
UNIVERSITY OF OKLAHOMA

GRADUATE COLLEGE

KIDNEY OCT 3D IMAGES CLASSIFICATION USING MACHINE LEARNING

A THESIS

SUBMITTED TO THE GRADUATE FACULTY

in partial fulfillment of the requirements for the

degree of

Master of Science

By

SINARO LY
Norman, Oklahoma

2023

KIDNEY OCT 3D IMAGES CLASSIFICATION USING MACHINE LEARNING

A THESIS APPROVED FOR THE
SCHOOL OF COMPUTER SCIENCE

BY THE COMMITTEE CONSISTING OF

Dr.Chongle Pan, Chair

Dr.Dimitrios Diochnos

Dr. Qi Cheng

© Copyright by SINARO LY 2023
All Rights Reserved.

Acknowledgments

I would like to thank Dr Pan who gave me a lot of guidance for my research. I

would also like to thank Dr Badré who also helped me a lot during my research by

answering a lot of questions I had when I began implementing my program. I would

like tom thank Parker Brandt for I also wanted to thank the Pan Lab and Dr Tang’s

lab for helping me during the weekly meetings we hold. Finally, I would also like to

thank my committee members for their supervision for this Master Thesis.

iv

Table of Contents

chapterAcknowledgmentsiv

List Of Figures vi

Abstract vii

1 Introduction 1

2 Literature Review 3
2.1 Percutaneous nephrostomy review . 3
2.2 3D imaging OCT review . 4
2.3 3D CNN review . 4

3 Methods 7
3.1 Data presentation . 7
3.2 Data pre-processing . 9

3.2.1 Image cropping . 9
3.2.2 Data augmentation with image rotation 13

3.3 Cross-validation presentation and
implementation . 14

3.4 Models implementation . 17
3.4.1 3D CNN model . 17
3.4.2 2D ResNet50 angular cuts model 22

4 Results and discussion 23
4.1 3D CNN model results . 23
4.2 2D ResNet50 angular cuts model results 26
4.3 Execution time performance . 27

5 Conclusion 28

v

List Of Figures

3.1 Representation of 3D image . 8
3.2 Planes of 3D image . 8
3.3 Representation of expected cropped 3D image 9
3.4 Starting points of uncropped images . 10
3.5 Process to find the starting index . 11
3.6 Image that has been too cropped . 12
3.7 Image correctly cropped . 12
3.8 Performing a 40 degrees rotation . 14
3.9 Cross-validation illustration . 15
3.10 The different layers of the 3D CNN model 21
3.11 New 2D cuts model illustration . 22

4.1 First results of cross-validation . 24
4.2 2D and 3D model comparison (Wang et al. (2021)) 25
4.3 2D, 3D and 2D 10 angular cuts models comparison 26
4.4 2D, 3D and 2D 10 and 100 angular cuts models comparison with p-values

relative to 2D model . 27

vi

Abstract

The goal of this research is to improve percutaneous nephrostomy success rate. To

do so, OCT imaging and image classification will be used to recognize which type of

kidney tissue the needle is going through.

3D Optical coherence tomography (OCT) is a non-invasive imaging test that uses

light waves to take cross-section pictures images.

A classification program for 3D OCT images by using a CNN model will be imple-

mented. The images to classify are kidney images that have 3 different classes: Pelvis,

Medulla and Cortex.

To do so, a data preprocessing was needed. The data preprocessing went through

two big steps: cropping the 3D images to have smaller image volume and rotating the

images to get a data enrichment.

After that data preprocessing, the next step is to build a model that can achieve a

better accuracy than 2D models that were used previously.

After implementation and running the model through the dataset, using 3D images

yield better accuracy than 2D basic cuts.

vii

Chapter 1

Introduction

Image classification is a big topic in the industry, it has multiple and wide applications

such as autonomous driving, medical diagnosis, object detection, AI development...

(Sansoni et al. (2009))

Getting a high accuracy is crucial in this context. With the increasing computation

capacity, unlocking new possibilities. Thus new models are being developed and tested

(Sansoni et al. (2009)).

Percutaneous nephrostomy (PCN) is a medical procedure used to treat kidney

conditions by inserting a needle into the kidney. However, that process is difficult

and involves a lot of injury and complication risks. Indeed, there is a 18% failure

rate. Thus, different imaging techniques were tested out to decrease that rate but as

the different tissue types all look very similar and indistinguishable with human eyes

(Efesoy et al. (2018)).

A potential solution would be to use Optical coherence tomography (OCT) to get an

image of the subsurface tissue by inserting a probe with a depth of several millimeters.

This technique presents several advantages (Fercher et al. (2003)):

• Better resolution.

• Non invasive medical imaging method.

• Real time images can be obtained.

1

However, the difficulty of recognizing the different types of tissue with naked eyes

still remain. Machine learning can address that issue by training a model to spot

the subtle differences and recognize the different tissue types (Schmidt-Erfurth et al.

(2018)).

By combining that OCT method and a program that would recognize the tissue

type, that would greatly improve PCN by reducing the risks.

We currently have 3D kidney images provided by the Biomedical Engineering de-

partment at OU with different 3 associated classes corresponding to the 3 different

kidney tissue types for supervised learning. A classification program with 2D cuts

have already been implemented with that dataset with an average accuracy of 85.63%

(Wang et al. (2021)).

Goal: improve the accuracy rate over other models by developing a model for 3D

images, especially for the current dataset we have in hand.

This study is divided into different steps: prepare the data, implement 3D models

and make some comparison with other models.

The hypothesis is the fact that taking the whole 3D image instead of 2D cuts will

improve the classification accuracy.

2

Chapter 2

Literature Review

2.1 Percutaneous nephrostomy review

The first step for percutaneous nephrolithotomy (PCNL) surgery and other therapeutic

intervention requiring trans-urethral access of surgical to the urological system is dif-

ficult. Despite being a common urological procedure, it is still technically challenging

to insert the PCN needle correctly in the right place without unnecessarily damaging

the kidney tissue. During PCN, a needle penetrates the cortex and medulla of the

kidney to reach the renal pelvis. Conventional imaging modalities have been used in

PCN puncture. Ultrasound technique, as a commonly used medical diagnostic imaging

method, has been utilized in PCN surgery for decades (Efesoy et al. (2018)).

Fluoroscopy and computed tomography (CT) are also used for PCN guidance (Zegel

et al. (1981)). However, due to the limited spatial resolution, these standard imaging

methods have been proven to be inadequate for accurately locating the needle tip

position: the failure rate of PCN needle placement is 18%, especially in non-dilated

systems or for urolithiasis. Failure of inserting the needle into the targeted location

in the kidney through a suitable route might result in rupture of renal blood vessels

by needle penetrations which can cause bleeding or even more severe complications

(Pabon-Ramos et al. (2016)). Moreover, fluoroscopy has no soft tissue contrast so the

different types of tissue cannot be identified, such as blood vessels, which are important

to avoid during the needle insertion process. Temporary bleeding after PCN placement

3

occurs in about 95% of cases. Retro-peritoneal hematomas have been found in 13%

of the time (Pabon-Ramos et al. (2016)). Furthermore, injuries related to the PCN

can lead to infectious complications such as fever or sepsis, thoracic complications like

pneumothorax and hydrothorax, and other complications.

2.2 3D imaging OCT review

Optical coherence tomography (OCT) is a non-invasive biomedical imaging process

allowing to get image subsurface tissue by inserting a probe with a depth of several

millimeters into the kidney. After getting and processing the coherent infrared lights

backscattered from the reference arm and sample arm, OCT can provide 3D images

with high axial resolution (about 10µm), which is 10 to 100 times higher than conven-

tional medical imaging methods such as CT and MRI for example (Li et al. (2009)).

Thanks to the high speed of laser scanning and data processing, the 3D images of the

detected sample formed by numerous cross-sectional images can be obtained in real

time.

In the case of this study with kidney image scans, there are three different tissue

types to classify: cortex, medulla and pelvis.

2.3 3D CNN review

Convolutional neural networks is very popular for image classification tasks, especially

in the medical field for computer-aided diagnosis to detect disease and cancer. 3D

CNN use filters (also called kernels) to extract features from local patches of the input

data (Kamnitsas et al. (2017)).

A filter is a small, learnable matrix used for convolutional operations.

4

Filters serve several important purposes:

• Feature Extraction: Filters are primarily used to extract features from input

data. In CNNs, filters convolve over the input data, capturing local patterns or

features. These patterns can include edges, textures, shapes, or more complex

structures, depending on the depth and training of the network.

• Dimension Reduction: As filters convolve over the input, they reduce the spatial

dimensions of the data. For example, in image processing, a filter might reduce

a large image into smaller feature maps that highlight specific aspects of the

input. This reduction in dimensionality is important for subsequent layers in the

network and helps in focusing on relevant information.

• Hierarchical Feature Learning: Filters are stacked in multiple layers of a CNN,

creating a hierarchy of features. Lower layers capture simple, low-level features,

like edges and corners, while deeper layers learn more abstract and complex

features by combining information from lower-level features. This hierarchical

feature learning is essential for the network’s ability to understand complex data.

• Learnable Parameters: Filters are learnable parameters of the neural network.

During training, the network adjusts the values within these filters using opti-

mization algorithms like gradient descent. This process allows the network to

adapt and discover the most informative features for a given task.

• Spatial Locality: Filters capture spatial locality, meaning they focus on local

regions of the input. This property enables the network to recognize patterns

regardless of their position within the input data. In images, for instance, a filter

can identify the same feature (e.g., an edge) regardless of where it appears.

5

3D CNN is also pretty similar to 2D CNN as they include convolutional layers, acti-

vation functions (like ReLU), pooling layers (such as max pooling), and fully connected

layers.

The activation layer is used to introduce non linearity to the model by applying

specific functions. In the case of ReLu, it takes x and output the max between x and

0.

A pooling layer is used to reduce the dimension of the input. For example, with

the max pooling, max of the input will be processed.

However, 3D CNN can be computationally more taxing than 2D CNN due to the

increase of dimensions.

6

Chapter 3

Methods

3.1 Data presentation

The dataset is a collection of 3D images taken from pig kidneys provided by Dr Tang’s

biomedical lab. Dr Qinggong Tang is an Assistant Professor of Biomedical Engineering

specialized in optical imaging techniques. The dataset contains 3 different classes with

30 images for each class, corresponding to cortex, medulla and pelvis. There are 10

folders of 3D images corresponding to 10 different kidneys and each folder contains

those 3 different classes. The goal is to determine which class a 3D image belongs to.

To do so, different learning models will be used.

The 3D images are in form of files in TIFF format. Each image contains a 3D

cylinder and is around 11 Mb. Those 3D images contain a lot of empty space and

there is just a few of them. Thus, to address these issues, some data pre-processing

and data augmentation will be performed.

7

Figure 3.1: Representation of 3D image

Figure 3.2: Planes of 3D image

To do so, some cropping has been be performed on those big images to have smaller

images without losing any information, allowing the program to run much faster.

Python with Tensorflow will be used for this project. After the 3D image is read,

it is represented as a 3D numpy array with each cell representing the intensity at the

(x, y, z) coordinates, these indexes represent position on the different planes as it is

shown on figure 3.2.

8

Figure 3.3: Representation of expected cropped 3D image

3.2 Data pre-processing

The data pre-processing is divided into 2 big steps:

• Cropping each image to get images that doesn’t contain useless information, using

up resources pointlessly.

• Perform a data augmentation on those cropped images by rotating the cylinder

by different angles.

3.2.1 Image cropping

The 3D images are stored on the supercomputer as TIFF files and need to be read

on the program. To do so, the library Scikit-image will be used to get Numpy 3D

arrays after reading the image file. After getting the Numpy array, the cropping will

be perfomed automatically on it and then it will be reconverted into a smaller TIFF

file to be easily reusable.

9

To crop the image, the size of the 3D numpy array will be reduced, leaving out

the parts that are not useful to keep only the actual kidney image. The cylinder’s

dimensions are known, thus, it will be faster and more precise to use that information:

where the cylinder starts from different planes to be able to perform the cropping by

using the cylinder’s diameter and the depth: That starting points are the borders of

the cylinder shown on figure 3.4

Figure 3.4: Starting points of uncropped images

As the images are in form of a Numpy array, cropping the image would correspond

to extracting a subarray of the Numpy array by using the array indexes. After getting

the cropped image, the data enrichment with the image rotation would be performed

as well, as the cropped image would be already loaded, it would save some time.

What’s left to do is to find the correct index to know from where the cropping

should be done. To do so, multiple ideas, came up to find the starting index, the main

idea was to use the sum of the intensity on a plane: a big percentage of the intensity

is in the cylinder. By taking advantage of that property, the starting index can be

deduced.

10

Figure 3.5: Process to find the starting index

The idea is to move the left blue plane at each iteration until it hits the cylinder.

That blue plane will cut out the part of the cube before it, creating a new cropped 3D

Numpy array. To know when to stop, the ratio between the sum of the intensity of the

image that has been cropped after that plane and the full image will be processed. If

the ratio reaches a determined threshold, it means that the starting point is here and

the starting index is now known. The same is done to the other dimensions to crop

entirely the image.

However, after processing with that method, the cut went a bit too far and the

chosen diameter was too small (Figure 3.6), leading to some information loss.

11

Figure 3.6: Image that has been too cropped

To solve the issue, the starting index has been decreased, to have a bit more margin

around the cylinder and the diameter has been increased (Figure 3.7).

Figure 3.7: Image correctly cropped

12

Algorithm 1 Image Cropping

function ImageCropping(image, depth, diameter, threshold)
ratio← 1
full sum← sum(image)
cropping indexes← []
for each image dimension do

cropping index← 0
while ratio > threshold do

cropped image← image[image dimension, cropping index]
new sum← sum(cropped image)
ratio← new sum/full sum
cropping index← cropping index + 1

end while
cropping indexes.append(cropping index)

end for
result← image[cropping indexes[1] + diameter,

cropping indexes[2] + depth,
cropping indexes[3] + diameter]

return result
end function

With that function implemented, the cropping can be automated and applied to all

images. The image original dimensions were 325x325x450. After cropping, the image

dimensions are now 175x200x250.

After getting a satisfying result, rotations can be performed on the cylinder. With

Parker Brandt’s collaboration who was working on the rotation algorithm at the same

time, it was possible to get satisfying results pretty early on. Parker Brandt is another

Master Student who was part of the lab at that time for his Master Program.

3.2.2 Data augmentation with image rotation

Rotating the 3D image could be done pretty easily as a 3D image is represented by

a 3D numerical Numpy Array. That Numpy Array just needs to be multiplied by a

rotation matrix to get a 3D rotated image. A function has been implemented to take as

input the Numpy Array directly after it has been cropped and the number of rotations

13

needed. Depending on the number of rotations needed, the rotation matrix will change

to adapt to that number of rotations. A loop is executed to rotate the Numpy Array

and save that to a TIFF file that is significantly smaller than the original image (4MB).

Figure 3.8: Performing a 40 degrees rotation

The function used would take the number of rotations wanted as an argument and

the rotation angle would depend on that number of rotations as it would be used to

divide by 360 degrees.

3.3 Cross-validation presentation and

implementation

A 10 fold cross-validation will be performed to find good hyper-parameters for the

model that will be used. In this case, it is the number of epochs needed to get satisfying

results.

14

Figure 3.9: Cross-validation illustration

A cross-validation is divided into 2 big steps: the validation process to find fitting

hyper-parameters and the final evaluation. The idea is to have 2 for loops nested

together. The outer loop is made to separate the testing folder from the others that

will be used in the inner loop and do the evaluation after the inner loop, using that

test folder. The inner loop will go through validation process with a different folder as

validation set at each iteration to determine the best epoch to stop for the evaluation

with the test folder.

15

Algorithm 2 Cross Validation

1: function CrossValidation(test index)
2: Initialize best epoch fold← []
3: Initialize val scores← []
4: for validation index← 0 to 9 do
5: if validation index = test index then
6: Continue
7: end if
8: validation data← get data(validation raw[0], validation raw[1])
9: training data← get data(training raw[0], training raw[1])
10: validation kidney number← get kidney number(validation raw, data path)
11: test kidney number← get kidney number(test raw[0][0], data path)
12: Clear Session
13: model← get model()
14: model.fit(training data, validation data = validation data, epochs =

epochs, callbacks = callbacks list)
15: model.load weights(filepath)
16: best epoch fold.append(get best epoch(csv file1))
17: val scores.append(model.evaluate(validation data))
18: end for
19: Return {’best avg epoch’: int(mean(array(best epoch fold))),

’best avg accuracy’: mean(array(val scores)), ’std accuracy’:
std(array(val scores))}

20: end function

16

The performance is always recorded and logged into files so nothing is lost, especially

with the supercomputer which would crash quite often. A load function was also

implemented to resume where the program left, using those log files as well. These log

files record the epoch, the training accuracy, the loss, the validation accuracy and the

validation loss. A log file is created for each different validation and test folder.

By using that log file, a function will read the log files for the same test folder, for

each file find the epoch with high accuracy and low deviation around. The best epoch

returned will be the average of the best epoch of each file.

After getting the best epoch, that number will be used as a parameter for the

training and final testing with the test folder. The result will also be saved in a file for

results analysis and comparison with other models.

3.4 Models implementation

3.4.1 3D CNN model

CNNs are used in machine learning and data mining that tries to mimic human brain

with layers of interconnected nodes and are widely used for image classification which

corresponds to the goal here. The implemented 3D CNN is organized into several types

of layers:

• Convolutional Layers:

• Convolutional layers are fundamental to CNNs. They apply learnable filters

to the input data, allowing the network to learn features and patterns in

the data.

17

• Convolutional layers use convolution operations to detect local patterns like

edges, textures, and simple features.

• These layers can have multiple filters, each learning to recognize different

features.

• Convolutional layers are often followed by activation functions (e.g., ReLU),

in the case of this model, ReLU has been used.

• Pooling Layers:

• Pooling layers are used to reduce the spatial dimensions of the feature maps

produced by convolutional layers.

• Max-pooling is used for this model to the feature map’s size.

• Pooling helps to make the network translation-invariant, reduce computa-

tional complexity, and control overfitting.

• Fully Connected Layers:

• Fully connected layers are similar to layers in traditional feedforward neural

networks.

• These layers connect every neuron to every neuron in the previous and next

layers, effectively flattening the feature maps.

• FC layers are typically placed at the end of the network to make final pre-

dictions or classifications.

• Normalization Layers:

• Normalization layers, like Batch Normalization, are used to standardize the

inputs to a layer. This helps stabilize training, improve convergence, and

make the network more robust.

18

• Normalization is applied to this model.

• Dropout Layers:

• Dropout layers randomly deactivate a fraction of neurons during training,

which helps to prevent overfitting.

• Dropout is a regularization technique, and dropout layers are typically added

after fully connected layers.

• Dropout is a regularization technique, and dropout layers are typically added

after fully connected layers.

• In the case of this model,

Activation functions define the output of the neuron given the weighted sum of its

inputs. Common activation functions include the sigmoid function, Rectified Linear

Unit(ReLU). In this case, ReLU has been used.

The model used is a 3D CNN with different layers of filters, average pooling and

batch normalization with Adam optimizer.

An optimizer is used to compile the model after all the layers have been determined.

It is used for different purposes:

• Parameter Optimization: Adjust the parameters (weights and biases) of the 3D

CNN model during the training process to keep the best parameters.

• Convergence to a Minimum: Optimizers help the model converge to a local min-

imum of the loss function.

• Stability and Generalization: An effective optimizer can help ensure that the

training process is stable and that the model generalizes well to unseen data.

19

In this case, Adam and SGD were used and some comparison is made between those

two models.

The layers and parameters are refined through tests by running the model and

checking preliminary results and changing parameters one by one. After getting results

that seem satisfying, the cross-validation could run to benchmark the model.

After implementing a model that seemed to get good results and ran a cross-

validation, results are logged into files. With those raw data, a function plots them

and some analysis is done to evaluate the reliability of the model.

20

Figure 3.10: The different layers of the 3D CNN model

21

3.4.2 2D ResNet50 angular cuts model

Preliminary results have been obtained with a 2D ResNet model: the same 3D images

were used but with cuts at the same angle were taken from the original 3D image for

training and predictions.

Figure 3.11: New 2D cuts model illustration

The next step would be implementing a 2D model but with different angles (on the

right of figure 3.11). That could result in an accuracy improvement over the old 2D

model. The number of cuts would also be customizable for comparison and analysis

purpose.

Each 3D image would be processed to a fixed number n of 2D images corresponding

to the n angular cuts made. Those 2D images will then be trained with the same

ResNet50 model. For the predictions, a prediction is made for each cut of the 3D

image and a max pooling is applied to get a single prediction corresponding to the 3D

image class prediction: The most occurring prediction within those n 2D cuts will be

kept for the 3D image.

22

Chapter 4

Results and discussion

4.1 3D CNN model results

This graph below represents an iteration of cross-validation, with kidney 1 as test, 2

as validation and 3, 4, 5, 6, 7, 8, 9, 10 as training. Here, the validation accuracy is

very unstable. Thus, some changes needed to be made in the layers. After trying out

different ideas, a stable model eventually came out and could be used afterwards.

23

Figure 4.1: First results of cross-validation

24

Here, the validation accuracy is more stable. Multiple factors can explain that

stability gap:

Figure 4.2: 2D and 3D model comparison (Wang et al. (2021))

On average, the 3D model is performing better than the 2D model. There are

multiple possible reasons for that outcome:

• The model is very sensitive to learning rate and Adam adapts the learning rate for

each parameter, which can be beneficial in some cases. However, if the learning

rate is not appropriately tuned, Adam can converge too quickly or overshoot the

optimal solution. SGD uses a fixed learning rate, which is more adapted for this

application.

• Momentum in the context of optimization is a technique used to accelerate the

convergence of gradient-based optimization algorithms like stochastic gradient

descent (SGD) and to help these algorithms navigate through flat or noisy re-

gions of the optimization landscape. Adam includes a momentum-like term and

adaptive learning rates, which can act as a form of implicit regularization. That

momentum can also cause some instability in the validation accuracy.

25

To have a better understanding of the reasons, the implementation for the angular

2D cuts model was necessary.

4.2 2D ResNet50 angular cuts model results

Figure 4.3: 2D, 3D and 2D 10 angular cuts models comparison

Here, these 10 angular cuts yield better result than the basic 2D cuts model. Fur-

thermore, the results tend to get close to the 3D CNN model without outperforming

it. The data augmentation might be the factor for better results, to confirm that sup-

position, 100 cuts will now be tested to compare the accuracy and the results will give

insights too.

26

Figure 4.4: 2D, 3D and 2D 10 and 100 angular cuts models comparison with p-values
relative to 2D model

The 100 2D cuts model doesn’t yield better result than the basic 10 model, it even

performs worse in this case. Thus, it is a model limitation, meaning that the accuracy

can’t really go further with the 2D ResNet model.

The p-values relative to the base 2D model have also been processed. A p-value

below 0.05 means that the improvement is statistically significant. Here, only the 3D

CNN model shows a significant improvement, the different 2D cuts models, yield some

improvement but not significant enough statistically, adding more proof to the 2D

model’s limitations.

4.3 Execution time performance

The 3D CNN model takes around 11 hours to be trained with a cross-validation process

and a prediction takes on average 1.234 seconds to be done.

The 2D 10 cuts model takes around 2 hours to be trained with a cross-validation

process and a prediction takes on average 1.194 seconds to be done.

The 2D 100 cuts model takes around 5 hours to be trained with a cross-validation

process and a prediction takes on average 3.328 seconds to be done.

27

Chapter 5

Conclusion

For this study, a data preprocessing pipeline for 3D images, a cross-validation, a 3D

CNN model that performs better than the 2D model and a 2D angular cuts model

have been implemented.

In the process of trying to implement a 3D model for supervised learning to improve

accuracy, we got better results than 2D model which seems encouraging.

To do so, we also had to go through data pre-processing and data enrichment. That

contributed to better efficiency and performance.

With the better accuracy results with the 3D CNN model and the 2D angular cuts

model, the hypothesis of using 3D images for classification to get better accuracy is

confirmed. The 3D images hold more information than the 2D images. Furthermore,

the 2D model also seem to have limitations regarding to the accuracy it has compared

to the 3D model.

What remains to be done is to benchmark the time performance in different situa-

tions and environment to check if such a classification program can be used to receive

real time images and send predictions in real time as well if this model can really be

used for real life situation.

If such a program is usable during a kidney treatment operation, it would greatly

decrease the risks of PCN failure and complications for the patients.

28

Reference List

Efesoy, O., B. Saylam, M. Bozlu, S. Çayan, and E. Akbay, 2018: The results of
ultrasound-guided percutaneous nephrostomy tube placement for obstructive uropa-
thy: A single-centre 10-year experience. Turkish Journal of Urology, 44 (4), 329.

Fercher, A. F., W. Drexler, C. K. Hitzenberger, and T. Lasser, 2003: Optical coherence
tomography-principles and applications. Reports on progress in physics, 66 (2), 239.

Kamnitsas, K., C. Ledig, V. F. Newcombe, J. P. Simpson, A. D. Kane, D. K. Menon,
D. Rueckert, and B. Glocker, 2017: Efficient multi-scale 3d cnn with fully connected
crf for accurate brain lesion segmentation. Medical image analysis, 36, 61–78.

Li, Q., and Coauthors, 2009: Automated quantification of microstructural dimen-
sions of the human kidney using optical coherence tomography (oct). Optics express,
17 (18), 16 000–16 016.

Pabon-Ramos, W. M., and Coauthors, 2016: Quality improvement guidelines for per-
cutaneous nephrostomy. J Vasc Interv Radiol, 27 (3), 410–4.

Sansoni, G., M. Trebeschi, and F. Docchio, 2009: State-of-the-art and applications of
3d imaging sensors in industry, cultural heritage, medicine, and criminal investiga-
tion. Sensors, 9 (1), 568–601.

Schmidt-Erfurth, U., A. Sadeghipour, B. S. Gerendas, S. M. Waldstein, and H. Bo-
gunović, 2018: Artificial intelligence in retina. Progress in retinal and eye research,
67, 1–29.

Wang, C., and Coauthors, 2021: Deep-learning-aided forward optical coherence tomog-
raphy endoscope for percutaneous nephrostomy guidance. Biomedical optics express,
12 (4), 2404–2418.

Zegel, H., and Coauthors, 1981: Percutaneous nephrostomy: comparison of sono-
graphic and fluoroscopic guidance. American Journal of Roentgenology, 137 (5),
925–927.

29

