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Abstract

Floods account for approximately one third of all global geophysical hazards, and flash
floods allow for extremely short lead times for warnings to be emitted. Flash flood
warnings are weather-related alerts which serve to inform of potential hazardous con-
ditions which threaten life or property. The National Weather Service has transitioned
to an impact-based format for flash flood warnings, which aims to provide additional
valuable information about hazards, that facilitate improved public response and de-
cision making. This work responds to the need for new decision support tools, which
enable forecasters to anticipate distinct levels of impacts associated with flash flood
forecasts, and provide support for issuing impact-based flash flood warnings.

This dissertation proposes a foundation over which said decision support systems
can be built. First and foremost, by constituting an unprecedented data set of histor-
ical flash flood reports with associated impact categories, achieved by the systematic
application of a language-based impact framework (Flash Flood Severity Index) as a
natural language processing task piped through a large language model (OpenAI’s
GPT-3.5-turbo). Secondly, through a proof-of-concept machine learning model trained
to predict the severity of flash flood forecasts, based on operational flash flood fore-
casts, geomorphological data, and vulnerability layers.
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Chapter 1

Introduction

Floods are one of the most ubiquitous and devastating natural hazards, and they ac-
count for approximately one third of all global geophysical hazards. Flash floods are
types of floods that allow for extremely short lead times for warnings to be emitted [1].
In the United States, during 2014 alone, over $2.8 billion dollars of direct flood dam-
ages occurred, and 55 flood-related deaths were recorded (39 were flash flood-related)
[2]. The National Weather Service (NWS) is the organization in charge of the monitor-
ing and emission of flash flood warning related alerts (watches and warnings) in the
United States, and these play a crucial role in the protection of life and property linked
to the occurrence of sever weather events.

As part of the National Oceanic and Atmospheric Administration (NOAA), the Na-
tional Severe Storms Laboratory’s (NSSL) Warning Research and Development Divi-
sion (WRDD) aims to develop new weather and water related applications and water resource
management tools help NWS forecasters produce more accurate and timely warnings of flood
events [3]. Contributing to NSSL’s mission, the Flooded Locations and Simulated Hy-
drographs (FLASH) project [4] provides a collection of flash flood related products,
which were developed at WRDD, thoroughly tested by forecasters and scientists (Hy-
drometeorological Testbed Hydro Experiments of 2018 and 2019), and successfully
transitioned to operations as part of the Multi-Radar Multi-Sensor (MRMS) [5] suite
of products. Both MRMS and FLASH produce 1km gridded outputs over the entire
United States (US), including the conterminous US (CONUS), and other outside terri-
tories including Alaska, Hawaii, Guam and Puerto Rico.
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Since 2016, NOAA’s Weather Program Office’s (WPO) aims to ensure the continu-
ous development and transition of the latest scientific and technological advances into
the NWS, through the Joint Technology Transfer Initiative (JTTI) program [6]. Projects
funded by the JTTI program are supported by NOAA to develop, test and evaluate ma-
tured weather research that can potentially transition to operations. The present line of
work stems from the objectives and needs established by a JTTI project proposal titled
Products to Guide Impact-Based Flash Flood Warnings in the National Weather Service. This
project’s overarching goal is to develop, evaluate and transition products to the NWS that
will guide forecasters in the selection of flash flood damage threat tags, to be included within
flash flood warnings.

Having established a brief overview of the work being addressed, the remainder of
this chapter introduces concepts and terms pertaining to relevant areas in the following
way. Section 1.1 lays out the overarching significance of the present study, in light of
clear research gaps and problems to be addressed; section 1.2 presents a comprehen-
sive taxonomy of machine learning systems, as well as a few relevant deep learning
applications, architectures and models that enabled the development of the present
work; section 1.3 introduces concepts in hydrology, floods, and flash flood forecasting;
lastly, section 1.4 defines the core problems and research questions addressed by this
work, as well as the main objectives and milestones to be fulfilled by this dissertation
work.

1.1 Significance of the Study

The present work is significant and novel in several ways. There exists a research gap
which stems from the context out of which this research is performed (NOAA National
Severe Storms Laboratory’s Warning Research and Development Division, Stormscale
Hydrology research group), for providing forecasters with decision support tools that
enable them to anticipate distinct impact levels associated with flash flood forecasts.
In order to construct these tools, data is required. While historical reports of flash
flood events are collected and maintained by the National Weather Service, these are
not operational in nature. This means that, a comprehensive dataset of historical flash
flood observations or reports, which contain discrete and concise levels or classes of
impacts associated with these events does not exist.
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The present dissertation sheds light on the systematic operationalization of historical
flash flood reports, through novel machine learning methods and applications. This is
done with hopes of tracing a feasible path towards the development and implemen-
tation of experimental (and one day operational) models for predicting impacts as-
sociated to operational flash flood forecasts. In the process of developing this body of
work, the first systematically classified flash flood impact dataset has been created, and
the performance of this classification is assessed with respect to that of experts which
contributed a small subset of human-classified reports. Additionally, a reduced proof-
of-concept model which makes use of this novel dataset is proposed, which shows
preliminary yet favorable results, which can guide future development of flash flood
impact annotation models at a national scale over the United States.

1.2 Machine Learning Systems

Machine learning (ML), a branch of artificial intelligence (AI), is the field of study that
revolves around enabling computers to learn without being explicitly programmed
with new knowledge [7]. While the focus of AI is to make machines intelligent (i.e. to
think rationally as humans do), ML is concerned strictly with a computer’s ability to
learn from past experience [8]. Just as humans learn from experience, learning can oc-
cur in a computer program when the program is able to improve its own performance
on a specific task, after being exposed to a specific set of data. Then, we could say ML
is the science of programming computers in a way that allows them to learn from data,
as a means to improve their performance on a given task.

A system can be defined as a functional construct or collection of different elements
that together produce results not obtainable by the elements alone, due to the con-
structive nature of the relationships and connections that exist among its parts [9]. By
extending this notion into the field of ML, a ML system can be defined as a construct
composed of hardware and software (both programs and data), which is able to learn
how to perform specific tasks, by being somehow exposed to relevant experience per-
taining to its functional purpose. The mechanism through which ML systems are ex-
posed to experience is referred to as "training", and it is generally understood as part of
the pre-operational phase of a ML system, before it is deployed to perform the task is
has been trained to do. However, an exception to this occurs in the case of unsupervised
learning systems, where algorithms are applied to and perform tasks directly on the
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data.

1.2.1 A Taxonomy of Machine Learning Systems

In order to provide a clear overview of terminology, definitions, and context concern-
ing various ML technologies, techniques and concepts, this section will introduce vari-
ous perspectives through which ML systems can be defined, classified and understood.
The following four perspectives will be presented in incremental order of specificity:
problem types, types of learning, learning mechanisms, and areas of application.

Classification by ML Problem Types

In the most prevalent sense, ML systems are generally classified depending on the type
of problem they solve. These problem types are linked to the conceptual description
of what is to be achieved by said system (i.e. its practical purpose). Most problems
targeted by ML systems usually fall under one of the following categories [10]:

• Classification

• Association

• Clustering

• Numeric prediction

Classification ML systems, once trained, aim to provide ways of classifying unseen
examples into categories defined by the training data. Association ML systems intend
to extract association rules from a training set’s features, not just those which could pre-
dict a particular class value. These association rules describe the relationships between
the data set’s variables by using mechanisms and measures such as correlation and
similarity, rather than constructing predictors for a specific variable (or subset of vari-
ables). In a practical sense, association rules allow for the enunciation of relationships
that hold true across the whole dataset. For example, contemplating a hypothetical
and simple weather dataset on weather outlook, temperature, and humidity,
one such association rule could be that whenever:

temp = hot → [outlook = sunny ∨ (outlook = overcast ∧ humidity = high)]

which means that based on the data provided, whenever temperature was recorded
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to be hot, either: a) the outlook was sunny, or b) the outlook was overcast and
the humidity was high.

Clustering ML systems provide a means for grouping a collection of examples that
belong together, by finding similarities within the feature space of the training data.
Lastly, numeric prediction ML systems allow to predict a specific numeric quantities
from new observations, instead of discrete classes [10].

Classification by ML Learning Types

ML systems can also be classified into different non-exclusive categories, depending
on the type of learning they must accomplish in order to perform on specific tasks.
These categories can be defined in terms of the following criteria [7]:

1. whether or not these systems are trained with some kind of supervision

2. whether or not they can learn incrementally on the fly

3. whether they work by simply comparing new data points to known data points,
or instead by detecting patterns in the training data and building a predictive
model.

The first criterion yields the different notions of supervised, unsupervised, semi-
supervised and reinforcement learning. These four subcategories refer to varying
degrees of supervision necessary throughout a ML system’s training. The term su-
pervision alludes to whether the data used to train the system includes specific labels
–naturally available, reasonably introduced, or engineered in preparation for training
a model– which tell ML algorithms if two different data points are related somehow,
or not (e.g. class labels). Supervised ML systems are trained using labeled data. Un-
supervised ML systems are applied on unlabeled data, and often times their purpose
is to define or find appropriate labels for the given data set. Semi-supervised learn-
ing is a mixed approach which generally attempts to label a large unlabeled dataset,
by building an intermediate model from a reduced subset of labeled data. Reinforce-
ment learning differs greatly from the other three types of learning described herein,
as it relies on the concepts of an agent within a context it can observe and learn from,
depending on how its actions are rewarded (which closely resembles how humans
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learn from their own experiences) [7]. An example of this would be an automaton,
which learns to follow a safe path out of a tiled room, by receiving positive or negative
feedback from its environment. In this case, moving over safe tiles provide a desir-
able reward which reinforces the automaton’s movement behavior, whereas doing so
over unsafe tiles provide it with negative reinforcement, incentivizing the automaton
to avoid them.

The second criterion highlights the difference between batch learning and online
learning. A batch learning ML system learns from all the available data during its
training which is typically extensive, and it is performed as a separate phase before the
system is used operationally. When launched into production, this trained ML system
operates without learning from its operational data anymore (offline learning). Thus,
if this model needed to know about new data, it would have to undergo training (from
scratch) once more, using the full dataset (previously known + new data). Conversely
for the case of online learning, a ML system is trained incrementally by feeding it indi-
vidual instances or small groups (mini-batches) of data. Opposed to offline learning,
each training step takes little time, and the system can learn about new data on the fly
as it is consumed [7].

Lastly, the third criterion differentiates instance-based learning from model-based
learning. The difference here stems from the specific way in which ML systems gener-
alize what they learn (i.e. the specific mechanism that leads to adequate performance
on unseen data). This categorization mostly concerns the ML task of making predic-
tions (perhaps the most common task), as the true challenge is not only to achieve
good predictions during the system’s training phase, but to provide comparably good
predictions on unseen and new data (operationally). When this is achieved, it can be
said that the trained model generalizes well to unseen data. In instance-based learn-
ing, a ML system learns from specific data examples –or instances– (during training),
which later allows it to compare unseen instances to what has been learned, using a
measure of similarity (i.e. a measure of distance). Subsequently, through this measure
of similarity, the system can make predictions on the new data (i.e. predict its class
or value). Conversely, during model-based learning, a ML system aims to represent
the underlying relationships that exist among the data is is trained on, using a math-
ematical/statistical model (i.e. linear regression, generalized linear model, non-linear
regression, etc.). Consequently, the system relies on minimizing a cost function (i.e.
measure of error) which yields the best parameters for the specific model (linear/non-
linear, parametric/non-parametric, etc.) in use (training phase), which then can be
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used as a mechanism to make predictions on unseen data [7].

Classification by ML Learning Mechanisms

Additional to the previous categorizations of ML systems, they can be classified by
the types of algorithms, models, and methods they employ to learn from data. These
characteristics are inherent to the mathematical principles, design, and implementation
of each system, and are closely tied to the second and third criteria discussed above.
This characterization of learners can also be presented as a list of areas of study within
the general realm of ML [8]:

• Regression methods

• Recursive partitioning and trees

• Artificial neural networks

• Support vector machines

• Cluster analysis

• Ensemble learning

• Manifold Learning

Regression methods allude to the process of predicting a numerical quantities,
based on correlations between the inputs and outputs passed to a function, which ex-
presses the relationship between the predicted values (output or class) in terms of the
input attributes. These input-output relationships can be modeled both parametrically
(based on assumptions about said relationship), and non-parametrically (not based on
assumptions), linearly (i.e. using linear relationships), or non-linearly (i.e. nonlinear
regression). Additionally, these correlations can be contemplated between one input
to one output (simple regression), multiple inputs to a single output (multiple regres-
sion), and multiple inputs to multiple outputs (multivariate regression) [8, 10].

Recursive partitioning is a non-parametric statistical method which is the basis for
building decision trees [8], and this kind of tree-based method stems from the "divide-
and-conquer" approach to learning from a set of independent instances. Trees are a
logic data structure composed of nodes, which each involves the testing (comparison)
of a particular attribute with respect to a specific value. Once the tree has been built
(by training a model), chains of nodes can be traversed from the root of the tree to
a leaf node. Said leaf nodes hold a specific output (class label, class probability or
numeric value) product of following the decision rule composed of that particular node
sequence [10].
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Artificial neural networks (ANNs) are made up of interconnected sets of neurons,
modeled after an abstraction of how human brain cells work and are interconnected.
These artificial neurons consist of inputs (dendrites), a signal which travel through
the neuron (activation function), and outputs (axon). The idea behind them is that,
depending on the input values, the activation function produces a specific response
(output) which can in turn be fed as inputs to other neuron (or neurons), and through
mechanisms like iterative optimization and backpropagation, learning parameters can
be adjusted for each neuron in the network. By stacking and connecting multiple layers
of artificial neurons in various ways, distinct deep learning architectures are composed.
These intricate and diverse architectures can be beneficial for solving specific, complex
problems, and performing particular learning tasks [7, 8].

Support vector machines (SVMs) are a type of ML learning mechanism capable
of performing linear and nonlinear classification, regression and outlier detection [7].
SVMs involve the optimization of constrained convex loss functions, which are not
affected by problems of local minima (i.e. there’s generally a clear gradient towards
an absolute minimum). By making use of kernel methods, SVMs are particularly well-
suited for building large nonlinear classifiers. The "kernel trick" allows SVMs to find
optimal separating hyperplanes for high-dimensional feature spaces, by transforming
the input space into a lower-dimension space by using a nonlinear kernel function,
which both alleviates the curse of dimensionality and allows SVMs to compute linear
classifications on this transformed kernel space [8].

The act of arranging large quantities of multivariate data into natural groups (dic-
tated by the behavior exhibited by the data) is referred to as clustering. Cluster analysis
(CA), also known as data segmentation or class discovery, consists of various algo-
rithms and methods which seek to organize or partition a data set into homogeneous
subgroups (i.e. clusters). CA is perhaps the most well-known example of unsupervised
learning, and it allows for the analysis of unstructured multivariate data [8]. The no-
tion of cluster is central to CA methods, but how a specific method considers a cluster
varies. Clusters may be described with respect to: 1) locations of a particular points
(centroids) or regions of densely packed points (i.e. spatially), or 2) with respect to
how groups are organized (hierarchically) [7]. Thus, CA relies on measures of similar-
ity (e.g. distance) to characterize the behavior of data as relatively similar or different
to other data points in the set.

A group of predictors is called an ensemble, thus ensemble learning revolves around

8



the idea of leveraging the "wisdom of the crowd", by generating multiple models
which are then combined to produce better results than those achieved by using a sin-
gle model [7, 8]. Generally speaking, the types of models for ensemble learning tend
to be weak or unstable, which in turn is the source of this method’s strength. By lever-
aging the variance of the ensemble, more generalizable and better performing models
are achieved [10].

Technically put, a d-dimensional manifold is part of an n-dimensional space (d < n)
that locally resembles a d-dimensional hyperplane. In simple terms, a manifold can be
defined as an lower-dimensional shape, which can be bent and twisted in a higher di-
mensional space (i.e. imagine a spiraled flat ribbon suspended in 3D space) [7]. Man-
ifold learning involves several techniques and methods mainly applied towards di-
mensionality reduction: identifying the manifold (linear or nonlinear) which actually
and most accurately represents our data within its original high-dimensional space
[8]. In other words, a lower-dimensional representation of our data is sought after in
order to overcome the curse of dimensionality, and enabling the construction of less-
complex representations and more computationally efficient models of our data. One
of the most prevalent dimensionality reduction methods is principal component anal-
ysis (PCA).

Classification by ML Applications

Lastly, there are also specific applications of ML, which have given rise to particular
areas of study among the field of ML. Among these, some of the most common and
relevant applications are listed below (this is by no means a comprehensive list):

• Data analytics

• Predictive analysis

• Natural language processing

• Computer vision

Data analytics is defined by the Institute for Operations Research and the Man-
agement Sciences (INFORMS) as "the scientific process of transforming data into insight
for making better decisions" [11]. In the area and applications of data analytics, ML
systems are commonly employed to aid in the decision-making process, particularly
by proposing data-driven alternatives to traditional empirical approaches. Predictive
analysis revolves around the art of making accurate guesses about new output values

9



that are independent of the training data [8]. This way, predictive models are built by
ML systems in order to provide future predictions. Common use cases for predictive
modeling include stock market and weather forecasting. Natural language processing
(NLP) is an area of ML centered on allowing machines to read and write in natural lan-
guage(i.e. human languages) [7]. Part of its purpose revolves around identify patterns
from (unstructured) text, in order to extract information that is useful (i.e. actionable)
for particular purposes [10]. Some of the most prominent applications for NLP include
document clustering (where clusters of documents identified as similar are created
between collections of unstructured text), sentiment analysis (where text documents
are analyzed in order to characterize what the person who wrote it was feeling, and
speech recognition (where spoken words are sought to be transcribed into text in an
automated way) [7]. Over the last ten years, one of the most important tools to emerge
from both of these applications is real-time speech-to-speech language translation ap-
plications. However, since the advent of Large Language Models (LLMs) a few years
ago, generative and predictive applications like OpenAI’s ChatGPT have taken the
world by storm [12]. These LLMs dramatically expand on a model’s ability not only
to understand language, but to offer certain degree of reasoning capabilities, enabling
them to perform complex tasks and interactions [13].

Lastly, computer vision (CV) is an area of applications which centers around pro-
viding machines with the ability to identify patterns in visual representations of data
(i.e. images) [7]. Some of the most renowned applications of CV include automated ob-
ject/subject identification, semantic segmentation (image labeling/tagging), and mo-
tion tracking.

∗ ∗ ∗

Having introduced various concepts by exploring four different perspectives of ML
systems, this work’s main scope can now be introduced: to discuss how the used of
specific ML applications like natural language processing using LLMs, and particular
transformer-based deep neural network architectures, could benefit the development
of a probabilistic, impact-based, flash flood warning guidance system.

It must be noted that this conceptual introduction was necessary in order to prop-
erly characterize these concepts, which are not easily comparable between one another
without understanding their specific purposes and scopes. Figure 1.1 summarizes the
four aspects of this conceptual taxonomy of machine learning systems.

10



Figure 1.1: Diagram depicting the taxonomy of Machine Learning Systems,
broken down by 1) ML Problems, 2) Learning Types, 3) Learning Mecha-
nisms, and 4) ML Applications

1.2.2 Deep Learning and Artificial Neural Networks

As described in the previous section, Artificial Neural Networks (ANNs) are a specific
type of learning mechanism, through which ML systems learn. Deep learning (DL) is
a subset of architectures for building ANNs, which aim to resolve specific problems
and provide scalable solutions to particular applications (e.g. prediction, regression,
classification, unsupervised learning, dimensionality reduction, etc.).

By using a single threshold logic unit (TLU) –a specific type of artificial neuron– it
is possible to perform simple binary classification. TLUs compute a weighted sum of
their inputs, and then apply a step function to that weighted sum to determine what
the output value should be (continuous or discrete). It must be clarified that both the
inputs and outputs of an ANN are treated as layers as well. A single layer of stacked
TLUs is one of the simplest ANN architectures –known as the perceptron–, where the
input layer nodes are connected to every TLU in the perceptron’s layer, which is then
connected to the output nodes. Visual representations of TLUs and perceptrons are
shown in Figure 1.2. As might be expected, more than one layer of TLUs can be used in
succession between the inputs and output layers to build more complex networks like
the multi-layer perceptron (MLP). For a MLP, the input layer is succeeded by a number
TLU layers, known as hidden layers, before reaching the final output layer[7, 8].
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(a) TLU Neuron [7] (b) Perceptron [7] (c) Multi-layer perceptron

Figure 1.2: Examples of (a) a single threshold logic unit and (b) a perceptron
comprised of a single hidden layer of TLUs. Notice that the network flow
is structured from the bottom (inputs) to the top (outputs). (c) Example of
a fully-connected deep multi-layer perceptron network. Note that in this
case, the network flow is organized from left (inputs) to right (outputs).

As opposed to shallow neural networks (i.e. simple, few number of hidden layers –
typically one), deep neural networks (DNNs) are constructed when large quantities of
neurons are stacked into increasing numbers of hidden layers (typically two or more).
Given their size (or depth), these type of networks generally require large amounts of
computational power (and time) to train, and thus DNNs are said to perform perform
deep learning [7]. A visual representation of a deep multi-layer perceptron can be be
seen in Figure 1.2c

Two of the most prominent deep learning architectures are convolutional neural
networks (CNNs) and recurrent neural networks (RNNs). CNNs are characterized by
a specific type of hidden layers known as convolution layers, which allow the CNN
to model and extract features from the input data. This is really useful when working
with image data. RNNs rely on the concept of a recurrent neuron which operates on
the basis of time steps, at which the previously generated outputs allow the neuron to
produce new ones at each time. Thus, RNNs easily accommodate the notion of time-
dependence in data. Figure 1.3 presents visual representation for both convolutional
layers and recurrent neurons. These two ANN architectures will be discussed in more
depth below.

12



(a) Convolutional layers of a CNN [7] (b) Recurrent neurons and time steps [7]

Figure 1.3: Examples of (a) convolutional layers in a CNN, and (b) a recur-
rent neuron, which feeds itself outputs form previous time steps. Notice
that for (a) each pixel in an image is represented by a single neuron in the
input layer.

Convolutional Neural Networks

Differently from other ANNs, where layers are represented as a 1-dimensional array,
CNNs are composed by convolutional layers, which are represented as n-dimensional
arrays of neurons. This makes it easier to match neurons at each layer with their cor-
responding inputs. The basic idea behind convolution is to "summarize" a portion of
a layer’s neurons, by a single neuron representation in the next layer [7]. Generally
these portions overlap with one another, and even though this implies redundancy,
it leads to consistent and correlated feature extractions for each layer into the next.
This also implies that inputs are reduced dimensionally with each layer, but as each
deeper neuron diverges more from the original values of input pixels, it holds poten-
tially meaningful representations of the original data. These representations are known
as a feature map. A graphical representation of this can be seen in Figure 1.4a. These
feature maps that are generated at each convolutional layer can be stacked using sev-
eral layers to conform deep CNNs, as shown in Figure 1.5. This can be particularly
advantageous for working with multi-channel images, and multi-layered spatial data
sets (see inputs on Figure 1.5).
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(a) Convolution layers [7] (b) Deep convolutional layers
with stacked feature maps [7]

Figure 1.4: (a) Example of convolution, showing the connections between
convolutional layers [7]. Note how the top layer is product of a 3x3 sliding
window which condenses features form the lower layer. (b) stacked feature
maps from multiple deep convolution layers.

Figure 1.5: Example of a deep convolutional neural network [14]. Notice
how feature maps are reduced in dimension at each dense convolutional
layer, and also the depths of each dense layer increases before the final
dense and output layers.

Recurrent Neural Networks

RNNs are commonly used for handling sequential data, even though they are not the
only type of ANN capable of doing so (CNNs can do this too) [7]. A RNN is very sim-
ilar to other ANNs, except for the fact that that its outputs also point backwards unto
itself. The Recurrent neuron shown in Figure 1.3b exemplifies this, and contextualizes
the state of the neuron through time. At every time step this recurrent neuron receives
the inputs as well as its own outputs from the previous time step. These recurrent
neurons can easily be layered, so that at each time step every neuron in the layer re-
ceives both the corresponding inputs, as well as the output vector from the previous
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time step. Similarly to the case for a single recurrent neuron, this can be seen in Figure
1.6a. As is the case for CNNs, these recurrent layers can be stacked as hidden layers in
a network to conform a deer RNN, as see in Figure 1.6b.

(a) A recurrent layer [7] (b) A deep recurrent network[7]

Figure 1.6: Examples of shallow and deep recurrent neural networks [7].

RNNs are one of the most common approaches in DL for NLP-related tasks, as
language is naturally expressed as sequences: words are sequences of characters, sen-
tences are sequences of words, etc.. Since the output of a recurrent neuron at any time
step is a function of all the inputs from previous time steps, RNNs are considered to
have a memory of sorts. This allows this kind of neural network to preserve some sort
of state across time steps, admittedly for short periods of time given that information
is lost as data traverses an RNN. Long Short-Term Memory cells are a kind of recurrent
neuron which allows to detect long-term dependencies in the data, and thus allows to
overcome this limitation by allowing RNNs to persist relevant patterns through time
[7]. LSTM models are widespread for NLP applications, however these type of RNN
also plays an important role in building time series prediction models, as they are best
suited for extracting meaningful patterns from long-running, non-linear trends.

RNNs usually take a sequence of inputs and produce a sequence of outputs (se-
quence to sequence network), which is useful for problems like time series prediction.
CNNs, on the other hand, generally receive vectors (i.e. 2D images) as inputs and out-
put vectors as well (vector to vector networks). However, DNNs can be arranged as
sequence-to-vector networks –which are useful for problems like sentiment analysis–
, as well as vector-to-sequence networks which enable to tackle problems like image
labeling. These sequence-vector and vector-sequence transformations, together with
techniques known as attention mechanisms, give way to transformer architectures [7].
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Transformers and Autoencoders

Autoencoders are a particular kind of ANN, which are capable of learning dense rep-
resentations of the input data (called latent representations) in an unsupervised way.
These networks are composed of two opposing transformer-based architectures: an
encoder and a decoder. The idea behind this is that the encoder extracts (or codes) the
features that make up an input, and the decoder learns how to construct an output
from the latent representation, which is equivalent to the input layer. Figure 1.7 ex-
emplifies these principles. These architectures have given rise to Generative Adversar-
ial Networks (GANs), which leverage adversarial training using two neural networks
(a generator and a discriminator). This way, the generator’s job is to produce "real
enough" outputs, such that the discriminator can’t tell them apart from known, real
samples. Transformer-based methods have also enabled the use of pre-trained models
as a means of transferring expertise or skill from one model to another. This ability
also has given rise to very powerful language models approaches based on bidirec-
tional encoder representations (i.e. BERT, GPT-3, and GPT-4) [7].

(a) Encoder-decoder architecture [7] (b) Deep autoencoder architecture [7]

Figure 1.7: Autoencoders. (a) basic concepts behind the encoder-decoder
architecture, while (b) presents the architecture for a deep autoencoder; no-
tice the symmetry between the encoder and decoder parts of the deep net-
work.

A particular aspect of transformer-based architectures is that it dispenses with the
needs for recurrence when dealing with sequences, and for convolution when deal-
ing with spatial features. Instead, it relies on a mechanism called self-attention [7].
Self-attention allows transformers to compute representations of its input and output,
without having to rely on RNNs or CNNs [15].
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1.2.3 Transformers for Natural Language Processing

Natural language processing (NLP) is a specific machine learning (ML) application (as
well as an entire area of study in the realm of ML), which aims to model, and analyze
unstructured text documents written in human languages (see see Sec. 1.2.1). Within
this discipline, three types of problems stand out: named entity recognition (NER), text
classification (TC) and sentiment analysis (SA).

Firstly, named entity recognition (NER) is an NLP problem that revolves around
recognizing entities (e.g. names, places, objects on which actions are exerted upon, etc.)
present in a text. This problem is generally hard, due to the fact that different kinds of
entities often share names, and names have different meanings depending on context.
Second, text classification involves assigning a specific label to a body of text, usually
related to the topic around which the text revolves around. This problem is also diffi-
cult, as even though there tends to be a high correlation between certain keywords and
topics, dealing with unstructured text almost guarantees that these keywords will not
be the only indicator needed to express a given class, and words may not be presented
in standardized forms (i.e. idioms, abbreviations, etc.). Semantics play an important
role in this field. Lastly, sentiment analysis is a subset of text classification, where
the end goal is to classify a body of text with respect to a human emotion or scoring
system, generally as a way of extracting significant information from other people’s
opinions. This problem is strongly relevant nowadays, given the very large amounts
of data available from social media at a global scale.

All of these problems have been explored extensively through various approaches
involving diverse methods and techniques, and it must be noted that CNNs, RNNs
and transformers have been widely employed to tackle these NLP tasks [7]. Some of
the most prevalent methods include using RNNs and statistical methods (word2vec)
for generating word embeddings (vector representations of words, recall sequence-to-
vector networks), as well as other encodings such as "one-hot" and "bag of words"
representations [7]. Another interesting problem addressed by NLP is the machine
translation of human languages. An example of a simple RNN-based machine transla-
tion model for English-to-French translation is shown in Figure 1.8, which showcases
the use of word embeddings.
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Figure 1.8: Simple RNN-based machine translation model, which exempli-
fies the use of word embeddings [7]

BERT: Bidirectional Encoder Representations from Transformers

Bidirectional Encoder Representations from Transformers (BERT) is a DL architecture
designed by researchers at Google, used for text and language prediction tasks [16].
Pre-trained BERT models are made available to the general public, which have been
trained on very large bodies of unlabeled text: the whole of Wikipedia in English
(around 2,500 million words), and a comprehensive collection of literary works known
as The Toronto Book Corpus (around 800 million words), to name a few. Models of
various sizes are available, with an increasing number of parameter ranging from 110
million to 340 million parameters, depending on the amount of self-attention heads.

Pre-trained language models such as BERT enable the abstraction of both contex-
tual and semantic representations from natural language. This is achieved by the use
of contextualized word embeddings (which characterize what role a word plays in a
sentence) and sentence embeddings (which abstract the meaning a sentence holds),
which ultimately implicate that BERT can be context aware.
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1.2.4 Large Language Models

Recent developments in the field of Natural Language Processing (NLP), have yielded
increasingly larger and larger (in terms or trainable parameters) language models. Par-
ticular distinction seems to occur when jumping from millions of parameters (BERT,
340 million [16]), to billions of parameters (GPT-3.5, 117 billion), and the fact that LLMs
are not necessarily fine-tuned to specific tasks. LLMs have shown noteworthy perfor-
mance compared to fine-tuned pre-trained models, which has shifted the landscape
from task-specific language models, to general purpose language applications. The
very rapid adoption of LLMs like OpenAI’s ChatGPT [12] by the general public over
the last years, have transformed how people interact with these models, and demon-
strated the capabilities of applications like natural language generation, code gener-
ation, and using LLMs as a general tool for retrieving information and performing
search [17].

Generative Pre-trained Transformers

OpenAI’s ChatGPT is a chatbot application based on an architecture called Generative
Pre-Trained Transformers. As its name indicates, and by using the taxonomy previ-
ously defined, this ML system corresponds to a Natural Language Processing applica-
tion (LLM), which relies on Deep Learning architectures based on transformers. At a
very basic level, models like ChatGPT-3.5-turbo generate responses to user input,
by being trained to predict the most likely answer that the user’s input should have; and
these models were trained with unfathomable amounts of text data, which contain in
itself knowledge and interactions powered by the Internet. While this simplified ex-
planation can be conveyed in a straightforward way, it is often difficult to reconcile this
basic notion with the type of coherent and meaningful interactions one can have with
a tool like ChatGPT.

However, it has been demonstrated that while general interactions and responses
from GPT-based models can be satisfactory, GPT-3.5 struggles when dealing with
prompts related to mathematics, and certain commonsense tasks [13]. Subsequent im-
provements came to ChatGPT with the release of the much larger GPT-4 model, since
this newer version expanded the model’s context memory, and increased its parameters
from 175 billion in GPT-3.5 to over a trillion for GPT-4.
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1.2.5 Transformers for Spatial and Temporal Applications

Transformers have traditionally been the dominant architecture for Natural Language
Processing (NLP) applications. However, multiple recent developments have
attempted and succeeded in transforming the landscape in fields such as computer
vision, by relying exclusively on transformer-based architectures to replace traditional
applications which rely on Convolution and Recurrence. The transformer’s self-attention
seems to provide viable alternatives to more traditional RNN and CNN approaches,
when certain circumstances can be procured and concessions made. The present sec-
tion will briefly expose three relevant transformer-based architectures explored through-
out the present work.

Vision Transformers

Vision Transformers (ViT) are a type of model which aims to provide a reliable alter-
native to CNN-based image classification [18]. While transformers are commonplace
to NLP tasks, the authors question how CNN-like architectures for computer vision
had started incorporating self-attention as a means to replace convolution entirely.
Thus, motivated by how the Transformer has had wide success in NLP tasks due to its
scalability, the authors proposed applying standard transformers directly to images,
with the fewest possible modifications. This approach relies on splitting images into
patches, and providing a sequence of linear embeddings of these patches as inputs to
a Transformer. Image patches are treated analogously to tokens in NLP applications,
where a sequence of tokens can be used to predict a class, or the next expected token
in a sequence. This way (and in conjunction with a Multi-Layer Perceptron (MLP)
classification head), a ViT model can be trained on a sequence of images for image
classification, using labeled image data. Figure 1.9 details the architecture of the ViT
model. The ViT architecture not only succeeded in providing a transformer-based al-
ternative to CNN image classification, but it also attained very good results compared
to typical convolutional architectures [18].
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Figure 1.9: Vision transformer architecture [18]

Segmentation Transformers

Segmentation transformers (Segformers) are a type of model which aims to provide
a simple and efficient alternative to perform semantic segmentation (labeling or tag-
ging the contents of an image) using transformers, instead of relying on Convolu-
tional Neural Networks (CNNs) [19]. This powerful segmentation framework com-
bines Transformers with lightweight MLP decoders. This enables Segformers to keep
model performance scalable by avoiding the use of complex decoder architectures, and
also to incorporate both global and local attention to render powerful input represen-
tations. Segformers consist of two main modules: a hierarchical transformer which
extracts both coarse and fine features, and a lightweight All-MLP decoder, which fuses
multi-level features, and predicts the semantic segmentation task. The Segformer ar-
chitecture is shown in Figure 1.11. In addition to semantic segmentation, hierarchical
transformers can also be used for image classification.
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Figure 1.10: Segmentation transformer architecture [19]

Video Masked Autoencoders

Masked image modeling is a self-supervised pre-training method for computer vision
tasks, based on the principle of masking out a portion of an image, and then recon-
structing the masked-out portion. Masked Autoencoders introduced an asymmetric
encoder-decoder architecture for masked image modeling, and Video Masked Autoen-
coders are an extension from Masked Autoencoders applied to video applications. By
masking portions of the successive image frames that make up a video (video tube
masking), VideoMAE models are able to deconstruct and reconstruct meaningful rep-
resentations during the pre-training process [20]. Paired with a classification head at
the end of the pipeline, VideoMAE models can be used for image sequence (video)
classification.
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Figure 1.11: Video Masked Autoencoder architecture [20]

1.3 Hydrology, Floods and Flash Flood Forecasting

A basin (watershed, or catchment) is the basic unit used in hydrology, to denote a fi-
nite, contiguous area, such that the net rainfall or runoff over that area will contribute
water to its outlet. Bounds for a given basin can be defined by the topography, where
runoff will travel from higher to lower elevation, and rainfall that falls outside of these
bounds will not contribute runoff at the basin’s outlet [21]. A graphical representation
is shown in Figure 1.12. Gauge stations are usually placed at these outlets to register
a stream’s behavior, as it responds to the hydrologic processes affecting its watershed.
By employing these gauges, as well as weather RADAR and other remote sensing tech-
niques (i.e. satellite), hydrologists are able to measure and estimate the intensity and
amount of precipitation over a basin (quantitative precipitation estimation, or QPE),
as well as the water’s stage (level above the stream bed), and flow in the stream (dis-
charge). These are some of the essential components needed for building hydrologic
models.
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Figure 1.12: A general diagram of a watershed or basin, based on the origi-
nal design shown in [22].

Flooding conditions are determined by using water levels (or stage) in the stream’s
channel, with respect to its maximum bankfull conditions. When the stream’s stage
exceeds the maximum height at which a river’s banks are, water in the stream moves
outwards over the floodplain, and flooding is observed [21]. Thus, floods are a direct
consequence of the rise in water stage in a stream (or body of water), and generally
relate to rainfall events that impact their respective basins. Flash floods are floods
that follow the causative storm event in a short period of time, with water levels in
the drainage network reaching a crest within minutes, to a few hours, after the onset
of precipitation. Consequently, flash floods are deemed extremely dangerous events,
which generally allow short lead times for the emission of warnings, and for mak-
ing life-saving decisions. This grave implication has led to direct significant efforts
in hydrology throughout the years, for providing reliable and actionable flash flood
modeling, monitoring and forecasting methods, frameworks and products.

The Multi-Radar Multi-Sensor (MRMS) system provides precipitation estimates by
mosaicking (spatially aggregating and temporally synchronizing) data from over 180
weather RADARs on a grid with a spacing of around 1km2 (0.01° latitude and longi-
tude grid spacing), which is updated every 2 minutes across the Conterminous United
Stated (CONUS) [5]. The Flooded Locations and Simulated Hydrographs (FLASH)
project provides forecasters with a suite of products for flash flood forecasting over
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the US and outer territories, based on MRMS rainfall estimates, which are updated
at 2-minute and 10-minute intervals (depending on the product) [4]. While FLASH’s
2-minute products correspond to RADAR-only QPE products which are based solely
on MRMS precipitation data, 10-minute products are based on distributed hydrologic
model outputs, which ingest MRMS precipitation alongside additional states and static
parameters at every time step. At the core of FLASH’s hydrological capabilities lies the
Ensemble Framework for Flash Flood Forecasting (EF5), an open-source, distributed
hydrologic modeling framework [23].

One set of QPE-only products provided by FLASH are focused around average
recurrence intervals (ARI), calculated using 1, 3, 6, 12, and 24-hour precipitation accu-
mulations. An ARI is a measure of event magnitude that indicates the time interval
in which given event will occur once, on average, measured in years [21] (e.g. 50-year
flood, a flood expected to occur on average once in a 50-year period). FLASH ARI
products range between zero to 200-year recurrence intervals. Events that occur at
larger ARIs (i.e. 200-year events) are expected to be catastrophic, compared to those
with lower ARIs (i.e. 1-year events).

FLASH also provides products based on QPE-to-flash-flood-guidance ratios
(QPE/FFG), which are based on comparisons between MRMS QPE accumulations and
Flash Flood Guidance (FFG). FFG is a rudimentary but still widely used method for
flash flood forecasting, which is defined as "the threshold rainfall, over 1, 3 and 6-hour
accumulations, required to initiate flooding on small streams that respond to rainfall
within a few hours" [24]. These ratios compare the MRMS QPE value at each grid point
on the CONUS domain, with the FFG threshold for the same point at a given accumu-
lation. FLASH QPE2FFG products range from zero up to 5.0, which would indicate up
to a 500% exceedance of MRMS QPEs over a predefined FFG threshold for any given
grid cell over the CONUS, at a given accumulation.

Aside from these ARI-based and FFG-based products, FLASH produces other prod-
ucts based on three distributed hydrologic models: the Coupled Routing and Excess
Storage (CREST) model, the Sacramento Soil Moisture Accounting model (SAC-SMA),
and a Hydrophobic model (HP) [4][23]. These products are discharge (Q[m3 ·s−1], also
referred to as streamflow), unit discharge (q[m3 · s−1 · km2], also referred to as "UnitQ"
or unit streamflow), and soil saturation (SS[%], not produced for the HP model). Q

estimates the overland and channel flows in cubic meters per second (cms), while q

provides a basin area-normalized stream flow, which helps highlight specific locations
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that are most likely experiencing anomalous flows (i.e. possibly flash floods) [4]. Ulti-
mately, UnitQ describes overland and channel responses over the CONUS in an easy-
to-interpret scale, which helps forecasters identify and anticipate increases in flows as
responses to the causative precipitation events; particularly for those events which are
likely to lead to flash floods and widespread areal flooding.

1.3.1 Flash Flood Warnings and Reports

The National Weather Service (NWS) is the organization in charge of the monitoring
and issuance of weather-related alerts (watches and warnings) in the United States.
By design, watches and warnings are used whenever weather hazards threaten life or
property. While watches are issued whenever the possibility of a significant event is
likely, warnings are issued for significant weather events, for which impactful condi-
tions have been met and immediate action is necessary from those within the impacted
area.

Reports are a crucial element in informing both the NWS forecasters, as well as the
general public, about hazardous weather events and conditions. Local storm reports
(LSRs) are issued by the NWS as it receives significant information about hazardous
weather conditions in their County Warning Area (CWA). These LSRs serve to both
inform the public about the hazardous conditions, as well as the basis for both issuing
and verifying weather-related alerts (particularly warnings). These local storm reports
are also the basis for the creation and publication of Storm Data reports, which are a
post-facto survey and analysis of specific hazardous events and their impacts. Lastly,
the general public can also submit their own observations of general and hazardous
weather conditions and impacts through the Meteorological Phenomena Identification
Near the Ground (mPing) initiative. These three types of reports play a crucial role
in both research and operations, with respect to collecting and distributing data about
hazardous weather, including flash flooding events. Each type of report and its rela-
tionship to flash flooding is detailed below.

Local Storm Reports

Local Storm Reports (LSR) are a type of manual observation, which are collected and
used and archived by the National Weather Service (NWS). These reports are filed fol-
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lowing the issuance of warning products by NWS forecasters, and sources for their
contents usually come from emergency managers, local authorities, 911 calls, cooper-
ative observers, social media, and the general public. These reports are constituted
by 11 different attribute fields, including the NWS office which issued the report, time
and date, type and magnitude of the event being reported, and a remark about the
event. Specifically for flash flood events, LSRs provide a location and a description
of the flooding event, pertaining to the observed conditions for the event at the given
location (i.e. “Road flooded, culvert full/overflowing, etc.”). This makes LSRs to be
considered near-real-time reports of flood events.

The University of Iowa’s Iowa Environmental Mesonet (IEM) maintains a standard-
ized archive of Local Storm Reports [25]. Each report is composed of 14 different fields,
which are presented as columns when the data is downloaded as a text file. Relevantly
among these fields, for each report there is a specified date, time and location (lat/lon),
as well as a text-based remark wich described the incident. It must me noted that even
though there is a magnitude field, this is left empty in the case of flash flood LSRS.
These fields are described in detail in Table 1.1, in accordance with the IEM’s official
documentation.

Column ID Description

VALID Timestamp of LSR in GMT/UTC time
MAG Magnitude value of the LSR
WFO Weather Forecast Office originating the LSR
TYPECODE 1 character identifier of the report type, IEM specific
TYPETEXT Textual value of LSR type used in report
CITY Location used for the LSR
COUNTY County/Parish of the LSR city
STATE Two character state abbreviation
SOURCE Who reported the LSR
REMARK Text summary with the LSR
LAT Latitude
LON Longitude
UGC IEM computed NWS UGC code (6 character), sometimes null
UGCNAME IEM computed NWS UGC name (128 character), sometimes null

Table 1.1: Structure of Local Storm Reports
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StormDat Reports

Additional post-facto reports, known as Storm Data reports (StormDat), are also con-
structed and maintained by the NWS based on existing LSRs, on-site surveys of im-
pacted areas, and other sources of information (such as emergency managers, law
enforcement agencies, news media etc.). NOAA’s National Center for Environmen-
tal Information (NCEI) maintains the Storm Events Database which is accessible on-
line. StormDat reports are available ranging as far back as January of 1950 [26]. The
database includes tornado events since 1950, severe thunderstorms since 1955, and all
other weather events (e.g. Flash Floods) since 1996 [27]. StormDat are generally avail-
able between 90 to 120 days after an event has occurred, which means that compared
to LSRs, can not be considered near-real-time observations.

StormDat reports provide a detailed description as well as updated information re-
garding an event, including its impact on infrastructure, property, and goods (usually
measured in dollar amounts), as well as counts of any injuries or fatalities. Within
StormDat reports there is also room to report up to eight different geographic loca-
tions (description, latitude, and longitude), which can form anything from a single
point, to an octahedral polygon which is meant to denote and describe the area that
was impacted by the event. Additionally, StormDat reports introduce the notion of an
event versus an episode: a single event is describe in its entirety by a single Storm-
Dat events (in turn composed of potentially multiple LSRs), while a single episode is
potentially composed of multiple StormDat events (e.g. a long-lived and/or spatially
distributed event which affects multiple geographic areas at different times of its life-
cycle). Within each StormDat report both a unique identifier and description are given
for the report’s event, as well as for the episode to which the report corresponds. Table
1.2 lists the fields that make up the structure of each StormDat report.
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mPING Reports

NOAA’s National Severe Storms Laboratory (NSSL) collects weather reports from the
general public through a free mobile application available to iOS and Android smart-
phones. The Meteorological Phenomena Identification Near the Ground (mPing) allow
for the collection of weather observations at ground level, which weather radars cannot
see (since they measure at elevations of 0.5°-19.5°) [28]. By anonymously crowdsourc-
ing weather reports a database has been maintained since 2012 through a partnership
between NOAA/NSSL and The University of Oklahoma’s Cooperative Institute for
Severe High-Impact Weather Research and Operations (CIWRO, formerly the Cooper-
ative Institute for Mesoscale Meteorological Studies – CIMMS).

Data acquired through mPing which includes type and size (hail) of precipitation
(liquid, mixed, solid), which helps forecasters verify dual-polarization RADAR-based
object size, shape, and type. This data is also used by researchers who develop com-
puter algorithms and weather models, to automatically sort and classify precipita-
tion types, and distinguish non-precipitation signals in RADAR data [29]. Additional
to precipitation types (rain, snow, hail), other observation reports can be submitted
through the mPing app: winter weather impacts (downed trees, frozen/burst water
pipes, school/business closures, power/internet outages, etc.), wind damage (size of
limbs broken, uprooted trees, home/building destruction), tornadoes (on ground, wa-
ter spout), reduced visibility (fog, dust/sand, snow, snow squall, smoke), and floods
(four levels of increase impacts). The four impact levels mPing allows for observed
floods are:

1. River/Creek overflowing; Cropland/Yard/Basement flooding

2. Street/Road flooding; Street/Road closed; Vehicles stranded

3. Homes/Buildings filled with water

4. Vehicles/Homes/Buildings swept away

It must be taken into account that, since these mPing reports address observed im-
pacts specifically, they are widely applicable to widely varied flooding scenarios and
types (fluvial, pluvial, groundwater, and coastal flooding), and not just to flash flood-
ing cause by the rapid onset of precipitation.
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1.3.2 Flash Flood Impact Frameworks

Throughout the development of the present work, two approaches to systematically
characterize, quantify, and prescribe impacts to flash flood events have been encoun-
tered. The Impact-Based Warning (IBW) framework has been designed and enforced
by the NWS across the US, while the Flash Flood Severity Index (FFSI) was devel-
oped by researchers from the NWS, the NWS Warning Decision Training Division,
NOAA’s NSSL, The University of Oklahoma, the Virginia Polytechnic Institute and
State University, Columbia University, Kansas State University, the University of Illi-
nois at Urbana-Champaign, Colorado State University, and Princeton University. The
following section will describe these approaches in detail, and discuss their particular-
ities.

Impact-Based Flash Flood Warnings

Since late 2019, the NWS has followed a national initiative to transition all warn-
ings into an impact-based format, including flash flood warnings. The main goals
of impact-based warnings (IBW) are to provide additional valuable information about
hazards to media an Emergency Managers, which facilitate improved public response
and decision making; and to better meet societal needs in the most life-threatening
weather events [30]. Specifically for flash flood warnings, IBWs aim to provide en-
hanced information about the hazard through an impact narrative, and a flash flood
damage threat tag describing the magnitude of the event. To describe these mag-
nitudes, a three-class framework is used to describe the level of impact associated
with each flash flood warning: base-level flooding, considerable flooding, and catas-
trophic flooding. These additional fields (impact narrative and damage threat tag)
intend to help determine which calls to action –such as triggering Wireless Emer-
gency Alerts (WEAs)– should be enacted by the emergency management community
and by the general public [31]. It must me noted that guidance on how to deter-
mine specific impact classes from operational flash flood forecast products, such as
FLASH’s unit streamflow (UnitQ), is loosely provided, and carries large amounts of
uncertainty. This is evident when observing that the most likely ranges for UnitQ at
which considerable and catastrophic flooding can occur, overlap completely
with one another. Table 1.3 details the UnitQ value ranges associated to each IBW
class. It is clear that discerning between these two classes based exclusively on a single
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FLASH product’s output is a difficult tasks, and forecaster experience and knowledge
play a crucial roles in the decision-making process.

Category Impact Label UnitQ Most Likely Range

1 Base-level flood 200 - 400 cfs/mi2

2 Considerable flood 750 - 1075 cfs/mi2

3 Catastrophic flood 750 - 1075 cfs/mi2

Table 1.3: Impact Based Warning Labels [31]; UnitQ values excerpted from slides cour-
tesy of the National Weather Service Warning Decision Training Division.

Flash Flood Severity Index

The flash flood severity index (FFSI) is a damage-based, post-event assessment tool
and impact framework, rated in a scale of five impact-based categories ranging from
very minor flooding, to catastrophic flooding [32]. These categories were designed to
be similar to those division of impact observations associated with mPing reports (see
Section 1.3.1). In contrast to the IBW framework which aims to prescribe the impact
level a given flash flood warning is expected to have as it is being issued, the FFSI
framework was constructed by analyzing historical case studies, local storm reports,
flash flood warnings, and performing interviews with forecasters. By pairing specific
impact descriptions related to locations and infrastructure (which also revolve around
human activity) with event impact levels, FFSI associates increasingly impactful event
observations with higher impact categories. Table 1.4 details which impacts are associ-
ated to each impact class. As a result of this, the FFSI framework managed to establish
a concise but yet flexible impact-based approach to categorize and characterize levels
of flash flood impacts.
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Category Impact Description

1 - Minor flood River/creek overflowing; cropland/yard/basement
flooding

2 - Moderate flood Street/road flooding; road closures
3 - Serious flood Vehicles, homes and/or buildings inundated

with water; road/bridge damage
4 - Severe flood Vehicles and/or mobile homes swept away
5 - Catastrophic flood Buildings/large infrastructures submerged;

permanent homes swept away

Table 1.4: Flash Flood Severity Index [32]

∗ ∗ ∗

From the above descriptions on two different flash flood impact frameworks, it can
be observed that they fall into different locations in a subjective-objective guidance
spectrum, while also being differentiated in scope, by being forecast-oriented (prog-
nostic) vs observation-oriented (retrospective). IBW’s guidance is more subjective and
streamflow-oriented, since there are guiding principles on how to use observed stream-
flow forecasts to approximate which IBW classes to attach to a given warning (see Fig-
ure 4.2), but this guidance also allows large uncertainty for deciding between the two
most severe levels of impacts. mPing’s guidance is more objective and observation-
oriented, as users can report specific observed impacts grouped into four categories.
Lastly and similarly to mPing, FFSI’s guidance is more objective and impact-oriented,
since it provides forecasters clear impact-based guidance, which would enable fore-
casters to determine one of five appropriate FFSI category based on the reported and/or
observed impacts. It should be noted that FFSI’s guidance is deemed relatively more
objective than mPing’s, since it encompasses one more class, and it pertains specifi-
cally to flash floods, whereas mPing’s is more generalized towards any flooding. A
representation of this guidance-scope comparison can be seen in Figure 1.13.
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Figure 1.13: Quad chart comparing the guidance and scope of the three
flash flood impact frameworks: Impact-based warnings vs mPing vs Flash
Flood Severity Index.

From the above, it is clear that IBW and FFSI exist in opposite ends of the spectrum,
where:

• It is possible to estimate IBW impact labels from streamflow forecast quantities,
but this guidance does not exist for FFSI.

• It is possible to estimate FFSI impact classes from observed impacts, but this guid-
ance does not exists for IBW.

This dichotomy provides an opportunity to perform foundational research at the
intersection of these two impact frameworks, and to hopefully pave the way towards
an actionable syncretism between the two. This would ultimately enable a consis-
tent estimation of impacts levels, whether based on impact observations or streamflow
forecasts.
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1.4 Operationalization of Flash Flood Reports

As part of the National Oceanic and Atmospheric Administration (NOAA), the Na-
tional Severe Storms Laboratory’s (NSSL) Warning Research and Development Divi-
sion (WRDD) aims to "develop new weather and water related applications and water resource
management tools help NWS forecasters produce more accurate and timely warnings of flood
events" [3]. Contributing to NSSL’s mission, and as previously described in Section 1.3,
the FLASH project provides a collection of flash flood related products to forecasters
[4]. These products were developed at WRDD, thoroughly tested by forecasters and
scientists (Hydrometeorological Testbed Hydro Experiments of 2018 and 2019), and
successfully transitioned to operations as part of the MRMS [5] suite of products.

Since 2016, NOAA’s Weather Program Office’s (WPO) aims to ensure the continu-
ous development and transition of the latest scientific and technological advances into
the NWS, through the Joint Technology Transfer Initiative (JTTI) program [6]. Projects
funded by the JTTI program are supported by NOAA to develop, test and evaluate
matured weather research that can potentially transition to operations. This disserta-
tion stems from a funded JTTI project titled Products to Guide Impact-Based Flash Flood
Warnings in the National Weather Service. This project’s overarching goal was to "de-
velop, evaluate and transition products to the NWS that will guide forecasters in the selection
of flash flood damage threat tags", meant to be included within impact-based flash flood
warnings. As stated in Section 1.3.2, the NWS has measures in place to communicate
possible impacts associated with flash flood predictions, when forecasters issue warn-
ings.

Building on products like LSRs and FLASH’s unit streamflow products, and funded
by the aforementioned JTTI initiative, the present dissertation stems from the need to
design and prototype novel experimental forecasting tools that can distill information
from MRMS-based FLASH products, to aid forecasters in the issuance of impact-based
flash flood warnings. Because of the NWS’ initiative to enforce IBWs, there is an op-
portunity to provide forecasters with a product that informs their decision-making
process of assigning specific damage threat tags to IBWs. This is deemed a critical
decision support tool for the NWS, since assessing the probable specific damages as-
sociated with each impact category can be a difficult task, as these relationships vary
by location, proximity to population, infrastructure, bodies of water, etc.. Addition-
ally, there are multiple frameworks for describing flash flood impacts (IBW vs FFSI,

35



see Section 1.3.2), which are prone to be objectively compared and contrasted, using
operational flash flood forecasting products as a common baseline.

The above gives rise to the following research question which guides the present
working hypothesis: Given an operational flash flood forecast, it is possible to annotate spe-
cific threat tags that inform users (forecasters) of possible associated impacts expected for the
forecasted event.

In order to address this hypothesis, the following two main challenges must be ad-
dressed:

1. a data set which can relate historical flash flood events with specific measures of
impact must be built, and

2. a proof-of-concept model capable of producing impact probabilities based on
real-time measures of precipitation and flow response (among other variables)
must be designed and implemented.

To reach these objectives, this project will be undertaken in two different, successive
phases. Initially, a machine learning (ML) model to classify preexisting (and future)
flash flood reports into three impact categories (base, considerable and catastrophic)
must be built, using a sample of reports manually classified by experts. Once this
classification model has been trained and tested to produce sound results, it will be
used to construct a surrogate, historical (retrospective) observation data set of impact-
classified flash flood reports. These observations will then enable the second phase of
the project’s overarching objective. Subsequently, for the project’s second phase, this
observation dataset can be used in conjunction with archived FLASH product outputs,
to construct a ML model which predicts flash flood impact probabilities, given QPEs
and predicted flow responses as inputs. Once this probabilistic predictive model has
been trained, tested and proved to work satisfactorily on historical events and data, it
shall enable the final implementation of a real-time capable experimental ML system
to forecast flash flood impact probabilities.

This chapter has provided a succinct but rich introduction to the work guiding the
main theme of this dissertation. With the aforementioned objectives and milestones
in mind, the Chapter 2 presents a literature review of the relevant state of the art for
present work. Chapter 3 presents an overarching methodology for this dissertation
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work, which is broken down into three sections which detail specific efforts made to-
wards the fulfillment of the present work: Section 3.1 will revolve around attempts to
use pre-trained language models and expertly-classified reports, to create an LSR clas-
sification model for the IBW impact framework. Section 3.2 will showcase the use of
an LLM (ChatGPT) for classifying historical LSRs into probabilistic FFSI impact cate-
gories, a performance evaluation for said classification, and the creation of an opera-
tionalized report dataset. Lastly, Section 3.3 will demonstrate the potential usefulness
of the aforementioned dataset, by training machine learning models which can predict
impact classes for historical flash flood events. Figure 1.14 details how these efforts
tie into one another, and how they correspond to specific milestones for this disser-
tation. Results from these three sections will be presented in corresponding sections
within Chapter 4. Finally, outcomes, lessons learned, and future work will discussed
in Chapter 5.

Figure 1.14: Methodology structure with respect to this dissertation’s chap-
ters and milestones.
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Chapter 2

Literature Review

This literature review is aligned with the two main objectives Section 1.4: 1) the clas-
sification of text-based flash flood reports into actionable threat categories, and 2) the
development of a ML-based product which can produce spatial, probabilistic, flash
flood impact predictions.

In order to establish a broad overview of the available work, and to help define a
state of the art concerning relevant uses of Machine Learning (ML), SSL, NLP and DL
applications, search queries were constructed by creating (sensible) combinations of
the following search terms: machine learning, semi-supervised learning, natural language
processing, deep learning, weather, floods, text, classification, prediction. These keyword-
based search queries (i.e. "machine learning, weather, text, classification", or "floods,
semi-supervised learning") were then used as input in the application PublishOrPer-
ish [33], which allowed to retrieve and analyze academic citations from a wide variety
of data sources such as Google Scholar, Microsoft Academic, Crossref, Scopus and Web of
Science (among others). After exploring multiple PublishOrPerish search results from
around a dozen search queries in various of the aforementioned data sources, 50 differ-
ent pertinent publications were identified between the years 2007 and 2021. However,
after deciding only to focus on (roughly) the last 5 years of developments (2017-2021),
this number was reduced to 38.
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Of the 38 most relevant publication: two were dataset-related publications [34, 38],
five were review or survey papers [44, 45, 47, 54, 58], and 31 were research papers [35–
37, 39–43, 46, 48–53, 55–57, 59–71]. Thirteen of these 38 publications involved SSL, 16
of them involved NLP, 25 involved DL (most of them involved more than one of these
aspects). Ten of the 38 articles involved other ML methods not related to Artificial
Neural Networks (ANNs) or DL, and only two of these 10 involved non-NLP tasks.
Of those articles related to SSL, 11 focused on semi-supervised classification, one pa-
per concerned semi-supervised clustering, and one article presented a brief literature
review. Of those papers concerning DL, 12 dealt exclusively with convolutional neural
networks (CNNs), six involved deep multi-layer perceptrons (MLPs), four involved
the use of recurrent neural networks (RNNs), and three of them presented comprehen-
sive surveys or reviews involving multiple DL applications using MLPs, RNNs, and
CNNs. Most of the articles concerning NLP revolved around text classification (12),
while five of them focused on named entity recognition (NER), and only three of them
dealt with sentiment analysis (SA). Only three of all 38 publications included or dis-
cussed measures of variable importance, model explainability or explainable AI. Eleven
out of the 38 reviewed publications included Social Media data sources for NLP-related
tasks, and only one of these 11 made use of SSL.

Twenty one of the publications revolved around floods, eight of them concerned
weather, three of them dealt with general disasters and hazard events (i.e. earthquakes,
floods, hurricanes, etc.), and one of them targeted landslides specifically. Of those
articles related to Weather, most revolved around weather event identification, and
weather forecasting; only one of them focused on numerical weather prediction. Most
of the flood-related papers focused on flood modeling, forecasting and prediction, and
flood mapping. Flood risk and impacts (i.e. flood extent), and urban flooding were also
relevantly present with 12 and 9 occurrences respectively. Only two articles revolved
around flash floods specifically. Detailed aspects of this literature review’s composition
can be seen in table 2.1, and the remainder of this chapter will further explore these 38
publications, with respect to the main topics pertaining this dissertation.

2.1 Traditional Machine Learning

During the literature review process, only two articles were found that exclusively
employed non ANN-based methods and were not related to NLP tasks [60, 66]. These
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studies targeted flood stage prediction for urban floods, and flash flood event peak
prediction respectively. While [60] focused on urban flood risk mapping, [66] explored
predictor importance aside from flash flood prediction.

In Wu et al. [60], data warehousing efforts were made to centralize and categorize
surface and terrain data, as well as historical flood data. Then, a Gradient Boosted
Decision Tree (GBDT) models were trained on the warehoused data, to predict the
depth of urban flooding, given specific return periods of rainfall. Outputs produced by
these GBDT models were used to construct flood condition maps for Zhengzhou City
in China, in order to assess the city’s flood risks associated to different precipitation
intensities.

The work by Potdar et al. [66] made use of an Extreme Gradient Boosting (XGBoost)
model (another technique for predictor selection and multivariate regression analysis,
based on decision trees), to predict the peak discharge of flash flood events. A flash
flood event dataset spanning ten years was used, which included morphological data
for each basin over which a flooding event occurred, as well as information on the
causative precipitation event, including the spatial organization of rainfall. The use of
XGBoost allowed the authors to perform significant variable importance analysis, con-
firming from a data-driven approach, that even though spatial organization of rainfall
influences a basin’s response, peak discharge is more primarily driven by a basin’s
physiography. Moreover, these results were constructed with unprecedented spatial
and temporal representativeness with respect to the characterization of floods across
multiple basins (as opposed to the traditional single-basin approaches).

Interestingly, these two papers characterized by using non ANN-based ML ap-
proaches made use of boosting methods for decision trees. Boosting refers to any
ensemble method that can combine several weak learners into a strong learner [7].
In both cases, the strengths of building ensembles of weak multivariate decision trees
were leveraged for multivariate regression, and in the case of [66], predictor selection
capabilities were also leveraged for in-depth variable importance analyses.
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2.2 Semi-Supervised Learning

Across the literature review, 12 distinct applications (and one literature review [45]) of
SSL were identified, which targeted diverse tasks such as NLP or flood mapping, by
making use of both non ANN-based methods, as well as deep learning: [35–38, 41, 43,
48, 49, 55, 57, 61, 65].

In Zhang & Vucetic [35], the authors took a semi-supervised approach towards
training different classifiers using twitter data (up to 400 million tweets), correspond-
ing to six different disasters between Oct. 2012 and Jul. 2013. Among these disas-
ters, hurricane Sandy, a tornado in Oklahoma, and a flood in Alberta, Canada were
included. In total seven different semi-supervised models were built by using rel-
atively small starting sets of labeled data (100 labeled instances or less). Three dif-
ferent clustering methodologies were used separately: (bag of words, word2vec, and
Brown Clustering) to build pseudo-labeled datasets, which later trained a logistic re-
gression model to classify tweets as disaster-related, or not. Three differently sized
datasets were constructed for testing these models (for each clustering methodology),
and served to compare all model results with respect to available training data. Results
showed that models built using word2vec clustering provided overall the best perfor-
mance, and regarding dataset size, results reinforced the notion of "the more data the
better".

In the work by Gnecco et al. [36], supervised learning and semi-supervised ap-
proaches were compared for training SVM-based classifiers, to detect flood-exposed
areas as well as areas of high flood risk on the Tanaro River basin in Italy. In this case,
models were built using morphological basin features derived from digital elevation
models (DEMs), and trained to model the relationship between morphology and the
flood hazard. Results showed that semi-supervised approaches outperformed their
supervised counterparts, while the number of labeled instances for both was kept the
same. Even though if the supervised model were to be trained with a larger amount
of labeled instances, the semi-supervised model showed a larger capability for gener-
alization.

The two consecutive works by Racah et al. [37, 38] explored the identification of
extreme weather events in large scale climate simulation datasets. To achieve this,
multi-channel, convolutional autoencoder architectures were used to implement 3D,
spatiotemporally-informed models, which were used for semi-supervised bounding-
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box prediction. The CNN’s data representations were used to explore variable im-
portance and model explainability, leading to exploratory analysis of weather events
within the dataset. The author’s work presented in [37], yielded a dataset of classified
simulated extreme weather events, which was published in [38].

The work of Alam et al. [41] presented an inductive, semi-supervised technique to
make use of unlabeled tweets, alongside with a subset of relevant tagged tweets, for
classifying twitter data as relevant of not to specific hazards such as floods and earth-
quakes. Making use of Graph-based SSL, a CNN classification model was built using
pre-trained word embeddings. These embeddings were extracted from a large crisis-
related dataset, using a word2vec model (composed of about 2 million words). Several
models were built based on flood-related data and earthquake-related data. Super-
vised and Semi-supervised models were built and compared, using varying amounts
of labeled data for each hazard. Semi-supervised models were found to provide sig-
nificant improvements with respect to the supervised-only baselines.

The paper by Liang et al. [43] introduced a novel cognitive framework for expert-
guided labeling of training data (based on SSL), to address the flood mapping problem
using remote sensing data. Their flood mapping methodology was based on using
SVMs for classification, a thresholding method called NORM-THR for water delin-
eation, and a graph-based clustering computer vision method (based on DL) called
Planetoid. Results showed that a semi-supervised approach improved upon the state-
of-the-art supervised techniques, and by crowdsourcing the labeling of training cases,
the performance of a domain expert used to label training sets could be matched, or
even exceeded.

In Zhao et al. [48], the author’s work revolved around the identification of flood-
prone areas, using a weakly labeled SVM (WELLSVM) trained using a semi-supervised
approach. Maps produced by the WELLSVM were compared and contrasted to super-
vised alternatives using logistic regression, ANN and SVM models. Results showed
that WELLSVM could better use the spatial information of unlabeled data and outper-
form the other methods. The authors highlighted these results, as they could poten-
tially lead to an improvement of urban flood management.

In their work, Luu et al. [49] address the problem of detecting and mapping flooded
areas using both optical (satellite) and hyperspectral (PolSAR) remote sensing images.
By using a CNN, these two types of images allowed to identify flooded areas, particu-
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larly those affected by cloud cover or irregular reflections of radar waves. Through a
semi-supervised approach, expertly-interpreted radar scattering artifacts were labeled,
in order to better inform the CNN model, allowing it to perform better classifications
when using polarimetric data as input, aside from optical images.

The work by Croce et al. [55] proposes a Generative Adversarial Network-based (GAN),
Bidirectional Encoder Representations from Transformers-like (BERT) architecture, for
the semi-supervised classification of unlabeled text examples using only a very limited
amount of annotated examples. This work extended the limits of transformer-based ar-
chitectures (like BERT) for NLP, particularly for poor training conditions. The authors
adopted adversarial training in order to overcome the limitations of transformer-based
architectures, when few labeled examples are available. Results showed that by using
between 50 and 100 labeled instances, good performance was obtained during sev-
eral sentence classification tasks, which is a truly remarkable feat. This work proved
that the proposed GAN-BERT architecture systematically improves the robustness of
transformer-based architectures, while not introducing computational costs at infer-
ence time (however training costs certainly increased).

The paper by Islam et al. [57] compared several traditional supervised ML ap-
proaches for flood detection (MLP, SVM, CNN) to recent semi-supervised domain
adaptation-based (SSDA) approaches, based on multi-modal, multi-temporal image
datasets. SPOT-5 (satellite) and weather RADAR images corresponding to a flood
event in the UK were used as training data. Results presented for a SSDA method
using only 20 labeled data samples achieved comparable results to those achieved by
the MLP, SVM, and CNN models, which made use of over 40,000 labeled data samples
for training.

In the work by Yao et al. [61], the authors presented a semi-supervised DNN, for
predicting landslide susceptibility. For this, a large spatial data set was used, where
only a limited number of labeled instances was used. The DNN’s performance was
compared to supervised-only DNN, SVM and logistic regression models. Landslide
susceptibility maps were produced for each of these models, and evaluated in terms
of sensitivity, specificity and accuracy. Results showed that the semi-supervised DNN
approach outperformed all other supervised models, and the authors concluded that
incorporating pseudo-labeled instances for DNN applications allows to fully explore
the potential of deep learning for spatial landslide modeling.
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The publication by Paul & Ganju [65] revolves around predicting flooded pixels
for the NASA Impact Flood Detection competition. The authors drastically improved
upon previous supervised techniques, by proposing a cyclical, semi-supervised scheme
with pseudo-labeling of images using U-Net (a kind of CNN) ensembles. Results
obtained by this work established a new state-of-the-art for this competition using
Sentinel-1 (satellite) data, achieving considerable improvements with respect to the
preexisting baseline.

2.3 Deep Learning

Throughout the review process, 9 specific applications (and one literature review [44])
of supervised (or unsupervised) deep learning architectures and methods were identi-
fied, spanning applications like weather forecasting, weather event identification, flash
flood prediction, flood mapping, as well as flood impact and risk identification: [50–
53, 56, 59, 62, 67, 71]. Two of these DL-related publications also involved model ex-
plainability or explainable AI [50, 52].

In the article by McGovern et al. [50], the authors presented and compared various
model interpretation and visualization (MIV) methods for machine learning, specif-
ically targeted towards deep learning applications in meteorological domains. Im-
age space-based methods like saliency maps, gradient-weighted class-activation maps
(GRAD-CAM), and backward optimization were some of the methods explored in this
work. Additionally, model agnostic methods like partial-dependence plots were high-
lighted as ways to provide concrete explanations on how a given predictor is important
for a model (i.e. how it affects the model’s output). Even though this work revolves
around CNNs, the authors ascertain that the methods presented in their work can di-
rectly transferred for RNN applications.

The work by Potnis et al. [51] revolved around using encoder-decoder networks –
also known as autoencoders–, to classify remote sensing images for urban flooding and
assessing the impacted areas. This work made use of a High Performance Comput-
ing platform for training a CNN-based model known as ERFNet, using WorldView-2
satellite imagery of floods in Srinagar, India. The resulting model, was able to correctly
identify and segment (segregate) flooded areas from buildings, vegetation and roads.
In order to create a working dataset for the ERFNet model, a software tool markGT
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was designed and implemented for efficiently annotating satellite imagery, and the
creation of an urban flooding dataset.

In Saint Fleur et al. [52], the application of a knowledge extraction method (KnoX)
over a RNN trained for predicting flash floods was presented. It must be noted that
flash flood prediction was restricted to a single basin in France. By making use of the
KnoX method, the most relevant prediction variables were successfully identified from
the model, in order to inform and lead the future implementation of better forecasting
models for the Gardon de Mialet basin. Cumulative rainfall was found to be an impor-
tant predictor for models where past discharge is not used as an input, and base flow
was consistently found to play a role in the prediction of flash floods as well.

The article by Wayn et al. [53] was the only work in the review pool which ad-
dressed numerical weather prediction (NWP). The authors exposed the development
of an elementary weather prediction data-driven models, using CNNs to predict 500
hPa geopotential height values over a specific location. The 500 hPa geopotential
height shows approximately how far one has to go up in the atmosphere before the
pressure drops to 500 hPa (on average 5.5 km above sea level), and weather systems
near to the Earth’s surface, generally move in the same direction as the winds at the
500 hPa level [72]. The CNN model outperformed other types of NWP models based
on persistence, climatology and atmospheric dynamics. However, the CNN model
was not able to outperform a full-physics operational model. Nevertheless, the CNN
approach was found to be capable of forecasting significant changes in the intensity of
weather systems, and by incorporating 700hPa to 300hPa barometric data, results were
shown to improve dramatically. Some of the best CNN models were able to capture
climatology and annual variability of 500hPa heights, yielding realistic atmospheric
forecast states at lead times of up to 14 days.

The work by Faruq et al. [56] explored the implementation of long short-term mem-
ory (LSTM) networks –a type of RNN– to forecast time-series of river water levels, in
order to emit flood warnings for the Klang River in Malaysia. In this work, a fully-
connected network with 100 LSTM hidden units was trained with 10000 data points
for 100 epochs, and compared to the results produced by a Radial Basis Function Neu-
ral Network (RBFNN). Validation was performed on 2000 data points, and both the
LSTM model and the RBFNN model were found to predict water levels with an ex-
tremely high coefficients of determination (R2 = 0.98 and R2 = 0.98, respectively). The
authors reflected on how the performance offered by RBFNNs was comparable to a
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much more complex LSTM model, however, they failed to discuss any strategies to
mitigate overfitting.

The publication by Sankaranarayanan et al. [59] presented efforts for the prediction
of monsoon-induced floods in India, using ambient temperature and precipitation in-
tensity as inputs. To achieve this, the authors implemented a deep MLP, which they
compared to multiple other ML algorithms like SVMs, Naïve Bayes classifier (NB),
and K-Nearest Neighbors (KNN). Models were trained with data spanning over two
decades, from 1990 to 2002, however the authors recognize that the exclusion of newer
data is a great limitation to their approach. The DNN model was able to produce prob-
abilities of flood occurrence with a 91% accuracy, and its precision, recall and F1-scores
outperformed all other ML models (SVMs, NB and KNN).

In Hashemi-Beni & Gebrehiwot [62], the problem of mapping floods through re-
gions covered by vegetation and below the canopy was addressed, by using CNNs
and a region growing (RG) method. Relying on Uncrewed Aerial Vehicle (UAV) optical
(LiDAR) images, the RG method permitted the estimation of flood extents under the
covered areas, whereas the CNN model allowed to detect bodies of water and floods
in the image data. Results showed that this data augmentation technique allowed to
improve the flood mapping performance, and produced actionable results.

The work by Nevo et al. [67] involved the Google Operational Flood Forecasting
System (GOFFS), which has been in operations since 2018. This paper revolved around
two of the main components of the GOFFS system: 1) an LSTM network which allows
the system to model and forecast river stage, and 2) a thresholding model which al-
lows the system to compute inundation extents, which works in conjunction with a
manifold model which computes the depth of the inundation extents. Particularly, the
manifold model is presented in this paper for the first time, and according to the au-
thors, presents an alternative to hydraulic modeling for flood inundation mapping. At
the time of writing, this article was still in a pre-print discussion stage.

In Zhang et al. [71], the authors employed DL methods and weather RADAR-based
rainfall data to predict inundated areas in Baltimore, MD, USA. By building a deep
MLP model capable of identifying areas affected by heavy rainfall and at risk of flood-
ing (by calculating the average height above nearest drainage), the property and de-
mographic data of these areas was identified and analyzed, yielding an estimation of
socioeconomic impact. The results shown in this work aim to provide further insight
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into environmental justice, which could aid households and government agencies to
improve decision-making with respect to flood risk.

2.4 Natural Language Processing

From the review pool, 10 different papers concerning NLP applications were found
(aside from three literature surveys [47, 54, 58]): [34, 39, 40, 42, 46, 63, 64, 68–70]. These
supervised (or unsupervised) applications included both ANN-based and non ANN-
based methods for different NLP tasks such as Sentiment Analysis (SA), Named Entity
Recognition (NER) and Text Classification (TC).

In Imran et al. [34], a dataset of word2vec word embeddings was built from 52
million crisis-related tweets, corresponding to 19 different disasters (including earth-
quakes, cyclones, typhoons, and floods). This human-annotated dataset provided an-
notations on each tweet’s topic, as well as out-of-vocabulary word tagging and normal-
ization (i.e. colloquialism, contractions and abbreviations). This work highlighted the
construction process and quality control of the aforementioned dataset, and authors
mention that it had been previously used to construct classifier models such as Naïve
Bayes, SVMs and Random Forests.

The study presented by Tkachenko et al. [39], employed a Deconstructed Cascade
Correlation Matrix (DCCM) –a type of neural network architecture– built using poly-
semous (having multiple semantics meanings) image tags. The main objective was to
predict the dependency of risk-signaling tags (i.e. flood, flooding, floodplain, etc.) from
a set of specific input tags present in the data set’s images (i.e. nature, landscape, river,
water, etc.). These relationships were explored from a time-dependence perspective,
and the appearance of tagged images in the Flickr social network was compared to
flood reports emitted by official and secondary weather report sources between 2004
and 2014. The results presented demonstrated that flood-related tags tended to cor-
relate with hydrologically themed tags, present in the metadata of pictures on social
media.

In the publication by Wang et al. [40], CNN-based NLP was applied to Twitter
data to extract specific locations mentioned in tweets related to urban flooding (named
entity recognition), which were later geocoded (the act of transforming the name of a

48



place or location, into actual georeferenced coordinates) using a search engine API. Ad-
ditionally, mentions of water depth were extracted from tweets. Subsequently, CNNs
were used to classify crowdsource-labeled pictures of floods, rivers, and other bodies
of water into "flooding" or "not flooding" categories. Using both the twitter-derived
and the image datasets, the authors were able to construct a map of road closures re-
lated to the classified crowdsourced images. Also, two case studies were presented
where NLP applications through CNNs helped improve urban flood monitoring.

In their article, Barker et al. [42] developed a national-scale twitter data mining
pipeline for improving situational awareness during flood events across Great Britain,
mixing grounded environmental data sources and retrieving geodata from social me-
dia. First tweets were retrieved from at-risk of flood areas (based on the national flood
warning and risk levels), and then these were classified into "relevant" (flood-related)
or "irrelevant" tweets. This was done using a word embedding model (word2vec) and
a logistic regression model. The authors demonstrated the national-scale social geo-
data pipeline using over 400,000 georeferenced tweets obtained between Jun. 20th and
Jun. 29th of 2016.

The work by Qian et al. [46] explores a CNN approach to perform sentiment anal-
ysis on weather-related social media microblog posts (i.e. tweets), in order to classify
them into 14 distinct weather event categories. Models were trained using manually
labeled data, which was first scraped from the internet using a web spider module
(a program which "crawls" the Web, in search for specific information). By using a
word2vec word embedding representations product of a CNN, which were fed to an
LSTM network, the extracted tweets were classified. The article presents a brief anal-
ysis, and overall favorable performance was achieved for predicting all 14 classes. In
the conclusions, the authors acknowledge the difficulty of labeling real-world data,
and suggest that future work makes use of unsupervised methods for labeling data
(i.e. a semi-supervised approach).

The paper by Lai et al. [63] exposes a CNN-based NLP model for named entity
recognition, which extracts information from online newspaper websites, to identify
historical weather and flooding events. The authors report this model is apparently the
first of its kind, and is able to successfully extract detailed flooding information, risk
and impact data for all the conterminous Unites States (CONUS). The data extracted
from news articles includes names and locations of street closures due to flooded roads,
cost data on risk reduction project aimed at mitigating risk of flooding, as well as im-
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pacts and impacted locations associated to flooding events. In total, over 27,000 street
closures, over 54,000 risk reduction projects, and over 430,000 storm events were iden-
tified by this work, including details of project costs and flood cause.

In Nair et al. & Palkar [64], the authors looked to classify tweets related tot he Ker-
ala floods in India, making use of several transformer-based NLP models like BERT,
XLNet and Ernie2.0. which were presented and constrasted. Around 4,500 tweets
were collected from the social network using well-known hashtags related to the flood
events. These were subjected to cleaning and manually labeled to conform the work-
ing data set. Four different labels were used to categorize the topic or intention of each
tweet: appreciation/donation, help, destruction/loss, and political news. Deep mod-
els were built for each of the transformer-based methods (768 hidden layers), and all
three were found to produce highly favorable results. However, Ernie2.0 was found to
produce the highest Mathew’s correlation coefficient, indicating the better outcome of
the three.

The successive works by Purwandari et al. [68, 69] revolved around the use of SVMs
to classify weather-related tweets, and produce maps with the associated weather fea-
tures described within them. In [68], the authors exemplified and compared the results
of classifying tweets using SVMs, Multinomial Naïve Bayes and Logistic regression,
yielding that SVMs was the best performer. This work was extended then in [69],
where tweets were used as a "social sensor" for weather in Indonesia, using text classi-
fication. Reported accuracy for this SVM-based system was 93%, and led to the imple-
mentation of a weather visualization tool based on weather-related tweets.

Lastly, the publication by Sattaru et al. [70] focused in the use of geocoding, Naïve
Bayes classifiers and sentiment analysis (VADER) to find flood-related tweets. The in-
formation extracted from these tweets were used to provide an additional layer of in-
formation, as well as new data elements for a web monitoring portal, centered around
flooding hotspots for the Chennai region in India.

∗ ∗ ∗

While an extensive literature review was performed on applications related to machine
learning and flooding, no bodies of work were identified, where authors attempted to
formally produce a historical flash flood impacts dataset, specifically with an opera-
tional outlook. Notable mentions of work related to the present work the following
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works: Terti et al., which focuses on the integration of physical and social dynamics
leading to model forecasts of circumstance-specific human losses during a flash flood,
where a random forest model was trained to assess the likelihood of fatality occur-
rence for a given circumstance as a function of representative indicators [73]; Diakakis
et al. [74], where a flash flood impact severity scale was proposed, based on flash flood
events over Greece, which categorized impacts into four different impact types, and
each type consists of ten distinct levels of impact; Lastly, Bucherie et al. present a com-
prehensive dataset of flash flood events over Ecuador between 2007 and 2020, which
incorporated multiple metrics including a Flash Flood Susceptibility Index (derived
from geomorphological characteristics) and a Flash Flood Confidence Index (based on
how reliable an event’s description is [75])[76].

Most of the flood reports other works used came from social media platforms,
mostly X (the platform formerly known as Twitter) [35] [41] [34] [40], and were gener-
ally employed to perform validation on other types of products or models. And while
multiple works built models predicting specific natural hazards and their impacts
[63] [71] [51] [65], none were oriented towards real-time applications for operational
flash flood forecasts. Additionally, no works relying on the classification of hazardous
weather reports using large language models were found. Most of the works found
which deal with flooding and flood impacts, revolve around studying flood inunda-
tion areas, building flood risk models from Radar and Satellite images, or classifying
past satellite data into binary flood/no-flood classes [51] [71] [65]. However, none of
the works surveyed directly aim to characterize and predict flash flood impacts, with
aims of providing decision support systems for operational use.

In the present work, pre-trained language models, and large language models will
be explored as a viable alternatives to manual expert classification for building a com-
prehensive historical flash flood impact dataset, which then can be used to develop
experimental machine learning models capable of annotating flash flood forecast with
anticipated impacts.
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Chapter 3

Methodology

As previously stated in Section 1.4, two main challenges must be overcome to address
this dissertation’s main research question. First, historical flash flood reports must be
classified into impact categories, with only a reduced set of labeled examples avail-
able. This task is clearly a NLP-task of text classification. Making use of a pre-trained
language model could be beneficial, as shown by [58], in order to establish a feasible
LSR classification model using the reduced set of labeled instances. Once this text clas-
sification model has been trained and tested to produce sound results, it can be the
used to construct a surrogate, historical (retrospective) observation data set of impact-
classified flash flood reports. Conversely, the challenge could also be addressed by
establishing a natural language-based methodology (prompt instructions) to classify
unlabeled historical reports, through the use of a pre-trained Large Language Model.
Said LLM could be prompted to follow said methodology to classify each historical
LSR (both labeled and unlabeled) into specific impact classes. This classification could
then be assessed by contrasting the expert classifications with the ones provided by the
LLM.

Secondly, this surrogate observations dataset can be used in conjunction with his-
torical archived FLASH product outputs, geomorphology, and vulnerability layers to
construct a ML model which predicts flash flood impact probabilities, given predicted
streamflow responses as inputs. Given the spatiotemporal dependence of rainfall and
flow responses, approaches that can deal with spatial features, as well as temporal fea-
tures should be explored. While more common deep learning architectures like convo-
lutional neural networks and recurrent neural networks could help address this spa-
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tiotemporal dependency, novel transformer-based approaches are available to tackle
complex spatial and temporal characterization of feature inputs. Once this impact pre-
diction model has been trained, tested and proved to operate satisfactorily on historical
events and data, it could enable the future implementation of a real-time experimental
ML system capable of forecasting flash flood impacts.

Regarding the first challenge of construction of a historical flash flood impacts
dataset, the present chapter will address the development of both aforementioned
strategies: 1) the use of pre-trained language models to train an LSR classification
model, and 2) the use of a language-based classification framework through a pre-
trained LLMs to classify all LSRs. These will be detailed in Sections 3.1 and 3.2 respec-
tively, and their associated results will be shown in Chapter 4, in Sections 4.1 and 4.2
respectively. With respect to the second challenge of training a ML model to forecast
flash flood impacts, this chapter will address the implementation and testing of three
distinct approaches to gradually explore how to model the spatiotemporal dependency
of the input data. This work will be detailed in Section 3.3, and its respective results
will be shown in Chapter 4, in Sections 4.3.

3.1 BERT for IBW LSR Classification

As defined in Section 1.3.1, LSRs are a type of manual observation collected and
archived in near-real-time by the NWS, and are filed following the issuance of warning
products. These reports include a wide variety of information about an event, which
includes the hazard type (e.g. flash flood, hail, wind, winter weather, etc.), the event’s
location (latitude and longitude), a source for the report (e.g. emergency services, emer-
gency manager, social media, news, etc.), and an event’s description (referred to as ’re-
mark’), among others. Some reports include a ’magnitude’ field (e.g. hail size, wind
speed, snowfall), but for the specific case of flash flood LSRs, this field is left blank.
LSRs are normally used for event validation, which help NWS forecasters evaluate the
effectiveness and accuracy of their issued flash flood warnings. LSRs are also the ba-
sis for StormDat reports (see Section 1.3.1), which are in-depth follow-up reports on
a given event, that include thorough surveys and dollar-amount assessments of dam-
ages to property and goods (e.g. crops) of the impacted areas.

The NWS transitions to an impact-based format for flash flood warnings in late

53



2019, aiming to provide detailed information about the hazard, including an impact
narrative and a damage threat tag. Specifically for the latter, the initiative proposes
the inclusion of one of three impact severity classes for each recorded event: base,
considerable, and catastrophic. We will refer to this three class system as the
Impact-Based Warning (IBW) framework. This new warning format aims to determine
and inform which calls to action to enact as appropriate responses to each event’s an-
ticipated impacts (e.g. trigger Wireless Emergency Alerts (WEAs) or not).

Figure 3.1: Impact-Based Warning guidance on how to evaluate FLASH
CREST UnitQ values with respect to three impact categories. Excerpted
from slides courtesy of the National Weather Service Warning Decision
Training Division.

Figure 3.1 shows an example of guidance to NWS forecasters, on how to apply
and interpret thresholds on FLASH unit streamflow, in order to determine which IBW
category to use for a given report. Even though ’National Guidance’ is provided to
assess IBW categories at the CONUS scale, note how for different weather forecasts
offices (WFOs) listed on the ’Source’ column, there are different ranges for each of
the IBW categories. This is due to the fact that each WFO is in charge of different
geographic locations distributed around the CONUS, which will respond differently
to similar values of FLASH products (not just UnitQ). Uncertainty is also expressed in
the lower portion of the diagram, as ranges of UnitQ values overlap when deciding be-
tween considerable and catastrophic labels. Similar guidance has been issued
for other FLASH products such as Average Return Intervals (ARIs) and QPE-to-FFG
Ratios (see Section 1.3).
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As expressed in Section 1.4, the motivation behind the present work stems from a
NOAA-funded project which aims to build a novel experimental tool, that can distill infor-
mation from MRMS-based FLASH products, to aid forecasters in the issuance of probabilistic
impact-based flash flood warnings. In order to fulfill this goal, two main milestones must
be accomplished. Firstly, a dataset of flash flood events with their respective impact
classes must be constructed, since a dataset of this kind is not only unavailable for this
purpose, but currently is non-existent. This dataset would enable us to use LSRs as
surrogate impact observations for flash flood events. Secondly, having access to a com-
prehensive impact-based flash flood event dataset, a prototype model can be trained to
predict the impact class of flash flood forecasts over the CONUS. The present chapter
will specifically focus on documenting initial efforts made in attaining the first mile-
stone. The present chapter will address the use of a pre-trained deep learning language
model (BERT, see Section 1.2.3) to train an LSR classification model based on a subset of
expertly-classified LSRs. Having access to expertly-labeled data, a classification model
would enable the retrospective classification of additional unlabeled historical LSRs. A
flowchart detailing the scope of this section can be seen in Figure 3.2.

Figure 3.2: IBW-based workflow for addressing the research motivation of
the current work. Notice the delineated region of the initial stage, which
highlights the scope of the present section.

A dataset comprised of 663 LSRs was obtained, where each report was classified by
experts (NWS forecasters as part of an IBW/FLASH focus group) into one of the three
IBW categories: base, considerable, and catastrophic. The reports included in
this expertly-classified dataset span a time period between May of 2018 to June of 2020,
and are located along the coast of the Gulf of Mexico in the South Eastern US. Figure
3.3 shows their spatial distribution.
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Figure 3.3: Visualization of the geographical distribution of the 663
expertly-classified IBW LSRs, colored by impact class.

Among these reports, 183 were classified as base events, 423 were classified as
considerable events, and 57 were classified as catastrophic events. A bar plot
with these proportions is shown in Figure 3.4. This reflects a severe class imbalance
among the three classes, particularly towards the catastrophic class (which is ex-
pected, given the infrequent nature of these events). However, it must be said that even
though from an operational perspective it is expected that base events are to be the
most frequent, it was surprising to see that the most frequent class among this small
dataset corresponded to considerable events.
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Figure 3.4: Bar plot of IBW class counts, reflecting the severe class imbal-
ance towards the considerable class.

A second dataset of historical unlabeled LSRs has been retrieved from the experi-
mental product archives of NSSL’s Stormscale Hydrology Group. A total 94,847 LSRs
is available between January 2005 and June 2022. However, for the scope of this work,
a subset of 22,329 historical unlabeled LSRs between April 2018 and June 2022 was
contemplated. These reports are deemed unlabeled since they don’t have an associ-
ated IBW class, or any other kind of label which can help systematically classify them
into varying levels of impacts or severity. The locations of most of these 22,329 LSRs
is shown in Figure 3.5, however it must be noted that within these historical reports,
there are a number of them which correspond to other non-CONUS territories such as
Hawaii, Puerto Rico, and Guam.
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Figure 3.5: Visualization of the geographical distribution of the 22,329 his-
torical unlabeled LSRs over the CONUS.

During this exploratory phase of the present work, expertly-classified reports and
pre-trained language models were relied upon to create an LSRs classification model.
Initially, models that relied exclusively on the LSR remarks were explored yielding
insufficient performance due to the small training sample size. In hopes of enriching
this small dataset, further impact data from StormDat reports (see Section 1.3.1) was
incorporated into the training dataset with hopes of improving model performance.

3.1.1 LSR Event Matching to FLASH Max UnitQ

In order to assess how good the expert’s classification is, as well as the LSR classifica-
tion model’s, a baseline derived from some certain notion of ’ground truth’ must be
established. For this purpose, FLASH’s maximum unit streamflow (MaxUnitQ) was
selected as an objective measure with which to compare and contrast the severity of
the reported events, as reflected by their assigned impact classes.

To enable direct comparison between an event’s class label and a specific measure of
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MaxUnitQ, flash flood predictions across time and space corresponding to each event
must be reduced to a single quantity. This means that systematic definitions for both
an event’s duration and it’s area of influence must be defined, as well as a reduction
mechanism to produce a single value. These criteria will allow to objectively match
LSR reports to specific FLASH product outputs in a consistent way. For this case, since
LSRs are issued while an event is typically underway (as impacts are being observed),
an event’s duration is assumed to be captured by FLASH within six hours of any given
report (a sequence of 60 MaxUnitQ output). Similarly, an event’s location is assumed to
be captured by the pixel that corresponds to a report’s location, or by any pixel adjacent
to it (effectively, a ∼1km2 radius around the report’s location). Finally, the maximum
MaxUnitQ value present across the spatiotemporal search window [δt = −6h, δr =

1km] will be considered to be representative of a reported event’s magnitude.

With the help of Dr. Humberto Vergara (a Research Scientist in NSSL’s Stormscale
Hydrology group at the time) a Matlab program has been implemented to ingest and
process a Comma-Separated Values (CSV) file containing Flash Flood LSRs. For each
of the LSRs the program queries an archive of FLASH products (GeoTIFF rasters), finds
the 36 MaxUnitQ files corresponding to the time frame starting six hours prior to the
LSR’s report (6 files per hour), and extracts for each file the MaxUnitQ values present
within a 1km radius of the grid cell corresponding to the report’s location. From this
3x3x36 matrix of MaxUnitQ values, the maximum value is identified, extracted, and
associated to each of the reports present in the CSV file. This extraction was performed
for both the 663 expertly-classified LSRs, as well as for the 22,329 historical unlabeled
LSRs. The general source code for this implementation can be found in the Code Ap-
pendix Listing C1.

3.1.2 Remark-only BERT Models

To train an LSR classification model, a compound deep learning architecture was ex-
plored. The main idea of this design was to rely on a pre-trained BERT model to ingest
and extract meaning from the LSR remarks, and then pair BERT’s ’interpretation’ of a
report’s narrative with the expert’s assigned class label to train a fully connected neural
network for classifying these processed remarks. The pre-trained BERT model used for
building the LSR classification architecture was of the "Large" variety, trained on the
English language for uncased text (all text lower-case) with the following architecture:
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24 layers of transformer blocks, followed by 1024 hidden layers, and 16 self-attention
heads (340 million parameters) [16]. First, a preprocessor converts an LSR’s remarks
into token sequences in the format accepted by pre-trained BERT models. Next, the
pre-trained model encoder takes these token sequences and produces a latent repre-
sentation (embeddings) based on its interpretation of the text remarks (a feature vector
of size 768). This embedding representation is then fed to a dense network classifica-
tion head (single layer of 128 neurons), along with the LSR’s IBW class assigned by
the experts. Ultimately this dense network classifier is trained to predict the IBW la-
bel associated to each report, based solely on BERT’s latent representation of an LSR’s
remark. Figure 3.6 details the model’s architecture.

Figure 3.6: Architecture of the implemented pre-trained BERT-based deep
learning LSR classifier.

The machine learning architecture described in Figure 3.6 was implemented in
Python [77] using TensorFlow [78], and both the BERT preprocessor and the pre-trained
model were obtained from TensorFlow Hub [79] [80] (presently acquired by Kaggle,
and as of Nov. 15, 2023 called Kaggle Models [81]).

This architecture was trained in two ways: 1) using all 663 expertly-classified re-
ports, and 2) using a balanced data subset where each class was represented by 57
instances for a total of 171 expertly-classified LSRs. Results for these models are pre-
sented in section 4.1.2 and 4.1.4.
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3.1.3 LSR Event Matching to StormDat Data

A subsequent approach for an LSR classification model is explored following the base-
line established in the previous subsection. A data scarcity issue has been identified
for training a DL model using the 663 expertly-classified reports as provided, as well
as a severe class imbalance which is dominated by the considerable class. A data
enrichment approach is explored with hopes of improving the data’s usefulness, since
increasing the number of expertly-classified samples is not an option.

StormDat reports, as described in Section 1.3.1, are post-facto reports based on de-
tailed impact surveys, which are based on LSR reports. StormDats contain much more
information regarding the impacted area and the event’s severity, but are typically gen-
erated days to weeks after an event has occurred.Additionally, each StormDat report
includes an event narrative, and an episode narrative. Nevertheless, this insightful in-
formation can be paired back to the expertly-classified reports in order to better inform
our model on how to classify them into IBW impacts. Specifically, event impact mea-
sures like the number of direct and indirect injuries, direct and indirect fatalities, prop-
erty damage costs, and crop damage costs. The assumptions here are: 1) damage costs
should correlate proportionally to event impact classes, and 2) fatalities and injuries
should correlate to most catastrophic and some considerable events. This idea
was derived from previous efforts led by researchers at NSSL’s Stormscale Hydrology
group, led by Dr. J.J. Gourley, where it was shown that flash flood severity simulations
are proportionally related to economic impacts observed over the US. In this work,
FLASH Average Recurrent Intervals were shown to be correlated to increasing dollar
amount ranges of StormDat Property Damage reports. Figure 3.7 shows a box plot ex-
ploring this relationship. These new features could help improve our model’s skill, as
we could provide additional quantitative information associated to each LSR remark
for our model to draw upon.
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Figure 3.7: Box plot analysis showing the relationship between increasing
ranges of property damage, associated with higher values of FLASH ARIs.
Slide courtesy of Dr. J.J. Gourley, NSSL’s Stormscale Hydrology group.

In order to match StormDat impact features to our collection of both expertly-
classified and historical unlabeled reports, spatial and temporal assumptions had to
be made like in the case of Section 3.1.1 for matching UnitQ values to LSRs. For this
case, a three hour buffer before and after the StormDat report’s start and end times-
tamps were contemplated. Also, increasingly relaxed (and uncertain) spatial matching
criteria were used to match all LSRs to StormDat reports. The first level of spatial
matching –and the most certain– tries to match an LSR’s location (latitude and longi-
tude), which lies within the boundaries of the reported polygon of a StormDat report.
The second level of spatial matching looks for LSRs that occur in the same state and
county as reported in the StormDat report. Thirdly, the next criterion looks for LSRs
which are within a 25km radius from the StormDat polygon’s centroid. Lastly, the
most uncertain spatial matching criterion looks for any LSRs matched in time, whose
county name matches the county of the StormDat report. This heuristic approach was
applied over an archive of StormDat reports spanning the period between 2006 - 2022,
and is described in Algorithm 3.1 below.

The distance of 25km from the polygon’s centroid is meant to represent an spatial
measure of generalized county extents. It was determined by performing a sensitiv-
ity analysis based on taking increasing distance thresholds which contemplated the
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Algorithm 3.1 StormDat Matching Heuristic

for StormDat in STORMDATS do
for LSR in LSRS that match the StormDat’s time window ±3h do

if LSR location is within StormDat polygon then
LSR and StormDat matched by: point-in-polygon

else if LSR location is the same state and county as the StormDat report then
LSR and StormDat matched by: state-county

else if LSR location is within a 25km radius from StormDat centroid then
LSR and StormDat matched by: distance-25km

else if LSR location is the same county as the StormDat report then
LSR and StormDat matched by: county

else
LSR and StormDat are not matched

end if
end for

end for

squared root of the area of the largest county in the CONUS (San Bernardino County,
CA, USA 51,936km2) as the largest feasible cutoff (228km).

3.1.4 LSR + StormDat BERT Models

After matching and extracting StormDat impact data onto our expertly-classified LSR
dataset, a new LSR classification model is trained using a modified architecture of the
previous model (See Figure 3.6). The data obtained from the StormDat reports is rep-
resented in numerical quantities, which in the case of injuries and fatalities signify
counts of people, while for crop and property damages these numbers represent dollar
amounts. Since we are relying on a pre-trained BERT model, which exclusively under-
stands language, the model’s data loader needs to be modified. In this case, we need it
to read in the StormDat’s event narrative, episode narrative, and numerical variables
for each LSR (in addition to its remark), format the text as lower-case, express the nu-
merical quantities in a more descriptive way, and then append them to the original
text of the LSR remark. This means that an LSR with 3 indirect injuries, and $1,000 in
property damage would have the text appended to its respective remark, as shown in
Listing 3.1.
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<ORIGINAL LSR REMARK> \n
<STORMDAT EVENT NARRATIVE> \n
<STORMDAT EPISODE NARRATIVE> \n
direct injuries: 0. indirect injuries: 3. \
direct fatalities: 0. indirect fatalities: 0. \
property damage: $1,000. crop damage: $0.

Listing 3.1: Structure of enhanced LSR-StormDat remarks, consisting of appended LSR
remarks, StormDat narratives, and textualized event impact quantities.

This way BERT can now potentially ingest an enhanced LSR-StormDat remark
which contains additional descriptions from the StormDat report, as well as quanti-
tative information that describe the impacts the flash flood event resulted in, all ex-
pressed in natural language. The resulting modified data ingestion architecture is de-
tailed in Figure 3.8.

Figure 3.8: Architecture of the implemented pre-trained BERT-based deep
learning LSR classifier, which ingests enhanced LSR-StormDat remarks.
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3.2 ChatGPT-based Flash Flood Severity Index Dataset

Attempting to overcome the shortcomings of relying on the severely limited collection
of expertly-classified IBW LSRs, a new approach was taken towards fulfilling the first
objective of this dissertation work. To create an impact-annotated historical flash flood
report dataset, based on the 22,329 historical unlabeled LSRs, a systematic way of clas-
sifying these reports into impact categories is needed. As detailed in Section 1.3.2, even
though the IBW framework allows for the classification of flash flood forecasts into
three impact classes based on their streamflow values, this guidance is uncertain when
differentiating between the two top classes (these value ranges also vary widely by lo-
cation across the CONUS, see Figure 3.1). Thus, relying solely on a UnitQ based char-
acterization of impacts is not feasible using IBW guidance. Therefore, this task must
be approached using a framework which can translate specific impacts detailed in an
LSR’s remark (natural language) into impact labels: opposed to IBW’s streamflow-
based guidance, FFSI framework fits this need precisely. FFSI’s class descriptions are
expressed in natural language, objectively, concisely, and are consistently stratified in
increasing levels of impact. And even though FFSI was originally conceived as a post-
facto assessment tool, given the nature of its construction, is now a perfect candidate
to be used to retrospectively classify LSRs.

Being able to rely on a language-based framework for classifying LSRs based on
their remarks (FFSI), the problem now revolves around how to systematically assess
and evaluate these report. Given the very large volume of flash flood LSRs we have at
our disposal (22,329 for this study, but over 95,000 in existence between 2005-present),
relying on human experts to perform this work would require great amounts of time
and resources. However, with the recent advent of widely available pre-trained Large
Language Models (like OpenAI’s ChatGPT), the opportunity to leverage this type tech-
nology to address repetitive language-based tasks has been identified. This is particu-
larly desirable, since these publicly-available models offer access through Application
Programming Interfaces (APIs), which make it convenient to write programs for is-
suing large quantities of requests (or prompts) to, and receiving responses from these
models.

Once the LSRs have been classified into FFSI classes, the performance of this classifi-
cation will be examined. A natural path for this will be to re-classify our IBW expertly-
classified dataset into FFSI classes. Then, by comparing the distributions of each re-
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ports corresponding UnitQ with the class distribution each impact framework, objec-
tive comparisons between the two frameworks will be drawn and analyzed. With this
in mind, Section 3.2.1 will provide an overview on how the previous UnitQ matching
heuristic presented in Section 3.1.1 was revisited and improved, in order to provide a
more comprehensive look at each event’s UnitQ characteristics across a systematically-
defined spatiotemporal event scale. Results of this new UnitQ extraction method will
be shown in Chapter 4.2 Section 4.2.1.

Section 3.2.2 will detail how both a software framework and textualized FFSI defi-
nitions have been implemented in order to prompt ChatGPT to provide probabilistic
impact classifications for both the expertly-classified and the historical unlabeled LSRs.
Results on this ChatGPT-based FFSI classifications will be presented in Chapter 4.2,
Section 4.2.2.

3.2.1 FLASH Product Moment Extraction

As described in section 3.1.1, singular MaxUnitQ values for both the expertly-classified
and the historical unlabeled LSRs were extracted. This was done by contemplating a
spatial search window of one grid cell (∼1km), and a temporal search period over six
hours before each report (δt = −6h, δr = 1km), and extracting the maximum MaxU-
nitQ value found within those search parameters. While this method seemed to pro-
vide the previous BERT-based efforts with a sufficient measure of ’ground truth’ with
which to compare model results, a more meaningful representation of each event can
be achieved by 1) extracting values for both MaxUnitQ and MaxARI products, and 2)
extracting statistical distribution moments for each product, and their intersections, in-
stead of singular product measures. Additionally, the spatial search window has been
increased from one to a four kilometer radius, recognizing that the location where one
may observe the highest MaxUnitQ activity many not exactly correspond to where the
impacts were reported , (δr = 4km). Furthermore, while a total temporal search period
of six hours is maintained, this time around the search procedure will contemplate the
past three hours before, as well as the following three hours after an event was re-
ported (δt = ±3h). This should help account for time uncertainties in both FLASH’s
response to an event, as well as in LSR issuance and report times (e.g. a reported event
of a given magnitude, may grow to be more intense or weaker over time). Figure 3.9
shows a general overview of this new method for extracting and matching FLASH
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product data to flash flood event.

Figure 3.9: Depiction of the FLASH product statistical moment extraction
process. For the present work δt = ±3h and δr = 4km were used, which
means that ∆X = ∆Y = 9, and δt = | ± 3h| = 6h. Note that only
one intersection is portrayed above, while both MaxUnitQ∩MaxARI and
MaxARI∩MaxUnitQ were contemplated. Additional to the first four statis-
tical moments, quantiles Q90, Q95 and Q99 were extracted, as well as the
MAX for each search volume.

While the search window systematically constrains our possible search space for
each event, the behavior of the FLASH products and their intersections over time, con-
stitute a reduced 3D search space (compared to the 3D search window domain) in
which only the event-related behavior is captured. The reasoning behind including
MaxARI data in addition to MaxUnitQ, is that while MaxUnitQ represents the flood
response component of each reported event, MaxARI provides a representation of the
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precipitation which has caused the flash flood event being reported. While these event
representations rely on a systematic approach to defining their spatial and temporal ex-
tents, this allows us to treat all flash flood event scales as comparable units in exchange
for some uncertainty. Not only are statistical moments being extracted from these in-
dividual products, but also for the volumetric (spatial + temporal dimensions) inter-
sections of MaxUnitQ∩MaxARI and MaxARI∩MaxUnitQ. MaxUnitQ∩MaxARI repre-
sents MaxUnitQ values which are cropped by an overlapping MaxARI spatial field,
while MaxARI∩MaxUnitQ represents MaxARI values which are cropped by an over-
lapping MaxUnitQ field. If the data fields don’t overlap at any given time step, the
values for MaxUnitQ∩MaxARI will be exactly the same as MaxUnitQ, and those of
MaxARI∩MaxUnitQ will be the same as MaxARI. Note that these intersections were
also performed in the all possible combinations, since it is feasible that at any given
time step only data is found for one of the products, leading to one of these cases to
result in null values if the first operand in the intersection is null.

For each flash flood event’s report, once the MaxARI, MaxUnitQ, MaxUnitQ ∩
MaxARI, and MaxARI ∩ MaxUnitQ spatiotemporal search volumes are established
within the δt and δr boundaries, the first four statistical moments are calculated from
each reduced 3D search space: mean, variance, skewness, and kurtosis. These four mo-
ments provide us with a comprehensive overview of the distribution of values found in
each of the search volumes, and serve as a proxy representation for every event. Addi-
tional to these extracted moments, the maximum value, as well as quantiles Q90, Q95,
and Q99 were also calculated, which provide us with a sensible look at the behavior
of the most extreme values as they approach the MAX. By including these moments
and quantiles, we can now interrogate the overall behavior of each event’s data, as
well as the variability at the higher-end of the distribution, in order to better assess the
categorization of each event into impact classes.

The new modular python program, based on the one previously implemented for
matching UnitQ FLASH outputs to LSRs (Section 3.1.1, was extended to include per-
form product aggregations and calculations described above.

For each of the LSRs the program queries an archive of FLASH products (GeoTIFF
rasters), and for each FLASH product requested (MaxUnitQ and MaxARI) finds the
36 MaxUnitQ files corresponding to the time frame spanning three hours prior to the
LSR’s report (6 files per hour) and extending to three hours after the report. Having
found the files for each product, it crops the product data (which is originally at the
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CONUS scale) to the extents defined by the LSR location and the spatial search window
radius. Thus, the program constructs the four aforementioned 3D search volumes by
taking the non-empty values found for all time steps in the search domain: MaxARI,
MaxUnitQ, MaxUnitQ∩MaxARI, and MaxARI∩MaxUnitQ. For each of these, it then
calculates and extracts the first four statistical moments, the Q90, Q95, Q99 quantiles,
and the maximum value. Lastly, it writes these newly extracted values with their asso-
ciated original LSR data into a copy of the original LSR CSV file. This extraction was
performed for both the 663 expertly-classified LSRs, as well as for the 22,329 historical
unlabeled LSRs. The general source code for this implementation can be found in the
Code Appendix Listings C2, C3, C4, and C5.

3.2.2 FFSI V1

Textualization literally means to render something as text, but in our case specifically we
use the term to imply the re-expression of simple ideas (i.e. a list of impacts and impact
classes) as complete, self-contained conditional statements that relate these ideas to
a specific context (i.e. a list of conditional statements that relate impacts to specific
impact classes). Generative pre-trained LLMs like ChatGPT can not only deal with
the context of language, but also the specificity of what is being said. Thus, in order
to make use of the ChatGPT API to classify LSR remarks, the FFSI impact definitions
[32] (see Table 1.4) need to be transformed into an actionable prompt that the GPT
model can interpret as a task, and that provide it with clear instructions to follow.
This can be achieved by transforming each FFSI class’ impact descriptions (which is
a list of specific impacts) into a textualized conditional statement. Plainly said, we can
ask ChatGPT to assign each class to an LSR only if the remark mentions any of the
associated impacts. Figure 3.10 provides an overview of the workflow of using this
textualized FFSI definitions and the ChatGPT API.
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Figure 3.10: Flowchart that describes the process of using textualized FFSI
definitions and the ChatGPT API to classify LSR remarks into impact
classes.

Furthermore, we can also request that ChatGPT not only assigns LSRs a given class,
but instead assigns a vector of joint probabilities for each of the classes. Lastly, we can
also request that ChatGPT provides these outputs in a computer-friendly format like
JSON, structuring labels for each class with the probability values associated for each
class. Listing 3.2 describes the prompt used to interact with the ChatGPT API, which
incorporates a) the textualized FFSI definitions illustrating how to interpret each LSR
remark, b) a task to assign joint impact probabilities to the classification, and c) a task
to format the responses we will receive from the API. Notice that explicit requests are
to be made in order for ChatGPT not to provide an explanation of its reasoning; even
though this is usually a desirable feature, at the time of implementation, it only makes
processing the model’s output much more irregular and difficult to parse.
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Given the following severity category definitions:

1. "MINOR": if there is mention of rivers or creeks
overflowing; or if there is mention of crops, yards, or
basements being flooded.

↪→

↪→

2. "MODERATE": if there is mention of streets or roads being
flooded; or if there is mention of road closures.↪→

3. "SERIOUS": if there is mention of vehicles, homes, and/or
buildings inundated, or containing water; or if there is
mention of roads or bridges being damaged.

↪→

↪→

4. "SEVERE": if there is mention of vehicles and/or mobile
homes being swept away; or if there is mention of injuries.↪→

5. "CATASTROPHIC": if there is mention of buildings, or large
infrastructures submerged; or if there is mention of houses
or homes (as opposed to mobile homes) being swept away,
carried away, or destroyed; or if there is mention of
fatalities.

↪→

↪→

↪→

↪→

Assign impact class probabilities (in percents) to the following
text, make sure the sum of all probabilities add up to 100%.
Only return the probability values, and DO NOT EXPLAIN YOUR
REASONING.

↪→

↪→

↪→

Your answer should be expressed following this JSON format:

{
"MINOR": <PROBABILITY PERCENT>,
"MODERATE": <PROBABILITY PERCENT>,
"SERIOUS": <PROBABILITY PERCENT>,
"SEVERE": <PROBABILITY PERCENT>,
"CATASTROPHIC": <PROBABILITY PERCENT>

}

Listing 3.2: ChatGPT prompt composed of textualized FFSI definitions, spe-
cific instructions for probability calculations, and output formatting.

For classifying LSRs, the ChatGPT API needs to first be provided with an system
initiation task, which defines the type of action we are expecting of the LLM (i.e. in-
structions on how to address out prompts). In this case, the initialization task is the
textualized FFSI definitions. Once the task is initialized, the API can be sequentially
prompted with user tasks to produce classification for each LSR remark. A python tool
has been implemented to query the ChatGPT API, allowing it to process large amounts
of LSRs in batches. This is very important since the API sometimes can time out due to
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server load, or network communication issues. More relevantly, this implementation
also is able to resume work after interruptions, without having to re-process more than
one batch each time it resumes work (as it writes partial outputs for each batch). For
processing our LSR datasets, a batch size of 20 has been chosen as a good compromise
between number of partial files produced, file size output, and minimizing the amount
of re-processed LSRs at any given failure.

In addition to the joint probabilities of FFSI impact class, a singular numeric rep-
resentation of each LSR’s joint probability was calculated, and named as FFSI Score.
This FFSI score is calculated by taking the percentage fraction of each class’ probabil-
ity, and multiplying it by the integer which increasingly represents each impact class.
This results in a floating point value between [1, 5] for each possible combination of
joint probabilities assigned to a given LSR. It should be noted that for LSRs that Chat-
GPT can not classify using the textualized FFSI definitions, an FFSI score of zero was
assigned. The formula for the FFSI score is described in Equation 3.1. Some examples
of FFSI scores an their corresponding joint probabilities are presented in Table 3.1.

FFSI Score =(p(MINOR) ∗ 1) + (p(MODERATE) ∗ 2) + (p(SERIOUS) ∗ 3)+

(p(SEV ERE) ∗ 4) + (p(CATASTROPHIC) ∗ 5) = [1, 5]
(3.1)

Joint Class Probabilities FFSI Score
{p(MIN), p(MOD), p(SER), p(SEV), p(CAT)} [1,5]

{0.7, 0.3, 0.0, 0.0, 0.0} 1.29
{0.0, 0.7, 0.3, 0.0, 0.0} 2.30
{0.1, 0.3, 0.5, 0.1, 0.0} 2.60
{0.0, 0.1, 0.7, 0.2, 0.0} 3.09
{0.0, 0.0, 0.5, 0.5, 0.0} 3.50
{0.0, 0.0, 0.0, 0.0, 1.0} 5.00

Table 3.1: Example of joint FFSI class probabilities, and their corresponding
FFSI scores.

Once all batches have been processed, the tool combines all intermediate results
into a single CSV file which contains the original LSR information and the FFSI clas-
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sification. The general source code for this implementation can be found in the Code
Appendix Listings C6, C7, and C8.

While working on the FFSI-based LSR classification, an extended set of impact defi-
nitions for FFSI were provided by the original developers of the FFSI framework (from
now on referred to as FFSI V2). They have made recent strides to extend the origi-
nal FFSI definitions (FFSI V1), aimed at operational use within their respective NWS
Weather Forecast Offices. It must be noted that FFSI V2 definitions are much more ex-
tensive and detailed than FFSI V1. An example of textualized FFSI V2 definitions can
be found in the Appendix Listing A1.

3.3 FFSI-Based Flash Flood Impacts Model

Section 3.2 shows the methods performed to construct a flash flood impacts dataset
comprised of 22,329 LSR reports between 2018 and 2022. This historical dataset has
been classified into probabilistic FFSI impact categories (joint FFSI probabilities + FFSI
score) through a ChatGPT+FFSI approach, and each report has been matched to cor-
responding FLASH MaxUnitQ and MaxARI products, for which statistical moments
have been extracted (see Section 3.2.1). This addressed the present work’s first main
objective.

In order to address the second challenge of this dissertation, a proof-of-concept
model capable of producing impact probabilities based on real-time measures of pre-
cipitation and flow response (among other variables) will be designed and imple-
mented. However, before delving into model building and training, important con-
straints must be chosen to propose this proof-of-concept application; particularly con-
cerning the extension of the CONUS domain. The MRMS CONUS domain is repre-
sented by 7000x3500 pixels, each with a horizontal and vertical resolution of ∼1km
(0.01º), for a total of 24,500,000 pixels of which around 10,000,000 represent grid cells
over land. Working at this is computationally expensive, specially when thinking of
training deep learning models. For this reason, a subdomain within the CONUS was
chosen.

Following the flash flood events that occurred in the state of Kentucky July 26th-
30th of 2022, a case study was conformed by NSSL’s Stormscale Hydrology group
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to hold a workshop at the 14th International Precipitation Conference. Having pre-
pared multiple datasets for this workshop, a decision was made to restrict our proof-
of-concept model to the state of Kentucky (KY). Figure 3.11 details the location of the
minimum bounding box around the state of Kentucky, with respect to the CONUS
domain.

Figure 3.11: CONUS and Kentucky Subdomain. The MRMS CONUS do-
main spans 7000x3500px, with a total area of composed by 24,500,000px2 of
which ∼ 10, 000, 000px2 are overland. The Kentucky state subdomain spans
779x280px, covering an area of 218,120px2

To consistently be able to match LSRs to the state of KY and having some additional
spatial context for those events near the border, first a minimum bounding box was
obtained for the KY state line. Then, this bounding box was inflates by 10km to each
side, in order to provide a sensible buffer surrounding the state line. This subdomain
consists of 779x280px, and a total of 218,120 grid cells with MRMS spacing (∼1km,
0.01º). Figure 3.12 shows the KY state line with a dark shaded minimum bounding
box, and a green overlay which illustrates the 10km padding around the bounding
box.
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Figure 3.12: KY state line with a dark shaded minimum bounding box, and
a green overlay which illustrates the 10km padding around the bounding
box.

Having defined our working subdomain, the next step is to collect all LSRs that
correspond to the state of KY. Fortunately, state is an attribute for all LSRs, so a
simple selection by state was enough to retrieve all the KY LSRs from both the historical
and the expertly-classified LSR datasets. A grand total of 979 flash flood LSR reports
were found to correspond to the state of Kentucky between 2018 and 2022. A total of
779 non-null, non-edge LSRs were retrieved for the state of KY. Null events are those
with an FFSI score <= 1, while non-edge events are those that allow for a 128x128 pixel
buffer around the LSR location, without outcropping the bounds of the subdomain. Of
these 779 non-null, non-edge LSRs, only 153 complete cases were found, for which no
missing UnitQ or ARI time steps were found in the dataset (i.e. no missing FLASH
product data spanning ±3h surrounding the LSR report time). Figure 3.13 shows the
locations of the 979 LSRs found within the KY subdomain.
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Figure 3.13: Location of the 979 total LSRs found within the Kentucky sub-
domain.

Having identified the LSR reports with their associated GPT-based FFSI classifica-
tion, we now must prepare our training dataset. Since we want to annotate FLASH
MaxUnitQ flash flood forecasts, MaxUnitQ will be our most obvious input attribute,
alongside FLASH’s MaxARI. While MaxARI will inform the model regarding the
causative rainfall associated to a specific flash flooding event, MaxUnitQ will inform
the model about the estimated response to the causative rainfall. These will also be
our only dynamic data (i.e. data that changes through time), and they are shown in
Figure 3.14. Conversely, additional static data layers will inform the model about the
underlying morphology and vulnerability, associated with the location over which the
reported flash flood event occurred. Among geomorphological variables, impervious-
ness (percentage of imperviousness associated with a given grid cell), digital elevation,
flow accumulation (the amount of pixels upstream that drain to a given pixel), and
flashiness (how prone a given stream pixel is to a rapid response and to cause flash
flooding) [2] were selected. Regarding vulnerability layers, the following attributes
were selected: population density, primary road density, mobile home parks, low wa-
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ter crossings, camp grounds,and building centroids. All static layers are represented
at a grid cell level, and a sample of them are shown in Figure 3.15.

Figure 3.14: FLASH products - (left) Flash Maximum Average Return Inter-
val (MaxARI); (right) FLASH Maximum Unit Streamflow (MaxUnitQ)

(a) KY DEM

(b) KY Flashiness

Figure 3.15: (top) Kentucky digital elevation, notice the Cumberland Moun-
tains and Black Mountain towards the southeastern portion of the state, by
the border with the state of Virginia.; (bottom) Kentucky flashiness.
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Static vulnerability layers were readily available to NSSL’s Stormscale Hydrology
group, since they were generated as part of the JTTI-funded project mentioned in Sec-
tion 1.4. Geomorphological layers were also readily available as part of the FLASH
project’s operational nature, since these layers are generally used as parameters for the
CREST hydrologic model in EF5 [23]. To prepare these static layers, a cropping mask
for the KY subdomain is employed to process and prepare these rasters. Conversely,
while we previously accessed the dynamic MaxARI and MaxUnitQ layers to extract
the statistical moments described in Section 3.2.1, the FLASH product files associated
to each LSR report’s spatial were only read but not retrieved. Fortunately, by making
use of the same codebase used for the moment extraction, with slight modification,
a product extraction python tool was engineered to find, crop, and save the CONUS-
scale FLASH products corresponding to each LSR. For each LSR event, FLASH product
outputs were extracted at 10 minute intervals, for the previous three hours to the re-
ported time of each event; this means that for each LSR report, a total of 18 outputs for
both MaxUnitQ and MaxARI were extracted (3h 10min = 18 time steps). The product
extractor has been implemented with the capability to impute missing intermediate
FLASH output files for any of the products, by assuming a steady state between the
start and the end of the missing period. However, there were cases for which imputa-
tion was not possible, and only a few of the 18 time steps had any data available.

Now that we can extract our input data for each LSR (ten static layers and two dy-
namic layers: MaxUnitQ and MaxARI – each a sequence of 18 frames), we must also
convert our FFSI classification into a spatialized representation which is compatible
with our 2D/3D input data over the KY domain. For each LSR event, a buffer area is
calculated around its reported location, within the Kentucky subdomain. This buffer
will be the same spatial search window with which we extracted the statistical mo-
ments in Section 3.2.1: a search radius of 4 pixels (δr = 4), which results in a 9x9 pixel
window centered on the LSR location. Once this buffer is determined, an output raster
is built for each LSR, where the extents are those of the Kentucky subdomain, but all
values are empty except for the 9x9 pixel buffer around the LSR location, for which
all pixels hold de value corresponding to each LSR’s FFSI score. This is described in
Figure 3.16 below.
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Figure 3.16: Spatialized FFSI score outputs over the Kentucky subdomain,
calculated for a single LSR.

Having extracted, cropped and composed all of the necessary attributes that make
up our training dataset of 779 LSRs over the Kentucky subdomain, we can now artic-
ulate what constitutes a training sample. A training sample is a tensor of dimensions
(779, 228, 47) which represents an LSR event, composed by 10 geomorphological and
vulnerability static layers, a sequence of 18 MaxUnitQ layers that span the previous 3
hours before the event, a sequence of 18 MaxARI layers that span the previous 3 hours
before the event, and a single output layer with a spatialized FFSI score. Note that
the tensor’s dimensions correspond to the KY subdomain’s shape (779x228 pixels) and
the total number of layers that constitute a training sample (47). Figure 3.17 shows the
structure of a training sample tensor representing a single LSR event.

Figure 3.17: Structure of a training sample, composed of static layers, dy-
namic layers, and a class label output layer.

All three experimental models listed below were readily available as PyTorch im-
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plementations [82], which could then be reused through a Python API. Models and
documentations are also available through the Hugging Face community website [83].

3.3.1 Segmentation Transformers

The first model explored with the 779 non-null, non-edge training dataset was a Seg-
mentation Transformer [84] (Segformer, see Section 1.2.5). For this model, the 47 layers
of each training sample will be used as a whole. The idea behind this exploration is
to attempt to disregard the temporal features in the sequence of FLASH product data,
and test whether the Segformer model can pick up on any spatial features from the
static and dynamic data, when consumed as a whole (i.e. a 46-channel image), and
attempts to perform semantic segmentation based on the provided class labels in the
output layer. The segformer architecture explored in this phase corresponds to the
largest model, denominated MiT-b5, which has 82 million parameters, and a Multi-
Layer Perception decoder, which acts as a classification head [19]. A diagram of this
model’s implementation is shown in Figure 3.18. Results for this model’s training can
be seen in Section 4.3.1.

Figure 3.18: Segformer model implementation.
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3.3.2 Video Masked Autoencoders

Proceeding with further experimentation using only the dynamic data from the 779
non-null, non-edge training samples, a Video Masked Autoencoder [85] model (Video-
MAE, see Section 1.2.5) with a classification head was explored to test modeling the dy-
namic inputs and their sequential nature. Particularly, for this approach, the MaxUnitQ
and MaxARI sequential data are treated by the model as 18 frames of a two-channel
video. During training, the features extracted by the VideoMAE model are piped
through a classification head comprised of 12 hidden layers of size 768 (the default
for Hugging Face’s implementation of their VideoMAEForVideoClassification
class), alongside spatialized FFSI class label. A depiction of this architecture is shown
in Figure 3.19. Results for this model’s training can be seen in Section 4.3.2.

Figure 3.19: VideoMAE model implementation.

3.3.3 VideoMAE + Vision Transformers

As the last portion of the experimentation process, a composite approach was de-
vised to use different models for dealing with the static and dynamic attributes of
our dataset. A VideoMAE component will ingest the dynamic FLASH product data,
and extract features from it using the two-channel video approach discussed in Sec-
tion 3.3.2. For the static layers, a Vision Transformer [86] (ViT, see Section 1.2.5) model
will be employed to ingest the static layers as a multi-channel (10 channels), to per-
form feature extraction. The latent representations from both the VideoMAE model
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and the ViT model will then be concatenated, and piped as input to a simple classifi-
cation head (two-layer fully connected feed-forward neural network with 768 neurons
each), alongside the spatialized FFSI class label for each instance. Figure 3.20 details
this compound architecture with distinct models for static and dynamic layers in our
training samples. Results for this model’s training can be seen in Section 4.3.3.

Figure 3.20: VideoMAE+ViT model implementation.
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Chapter 4

Results

This chapter contains the results achieved by the various methods detailed in Chap-
ter 3, which address the two main challenges faced by this dissertation. Concerning
the firs challenge of constructing a historical flash flood impacts dataset: Section 4.1
will present the results associated with using pre-trained transformer-based language
models (BERT) to train an LSR classifier; Section 4.2 will present the results of using
generative, predictive Large Language Models (ChatGPT) and a language-based flash
flood impact framework (FFSI) to classify LSRs. Regarding the second challenge of
training a proof-of-concept ML model to forecast flash flood impact, this chapter will
present the results of attempting three distinct approaches which gradually explore
its implementation. Section 4.3 presents each of the three approaches in a different
section: Segmentation transformer (Segformer) results will be shown in Section 4.3.1,
Video Masked Autoencoder (VideoMAE) results will be shown in Section 4.3.2, and
lastly a combined approach using VideoMAE and Video Transformer (ViT) results will
be shown in Section 4.3.3.

4.1 BERT for IBW LSR Classification

This section will detail the results of training two distinct BERT-based models, as well
as their respective data preparation processes. First expertly-classified and historical
LSR reports must be matched to FLASH unit streamflow (UnitQ) values which will en-
able to establish a way of assessing model performance, based on an objective measure
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(this is described in Section 4.1.1). Using the expertly-classified dataset, a pre-trained
BERT model is used in conjunction with a dense network to train an LSR classification
model, which is then validated on the historical dataset (these results are shown in Sec-
tion 4.1.2). Attempts to improve model performance are incurred in, by incorporating
additional event impact data from StormDat events. This entailed matching our LSR
datasets with StormDat reports, in order to enrich our training data (this process is
shown in Section 4.1.3). Lastly, with this newly enriched dataset, the same BERT archi-
tecture used previously was retrained and validated using the historical LSRs (these
results are shown in Section 4.1.4).

4.1.1 LSR Event Matching to FLASH Max UnitQ

Following the method described in Section 3.1.1, a temporal search period of δt = −6h,
and a spatial search radius δr = 1km were used. While UnitQ values were extracted
reliably for the 663 expertly-classified reports, this was only possible for 21,852 of the
total 22, 829 historical unlabeled reports. Figure 4.1 shows the UnitQ value distribu-
tions for both the expertly-classified, and the historical unlabeled LSRs.

(a) (b) (c)

Figure 4.1: (a) Distribution of matched MaxUnitQ values for the expertly-
classified dataset; (b) Distribution of matched MaxUnitQ values for the his-
torical unlabeled dataset; (c) Distributions of matched MaxUnitQ values for
both datasets, cropped up to MaxUnitQ values of 10.

As can be seen from figure 4.1c, the UnitQ distribution values between the two
datasets appear to be 1) biased in opposite directions, and 2) have central tendencies
which diverge from one another. Expertly-classified events tend to have a more ’cen-
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tral’ distribution of log(UnitQ) values, while historical events show a skewed distribu-
tion, towards much lower log(UnitQ) vales. This is somewhat expected, since being a
much large collection of historical reports, lower-end UnitQ values and events tend to
be more prevalent (i.e. extreme events are rare, thus less frequent).

Since we do have access to impact-based warning categories in our expertly-classi-
fied dataset, we can also examine the UnitQ values with respect to each IBW class.
These distributions are shown in Figure 4.2 below.

Figure 4.2: Per-class density distribution plot of expertly-classified LSR
UnitQ values. Medians for each class are color-coded, and shown by con-
tinuous vertical lines.

As can be seen from this per-class distribution of UnitQ values, there is a drastic
overlap between class distributions. And while the distribution of catastrophic re-
ports seems to be consistently skewed towards high UnitQ values, the distributions for
base and considerable classes seem to overlap almost completely. Furthermore,
the medians of the expert classification distributions exhibit an unexpected relative
location for the base and considerable classes, since they appear to be inverted, in-
stead of presenting themselves in an increasing order of magnitude class. This clearly
portrays the fact that the experts (forecasters) struggle to discern between the non-
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catastrophic classes. While this may seem surprising at first, it is logical that this
struggle stems directly from the general IBW guidance for UnitQ values presented in
Table 1.3, as well as in Figure 3.1. While distinctly low UnitQ value ranges are pro-
vided for base events, the same ranges are provided for both the considerable and
catastrophic events. This means that the middle class considerable will always
end up being decided from and confused with both the upper range of base UnitQ
values, and the lower range of catastrophic UnitQ values; and since less extreme
events are more frequent, it is more likely that the considerable class will be consis-
tently decided upon with higher base UnitQ range values.

4.1.2 Remark-only BERT Models

The best training results for the first model trained with the full 663 expertly-classified
instances yielded the following results:

Metric Value

Categorical Accuracy 0.638
F1 Score 0.498
Precision 0.640
Recall 0.638

Table 4.1: Training metrics for BERT-based IBW classifier using 663 instances.

As can be seen from the above results, even though our training categorical accu-
racy reached modest levels, our F1 Score indicates that roughly half of the model’s pre-
dictions were correct. This point is echoed by out Recall score, which indicates that our
true positive (and false negative) rate also correspond to roughly half of our attempts.
As a rough validation of our model’s (poor) skill, inference was tested on 21,852 unseen
historical LSRs (not part of the expertly-classified reports). Validation results yielded
that 100% of the unlabeled, unseen reports were classified as considerable events.
Not only is the training performance insufficient, but the validation results are a clear
reflection of the severe class imbalance which favors the considerable class in our
expertly-classified dataset.

Knowing that performance was not feasibly going to improve by removing data
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samples from our training data, the model was trained on the balanced subset of 171
expertly-classified reports to assert whether the class imbalance was responsible for
our first model’s bias. The best training results for the second model trained yielded
the following results:

Metric Value

Categorical Accuracy 0.415
F1 Score 0.411
Precision 0.667
Recall 0.012

Table 4.2: Training metrics for BERT-based IBW classifier using a balanced subset of
171 instances.

From the above performance metrics we can see that as expected, overall perfor-
mance diminished since the sample size was dramatically reduced (even though preci-
sion remained similar). The model’s F1 score did not change dramatically but did de-
crease, implying that roughly 40% of the model’s predictions were correct. However,
in this case, our Recall metric tells a different story: this second model sees a very high
proportion of false negatives in its predictions. As in the previous model, validation
was performed on the unseen and unlabeled 21,852 historical LSRs. Interestingly, this
model classified 10,351 of the validation instances as considerable events (47.37%),
6,524 instances as catastrophic events (29.86%), and 4,977 instances as base events
(22.78%). Therefore, even though by balancing the proportion of instances in the train-
ing data, the bias towards the considerable class was improved, the performance
achieved is unsatisfactory: the model will certainly produce large quantities of false
negatives, and the overall skill was not improved at the cost of drastically reducing
our training sample size.
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(a) (b)

Figure 4.3: (a) ; Measures of central tendency are color-coded, medians are
presented in solid vertical lines. (b); ;

Even though performance for this approach is not satisfactory, this clearly estab-
lishes a baseline with which to gauge the following approaches. These results are cer-
tainly not related to pre-trained BERT models, as numerous other research works and
applications have proven that they can handle the heavy lifting for NLP tasks. Rather,
what these results show seems to point to our data scarcity problem, which is insuffi-
cient to train a classifier based on natural language, due to having such a small set of
samples at our disposal.

4.1.3 LSR Event Matching to StormDat Data

As mentioned in Section 3.1.3, a sensitivity analysis was performed to define the dis-
tance measure the use in our LSR-StormDat matching heuristic. Increasing values of
distance between one and 500km were used to match the expertly-classified LSRs, hav-
ing as a reference a measure of 228km, which corresponds to the square root of the
are of the larges county in the COUNS (San Berdardino, CA, USA). The idea behind
this measure was to find an idealized representation for generalized county extents,
to define a reasonable report matching radius. As shown in Figure 4.4, the difference
between using a 25km distance threshold and a 228km distance threshold is minimal
with respect to the sample size, and maintains a reasonable measure of uncertainty
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with respect to an LSR’s location with respect to a given StormDat report.

(a) (b)

Figure 4.4: Matching Distance Sensitivity Analysis. (a) Overall results for
the sensitivity analysis; (b) Detailed results for the sensitivity analysis; No-
tice that the difference between using a measure of 25km (610 reports) and
228km (615) is only 5 non-matched reports.

StormDat reports (51,623) were matched to both the expertly-classified LSRs (22,329
reports) and historical LSRs (663 reports); a total combined of 22,992 LSRs. Keep in
mind that multiple LSRs (events) can be matched to a given StormDat report, and each
StormDat report can describe a multiple events associated with a single episode.

Out of the 22,329 historical unlabeled LSRs, 11,677 reports were matched to 4,741
existing StormDat events, which were associated to 2,372 episodes. This means that
not all of the historical LSRs were found to have a matching StormDat report using
the heuristic matching approach described in Algorithm 3.1. Conversely, for the 663
expertly-classified LSRs, they were all matched to existing StormDat reports, encom-
passing 249 events associated to 129 episodes. Figure 4.5 illustrate these proportions.
For the 663 expertly classified reports, 313 were matched by state and county, 236 were
matched by point-in-polygon, 53 were matched by a distance radius of 25km to the
StormDat polygon’s centroid, and 9 were matched by only county name. Figure 4.6
illustrates these proportions.
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Figure 4.5: Venn diagrams detailing the outcome of the matching between
LSR and StormDat reports.

Figure 4.6: Histogram of matching criteria frequency between LSR and
StormDat reports, for the 663 expertly-classified reports: 313 reports were
matched by state and county, 236 were matched by point-in-polygon, 53
were matched by a distance of 25km from the StormDat polygon’s centroid,
and 9 were match only by county name.

Having been able to associate StormDat-specific measures of impact (indirect in-
juries, direct injuries, direct fatalities, crop damage, and property damage) to our 11,677
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matched LSR datasets, density plots were generated to explore the relationships of
UnitQ values associated to LSR reports, with each of these StormDat measures of im-
pact.

(a) (b)

Figure 4.7: Historical LSR StormData variable value distributions vs UnitQ
(a) Indirect injuries, 3 matched instances; (b) Direct injuries, 20 matched
instances
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(a) (b)

Figure 4.8: Historical LSR StormData variable value distributions vs UnitQ
(a) Direct fatalities, 98 matched instances; (b) Crop damage, 331 matched
instances.
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Figure 4.9: Historical LSR StormData Property Damage value distributions
vs UnitQ, 3,525 matched instances

Out of the 11,677 matched LSR reports for which 4,741 StormDat reports were
matched, 3 matched instances had associated indirect injury values; 20 matched in-
stances had associated direct injury values; 98 matched instances had associated direct
fatality values; 331 matched instances had associated crop damage values; and 3,525
matched instances had associated property damage values. This showed that prop-
erty damage seemed to be the most represented attribute within the 11,677 matched
LSR-StormDat reports.

In order to assess the relationship between ranges of property damages with values
of UnitQ, a box-plot analysis was performed. It was found that, even though there is
a very large overall dispersion of UnitQ values for all damage ranges, higher damage
cost ranges are associated with higher UnitQ values. This general trend holds true for
both the expertly-classified LSRs, as well as the historical unlabeled LSRS, which can
be seen in Figure 4.10.

93



(a) (b)

Figure 4.10: Box plots of Log(UnitQ) vs StormDat property damage ranges.
(a) Log(UnitQ) vs StormDat property damage ranges of historical unla-
beled LSRs; (b) Log(UnitQ) vs StormDat property damage ranges expertly-
classified LSRs; Note that the general trend shown in the historical LSRs is
preserved in the expertly-classified dataset: higher damage cost ranges are
associated with higher UnitQ values.

4.1.4 LSR + StormDat BERT Models

The best training results for the model trained on the 663 expertly-classified, enhanced
LSR-StormDat remarks yielded the following results:

Metric Value

Categorical Accuracy 0.638
F1 Score 0.498
Precision 0.640
Recall 0.638

Table 4.3: Training metrics for BERT-based IBW classifier using 663 instances which
were enriched with StormDat event impact data.

As we can see from the above performance metrics, results are no different from
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those obtained by the first model shown in Section 4.1.2. Even though we enriched
our remarks with much more information for BERT to pick up on, our training sample
size is still too small for us to train a deep learning classifier based on transformer
representations derived from these enhanced remarks.

A similar validation was performed using the trained model on the historical LSRs,
and results were not favorable. The model not only failed to demonstrate any expected
bias towards the considerable class (which is the most prevalent in the training
dataset), but in fact classified none of the instances as considerable. It classified
98.43% of the validations instances as catastrophic, and only 1.57% as base. This
validation reflects a clear failure to improve the classification model’s training by in-
troducing these new StormDat features.

(a) (b)

Figure 4.11: (a) Expertly-classified LSRs, training data class density distri-
butions ; (b) Historical LSRs, validation results class density distributions;
Measures of central tendency are color-coded, medians are presented in
solid vertical lines.

In order to try to understand why these StormDat-derived quantities do not seem
to have noticeable effect on our model’s training, a closer look into these quantita-
tive variables is warranted. Upon closer inspection, it was found that out of the 663
expertly-classified instances, only 189 had associated StormDat features. Concerning
those instances corresponding to the class considerable, only two had non-damage
StormDat features associated with them, and they were fatalities. Furthermore, by
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inspecting the property damage distribution values across the IBW classes for the
expertly-classified dataset, all classes show a completely overlapping distribution of
property damage amounts with respect to UnitQ values.

Figure 4.12: Density distribution by impact class of StormData property
damage.

More detailed inspection of UnitQ vs property damage values for the StormDat-
enriched expertly-classified dataset, showed that for the base and considerable

classes there is no clear trend which correlates increasing values of UnitQ with higher
values of property damage. Conversely, there seems to be a more evident trend when
looking at the catastrophic class.

(a) Base (b) Considerable (c) Catastrophic

Figure 4.13: Expertly-Classified LSR+StormDat Property Damage vs UnitQ
- Class Distributions
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More relevantly, when we visualizing all distributions together, it can be seen that
these class relationships with UnitQ and property damage are completely overlapping,
which instead of aiding our classification model to segregate between the classes, is
likely making it much harder.

Figure 4.14: Expertly-Classified LSR+StormDat Property Damage vs UnitQ
Distributions

As shown in the results presented in this section, none of the multiple BERT-based
approaches seemed to yield any favorable results. What’s more, throughout out at-
tempts it was impossible for any of the models to memorize the training data (overfit-
ting). This, together with a complete lack of skill in reliably zeroing-in on clear signals
from our dataset, indicates a severe lack of training data to address the LSR classifi-
cation problem in its present formulation. Thus, subsequent sections will explore a
different language-based approach to working with the much larger historical unla-
beled dataset, leaving the expertly-classified reports as a measure of validation of LSR
classification performance.

4.2 ChatGPT-based Flash Flood Severity Index Dataset

As described in Section 3.2, a new approach was taken towards producing a flash flood
impacts dataset, relying on the ChatGPT API, and textualized FFSI impact definitions.
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First, a new method for matching our expertly-classified and LSR datasets to FLASH
products was explored. In large part, this was motivated by the disparity of UnitQ
distributions observed after following the previous UnitQ matching method (see Fig-
ure 4.1), which we consider to be a direct result of a very tight spatial search window,
and the fact that these events were reduced to the extraction of a single UnitQ value
for a 6 hour period. As explained in Section 3.2.1, statistical moments are extracted for
each LSR, from two distinct FLASH product, and their intersections. These results will
be detailed in Section 4.2.1. Subsequently, both the expertly-classified and the histori-
cal LSR datasets are classified into FFSI impact classes by the ChatGPT API using the
textualized FFSI definitions portrayed in Listing 3.2.

4.2.1 FLASH Product Moment Extraction

As described in the methods Section 3.2.1, MaxUnitQ moments were reliably extracted
for both the 663 expertly-classified reports and the 22, 829 historical unlabeled reports.
As can be seen from Figure 4.15, compared to results from our previous UnitQ match-
ing procedure shown in Figure 4.1, the extracted distributions for the maximum Max-
UnitQ values are much more similar between our historical and expertly-classified
LSRs. For the sake of expediency and convenience, we will focus on maximum, Q90,
and mean values for MaxUnitQ and MaxARI products for the rest of the analysis, but
all other distributions are available in the Appendix.

Distributions of MaxUnitQ maximum values show fairly consistent coincidence be-
tween the expertly-classified and the historical datasets (see Figure 4.15. Still, as seen
in Section 4.1, the historical LSRs tend to contain more lower MaxUnitQ values, while
the expertly-classified dataset tends to favor higher UnitQ values. This slight bias is
also expected by both the geographical bias of the expertly-classified dataset, as well as
the selected events themselves, which are made up of mostly considerable events.
Conversely, the historical dataset is composed of events from all over the CONUS, and
contains much more samples, which statistically tend to be associated with more fre-
quent, less extreme events. The same can be said for the distributions of MaxUnitQ
Q90 in Figure 4.16, and MaxUnitQ mean values in Figure 4.17.
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Figure 4.15: Distribution of maximum MaxUnitQ values for (a) the
expertly-classified dataset, (b) historical unlabeled dataset, and (c) both
datasets.

Figure 4.16: Distribution of Q90 MaxUnitQ values for (a) the expertly-
classified dataset, (b) historical unlabeled dataset, and (c) both datasets.

Figure 4.17: Distribution of mean MaxUnitQ values for (a) the expertly-
classified dataset, (b) historical unlabeled dataset, and (c) both datasets.

As was the case for MaxUnitQ values, their intersection with MaxARI values (Max-
UnitQ ∩ MaxARI, where only MaxUnitQ values withing a non-zero MaxARI field are
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contemplated) seem to present the same type of behavior between the distributions.
These can be see in Figures 4.18, 4.19, and 4.20.

Figure 4.18: Distribution of maximum MaxUnitQ∩MaxARI values for (a)
the expertly-classified dataset, (b) historical unlabeled dataset, and (c) both
datasets.

Figure 4.19: Distribution of Q90 MaxUnitQ∩MaxARI values for (a) the
expertly-classified dataset, (b) historical unlabeled dataset, and (c) both
datasets.

Figure 4.20: Distribution of mean MaxUnitQ∩MaxARI values for (a) the
expertly-classified dataset, (b) historical unlabeled dataset, and (c) both
datasets.
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When comparing the distributions of MaxARI values for maximum, Q90, and mean
values, concordance between the distributions is observed. In the case of MaxARI val-
ues, we can observed that instead of presenting a pronounced bias towards upper or
lower skewness, here it is the mostly observed range of the MaxARI values that seems
to be different between the data sets. Overall, the expertly-classified LSRs seem to have
a wider spread of maximum and Q90 MaxARI values, as shown in Figures 4.21, and
4.22. In the case of maximum MaxARI values, the historical dataset seems to present a
higher frequency of extreme high values of MaxARI, while in the case of Q90 MaxARI
values, the same is true for lower MaxARI values. Lastly, when looking at the distribu-
tion of mean MaxARI values, while the distribution exhibits the same noticeable bias
as the MaxUnitQ distributions, here the difference between the distributions is much
less pronounced. This conveys that the distributions of mean MaxARI values across
the two datasets exhibit the most similar behavior.

Figure 4.21: Distribution of maximum MaxARI values for (a) the expertly-
classified dataset, (b) historical unlabeled dataset, and (c) both datasets.

Figure 4.22: Distribution of Q90 MaxARI values for (a) the expertly-
classified dataset, (b) historical unlabeled dataset, and (c) both datasets.
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Figure 4.23: Distribution of mean MaxARI values for (a) the expertly-
classified dataset, (b) historical unlabeled dataset, and (c) both datasets.

The observations made for the MaxARI distributions seem to carry over to their
intersection with MaxUnitQ values (MaxARI ∩ MaxUnitQ, where only MaxARI values
withing a non-zero MaxUnitQ field are contemplated). These behaviors can be see in
Figures 4.24, 4.25, and 4.26.

Figure 4.24: Distribution of maximum MaxARI∩MaxUnitQ values for (a)
the expertly-classified dataset, (b) historical unlabeled dataset, and (c) both
datasets.
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Figure 4.25: Distribution of Q90 MaxARI∩MaxUnitQ values for (a) the
expertly-classified dataset, (b) historical unlabeled dataset, and (c) both
datasets.

Figure 4.26: Distribution of mean MaxARI∩MaxUnitQ values for (a) the
expertly-classified dataset, (b) historical unlabeled dataset, and (c) both
datasets.

As in Section 4.1.1, we do have access to impact-based warning categories in our
expertly-classified dataset, we can also examine the extracted MaxUnitQ and MaxARI
values with respect to each IBW class. These distributions are shown in Figures 4.27,
4.28, 4.29, and 4.30 below.
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Figure 4.27: Distribution of MaxUnitQ values per IBW class. (a) Maximum,
(b) Q90, and (c) Mean. Measures of central tendency are color-coded, medi-
ans are presented in solid vertical lines, and means are shown using dotted
lines.

Figure 4.28: Distribution of MaxUnitQ∩MaxARI per IBW class. (a) Maxi-
mum, (b) Q90, and (c) Mean. Measures of central tendency are color-coded,
medians are presented in solid vertical lines, and means are shown using
dotted lines.

By looking at the measures of central tendency, we can see that the medians for
the distributions of maximum and Q90 MaxUnitQ values, are presented in increasing
order of impact class, which is an improvement over our previous UnitQ matching
method. However, a complete overlap of MaxUnitQ value ranges is observed between
all the IBW classes. As they did in Section 3.1.1 , these MaxUnitQ distributions reflect
the difficulty of forecasters to discern between classes, particularly between the base
and the considerable classes.

From Figures 4.27 and 4.28, we can see that the MaxUnitQ distributions look very
similar, with only slight changes in the location and magnitudes of the peaks for each
class. The same can be said by examining Figures 4.29 and 4.30, where MaxARI dis-
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tributions seem to behave very similar across the cropped and non-cropped extracted
product values.

Figure 4.29: Distribution of MaxARI values per IBW class. (a) Maximum,
(b) Q90, and (c) Mean. Measures of central tendency are color-coded, medi-
ans are presented in solid vertical lines, and means are shown using dotted
lines.

Figure 4.30: Distribution of MaxARI∩UnitQ per IBW class. (a) Maximum,
(b) Q90, and (c) Mean. Measures of central tendency are color-coded, medi-
ans are presented in solid vertical lines, and means are shown using dotted
lines.

These MaxARI distributions also echo the difficulties seen from the MaxUnitQ data,
where while higher average MaxARI values are indeed associated with the catas-
trophic class, the variability in MaxARI value ranges translates to a severe overlap
across all the IBW classes.
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4.2.2 FFSI V1

It took our python tool around 60 hours in total to process all 22,992 LSRs (22,329
expertly-classified + 663 historical unlabeled), querying the ChatGPT-3.5-turbo

API endpoint (4K token context) with the FFSI V1 textualized definitions. Even though
the paid API access allows for a 1 request-per-second rate for queries, all LSRs were
processed sequentially, and each LSR was processed in about 5 seconds. Actual pro-
cessing time should be realistically around half of the time reported (∼30h), but addi-
tional delays were introduced when the process crashed or timed out while left run-
ning unattended, and was not restarted immediately after it had stopped.

To classify the 663 expertly-classified LSR dataset, our python implementation made
664 requests to the API (∼0.15% additional requests overhead), over which the API
processed 241,624 input tokens, generated 31,917 response tokens, and incurred in
$0.43 USD of API access costs. To classify the 22,329 historical unlabeled LSR dataset,
the python tool made a total of 23,332 requests (∼4.4% additional requests overhead),
over which the API processed 8,448,819 input tokens, generated 1,124,318 response to-
kens, and incurred in $14.92 USD of API access costs. Judging by the additional request
overheads, our decision to implement batch processing for the API requests paid off.
While processing the 663 expertly-classified reports, only one failure at the beginning
of a batch occurred, since only one additional request was performed to process this
data set. While processing the 22,329 historical reports, the tool processed 1,003 ad-
ditional requests, which means the process suffered around 50 interruptions (since it
processed around 50 additional overhead batches).

At this point in the development of the present dissertation, and for the first time
to the author’s knowledge, it has been possible to systematically assign impact classes
and class probabilities to historical LSRs, based solely on their remarks. Figure 4.31
shows a similar plot to Figure 3.5, but now all these historical LSRs locations have
been color-coded according to their FFSI score, as a direct representation for their most
likely FFSI impact class.
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Figure 4.31: Visualization of the geographical distribution of the 22,329
ChatGPT-classified historical LSRs over the CONUS, colored by FFSI Score.

By having created this historical dataset of FFSI-classified LSRs, we come closer
to overcoming the first of the two main challenges which are needed to address the
present work’s hypothesis: building a reliable dataset of historical flash flood events with
specific measures of impact. To completely fulfill this task, we must evaluate ChatGPT’s
FFSI classification of these LSRs, as to establish a measure of reliability for this ap-
proach. For this purpose, we will rely on the expertly-classified LSRs to establish the
expert’s IBW classification as a performance baseline, and to compare our GPT-based
FFSI classification to it. By analyzing both the IBW and FFSI class distributions over
the previously extracted FLASH moments, we can assess whether our systematic FFSI
classification matches the expert’s performance. Firstly, by performing a correlation
analysis between the classes for the two impact frameworks (IBW and FFSI) and the
moments extracted, the correlations presented in Table 4.4 were observed.
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IBW FFSI

IBW 1.000 0.333
FFSI 0.333 1.000

CREST_MaxUnitQ_MEAN 0.106 0.018
CREST_MaxUnitQ_VAR -0.141 -0.023

CREST_MaxUnitQ_SKEW 0.034 -0.013
CREST_MaxUnitQ_KURT -0.024 -0.033

CREST_MaxUnitQ_Q90 -0.008 0.052
CREST_MaxUnitQ_Q95 0.386 0.285
CREST_MaxUnitQ_Q99 0.374 0.270

CREST_MaxUnitQ_MAX 0.342 0.252
CREST_MaxUnitQ_intersection_MEAN 0.175 0.044

CREST_MaxUnitQ_intersection_VAR -0.145 -0.033
CREST_MaxUnitQ_intersection_SKEW 0.018 -0.017
CREST_MaxUnitQ_intersection_KURT 0.007 -0.005

CREST_MaxUnitQ_intersection_Q90 0.140 0.077
CREST_MaxUnitQ_intersection_Q95 0.125 0.062
CREST_MaxUnitQ_intersection_Q99 0.147 0.052

CREST_MaxUnitQ_intersection_MAX 0.154 0.046
QPE_ARI_Max_MEAN 0.221 0.107

QPE_ARI_Max_VAR -0.105 -0.009
QPE_ARI_Max_SKEW -0.015 -0.012
QPE_ARI_Max_KURT -0.058 -0.024

QPE_ARI_Max_Q90 0.359 0.247
QPE_ARI_Max_Q95 0.354 0.244
QPE_ARI_Max_Q99 0.319 0.243

QPE_ARI_Max_MAX 0.266 0.228
QPE_ARI_Max_intersection_MEAN 0.232 0.112

QPE_ARI_Max_intersection_VAR -0.114 -0.011
QPE_ARI_Max_intersection_SKEW -0.013 -0.013
QPE_ARI_Max_intersection_KURT -0.060 -0.026

QPE_ARI_Max_intersection_Q90 0.379 0.258
QPE_ARI_Max_intersection_Q95 0.374 0.256
QPE_ARI_Max_intersection_Q99 0.339 0.254

QPE_ARI_Max_intersection_MAX 0.288 0.241

Table 4.4: IBW-FFSI correlations for the expertly-classified LSR dataset
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From the correlation analysis shown in Table 4.4, we can see that for the MaxUnitQ
values, Q95 seems to hold the highest correlation for both IBW and FFSI. Because of
this, we will focus on the Q95 distributions for MaxUnitQ as the main point of com-
parison between the two impact frameworks on our expertly-classified data. All other
expertly-classified data IBW vs FFSI distribution plots are included in the Appendix.
By comparing how the distributions of MaxUnitQ Q95 values behave when looking at
each individual impact class, we can compare how the ChatGPT+FFSI approach per-
forms with respect to the experts’ IBW classification. Figure 4.33 below portrays how
the same 663 expertly-classified LSRs look through both the FFSI and the IBW impact
perspectives.

Expertly-classified LSR Dataset

Figure 4.32: FFSI vs IBW MaxUnitQ Density Plots for the expertly-classified
LSRs. (left) MaxUnitQ Q95 distributions by FFSI impact class (ChatGPT);
(right) MaxUnitQ Q95 distributions by IBW impact class (experts). Mea-
sures of central tendency are color-coded, medians are presented in solid
vertical lines, and means are shown using dotted lines.

While we had previously observed the class overlap in the IBW distributions, we can
now see that this is also the case for the classification our ChatGPT+FFSI approach has
produced. Notably, the distribution of medians for the new FFSI classification seems
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to remain consistent with an increasing order of impacts as MaxUnitQ values increase,
and similarly to the IBW case, the distance between medians for the medium and low
impact classes are much closer together, than to the highest impact class. While visual
inspection appears to show that our systematic, ChatGPT+FFSI approach achieved
comparable performance to that of the experts using the IBW framework, a more quan-
titative set of tests will provide a more objective assessment of this performance.

In order to determine whether parametric or non-parametric test should be used
to analyze these results, normality tests can be employed. In this case, python’s scipy
package offers a normality test based on D’Agostino and Pearson’s test, which com-
bines skew and kurtosis to produce an omnibus test of normality, with the following
hypotheses:

• H0: Sample comes from a normal distribution

• H1: Sample does not come from a normal distribution

• If p-value < α: reject H0

• If p-value > α: can not reject H0

This normality test was applied over the whole expertly-classified dataset, as well
as its subsets, which are defined by selecting those instances which correspond to spe-
cific FFSI and IBW classes. Results for this normality test are shown in Table 4.5.
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NORMALITY TEST - Log(MaxUnitQ Q95)

Subset Test Statistic p-Value

ALL DATA 6.6900 0.0353
FFSI 1 4.5650 0.1020
FFSI 2 4.8278 0.0895
FFSI 3 – –
FFSI 4 0.0386 0.9809
FFSI 5 – –
IBW 1 2.0955 0.3507
IBW 2 4.6177 0.0994
IBW 3 15.0092 0.0006

Table 4.5: Expertly-classified LSRs - FFSI vs IBW Normality Test. Note that for FFSI
classes 3 and 5 the sample size was insufficient to calculate the statistic.

When contemplating the whole MaxUnitQ Q95 values from the 663 instances as
a whole, the normality test indicates that the H0 is rejected with a 95% confidence
(α=0.05), indicating that the data does not come from a normal distribution. Therefore,
non-parametric tests will be used for subsequent explorations and assessments. How-
ever, when contemplating individual FFSI classes, MaxUnitQ Q95 values for classes
base, moderate, and severe, H0 can not be rejected, as these seem to come from
normal distributions. The same is true for IBW classes base and considerable,
when contemplated individually. It should also be noted that the sample size of FFSI
classes serious and catastrophic was insufficient to calculate the statistic.

Continuing with our non-parametric tests, in order to determine if multiple medi-
ans belonging to different groups in our dataset are statistically different, the Kruskal-
Wallis test offers the following hypotheses:

• H0: The median is the same for all the data groups

• H1: The Median is not equal for all the data groups

• If p-value < α: reject H0

• If p-value > α: can not reject H0
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We perform a Kruskal-Wallis test for both the GPT-based FFSI classification, and
the expert-based IBW classification. Results for this test are shown in Table 4.6.

KRUSKAL-WALLIS TEST FOR Log(MaxUnitQ Q95)

Subset Test Statistic p-Value

FFSI 7.6956 0.1034
IBW 31.7481 1.2764e-07

Table 4.6: Kruskal-Wallis Test results for Log(MaxUnitQ Q95) - Expertly-classified LSRs

The Kruskal-Wallis test results show that for the expertly-classified IBW classifica-
tion, we can reject H0 with 95% confidence (α=0.05), while for the GPT-based FFSI clas-
sification, we can only reject H0 with a confidence interval smaller than 89% (α=0.11).
These results show that, while the expert’s classification shows to have different means
with a 95% confidence interval, out FFSI classification only shows to have different
means at a lower confidence interval of 89%.

The last of our non-parametric tests is Dunn’s test (a posthoc test for the Kruskal-
Wallis test), which relies on pairwise comparisons between each independent group’s
medians, and tells which groups are statistically significantly different from another at
some level of alpha. For Dunn’s test multiple adjustment types can be used to control
the family-wise error rate of p-values, and can dramatically reduce the probability of
committing a type I error among the set of multiple comparisons:

• Bonferroni Adjustment: new p-value = p ∗ m, where p is the original p-value,
and m is the total number of comparisons being made.

• Sidak Adjustment: new p-value = 1− (1− p)m, where p is the original p-value,
and m is the total number of comparisons being made.
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DUNN’S TEST FOR FFSI Log(MaxUnitQ Q95)

No Adjustment

1 2 3 4 5

FFSI 1 1.000000 0.071187 0.816603 0.012979 0.054026
FFSI 2 0.071187 1.000000 0.598893 0.159553 0.324748
FFSI 3 0.816603 0.598893 1.000000 0.273582 0.316707
FFSI 4 0.012979 0.159553 0.273582 1.000000 0.994209
FFSI 5 0.054026 0.324748 0.316707 0.994209 1.000000

Bonferroni Adjustment

1 2 3 4 5
FFSI 1 1.000000 0.711867 1.0 0.129788 0.540263
FFSI 2 0.711867 1.000000 1.0 1.000000 1.000000
FFSI 3 1.000000 1.000000 1.0 1.000000 1.000000
FFSI 4 0.129788 1.000000 1.0 1.000000 1.000000
FFSI 5 0.540263 1.000000 1.0 1.000000 1.000000

Sidak Adjustment

1 2 3 4 5
FFSI 1 1.000000 0.522158 1.000000 0.122464 0.426160
FFSI 2 0.522158 1.000000 0.999892 0.824165 0.980291
FFSI 3 1.000000 0.999892 1.000000 0.959086 0.977814
FFSI 4 0.122464 0.824165 0.959086 1.000000 1.000000
FFSI 5 0.426160 0.980291 0.977814 1.000000 1.000000

Table 4.7: Expertly-classified FFSI Dunn’s test results

From the above Dunn’s test results in Table 4.7, particularly from the Bonferroni-
adjusted p-values (which is the most aggressive adjustment), we can see that the small-
est p-value corresponds to the difference in medians between FFSI classes base and
severe, and a statistically significant difference is only evidenced at a confidence in-
terval of 87% (α = 0.13). Additional testing has been performed on MaxUnitQ Q90 in-
stead of Q95, and while the only statistically significant difference is still between FFSI
classes base and severe, the confidence interval increases to around 93% (α = 0.063).

Dunn’s test was also performed for the expert IBW classification, which yielded the
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results shown in Table 4.8.

DUNN’S TEST FOR IBW Log(MaxUnitQ Q95)

No Adjustment

IBW 1 IBW 2 IBW 3

IBW 1 1.000000 7.082520e-01 3.042382e-05
IBW 2 0.708252 1.000000 1.483386e-07
IBW 3 0.000030 1.483386e-07 1.000000

Bonferroni Adjustment

IBW 1 IBW 2 IBW 3
IBW 1 1.000000 1.000000 9.127146e-05
IBW 2 1.000000 1.000000 4.450158e-07
IBW 3 0.000091 4.450158e-07 1.000000

Sidak Adjustment

IBW 1 IBW 2 IBW 3
IBW 1 1.000000 9.751673e-01 1.000000
IBW 2 0.975167 1.000000 0.999892
IBW 3 0.000091 4.450158e-07 1.000000

Table 4.8: Expertly-classified IBW Dunn’s test results

Taking the IBW Dunn’s test results from Table 4.8 in contrast to the FFSI results from
table 4.7, the Bonferroni-adjusted p-values indicate that for the expert’s IBW classifica-
tion, classes base and catastrophic seem to have statistically significant differences
in their medians, as well as classes considerable and catastrophic (both with
confidence intervals of 95% and higher). However, medians between classes base and
considerable don’t seem to be different with any statistical significance. This once
again brings back the issues previously discussed with IBW guidance, and the strong
difficulties encountered by experts (forecasters) in distinguishing between the base

and considerable classes.
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Historical Flash Flood Impacts Dataset

A similar analysis has been performed for the historical LSR dataset, which now has
been constructed into a historical dataset of flash flood impacts, in order to establish
the statistical significance of each FFSI class’ measures of central tendency.

Figure 4.33: (left) MaxUnitQ Q95 distributions by FFSI impact class (Chat-
GPT); (right) MaxUnitQ Q95 cumulative distributions by FFSI impact class
(ChatGPT). Measures of central tendency are color-coded, medians are pre-
sented in solid vertical lines, and means are shown using dotted lines.

From a correlation analysis between the FFSI classification an the extracted mo-
ments of FLASH products shown in Table 4.9, it can be observed that Q95 once again
holds the highest correlation values for MaxUnitQ, but only the non-intersection ex-
traction).
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FFSI

FFSI 1.000
CREST_MaxUnitQ_MEAN -0.018

CREST_MaxUnitQ_VAR 0.026
CREST_MaxUnitQ_SKEW -0.019
CREST_MaxUnitQ_KURT -0.008

CREST_MaxUnitQ_Q90 -0.002
CREST_MaxUnitQ_Q95 0.143
CREST_MaxUnitQ_Q99 0.142

CREST_MaxUnitQ_MAX 0.133
CREST_MaxUnitQ_intersection_MEAN -0.019

CREST_MaxUnitQ_intersection_VAR 0.035
CREST_MaxUnitQ_intersection_SKEW -0.019
CREST_MaxUnitQ_intersection_KURT 0.006

CREST_MaxUnitQ_intersection_Q90 0.004
CREST_MaxUnitQ_intersection_Q95 0.000
CREST_MaxUnitQ_intersection_Q99 0.001

CREST_MaxUnitQ_intersection_MAX 0.000
QPE_ARI_Max_MEAN 0.077

QPE_ARI_Max_VAR 0.013
QPE_ARI_Max_SKEW -0.043
QPE_ARI_Max_KURT -0.033

QPE_ARI_Max_Q90 0.103
QPE_ARI_Max_Q95 0.100
QPE_ARI_Max_Q99 0.094

QPE_ARI_Max_MAX 0.087
QPE_ARI_Max_intersection_MEAN 0.075

QPE_ARI_Max_intersection_VAR 0.013
QPE_ARI_Max_intersection_SKEW -0.042
QPE_ARI_Max_intersection_KURT -0.034

QPE_ARI_Max_intersection_Q90 0.104
QPE_ARI_Max_intersection_Q95 0.102
QPE_ARI_Max_intersection_Q99 0.097

QPE_ARI_Max_intersection_MAX 0.092

Table 4.9: FFSI correlations for the historical LSR dataset

116



From the normality test results shown in Table 4.10, we can conclude that since the
p-value for the whole dataset is much smaller than an α = 0.05, within a 99% confi-
dence interval, the data does not seem come from a normal distribution. Analyzing
each independent FFSI class’ results, we can also see that the above is also true for all
classes, except for FFSI class serious, for which we can only reject H0 with a ∼ 90%

confidence interval.

NORMALITY TEST - Log(MaxUnitQ Q95)

Subset Test Statistic p-Value

ALL DATA 75.8163 3.4411e-17
FFSI 1 15.2944 0.0005
FFSI 2 39.9363 2.1278e-09
FFSI 3 4.4630 0.1074
FFSI 4 7.1513 0.0280
FFSI 5 7.6523 0.0218

Table 4.10: Historical LSRs - FFSI Normality Test.

Therefore, as we did for the expertly-classified dataset,in order to assess whether
the medians for each class are different within statistical significance, a Kruskal-Wallis
non-parametric test can be performed. These results are shown in Table 4.11.

KRUSKAL-WALLIS TEST FOR Log(MaxUnitQ Q95)

Subset Test Statistic p-Value

FFSI 37.5064 1.4166e-07

Table 4.11: Kruskal-Wallis Test results for Log(MaxUnitQ Q95) - Historical LSRs

The Kruskal-Wallis test results indicate that since the p-value is much smaller than
an α = 0.05, we can reject H0, therefore accepting the alternative that the medians are
not equal for all the data groups.

Exploring further the pairwise differences in medians using Dunn’s test, we can
discern which measures of central tendency are different from one another within sta-
tistical significance. Table 4.12.
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DUNN’S TEST FOR FFSI Log(MaxUnitQ Q95)

No Adjustment

1 2 3 4 5

FFSI 1 1.000000 0.000737 0.000171 0.000047 0.000002
FFSI 2 0.000737 1.000000 0.031653 0.040963 0.000634
FFSI 3 0.000171 0.031653 1.000000 0.579613 0.221652
FFSI 4 0.000047 0.040963 0.579613 1.000000 0.061050
FFSI 5 0.000002 0.000634 0.221652 0.061050 1.000000

Bonferroni Adjustment

1 2 3 4 5
FFSI 1 1.000000 0.007372 0.001713 0.000468 0.000018
FFSI 2 0.007372 1.000000 0.316532 0.409626 0.006345
FFSI 3 0.001713 0.316532 1.000000 1.000000 1.000000
FFSI 4 0.000468 0.409626 1.000000 1.000000 0.610500
FFSI 5 0.000018 0.006345 1.000000 0.610500 1.000000

Sidak Adjustment

1 2 3 4 5
FFSI 1 1.000000 0.007347 0.001712 0.000468 0.000018
FFSI 2 0.007347 1.000000 0.275048 0.341804 0.006327
FFSI 3 0.001712 0.275048 1.000000 0.999828 0.918391
FFSI 4 0.000468 0.341804 0.999828 1.000000 0.467371
FFSI 5 0.000018 0.006327 0.918391 0.467371 1.000000

Table 4.12: Historical FFSI Dunn’s test results

Based on the Bonferroni-adjusted p-values of the Dunn’s Test, and contemplating a
95% confidence interval, the medians between FFSI class minor is statistically signifi-
cantly different from all other classes; class moderate is different from classes minor
and catastrophic; class serious is only different from class minor; class severe
is only different from class minor; and class catastrophic is different from classes
minor and moderate.

∗ ∗ ∗
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As can be seen from the above statistical results comparing both the expertly-classified
dataset’s IBW and FFSI classifications, our GPT-based FFSI classification seems to pre-
serve a non-normal distribution, albeit with a less certain confidence interval. How-
ever, from the Dunn’s test results, we can see that while the expert’s classification
presents a significant difference for the catastrophic class, our GPT-based FFSI clas-
sification shows only statistically significant differences between base and severe

classes. Overall, while our model’s performance does not exceed the performance
shown by the experts in classifying LSRs, given some leniency on the fact that these
reports were classified systematically without human intervention, and using an FFSI
template, we can state that the ChatGPT+FFSI method provides a comparable perfor-
mance to that of the experts.

4.3 FFSI-Based Flash Flood Impact Model

As described in Section 3.2, a proof-of-concept framework has been defined, a reduced
spatial subdomain over the state of Kentucky (KY) has been designated , and a spatial-
ized flash flood impacts training dataset has been assembled from static and dynamic
attributes which describe each LSR event. This has led to the experimentation and
training of multiple distinct transformer-based machine learning models, which ad-
dress specific characteristics of our training data, with respect to the main goals this
dissertation looks to fulfill.

This section will present the results obtained from training the machine learning
models described in Sections 3.3.1, 3.3.2, and 3.3.3 respectively. When examining these
results, bear in mind that, while the Kentucky subdomain holds out 779 non-null, non-
edge LSRs, whenever one of the model ingests these LSR training samples, each layer
is always cropped to a 128x128 pixel region, centered around the LSR’s location (this is
the reason why only non-edge cases were preserved), as this 128x128 buffer size, is the
effective domain over which these models operate).

4.3.1 Segmentation Transformers

As mentioned in Section 3.3.1, the Segformer model was trained on the 46 input layers
of our 779 training samples, treating all data as static (i.e. not taking into account the
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Metric Score

Loss 1.9261
Accuracy 0.0046
F1 Score 0.0046
Precision 0.0046

Recall 0.0046

Table 4.13: Segformer Model - Training Metrics

FLASH product time dependence). Training was performed for several epochs, and
the best results are summarized in Table 4.13 below:

As can be seen from these training metrics, this model is not able to extract any
meaningful representation by aggregating all static and dynamic layers, to classify our
inputs onto a spatialized FFSI score region within the domain. This is further evi-
denced, when we look at some of the training samples, paired with the predictions
made by the model. These are shown in Figure 4.34.

(a) FFSI 1 (b) FFSI 2 (c) FFSI 3 (d) FFSI 4 (e) FFSI 5

Figure 4.34: Various Segformer training samples - Each subfigure above
shows a different sample from a different FFSI class (left), paired with its
corresponding generated training output by the Segformer (right).

As can be seen from Figure 4.34, the Segformer model lacks any skill in reliably pre-
dicting the appropriate class shown on the left panels (a single region of FFSI score),
and while multiple classes are predicted upon the 128x128 subdomain region within
the KY domain, and they seem to show some spatial features and behaviors, the labels
where our input class is expected to be located don’t match the inputs. Additionally,
training the same model using only the reduced subset of 153 complete cases (no miss-
ing dynamic data layers), leads to exactly the same performance metrics.

After considering the above results, it has become clear that while Segformers can
be used for image classification, just by virtue alone of the spatial features in our data,
a model for impact annotations is not feasible with this architecture.
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4.3.2 Video Masked Autoencoders

As mentioned in Section 3.3.2, the VideoMAE model was trained on only the dynamic
input layers of our 779 training samples, treating all data as 18 frames of two-channel
video. The representations of the dynamic input data are then passed onto a deep
classification head, which predicts a given FFSI class for the input data. Training was
performed for several epochs, and the best results are summarized in Table 4.14 below:

Metric Score

Loss 1.6913
Accuracy 0.1946
F1 Score 0.1946
Precision 0.1946

Recall 0.1946

Table 4.14: VideoMAE Model - Training Metrics

While these results look somewhat better than those obtained by the Segformer
model, they still reflect rather poor performance. However, these very low values may
hint at the fact that the model may be picking up some underlying signal from our
data, but issues in our data like missing values may be playing a role in hindering its
skill.

Additional training was performed with the reduced set of 153 complete cases (no
missing dynamic data layers), and training metrics for this model are shown in Table
4.15.

Metric Score

Loss 0.7234
Accuracy 0.3223
F1 Score 0.3223
Precision 0.3223

Recall 0.3223

Table 4.15: VideoMAE Model - Complete Cases Training Metrics
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In this case, performance shows a considerable improvement. Particularly, looking
at accuracy and F1 score presents a completely different panorama from results seen
with previous attempt and the Segformer model. These results show that the model is
able to pick up some of the underlying signal and features that stem from considering
the time dimension in the succession of 10-minute FLASH data used to train the model.
This means that by taking into account the temporal dimension of our dynamic data,
models like this VideoMAE may be able to extract useful patterns to predict and an-
notate flash flood impacts. Also, this brings to light the fact that relying on sequential
data which has missing values will dramatically impact our ability to train a skillful
model.

4.3.3 VideoMAE + Visual Transformers

As mentioned in Section 3.3.3, a hybrid VideoMAE + ViT model was trained, where the
VideoMAE component deals with only the dynamic input layers of our 779 training
samples as 18 frames of two-channel video, and the ViT component deals with the
static input layers as a 10-channel image. The representations from both the static
and dynamic components are then concatenated and piped trough a simple classifier,
which predicts a given FFSI class for the input data. Training was performed for several
epochs, and the best results are summarized in Table 4.16 below:

Metric Score

Loss 0.8779
Accuracy 0.4559
F1 Score 0.4559
Precision 0.4559

Recall 0.4559

Table 4.16: VideoMAE+ViT Model - Training Metrics

These results show a marginal increase in values with respect to the VideoMAE
model which only ingested the dynamic data, which indicates that the representations
of static layers presented by the ViT model are positively contributing to our model’s
classification skill. However, the model still struggles to zero-in on the signal in our
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training data. To the point where it is unable to memorize the training dataset (overfit-
ting).

Since improvement was observed in the previous models, additional training was
performed with the reduced set of 153 complete cases (no missing dynamic data lay-
ers), and training metrics for this model are shown in Table 4.17.

Metric Score

Loss 0.1316
Accuracy 0.8512
F1 Score 0.8512
Precision 0.8512

Recall 0.8512

Table 4.17: VideoMAE+ViT Model - Complete Cases Training Metrics

These results are a dramatic departure from previous experiments. By performing a
simple experiment with a hybrid architecture, making sure our dynamic training data
has no missing frames, and by leveraging the latent representations in our static data
layers, we are now able to train a model that overfits. This conveys the notion that,
not only there is usable signal in our training data, but our model can actually start to
memorize said training data.

∗ ∗ ∗

Recollecting some of the results presented at the end of this chapter, we can list the
following highlights:

• Adequately capturing the temporal nature of our dynamic data layers is of
paramount importance to constructing models for predicting flash flood impacts.

• Static data layers play a crucial role in enriching our dynamic data with addi-
tional features, however, not by virtue alone of spatial features can we reliably
model flash flood impacts.

• By combining the VideoMAE and ViT architectures for extracting features from
our dynamic and static data respectively, it is possible to train a simple machine
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learning classifier which demonstrates the potential usefulness of our novel his-
torical flash flood impacts data.
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Chapter 5

Discussion

Having presented comprehensive results for our methods in Chapter 4, we can now
discuss some of the implications of these results. But first, let’s recall the current dis-
sertation’s hypothesis and main objectives.

The proposed hypothesis / research statement offered at the beginning of this doc-
ument is "Given an operational flash flood forecast, it is possible to annotate specific threat tags
that inform users (forecasters) of possible associated impact expected for the forecasted event".
And the two main objectives / challenges defined are the following:

1. a data set which can relate historical flash flood events with specific measures of
impact must be built, and

2. a proof-of-concept model capable of producing impact probabilities based on
real-time measures of precipitation and flow response (among other variables)
must be designed and implemented.

Let us first address objective number one: the creation of a historical flash flood
impacts dataset. Starting with two distinct sets of LSR data, a historical unlabeled one,
and an expertly-classified one, multiple approaches were attempted to consolidate said
dataset.

At first, and without much success, a pre-trained language model methodology
was tried, relying on a small amount of expertly-classified IBW LSRs. It was deter-
mined that, even though the pre-trained language models seemed to be able to effec-
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tively convert our LSR remarks into actionable latent representations, the amount of
labeled instances was insufficient to train a deep learning LSR classification model.
Further attempts of enriching this dataset with post-survey data from StormDat re-
ports yielded diminishing returns, as the relationships between these new attributes,
our initial FLASH UnitQ extraction and matching, and our IBW classification did not
offer a clear separable behavior that our classification model could tie into to discern
between our impact classes.

By reversing our problem, and instead of relying on a few hundred impact-labeled
instances, when making use of a language-based flash flood severity index (FFSI) clas-
sification in conjunction with large language models, we were able to capitalize on
using the unlabeled historical LSR dataset, which is two orders of magnitude larger
than the expertly-classified dataset. By employing FFSI as our framework for classi-
fying both historical and expertly-classified IBW LSRs using solely their remarks, we
were able to leverage the ChatGPT API to prompt a GPT-3.5-turbo instance into clas-
sifying our reports into probabilistic FFSI classes, for which we also calculated an FFSI
score which collapses joint class probabilities into a single numerical value. Through
this method, it was possible to systematically classify 22,329 historical LSRs between
2018-2022 into FFSI impact classes, therefore fulfilling objective number one of this dis-
sertation. Further statistical testing was performed on this novel dataset, and we were
able to show that, while the confidence with which our GPT-based FFSI classification
method is lower than the level of confidence offered by the expert IBW classification,
overall performance between the datasets is comparable, particularly when taking into
account that the 22,329 historical FFSI LSRs were coherently classified without human
intervention.

Now let us address objective number two: the development of a proof-of-concept
model which is capable of producing flash flood impact probabilities based on real-
time measures of precipitation and flow response.

For this proof-of-concept, a limited subdomain within the MRMS CONUS domain
was first established as a 10km buffer around the minimum bounding box encasing
the state of Kentucky (KY). This reduced our effective modeling area from around 10
million pixels, to just over 218,000. Then, all historical and expertly-classified events
that were reported for the state of KY were identified, and specific constraints were
enforced to filter out some of these events: all events with an FFSI score less than 1
were not contemplated, as well as all of those LSRs for which a 128x128 pixel buffer
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centered around the LSR’s location could not be constructed. This was done because
several novel transformer architectures were used, and these required a reduced over-
all dimensionality of our spatial subdomain to be run effectively. The practical impli-
cation of this decision is that under the present form, if this methodology were to be
transferred to the CONUS scale, our models would only be able to predict or annotate
flash flood impacts at a 128x128 pixel resolution over the CONUS. This implies that
while FLASH and MRMS operate at a 1km2 resolution, our impact predictions would
only operate at a 128km2 resolution. However, considering that this type of applica-
tions and models, to the our knowledge, have never been implemented before, a coarse
starting resolution for a flash flood impacts annotation model could be an acceptable
compromise.

A spatialized training dataset was build with the flash flood impacts LSR dataset
at its core, made up of static geomorphological and vulnerability layers, as well as se-
quences of dynamic FLASH product outputs: MaxUnitQ and MaxARI. These products
represent the flow response and the causative rainfall respectively, for a given flash
flooding event reported as an LSR. Spatialized class labels were also derived from the
FFSI classifications obtained when constructing the flash flood impacts dataset.

Three different transformer-based architectures were trained, which increasingly
tested for specific aspects of our data. Our results for these three models yielded in-
creasingly improving training metrics as 1) the spatial dependence between dynamic
FLASH data as incorporated into the model, 2) features derived from static data were
used in conjunction with features from dynamic data, and 3) exclusively dynamic
training samples without missing frames were used to train our models. Ultimately
a hybrid architecture which mixed a VideoMAE model and a ViT model trained on
only complete cases for the dynamic data, yielded surprising results showing that our
model was being overfitted. This is a relevant aspect of this experiment, since be-
ing able to overfit a model shows that, not only there is signal in our data (the novel
flash flood impacts dataset is useful), but also our model can pick up on that signal an
memorize it. This shows room for improvement in terms of architecture tuning and
parametrization, which can lead to highly performant models, to be tested in future
experimental settings. Now, while this model’s spatialized output is in fact a numeri-
cal quantity (i.e. the FFSI score as a class label), the FFSI score is a direct representation
of the distributions of joint FFSI probability. Thus, it was possible to train a proof-of-
concept machine learning model which was capable of producing flash flood impact
probabilities from MaxUnitQ and MaxARI inputs.
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Having addressed objectives one and two, let us discuss the main research ques-
tion: Given an operational flash flood forecast, it is possible to annotate specific threat tags that
inform users (forecasters) of possible associated impact expected for the forecasted event. Since
MaxUnitQ is a flash flood forecast product, and specific FFSI class labels are being
predicted by our VideoMAE+ViT machine learning model, these flash flood forecasts
are being annotated with threat tags. And more relevantly, these threat tags are de-
rived from a flash flood impact framework, which would readily allow a forecaster to
translate that FFSI class label into the associated impacts of that specific class’ sever-
ity. Therefore, this dissertation’s hypothesis can not be rejected, and there is strong
evidence to support its claim.

5.1 Future work

As briefly mentioned in the closing of Section 1.3.2, the dichotomy between the exis-
tence of two distinct flash flood impact frameworks (IBW and FFSI) provides an op-
portunity to perform foundational research at the intersection of the two. As shown
in Figure 5.1 by exploring in detail the relationships that exists between FLASH UnitQ
and each of these impact frameworks, a translation framework between the two would
ultimately enable a consistent estimation of impacts levels, whether based on impact
observations or streamflow forecasts.

Figure 5.1: Example of a proposed UnitQ-based equivalency between distinct flash
flood impact frameworks, like FFSI and IBW.

Lastly, now that a proof-of-concept model has shown feasibility in predicting flash
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flood impacts over a reduced subdomain, a CONUS-wide implementation of 128x128
pixel impact annotations must be pursued. This will require training a similar archi-
tecture to the VideoMAE+ViT model demonstrated here, but with a much larger set
of both training instances, as well as a much larger event subdomain. Particularly for
working at the CONUS scale, this implies that much more computation power will be
required to work in a domain made up of 10 million pixels. Also, once this model is
trained, and ready for testing in experimental mode but in real time, robust data pre-
processing pipelines must be engineered to feed FLASH MaxUnitQ and MaxARI in a
timely fashion to the model at inference time.
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Appendix

FLASH Moment Extraction - MAXUnitQ Distributions

Figure A1: Distribution of maximum MaxUnitQ values for (a) the expertly-
classified dataset, (b) historical unlabeled dataset, and (c) both datasets.

Figure A2: Distribution of Q99 MaxUnitQ values for (a) the expertly-
classified dataset, (b) historical unlabeled dataset, and (c) both datasets.

142



Figure A3: Distribution of Q95 MaxUnitQ values for (a) the expertly-
classified dataset, (b) historical unlabeled dataset, and (c) both datasets.

Figure A4: Distribution of Q90 MaxUnitQ values for (a) the expertly-
classified dataset, (b) historical unlabeled dataset, and (c) both datasets.

∗ ∗ ∗

Figure A5: Distribution of mean MaxUnitQ values for (a) the expertly-
classified dataset, (b) historical unlabeled dataset, and (c) both datasets.
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Figure A6: Distribution of MaxUnitQ variance values for (a) the expertly-
classified dataset, (b) historical unlabeled dataset, and (c) both datasets.

Figure A7: Distribution of MaxUnitQ skewness values for (a) the expertly-
classified dataset, (b) historical unlabeled dataset, and (c) both datasets.

Figure A8: Distribution of MaxUnitQ kurtosis values for (a) the expertly-
classified dataset, (b) historical unlabeled dataset, and (c) both datasets.

∗ ∗ ∗
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Figure A9: Distribution of maximum MaxUnitQ cropped by MaxARI val-
ues for (a) the expertly-classified dataset, (b) historical unlabeled dataset,
and (c) both datasets.

Figure A10: Distribution of Q99 MaxUnitQ cropped by MaxARI values for
(a) the expertly-classified dataset, (b) historical unlabeled dataset, and (c)
both datasets.

Figure A11: Distribution of Q95 MaxUnitQ cropped by MaxARI values for
(a) the expertly-classified dataset, (b) historical unlabeled dataset, and (c)
both datasets.
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Figure A12: Distribution of Q90 MaxUnitQ cropped by MaxARI values for
(a) the expertly-classified dataset, (b) historical unlabeled dataset, and (c)
both datasets.

∗ ∗ ∗

Figure A13: Distribution of mean MaxUnitQ cropped by MaxARI values
for (a) the expertly-classified dataset, (b) historical unlabeled dataset, and
(c) both datasets.

Figure A14: Distribution of MaxUnitQ cropped by MaxARI variance values
for (a) the expertly-classified dataset, (b) historical unlabeled dataset, and
(c) both datasets.
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Figure A15: Distribution of MaxUnitQ cropped by MaxARI skewness val-
ues for (a) the expertly-classified dataset, (b) historical unlabeled dataset,
and (c) both datasets.

Figure A16: Distribution of MaxUnitQ cropped by MaxARI kurtosis values
for (a) the expertly-classified dataset, (b) historical unlabeled dataset, and
(c) both datasets.

FLASH Moment Extraction - MaxARI Distributions

Figure A17: Distribution of maximum MaxARI values for (a) the expertly-
classified dataset, (b) historical unlabeled dataset, and (c) both datasets.
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Figure A18: Distribution of Q99 MaxARI values for (a) the expertly-
classified dataset, (b) historical unlabeled dataset, and (c) both datasets.

Figure A19: Distribution of Q95 MaxARI values for (a) the expertly-
classified dataset, (b) historical unlabeled dataset, and (c) both datasets.

Figure A20: Distribution of Q90 MaxARI values for (a) the expertly-
classified dataset, (b) historical unlabeled dataset, and (c) both datasets.

∗ ∗ ∗
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Figure A21: Distribution of mean MaxARI values for (a) the expertly-
classified dataset, (b) historical unlabeled dataset, and (c) both datasets.

Figure A22: Distribution of MaxARI variance values for (a) the expertly-
classified dataset, (b) historical unlabeled dataset, and (c) both datasets.

Figure A23: Distribution of MaxARI skewness values for (a) the expertly-
classified dataset, (b) historical unlabeled dataset, and (c) both datasets.
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Figure A24: Distribution of MaxARI kurtosis values for (a) the expertly-
classified dataset, (b) historical unlabeled dataset, and (c) both datasets.

∗ ∗ ∗

Figure A25: Distribution of maximum MaxARI cropped by MaxUnitQ val-
ues for (a) the expertly-classified dataset, (b) historical unlabeled dataset,
and (c) both datasets.

Figure A26: Distribution of Q99 MaxARI cropped by MaxUnitQ values for
(a) the expertly-classified dataset, (b) historical unlabeled dataset, and (c)
both datasets.
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Figure A27: Distribution of Q95 MaxARI cropped by MaxUnitQ values for
(a) the expertly-classified dataset, (b) historical unlabeled dataset, and (c)
both datasets.

Figure A28: Distribution of Q90 MaxARI cropped by MaxUnitQ values for
(a) the expertly-classified dataset, (b) historical unlabeled dataset, and (c)
both datasets.

∗ ∗ ∗

Figure A29: Distribution of mean MaxARI cropped by MaxUnitQ values
for (a) the expertly-classified dataset, (b) historical unlabeled dataset, and
(c) both datasets.
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Figure A30: Distribution of MaxARI cropped by MaxUnitQ variance values
for (a) the expertly-classified dataset, (b) historical unlabeled dataset, and
(c) both datasets.

Figure A31: Distribution of MaxARI cropped by MaxUnitQ skewness val-
ues for (a) the expertly-classified dataset, (b) historical unlabeled dataset,
and (c) both datasets.

Figure A32: Distribution of MaxARI cropped by MaxUnitQ kurtosis values
for (a) the expertly-classified dataset, (b) historical unlabeled dataset, and
(c) both datasets.
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FLASH Moment Extraction - IBW Class Distributions

Figure A33: Distribution of MaxUnitQ maximum and quantile per IBW
class. (a) Maximum, (b) Q99, (c) Q95, and (d) Q99. Measures of central
tendency are color-coded, medians are presented in solid vertical lines, and
means are shown using dotted lines.
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Figure A34: Distribution of MaxUnitQ moments per IBW class. (a) Mean,
(b) Variance, (c) Skewness, and (d) Kurtosis. Measures of central tendency
are color-coded, medians are presented in solid vertical lines, and means
are shown using dotted lines.
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Figure A35: Distribution of MaxUnitQ∩MaxARI maximum and quantile
per IBW class. (a) Maximum, (b) Q99, (c) Q95, and (d) Q99. Measures of
central tendency are color-coded, medians are presented in solid vertical
lines, and means are shown using dotted lines.
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Figure A36: Distribution of MaxUnitQ∩MaxARI moments per IBW class.
(a) Mean, (b) Variance, (c) Skewness, and (d) Kurtosis. Measures of central
tendency are color-coded, medians are presented in solid vertical lines, and
means are shown using dotted lines.

∗ ∗ ∗
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Figure A37: Distribution of MaxARI maximum and quantile per IBW class.
(a) Maximum, (b) Q99, (c) Q95, and (d) Q99. Measures of central tendency
are color-coded, medians are presented in solid vertical lines, and means
are shown using dotted lines.
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Figure A38: Distribution of MaxARI moments per IBW class. (a) Mean, (b)
Variance, (c) Skewness, and (d) Kurtosis. Measures of central tendency are
color-coded, medians are presented in solid vertical lines, and means are
shown using dotted lines.
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Figure A39: Distribution of MaxARI∩MaxUnitQ maximum and quantile
per IBW class. (a) Maximum, (b) Q99, (c) Q95, and (d) Q99. Measures of
central tendency are color-coded, medians are presented in solid vertical
lines, and means are shown using dotted lines.
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Figure A40: Distribution of MaxARI∩MaxUnitQ moments per IBW class.
(a) Mean, (b) Variance, (c) Skewness, and (d) Kurtosis. Measures of central
tendency are color-coded, medians are presented in solid vertical lines, and
means are shown using dotted lines.

FFSI V2 Prompt Definition

Listing A1: ChatGPT prompt composed of extended textualized FFSI definitions, spe-
cific instructions for probability calculations, and output formatting.

Given the following severity category definitions:
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1. "MINOR": if there is mention widespread or significant
flooding of a bike trail or a walking trail; or if
there is mention of a bike trail or a walking trail
being impassable or closed; or if there is mention of a
dirt road being impassable or closed; or if there is
mention of a bike trail or a walking trail being
flooded; or if there is mention of a dirt road being
flooded; or if there is mention of a shoulder or
culvert being flooded; or if there is mention of
railroad tracks being approached by water, or ponding;
or if there is mention of secondary roads being
approached by water, or ponding; or if there is mention
of primary roads being approached by water, or ponding;
or if there is mention of a basement, crawlspace or
garage flooded on a non-permanent structure; or if
there is mention of a non-permanent structure being
surrounded by water, having flooded foundation, or
having water entering the basement or crawlspace; or if
there is mention of a mobile home or trailer being
surrounded by water, having flooded foundation, or
having water entering the basement or crawlspace; or if
there is mention of a house or apartment building being
surrounded by water, having flooded foundation, or
having water entering the basement or crawlspace; or if
there is mention of a non-permanent structure being
approached by water; or if there is mention of a mobile
home or trailer being approached by water; or if there
is mention of a house or apartment building being
approached by water; or if there is mention of a
commercial building being approached by water; or if
there is mention of a low-lying area or a field being
flooded; or if there is mention of a campground or park
being flooded; or if there is mention of a yard being
approached by water; or if there is mention of a
parking lot being approached by water.
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2. "MODERATE": if there is mention of a bike trail or a
walking trail being washed out or damaged; or if there
is mention of a dirt road being washed out or damaged;
or if there is mention widespread or significant
flooding of a dirt road; or if there is mention of a
shoulder or culvert being impassable or closed; or if
there is mention of railroad tracks being impassable or
closed; or if there is mention of secondary roads being
impassable or closed; or if there is mention of
railroad tracks being flooded; or if there is mention
of secondary roads being flooded; or if there is
mention of primary roads being approached by water, or
ponding; or if there is mention of highways or
interstate highways being approached by water, or
ponding; or if there is mention of a person or vehicle
stranded, stalled, stuck, or trapped; or if there is
mention of first floor (1st floor) or ground floor
being flooded on a non-permanent structure; or if there
is mention of water entering the first floor (1st
floor) on a non-permanent structure; or if there is
mention of a basement, crawlspace or garage flooded on
a mobile home or trailer; or if there is mention of a
mobile home or trailer being surrounded by water,
having flooded foundation, or having water entering the
basement or crawlspace; or if there is mention of a
house or apartment building being surrounded by water,
having flooded foundation, or having water entering the
basement or crawlspace; or if there is mention of a
commercial building being surrounded by water, having
flooded foundation, or having water entering the
basement or crawlspace; or if there is mention of
widespread or significant flooding in low-lying areas
or a field; or if there is mention of widespread or
significant flooding in a campground or park; or if
there is mention of a yard being flooded; or if there
is mention of a parking lot being flooded.
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3. "SERIOUS": if there is mention of a dirt road being
washed out or damaged; or if there is mention of a
shoulder or culvert being washed out or damaged; or if
there is mention widespread or significant flooding of
a shoulder or culvert; or if there is mention
widespread or significant flooding of railroad tracks;
or if there is mention widespread or significant
flooding of secondary roads; or if there is mention of
railroad tracks being impassable or closed; or if there
is mention of secondary roads being impassable or
closed; or if there is mention of secondary roads being
flooded; or if there is mention of primary roads being
flooded; or if there is mention of highways or
interstate highways being flooded; or if there is
mention of a person or vehicle being flooded, or
floated; or if there is mention of a commercial
vehicle, tractor, or trailer being flooded, or floated;
or if there is mention of a person or vehicle stranded,
stalled, stuck, or trapped; or if there is mention of a
commercial vehicle, tractor, or trailer, being
stranded, stalled, stuck, or trapped; or if there is
mention of a non-permanent structure being swept away,
submerged, destroyed, or floated; or if there is
mention of water rescues on a non-permanent structure;
or if there is mention of first floor (1st floor) or
ground floor being flooded on mobile homes or trailers;
or if there is mention of water entering the first
floor (1st floor) on a mobile home or trailer; or if
there is mention of a basement, crawlspace or garage
flooded on a house or apartment building; or if there
is mention of a basement, crawlspace or garage flooded
on a commercial building; or if there is mention of a
commercial building being surrounded by water, having
flooded foundation, or having water entering the
basement or crawlspace; or if there is mention of
widespread or significant flooding in a campground or
park; or if there is mention of widespread or
significant flooding in a yard; or if there is mention
of widespread or significant flooding in a parking lot.
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4. "SEVERE": if there is mention of railroad tracks being
washed away or damaged; or if there is mention of
secondary roads being washed away or damaged; or if
there is mention of primary roads being washed away or
damaged; or if there is mention widespread or
significant flooding of primary roads; or if there is
mention widespread or significant flooding of highways
or interstate highways; or if there is mention of
primary roads being impassable or closed; or if there
is mention of highways or interstate highways being
impassable or closed; or if there is mention of a
person or vehicle being swept away; or if there is
mention of a person or vehicle being submerged; or if
there is mention of water rescues on a person or
vehicle; or if there is mention of water rescues on a
commercial vehicle, tractor or trailer; or if there is
mention of water rescues on a mobile home or trailer;
or if there is mention of water rescues on a house or
apartment building; or if there is mention of water
rescues on a commercial building; or if there is
mention of first floor (1st floor) or ground floor
being flooded on houses or apartment buildings; or if
there is mention of first floor (1st floor) or ground
floor being flooded on commercial buildings; or if
there is mention of water entering the first floor (1st
floor) on a house or apartment building; or if there is
mention of water entering the first floor (1st floor)
on a commercial building.
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5. "CATASTROPHIC": if there is mention of primary roads
being washed away or damaged; or if there is mention of
highways or interstate highways being washed out or
damaged; or if there is mention widespread or
significant flooding of highways or interstate
highways; or if there is mention of a person or vehicle
being swept away; or if there is mention of a
commercial vehicle, tractor, or trailer being swept
away; or if there is mention of a person or vehicle
being submerged; or if there is mention of a commercial
vehicle, tractor, or trailer being submerged; or if
there is mention of water rescues on a person or
vehicle, not associated with a body of water, or near a
body of water; or if there is mention of water rescues
on a commercial vehicle, tractor or trailer, not
associated with a body of water, or near a body of
water; or if there is mention of a mobile home or
trailer, being swept away, submerged, destroyed, or
floated; or if there is mention of a house or apartment
building being swept away, submerged, destroyed, or
floated; or if there is mention of a commercial
building being swept away, submerged, destroyed, or
floated; or if there is mention of upper floors being
flooded on a house or apartment building; or if there
is mention of upper floors being flooded on a
commercial building; or if there is mention of water
rescues on a mobile home or trailer, not associated
with a body of water, near a body of water, or on a
body of water; or if there is mention of water rescues
on a house or apartment building, not associated with a
body of water, near a body of water, or on a body of
water; or if there is mention of water rescues on a
commercial building, not associated with a body of
water, near a body of water, or on a body of water; or
if there is mention of first floor (1st floor) or
ground floor being flooded on house or apartment
building; or if there is mention of first floor (1st
floor) or ground floor being flooded on commercial
building.
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Assign impact class probabilities (in percents) to the following
text, make sure the sum of all probabilities add up to 100%.
Only return the probability values, and DO NOT EXPLAIN YOUR
REASONING.

↪→

↪→

↪→

Your answer should be expressed following this JSON format:
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{
"MINOR": <PROBABILITY PERCENT>,
"MODERATE": <PROBABILITY PERCENT>,
"SERIOUS": <PROBABILITY PERCENT>,
"SEVERE": <PROBABILITY PERCENT>,
"CATASTROPHIC": <PROBABILITY PERCENT>

}

FFSI vs IBW Per-Class Densities
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FFSI Per-Class Densities
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Code Appendix

UnitQ Extractor

Listing C1: UnitQ Extractor: Matlab script that performs the extraction of UnitQ values
for a given set of LSR reports.
product_name = [{'maxunitq.'}, {'30U.ARI.'}, {'01H.ARI.'}, {'03H.ARI.'}, {'06H.ARI.'}, {'12H.ARI.'}, {'24H.ARI.'},

{'MAX.ARI.'}, {'01H.RAT.'}, {'03H.RAT.'}, {'06H.RAT.'}, {'MAX.RAT.'}, {'maxunitq.'}, {'maxunitq.'}];↪→
all_product_folder = [{'maxunitq/'}, {'preciprp_30m/'}, {'preciprp_1h/'}, {'preciprp_3h/'}, {'preciprp_6h/'},

{'preciprp_12h/'}, {'preciprp_24h/'}, {'preciprp_max/'}, {'ratio_1h/'}, {'ratio_3h/'}, {'ratio_6h/'}, {'ratio_max/'},
{'maxunitq_sac/'},{'maxunitq_hp/'}];

↪→
↪→
%product_res = [1/(24*6), 1/(24*30), 1/(24*30), 1/(24*30), 1/(24*30), 1/(24*30), 1/(24*30), 1/(24*30), 1/(24*30), 1/(24*30),

1/(24*30), 1/(24*30), 1/(24*6), 1/(24*6)];↪→
% Use 4-min time step for QPE-based products due to memory limitations
%product_res = [1/(24*6), 1/(24*15), 1/(24*15), 1/(24*15), 1/(24*15), 1/(24*15), 1/(24*15), 1/(24*15), 1/(24*15), 1/(24*15),

1/(24*15), 1/(24*15), 1/(24*6), 1/(24*6)];↪→
% Force all products to use 10-min frequency due to memory/computational limitations
product_res = zeros(1,numel(product_name)) + 1/(24*6);

prod_i = 1;

root_product_folder = './test_data/';

product = product_name{prod_i};
outFile_product = product;
if (prod_i == 13)
outFile_product = ['sac_', product];

end

if (prod_i == 14)
outFile_product = ['hp_', product];

end

product_folder = all_product_folder{prod_i};

mapinfo = geotiffinfo('./test_data/flash_conus_mask1km.tif');

mask = imread('./test_data/flash_conus_mask1km.tif');
conus_pixels = find(mask==1);
total_pixels = numel(conus_pixels);

%Period configuration
tstep_mins = product_res(prod_i)*24*60;
tstep_hrs = tstep_mins/60;
tsteps_per_hrs = 60/tstep_mins;
buffer_prev_in_hrs = 6;

%lsr_data = readtable('./test_data/observations/LSR/geoloc_only_flashfloods_lsr_201804010000_202207010000.csv');
lsr_data = readtable('./test_data/observations/mPing/geoloc_only_flashfloods_mping_201804010000_202207010000.csv');
% VALID,VALID2,LAT,LON
[lsr.year,lsr.month,lsr.day,lsr.hour,lsr.minute,~] = datevec(lsr_data.VALID2);

% Check if necessary with all input tables
lsr_dates = datenum(lsr.year,lsr.month,lsr.day,lsr.hour,lsr.minute,0);

% Only consider LSRs within CONUS
%goodIDX = find(lsr_data.LON > mapinfo.BoundingBox(1) & lsr_data.LON < mapinfo.BoundingBox(2) & lsr_data.LAT >

mapinfo.BoundingBox(3) & lsr_data.LAT < mapinfo.BoundingBox(4));↪→
%goodIDX2 = find(lsr_data.LON > mapinfo.BoundingBox(1) & lsr_data.LON < mapinfo.BoundingBox(2) & lsr_data.LAT >

mapinfo.BoundingBox(3) & lsr_data.LAT < mapinfo.BoundingBox(4) & lsr_dates < datenum('01-Jun-2021'));↪→
%goodIDX3 = find(lsr_data.LON > mapinfo.BoundingBox(1) & lsr_data.LON < mapinfo.BoundingBox(2) & lsr_data.LAT >

mapinfo.BoundingBox(3) & lsr_data.LAT < mapinfo.BoundingBox(4) & lsr_dates < datenum('01-Jun-2020'));↪→
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goodIDX = find(lsr_data.LON > mapinfo.BoundingBox(1) & lsr_data.LON < mapinfo.BoundingBox(2) & lsr_data.LAT >
mapinfo.BoundingBox(3) & lsr_data.LAT < mapinfo.BoundingBox(4) & lsr_dates < datenum('15-Mar-2022 12:00:00'));↪→

fprintf('%f reports of FF\n', numel(goodIDX));
%fprintf('%f reports of FF until June 2021\n', numel(goodIDX2));
%fprintf('%f reports of FF until June 2020\n', numel(goodIDX3));

% Subset of LSR data/info
lsr_LON = lsr_data.LON(goodIDX);
lsr_LAT = lsr_data.LAT(goodIDX);
[sorted_lsr_dates,sorted_IX] = sort(lsr_dates(goodIDX));
lsr_diff_in_hrs = diff(sorted_lsr_dates).*24;
lsr_LON = lsr_LON(sorted_IX); lsr_LAT = lsr_LAT(sorted_IX);

% Round LSRs dates to the closest product resolution
[all_year,all_month,all_day,all_hour,all_minute,~] = datevec(sorted_lsr_dates);

rounded_sorted_lsr_dates = datenum(all_year,all_month,all_day,all_hour,round(all_minute/tstep_mins)*tstep_mins,0);

n_good_lsrs = numel(goodIDX);

% FLASH values at pixel with no LSR
nolsr_flash.val = zeros(n_good_lsrs,1);
nolsr_flash.val_mean_rising_slope = zeros(n_good_lsrs,1);
nolsr_flash.val_t = zeros(n_good_lsrs,1);
nolsr_flash.pix_mat_idx = zeros(n_good_lsrs,1);
% FLASH values at exact pixel with LSR
lsr_flash.val = zeros(n_good_lsrs,1);
lsr_flash.val_mean_rising_slope = zeros(n_good_lsrs,1);
lsr_flash.val_t = zeros(n_good_lsrs,1);
[lsr_rows,lsr_cols] = latlon2pix(mapinfo.RefMatrix, lsr_LAT,lsr_LON);
lsr_rows = round(lsr_rows); lsr_cols = round(lsr_cols);
lsr_flash.pix_mat_idx = sub2ind([mapinfo.Height mapinfo.Width], lsr_rows, lsr_cols);
% FLASH values at pixel in the 1-pixel neighborhood of LSR
lsr_flash.max_val_neigh_t = zeros(n_good_lsrs,1);
lsr_flash.max_val_neigh_mean_rising_slope = zeros(n_good_lsrs,1);
lsr_flash.max_val_neigh = zeros(n_good_lsrs,1);
lsr_flash.neigh_pix_mat_idx = zeros(n_good_lsrs,1);
% LSR row entry in input file
lsr_file.row = goodIDX; % Depends on the file
lsr_file.name = 'geoloc_only_flashfloods_mping_201804010000_202207010000.csv';

% Create array to check for LSRs processing progress
processed_lsrs_counters = 0;
target_number_of_prod_steps = buffer_prev_in_hrs*tsteps_per_hrs;

% Pre-allocate grids with output variables
flash_conus_pixels_timewin = zeros(total_pixels,tsteps_per_hrs*buffer_prev_in_hrs);
max_flash_grid = zeros([mapinfo.Height mapinfo.Width]);
t_of_max_flash_grid = zeros([mapinfo.Height mapinfo.Width]);
positive_rate_of_change = zeros([mapinfo.Height mapinfo.Width]);

% Loop through main period of data
cont_t = 0; accum_gaps = 0;
break_points = find(lsr_diff_in_hrs > buffer_prev_in_hrs);
% Target dates list
all_target_dates = [rounded_sorted_lsr_dates(1) rounded_sorted_lsr_dates(break_points+1)' numel(rounded_sorted_lsr_dates)];
next_dates = [rounded_sorted_lsr_dates(break_points+1)' numel(rounded_sorted_lsr_dates) NaN];

try

for product_date = all_target_dates(1:end-1)
%Counter
cont_t = cont_t + 1;

% Build time series going back "buffer_prev_in_hrs" hours from target date (LSR date)
fprintf('Current LOOP is: %s - %s. Next date is %s\n',

datestr(product_date-buffer_prev_in_hrs/24),datestr(sorted_lsr_dates(break_points(cont_t))),
datestr(next_dates(cont_t)));

↪→
↪→
% Compute the first window
window_step = 0;
this_period = product_date-buffer_prev_in_hrs/24:product_res(prod_i):product_date-product_res(prod_i);
fprintf('Current analysis window is: %s - %s\n', datestr(this_period(1)),datestr(this_period(end)));
for start_t = this_period

window_step = window_step + 1;
%Try reading in new file
try

fprintf('Reading %s\n', [product_folder, product, datestr(start_t, 'yyyymmdd.HHMM'), '00.tif']);
c_file = imread([root_product_folder, product_folder, product, datestr(start_t, 'yyyymmdd.HHMM'), '00.tif']);
c_file(c_file<0) = 0;
flash_conus_pixels_timewin(:,window_step) = c_file(conus_pixels);

catch ME %If reading file fails, then...
%Go to next product time step
ME.message
flash_conus_pixels_timewin(:,window_step) = nan(total_pixels,1);
accum_gaps = accum_gaps + 1;
continue;

end
%END Try reading in new file

end
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fprintf('Initial array has been built.\n');

% Continue rolling the window
this_period = product_date:product_res(prod_i):rounded_sorted_lsr_dates(break_points(cont_t));
fprintf('Current analysis window is: %s - %s\n', datestr(this_period(1)),datestr(this_period(end)));
for start_t = this_period

% Make space for next input file
%tic;
%flash_conus_pixels_timewin(:,1:end-1) = flash_conus_pixels_timewin(:,2:end);
flash_conus_pixels_timewin(:,1) = [];

%Try reading in new file
try

fprintf('Reading %s\n', [product_folder, product, datestr(start_t, 'yyyymmdd.HHMM'), '00.tif']);
c_file = imread([root_product_folder, product_folder, product, datestr(start_t, 'yyyymmdd.HHMM'), '00.tif']);
c_file(c_file<0) = 0;

%flash_conus_pixels_timewin(:,end) = c_file(conus_pixels);
flash_conus_pixels_timewin = [flash_conus_pixels_timewin, c_file(conus_pixels)];

catch ME %If reading file fails, then...
%Go to next product time step

ME.message
%flash_conus_pixels_timewin(:,end) = nan(total_pixels,1);
flash_conus_pixels_timewin = [flash_conus_pixels_timewin, nan(total_pixels,1)];
accum_gaps = accum_gaps + 1;

continue;
end
%END Try reading in new file

% Find all LSRs that are active within the analysis window
active_lsr_idx = find(rounded_sorted_lsr_dates == start_t);

n_active_lsr_idx = numel(active_lsr_idx);

fprintf('Working on %f active LSRs after adding %s\n', n_active_lsr_idx, [product_folder, product, datestr(start_t,
'yyyymmdd.HHMM'), '00.tif']);↪→

if (n_active_lsr_idx == 0)
%toc
continue;

end

% Find the maximum value from all stored grids
[max_flash_vector, max_IDX] = max(flash_conus_pixels_timewin,[],2);
flash_val_delta = diff(flash_conus_pixels_timewin,[],2);

% Create grids
this_subset_period = start_t-(buffer_prev_in_hrs/24)+product_res(prod_i):product_res(prod_i):start_t;
t_of_max_flash_grid(conus_pixels) = this_subset_period(max_IDX);
max_flash_grid(conus_pixels) = max_flash_vector;
sumPositiveChange = nansum(flash_val_delta.*(flash_val_delta>0),2);
TotalPositiveCols = sum(flash_val_delta>0,2);
positive_rate_of_change(conus_pixels) = sumPositiveChange./(TotalPositiveCols.*tstep_hrs);

% FLASH values at pixel with no LSR
% Find all non-zero FLASH pixels
all_nonlsr_pixels = find(max_flash_grid > 0);
all_nonlsr_pixels(ismember(all_nonlsr_pixels,lsr_flash.pix_mat_idx(active_lsr_idx))) = [];
% Randomly select non LSR values as the same number of active LSRs
random_selection_idx = randperm(numel(all_nonlsr_pixels));

nolsr_flash.val(active_lsr_idx) = max_flash_grid(all_nonlsr_pixels(random_selection_idx(1:n_active_lsr_idx)));
nolsr_flash.val_t(active_lsr_idx) = t_of_max_flash_grid(all_nonlsr_pixels(random_selection_idx(1:n_active_lsr_idx)));
nolsr_flash.pix_mat_idx(active_lsr_idx) = all_nonlsr_pixels(random_selection_idx(1:n_active_lsr_idx));
nolsr_flash.val_mean_rising_slope(active_lsr_idx) = positive_rate_of_change(nolsr_flash.pix_mat_idx(active_lsr_idx));

% FLASH values at exact pixel with LSR
lsr_flash.val(active_lsr_idx) = max_flash_grid(lsr_flash.pix_mat_idx(active_lsr_idx));
lsr_flash.val_mean_rising_slope(active_lsr_idx) = positive_rate_of_change(lsr_flash.pix_mat_idx(active_lsr_idx));
lsr_flash.val_t(active_lsr_idx) = t_of_max_flash_grid(lsr_flash.pix_mat_idx(active_lsr_idx));

% FLASH values at pixel in the 1-pixel neighborhood of LSR
lsr_flash.max_val_neigh_t(active_lsr_idx) = lsr_flash.val_t(active_lsr_idx);
lsr_flash.max_val_neigh(active_lsr_idx) = lsr_flash.val(active_lsr_idx);
lsr_flash.neigh_pix_mat_idx(active_lsr_idx) = lsr_flash.pix_mat_idx(active_lsr_idx);
lsr_flash.max_val_neigh_mean_rising_slope(active_lsr_idx) = lsr_flash.val_mean_rising_slope(active_lsr_idx);

for i = -1:1
for j = -1:1

neighbor_idx = sub2ind([mapinfo.Height mapinfo.Width],lsr_rows(active_lsr_idx)+i,lsr_cols(active_lsr_idx)+j);
entries_tobe_changed = find(max_flash_grid(neighbor_idx) - lsr_flash.max_val_neigh_t(active_lsr_idx) > 0);

lsr_flash.max_val_neigh_t(active_lsr_idx(entries_tobe_changed)) =
t_of_max_flash_grid(neighbor_idx(entries_tobe_changed));↪→

lsr_flash.max_val_neigh_mean_rising_slope(active_lsr_idx(entries_tobe_changed)) =
positive_rate_of_change(neighbor_idx(entries_tobe_changed));↪→

lsr_flash.max_val_neigh(active_lsr_idx(entries_tobe_changed)) =
max_flash_grid(neighbor_idx(entries_tobe_changed));↪→

lsr_flash.neigh_pix_mat_idx(active_lsr_idx(entries_tobe_changed)) = neighbor_idx(entries_tobe_changed);
end

end
%toc

end
end
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% Save dataset
save(['LSR_extraction_outputs_for_', outFile_product, 'mat'], 'lsr_flash', 'nolsr_flash', 'lsr_file', 'all_target_dates',

'rounded_sorted_lsr_dates', 'sorted_lsr_dates', 'sorted_IX');↪→

catch MEOUT
% Save whatever progress to this point
save(['LSR_extraction_outputs_for_', outFile_product, 'mat'], 'lsr_flash', 'nolsr_flash', 'lsr_file', 'all_target_dates',

'rounded_sorted_lsr_dates', 'sorted_lsr_dates', 'sorted_IX');↪→
end

exit;

FLASH Moment Extractor

Listing C2: Moment Extractor: Main file which wraps all functionality and handles the
extraction of FLASH product moments for a given set of LSRs.
#!/usr/bin/env python3
""" Moment Extractor
"""
from FLASH_info import PRODUCTS
import fileio_common as fileio
from sys import exit
from datetime import datetime
from spacetime_cube import *
from scipy.stats import skew, kurtosis # , moment
from numpy import mean, var, std, nonzero, quantile
from numpy import max as maximum
import os

# Constant which holds the path to the FLASH data folder
# Flash data folder on Hydros Server yhone (10.197.10.250)
#FLASH_DATA_FOLDER = "/var/www/html/new/flash_web"
#Server2017 FLASH data folder
FLASH_DATA_FOLDER = "/flash_web"
# Local test data folder
#FLASH_DATA_FOLDER = "./data/test/flash_web"

# Maximum order of statistical moments to be extracted from the data:
# 1: Mean
# 2: Variance
# 3: Skewness
# 4: Kurtosis
MAX_MOMENT = 4

# Time delta IN HOURS, defines the temporal search window for extracting data
# from the product files, based on an observation report's (e.g. LSR, mPing)
# time:
# time_window = (report_time - DELTA_t, report_time + DELTA_t)
DELTA_t = 3

# Spatial delta IN GRID CELLS, defines the spatial search window radius for
# extracting data from the product files, based on an observation report's
# (eg. LSR, mPing) location given by latitude and longitude coordinates:
# space_window = (report_lat, report_lon) * DELTA_r ^ 2
DELTA_r = 4

# Target products IDs for extraction, intersection, and moment calculations.
# These IDs are defined in the PRODUCTS dictionary, in the file FLASH_info.py.
# Each one of the IDs has associated information on where the product is stored
# within the folder structure of the FLASH_DATA_FOLDER (based on the Hydros
# server subdirectory structure for yhone:/var/www/html/new/flash_web), its
# common filename prefix, and product update frequencies.
TARGET_PRODUCTS = ["CREST_MaxUnitQ", "QPE_ARI_Max"]

# Path to a CSV file with flash flood reports, for which product moments will be
# extracted.
#REPORTS_CSV = "./data/observations/LSR/flashfloods_lsr_201804010000_202207010000.csv"
# Local test reports file
#REPORTS_CSV = "./data/test/observations/LSR/lsr_202207271200_202207301200_impacts.csv"
REPORTS_CSV = "./data/observations/LSR/ibw_classified_lsr.csv"

# Batch size for batch-processing the provided reports. Every time a batch is
# processed, an intermediate results file will be written out, which will enable
# the Moment Extractor to resume its operation without having to repeat all
# progress if it is interrupted.
BATCH_SIZE = 25

# Maximum number of batches to process (use to limit the number of processed
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# reports during testing). MAX_BATCHES = 0 means NO LIMIT!
MAX_BATCHES = 0

# Path to the folder where results are to be written out to
RESULTS_OUTPUT = "./results/"

# Path to a GeoTIFF of the overall DOMAIN to be used as reference
DOMAIN = "./data/mask/flash_conus_mask1km.tif"

# Assume a steady-state when missing input product files?
ASSUME_STEADY_STATE = True

# System frequency for all cubes
SYSTEM_FREQ = 10

# Calculate intersection moments?
INTERSECTION = True

def main():
"""Main function and point of entry for the Moments Extractor.

Main function, which will be the entry point that will be executed, when
this program is run as a script from the command line.
"""
# Extract the domain's shape from the reference GeoTIFF
domain_metadata = read_geotiff(DOMAIN)[1]
domain_shape = (domain_metadata['height'], domain_metadata['width'])

# Read the LSR reports from a standard CSV file
#lsr_reports = fileio.read_standard_lsrs(REPORTS_CSV, no_category=True)
lsr_reports = fileio.read_ibw_lsrs(REPORTS_CSV)

# Keep track of total number of reports
total_lsr_reports = len(lsr_reports)

# Define a Unique Identifier for the LSR file that is being processed
lsr_uuid = fileio.hash_filename(REPORTS_CSV)

# Define batches for batch processing the LSRs, so that it is easier to
# restart the process, in case of interruptions or failure
batches = fileio.define_batches(lsr_reports.shape[0], BATCH_SIZE)

# Check for pre-existing batch result JSON file, and if found, update the
# batches dictionary with "processed": True, for the matching batches
batches = fileio.match_batch_results(file_uuid=lsr_uuid,

batches=batches,
results_path=RESULTS_OUTPUT)

# Process the LSRs, extracting their locations and timestamps to match
# existing product files.

# Hold the total number of batches for future reference
num_batches = len(batches)

# Print out which file, how many reports, and how many batches will be
# processed
# if verbose:
print(f"Processing LSR file {lsr_uuid}: {lsr_reports.shape[0]} reports / "

f"{num_batches} batches")

# Variables to keep track of the total number of processed reports, as well
# as the number of processed and skipped batches
total_processed = 0
batches_skipped = 0
batches_processed = 0

# For each bathch in batches
for batch_id in batches:

# if verbose:
print(f"Batch ID: {batch_id}")

# IF the current batch has been processed
if batches[batch_id]["processed"]:

# Do nothing, and move to the next batch
# Keep track of how many batches were skipped
batches_skipped += 1
# if verbose:
print(f"WARNING: Skipping batch {batch_id + 1}/{num_batches}"

f" - already processed")
# Since processed nothing, set processed_lsrs to None
processed_lsrs = None

else:
# Get the current batch start and end indices for the LSR DataFrame
start_idx, end_idx = batches[batch_id]["indices"]

# if verbose:
print(f"Indices: ({start_idx}, {end_idx})")

# Subset the LSR reports to only select the reports for this batch.
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# Notice that the end index is incremented by 1, since the top
# index is always excluded by definition.
current_lsrs = lsr_reports.iloc[start_idx : end_idx + 1]

processed_lsrs = {}

# For each LST report in the current batch
# Process the current batch of LSRs
for index, report in current_lsrs.iterrows():

print(f"Index: {index}")
report_cubes = {}
# For each of the target products we want to use
for product in TARGET_PRODUCTS:

try:
# Get the current LSR's latitude and longitude
lat = float(report['lat'])
lon = float(report['lon'])

# Obtain the grid cell that corresponds to the event's
# latiitude and longitude location
event_grid = get_event_grid(DOMAIN, lat, lon)
#print(f"{lat}, {lon} => {event_grid}")

# Obtain the event window indices for cropping the
# product data, and make smaller data cubes
window_inds = get_event_window_indices(event_grid,

DELTA_r,
flatten=False)

#print(f"Window: {window_inds}")
#print(f"WindowSize: {len(window_inds)}")

# Obtain the event's window mask, to crop the domain
# only to the area of interest defined by DELTA_r
window_mask = get_event_window_mask(domain_shape,

window_inds,
flatten=False)

#print(f"Mask: {window_mask}")
#print(f"MaskShape: {window_mask.shape}")
#print(f"MaskNon0: {len(window_mask[window_mask>0])}")

# Extract the current product's metadata
product_data = PRODUCTS[product]
# Extract the current product's subdirectory
data_subdir = product_data['subdir']
# Extract the current product's file naming prefix
prefix = product_data['prefix']
# Extract the current product's update frequency
frequency = int(product_data['freq'])

# If a SYSTEM-wide frequency is provided, force all
# products to be sampled to this frequency
if SYSTEM_FREQ > 0:

frequency = SYSTEM_FREQ

# Convert the current LSR timestamp to FLASH format
#current_timestamp = parse_timestamp(report['valid2'],
# frequency,
# input_format='%Y/%m/%d %H:%M')
current_timestamp = parse_timestamp(report['time'],

frequency,
input_format='%Y-%m-%d %H:%M:00')

print(f"{product} Timestamp: {current_timestamp}")

# Generate the file list needed to create a cube for the
# current LSR report, using the requested DELTA_t.
# NOTE: Since we are making sure that the file list
# contains ONLY paths to files that DO EXIST, inexistent
# files will have a corresponding None, instead of a
# path in the list.
cube_file_list = \

fileio.generate_cube_file_list(reference_timestamp=current_timestamp,
data_dir=FLASH_DATA_FOLDER,
data_subdir=data_subdir,
product_prefix=prefix,
delta_hours=DELTA_t,
product_freq=frequency,
check_existing=True)

#print(f"FileList:{cube_file_list}")

# Handle the cases where any of the requested files does
# not exist. Assume a steady state for missing product
# files, instead of zeros (default behavior of
# build_cube())
if ASSUME_STEADY_STATE:

cube_file_list = steady_state(cube_file_list)

#print(f"FileList:{cube_file_list}")
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window_shape = ((2 * DELTA_r) + 1, (2 * DELTA_r) + 1)
# Build the cube for the current event's product
prod_cube = build_cube(cube_file_list,

domain_shape,
window_mask,
verbose=False)

#print(f"CUBE:\n{prod_cube}")
#print(f"CUBENon0:{len(prod_cube[prod_cube>0])}")
#print(f"SHAPE:\n{prod_cube.shape}")

#sys_shape = system_cube_shape(DELTA_t, DELTA_r, SYSTEM_FREQ)
#print(f"SYSTEM CUBE SHAPE: {sys_shape}")

#if prod_cube.shape != sys_shape:
# prod_cube = shrink_cube(prod_cube, sys_shape)

report_cubes[product] = prod_cube

except Exception as e:
print(f"ERROR: Could not build data cube for product {product}!"

f"Exception Caught: {e}")
exit(1)

#print(f"CUBES: {report_cubes}")

report_moments = {}

for product_key in report_cubes:
cube_moments = calculate_moments(report_cubes[product_key],

MAX_MOMENT)
#print(f"{product_key} moments: {cube_moments}")
report_moments[product_key] = cube_moments

if INTERSECTION:
mask1 = nonzero(report_cubes[TARGET_PRODUCTS[1]])
intersection1 = report_cubes[TARGET_PRODUCTS[0]][mask1]
intersection_moments1 = calculate_moments(intersection1,

MAX_MOMENT)
#print(f"{TARGET_PRODUCTS[0]}_Intersection moments: {intersection_moments1}")
report_moments[f"{TARGET_PRODUCTS[0]}_intersection"] = intersection_moments1

mask2 = nonzero(report_cubes[TARGET_PRODUCTS[0]])
intersection2 = report_cubes[TARGET_PRODUCTS[1]][mask2]
intersection_moments2 = calculate_moments(intersection2,

MAX_MOMENT)
#print(f"{TARGET_PRODUCTS[1]}_Intersection moments: {intersection_moments2}")
report_moments[f"{TARGET_PRODUCTS[1]}_intersection"] = intersection_moments2

print(f"Moments: {report_moments}")

processed_lsrs[index] = report_moments

# Write the current batch's result as a JSON file, identified by
# the lsr_uuid string and the current batch's ID, in the desired
# output results folder
batch_filename = f"{lsr_uuid}_{batch_id}.json"
batch_path = os.path.join(RESULTS_OUTPUT, batch_filename)
fileio.write_json_results(processed_lsrs, batch_path)

# if verbose:
print(f"Wrote partial results file: {batch_path}")

# Mark batch as processed:
batches[batch_id]["processed"] = True

# Keep track of how many batches were processed
batches_processed += 1

# if verbose:
print(f"Processed {len(processed_lsrs)} reports for "

f"batch {batch_id + 1}/{num_batches}")

# Break after MAX_BATCHES, if MAX_BATCHES > 0
if MAX_BATCHES and batch_id == MAX_BATCHES:

# if verbose:
print(f"WARNING: MAX_BATCHES of {MAX_BATCHES} reached! HALTING!\n")
break

# Keep track of how many total LSRs were processed
if processed_lsrs:

total_processed += len(processed_lsrs)
else:

total_processed += 0

# Notify the user processing is done, and provide some counts on results
print(f"DONE!\n\t"

f"Reports file: {REPORTS_CSV}\n\t"
f"UUID: {lsr_uuid}\n\t"
f"processed {batches_processed}/{num_batches} batches\n\t"
f"skipped {batches_skipped}/{num_batches} batches \n\t"
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f"processed {total_processed} LSRs")

# Consolidate processed JSON results into a single CSV file

# Check if there are any JSON files in the current output path
result_files = fileio.get_files_in_dir(RESULTS_OUTPUT, extension=".json")
# Make sure that the JSON files found match the current UUID
result_files = sorted(list(filter(lambda x: lsr_uuid in x, result_files)))

print(result_files)

# If the list of result files in the output folder, with the requested uuid
# is empty, notify that no batch results were found
if not result_files:

print("ERROR: No batch result files were found for current uuid!")

# Else if there are result files in the output folder
else:

# Create a copy of the original LSR DataFrame
output_lsrs = lsr_reports.copy()
#output_lsrs.index = output_lsrs.remark
# Create the new columns for the new results data in the DataFrame
for product in TARGET_PRODUCTS:

output_lsrs[f"{product}_MEAN"] = None
output_lsrs[f"{product}_VAR"] = None
output_lsrs[f"{product}_SKEW"] = None
output_lsrs[f"{product}_KURT"] = None
output_lsrs[f"{product}_Q90"] = None
output_lsrs[f"{product}_Q95"] = None
output_lsrs[f"{product}_Q99"] = None
output_lsrs[f"{product}_MAX"] = None

if INTERSECTION:
output_lsrs[f"{product}_intersection_MEAN"] = None
output_lsrs[f"{product}_intersection_VAR"] = None
output_lsrs[f"{product}_intersection_SKEW"] = None
output_lsrs[f"{product}_intersection_KURT"] = None
output_lsrs[f"{product}_intersection_Q90"] = None
output_lsrs[f"{product}_intersection_Q95"] = None
output_lsrs[f"{product}_intersection_Q99"] = None
output_lsrs[f"{product}_intersection_MAX"] = None

# For each of these files
for json_file in result_files:

# Read the results JSON file
batch_results = fileio.read_json_results(json_file)
# Get the current batch ID from the batch results file
batch_id = json_file.split("/")[-1].split('_')[-1].split('.')[0]
# Get the LSR dataframe ID corresponding to the beginning of the
# current batch
start_index = int(batch_id) * BATCH_SIZE
# Iterate over each result, and add the data to the corresponding
# columns in the output LSR dataframe, for the corresponding LSR
for batch_index in batch_results:

#idx = start_index + int(batch_index)
idx = int(batch_index)
if idx >= total_lsr_reports:

break
#print(f"Write index: {idx}")
for moment_index in batch_results[batch_index]:

cur_mean = batch_results[batch_index][moment_index]["mean"]
cur_var = batch_results[batch_index][moment_index]["var"]
cur_skew = batch_results[batch_index][moment_index]["skew"]
cur_kurt = batch_results[batch_index][moment_index]["kurt"]
cur_q90 = batch_results[batch_index][moment_index]["q90"]
cur_q95 = batch_results[batch_index][moment_index]["q95"]
cur_q99 = batch_results[batch_index][moment_index]["q99"]
cur_max = batch_results[batch_index][moment_index]["max"]

try:
output_lsrs.loc[idx][f"{moment_index}_MEAN"] = cur_mean
output_lsrs.loc[idx][f"{moment_index}_VAR"] = cur_var
output_lsrs.loc[idx][f"{moment_index}_SKEW"] = cur_skew
output_lsrs.loc[idx][f"{moment_index}_KURT"] = cur_kurt
output_lsrs.loc[idx][f"{moment_index}_Q90"] = cur_q90
output_lsrs.loc[idx][f"{moment_index}_Q95"] = cur_q95
output_lsrs.loc[idx][f"{moment_index}_Q99"] = cur_q99
output_lsrs.loc[idx][f"{moment_index}_MAX"] = cur_max

except KeyError as error:
print(f"WARNING: Index not found: {error}, "

f"for {moment_index}")

output_lsrs.reset_index(drop=True)
output_lsrs.to_csv(f"./results/{lsr_uuid}_dR{DELTA_r}_dT{DELTA_t}_moments.csv", index=False)

print("DONE!")
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def parse_timestamp(timestamp, frequency=None,
#input_format='%m/%d/%y %H:%M',
input_format='%Y-%m-%d %H:%M:00',
output_format='%Y%m%d.%H%M%S'):

# Read the input timestamp as a datetime object, with the appropriate
# string format provided
datetime_object = datetime.strptime(timestamp, input_format)

# Set the seconds to 00, since all FLASH products are generated with
# timestamps consistent with their frequency, and with 00 seconds
datetime_object = datetime_object.replace(second=00)

# If a frequency is provided to be matched
if frequency is not None:

# Determine whether to round up, or round down to the nearest frequency
# time step
minutes = datetime_object.minute
excess = minutes % frequency

# Adjust the original timestamp to match the nearest frequency time step
new_minute = minutes - excess
datetime_object = datetime_object.replace(minute=new_minute)

# Return the input timestamp, with the desired output format
return datetime_object.strftime(output_format)

def next_valid(item_list, default_val=None):
valid = next((item for item in item_list if item is not None), default_val)
return valid

def previous_valid(item_list, default_val=None):
valid = next_valid(reversed(item_list), default_val)
return valid

def steady_state(item_list, default_val=None):
# Output list to hold return values
ans = []
# For each of the items in the list
for i, item in enumerate(item_list):

# If the item is None
if (i == 0) and (not item):

# Make it equal to the next existing item
steady = next_valid(item_list[i:], default_val)
# Append the 'steady assumption' to the output list
ans.append(steady)

elif (i > 0) and (not item):
# Make it equal to the previous existing item
steady = previous_valid(ans[:i+1], default_val)
# Append the 'steady assumption' to the output list
ans.append(steady)

# If the item is not None
else:

# Append the existing item to the output list
ans.append(item)

# Return the output list of non-None items
return ans

def calculate_moments(cube, n_moments=MAX_MOMENT):
# Define the results dictionary for the statistical moments
moments = {

"mean": None,
"var": None,
"skew": None,
"kurt": None,
"q90": None,
"q95": None,
"q99": None,
"max": None

}

# Handle the various number of moments to be calculated
# Calculate only mean
if n_moments == 1:

try:
moments["mean"] = mean(cube, axis=None)

except Exception as err:
print(f"ERROR: Could not calculate moments!\n{err}")

try:
moments["q90"] = quantile(cube, .90, axis=None)
moments["q95"] = quantile(cube, .95, axis=None)
moments["q99"] = quantile(cube, .99, axis=None)

except Exception as err:
print(f"ERROR: Could not calculate quantiles!\n{err}")

try:
moments["max"] = maximum(cube, axis=None)

except Exception as err:
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print(f"ERROR: Could not calculate maximum!\n{err}")

# Calculate only mean and variance
elif n_moments == 2:

try:
moments["mean"] = mean(cube, axis=None)
moments["var"] = var(cube, axis=None)

except Exception as err:
print(f"ERROR: Could not calculate moments!\n{err}")

try:
moments["q90"] = quantile(cube, .90, axis=None)
moments["q95"] = quantile(cube, .95, axis=None)
moments["q99"] = quantile(cube, .99, axis=None)

except Exception as err:
print(f"ERROR: Could not calculate quantiles!\n{err}")

try:
moments["max"] = maximum(cube, axis=None)

except Exception as err:
print(f"ERROR: Could not calculate maximum!\n{err}")

# Calculate only mean, variance, and skewness
elif n_moments == 3:

try:
moments["mean"] = mean(cube, axis=None)
moments["var"] = var(cube, axis=None)
moments["skew"] = skew(cube, axis=None)

except Exception as err:
print(f"ERROR: Could not calculate moments!\n{err}")

try:
moments["q90"] = quantile(cube, .90, axis=None)
moments["q95"] = quantile(cube, .95, axis=None)
moments["q99"] = quantile(cube, .99, axis=None)

except Exception as err:
print(f"ERROR: Could not calculate quantiles!\n{err}")

try:
moments["max"] = maximum(cube, axis=None)

except Exception as err:
print(f"ERROR: Could not calculate maximum!\n{err}")

# Calculate mean, variance, skewness, and kurtosis
else:

try:
moments["mean"] = mean(cube, axis=None)
moments["var"] = var(cube, axis=None)
moments["skew"] = skew(cube, axis=None)
moments["kurt"] = kurtosis(cube, axis=None)

except Exception as err:
print(f"ERROR: Could not calculate moments!\n{err}")

try:
moments["q90"] = quantile(cube, .90, axis=None)
moments["q95"] = quantile(cube, .95, axis=None)
moments["q99"] = quantile(cube, .99, axis=None)

except Exception as err:
print(f"ERROR: Could not calculate quantiles!\n{err}")

try:
moments["max"] = maximum(cube, axis=None)

except Exception as err:
print(f"ERROR: Could not calculate maximum!\n{err}")

# Return the calculated moments
return moments

def system_cube_shape(delta_t, delta_r, freq):
x_dim = (2 * delta_r) + 1
y_dim = (2 * delta_r) + 1
n_pixels = x_dim * y_dim
n_slices = len([x for x in range(-int(delta_t * 60), int(delta_t * 60 + freq), freq)])

return (n_slices, n_pixels)

def shrink_cube(cube, desired_shape):
cube_shape = cube.shape
shrunken_cube = empty(shape=desired_shape)
stride = int((cube_shape[0] - 1) / (desired_shape[0] - 1))
print(f"Stride: {stride}")
if cube_shape != desired_shape:

for index, row in enumerate(shrunken_cube):
print(f"Index: {index}")
if index == 0:

low = (stride * index) - 1
else:

low = (stride * index)
if low < 0:

low = 0
high = (stride * (index + 1)) - 1
print(f"Low: {low}, High: {high}")
rows_to_average = cube[low : high]
print(f"Rows to average: {rows_to_average}")
average_row = mean(rows_to_average, axis=0)
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print(f"Averaged row: {average_row}")
shrunken_cube[index] = average_row

else:
shrunken_cube = cube

return shrunken_cube

# Block of code which will be executed when this file is executed as a script
if __name__ == '__main__':

# Run the main() function
main()
# Terminate with exit code 0!
exit(0)

Listing C3: Moment Extractor: File which holds the relevant information for FLASH
product outputs.

"""FLASH Product Dictionary
# Template URL for downloading products
http://flash.ou.edu/flash_web/<subdir>/<prefix>.<yyyymmdd>.<HHMM00>.tif

# Dictionary structure
<DICT_ID> : {

"subdir": "<SUBDIRECTORY_NAME>",
"prefix": "<FILENAME_PREFIX>",
"freq": "<PRODUCT_FREQUENCY_MINS>"

}
"""

PRODUCTS = {
# Hydrologic Models - 10min freq
"CREST_MaxQ": {"subdir": "maxq_new", "prefix": "maxq", "freq": 10},
"CREST_MaxUnitQ": {"subdir": "maxunitq", "prefix": "maxunitq", "freq": 10},
"CREST_MaxSoilSat": {"subdir": "sm", "prefix": "sm", "freq": 10},
"SAC_MaxUnitQ": {"subdir": "maxunitq_sac", "prefix": "maxunitq", "freq": 10},
"SAC_MaxSoilSat": {"subdir": "sm_sac", "prefix": "sm", "freq": 10},
"HP_MaxQ": {"subdir": "maxq_hp", "prefix": "maxq", "freq": 10},
"HP_MaxUnitQ": {"subdir": "maxunitq_hp", "prefix": "maxunitq", "freq": 10},
"QPE_10m": {"subdir": "qpeaccum", "prefix": "qpeaccum", "freq": 10},
# QPE Products - 2min freq
"QPE_ARI_30m": {"subdir": "preciprp_30m", "prefix": "30U.ARI", "freq": 2},
"QPE_ARI_1h": {"subdir": "preciprp_1h", "prefix": "01H.ARI", "freq": 2},
"QPE_ARI_3h": {"subdir": "preciprp_3h", "prefix": "03H.ARI", "freq": 2},
"QPE_ARI_6h": {"subdir": "preciprp_6h", "prefix": "06H.ARI", "freq": 2},
"QPE_ARI_12h": {"subdir": "preciprp_12h", "prefix": "12H.ARI", "freq": 2},
"QPE_ARI_24h": {"subdir": "preciprp_24h", "prefix": "24H.ARI", "freq": 2},
"QPE_ARI_Max": {"subdir": "preciprp_max", "prefix": "MAX.ARI", "freq": 2},
"QPE_FFG_1h": {"subdir": "ratio_1h", "prefix": "01H.RAT", "freq": 2},
"QPE_FFG_3h": {"subdir": "ratio_3h", "prefix": "03H.RAT", "freq": 2},
"QPE_FFG_6h": {"subdir": "ratio_6h", "prefix": "06H.RAT", "freq": 2},
"QPE_FFG_Max": {"subdir": "ratio_max", "prefix": "MAX.RAT", "freq": 2},
# Post Wildfire Products - 2min freq
"WFR": {"subdir": "wildfirerain", "prefix": "wildfirerain", "freq": 2},
# IBW Impacts - 10min freq
"IBW_Base": {"subdir": "impacts/ibw_base", "prefix": "ibw_base.maxunitq", "freq": 10},
"IBW_Cons": {"subdir": "impacts/ibw_cons", "prefix": "ibw_cons.maxunitq", "freq": 10},
"IBW_Cata": {"subdir": "impacts/ibw_cata", "prefix": "ibw_cata.maxunitq", "freq": 10},

}

Listing C4: Moment Extractor: Common file I/O functionalities, defined for reusing in
the main file.

""" Common File Input/Output Functions
"""

from datetime import datetime, timedelta
from json import dump, loads
from os import listdir, path

from numpy import array, nan
from osgeo import gdal
from pandas import read_csv, to_datetime
from shortuuid import uuid

def read_geotiff(filename, mask=False, flatten=False):
"""Read a Geotiff file, or a Geotiff mask file.
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This function uses gdal to open a raster mask file, and then extracts its
first raster band. It returns the file's data, dimensions and pertinent
geolocation metadata.

Args:
filename (str): path to the mask file (must be a geotiff).

Returns:
tuple: tuple containing the maks' data and metadata:

mask_array (numpy.Array): flat array containing the mask data.
cols (int): number of columns in the mask file.
rows (int): number of rows in the mask file.
geotransform (gdal.GeoTransform): mask file geotransformation data.
projection (gdal.Projection): mask file projection.

"""

# Empty GeoTIFF information dictionary
geotiffinfo = {}

# Opent the file
ds = gdal.Open(filename)

# Extract and save the file's geotransformation and projection
geotransform = ds.GetGeoTransform()
projection = ds.GetProjection()

# Extract the bounding box coordinates
xres = geotransform[1]
yres = geotransform[5]
maxy = geotransform[3]
miny = maxy + yres * ds.RasterYSize
minx = geotransform[0]
maxx = minx + xres * ds.RasterXSize
bounding_box = [minx, miny, maxx, maxy]

ref_matrix = [[0, yres], [xres, 0], [minx, maxy]]

# Extract the first raster band
band = ds.GetRasterBand(1)

# Save the first band as an array
band_array = band.ReadAsArray()

# Extract the raster's dimensions
height, width = band_array.shape

# Add the geotiff's metadata to the GeoTIFF information dictionary
geotiffinfo["bounding_box"] = bounding_box
geotiffinfo["ref_matrix"] = ref_matrix
geotiffinfo["height"] = height
geotiffinfo["width"] = width
geotiffinfo["geotransform"] = geotransform
geotiffinfo["projection"] = projection

# Flaten the file's data into a 1D numpy array
if flatten:

band_array = array(band_array).flatten()

# If reading a mask file, make sure all non-zero values are returned with
# with a value of 1
if mask:

band_array = band_array[band_array == 1]

# Return the GeoTIFF's data array, its dimensions, its geotransformation
# and projection
return band_array, geotiffinfo

def write_geotiff(output_filename, data_array, geotiffinfo, raster_band=1):
"""Function that writes a NumPy array into a GeoTIFF file.

This function uses gdal to open a raster mask file, and then extracts its
first raster band. It returns the file's data, dimensions and pertinent
geolocation metadata.

Arguments:
output_filename {str} -- name for the GeoTIFF file
data_array {numpy.ndarray} -- NumPy array containing the values to be

written onto the GeoTIFF file
geotiffinfo {dict} -- dictionary containing the metadata for the

Geotiff file: bounding_box, ref_matrix, height, width,
geotransform, and projection. See read_geotiff() for more details,
in principle, these metadata should match the Geotiff that was
read previously.

Keyword Arguments:
raster_band {int} -- Geotiff raster's band number to write the data

into (default: {1})
"""

# Read the metadata that is needed from the geotiffinfo dictionary
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# Leave out the bounding_box and ref_matrix properties
# Raster height
height = geotiffinfo["height"]
# Raster width
width = geotiffinfo["width"]
# Target Geotransform
geotransform = geotiffinfo["geotransform"]
# Target projection
projection = geotiffinfo["projection"]

# Initialize the GDAL Geotiff driver
driver = gdal.GetDriverByName('GTiff')
# Create an output grid, with the appropriate data type (FLOAT32) and
# compression enabled
out_grid_data = driver.Create(output_filename, height, width, raster_band,

gdal.GDT_Float32, ['COMPRESS=DEFLATE'])
# Set the target geotransform
out_grid_data.setGeoTransform(geotransform)
# Set the target projection
out_grid_data.SetProjection(projection)
# Set the data's shape to (-1, height) TODO: Verify this works / is needed?
data_array.shape = (-1, height)
# Write the data to the defined raster band
out_grid_data.GetRasterBand(raster_band).WriteArray(data_array, 0, 0)
# Set the no-data values to -9999.0
out_grid_data.GetRasterBand(raster_band).SetNoDataValue(-9999.0)
# Flush out the data, and close the file
out_grid_data = None

def generate_cube_file_list(reference_timestamp,
data_dir, data_subdir,
product_prefix,
delta_hours=6,
product_freq=10,
datetime_format='%Y%m%d.%H%M%S',
product_extension=".tif",
check_existing=False):

""" Function that generate a list of file paths for a space-time data cube.
"""
# Construct a datetime object from the reference timestamp, using the
# provided datetime string format
datetime_object = datetime.strptime(reference_timestamp, datetime_format)

# Construct a datetime string list based on the reference timestamp and the
# provided time delta in hours. The constructed list will always contain an
# odd number of strings, since the middle one will always be the reference
# datetime string, and this center will be "sandwiched" by equal amounts of
# datetime strings spanning the requested time delta
datetime_list = [datetime_object + timedelta(minutes=x)

for x in range(-int(delta_hours*60),
int(delta_hours*(60+product_freq)),
product_freq)]

# Construct a filename list based on the datetime string list, data
# subdirectory, product prefix, and product extension
filename_list = []
# For each datetime string in the datetime_list
for item in datetime_list:

# Extract the individual datetime components
year = item.year
month = item.month
day = item.day
hour = item.hour
minute = item.minute

# Make sure that the days, months, hours, and minutes are always
# represented by strings composed of two digits
if day < 10:

day = '0' + str(day)
if month < 10:

month = '0' + str(month)
if hour < 10:

hour = '0' + str(hour)
if minute < 10:

minute = '0' + str(minute)

# Construct the complete file path string
file_path = f"{data_dir}/{data_subdir}/{product_prefix}.{str(year)}{str(month)}{str(day)}.\
{str(hour)}{str(minute)}00{product_extension}"
alternate_path = ""
# For ARIs, check for a possible alternate product prefix!
if product_prefix == "MAX.ARI":

alternate_prefix = "MAX.RP"
alternate_path = f"{data_dir}/{data_subdir}/{alternate_prefix}.{str(year)}{str(month)}{str(day)}.\
{str(hour)}{str(minute)}00{product_extension}"

#print(f"Path: {file_path}\nAlternate: {alternate_path}")
# If we're verifying that files on the list actually exist
if check_existing:

# If the current file path exists
if path.exists(file_path):

# Add the current file path to the filename list
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filename_list.append(file_path)
# If the alternate file path exists
elif alternate_path and path.exists(alternate_path):

# Add the alternate file path to the filename list
filename_list.append(alternate_path)

# If the current file path does not exist
else:

# Add None to the filename list
filename_list.append(None)

# If we're not verifying that files on the list exist
else:

# Add the current file path to the filename list
filename_list.append(file_path)

# Return the constructed filename list
return filename_list

def read_standard_lsrs(lsr_file_path, no_index=True, no_category=True):
""" Read a standard CSV file containing a collection of LSRs

This function reads a "standard" CSV format containing LSR reports, as they
are provided by the Iowa State Univeristy Local Storm Report Archive:
https://mesonet.agron.iastate.edu/request/gis/lsrs.phtml
"""
# Read the file, and define standard names for each columns, as well as
# approrpiate data types
if no_category:

standard_lsrs = read_csv(lsr_file_path, delimiter=',', header=0,
names=["valid", "valid2", "lat", "lon",

"mag", "wfo", "typecode", "typetext",
"city", "county", "state", "source",
"remark", "ugc", "ugcname"],

index_col=False, # "valid2",
dtype={"valid": str, "valid2": str,

"lat": str, "lon": str,
"mag": str, "wfo": str,
"typecode": str, "typetext": str,
"city": str, "county": str,
"state": str, "source": str,
"remark": str, "ugc": str,
"ugcname": str})

standard_lsrs["category"] = None
else:

standard_lsrs = read_csv(lsr_file_path, delimiter=',', header=0,
names=["valid", "valid2", "lat", "lon",

"mag", "wfo", "typecode", "typetext",
"city", "county", "state", "source",
"remark", "category", "ugc",
"ugcname"],

index_col=False, # "valid2",
dtype={"valid": str, "valid2": str,

"lat": str, "lon": str,
"mag": str, "wfo": str,
"typecode": str, "typetext": str,
"city": str, "county": str,
"state": str, "source": str,
"remark": str, "category": str,
"ugc": str, "ugcname": str})

if not no_index:
standard_lsrs.set_index('valid2', inplace=True)

# Make sure that dates and times are represented appropriately
standard_lsrs.index = to_datetime(standard_lsrs.index)

# Make sure that report sources, categories, and WFOs are represented
# appropriately as categorical data
standard_lsrs.source = standard_lsrs.source.astype('category')
standard_lsrs.category = standard_lsrs.category.astype('category')
standard_lsrs.wfo = standard_lsrs.wfo.astype('category')

# Remove all NaNs from the remarks column (empty remarks) and replace them
# with blank strings " "
standard_lsrs.remark.replace(nan, " ", regex=True, inplace=True)

# Return the loaded data in a Pandas DataFrame
return standard_lsrs

def read_ibw_lsrs(lsr_file_path, no_index=True):
""" Read a CSV file containing a collection of Expertly-Classified LSRs

The 'magnitude' field corresponds to IBW categories for each LSR
"""
# Read the file, and define standard names for each columns, as well as
# approrpiate data types
standard_lsrs = read_csv(lsr_file_path, delimiter=',', header=0,

names=["time", "office", "local_time",
"county", "location", "state",
"event_type", "magnitude", "source",
"lat", "lon", "remark"],
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index_col=False, # "valid2",
dtype={"time": str,

"office": str,
"local_time": str,
"county": str,
"location": str,
"state": str,
"event_type": str,
"magnitude": str,
"source": str,
"lat": str,
"lon": str,
"remark": str})

standard_lsrs["category"] = None

if not no_index:
standard_lsrs.set_index('time', inplace=True)

# Make sure that dates and times are represented appropriately
standard_lsrs.index = to_datetime(standard_lsrs.index)
standard_lsrs.local_time = to_datetime(standard_lsrs.local_time)

# Make sure that report sources, categories, and WFOs are represented
# appropriately as categorical data
standard_lsrs.source = standard_lsrs.source.astype('category')
standard_lsrs.magnitude = standard_lsrs.source.astype('magnitude')
standard_lsrs.category = standard_lsrs.category.astype('category')
standard_lsrs.office = standard_lsrs.wfo.astype('office')

# Remove all NaNs from the remarks column (empty remarks) and replace them
# with blank strings " "
standard_lsrs.remark.replace(nan, " ", regex=True, inplace=True)

# Return the loaded data in a Pandas DataFrame
return standard_lsrs

def read_mpings(mping_file_path, no_index=True, no_category=True):
""" Read a CSV file containing a collection of mPing Flood Reports.
"""
pass

def get_files_in_dir(dir_path="./", extension=""):
''' Return a list of files with the same extension in a given directory.
'''
# Output list holding the complete file paths
found_files = []

# Iterate over the list of files in the directory
for file in listdir(dir_path):

# If the file's extension matches what we are searching for
if file.endswith(extension):

# Add the file to the output file list
found_files.append(path.join(dir_path, file))

# Return the list of found files
return found_files

def define_batches(num_reports, batch_size=100):
'''Define a dictionary of batches to batch process a dataframe of LSRs

This function takes the total number of reports, and calculates a number of
batches using a specific batch size. These batches are assigned an ID, and
index ranges are associates to them, so that the number of records in each
batch of the input DataFrame's total size corresponds to at most the
defined batch size.

Batches are defined as dictionary entries with the following structure:
{

<batch_id> : {
"indices": (<start_index>, <end_index>),
"processed": False

}
}

where <batch_id> is an integer (starting at 0), <start_index> is the
first index of this batch, and <end_index> is the last index of the batch.
Note that the last index in the last batch will be equal to num_reports-1
since the indices start at 0, and not at 1! The 'processed' key will be
used to keep track of whether this specific batch has been processed
successfully or not.
'''
# Output dictionary of batches based on the input DataFrame
batches = {}

# If batch size is == 0, assume no batching is desired, and output a single
# batch holding the entirety of the num_reports
if batch_size == 0:

batches[batch_size] = {"indices": (0, num_reports - 1),
"processed": False}

# Else if the batch size is not zero, do the appropriate calculations, and
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# define the number of full and partial batches corresponding to the
# requested parameters
else:

# Number of "full" batches
full_batches = num_reports // batch_size

# Remainder for "partial" batch
partial_batch = num_reports % batch_size

# Add the "full" batches to the dictionary
for batch in range(full_batches):

batches[batch] = {"indices": (batch_size * batch,
batch_size * (batch + 1) - 1),

"processed": False}

# If available, add the partial batch to the dictionary
if partial_batch > 0:

batches[full_batches] = {"indices": (batch_size * full_batches,
(batch_size * full_batches)
+ partial_batch - 1),

"processed": False}

# Return the batches dictionary
return batches

def match_batch_results(file_uuid, batches, results_path="./results/"):
'''

The expected format for the batch result files is:
<results_path>/<file_uuid>_<batch_id>.json

'''

# Check if there are any JSON files in the specified path
result_files = get_files_in_dir(results_path, extension=".json")

# Make sure that the JSON files found match the specified UUID
result_files = list(filter(lambda x: file_uuid in x, result_files))

# If the list of files in the requested folder, with the requested uuid is
# empty, notify that no previous batch results were found, and return a
# None value
if not result_files:

print("WARNING: No previous batch results found for current uuid!")

# Else if there are valid files that match the uuid
else:

# For each of these files
for json_file in result_files:

# Determine its batch ID
batch_id = json_file.split("/")[-1].split("_")[-1].split(".")[0]
# Set this batch's processed variable as True
batches[int(batch_id)]["processed"] = True

# Return the batches dictionary, with updated "processed" values for all
# the JSON batch results files found
return batches

def hash_filename(file_path, verbose=False):
''' Strip the filename from a path, and generate a 22 digit UUID from it.

This function receives a complete file path, remove any route paths out of
it, and then generates a unique 'short' identifier (using shortuui) based
on the stripped filename (including the file's extension).
'''
# Remove any paths from the file name
stripped_filename = str(file_path).split('/')[-1]

# If verbose, print the original path and the stripped file name
if verbose:

print(f"FILE_PATH: {file_path}\nFILE_NAME: {stripped_filename}")

# Hash the file name and return a unique identifier
return uuid(stripped_filename)

def read_json_results(json_file_path):
''' Read a JSON file containing LSR remarks, FFSI classification and score.

This function reads in a JSON file of Classified LSRs into a dictionary,
including the remarks, the probability classes, and their FFSI scores.
'''
# Open the file to be read
with open(json_file_path, 'r') as j:

# Load the dictionary as JSON
contents = loads(j.read())

# Return the contents of the file
return contents
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def write_json_results(results, fname="./results/test.json", indent=2):
''' Write a JSON file containing LSR remarks, FFSI class probs. and score.

This function writes out a dictionary of Classified LSRs into a JSON file,
including the remarks, the probability classes, and their FFSI scores.
'''
# Open a new file to be written
with open(fname, "w") as outfile:

# Dump the dictionary as JSON
dump(results, outfile, indent=indent)

Listing C5: Moment Extractor: Common spatiotemporal aggregation functionalities,
defined for reusing in the main file.

""""Common Space-Time Data Cube Functions
"""

from numpy import append, asarray, empty, multiply, zeros, array, count_nonzero
import rasterio

from fileio_common import read_geotiff

def get_event_grid(domain_geotiff, lat, lon, verbose=False):
""" Obtain the grid cell's row/column indices for a given lat/lon pair.

This function uses a Geotiff file (which defines the domain), and then
calculates the row and column indices for the grid's cell which contains
the provided lat/lon point.
"""
# Use rasterio to open the domain geotiff
with rasterio.open(domain_geotiff) as src:

# Extract the domain's metadata
metadata = src.meta

# If verbose, print metadata
if verbose:

print(f"Domain metatada:\n\t{metadata}")

# Use the transform metadata and the coordinates, to obtain the row and
# column ids where we will find our target coordinates
rowcol = rasterio.transform.rowcol(metadata['transform'],

xs=float(lon),
ys=float(lat))

# Return a tuple of row and column indices where the corresponding
# gridcell for the given lat/lon coords will be located
return rowcol

def get_event_window_indices(center_rowcol, window_radius, height=3500,
width=7000, flatten=False, verbose=False):

""" Get an event's spatial window's indices (rowcol or flattened).

This function calculates the corresponding indices for a given event's
search window, as defined by the event's Lat/Lon, a window radius, and the
size of the original domain. Indices can be returned as a list of tuples
representing (row, column) indices, or as a list of integers, representing
'flattened' indices on a 1D vector.

TODO: Maybe these calculations can be vectorized? Nested for loops are a
working solution, but a lazy one.
"""
# If verbose, print out the center grid's row/col indices
if verbose:

print(f"Center grid: {center_rowcol}")

# Extract the center grid's row and column indices
center_row, center_col = center_rowcol

# Define the return variable's empty list, which will hold our indices
window_rowcols = []

# Calculate the number of rows and number of columns our search window will
# have, from the input's window radius (a rectangular subdomain)
num_rows = (2 * window_radius) + 1
num_cols = (2 * window_radius) + 1

# Variable to keep track of the rows we have traversed
progress_rows = -window_radius
# For each row in the search window (ignore the row's index)
for _ in range(num_rows):

# Variable to keep track of the columns we have traversed
progress_cols = -window_radius
# For each column in the search window (ignore the column's index)

202



for _ in range(num_cols):
# Calculate each of the search window's grid's row and column
# indices by iterating over the rows and columns that make up the
# search window
window_cell_row = center_row + progress_rows
window_cell_col = center_col + progress_cols
# Make sure that the resulting indices are WITHIN the original
# domain! (e.g. ignore those that fall outside of the domain's
# original bounds)
if ((window_cell_col >= 0 and window_cell_row >= 0) and

(window_cell_col < width and window_cell_row < height)):
# Append the row/col indices for the current grid cell within
# the search window to the output list
window_rowcols.append((window_cell_row, window_cell_col))

# Increment the number of columns we have traversed in our counter
progress_cols += 1

# Increment the number of rows we have traversed in our counter
progress_rows += 1

# If the indices are to be returned as 'flattened', in order to locate the
# search window pixels on a 1D array domain
if flatten:

# Instantiate an empy result list for flat indices
window_rowcols_flat = []
# For each of the row/col indices we calculated previously
for rowcol in window_rowcols:

# Extract the row and column indices separately
row = rowcol[0]
col = rowcol[1]
# Calculate the single-integer index for a given row/col index
flat_index = (row * width) + (width - (width - col))
# Append the current flat index to the result list
window_rowcols_flat.append(flat_index)

# Overwrite the row/col indices with the flattened indices
window_rowcols = window_rowcols_flat

# Return the calculated search window indices
return window_rowcols

def get_event_window_mask(domain_shape, window_indices, flatten=False):
""" Return the event window's mask, with the same dimensions as the domain.

This function takes the domain shape, and creates an Array of equal
dimensions, where only the event window pixels have non-zero values (1),
and the rest of the domain is zeros.
"""
# Greate a blank mask grid of the same shape as the domain, but full of 0s
mask_grid = zeros(shape=domain_shape)
# Make sure that only the indices of the event's window are equal to 1
for index in window_indices:

mask_grid[index] = 1

# If the array is to be flattened
if flatten:

# Convert he output grid mask into a 1D array
mask_grid = array(mask_grid).flatten()

# Return the mask grid
return mask_grid

def build_cube(file_list, domain_shape, mask_array=None, scale=1,
verbose=False):

""" Build a spacetime cube from a list of GeoTIFF files.
"""
# If a mask file is provided
if mask_array is not None:

# Only count the pixels within the mask
n_pixels = len(mask_array[mask_array>0])

# If no mask is provided, count all pixels
else:

n_pixels = domain_shape[0] * domain_shape[1]

# Initialize and empty spacetime cube
cube = empty(shape=(0, n_pixels))

# Iterate over the list of files that will populate the spacetime cube
for filename in file_list:

# If verbose, report the file names
if verbose:

print(f"Filename:{filename}")
# If the current file is not None
if filename is not None:

# Read the current file's data
try:

data = asarray(read_geotiff(filename)[0])
except Exception as e:

print(f"Error reading file {filename}\n{e}")
data = asarray(zeros(shape=domain_shape))

# If the current file is None
else:
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# Create a zero array with the expected dimensions
data = asarray(zeros(shape=domain_shape))

# If a mask was passed into the function
if mask_array is not None:

# Scale and crop the data using the mask, append it to the cube
try:

cube = append(cube, [multiply(data[mask_array > 0], scale)], axis=0)
except Exception as e:

print(f"Error reading file {filename}\n{e}")
cube = append(cube, [multiply(data, scale)], axis=0)

# If no mask was provided
else:

# Scale the data and append it to the cube
cube = append(cube, [multiply(data, scale)], axis=0)

# Return the built spacetime cube
return cube

ChatGPT-Based LSR Classifier

Listing C6: ChatGPT Classifier: Main file which wraps all functionality and handles
the classification of provided LSRs using a given prompt definition.
#!/usr/bin/env python3

import json
import os
import sys

import openai
from openai.error import RateLimitError, ServiceUnavailableError, APIError

import gpt_common as gpt
import impacts_common as impacts

# Constant which will hold the path to the JSON file containing the OpenAI
# secret key, which enables the use of the ChatGPT API
#KEY_FILE = './secrets/personal_key.json'
KEY_FILE = './secrets/OU-ISE_key.json'

# Timeout wait time
# PERSONAL API KEY = 20
# OU-ISE API KEY = 1
#WAIT_TIME = 20
WAIT_TIME = 1

# Constant which will hold the path to a text file contatining a narrative
for↪→

# flash flood impact category definitions, in a GPT-compatible prompt form
FFSI_DEFINITIONS = './docs/FFSI/FFSI_v1-extended.txt'
#FFSI_DEFINITIONS = './docs/FFSI/FFSI_v2-bullets.txt'

# Constant which will hold the path to a CSV text file containing Local
Storm↪→

# Reports
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#LSR_FILE = './data/test/lsr_202207271200_202207301200_impacts.csv'
#LSR_FILE =

"./data/historical/flashfloods_lsr_201804010000_202207010000.csv"↪→

LSR_FILE = "./data/expertly-classified/ibw_classified_lsr.csv"

# Constant which will hold the batch size we want to use for splitting our
LSR↪→

# dataset, so we can process it one batch at a time
BATCH_SIZE = 20

# Constant which will hold the total number of batches that should be
processed↪→

# MAX_BATCHES = 0 means NO LIMIT!!
MAX_BATCHES = 0

# Constant which will hold the path to the desires results output location
RESULTS_OUTPUT = './results/'

# Main function, which will be the entry point that will be executed, when
this↪→

# program is run as a script from the command line
def main():

'''Main function and point of entry for the execution of this script.
'''
# Import the secret OpenAI API key from the JSON file
openai.api_key = gpt.read_api_key(KEY_FILE)

# Read FFSI definition
impact_defs = impacts.read_textual_definition(FFSI_DEFINITIONS)

# Read whole LSRs from a standard CSV file
#lsr_reports = impacts.read_standard_lsrs(LSR_FILE)
lsr_reports = impacts.read_ibw_lsrs(LSR_FILE)

# Define a Unique Identifyer for the LSR file that is being processed
lsr_uuid = impacts.hash_filename(LSR_FILE)

# Define batches for batch processing the LSRs, so that it is easier to
# restart the process, in case of interruptions or failure.
batches = impacts.define_batches(lsr_reports.shape[0], BATCH_SIZE)

# Check for pre-existing batch result JSON files, and if found, update
the↪→

# batches dictionary with "processed": True, for the matching batches
batches = impacts.match_batch_results(file_uuid=lsr_uuid,

batches=batches,
results_path=RESULTS_OUTPUT)

# Process the LSRs, using the ChatGPT API to classify them

# Hold the number of total batches for future reference
num_batches = len(batches)
# if verbose:
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print(f"Processing LSR file {lsr_uuid}:"
f"{lsr_reports.shape[0]} reports / "
f"{num_batches} batches")

# Variables to keep track of the total number of processed reports, as
well↪→

# as the number of processed and skipped batches
total_processed = 0
batches_skipped = 0
batches_processed = 0

# For each batch in batches
for batch_id in batches:

# if verbose:
print(f"Batch ID: {batch_id}")
# If the current batch has been processed
if batches[batch_id]["processed"]:

# Do nothing, and move to the next batch
# Keep track of how many batches were skipped
batches_skipped += 1
# if verbose:
print(f"WARNING: Skipping batch {batch_id + 1}/{num_batches}"

f"- already processed")
processed_lsrs = None

# If not, process the current batch
else:

# Get the current batch start and end indices for the LSR
DataFrame↪→

start_idx, end_idx = batches[batch_id]["indices"]

# if verbose:
print(f"Indices: ({start_idx},{end_idx})")

# Subset the LSR reports to only select the reports for this
batch.↪→

# Notice that the end index is incremented by 1, since the top
# index is always excluded by definition.
current_lsrs = lsr_reports.iloc[start_idx : end_idx + 1]

# Process the current batch of LSRs
try:

processed_lsrs = \
gpt.classify_lsr_remarks(current_lsrs['remark'],

impact_defs,
temperature=0,
wait_time=WAIT_TIME,
verbose=True)

except (RateLimitError,
ServiceUnavailableError,
APIError,
OSError) as e:

print(f"ERROR! - The following eception occurred:\n\t {e}")
print("Waiting 10s and retrying once before breaking!")
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gpt.wait_timeout(10)
processed_lsrs = \
gpt.classify_lsr_remarks(current_lsrs['remark'],

impact_defs,
temperature=0,
wait_time=WAIT_TIME,
verbose=True)

# Write the current batch's result as a JSON file, identified
by↪→

# the lsr_uuid string and the current batch's ID, in the
desired↪→

# output results folder
batch_filename = f"{lsr_uuid}_{batch_id}.json"
batch_path = os.path.join(RESULTS_OUTPUT, batch_filename)
impacts.write_results_json(processed_lsrs, batch_path)

# if verbose:
print(f"Wrote partial results file: {batch_path}")

# Mark batch as processed:
batches[batch_id]["processed"] = True

# Keep track of how many batches were processed
batches_processed += 1

# if verbose:
print(f"Processed {len(processed_lsrs)} for"

f"batch {batch_id + 1}/{num_batches}")

# Break after MAX_BATCHES, if MAX_BATCHES > 0
if MAX_BATCHES and batch_id == MAX_BATCHES:

# if verbose:
print(f"WARNING: MAX_BATCHES of {MAX_BATCHES}"

f" reached! HALTING!\n")
break

# Keep track of how many total LSRs were processed
if processed_lsrs:

total_processed += len(processed_lsrs)
else:

total_processed += 0

# Notify the user processing is done, and provide some counts on
results↪→

print(f"DONE!\n\t"
f"LSR file: {LSR_FILE}\n\t"
f"UUID: {lsr_uuid}\n\t"
f"processed {batches_processed}/{num_batches} batches\n\t"
f"skipped {batches_skipped}/{num_batches} batches \n\t"
f"processed {total_processed} LSRs")

# Consolidate processed JSON results into a single CSV file
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# Check if there are any JSON files in the current output path
result_files = impacts.get_files_in_dir(RESULTS_OUTPUT,

extension=".json")↪→

# Make sure that the JSON files found match the current UUID
result_files = list(filter(lambda x: lsr_uuid in x, result_files))

# If the list of result files in the output folder, with the requested
uuid↪→

# is empty, notify that no batch results were found
if not result_files:

print("ERROR: No batch result files were found for current uuid!")

# Else if there are result files in the output folder
else:

# Create a copy of the original LSR DataFrame
output_lsrs = lsr_reports.copy()
#output_lsrs.index = output_lsrs.remark
# Create the new columns for the new results data in the DataFrame
output_lsrs["MINOR"] = None
output_lsrs["MODERATE"] = None
output_lsrs["SERIOUS"] = None
output_lsrs["SEVERE"] = None
output_lsrs["CATASTROPHIC"] = None
output_lsrs["FFSI"] = None
output_lsrs["EXTRA"] = None
# For each of these files
for json_file in result_files:

# Read the results JSON file
batch_results = impacts.read_json_results(json_file)
# Get the current batch ID from the batch results file
batch_id =

json_file.split("/")[-1].split('_')[-1].split('.')[0]↪→

# Get the LSR dataframe ID corresponding to the beginning of
the↪→

# current batch
start_index = int(batch_id) * BATCH_SIZE
# Iterate over each result, and add the data to the

corresponding↪→

# columns in the output LSR dataframe, for the corresponding
LSR↪→

for batch_index in batch_results:
idx = start_index + int(batch_index)
p_min = batch_results[batch_index][1]["MINOR"]
p_mod = batch_results[batch_index][1]["MODERATE"]
p_ser = batch_results[batch_index][1]["SERIOUS"]
p_sev = batch_results[batch_index][1]["SEVERE"]
p_cat = batch_results[batch_index][1]["CATASTROPHIC"]
score = batch_results[batch_index][2]
extra = batch_results[batch_index][3]
output_lsrs.loc[idx]["MINOR"] = p_min / 100
output_lsrs.loc[idx]["MODERATE"] = p_mod / 100
output_lsrs.loc[idx]["SERIOUS"] = p_ser / 100
output_lsrs.loc[idx]["SEVERE"] = p_sev / 100
output_lsrs.loc[idx]["CATASTROPHIC"] = p_cat / 100
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output_lsrs.loc[idx]["FFSI"] = score
output_lsrs.loc[idx]["EXTRA"] = extra

output_lsrs.reset_index(drop=True)
output_lsrs.to_csv(f"./results/{lsr_uuid}_classified.csv",

index=False)↪→

print("DONE!")

# Block of code which will be executed when this file is executed as a
script↪→

if __name__ == '__main__':
# Run the main() function
main()
# Terminate with exit code 0!
sys.exit(0)

Listing C7: ChatGPT Classifier: Common GPT API functionalities, defined for reusing
in the main file.

#!/usr/bin/env python3

import json
from sys import stdout
from time import sleep
from numpy import isnan

from openai import ChatCompletion

from impacts_common import ffsi_score

def read_api_key(json_file_path):
''' Read the OpenAI key stored as a dictionary in a txt file.

Function that reads a JSON file containing an OpenAI API key, which is
stored in a dictionary of the form:

{ "secret_key": "<OpenAI API Secret Key String>" }
'''
# Read the JSON file
with open(json_file_path) as key_file:

openai_key = json.load(key_file)

# Access and return the value of the API key
return openai_key["secret_key"]

def query_gpt(query, role="user", system_task={}, temperature=1, top_p=1):
''' Query the GPY API and return the first completion result.

Function that queries the GPT API, and returns the first completion
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produced as a response to the query.

OpenAI's default values for temperature and top_p are maintained here
as default values. From the official documentation:

- temperature:
What sampling temperature to use, between 0 and 2. Higher values
like 0.8 will make the output more random, while lower values like
0.2 will make it more focused and deterministic.

We generally recommend altering this or top_p but not both.

- top_p:
An alternative to sampling with temperature, called nucleus
sampling, where the model considers the results of the tokens with
top_p probability mass. So 0.1 means only the tokens comprising
the top 10% probability mass are considered.

We generally recommend altering this or temperature but not both.
'''
# Process valid non-empty, non-blank string queries
if query and query != " ":

# Message list for the API query
message_list = []

# If a system task is passed as parameter, make sure to first
append it to↪→

# the message_list
if system_task:

message_list.append(system_task)

# Append the query to the message_list
message_list.append({"role": role, "content": query})

# Generate and receive back a ChatGPT completion for the GPT API
completion = ChatCompletion.create(

# Make sure to use GPT-3.5-turbo v.0301, and not the updated
version↪→

# GPT-3.5-turbo v.0613 (which will be default on 06-27-2023,
when using↪→

# the default string "gpt-3.5-turbo")
model="gpt-3.5-turbo-0301",
messages=message_list,
temperature=temperature,
top_p=top_p

)

# Return the first completion produced by our query to the API
result = completion.choices[0].message.content

# Handle EMPTY LSR remarks, by returning a classification dictionary of
# zero probabilities, and an EXTRA string reporting the missing remark
else:

result = """{"MINOR": 0,
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"MODERATE": 0,
"SERIOUS": 0,
"SEVERE": 0,
"CATASTROPHIC": 0
}NO REMARK FOR THIS LSR!"""

# Return the result
return result

def wait_timeout(seconds=20):
'''Wait (sleep) for a determined number of seconds and show countdown.

This function sleeps for a determined number of seconds, and logs to
the console a countdown progress of how much time remains in the
waiting period.

GPT API Request rate limits are defined in terms of both Requests Per
Minute (RPM) and Tokens Per Minute (TPM):

Free trial users: 3 RPM (20s timeout) / 150,000 TPM
Pay-as-you-go users: 60 RPM (1s timeout) / 250,000 TPM
'''
print("Waiting before querying the API again...")
for remaining in range(seconds, 0, -1):

stdout.write("\r")
stdout.write("{:2d} seconds remaining.".format(remaining))
stdout.flush()
sleep(1)

print("\n")

def classify_lsr_remarks(lsr_remarks_list, impact_defs,
temperature=1, top_p=1, wait_time=20,
starting_idx=0, limit=0, verbose=False):

'''Classify a list of LSR remarks using an impact definition
and ChatGPT.

This function queries ChatGPT for a classification based on a specific
impact definition (FFSI), for each LSR remark contained in the input
list received.

This function returns a dictionary containing the original remarks,
their associated probabilistic classifications produced by ChatGPT
using the impact definitions, and its associated FFSI score.
'''

# Empty dictionary which will hold the results of the processed LSRs
processed_lsrs = {}

# Initialize the ChatGPT system task based on the impact definitions
initialization_task = {"role": "system", "content": impact_defs}

# Print out limits, the system task and impact definitions if verbose
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if verbose:
# If limit is provided, show a warning and wait a bit
if limit:

print("WARNING: only %i LSRs will be processed! \n" % limit)
sleep(2.5)

# Print out the system task
print("SYSTEM TASK:\n", impact_defs, '\n')

# Keep track of total LSRs that need to be processed
total_lsrs = len(lsr_remarks_list)

# If the starting_index is not 0, slice the lst list to start at the
# requested initial index
if starting_idx:

# If verbose, print a warning notifying of new starting point
if verbose:

print("WARNING: starting at index %i, out of %i" %
(starting_idx,
total_lsrs))

sleep(2.5)

# Slice the LSR remarks to start at the new index
lsr_remarks_list = lsr_remarks_list[starting_idx:]
# Update the number of total LSRs to be processed
total_lsrs = len(lsr_remarks_list)

# Query the ChatGPT API prepending the system task each time
for index, remark in enumerate(lsr_remarks_list):

if verbose:
print(f"Remark sent: {remark}")

# Construct and send the query, receiving the result
result = query_gpt(remark,

role="user",
system_task=initialization_task,
temperature=temperature,
top_p=top_p)

if verbose:
print(f"Result received: {result}")

# In case the GPT API response includes more text than the
requested↪→

# JSON dictionary formatted answer, separate the dictionary portion
# from the rest of the response, and add the remaining response as

a↪→

# "extra" in the result's dictionary

# Extract any extra output GPT may have generated
response_extra = result.split('}')[-1].split("\n\n")[-1]
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# Extract the classification results
response_classes = result.split('{')[-1].split('}')[0]

# Handle non-classification outputs, which have only EXTRA GPT
outputs↪→

if response_classes == response_extra:
response_classes = """"MINOR": 0,

"MODERATE": 0,
"SERIOUS": 0,
"SEVERE": 0,
"CATASTROPHIC": 0"""

response_json = '{' + response_classes + '}'

if verbose:
print(f"Response JSON: \n\t{response_json}")
print(f"Response EXTRA: \n\t{response_extra}\n")

# Read the resulting probabilities in JSON format as a dictionary
probs_dict = json.loads(response_json)

# Calculate the FFSI score for the current classification results
score = ffsi_score(probs_dict)

# If verbose, print out the original remark, the classification,
# probabilities, and its corresponding score
if verbose:

print("INDEX: %s\n" % str(index),
"PROMPT: %s\n" % remark,
"PROBS: %s\n" % result,
"SCORE: %s\n" % str(score),
"EXTRA: %s\n" % response_extra)

# Add the current results to the output LSRs dictionary
processed_lsrs[index] = [remark, probs_dict, score, response_extra]

# If a limit is provided, stop classifyig LSRs after x reports
if limit:

# if the current index is equal to the limit, stop the loop
if index == limit - 1:

break

# If there are still remarks to process, wait some time to comply
with↪→

# the API's request rate limits
if index < total_lsrs - 1:

# Wait wait_time seconds (X requests/min rate limit)
wait_timeout(wait_time)

# Return the processed LSRs
return processed_lsrs
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Listing C8: ChatGPT Classifier: Common Impacts functionalities, defined for reusing
in the main file.

#!/usr/bin/env python3

import csv
import json
import os

from numpy import round, nan
from pandas import read_csv, to_datetime
from shortuuid import uuid

def read_textual_definition(text_file_path):
''' Read a text file containing an FFSI definition.

This function reads an textfile into a multiline string object.
'''
with open(text_file_path) as text_file:

ffsi_definition = text_file.read()

return ffsi_definition

def read_lsr_remarks(lsr_file_path, column_name='REMARK'):
''' Read a single column from CSV file containing Local Storm Reports.

This function reads a CSV file containing Local Storm Reports, and
returns a list of 'remarks' contained in the 'REMARK' column.
'''
# Open the CSV file
lsr_file = open(lsr_file_path)

# Create a DictReader object
lsrs = csv.DictReader(lsr_file)

# List to hold the LSR remarks
remarks = []

# Iterate over each report, and append its remark to the remarks list
for report in lsrs:

remarks.append(report[column_name])

# Return the LSR remarks
return remarks

def read_standard_lsrs(lsr_file_path, no_index=True, no_category=True):
""" Read a standard CSV file containing a collection of LSRs

This function reads a "standard" CSV format containing LSR reports, as
they are provided by the Iowa State Univeristy Local Storm Report
Archive: https://mesonet.agron.iastate.edu/request/gis/lsrs.phtml
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"""
# Read the file, and define standard names for each columns, as well as
# approrpiate data types
if no_category:

standard_lsrs = read_csv(lsr_file_path, delimiter=',', header=0,
names=["valid", "valid2", "lat", "lon",

"mag", "wfo", "typecode",
"typetext",↪→

"city", "county", "state",
"source",↪→

"remark", "ugc", "ugcname"],
index_col=False,#"valid2",
dtype={"valid": str, "valid2": str,

"lat": str, "lon": str,
"mag": str, "wfo": str, "typecode":

str,↪→

"typetext": str, "city": str,
"county": str, "state": str,

"source": str,↪→

"remark": str, "ugc": str,
"ugcname": str})↪→

standard_lsrs["category"]=None
else:

standard_lsrs = read_csv(lsr_file_path, delimiter=',', header=0,
names=["valid", "valid2", "lat", "lon",

"mag", "wfo", "typecode",
"typetext",↪→

"city", "county", "state",
"source",↪→

"remark", "category", "ugc",
"ugcname"],↪→

index_col=False,#"valid2",
dtype={"valid": str, "valid2": str,

"lat": str, "lon": str,
"mag": str, "wfo": str, "typecode":

str,↪→

"typetext": str, "city": str,
"county": str, "state": str,

"source": str,↪→

"remark": str, "category": str,
"ugc": str,↪→

"ugcname": str})

if not no_index:
standard_lsrs.set_index('valid2', inplace=True)

# Make sure that dates and times are represented appropriately
standard_lsrs.index = to_datetime(standard_lsrs.index)

# Make sure that report sources, categories, and WFOs are
represented↪→

# appropriately as categorical data
standard_lsrs.source = standard_lsrs.source.astype('category')
standard_lsrs.category = standard_lsrs.category.astype('category')
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standard_lsrs.wfo = standard_lsrs.wfo.astype('category')

# Remove all NaNs from the remarks column (empty remarks) and replace
them↪→

# with blank strings " "
standard_lsrs.remark.replace(nan," ",regex=True, inplace=True)

# Return the loaded data in a Pandas DataFrame
return standard_lsrs

def read_ibw_lsrs(lsr_file_path, no_index=True):
""" Read a CSV file containing a collection of Expertly-Classified LSRs

The 'magnitude' field corresponds to IBW categories for each LSR
"""
# Read the file, and define standard names for each columns, as well as
# approrpiate data types
standard_lsrs = read_csv(lsr_file_path, delimiter=',', header=0,

names=["time", "office", "local_time",
"county", "location", "state",
"event_type", "magnitude", "source",
"lat", "lon", "remark"],

index_col=False, # "valid2",
dtype={"time": str,

"office": str,
"local_time": str,
"county": str,
"location": str,
"state": str,
"event_type": str,
"magnitude": str,
"source": str,
"lat": str,
"lon": str,
"remark": str})

standard_lsrs["category"] = None

if not no_index:
standard_lsrs.set_index('time', inplace=True)

# Make sure that dates and times are represented appropriately
standard_lsrs.index = to_datetime(standard_lsrs.index)
standard_lsrs.local_time = to_datetime(standard_lsrs.local_time)

# Make sure that report sources, categories, and WFOs are
represented↪→

# appropriately as categorical data
standard_lsrs.source = standard_lsrs.source.astype('category')
standard_lsrs.magnitude = standard_lsrs.source.astype('magnitude')
standard_lsrs.category = standard_lsrs.category.astype('category')
standard_lsrs.office = standard_lsrs.wfo.astype('office')
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# Remove all NaNs from the remarks column (empty remarks) and replace
them↪→

# with blank strings " "
standard_lsrs.remark.replace(nan, " ", regex=True, inplace=True)

# Return the loaded data in a Pandas DataFrame
return standard_lsrs

def ffsi_score(probs, normalize=False):
''' Calculate a single score from FFSI class probabilities.

This function converts a dictionary or list of FFSI class
probabilities (in percents), into a single score between 1 and 5,
representing a continuum of values across the total number of classes.
This score can also be normalized to values between 0 and 1.
'''
# If the input probabilities are passed in as a dictionary
if type(probs) is dict:

# Calculate the score, assume probabilities are in percent
ffsi_score = (probs["MINOR"] / 100 * 1 +

probs["MODERATE"] / 100 * 2 +
probs["SERIOUS"] / 100 * 3 +
probs["SEVERE"] / 100 * 4 +
probs["CATASTROPHIC"] / 100 * 5)

# Else if the input probabilities are passed as a list of numbers
elif type(probs) is list:

# Calculate the score, assume probabilities are in percent
ffsi_score = (probs[0] / 100 * 1 +

probs[1] / 100 * 2 +
probs[2] / 100 * 3 +
probs[3] / 100 * 4 +
probs[4] / 100 * 5)

# If varues are to be normalized
if normalize:

# Divide the score by the number of classes
ffsi_score /= 5

# Return the calculated FFSI score
return ffsi_score

def write_results_json(results, fname="./results/test.json", indent=2):
''' Write a JSON file containing LSR remarks, FFSI classification

and score.

This function writes out a dictionary of Classified LSRs into a JSON
file, including the remarks, the probability classes, and their FFSI
scores.
'''
# Open a new file to be written
with open(fname, "w") as outfile:
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# Dump the dictionary as JSON
json.dump(results, outfile, indent=indent)

def define_batches(num_reports, batch_size=100):
'''Define a dictionary of batches to batch process a dataframe of LSRs

This function takes the total number of reports, and calculates a
number of batches using a specific batch size. These batches are
assigned an ID, and index ranges are associates to them, so that the
number of records in each batch of the input DataFrame's total size
corresponds to at most the defined batch size.

Batches are defined as dictionary entries with the following
structure:

{
<batch_id> : {

"indices": (<start_index>, <end_index>),
"processed": False

}
}

where <batch_id> is an integer (starting at 0), <start_index> is the
first index of this batch, and <end_index> is the last index of the
batch. Note that the last index in the last batch will be equal to
num_reports-1 since the indices start at 0, and not at 1! The
'processed' key will be used to keep track of whether this specific
batch has been processed successfully or not.
'''
# Output dictionary of batches based on the input DataFrame
batches = {}

# If batch size is == 0, assume no batching is desired, and output a
single↪→

# batch holding the entirety of the num_reports
if batch_size == 0:

batches[batch_size] = {"indices": (0, num_reports - 1),
"processed": False}

# Else if the batch size is not zero, do the appropriate calculations,
and↪→

# define the number of full and partial batches corresponding to the
# requested parameters
else:

# Number of "full" batches
full_batches = num_reports // batch_size

# Remainder for "partial" batch
partial_batch = num_reports % batch_size

# Add the "full" batches to the dictionary
for batch in range(full_batches):

batches[batch] = {"indices": (batch_size * batch,
batch_size * (batch + 1) - 1),

"processed": False}
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# If available, add the partial batch to the dictionary
if partial_batch > 0:

batches[full_batches] = {"indices": (batch_size * full_batches,
(batch_size *

full_batches)↪→

+ partial_batch - 1),
"processed": False}

# Return the batches dictionary
return batches

def hash_filename(file_path, verbose=False):
''' Strip the filename from a path, and generate a 22 digit UUID

from it.

This function receives a complete file path, remove any route paths
out of it, and then generates a unique 'short' identifier (using
shortuui) based on the stripped filename (including the file's
extension).
'''
# Remove any paths from the file name
stripped_filename = str(file_path).split('/')[-1]

# If verbose, print the original path and the stripped file name
if verbose:

print(f"FILE_PATH: {file_path}\nFILE_NAME: {stripped_filename}")

# Hash the file name and return a unique identifier
return uuid(stripped_filename)

def get_files_in_dir(dir_path="./", extension=""):
'''Return a list of files with the same extension in a given

directory.
'''
# Output list holding the complete file paths
found_files = []

# Iterate over the list of files in the directory
for file in os.listdir(dir_path):

# If the file's extension matches what we are searching for
if file.endswith(extension):

# Add the file to the output file list
found_files.append(os.path.join(dir_path, file))

# Return the list of found files
return found_files

def match_batch_results(file_uuid, batches, results_path="./results/"):
'''

The expected format for the batch result files is:
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<results_path>/<file_uuid>_<batch_id>.json
'''

# Check if there are any JSON files in the specified path
result_files = get_files_in_dir(results_path, extension=".json")

# Make sure that the JSON files found match the specified UUID
result_files = list(filter(lambda x: file_uuid in x, result_files))

# If the list of files in the requested folder, with the requested uuid
is↪→

# empty, notify that no previous batch results were found, and return a
# None value
if not result_files:

print("WARNING: No previous batch results found for current uuid!")

# Else if there are valid files that match the uuid
else:

# For each of these files
for json_file in result_files:

# Determine its batch ID
batch_id =

json_file.split("/")[-1].split("_")[-1].split(".")[0]↪→

# Set this batch's processed variable as True
batches[int(batch_id)]["processed"] = True

# Return the batches dictionary, with updated "processed" values for
all↪→

# the JSON batch results files found
return batches

def read_json_results(json_file_path):
''' Read a JSON file containing LSR remarks, FFSI classification and

score.

This function reads in a JSON file of Classified LSRs into a
dictionary, including the remarks, the probability classes, and their
FFSI scores.
'''
# Open the file to be read
with open(json_file_path, 'r') as j:

# Load the dictionary as JSON
contents = json.loads(j.read())

# Return the contents of the file
return contents
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