDMOV, RHSLIN, VBOUNS, VILCN,
 & LADAP, LADREM, LMON, LVCOF, LPRFIN, LPROUT,
 & LPPROC, LCONDF, LCONSV, LIMPRV,

335

 & IDDESV, IDDEVR, IDLICO, IDLIGO, IDNLCO, IDNLGO)

C
C This is to check for discrete number of synthesis cycles complete
C
 WRITE (NUOUT,*) "***********************************"
 WRITE (NUOUT,*) "This is the end of synthesis cycles.”
 WRITE (NUOUT,*) "***********************************"

 print *,"DESVAR(post-alp) = ",(DESVAR(I),I=1,NDESV)

 IF (INTFLAG.LT.1) THEN
 INTFLAG = INTFLAG + 1
 goto 83
 ENDIF
C
C Obtain timer results for current analysis cycle.
C
 CALL USRSET (IPATH, NDESV, MNLNCG, NOUT, DESVAR,
 & CONSTR, GOALS)

 IF (LTIME) THEN
 TIMCOM = 'Time required to complete synthesis cycles:'
 CALL TIMER (NUOUT, -3, TIMCOM, CURTIM, EXETIM, EXETIM)
 ENDIF
C
C
C Print final/best synthesis cycle output header information
C
 WRITE (NUOUT, 1090) (PTITLE(J), J=1,2)
 IF (LCONSV .AND. LCONDF) THEN
 WRITE (NUOUT, 1120) JSYCY
 IF (CONDEV .GT. 0.0) THEN
 WRITE (NUOUT, 1111)
 WRITE (NUOUT, 1113)
 WRITE (NUOUT, 1114)
 WRITE (NUOUT, 1113)
 WRITE (NUOUT, 1115)
 ENDIF
 ELSE
 WRITE (NUOUT, 1130) JSYCY
 WRITE (NUOUT, 1111)
 WRITE (NUOUT, 1112)
 IF (CONDEV .GT. 0.0) THEN
 WRITE (NUOUT, 1113)
 ENDIF

336

 WRITE (NUOUT, 1114)
 IF (CONDEV .GT. 0.0) THEN
 WRITE (NUOUT, 1113)
 ENDIF
 WRITE (NUOUT, 1112)
 WRITE (NUOUT, 1115)
 ENDIF
C
C
 ENDIF
C
 1001 CONTINUE
C
C
 IF (NANCY .GT. 0) THEN
C
C Copy X* values back into original arrays
C
 JSYCY = JSYCST
 CONDEV = CONVST
 CALL COPYTX (NDESV, DESVAR, DESVST)
 CALL COPYTX (NDEVAR, DEVVAR, DEVVST)
 CALL COPYTX (NMPRI, DEVFUN, DFUNST)
 IF (NNLCON+NNLGOA .GT. 0) THEN
 CALL COPYTX (NNLCON+NNLGOA, GVAL, GVALST)
 ENDIF
C
 ENDIF

C
C Print final/best synthesis cycle output
C - Design variables and bound information
C - Constraint and goal activity
C - Deviation variables
C - Deviation function
C
 CALL PRBNDS (NUOUT, JSYCY, NDESV,
 & VBOUNS, DESVAR, IDDESV)
 CALL PRFACT (NUOUT, JSYCY, NDESV, NLINCO, NLINGO,
 & NNLCON, NNLGOA, IADCON,
 & COFLIN, DESVAR, GVAL, RHSLIN,
 & LVCOF, IDLICO, IDLIGO, IDNLCO, IDNLGO)
 CALL PRDEVV (NUOUT, JSYCY, NLINGO, NNLGOA,
 & DEVVAR, IDLIGO, IDNLGO, IDDEVR)
 CALL PRDFUN (NUOUT, JSYCY, NMPRI, NDEVAR, CONDEV, DEVFUN)
C

337

 IF (LCONSV .AND. LCONDF) THEN
 IF (CONDEV .GT. 0.0) THEN
 WRITE (NUOUT, 1111)
 WRITE (NUOUT, 1113)
 WRITE (NUOUT, 1114)
 WRITE (NUOUT, 1113)
 WRITE (NUOUT, 1115)
 ENDIF
 ELSE
 WRITE (NUOUT, 1111)
 WRITE (NUOUT, 1112)
 IF (CONDEV .GT. 0.0) THEN
 WRITE (NUOUT, 1113)
 ENDIF
 WRITE (NUOUT, 1114)
 IF (CONDEV .GT. 0.0) THEN
 WRITE (NUOUT, 1113)
 ENDIF
 WRITE (NUOUT, 1112)
 WRITE (NUOUT, 1115)
 ENDIF
C
C
C Write postprocessor control file if requested and write
C final values to the information file
C - Call PRPPCF
C
 IF (LPPROC) THEN
 OPEN (UNIT=NUPPC, FILE='ALPPPC.DAT', ACCESS='SEQUENTIAL',
 & FORM='FORMATTED', STATUS='UNKNOWN')
C
 CALL PRPPCF (NUPPC, PTITLE, NDESV, NDEVAR,
 & NMPRI, NNLINQ, NNLEQU, NNLGOA, NTITER,
 & VBOUNS, IDDESV, IDDEVR, IDNLCO, IDNLGO)
C
 CLOSE (NUPPC)
C
C Write final values to the information file
C
 WRITE (NUPPI, *)
 WRITE (NUPPI, *) NTITER+1, ' = The Final Solution'
 WRITE (NUPPI, *)
 DO 30 I = 1, NDESV
 WRITE (NUPPI, *) DESVAR(I), ' = desvar(', I, ')'
 30 CONTINUE
 DO 40 I = 1, NDEVAR

338

 WRITE (NUPPI, *) DEVVAR(I), ' = devvar(', I, ')'
 40 CONTINUE
 WRITE (NUPPI, *)
 WRITE (NUPPI, *) CONDEV, ' = condev'
 DO 50 I = 1, NMPRI
 WRITE (NUPPI, *) DEVFUN(I), ' = devfun(', I, ')'
 50 CONTINUE
 DO 60 I = 1, NNLINQ+NNLEQU+NNLGOA
 WRITE (NUPPI, *) GVAL(I), ' = gval(', I ,')'
 60 CONTINUE
C
 CLOSE (NUPPI)
C
 ENDIF
C
C
C Perform sensitivity analysis.
C
C IF (LCONSV .AND. LCONDF .AND. CONDEV .EQ. 0.0) THEN
C CALL POSSOL
C ENDIF
C
C
C Call user provided output routine if required
C
 IF (LUOUT) THEN
 IF (CONDEV .EQ. 0.0) THEN
 LXFEAS = .TRUE.
 ELSE
 LXFEAS = .FALSE.
 ENDIF
 NDVUSR = NDESV
 NOUT = NUOUT
 CALL COPYTX (NDESV, DUMVAR, DESVAR)
 LCDF = LCONDF
 LCSV = LCONSV
 CALL USROUT (NDVUSR, NOUT, DUMVAR, LCDF, LCSV, LXFEAS)
 IF (LCONSV .AND. LCONDF) THEN
 IF (CONDEV .GT. 0.0) THEN
 WRITE (NUOUT, 1111)
 WRITE (NUOUT, 1113)
 WRITE (NUOUT, 1114)
 WRITE (NUOUT, 1113)
 WRITE (NUOUT, 1115)
 ENDIF
 ELSE

339

 WRITE (NUOUT, 1111)
 WRITE (NUOUT, 1112)
 IF (CONDEV .GT. 0.0) THEN
 WRITE (NUOUT, 1113)
 ENDIF
 WRITE (NUOUT, 1114)
 IF (CONDEV .GT. 0.0) THEN
 WRITE (NUOUT, 1113)
 ENDIF
 WRITE (NUOUT, 1112)
 WRITE (NUOUT, 1115)
 ENDIF
 ENDIF
C
C
C Obtain timer results for total problem.
C
 9999 CONTINUE
 IF (LTIME) THEN
 TIMCOM = 'Total time required for problem:'
 CALL TIMER (NUOUT, -1, TIMCOM, CURTIM, INITIM, EXETIM)
 ENDIF
C
C
C Record current date and time.
C
 CALL TIMER (NUOUT, 0, TIMCOM, CURTIM, INITIM, EXETIM)
C
 WRITE (NUOUT, 1020)
 WRITE (NUOUT, 1140) CURTIM
 WRITE (NUOUT, 1150)
C
 CLOSE (NUOUT)
C
C
C***
**
C FORMATS
C
 1010 FORMAT('1','S L I P M L - JOB BEGUN ON : ', A)
 1020 FORMAT(/,' ', 79('*'))
 1030 FORMAT(/,
 &' SLIPML - Version 4.80, ALP Release 1.0, February
1992'//,
 &' Systems Realization Laboratory'/,
 &' Design Methods Group'/,

340

 &' The George W. Woodruff School',
 & ' of Mechanical Engineering'/,
 &' Georgia Institute of Technology',/,
 &' Atlanta, Georgia 30332-0405'/
 &' United States of America'////
 &' Authorship - Farrokh Mistree and friends ...'//
 &' Janet Allen Eduardo Bascaran'/
 &' Bert Bras Owen Hughes'/
 &' Azim Jivan Harsh Karandikar'/,
 &' Saiyid Kamal Tim Lyon'/
 &' Ravi Reddy Warren Smith'/,
 &' Srinivas Vadde',///)
 1031 FORMAT(' Problem Size Limits:'//
 &' System variables = ',I4/
 &' Linear constraints and goals = ',I4/
 &' Nonlinear constraints and goals = ',I4/
 &' Accumulated constraints = ',I4/
 &' Goal priority levels = ', I4/
 &' Synthesis cycles = ', I4/
 &' Analysis cycles = ', I4/
 &' Iterations (synthesis + ananlysis) = ', I4/
 &' Selection attributes = ', I4/
 &' Selection problems (coupled) = ', I4/
 &' Points saved in XPLORE = ', I4)
 1040 FORMAT (//,' *** End of dry run data check'/
 & ' -------------------------')
 1050 FORMAT (//,' ATTEMPT TO GENERATE AN INITIAL
FEASIBLE'
 & ' SOLUTION'/
 & ' --------------------------------------
-'
 & '---------'//
 & ' CONSTRAINT VIOLATION of Generated Point: ',G12.5,/
 & ' (considered feasible if violation is zero)'//
 & ' The generated point is used as the input point for
',
 & ' Synthesis Cycle Number 1')
 1060 FORMAT (//,' NOTE: Since USRANA is not called continually
during'/
 & ' the pattern search procedure, true feasibility'/
 & ' of the generated point cannot be guaranteed.'/
 & ' The USRANA information derived is only exact
for'/
 & ' the users initial guess. As the generated'/
 & ' point moves further away from the initail'/

341

 & ' guess, the more imprecise the USRANA
assumptions'/
 & ' may become and the greater the risk that true'/
 & ' feasibility is not achieved.')
 1070 FORMAT (//' ',' O U T P U T O F A N A L Y S I S C Y C L
E'
 & ' N U M B E R: ',I3//,
 & ' ',' --
-'
 & '-------------------')
 1080 FORMAT (//' *** End analysis/synthesis cycle number :',I3/
 & ' --')
 1090 FORMAT ('1'/,' ', 79('*'),//,A80,/,A80,//,' ', 79('*'))
 1100 FORMAT (/,' ','F I N A L S O L U T I O N'/
 & ' ','---------------------------'//
 & ' ','from: ANALYSIS CYCLE: ',I3,/
 & ' ','output of: SYNTHESIS CYCLE:',I3,//
 & ' ','CONVERGENCE ACHIEVED ',/
 & ' ','(based on variable and deviation function
stationarity)'///)
 1110 FORMAT (/,' ','B E S T S O L U T I O N without convergence'/
 & ' ','-------------------------'//
 & ' ','from: ANALYSIS CYCLE: ',I3,/
 & ' ','output of: SYNTHESIS CYCLE:',I3,//
 & ' ','MAXIMUM NUMBER OF ANALYSIS CYCLES PERFORMED'/
 & ' ','CONVERGENCE NOT ACHIEVED ',/
 & ' ','(based on variable and deviation function
stationarity)'///)
 1111 FORMAT (16X,'***')
 1112 FORMAT (16X,/
 & 16X,'C O N V E R G E N C E N O T A C H I E V E D',/
 & 16X,'C O N V E R G E N C E N O T A C H I E V E D',/
 & 16X)
 1113 FORMAT (16X,/
 & 16X,'F E A S I B I L I T Y N O T A C H I E V E D',/
 & 16X,'F E A S I B I L I T Y N O T A C H I E V E D',/
 & 16X)
 1114 FORMAT (16X,/
 & 16X,'W W AAA RRRR N N IIIII N N GGG',/
 & 16X,'W W A A R R NN N I NN N G G',/
 & 16X,'W W A A R R NN N I NN N G',/
 & 16X,'W W AAAAA RRRR N N N I N N N G',/
 & 16X,'W W W A A R R N NN I N NN G GG',/
 & 16X,'W W W A A R R N NN I N NN G G',/
 & 16X,' W W A A R R N N IIIII N N GGG',/
 & 16X)

342

 1115 FORMAT
(16X,'***',///)
 1120 FORMAT (/,' ','F I N A L S O L U T I O N'/
 & ' ','----------------------------'//
 & ' ','output of: SYNTHESIS CYCLE:',I3,//
 & ' ','CONVERGENCE ACHIEVED ',/
 & ' ','(based on variable and deviation function
stationarity)'///)
 1130 FORMAT (/,' ','B E S T S O L U T I O N without convergence'/
 & ' ','-------------------------'//
 & ' ','output of: SYNTHESIS CYCLE:',I3,//
 & ' ','MAXIMUM NUMBER OF ITERATIONS PERFORMED'/
 & ' ','CONVERGENCE NOT ACHIEVED ',/
 & ' ','(based on variable and deviation function
stationarity)'///)
 1140 FORMAT (//' S L I P M L - JOB COMPLETED ON : ', A)
 1150 FORMAT (//' ******** End of Computation ********')
C
C***
**
C End of Program ALPCTL
C***
**
C
 END

References:

1. Muster, D. and Mistree, F., "The Decision Support Problem Technique in Engineering

Design," The International Journal of Applied Engineering Education, vol. 4, no. 1, pp. 23-

33, 1988.

2. Jon A. Shupe, Decision-Based Design: Taxonomy and Implementation, PhD Dissertation,

University of Houston, May 1988.

3. Mistree, F., Smith, W. F. and Bras, B. A., 1993, "A Decision-Based Approach to Concurrent

Engineering" in Handbook of Concurrent Engineering, pages 127-158, (H. R. Parsaei and W.

Sullivan, Eds.), New York: Chapman & Hall.

4. Mistree, F., Smith, W. F., Bras, B., Allen, J. K. and Muster, D., " Decision-Based Design: A

Contemporary Paradigm for Ship Design,” Transactions, Society of Naval Architects and

Marine Engineers, vol. 98, pp. 565-597, 1990.

343

5. Ignizio, J. P. (1985) Multiobjective Mathematical Programming via the MULTIPLEX Model

and Algorithm, European Journal of Operational Research, 22, 338-346.

6. Mistree, F., Hughes, O. F. and Bras, B. A., 1993, "The Compromise Decision Support

Problem and the Adaptive Linear Programming Algorithm" in Structural Optimization:

Status and Promise, pages 247-286, (M. P. Kamat, Ed.), Washington, D.C.: AIAA.

7. Warren Smith, “Modeling and Exploration of Ship Systems in the Early Stages of Decision-

Based Design,” PhD Dissertation, University of Houston, July 1992, .

8. Guo, L, “Model Evolution for the Realization of Complex Systems,” PhD Dissertation,

Industrial and Systems Engineering, University of Oklahoma, 2021.

9. Mistree, F., Allen, J. K. and Chirehdast, M. (1989). Decision support in the concurrent

engineering design of gas turbine engines. Engineering optimization, 14(3), 209-236.

10. This paper introduces the concept of DSIDES and its application in the concurrent

engineering design of gas turbine engines.

11. Mistree, F., & Chen, W. (1990). Satisficing trade-offs in engineering design. ASME Journal of

Mechanical Design, 112(2), 223-229.

12. This paper discusses the satisficing approach in engineering design and the role of DSIDES

in identifying robust satisficing solutions.

13. Yang, R. J., & Wang, X. (2005). A method for robust design based on decision support in the

design of engineering systems. Journal of Mechanical Science and Technology, 19(5), 1200-

1206.

14. This paper presents a method for robust design based on DSIDES, highlighting its role in

supporting decision-making in engineering systems design.

15. Zhao, L., & Chang, X. (2011). Design optimization for manufacturing system based on

DSIDES. Advanced Materials Research, 308-310, 672-676.

16. This paper discusses the application of DSIDES in the design optimization of manufacturing

systems.

17. Official DSIDES Website: http://www.mae.ufl.edu/mdo/DSIDES.htm

http://www.mae.ufl.edu/mdo/DSIDES.htm

344

18. The official website provides information about DSIDES, including its features, applications,

and related publications.

19. Mistree, F., & Wiecek, M. M. (1995). Concurrent design of products and processes: A

strategy for the next generation in manufacturing. In Proceedings of the 1995 ASME

International Mechanical Engineering Congress and Exposition (pp. 429-436).

20. Mistree, F., Hughes, O. F., & Bras, B. A. (1993). The Decision Support Problem in Concurrent

Engineering. Advances in Concurrent Engineering, 1, 113-130.

21. This paper by Mistree and his colleagues discusses the Decision Support Problem (DSP) in

concurrent engineering and introduces ALP as an approach to addressing the challenges

associated with decision-making in complex engineering systems.

22. Mistree, F., & Allen, J. K. (1994). Decision support in the design of large-scale complex

engineering systems. Systems Engineering, 1(3), 143-161.

23. Mistree and Allen's paper presents a methodology for decision support in the design of

large-scale complex engineering systems using ALP. It explores the concept of adaptability

and the integration of multidisciplinary design objectives.

24. Mistree, F., Allen, J. K., & Sitework, D. (1998). Integrated design and manufacturing in

mechanical engineering: Decision-based approaches. Journal of Manufacturing Systems,

17(5), 371-392.

25. This paper discusses the integration of design and manufacturing processes in mechanical

engineering and presents ALP as a decision-based approach to support concurrent design

and manufacturing decision-making.

26. Allen, J. K., & Mistree, F. (1996). Validating product and process design decisions using

adaptive linear programming. Engineering with Computers, 12(4), 238-250.

27. Allen and Mistree's paper focuses on the validation of product and process design decisions

using ALP. It discusses the implementation of ALP and its application in addressing

uncertainties and variations in design and manufacturing processes.

28. Allen, J. K., & Mistree, F. (1997). Adaptive linear programming applied to structural design.

Structural Optimization, 13(1), 5-14.

345

29. The application of ALP to structural design problems is explored in this paper. The adaptive

nature of ALP and its ability to handle uncertainties and variations in structural design

decision-making are discussed.

30. Thole, S.P., Ramu, P., “Design space exploration and optimization using self-organizing

maps”, Struct Multidisc Optima 62, 1071–1088 (2020).

