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Abstract 

The degree of the background ensemble deficiency, often manifested as ensemble 

underdispersion, can vary at different scales in the ensemble-based data assimilation. This 

study develops the new scale-dependent inflation (SDI) methods based on two scale-unaware 

inflation approaches, RTPS (Relaxation To Prior Spread) and SE (observation-dependent 

Sampling Error inflation). In the new scale-dependent RTPS inflation (RTPS-SDI), the 

posterior ensemble spread is relaxed toward the prior ensemble spread at each scale separately.  

In the Scale-dependent SE inflation (SE-SDI), mathematical derivation is performed so that 

posterior ensemble variance is individually adjusted toward the mean square error of ensemble 

analysis mean at each scale. The impact of RTPS-SDI and SE-SDI are examined and evaluated 

by implementing both approaches within the Multiscale Local Gain Form Ensemble Transform 

Kalman Filter (MLGETKF). 

Four continuously cycled MLGETKF experiments are performed with the four inflation 

methods using a two-layer surface quasi-geostrophic turbulence model. During the DA cycling, 

RTPS-SDI and SE-SDI outperform RTPS and SE, respectively, in the reduction of analysis 

errors and the enhancement of ensemble spread nearly at all scales and all cycles. In addition, 

the improvements in RTPS-SDI over RTPS are greater than those of SE-SDI over SE. These 

improvements in both SDI methods are associated with their larger inflation at all scales, 

especially at larger scales, compared to their scale-unaware counterparts. In the subsequent 

forecast, both SDI methods show statistically significantly better forecast performance than 

their scale-unaware inflation experiments. RTPS-SDI is more accurate than RTPS for all scales 

in 1-4 days lead time. SE-SDI is more accurate than SE at all scales for 3-6 days lead time 

during the early cycles and shows a smaller forecast error with significance for 2-3 days. 
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1. Introduction 

Ensemble-based data assimilation (DA) has been widely used in research and 

operational centers (Gasperoni et al. 2022; Wang et al. 2021; Johnson et al. 2015) for the ability 

of the use of flow-dependent background error covariances (BECs). In contrast to the pure 

variational DA approach with static BECs, many studies have documented the benefits of flow-

dependent BECs in global and regional applications (Wang et al. 2007a, 2008a,b, 2013; Wang 

2011; Buehner et al. 2013, 2015; Clayton et al. 2013; Gustafsson et al. 2014; Wang and Lei 

2014; Lorenc et al. 2015; Kleist and Ide 2015a,b; Kutty and Wang 2015; Jones et al. 2023; Lu 

et al. 2021; Wang et al. 2021). However, the quality of flow-dependent BECs can be strongly 

degraded by the ensemble deficiency, often manifested as ensemble underdispersion. Such 

ensemble deficiency may be caused by the misrepresentation of model errors due to the poorly 

resolved physical processes and sampling errors due to the limited number of affordable 

ensemble members. Deficient representation of model errors and sampling errors can lead to 

the degradation of ensemble-based DA and, consequently, the reduction in forecast skill (Kelly 

et al., 2015; Gottwald and Majda. 2013). 

Many studies have proposed a series of techniques to account for the ensemble 

deficiency. For instance, numerous studies adopted the spatial localization technique in 

ensemble-based DA to alleviate sampling errors by damping distant covariances to zero. The 

effectiveness of localization in removing noisy distant correlations has been demonstrated in 

many ensemble-based DA systems (e.g., Houtekamer and Mitchell 2001; Wang et al. 2008a, b; 

Bishop and Hodyss 2009). As current numerical weather prediction models can resolve the 

flows at a wide range of scales, the proper application of localization requires constraining 

sampling errors at all resolved scales. Thus, recent studies proposed multiscale localization 

methods to reduce sampling errors across multiple scales using ensemble-based DA systems. 

Zhang et al. (2009) designed a sequential approach by separately applying different localization 

radii in the assimilation of different groups of observations. Miyoshi and Kondo (2013) 

combined two different analysis increments by using different localization radii with the 

assimilation of the same observations. Recent studies started to use a simultaneous multiscale 

update by model space scale-dependent localization within the ensemble variational (EnVar, 
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Buehner 2012; Buehner and Shlyaeva 2015) and pure ensemble Kalman Filter (EnKF, Wang 

et al. 2021) frameworks. Particularly, Wang et al. (2021) developed a multiscale local gain 

ensemble Kalman filter (MLGETKF), which allows simultaneous multiscale updates for both 

the ensemble mean and perturbations. Compared to the scale unaware local gain ensemble 

Kalman filter (LGETKF, Bishop et al. 2017), MLGETKF shows a significant analysis 

improvement at large scale and improves the subsequent forecast performance. Techniques 

were also proposed to address the misrepresentation of model errors using stochastic physics 

schemes to increase ensemble spread. For example, Reynolds et al. (2008) utilized the 

stochastically perturbed parameterization tendencies (SPPT) scheme in their ensemble 

transform DA system to increase ensemble variances in the tropics. Fujita et al. (2007) and 

Meng and Zhang (2008) showed the effectiveness of multi-physics schemes in the 

improvement of ensemble spread and background estimates in their mesoscale DA experiments. 

Leutbecher et al. (2007) demonstrated that the stochastic kinetic energy backscatter (SKEB) 

scheme in their ensemble 4D-Var DA experiments increases ensemble spread and subsequently 

improves probabilistic forecasts skill in the tropics.  

In addition, inflation methods have been used to treat ensemble deficiency due to 

sampling errors or/and model error mis-representation. Multiple inflation methods were 

employed to directly increase ensemble spread. The multiplicative inflation methods, such as 

relaxation-to-prior perturbations (RTPP, Zhang et al. 2004) and relaxation-to-prior spread 

(RTPS, Whitaker and Hamill. 2012), are commonly used in EnKF to increase the ensemble 

spread in the global (Terasaki et al., 2019; Otsuka et al., 2016; Sluka et al., 2016) and regional 

(Zeng et al., 2018; Kotsuki et al., 2017; Harnisch & Keil. 2015) applications. Hodyss et al. 

(2016) noted that the inflated EnKF ensemble posterior variance using RTPS and RTPP is 

inconsistent with a Bayesian posterior, in which posterior variance depends on prior variance 

and observations. Therefore, they proposed and examined an alternative multiplicative 

inflation (observation-dependent Sampling Error inflation, denoted as SE) method to account 

for sampling errors by inflating EnKF posterior variance toward the Bayesian posterior 

variance. It was found that SE outperforms RTPS in addressing the ensemble deficiency using 

a two-level primitive equation model. 

Despite that Wang et al. (2021) proposed to account for sampling errors through scale-
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dependent localization, their study still adopted the scale-unaware RTPS method to increase 

ensemble spread. This RTPS method as well as the aforementioned inflation methods 

commonly ignore the dependence of ensemble deficiency with respect to various scales and 

use the same inflation for all scales. Wang et al. (2021) discussed that the ensemble spread in 

MLGETKF is still underestimated at all scales and shows greater underestimation towards 

larger scales with the use of the single-scale inflation. Therefore, they suggested that the 

ensemble deficiency requires to be further addressed in a scale-dependent inflation fashion. 

In this study, we propose a scale-dependent inflation (SDI) method to alleviate the 

ensemble deficiency and maintain the ensemble spread in a scale-dependent manner. 

Specifically, the SDI method separately increases ensemble spread at various scales based on 

each scale’s ensemble deficiency. The SDI method is first implemented on top of RTPS, 

denoted as scale-dependent RTPS (RTPS-SDI). Compared to scale-unaware RTPS using a 

fixed inflation factor for all scales, scale-dependent RTPS separately relaxes posterior 

ensemble variance toward corresponding prior ensemble variance for each scale using the 

varied inflation factors. The SDI method is also derived and implemented for SE, denoted as 

scale-dependent SE (SE-SDI), aiming to separately adjust ensemble variance toward the 

corresponding analysis Mean Square Error (MSE) at each scale.  

In this study, both SDI approaches are first introduced and described. These methods 

are implemented and examined within the MLGETKF framework (Wang et al. 2021) using a 

dynamical Surface Quasigeostrophic (SQG) model to address three scientific objectives. The 

first objective is to evaluate the SDI methods versus their scale-unaware counterparts in 

alleviating ensemble deficiency and improving analysis accuracy and forecast performance. 

The first objective is achieved by comparing scale-unaware inflation approaches and their 

corresponding scale-dependent counterparts. In the second objective, we assess the relative 

improvements of applying SDI to different single-scale inflation methods, i.e., RTPS and SE, 

in this study. The third objective is to explain the improvements of SDI approaches relative to 

scale-unaware approaches during different DA phases by understanding their temporal and 

spatial differences in inflation factors. For objective 3, we hypothesize that the SDI’s inflation 

factors at different scales will demonstrate different behaviors and indicate scale-dependent 

ensemble deficiencies. 
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This paper is organized as follows. Section 2 briefly describes the MLGETKF 

algorithms and the formulas of the scale-unaware RTPS (SE) and their scale-dependent 

counterpart. Section 3 presents the model, DA configuration, and experiment design. Section 

4 presents the results from the comparisons between the scale-unaware methods (RTPS and SE) 

and their scale-dependent counterparts in the analyses and forecasts. Section 5 concludes the 

paper and provides a discussion.  
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2 Methodology 

This section first briefly introduces the MLGETKF algorithm. The following introduces 

the formulas of two scale-unaware inflation methods, RTPS and SE, and their scale-dependent 

counterparts. In this part, the variables in the regular font represent scalars, and the variables 

in the bold font represent vectors or matrixes. 

 

2.1 Multiscale local gain form ensemble transform Kalman filter (MLGETKF) 

In this study, the MLGETKF (Wang et al. 2021) is used as the DA framework to test 

the scale-dependent inflation approaches. MLGETKF is a multiscale data assimilation 

algorithm developed from the scale unaware LGETKF (Bishop et al. 2017). This MLGETKF 

method allows the simultaneous multiscale update by utilizing model space scale-dependent 

localization. The derivation details have been introduced by Wang et al. (2021). A brief 

introduction of MLGETKF is provided as follows. 

The scale separation of ensemble covariances is accomplished by decomposing each 

background ensemble perturbation. The Fast Fourier transform (FFT) is used to decompose the 

𝑘th ensemble background perturbation 𝐗𝑘
𝑏 into 𝑀 scales as: 

𝐗𝑘
𝑏 = ∑ 𝐗𝑘,𝑚

𝑏

𝑀

𝑚=1

.   (1) 

where 𝐗𝑘,𝑚
𝑏  is the kth background ensemble perturbation containing the 𝑚th scale, k = 1, 2, …, 

K, and m = 1, 2, …, M. K is the ensemble size.  

Let 𝐗𝑚
𝑏 =

[𝐗1,𝑚
𝑏 ,𝐗2,𝑚

𝑏 ,…,𝐗𝐾,𝑚
𝑏 ]

√𝐾−1
  contain the normalized, decomposed background 

perturbations for the 𝑚 th scale band confined in the local volume. 𝐗𝑏 = [𝐗1
𝑏, 𝐗2

𝑏 , … , 𝐗𝑀
𝑏 ] 

denotes the square root of the raw background ensemble covariance in a local volume. Then 

MLGETKF updates the mean and perturbation at the center of the local volume using 

{
𝑳𝐱𝑎̅̅ ̅ = 𝑳𝐱𝑏̅̅ ̅ + 𝑳𝐙ML𝐂ML(𝚪ML + 𝑰)−𝟏(𝐂ML)𝑻(�̃�𝐙ML)

𝑻
𝐑−

𝟏
𝟐[𝐲 − 𝑯(𝐱𝑏̅̅ ̅)]

𝑳𝐗𝑎 = 𝑳𝐗𝑏 − 𝑳𝐙ML𝐂ML[𝑰 − (𝚪ML + 𝑰)−
𝟏
𝟐](𝚪ML + 𝑰)−𝟏(𝐂ML)𝑻(�̃�𝐙ML)

𝑻
�̃�𝐗𝑏.

   (2) 

where 𝑳 is the operator to select state variables at the center of the local volume,  𝐱𝑎̅̅ ̅ and 𝐱𝑏̅̅ ̅ 

are the ensemble analysis and background mean, respectively, 𝐗𝑎 is the ensemble posterior 
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perturbation in a local volume, 𝐲 represents observations, 𝐑 is the observation error covariance, 

and 𝐇 is the observation operator that converts a state variable from model space to observation 

space. The square root of the localized ensemble covariance 𝐙ML  can be obtained by 

modulating the normalized raw ensemble perturbations with the square roots of the localization 

matrix. The term �̃� = 𝐑−
𝟏

𝟐𝐇, and 𝐂ML and 𝚪ML are the eigenvectors and eigenvalues of matrix 

(�̃�𝐙ML)
𝑻
(�̃�𝐙ML), respectively. 𝐈 is the identity matrix that has the same size as 𝚪ML. 

 

2.2 Scale-unaware RTPS and scale-dependent RTPS-SDI inflation methods 

2.2.1 Scale-unaware RTPS method 

RTPS (Whitaker and Hamill 2012) is one commonly used inflation method in 

ensemble-based DA, which relaxes the posterior spread √𝐏𝑎  toward the prior spread √𝐏𝑏 

independently at each analysis grid point by  

√𝐏𝑎 ← (1 − 𝛼)√𝐏𝑎 + 𝛼√𝐏𝑏 .   (3) 

and thus, the kth inflated posterior ensemble perturbation 𝐗𝑘
𝑎 is, 

𝐗𝑘
𝑎 ← (𝛼

√𝐏𝑏 −√𝐏𝑎

√𝐏𝑎
+ 1)𝐗𝑘

𝑎.   (4) 

In Eqs. (3) and (4), 𝐏𝑏 and 𝐏𝑎 represent the prior and posterior ensemble variances, respectively, 

and 𝛼 is a tunable parameter. The corresponding inflation factor 𝐠 in the scale unaware RTPS 

method is defined as, 

𝐠 = 𝛼
√𝐏𝑏 −√𝐏𝑎

√𝐏𝑎
+ 𝟏.   (5) 

2.2.2 Scale-dependent RTPS method (RTPS-SDI) 

SDI is proposed in this study to address the ensemble deficiency at different scales 

separately. Therefore, we develop RTPS-SDI to inflate the posterior ensemble spread at 

different scales toward the corresponding prior ensemble spread. The procedure of inflating 

posterior ensemble perturbation 𝐗𝑘
𝑎, 𝑘, = 1, 2, … , 𝐾, in RTPS-SDI is introduced as follows. 

Similar to Eq. (1), the scale separation of background and posterior ensemble spread is 

achieved by decomposing the corresponding ensemble perturbation. FFT is used to separately 
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decompose the kth prior and posterior ensemble perturbation 𝐗𝑘
𝑏 and 𝐗𝑘

𝑎 into 𝑀 scales as:  

{
 
 

 
 𝐗𝑘

𝑏 = ∑ 𝐗𝑘,𝑚
𝑏

𝑀

𝑚=1

𝐗𝑘
𝑎 = ∑ 𝐗𝑘,𝑚

𝑎

𝑀

𝑚=1

,

     (6) 

where 𝐗𝑘,𝑚
𝑎 is the kth posterior ensemble perturbation containing the 𝑚th scale. Thus, the 𝐏𝑚

𝑎  

and 𝐏𝑚
𝑏  can be calculated using, 

{
 
 

 
 𝐏𝑚

𝑏 =
1

𝐾 − 1
∑𝐗𝑘,𝑚

𝑏 (𝐗𝑘,𝑚
𝑏 )𝑻

𝐾

𝑘=1

𝐏𝑚
𝑎 =

1

𝐾 − 1
∑𝐗𝑘,𝑚

𝑎 (𝐗𝑘,𝑚
𝑎 )𝑻

𝐾

𝑘=1

.

   (7) 

Similar to the scale unaware RTPS in Eq (3), the posterior ensemble spread is relaxed toward 

the prior ensemble spread at each decomposed scale individually by 

√𝐏𝑚
𝑎 ← (1 − 𝛼𝑚)√𝐏𝑚

𝑎 + 𝛼𝑚√𝐏𝑚
𝑏  ,   (8) 

where √𝐏𝑚
𝑎  and √𝐏𝑚

𝑏  respectively represent the posterior and prior spread at the 𝑚th scale, 

and 𝛼𝑚 is the corresponding tunable inflation parameter. The kth inflated posterior ensemble 

perturbation at the 𝑚th scale is obtained as, 

𝐗𝑘,𝑚
𝑎 ← 𝐠𝑚 ° 𝐗𝑘,𝑚

𝑎  .   (9) 

In Eq. (9), the sign ° denotes the Schur product, 𝐠𝑚, m = 1, 2, …, M, represents the inflation 

factor at the 𝑚th scale, and is defined as 

𝐠𝑚 = 𝛼𝑚
√𝐏𝑚

𝑏 −√𝐏𝑚
𝑎

√𝐏𝑚
𝑎

+ 𝟏 .   (10) 

The kth inflated full-scale posterior perturbation 𝐗𝑘
𝑎 is composed by the sum of all scale bands, 

𝐗𝑘
𝑎 = ∑ 𝐗𝑘,𝑚

𝑎

𝑀

𝑚=1

.   (11) 

 

2.3 Scale-unaware SE and Scale-dependent SE-SDI 

2.3.1 Scale-unaware SE method 

The SE method was first proposed to inflate the ensemble posterior variance toward the 
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observation-dependent Bayesian posterior variance. Based on Eqs. (2.4) and (2.5) in Hodyss et 

al. (2016), the Bayesian posterior variance is equal to the posterior MSE. Therefore, the SE 

method aims to inflate the posterior ensemble variance toward the posterior MSE. The 

derivations of this SE method in this study are similar to those in Hodyss et al. (2016) and are 

introduced as follows.  

In the scale-unaware DA, the analysis mean is defined by the classic Kalman filter 

equation, 

𝐱𝑎̅̅ ̅ = 𝐱𝑏̅̅ ̅ +
𝐏𝑏𝐇T

𝐇𝐏𝑏𝐇T + 𝐑
(𝐲 − 𝐇𝐱𝑏̅̅ ̅) .   (12) 

The analysis MSE at grid point 𝑖 by including Gaussian perturbations from sampling is written 

as, 

S𝑖 = P𝑖
𝑡 + (

P𝑖
𝑎

P𝑖
𝑓
)

2

(
P𝑖
𝑓

𝐾
+

2

𝐾 − 1
(x𝑖𝐾̅̅ ̅ − x𝑖

𝑏̅̅ ̅)
2
)

≈ 𝑎 ∗ P𝑖
𝑎 + (

P𝑖
𝑎

P𝑖
𝑏)

2

(𝑏 ∗
P𝑖
𝑏

𝐾
+ 𝑐 ∗

2

𝐾 − 1
(x𝑖
𝑎̅̅ ̅ − x𝑖

𝑏̅̅ ̅)
2
) ,   (13) 

where S𝑖 is the analysis MSE at point 𝑖, P𝑖
𝑡 is the true error variance at point 𝑖, P𝑖

𝑓
 is the true 

prior error variance at point 𝑖, x𝑖𝐾̅̅ ̅ is the true Kalman mean at given point. X𝑖
𝑎̅̅̅̅  and x𝑖

𝑏̅̅ ̅ are the 

ensemble analysis and background mean at point 𝑖, 𝐾 represents the ensemble size, 𝑎, 𝑏 and 𝑐 

are tunable parameters. The parameter 𝑎 balances the difference by replacing P𝑖
𝑡 with P𝑖

𝑎. The 

parameters 𝑏 and 𝑐 alleviate the difference in the sampling error terms caused by replacing P𝑖
𝑓
 

and x𝑖𝐾̅̅ ̅  with P𝑖
𝑏 and x𝑖

𝑎̅̅ ̅ . On the right-hand side of Eq. (13), the first term measures the true 

posterior variance. The second term is caused by the sampling error in the background estimate. 

The sampling error term is composed of two separate terms: the first term is the inflation caused 

by the sampling error in background mean, and the second term is the inflation caused by the 

sampling error in background variance.  

To achieve the goal of this method, the corresponding inflation factor at grid point 𝑖 is 

defined as 

g𝑖 = √
S𝑖
P𝑖
𝑎 .  (14) 
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As mentioned in Hodyss et al. (2016), this approximation is made to achieve a formula that 

may apply through simple vector manipulations without access to observations. Similar to Eq. 

(4), the kth inflated ensemble perturbation is obtained as  

𝐗𝑘
𝑎 ← 𝐠 ° 𝐗𝑘

𝑎 ,   (15) 

where g is the matrix of the inflation factors in the entire domain. 

 

2.3.2 Scale-dependent SE method (SE-SDI) 

In this subsection, SDI is further derived and implemented in the SE inflation method 

to account for the sampling error at different scales and address the scale-dependent ensemble 

deficiency. The purpose of SE-SDI is to separately inflate the posterior ensemble variance at 

each scale toward the analysis MSE at the corresponding scale.  

The analysis mean in each scale is defined by the multiscale DA analysis equation (Li 

et al. 2015) 

𝐱𝑚
𝑎̅̅ ̅̅ = 𝐱𝑚

𝑏̅̅ ̅̅ +
𝐏𝑚
𝑏𝐇T

𝐇𝐏𝑏𝐇T + 𝐑
(𝐲 − 𝐇𝐱𝑏̅̅ ̅) ,   (16) 

where 𝑚 = 1,2, …𝑀 represent the decomposed scales, 𝐱𝑚
𝑏̅̅ ̅̅  and 𝐱𝑚

𝑎̅̅ ̅̅  are the prior and posterior 

mean of the state variables in 𝑚th scale. Note that if we ignore the cross-scale covariances, the 

sum of Eq. (16) in all scale bands is equivalence to the Eq. (12). 

Starting from Eq. (16), we further derive the analysis MSE at each scale in Appendix 

A. Specifically, the analysis MSE S𝑖,𝑚 at grid point 𝑖 for the 𝑚th scale is calculated as, 

S𝑖,𝑚 = P𝑖,𝑚
𝑡 + [(

P𝑖,𝑚
𝑎

P𝑖,𝑚
𝑓
)

2

(
P𝑖,𝑚
𝑓

𝐾
+

2

K − 1
(x𝑖,𝑚𝐾̅̅ ̅̅ ̅ − x𝑖,𝑚

𝑏̅̅ ̅̅ ̅)
2
)]

≈ 𝑎𝑚 ∗ P𝑚
𝑎 + [(

P𝑖,𝑚
𝑎

P𝑖,𝑚
𝑏 )

2

(𝑏𝑚 ∗
P𝑖,𝑚
𝑏

𝐾
+ 𝑐𝑚 ∗

2

K − 1
(x𝑖,𝑚
𝑎̅̅ ̅̅ ̅ − x𝑖,𝑚

𝑏̅̅ ̅̅ ̅)
2
)] .   (17) 

Similar to the terms in Eq. (13), here P𝑖,𝑚
𝑡 , P𝑖,𝑚

𝑓
, and x𝑖,𝑚𝐾̅̅ ̅̅ ̅ are the true error variance, true prior 

error variance and the true Kalman mean at point 𝑖 for 𝑚th scale, respectively. 𝑎𝑚, 𝑏𝑚, and 𝑐𝑚 

are tunable parameters for the 𝑚 th scale. The parameter 𝑎𝑚  alleviates the difference by 

replacing P𝑖,𝑚
𝑡  with P𝑖,𝑚

𝑎 .The parameters 𝑏𝑚 and 𝑐𝑚 are used to alleviate the differences in the 

sampling error terms caused by replacing P𝑖,𝑚
𝑓

 and x𝑖,𝑚𝐾̅̅ ̅̅ ̅ with P𝑖,𝑚
𝑏  and x𝑖,𝑚

𝑎̅̅ ̅̅ ̅. 
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The inflation factors g𝑖,𝑚  at grid point 𝑖  for 𝑚 th scale are defined by inflating the 

posterior variance to the corresponding analysis MSE, 

g𝑖,𝑚 = √
S𝑖,𝑚
P𝑖,𝑚
𝑎 .    (18) 

The 𝑘th inflated posterior ensemble perturbation at the 𝑚th scale is obtained as, 

𝐗𝑘,𝑚
𝑎 ← 𝐠𝑚 ° 𝐗𝑘,𝑚

𝑎  ,   (19) 

where 𝐠𝑚 is the inflation factor in the entire domain at the 𝑚th scale. Similar to RTPS-SDI, 

the 𝑘 th inflated full-scale posterior perturbation 𝐗𝑘
𝑎  is composed by the sum of the inflated 

perturbation 𝐗𝑘,𝑚
𝑎  in different scales: 

𝐗𝑘
𝑎 = ∑ 𝐗𝑘,𝑚

𝑎

𝑀

𝑚=1

.   (20) 
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3. Experimental design 

This study evaluates the SDI method in the cycled MLGETKF DA system using a 

Surface Quasigeostrophic (SQG) model following Wang et al. (2021) and Tulloch and Smith 

(2009). The SQG model equation governs the evolution of potential temperature on the two 

bounding surfaces positioned 10 km apart. This model mimics the mesoscale of the atmosphere 

by simulating a range of scales with the KE spectrum satisfying the -5/3 slope (FIG. 1a). The 

model domain has 64 × 64 horizontal grid points with a grid spacing of ~300 km.  

The SQG model is initialized by combining a random and sinusoidal scaled potential 

temperature field. The simulation runs for a total of 300 days, and the truth simulation begins 

at the 100th day onward since the first 100 days are removed to account for the spinup time. 

Figure 1b demonstrates that 100 days is sufficient for the natural variability of the SQG model 

to become stable. Potential temperature observations are simulated by adding Gaussian noise 

to the truth field with a standard deviation of 1 K, and their locations are randomly chosen from 

the model grid without replacement. The number of observations is 1024, occupying a quarter 

of the grid points in the entire domain. Figure 1c is an example of the simulated observations 

distributed over a potential temperature anomaly field from the truth. More details of the SQG 

model were introduced in Wang et al. (2021). 

The DA configurations in this study mirror Wang et al. (2021). The initial ensemble 

consists of 20 members, randomly choosing from the climatology of the truth simulation. The 

multiscale DA algorithm, MLGETKF, is implemented to update the 20-member ensemble 

analyses. The assimilation is performed every 3 hours for 50 days, 400 cycles in total. The 

localization radii of 2000 and 4000 km are utilized to constrain the small- and large-scale 

ensemble covariances. A filtering function with a wavelength of 1818 km is used to decompose 

the raw ensemble perturbations into large and small scales (m = 2) for both MLGETKF update 

and SDI inflation. Ensemble mean forecasts with a 6-day lead time are initialized from the 

analysis ensemble mean from each of the last 350 cycles. The free forecasts from the first 50 

DA cycles are omitted to allow a sufficient DA spinup time. Here, the spinup time is defined 

as the time required for the analysis error in DA system to reach a relatively stable status. 

Four cycled DA experiments are designed (Table 1) to examine the four inflation 
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methods in Section 2. Comparisons in analysis accuracy and forecast performance between 

RTPS and RTPS-SDI and between SE and SE-SDI are conducted to evaluate the SDI method 

versus its scale-unaware counterparts in alleviating ensemble deficiency. We further compared 

the relative improvements achieved by applying SDI to RTPS and SE for the second objective 

introduced in Section 1. In addition, the temporal and spatial behaviors of inflation factors from 

four experiments are compared for the third objective. Sensitivity tests were performed to 

optimize the tunable parameters in the inflation methods. For RTPS and RTPS-SDI, initial tests 

were performed with 𝛼 and 𝛼𝑚 respectively increasing from 0.3 to 0.8 at an interval of 0.1. 

Tests were also conducted to optimize the tunable parameters in SE and SE-SDI. Notice that 

the values of a and am are chosen as 1 to avoid the ensemble spread deflation, SE and SE-SDI 

experiments only tune parameters b, c, bm, and cm. Specifically, b and bm change from 1 to 7 

at an interval of 1; c and cm change from 1 to 7 at an interval of 1. The optimal α for RTPS is 

α = 0.6. The optimal parameters for RTPS-SDI are (αL,αS) = (0.4, 0.6). The best-performing 

SE corresponds to (b, c) = (3, 2), and the best-performing SE-SDI corresponds to (bL,cL,bS,cS) 

= (4, 6, 3, 2). Moreover, the computational costs for each DA cycle are comparable among the 

four experiments as the differences in the costs among the various inflation methods are 

negligible.  
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4. Results  

4.1 Impacts of SDI on DA cycling 

4.1.1 Time series of the RMS analysis error 

This section verifies and diagnoses the analysis result in the DA cycling for the designed 

experiments in Section 3. We divide the 400 DA cycles into 3 phases to reveal the differences 

among experiments as follows (Fig. 2). The period of the first 50 cycles is determined as Phase 

1, where all experiments are still spinning up. The 51-100 cycles are selected as Phase 2, where 

the analysis errors of both RTPS-SDI and SE-SDI experiments become stable. In the remaining 

101-400 cycles (Phase 3), all experiments have relatively stable analysis errors. 

In Fig. 2, the analysis RMSE in SE (solid red line) is lower than that in RTPS (solid 

black line) for nearly all cycles. Thus, SE inflation shows improved analysis accuracy 

compared to RTPS in all phases. Regarding the two SDI approaches, RTPS-SDI (dashed black 

line) outperforms SE-SDI (dashed red line) in Phase 1; SE-SDI (dashed red line) outperforms 

RTPS-SDI (dashed black line) in Phases 2 and 3. The outperformance of RTPS-SDI relative to 

SE-SDI in Phase 1 is attributed to the larger inflation values of RTPS-SDI in the earlier cycles. 

The larger inflation values will be explained in section 4.1.3. In addition, the two SDI 

approaches demonstrate an apparent analysis improvement compared to the scale-unaware 

inflations. Specifically, the analysis RMSE of RTPS-SDI (SE-SDI) is smaller than that of RTPS 

(SE) in Phases 1 and 2. While the differences among the four experiments in analysis RMSE 

are much smaller than the earlier DA cycles in Phase 3, RTPS-SDI and SE-SDI show smaller 

analysis RMSE than RTPS and SE, respectively. The spatiotemporally averaged RMS analysis 

RMSE of potential temperature in each phase for four experiments (Table 2) is generally 

consistent with Fig. 2. In Phases 1 and 2, RTPS-SDI outperforms RTPS with the reduced 

analysis RMSE of 0.4-0.9 K. Similarly, the analysis improvements of SE-SDI over SE are 0.3-

0.5 K. In Phase 3, such improvements are smaller than in the early phases, and two SDI 

approaches have 0.007-0.03 K lower analysis RMSE than their scale-unaware counterparts. 

Table 2 also shows that the relative improvements of RTPS-SDI over RTPS are 37%, 30%, and 

3% in Phases 1, 2, and 3, respectively. As for SE-SDI over SE, the relative improvements are  

21%, 24%, and 1% in the corresponding phases. These results indicate that the relative 
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improvement for applying SDI to RTPS is much larger than that for SE. 

 

4.1.2 Spectral space diagnostics 

(i) RMS errors and ensemble spread for the analysis and the background 

The kinetic energy (KE) for the ensemble mean background error and ensemble mean 

analysis error are examined in spectral space to further evaluate the differences between the 

SDI methods and their scale-unaware counterparts at each scale. Figures 3a-3c compare the 

ensemble mean error between RTPS-SDI and RTPS. RTPS-SDI reduces absolute analysis and 

background errors at all phases and nearly all scales relative to RTPS. The outperformance of 

RTPS-SDI over RTPS is more apparent in Phase 1 than in Phases 2 and 3. The error corrections 

are defined by the differences between background and analysis errors. In Phase 1, the error 

corrections at large scales are more marked than those at small scales for RTPS (black line vs. 

gray line in Fig. 3a)  and RTPS-SDI (red line vs. yellow line in Fig. 3a). In Phases 2 and 3, 

these error corrections become smaller than that in Phase 1, and the large-scale error corrections 

are smaller than the small-scale error corrections. Differences in the error corrections between 

RTPS-SDI and RTPS are mostly exhibited in Phase 1, where RTPS-SDI produces larger error 

corrections than RTPS, especially at large scales. Figures 3d-3f show the comparisons between 

SE-SDI and SE. Similar to the comparisons between RTPS-SDI and RTPS, SE-SDI reduces 

both analysis and background errors relative to SE for all phases and nearly all scales, except 

at the very large scale in Phase 3. In Phase 1, the large-scale error corrections are greater than 

that at small scales for SE (black line vs. gray line in Fig.3d) and SE-SDI (red line vs. yellow 

line in Fig.3d). In Phases 2 and 3, the error corrections at large scales are also smaller than the 

small-scale error corrections. Different from RTPS-SDI, SE-SDI shows slightly larger 

background and analysis errors at the largest scale in Phase 3. To sum up, compared to the scale 

unaware RTPS and SE, the two SDI experiments produce analysis improvements in all phases 

and nearly at all scales, except SE-SDI at the largest scale in Phase 3.  

A representative example to present the differences in analysis errors in physical space 

between RTPS-SDI and RTPS is shown in Fig. 4. Large-scale errors mostly agree with large-

scale flow features. Small-scale errors are distributed over the entire domain with greater values 

over the high-temperature gradient regions. RTPS demonstrates larger analysis errors at both 
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large and small scales than RTPS-SDI. Compared to RTPS, the improvements by RTPS-SDI 

are more marked at small scales than at large scales, consistent with Fig. 3 (gray lines vs. yellow 

lines in Figs.3a-3c). Similarly, Fig. 5 compares SE and SE-SDI analysis errors in physical space. 

The scale-dependent analysis errors in SE and SE-SDI show features similar to those of RTPS-

based experiments. SE-SDI decreases analysis errors compared to SE at both large and small 

scales. The decrease in analysis errors at small scales is more apparent than at large scales. 

To further quantify the relative improvements of applying SDI on analysis, we measure 

the relative analysis error reduction in the spectral space averaged on all cycles in Fig. 6. The 

relative analysis error reduction is defined as the reduction of RTPS-SDI (SE-SDI) relative to 

scale-unaware RTPS (SE) divided by the RTPS (SE) analysis error. RTPS-SDI shows ~40% 

lower errors than RTPS averaged over all cycles. The error reductions show scale-varying 

features. Remarkably, the reductions gradually get greater from the smallest scale (600 km) to 

the largest scale (about 7000 km). Comparisons between SE and SE-SDI present that SE-SDI 

produces ~25% smaller errors than SE averaged over all cycles. Similar to the comparisons 

between RTPS-SDI and RTPS, larger scales also show more apparent reductions than smaller 

scales. These results suggest that both SDI experiments show apparent analysis improvements 

compared to their single-scale counterparts. The analysis improvements of RTPS-SDI over 

RTPS are greater than that of SE-SDI over SE. The differences in the relative improvements 

by applying SDI to SE and to RTPS may be explained as follows. RTPS, by design, adjusts 

analysis ensemble variance toward background ensemble variance without considering the 

scale-dependent differences in analysis ensemble variance. In contrast, SE partially addresses 

the scale-dependent sampling error. Therefore, applying SDI to RTPS obtains more apparent 

improvements than that to SE. Moreover, the greater error reductions at the large scale indicate 

that the SDI approach inflates the large scale more effectively. This more effective large-scale 

inflation will be explained in section 4.1.3. 

 

(ii) Consistent ratio 

Consistency ratio (CR) is commonly used to evaluate the quality of ensemble-based 

DA systems. It is defined as the ratio of the total ensemble spread to the RMSE of the analysis 

ensemble mean. Ideally, CR is 1.0, indicating the forecast error variance is properly estimated 
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by the total ensemble variance. Fig.7 shows CR to further evaluate the ensemble spread for the 

four experiments. Both SDI experiments have improved CRs relative to their single-scale 

counterparts, except that RTPS-SDI overly estimates CR at large scales in Phase 1 (Fig. 7a). 

The overestimation problem is caused by the excessively large background spread which is 

obtained from the very initial climatology ensemble. Details of the overestimation problem will 

be explained in section 4.1.3. In Phase 2, RTPS-SDI has substantial improvements compared 

to RTPS at all scales with the maximum improvements at smaller scales exceeding 0.2. The 

CR values of SE-SDI are generally 0.15–0.2 greater than SE. The larger improvements of SE-

SDI over SE appear at the smaller scales (Fig. 7b). In Phase 3, the four experiments show much 

smaller CR differences than in earlier DA cycles. Despite that, both SDI experiments produce 

0.05-0.07 larger CR values than their single-scale counterparts. In addition, the increased CR 

values of RTPS-SDI over RTPS are greater than that of SE-SDI over SE at all scales in Phase 

1. On the contrary, the CR enhancement in SE-SDI over SE is higher than that in RTPS-SDI 

over RTPS at larger scales in Phases 2 and 3. These results imply that both SDI experiments 

have improved ensemble spread relative to their single-scale counterparts. SE-SDI has greater 

improvements over SE in ensemble spread at the majority of scales and DA cycles than RTPS-

SDI over RTPS.  

 

4.1.3 Temporal and spatial behaviors of the inflation 

To explain and understand the analysis improvements by the SDI experiments over their 

scale-unaware counterparts, the temporal and spatial distribution of the inflation factors are 

diagnosed in this section. The value of the inflation factor shows a positive relationship with 

the ensemble spread during DA cycling. Figure 8 shows the temporal distribution of the 

inflation factors. In Phase 1, the RTPS and RTPS-SDI inflation factors start with excessive 

median values above 2.0 and decrease to a steadier value of around 1.1. As the RTPS-based 

approaches inflate the posterior variance toward the prior variance, these excessive values are 

caused by the large background spread in earlier DA cycles and explain the overestimated CR 

in RTPS and RTPS-SDI during Phase 1 (Fig. 7a). In contrast, the SE and SE-SDI inflation 

factors start with lower median values of 1.0 and increase to achieve stable values of 1.07~1.09. 

These relatively small inflation factors in SE and SE-SDI are associated with the small values 
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of the ratio term (Pa/Pb) in Eqs. 13 and 17. Along with the increase of DA cycles, the inflation 

factors get larger and become stable as the stable Pb. During the later DA cycles of Phase 1 and 

during Phase 2, the inflation factors in RTPS are similar to those in RTPS-SDI at the small 

scales with values of 1.06-1.08. In comparison, the inflation factors in RTPS-SDI at the large 

scales with values of 1.09-1.11 are greater than in RTPS and RTPS-SDI at the small scales. 

Similarly, the large-scale inflation factors in SE-SDI of ~1.09 show higher values than those in 

SE and the small-scale inflation factors of 1.07 in SE-SDI. These enhancements for the large 

scales cause a marked increase in ensemble spread and result in a reduced spinup time in the 

two SDI experiments. In Phase 3, the large-scale inflation factors in the two SDI experiments 

remain larger than that at the corresponding small scales and in the scale-unaware experiments. 

These results explain the improvements of the two SDI experiments in the analysis error 

correction and CR, especially at the large scales, compared to their scale-unaware counterparts. 

Moreover, RTPS and RTPS-SDI show greater temporal variability than SE and SE-SDI in 

Phase 3. The inflation median values of RTPS and RTPS-SDI at the small scales oscillate 

between 1.04-1.07. The inflation median values of RTPS-SDI at the large scales range from 

1.07-1.13. The inflation factors of SE and SE-SDI at the small scales keep around 1.07. SE-

SDI maintains the inflation median values of 1.09 at the large scales. The greater inflation 

temporal variabilities in RTPS and RTPS-SDI are caused by the oscillation of the background 

spread, which is related to the oscillation of natural variability in the SQG model. For instance, 

peak values of the inflation factors in RTPS and RTPS-SDI in Fig. 8c occur at 100-110 cycles 

and 270-300 cycles, consistent with the oscillation peak of natural variability at around 900 

and 1100 cycles of SQG nature run (Fig. 1b). 

We further choose the inflation factors at the 300th cycle as an example to reveal the 

spatial differences among experiments. Figure. 9 shows the inflation patterns in four 

experiments overlay on the background potential temperature fields at the corresponding scales. 

The inflation factors in RTPS and small-scale RTPS-SDI are located on the entire domain and 

reflect small-scale patterns (Figs. 9a, 9c). In comparison, the large-scale RTPS-SDI inflation 

demonstrates flow-dependent patterns related to the background. For example, significant 

inflation are shown in the center region with high potential temperature gradients (Fig. 9b). On 

the contrary, SE and SE-SDI inflation are account for sampling errors, thus don’t demonstrate 
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clear relationship with the background flow. In the two SDI experiments, the inflation factors 

at large and small scales reflect the corresponding scale structures (Figs. 9b, c and 9e, f). 

Remarkably, the single-scale inflation factors primarily show a similar spatial pattern to the 

small-scale SDI inflation factors (Figs. 9a, c and 9d, f), indicating that the full-scale spread is 

mainly dominated by that at the small scales. Therefore, the corresponding single-scale 

inflation may be inappropriate for the variance at the large scales. The large-scale inflation 

factors in both SDI experiments are individually calculated based on the large-scale ensemble 

deficiency and thus are larger than in their scale-unaware counterparts. Therefore, both SDI 

experiments obtain greater ensemble spread at the large scale than their scale-unaware 

counterparts. Furthermore, each scale can impact other scales through the multiscale 

covariance matrix during the update process (Wang et al. 2021). Thus, the ensemble 

improvements at large scales by the SDI experiments can gradually deliver to small scales 

during DA cycling, resulting in the full-scale CR increase and analysis improvements in the 

subsequent stable cycles. 

 

4.2 Impact of SDI on forecast 

Figures 10 and 11 examine the ensemble mean forecast errors averaged over Phases 2 

and 3 separately. Forecasts from Phase 1 are omitted as none of the experiments reach the 

spinup status in this period. In addition to the full-scale forecast error, we decompose the 

forecast error into large and small scales to examine the forecast performance at different scales. 

The separation wavelength is chosen as 1818 km, which is consistent with the scale separation 

used in the DA update and inflation. 

Figures 10a, b show the forecast performance of RTPS and RTPS-SDI in Phases 2 and 

3. In Phase 2, the RTPS-SDI deterministic forecast is statistically significantly more accurate 

than the RTPS for all scales up to 3-4 days lead time. However, there is a less accurate period 

for full-scale RTPS-SDI forecast in 4-5 days, which is mainly associated with the worse 

performance at the large scale. During Phase 3, the RTPS-SDI forecast is more accurate than 

RTPS for 2-3 days lead time at all scales with statistical significance. Figures 10c,d compare 

the deterministic forecast errors between SE-SDI and SE. In Phase 2, SE-SDI shows 

statistically significantly lower forecast errors up to 5-6 days lead time at full and large scales 
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and up to 3 days lead time at small scales. During Phase 3, the difference in the forecast error 

between SE and SE-SDI does not pass the 95% or 99.5% significance tests. At full and small 

scales, SE-SDI shows a smaller forecast error during 2-3 days with significance and passes the 

90% significance test. Overall, the SDI experiments show a slight forecast improvement 

compared to their scale-unaware counterparts. Moreover, Fig. 10 indicates that the forecast 

errors show varied behaviors at different scales. In all experiments, the performance of early 

forecasts is dominated by small-scale forecast errors. After 3-4 days lead time, later forecasts 

are degraded due to the increasing large-scale forecast errors. Therefore, the improvements at 

large scales are critical to improve the forecast performance in 4-6 days or even longer lead 

time. 

Note that applying SDI to RTPS (RTPS-SDI vs. RTPS) obtains more apparent forecast 

relative improvement than SE (SE-SDI vs. SE), which is consistent with the relative 

improvements during DA cycling. Figures 11a, b show that the forecast of SE is more accurate 

than that of RTPS with statistical significance. During Phase 2, SE shows statistically 

significantly lower forecast errors up to 3 days lead time at full and large scales and up to 2 

days lead time at small scales. In Phase 3, SE produces more accurate forecasts than RTPS up 

to 2-3 days lead time at all scales. However, RTPS-SDI and SE-SDI obtain the forecast 

performance at nearly the same level without passing significant differences in most of the lead 

times (Figs. 11c, d). These results indicate that the application of SDI has more apparent 

improvement on RTPS than on SE. Therefore, while RTPS has higher forecast errors than SE, 

RTPS-SDI could achieve a similar forecast performance to SE-SDI. 
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5 Conclusion and discussion 

Ensemble-based data assimilation (DA) often suffers from ensemble sampling 

deficiency with the varied extents of insufficient ensemble spread at different scales. This study 

develops the scale-dependent inflation (SDI) within the MLGETKF framework (Wang et al. 

2021) to alleviate the scale-dependent ensemble deficiency. In this study, SDI is first 

implemented on top of the commonly used RTPS method by separately relaxing the posterior 

ensemble spread toward the corresponding prior ensemble spread at each scale (RTPS-SDI). 

In contrast, RTPS inflates the posterior ensemble spread using the same inflation factor at all 

scales. To explore the generic usage of SDI, this study also derives and implements SDI on top 

of the previously proposed SE method (Hodyss et al. 2016) by individually adjusting posterior 

ensemble variance toward the Bayesian posterior at each scale (SE-SDI), whereas SE similarly 

inflates posterior ensemble variance in a scale-unaware manner. 

Four experiments are performed with the four inflation methods for 400 DA cycles 

using a two-layer surface quasigeostrophic (SQG) turbulence model. During the DA cycling, 

RTPS-SDI and SE-SDI outperform RTPS and SE, respectively, in reducing analysis errors at 

nearly all scales and all cycles. Specifically, both SDI experiments achieve a faster spinup in 

the earlier DA cycles and have an average 25%-40% relative analysis error reduction in the 

later DA cycles than their scale-unaware counterparts. The improvements in analysis errors of 

RTPS-SDI over RTPS are greater than those of SE-SDI over SE. In addition, RTPS-SDI obtains 

a 0.05-0.2 larger consistency ratio (CR) than RTPS, whereas SE-SDI has 0.07-0.2 greater CR 

than SE. These improvements in both SDI methods are associated with their greater inflation 

at all scales, especially at larger scales, compared to their scale-unaware counterparts. In the 

subsequent forecast, both SDI methods show statistically significantly better forecast 

performance than their scale-unaware inflation experiments. RTPS-SDI is more accurate than 

RTPS for all scales in 3-4 days lead time during the cycles of 50-100 and for 2-3 days lead time 

during the cycles of 100-400. SE-SDI is more accurate than SE at all scales for 5-6 days lead 

time during the cycles of 50-100 and shows full- and small-scale forecast improvement for 2-

3 days during the cycles of 100-400. Similar to the relative improvement in analysis, RTPS 

achieves a more noticeable improvement in forecasting than SE. 
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As an initial effort to examine the newly proposed scale-dependent inflation method, 

the posterior ensemble variance is adjusted within two scale bands only to address the scale-

dependent ensemble sampling deficiency. More scale bands may be required for the 

sophisticated atmospheric models. Moreover, efforts will be needed to determine scale 

separation lengths and the tunable parameters in Eqs. (8) and (17). In addition, this study 

examines the SDI methods using a simple SQG model with perfect model assumption. Future 

work will apply these methods to real-data models. 
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Appendix: 

A. Derivation of Scale-Dependent SE inflation (SE-SDI)  

The scale-dependent SE inflation is derived as follows. SE is further developed into 

SE-SDI using the multiscale DA analysis equation (Li et al., 2015): 

𝐱𝑚
𝑎̅̅ ̅̅ = 𝐱𝑚

𝑏̅̅ ̅̅ +
𝐏𝑚
𝑏𝐇T

𝐇𝐏𝑏𝐇T + 𝐑
(𝐲 − 𝐇𝐱𝑏̅̅ ̅) ,   (16) 

where 𝑚 = 1,2, …𝑀 represent the decomposed scales, 𝐱𝑚
𝑏̅̅ ̅̅  and 𝐱𝑚

𝑎̅̅ ̅̅  are the prior and posterior 

mean of the state variables in the 𝑚 th scale, 𝐏𝑚
𝑏   is the corresponding sample background 

covariance matrix in the 𝑚th scale. The relationship between the full scale and decomposed 

scales satisfies: 

{
 
 
 
 

 
 
 
 𝐱𝑏̅̅ ̅ = ∑ 𝐱𝑚

𝑏̅̅ ̅̅
𝑀

𝑚=1

𝐏𝑏 = ∑ 𝐏𝑚
𝑏

𝑀

𝑚=1

𝐱𝑎̅̅ ̅ = ∑ 𝐱𝑚
𝑎̅̅ ̅̅

𝑀

𝑚=1

 .

   (A1) 

Using Eq. (16), we first obtain the analysis covariance at different scales as follows. 

The Kalman gain at the 𝑚th scale is calculated by, 

𝐊𝑚 =
𝐏𝑚
𝑏𝐇T

𝐇𝐏𝑏𝐇T + 𝐑
 .   (A2) 

The 𝑚th scale’s analysis error 𝐞𝑚
𝑎  is obtained as, 

𝐞𝑚
𝑎 = 𝐱𝑚

𝑎 − 𝐱𝑚
𝑡  = 𝐱𝑚

𝑏 − 𝐱𝑚
𝑡 + 𝐊𝑚(𝐲 − 𝐇𝐱

𝑡 + 𝐇𝐱𝑡 − 𝐇𝐱𝑏) = 𝐞𝑚
𝑏 + 𝐊𝑚(𝐞

𝑜 − 𝐇𝐞𝑏) , (A3) 

where 𝐱𝑚
𝑎 , 𝐱𝑚

𝑏  and 𝐱𝑚
𝑡  are the analysis, background, and truth of the state variables in the 𝑚th 

scale, respectively, 𝐞𝑚
𝑎  and 𝐞𝑚

𝑏  are the analysis and background error of the state variables, 𝐞𝑜 

is the observation error. Then, the analysis error covariance in the 𝑚 th scale (𝐏𝑚
𝑎  ) can be 

calculated by, 

𝐏𝑚
𝑎 = 𝐞𝑚

𝑎 (𝐞𝑚
𝑎 )T = [𝐞𝑚

𝑏 + 𝐊𝑚(𝐞
𝑜 − 𝐇𝐞𝑏)][𝐞𝑚

𝑏 + 𝐊𝑚(𝐞
𝑜 − 𝐇𝐞𝑏)]T .   (A4) 

If we assume the observation error is uncorrelated with background error and the background 

errors at different scales are uncorrelated with each other, the Equation (A4) can be further 

derived as: 

𝐏𝑚
𝑎 = 𝐏𝑚

𝑏 − 𝐏𝑚
𝑏𝐇T𝐊𝑚

T +𝐊𝑚(𝐑)𝐊𝑚
T − 𝐊𝑚𝐇𝐏𝑚

𝑏 + 𝐊𝑚𝐇(𝐏
𝑏)𝐇T𝐊𝑚

T = (𝐈 − 𝐊𝑚𝐇)𝐏𝑚
𝑏  .  (A5) 
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Similar to Hodyss et al. (2016), our further derivation is taken pointwise. We include 

sampling errors in the ensemble Kalman filter estimate of the posterior mean and variance at 

given point 𝑖 for each scale, 

{
x𝑖,𝑚
𝑓̅̅ ̅̅ ̅
= x𝑖,𝑚

𝑏̅̅ ̅̅ ̅ + δ𝑖,𝑚
𝑢

P𝑖,𝑚
𝑓
= P𝑖,𝑚

𝑏 + δ𝑖,𝑚
𝑣
 𝑚 = 1,2, … ,𝑀 , (A6) 

where x𝑖,𝑚
𝑓̅̅ ̅̅ ̅

 and P𝑖,𝑚
𝑓

 are the true prior mean and true prior perturbation variance at grid point 𝑖 

for 𝑚 th scale, δ𝑖,𝑚
𝑢   and δ𝑖,𝑚

𝑣   are the sampling errors in the estimate of the prior mean and 

variance at point 𝑖 for 𝑚th scale, respectively. 

To simplify the derivation and consistent with Hodyss et al. (2016), we assume the observation 

operator 𝐻 = 𝐼 since SE-based inflations do not require access to the observations, where 𝐼 is 

an identity matrix and has the same dimension as the operator 𝐻 . Eq. (16) is therefore 

simplified to: 

x𝑖,𝑚
𝑎̅̅ ̅̅ ̅ = x𝑖,𝑚

𝑏̅̅ ̅̅ ̅ +
P𝑖,𝑚
𝑏

P𝑖
𝑏 + R𝑖

(y𝑖 − x𝑏̅̅ ̅) ,   (𝐴7) 

where subscript 𝑖 in Eq. (B7) represents variables at the grid point 𝑖. Using a Taylor expansion 

in terms of δ𝑖,𝑚
𝑢  and δ𝑖,𝑚

𝑣 , we obtain the posterior mean in this point as, 

x𝑖,𝑚
𝑎̅̅ ̅̅ ̅ ≈ x𝑖,𝑚𝐾̅̅ ̅̅ ̅ +

P𝑖,𝑚
𝑎

P𝑖,𝑚
𝑓
(δ𝑖,𝑚

𝑢 +
x𝑖,𝑚𝐾̅̅ ̅̅ ̅ − x𝑖,𝑚

𝑓̅̅ ̅̅ ̅

P𝑖,𝑚
𝑓

δ𝑖,𝑚
𝑣 ) ,    (𝐴8) 

where x𝑖,𝑚𝐾̅̅ ̅̅ ̅ is the true Kalman mean at point 𝑖 for the 𝑚th scale. The sampling error between 

the true posterior mean x𝑖,𝑚̅̅ ̅̅ ̅  and the sample posterior mean x𝑖,𝑚
𝑎̅̅ ̅̅ ̅  at given point is further 

calculated as, 

𝐸 [(x𝑖,𝑚̅̅ ̅̅ ̅ − x𝑖,𝑚
𝑎̅̅ ̅̅ ̅)

2
] = 𝐸 [ ((x𝑖,𝑚̅̅ ̅̅ ̅ − x𝑖,𝑚𝐾̅̅ ̅̅ ̅) −

P𝑖,𝑚
𝑎

P𝑖,𝑚
𝑓
(δ𝑖,𝑚

𝑢 +
x𝑖,𝑚𝐾̅̅ ̅̅ ̅ − x𝑖,𝑚

𝑓̅̅ ̅̅ ̅

P𝑖,𝑚
𝑓

δ𝑖,𝑚
𝑣 ))

2

] .   (𝐴9) 

As the unbiased assumption of x𝑏̅̅ ̅ and P𝑏 and the independent assumption of δ𝑢 and 

δ𝑣, the cross terms 𝐸[δ𝑖,𝑚
𝑢 δ𝑖,𝑚

𝑣 ] = 𝐸[δ𝑖,𝑚
𝑣 δ𝑖,𝑚

𝑢 ] = 𝐸[δ𝑖,𝑚
𝑣 ] ∗ 𝐸[δ𝑖,𝑚

𝑢 ] = 0. Therefore, Eq. (A9) is 

simplify as: 
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𝐸 [(x𝑖,𝑚̅̅ ̅̅ ̅ − x𝑖,𝑚
𝑎̅̅ ̅̅ ̅)

2
]

= E [(x𝑖,𝑚̅̅ ̅̅ ̅ − x𝑖,𝑚𝐾̅̅ ̅̅ ̅)
2
] + (

P𝑖,𝑚
𝑎

P𝑖,𝑚
𝑓
)

2

∗ (𝐸[δ𝑖,𝑚
𝑢 2

] + (
x𝑖,𝑚𝐾̅̅ ̅̅ ̅ − x𝑖,𝑚

𝑓̅̅ ̅̅ ̅

P𝑖,𝑚
𝑓

)

2

𝐸[δ𝑖,𝑚
𝑣 2

]) − 2

∗ 𝐸 [(x𝑖,𝑚̅̅ ̅̅ ̅ − x𝑖,𝑚𝐾̅̅ ̅̅ ̅) ∗
P𝑖,𝑚
𝑎

P𝑖,𝑚
𝑓
(δ𝑖,𝑚

𝑢 +
x𝑖,𝑚𝐾̅̅ ̅̅ ̅ − x𝑖,𝑚

𝑓̅̅ ̅̅ ̅

P𝑖,𝑚
𝑓

δ𝑖,𝑚
𝑣 )] .   (𝐴10) 

In Eq. (A10), 𝐸[δ𝑖,𝑚
𝑢 2

] and 𝐸[δ𝑖,𝑚
𝑣 2

] are regarded as the variance due to the sampling of the 

sample mean and the sampling of the sample variance, respectively. Under the Gaussian 

assumption, x𝑚̅̅ ̅̅  is equal to x𝑚𝐾̅̅ ̅̅ , resulting in the first and cross terms in Eq. (A10) being zero. 

Using the Gaussian central limit theorem (CLT), 𝐸[δ𝑖,𝑚
𝑢 2

] and 𝐸[δ𝑖,𝑚
𝑣 2

] result in Eq. (A11). 

{
 
 

 
 

𝐸[δ𝑖,𝑚
𝑢 2

] = 𝐸 ((x𝑖,𝑚
𝑏̅̅ ̅̅ ̅ − x𝑖,𝑚

𝑓̅̅ ̅̅ ̅
)2) = 𝐸((x𝑖,𝑚

𝑏̅̅ ̅̅ ̅ − 𝐸[x𝑖,𝑚
𝑏̅̅ ̅̅ ̅])2) =

P𝑖,𝑚
𝑓

𝑁𝑒

𝐸[δ𝑖,𝑚
𝑣 2

] = 𝐸(P𝑖,𝑚
𝑏 − P𝑖,𝑚

𝑓
)2) = 𝐸((P𝑖,𝑚

𝑏 − 𝐸[P𝑖,𝑚
𝑏 ])2) =

2

𝑁𝑒 − 1
(P𝑖,𝑚

𝑓
)
2
.   

(A11) 

Substituting Eq. (A11) into Eq. (A10), we obtain, 

𝐸 [(x𝑖,𝑚̅̅ ̅̅ ̅ − x𝑖,𝑚
𝑎̅̅ ̅̅ ̅)

2
] = (

P𝑖,𝑚
𝑎

P𝑖,𝑚
𝑓
)

2

(
P𝑖,𝑚
𝑓

𝑁𝑒
+

2

𝑁𝑒 − 1
(x𝑖,𝑚𝐾̅̅ ̅̅ ̅ − x𝑖,𝑚

𝑓̅̅ ̅̅ ̅
)
2

) .   (𝐴12) 

Furthermore, the analysis MSE is obtained as, 

S𝑖,𝑚 = ∫ (x𝑖,𝑚
𝑡 − x𝑖,𝑚

𝑎̅̅ ̅̅ ̅)
2

∞

−∞

𝜌(x𝑖,𝑚
𝑡 |𝑦)𝑑x𝑖,𝑚

𝑡 = 𝐸 [(x𝑖,𝑚
𝑡 − x𝑖,𝑚

𝑎̅̅ ̅̅ ̅)
2
]

= 𝐸 [(x𝑖,𝑚
𝑡 − x𝑖,𝑚̅̅ ̅̅ ̅ + x𝑖,𝑚̅̅ ̅̅ ̅ − x𝑖,𝑚

𝑎̅̅ ̅̅ ̅)
2
] = 𝐸 [(x𝑖,𝑚

𝑡 − x𝑖,𝑚̅̅ ̅̅ ̅)
2
] + 𝐸 [(x𝑖,𝑚̅̅ ̅̅ ̅ − x𝑖,𝑚

𝑎̅̅ ̅̅ ̅)
2
]

= P𝑖,𝑚
𝑡 + [(

P𝑖,𝑚
𝑎

P𝑖,𝑚
𝑓
)

2

(
P𝑖,𝑚
𝑓

𝑁𝑒
+

2

𝑁𝑒 − 1
(x𝑖,𝑚𝐾̅̅ ̅̅ ̅ − x𝑖,𝑚

𝑓̅̅ ̅̅ ̅
)
2

)] ,   (𝐴13) 

where S𝑖,𝑚 is the analysis MSE, x𝑖,𝑚
𝑡  is the true state, P𝑖,𝑚

𝑡  is the true posterior variance, y is the 

observation, 𝐸 [(x𝑖,𝑚̅̅ ̅̅ ̅ − x𝑖,𝑚
𝑎̅̅ ̅̅ ̅)

2
]  represents the sampling error term, and 𝜌(x𝑖,𝑚

𝑡 |𝑦)  is the 

conditional true state distribution based on observation. 𝑁𝑒 is the limited ensemble size. The 

subscript 𝑖 and 𝑚 in these variables represent the given grid points and the decomposed scales.  

Note that the true background and analysis estimates in Eqs. (A12) and (A13) are 

usually unknown in a specific DA system. In practice, we replace these unknown terms in Eq. 



25 

(A13) with their sample background or analysis and use tunable parameters (𝑎𝑚, 𝑏𝑚, 𝑐𝑚) to 

balance the difference as, 

S𝑖,𝑚 ≈ 𝑎𝑚 ∗ P𝑖,𝑚
𝑎 + [(

P𝑖,𝑚
𝑎

P𝑖,𝑚
𝑏 )

2

(𝑏𝑚
P𝑖,𝑚
𝑏

𝑁𝑒
+ 𝑐𝑚

2

𝑁𝑒 − 1
(x𝑖,𝑚
𝑎̅̅ ̅̅ ̅ − x𝑖,𝑚

𝑏̅̅ ̅̅ ̅)
2
)] .    (17) 

Tunable parameter 𝑎𝑚 is usually chosen as 1 to avoid the ensemble spread deflation. 
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TABLES 

 

Table 1: The name and brief introduction of four experiments 

Exp. Name Description 

RTPS Use RTPS for MLGETKF posterior inflation (Wang X. et al. 2021) 

RTPS-SDI Use scale dependent RTPS for MLGETKF posterior inflation 

SE Use SE inflation for MLGETKF posterior inflation 

SE-SDI Use scale dependent SE inflation for MLGETKF posterior inflation 

 

 

Table 2: The spatiotemporally averaged RMS analysis error of potential temperature in the 

three phases for four experiments  

Phase RTPS [K] RTPS-SDI [K] SE [K] SE-SDI [K] RTPS-SDI 

vs RTPS 

SE-SDI vs 

SE 

Phase 1 2.312 1.449 2.118 1.666 37% 21% 

Phase 2 1.381 0.968 1.201 0.912 30% 24% 

Phase 3 0.850 0.821 0.807 0.800 3% 1% 

The first column shows all phases. The second to fifth columns show the averaged RMS 

analysis error in each experiment. The sixth and seventh columns demonstrate the relative 

improvement for applying SDI in RTPS and SE, respectively. 
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FIGURES 

 

FIG. 1. Illustration of the SQG model. (a) Average KE density  (solid) compared to a reference 

5/3 spectral slope (Dashed). (b) Time series of the nature variability in the SQG model. (c) 

Spatial distribution of the simulated observations (black points) covered on a potential 

temperature anomaly field from the truth. 
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FIG. 2. The time series of the full-scale RMS potential temperature analysis errors. The black 

solid line, black dashed line, red solid line, and red dashed line represent RTPS, RTPS-SDI, 

SE, and SE-SDI, respectively. 
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                          Phase 1                                   Phase 2                                  Phase 3 

 

FIG. 3. Average kinetic energy (KE) spectra of the ensemble mean errors associated with 

different experiments. (a)-(c) comparison of RTPS and RTPS-SDI in phases 1, 2 and 3, 

respectively. RTPS is represented by black (background) and gray (analysis), RTPS-SDI is 

represented by red (background) and yellow (analysis). (d)-(f) comparison of SE and SE-SDI 

in different phases. Errors in SE use black (background) and gray (analysis) lines, and errors 

in SE-SDI use red (background) and yellow (analysis) lines. 

 

 

 

 

 

 

 

 

 

 

(d) (e) (f) 

(a) (b) (c) 



35 

 

FIG. 4. Different scale’s potential temperature ensemble mean analysis error at the 44th cycle 

(upper layer) for RTPS and RTPS-SDI. (a) RTPS (large scale), (b) RTPS-SDI (large scale), (c) 

RTPS (small scale), and (d) RTPS-SDI (small scale). The ensemble mean analysis errors are 

demonstrated as black contours with ranks of ±1.5, ±3.5, and ± 7𝐾. Solid (dashed) contours 

represent the analysis errors above (below) the ensemble mean values. The background shadow 

is the upper-level analysis mean potential temperature anomaly. 

 

 

 

 

 

 

（a） （b） 

（c） （d） 



36 

 

FIG. 5. Different scale’s potential temperature ensemble mean analysis error at the 44th cycle 

(upper level) for SE and SE-SDI. (a) SE (large scale), (b) SE-SDI (large scale), (c) SE (small 

scale), and (d) SE-SDI (small scale). The analysis errors are demonstrated as black contours.  
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FIG. 6. Relative analysis error reduction in spectral space. Relative average KE analysis error 

reduction in SDI approaches relative to single-scale inflation in spectral space. The black 

dashed line is RTPS-SDI vs. RTPS, and the red dashed line is SE-SDI vs. SE 

 

 

                         Phase 1                                    Phase 2                                  Phase 3 

 

FIG. 7. Scale-dependent analysis consistency ratio in terms of KE norm for RTPS (black solid 

lines), RTPS-SDI (black dashed lines), SE (red solid lines), and SE-SDI (red dashed lines). (a)-

(c) represents the consistency ratio in Phases 1, 2, and 3, respectively. 
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FIG. 8. The temporal distribution of the inflation factors. (a)-(c) inflation median in Phases 1,2, 

and 3, respectively. The green lines represent two single scale inflation: RTPS (solid) and SE 

(dashed). The blue and red lines represent large- and small-scale inflation in RTPS-SDI (solid) 

and SE-SDI (dashed). 
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FIG. 9. The spatial distribution of the inflation factors overlay on the background at cycle 300, 

layer 2. The superscripts represent different inflation factors: (a) RTPS, (b) RTPS-SDI at large 

scale, (c) RTPS-SDI at small scale, (d) SE, (e) SE-SDI at large scale, and (f) SE-SDI at small 

scale. The inflation factors are demonstrated as black contours with ranks of [1.16,1.2,1.3,1.4] 

for (a)(b)(c) and with rank of [1.1,1.2,1.3,1.4] for (d)(e)(f). The color bar is the background 

field at the corresponding scales: (a)(d): Full-scale, (b)(e): Large-scale, (c)(f): Small-scale. 
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FIG. 10. Forecast performance in terms of average potential temperature ensemble mean 

forecast errors. Full-scale forecast error (black) is plotted with the decomposed large (blue)- 

and small (red)- scale forecast error. (a)(b) compares RTPS (solid) to RTPS-SDI (dash) in 

Phases 2 and 3, respectively. (c)(d) compares SE (solid) to SE-SDI (dash) in Phases 2 and 3, 

respectively. The annotations are the results of the significance test (based on a two-sides 

Mann-Whitney U-test). ‘*’ represents the forecast improvement of SDI methods compared to 

their scale-unaware counterparts passing the 95% confidence level in that time, and ‘○* ’ 

represents the improvement passing the 99.5% confidence level. ‘x’ represents the 

improvement passing the 90% confidence level. Different colors of annotations represent the 

significance test taken in full (black)-, large (blue)-, and small (red)-scales. 
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FIG. 11. Comparing Forecast performance in RTPS-based and SE-based methods. (a)(b) 

compares RTPS (solid) to SE (dash) in Phases 2 and 3, respectively. (c)(d) compares RTPS-

SDI (solid) to SE-SDI (dash) in Phases 2 and 3, respectively. ‘*’ represents the forecast errors 

in SE(SE-SDI) is significantly smaller than RTPS(RTPS-SDI) passing the 95% confidence 

level, and ‘○* ’ represents the SE(SE-SDI) forecast improvement passing the 99.5% confidence 

level compared to RTPS(RTPS-SDI). 

 

 

 

 

 

 

 

 


