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Abstract 

Short-duration extreme rainfall events (EREs) caused by convection are often associated with flash 

flooding, which can have devastating impacts on society. An increase in the frequency and 

intensity of EREs has been documented over multiple continents with evidence of a direct link to 

anthropogenic climate change. Over the central and eastern Continental United States (CONUS), 

EREs peak in frequency during June, July, and August (JJA) due to the summertime maximum in 

convective activity, with the most significant EREs resulting from mesoscale convective systems 

(MCSs). These MCSs and their associated rainfall have a nocturnal maximum over the central 

CONUS. 

This study utilizes gridded hourly Stage IV precipitation analyses to detect short-duration 

EREs and record their properties over the central and eastern CONUS over a 20-year period (2003–

2022). The Stage IV dataset consists of gauge-corrected radar-derived quantitative precipitation 

estimates on a 4-km grid, which has the advantage of capturing localized extreme rainfall that can 

occur between rain gauge sites. Extreme rainfall is defined in this study when the 12-hour 

accumulation exceeded the 10-year average recurrence interval threshold at that location based on 

the NOAA Atlas 14 dataset. All nearby grid points simultaneously exceeding the threshold were 

grouped into event objects. Several spurious events that were detected due to errors in the Stage 

IV dataset were filtered out using consistent quality control procedures. 

Results of the 20-year climatology mainly solidify previous studies, but this study provides 

additional quantitative evidence that nocturnal MCSs are the most prolific producers of extreme 

rainfall over the domain during JJA. Unfortunately, the accurate prediction of nocturnal convective 

rainfall has been shown to be a challenge in numerical weather prediction models. In addition, the 

highly localized and chaotic nature of the extreme rainfall is revealed, motivating the need for high 

resolutions in precipitation data and numerical models. 
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The few previous studies that utilized Stage IV analyses for the purposes of studying EREs did 

not examine interannual or long-term changes in ERE frequency or characteristics. With 

acknowledgments of the potential caveats of using the Stage IV dataset, this study discovered 

statistically significant increasing trends in ERE frequencies through the 20-year period that are 

dominated by MCSs during JJA, as opposed to more localized convection. Despite the short period 

of record, this finding aligns with previous studies suggesting an increase in heavy rainfall from 

MCSs in a warming climate. 

This thesis also discusses the discovery of a wide range of interannual variability in the 

frequency and severity of the JJA convective EREs. Composite and correlation analyses using 

reanalysis fields reveal statistically significant large-scale meteorological patterns that may help 

explain this variability, which can potentially aid in medium and long-term forecasting. These 

patterns include higher low–mid-level moisture over the Southern and Central Great Plains, 

enhanced southerly moisture transport from the western Gulf Coast to the Midwest, and enhanced 

mid-level ridging over the southeastern CONUS. Bolstered by composite analysis of five intense 

nocturnal EREs over the central CONUS, there is a strong argument that the enhanced moisture 

transport is driven by a westward expansion of the climatological North Atlantic Subtropical High 

into the eastern CONUS. Higher geopotential heights over the eastern CONUS relative to the 

Rockies results in an enhanced pressure gradient and southerly flow over the central CONUS, 

leading to a stronger and/or more frequent low-level jet. The low-level jet is a key ingredient in 

the development of nocturnal extreme-rain-producing MCSs. However, the low-level jet observed 

in this study extended well to the east of the climatological low-level jet driven by the sloping 

terrain of the Great Plains. With studies suggesting a westward expansion of the North Atlantic 

Subtropical High in a future climate, the increase in intense MCS-related EREs over the central 

CONUS during the summer is likely to continue.
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Chapter 1 

Introduction & Background 

 

Numerous studies have documented an increase in the frequency and intensity of extreme rainfall 

events (EREs) over many locations on multiple continents (e.g., Easterling et al., 2000; Fischer 

and Knutti, 2016; Westra et al., 2013). These increases in the intensity and frequency of EREs have 

been linked to anthropogenic climate change (e.g., Coumou and Rahmstorf, 2012; Min et al., 

2011). Understanding how the location and magnitude of these EREs have and will vary in our 

changing climate is of critical importance due to the impacts of EREs on public safety, the 

environment, and the economy (e.g., Knapp et al., 2008; Khajehei et al., 2020). EREs often result 

in significant flooding, which is among the world’s most deadly and destructive natural hazards 

with about 19% of the world’s population (nearly 1.5 billion people) facing a substantial risk of a 

100-year (yr) flooding event (Rentschler and Salhab, 2020). 

Knowledge of the trends in and the characteristics of EREs within the Continental United 

States (CONUS) and predicting their occurrence is particularly critical as flooding has been ranked 

as the deadliest storm-related phenomenon in the nation over the last 10–30 years (NWS/NOAA, 

2021). Flash flooding resulting from convective EREs is most common east of the Rockies during 

the summer months (June, July, and August; JJA) due to the climatological peak in convective 

activity (e.g., Brooks and Stensrud, 2000; Maddox et al., 1979). The majority of warm season 

precipitation over the central and eastern CONUS is associated with mesoscale convective systems 

(MCSs) (e.g., Fritsch et al., 1986). MCSs are large, long-lived collections of thunderstorms, the 

largest of which also referred to as mesoscale convective complexes (Maddox et al., 1986). MCSs 

are among the largest types of thunderstorms on Earth, ranging from one to several hundred 
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kilometers in size (Houze, 2004), and have been shown to be the most prolific producers of extreme 

rainfall and flash flooding in the CONUS (e.g., Maddox et al., 1979; Schumacher and Johnson, 

2006; Stevenson and Schumacher, 2014). Research has shown that MCSs will become more 

frequent and produce significantly heavier rainfall in a future climate (e.g., Feng, 2017). 

Forecasting of the magnitude and location of convective EREs is difficult (e.g., Herman and 

Schumacher, 2016, 2018; Nielsen and Schumacher, 2016). Hence, understanding and predicting 

these convective EREs is currently a major focus in the atmospheric sciences. Predicting EREs on 

weather timescales and modeling how EREs will likely increase with climate change requires an 

accurate representation of the diurnal cycle of convection since MCSs over a large portion of the 

central CONUS have been long known to have a nocturnal maximum during the warm season 

(e.g., Wallace, 1975; Easterling and Robinson, 1985). Unfortunately, the accurate representation 

of elevated nocturnal convection and propagating MCSs that occur over land masses remains a 

major challenge for weather and climate (Bechtold et al., 2014, 2020; Geerts et al., 2017; Tang et 

al., 2021). With nocturnal MCSs being common culprits for EREs, it is imperative that we 

understand the environmental factors that correspond to changes in the frequency and intensity of 

those EREs, which may have implications on future trends. 

 

1.1 Climatology of EREs in the CONUS 

Studies such as Brooks and Stensrud (2000), Schumacher and Johnson (2006), Hitchens et al. 

(2012, 2013), Stevenson and Schumacher (2014), Moore et al. (2015), and Dougherty and 

Rasmussen (2019) have surveyed the nature and characteristics of EREs over the CONUS over 

multiyear periods and documented the seasonal and diurnal cycle of heavy rainfall events over 

different regions of the CONUS. These studies have unanimously found a peak in the frequency 
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of these events during the summer (JJA) associated with the annual maximum in convective 

activity over the central and eastern CONUS.  

Short-duration convective EREs that are associated with the JJA maximum often result in 

severe flash flooding. Flash flooding can be defined as a rapid rise of water in normally dry areas 

that occurs within minutes or up to 6 hours of excessive rainfall (or other causes) over a relatively 

localized area (NWS/NOAA, 2023). The first flash flood climatology was published by Maddox 

et al. (1979), who grouped 151 intense flood events (1973–1977) into the following types: 

synoptic, frontal, mesohigh, and western. Mesohigh events were not associated with synoptic scale 

features, but instead, quasi-stationary outflow boundaries generated by prior convection. These 

events, likely associated with MCSs, produced the most severe cases, and were found to peak 

during the nighttime hours in JJA. Stevenson and Schumacher (2014), surveying EREs from 2002–

2011, used a high-resolution gridded precipitation dataset (the same dataset used in this study) and 

found that over half of all 100-yr EREs were associated with MCSs. Over most of the central 

CONUS, MCSs produce the majority of warm season precipitation (Haberlie and Ashley, 2019; 

Fig. 1.1) and have a nocturnal maximum in their associated rainfall (Haberlie and Ashley, 2019; 

Fig. 1.2). 
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Figure 1.1: From a 1997–2017 climatology, (a–c) mean MCS total precipitation (mm) and (d–f) 
percent contribution of MCS precipitation to the total precipitation, valid for (a,d) the full year, 
(b,e) May–August, and (c,f) September–April. (Fig. 6 of Haberlie and Ashley (2019)) 
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Figure 1.2: As in Fig. 1.1, but valid May–August for the following periods of the diurnal cycle: 
(a,d) 0400–1200, (b,e) 1200–2000, and (c,f) 2000–0400 UTC. (Fig. 7 of Haberlie and Ashley 
(2019)) 

 
Studies that further examined the diurnal cycle using hourly rainfall data found that diurnal 

variations in heavy rain were much more apparent during the summer (Hitchens et al., 2013; 

Winkler et al., 1988) and that most JJA EREs in the central and eastern CONUS are nocturnal 

(Schumacher and Johnson, 2006; Stevenson and Schumacher, 2014). Stevenson and Schumacher 

(2014) found that the peak in 1-hour (hr) extreme rainfall varied by region, but a general peak was 

found during the late evening hours, around 2300 local time (Fig. 1.3). This nocturnal peak in 

extreme rainfall was most distinct over the climatological area with a nocturnal maximum in JJA 
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heavy rainfall (Haberlie and Ashley, 2019; Fig. 1.2a), which runs along an axis from Northern 

Texas to the Upper Midwest (Easterling and Robinson, 1985; Wallace, 1975). 

 

 

Figure 1.3: From a 2002–2011 climatology of 1-hr precipitation exceeding the 50-yr average 
recurrence interval threshold over the central and eastern CONUS using the Stage IV 4-km gridded 
precipitation dataset, the distribution of time of day (local standard time) for all points of 
exceedance. (Fig. 6 of Stevenson and Schumacher (2014)) 

 
 
In addition to MCSs, extreme precipitation and flooding can result from a variety of 

meteorological phenomena (e.g., Kunkel et al., 2012), including tropical cyclones, atmospheric 

rivers, extratropical cyclones, frontal boundaries, monsoons, air mass convection, and even 

supercells and mesovortices (e.g., Nielsen and Schumacher, 2020). Several heavy rainfall 

climatology studies have documented the seasonality and most common locations for some of 

these storm types in the CONUS. For example, the most intense EREs along the east coast are 

associated with tropical cyclones, with a peak during the early fall (e.g., Villarini et al., 2014). 
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Atmospheric river events are commonly observed along the West Coast with a peak during the 

cold season associated with extratropical cyclones (e.g., Villarini, 2016). EREs associated with 

extratropical cyclones in general show less seasonal variation overall and do not favor any 

particular region, though they are less common during the summer due to weaker jet stream 

dynamics.  

A portion of this thesis aims to conduct a climatology of EREs that is similar to those conducted 

by Hitchens et al. (2013), Stevenson and Schumacher (2014), and Moore et al. (2015). However, 

our study employs slightly different methods to define EREs (see section 2.1) and examines 

additional characteristics of convective EREs such as the size and duration of associated 

precipitation features and additional attributes of extreme rainfall swaths. In this study, we utilized 

the same high resolution gridded precipitation dataset as some previous climatology studies, but 

over a period of 20 years, longer than all previous studies that used high resolution gridded rainfall 

data to date. 

 

1.2 Convective ERE Properties & Environmental Conditions 

Convection produces extreme rainfall when it is “quasi-stationary” in nature (Chappell, 1986), 

meaning it is either very slow-moving or consists of multiple cells moving repeatedly over the 

same area, sometimes referred to as “echo training”. Various types of convection can be quasi-

stationary, including the localized variety—air mass thunderstorms (i.e., ordinary cell convection) 

and high precipitation supercells—and the nonlocalized variety, including multicell convective 

clusters, frontal squall lines, and MCSs. This study focuses on EREs associated with convection 

of the nonlocalized variety, with an emphasis on summertime MCSs, which, again, are the most 
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prolific producers of extreme rainfall during the warm season in the CONUS (e.g., Schumacher 

and Johnson, 2006; Stevenson and Schumacher, 2014). 

As first described by Maddox et al. (1979), Schumacher and Johnson (2005) distinguished two 

common organizational structures of extreme-rain-producing MCSs: (1) training line/adjoining 

stratiform, typically an east–west oriented line with training convective elements and an adjoining 

region of stratiform precipitation to the north of the convective line (Fig. 1.4a); and (2) back 

building convection with a stratiform region downstream (Fig. 1.4b). 

Training line/adjoining stratiform type MCSs typically form on the cool side of a preexisting 

slow-moving surface boundary with an elevated moist and unstable airmass (Schumacher and 

Johnson, 2005). These MCSs, also described as upwind-propagating MCSs, may also be preceded 

by a forward-propagating convective line, leaving behind an elongating cold pool with a quasi-

stationary gust front that acts as the aforementioned surface boundary (Corfidi, 2003), illustrated 

in Fig. 1.5. When the midlevel steering flow is largely parallel to the boundary, convective cells 

will then organize into a training line, producing excessive rainfall.  
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Figure 1.4: Schematic of typical radar-observed features and environmental characteristics 
associated with (a) training line/adjoining stratiform and (b) back building extreme-rain-producing 
MCSs. Color filled contours represent approximate radar reflectivity at the 20-, 40-, and 50-dBZ 
levels. In (a), the low-level shear vector refers to the surface–925-hPa layer and the mid-level shear 
vector refers to the 925–500-hPa level. No shear vectors are shown in (b) due to lack of a consistent 
relationship between environmental shear and the orientation of back building MCSs. The length 
scale in (b) can vary substantially in real cases. (Barlow et al. (2019) adaptation of Fig. 3 from 
Schumacher and Johnson (2005)) 
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Figure 1.5: Schematic representation of a training line/adjoining stratiform MCS that has a 
forward-propagating and upwind-propagating training convective line. Diagrams include a plan 
view of the horizontal convective structure and associated boundaries (right) and vertical cross 
sections perpendicular to the gust front along the trailing quasi-stationary line (top) and the 
progressive line (bottom), with representations of cell propagation and dynamical mechanisms 
involved in convective maintenance. The environmental vertical wind profiles are hypothetical. 
(Fig. 3 of Corfidi (2003)) 

 

Convective initiation typically occurs in this environment when a low-level jet (LLJ) has a 

sufficiently perpendicular component to the boundary that lifts higher-θe air over the sloping 

frontal surface (i.e., isentropic lift) to the level of free convection, and hence, the resulting 

convection is elevated. This lifting mechanism is a common trigger for nocturnal convective 

initiation and the formation of nocturnal MCSs (e.g., Trier and Parsons, 1993) as the LLJ often 

forms or is enhanced during the nighttime hours (e.g., Pitchford and London, 1962). LLJs often 

occur over the Great Plains as a result of diurnal variations over sloping terrain, occurring 
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exclusively at night and during the warm season (e.g., Shapiro et al., 2016), or they can occur 

elsewhere as a result of synoptic scale processes such as upper-level jet streaks (e.g., Uccellini and 

Johnson, 1979) and extratropical cyclones (e.g., Browning and Pardoe, 1973). 

Back building MCSs are typically smaller in area but can produce more intense EREs 

(Schumacher and Johnson, 2005). While the convective initiation mechanisms in these back 

building MCSs are similar to training line/adjoining stratiform cases (i.e., isentropic lifting of 

moist air to the level of free convection), back building type MCSs are more dependent on storm-

scale processes. For back building MCSs, lifting is often provided by storm-generated, upstream 

propagating cold pools and/or quasi-stationary gravity waves, as opposed to preexisting 

boundaries. In this paradigm, the upstream propagation of the cold pool often nearly cancels with 

the mean steering flow, leading to quasi-stationary convection (Peters and Schumacher, 2014). The 

location of this repeated convective initiation depends on where an optimal balance exists between 

the low-level shear (often enhanced by the LLJ) relative to the orientation of the cold pool 

(Rotunno et al., 1988). However, recent high-resolution simulations of back building MCSs 

suggest that more complex mechanisms may be at play with different inflow layers supporting 

different regions of the MCS, including parcels originating from within the stable boundary layer 

after modification by storm downdrafts (Hitchcock and Schumacher, 2020). 

The preexisting environment in which back building MCSs occur often consists of an LLJ 

interacting with a mesoscale convective vortex (Bartels and Maddox, 1991)—a midlevel cyclonic 

circulation generated by prior MCSs—within a very moist and weakly-sheared air mass 

(Schumacher and Johnson, 2009; Schumacher et al., 2013), as documented by numerous case 

studies (e.g., Schumacher and Johnson, 2008; Trier and Davis, 2002). The moisture convergence 

and shear generated by this interaction favors sustained isentropic upglide on the downshear side 



12 
 

of the midlevel circulation (Trier et al., 2000), and hence the development of quasi-stationary 

convection (Schumacher and Johnson, 2009; Fig. 1.6). Albeit rarer, back building MCSs can also 

occur behind a bow echo, manifesting as the “arrow region” of a “bow and arrow” type MCS 

structure (Keene and Schumacher, 2013; Zhang et al., 2023), formed by the interaction of the LLJ 

and the mesoscale convective vortex generated by the bowing MCS. 

The fact that many of these extreme-rain-producing MCSs are nocturnal has implications for 

numerical weather prediction. Operational models, particularly those using convective 

parameterization schemes, often fail to capture EREs associated with elevated nocturnal 

convection (e.g., Schumacher and Johnson, 2008), consistent with the difficulties in representing 

nocturnal convection in the earlier cited studies (e.g., Bechtold et al., 2014). Higher resolution 

models that are able to directly resolve convective scale processes and localized high rainfall rates 

may be a potential solution (e.g., Fritsch and Carbone, 2004; Gao et al., 2017; Judt, 2018, 2020; 

Kendon et al., 2012). However, ongoing issues suggest that the challenge of representing elevated 

deep convection in numerical weather prediction models will persist. Some of these issues include 

the high computational demand of employing multiple high resolution ensembles on larger scales 

and the sparseness of upper-air observations that are necessary for accurate simulations of the 

conditions that lead to elevated convection. 
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Figure 1.6: Schematic representation of the important processes involved in the development and 
maintenance of back-building MCSs associated with midlevel circulations. (a) Plan view showing 
the radar reflectivity structure of the MCS (color fill) and its position relative to the midlevel 
circulation and larger scale features (labeled). The high-θe air refers to the low levels (e.g., 925–
800 hPa). (b) Southwest–northeast cross section through the MCS. Thin black lines are 
representative isentropes (every 5 K) and the wind profile is shown by the vectors on the left. 
Green shading indicates relative humidity >90% and grey shading indicates high values of cyclonic 
vorticity. The thick dashed arrow represents air undergoing isentropic upglide. (Fig. 13 of 
Schumacher and Johnson (2009)) 
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1.3 Large Scale Meteorological Patterns Associated with EREs 

Large scale meteorological patterns (LSMPs) play an important role in the occurrence of extreme 

precipitation. Barlow et al. (2019) surveyed the current state of knowledge regarding the 

relationship between LSMPs and short duration (<1 week) extreme precipitation events over North 

America. LSMPs are defined as synoptic scale patterns influencing individual events that are well-

resolved in weather and climate models and have medium-range predictability. The authors 

expressed concerns regarding the differences in methodology and definitions of extreme 

precipitation between studies, often leading to different results. Results are also seasonally and 

regionally dependent and are highly sensitive to the type of event (e.g., atmospheric rivers, 

extratropical cyclones, or MCSs). Nevertheless, there are some common important characteristics 

of LSMPs that are associated with extreme precipitation. Generally, the key physical factors that 

control EREs on a mesoscale level include sustained moisture transport, lift, and instability, which 

are strongly dependent on LSMPs. For example, as described in the previous section, the 

mesoscale environments associated with “frontal” and “mesohigh” type events (Maddox et al., 

1979) are typically characterized by an LLJ transporting anomalous moisture poleward and 

intersecting with a quasi-stationary baroclinic boundary, such as a front or outflow boundary. On 

the synoptic scale, while midlatitude precipitation is commonly associated with mid-level troughs, 

“mesohigh” type EREs often occur near the axis of a mid–upper-tropospheric ridge (Maddox et 

al., 1979), as shown in Fig. 1.6 (Schumacher and Johnson, 2009). 

On seasonal and annual timescales, most studies that identified LSMPs associated with rainfall 

over the central and northern CONUS found a strong connection with northward moisture transport 

from the western Gulf of Mexico (e.g., Abel et al., 2022; Flanagan et al., 2018; Mo et al., 1997). 

For example, a composite of flood events versus drought events over the central CONUS by Mo 
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et al. (1997) revealed a pattern of strong moisture flux from the Caribbean to the Great Lakes 

during the wet periods (Fig. 1.7). This moisture transport is often associated with enhanced 

moisture flux convergence near its northern terminus, which is where EREs are likely to occur 

(e.g., Holman and Vavrus, 2012). Analogous to the “Pineapple Express” for atmospheric river 

events on the Pacific west coast, this pattern of moisture transport was dubbed the “Maya Express” 

by Dirmeyer and Kinter (2009) because the fetch of tropical moisture originates from the Western 

Caribbean, Central America, and Mexico, including the Yucatan Peninsula. The “Maya Express” 

is apparently linked to an enhanced east–west pressure gradient throughout the low–mid 

troposphere due to positive height anomalies over the southeastern CONUS and/or negative height 

anomalies over the western CONUS. 

 

 
Figure 1.7: Composite of vertically integrated moisture flux (vectors, 10 kg (m s)−1) and flux 
divergence D(Q) (shading, mm day−1) for (a) flooding and (b) drought events. Adapted from Fig. 
5 of Mo et al. (1997). 
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Pluvial years over the Great Plains have also been linked to a southward-shifted North Pacific 

jet stream, creating a pattern consistent with frequent synoptic wave passages (Flanagan et al., 

2018). Thus, above-normal rainfall is likely linked to synoptic-scale processes leading to 

individual events, rather than longer-time-scale features. However, the seasonal mean composite 

anomalies still show signals that are physically consistent with the occurrence of heavy rainfall. 

Abel et al. (2022) found that the moisture pathways for most individual heavy rainfall events in 

the Northern Great Plains vicinity actually originate from land sources, not the Gulf of Mexico. 

This finding is most likely a result of residual soil moisture from Gulf of Mexico sourced events 

(i.e., moisture recycling). Thus, while individual events do not require a pattern of moisture 

transport directly from the Gulf of Mexico, above average moisture transport over the season 

overall does have a direct impact on seasonal precipitation anomalies. 

 

1.4 Trends in EREs & Connections to Climate Change 

Among all classes of extreme weather phenomena, changes in precipitation extremes have the 

most well-understood connection to global climate change with adequate supporting data and 

physical understanding of the causes (Kunkel et al., 2013a). Fowler et al. (2021) provided a 

thorough review of our current understanding of the impact of global anthropogenic climate 

change on extreme rainfall. The theoretical reasoning for an increase in extreme precipitation from 

a thermodynamical perspective is related to the positive relationship between temperature and the 

capacity of the air to hold water vapor (i.e., the Clausius-Clapeyron relationship) (Trenberth et al., 

2003). In simple terms, warming temperatures increase the upper limit of atmospheric precipitable 

water content, leading to the potential for greater rainfall rates. For typical globally averaged 

atmospheric conditions, the best approximation for the rate of increase in atmospheric moisture is 
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~7% per °C of warming (Fowler et al., 2021). This scaling rate has been both modeled and 

observed with heavy rainfall extremes increasing at approximately that rate globally on daily time 

scales (e.g., Pall et al., 2007; Westra et al., 2013). Numerous studies have actually suggested that 

shorter-duration (sub-daily) rainfall extremes are increasing at a much higher rate (e.g., Berg et al., 

2013; Guerreiro et al., 2018; Lenderink and Van Meijgaard, 2008, 2010; Lenderink et al., 2021; 

Panthou et al., 2014; Park and Min, 2017; Westra et al., 2014), likely attributable to convective 

cloud feedback mechanisms and an increase in the likelihood of convective versus stratiform 

precipitation in a warmer environment. However, the scaling relationship has been shown to be 

geographically dependent, being lower over drier land regions with limited moisture availability, 

mainly in the subtropics (e.g., O’Gorman and Muller, 2010), but higher in several climatologically 

wetter areas, especially in the mid and high latitudes (e.g., Sun et al., 2007; Trenberth, 2011). 

Recent studies have begun utilizing convection-permitting regional climate models to simulate 

rainfall in a future climate under a worst-case scenario carbon emissions trajectory (i.e., the 

Intergovernmental Panel on Climate Change RCP 8.5 scenario). These convection-permitting 

models are likely better at representing characteristics of convection (e.g., the diurnal cycle) 

compared to traditional climate models with parameterized convection (Ban et al., 2014; Prein et 

al., 2015, 2020). Findings indicate increases in short duration heavy rainfall intensities by the end 

of the century (e.g., Ban et al., 2015; Dougherty and Rasmussen, 2020; Kendon et al., 2014, 2019; 

Lenderink et al., 2021; Prein et al., 2017b). Conversely, light to moderate rainfall is projected to 

decrease in frequency in a warmer climate (e.g., Dai et al., 2020; Hu et al., 2020; Rasmussen et 

al., 2020) with a general decrease in overall rainfall. A decrease in overall rainfall may be attributed 

to a warmer troposphere that corresponds with decreasing relative humidity and an increase in 
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atmospheric stability. These results imply that the future climate will include more severe droughts 

and flash floods, concurrently (Fowler et al., 2021). 

Observational investigations of changes in extreme rainfall have most rigorously been 

conducted for the CONUS due to the relatively dense Cooperative Observer rain gauge networks, 

with records dating back to the turn of the twentieth century for many stations. Numerous studies 

have documented a general increase in the frequency and intensity of heavy precipitation events 

across most of the CONUS over multidecadal time scales (e.g., Armal et al., 2018; Easterling et 

al., 2017; Feng et al., 2016; Groisman et al., 2012; Harp and Horton, 2022; Janssen et al., 2014; 

Karl and Knight, 1998; Kunkel et al., 1999, 2012, 2013a; Li et al., 2022a; Risser et al., 2019). For 

example, Kunkel et al. (2013a) utilized a dense network of rain gauge observations over the 

CONUS to find increasing trends in daily extreme precipitation from ~76% of all stations from 

1948 to 2010, with ~15% of them being statistically significant. Increases in the occurrence of 2-

day precipitation amounts exceeding the 1-in-5-yr recurrence threshold from 1895–2010 were 

statistically significant over the Midwest, Southeast, and CONUS overall (Fig. 1.8). Unfortunately, 

results from different studies investigating trends in extreme precipitation events are difficult to 

compare due to differences in methodology and metrics used to define “extreme”, but most studies 

come to similar conclusions that there has been an overall increase in their frequency and intensity, 

though it varies by region. 
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Figure 1.8: Time series of decadal values of a standardized index based on the number of 2-day 
precipitation totals exceeding a 1-in-5-yr recurrence threshold for seven regions and the CONUS 
overall. (Fig. 3 of Kunkel et al. (2013a)) 

 

Focusing on MCSs in the CONUS, Feng et al. (2016) utilized long-term (1979–2014) 

observations from satellite, radar, and rain gauges to show that changes in the characteristics of 

MCSs dominate the observed increase in April–June extreme rainfall across parts of the central 

CONUS. In general, results suggest that the frequency, intensity, and longevity of MCSs across 

the central CONUS are increasing, resulting in heavier rainfall totals. While total precipitation 

only showed an increase of ~3% per decade through the 35-yr period, precipitation from MCSs 

showed an increase of ~25% per decade, with non-MCS precipitation exhibiting a decrease. Hu et 

al. (2020) found similar results, with warm season (April–August) MCS rainfall from 1997–2018 
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increasing significantly, while non-MCS rainfall decreased, primarily due to an increase in 

frequency and duration of MCSs but a decrease in total rainfall area. In support of these 

observational findings, Prein et al. (2017a) utilized high-resolution regional climate simulations to 

find that MCSs may produce 15–40% higher maximum rainfall rates by the end of the century—

related to an increase in warm cloud layer depth—along with an increase in MCS size and lifetime. 

The combined effect would result in an increase in total MCS rainfall volume by up to 80%. This 

thesis explores trends in MCS- and non-MCS-related EREs, but only during the summer months 

(June–August), when they are most common. 

In addition to changing thermodynamic conditions in a warming climate, the change in MCS 

characteristics may be attributed to trends in large-scale flow patterns. For example, there is 

evidence of an increase in the strength of the LLJ (Feng et al., 2016; Fig. 1.9d) in association with 

an increase in the pressure gradient between the Rockies and the western Atlantic Ocean due to 

greater warming over land relative to the ocean (Feng et al., 2016; Fig. 1.9a). 
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Figure 1.9: “(a) Surface temperature (shaded) and mean sea level pressure (MSLP) trends (MSLP 
contours in 0.1 hPa per decade intervals, purple/yellow contours denote positive/negative MSLP 
trends), (b) surface specific humidity trends (shaded), (c) 850 hPa mean specific humidity 
(shaded), geopotential height (contours, in 10 m intervals), and wind (arrows), and (d) 850 hPa 
trends in specific humidity (shaded), geopotential height (contours, in 1 m per decade intervals, 
red/blue contours denote positive/negative geopotential height trends), and wind (arrows, 
statistically significant at 95%). Grid points with a statistical significance exceeding the 95% 
confidence interval are marked by (a) pink hashes for temperature and blue hashes for MSLP, (b,d) 
purple hashes for specific humidity. Areas with mean surface pressure below 850 hPa are masked 
out in c and d.” Figure and caption from Fig. 4 of Feng et al. (2016). 
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Despite the impact of global climate change on extreme precipitation events being relatively 

well understood, there are still major uncertainties in regional climate change due to the role of 

internal atmospheric variability (e.g., Deser et al., 2012). Additionally, trends in weather events 

such as EREs over relatively short time periods cannot be directly attributed to anthropogenic 

warming, as there are likely connections to other modes of climate variability, which limits the 

conclusions that can be made in observational studies with relatively short periods of record. While 

this thesis examines trends over a period of only 20 years, we also investigate the role of internal 

atmospheric variability (i.e., seasonal LSMPs and climate indices) in modulating interannual 

changes in EREs, which may provide additional insight into future trends. 

 

1.5 Socioeconomic Impacts of Short-Duration EREs in the CONUS 

Short-duration EREs from thunderstorms that result in flash flooding are more hazardous than 

longer-duration EREs, in part, because of their localized nature in both space and time making 

these events very difficult to forecast with precision (Terti et al., 2015). As a result of the sudden 

nature of short-duration EREs, the ability to provide advanced warning and subsequent emergency 

response is exacerbated. The sudden onset of flash flooding caused by short-duration EREs makes 

it more deadly than slow-rise flooding, and thus, flash flooding from thunderstorms results in the 

most flood-related fatalities in the United States (Ashley and Ashley, 2008). Flash flooding is 

particularly deadly at night due to the lack of visibility of floodwaters for motorists (Špitalar et al., 

2014) and most flash flood fatalities are from vehicle-related drownings (Terti et al., 2015). 

Flash flooding often causes significant damage to homes, infrastructure, and agriculture (e.g., 

Motha, 2011), and can even result in billion-dollar disasters. For example, the Missouri and 

Kentucky floods of late July 2022 caused $1.5 billion in damage and 42 deaths (NOAA National 
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Centers for Environmental Information, 2023). This event was caused by short duration EREs 

associated with MCSs, one training over the St. Louis, MO area and another over flood-prone 

areas of eastern KY (NOAA National Centers for Environmental Information, 2022), both peaking 

during the early morning hours. This type of destructive event demonstrates the importance of 

understanding and predicting short duration EREs, especially if they are expected to increase in 

frequency and intensity in our future climate. 

As discussed in the previous section, the urgent key message from numerous recent studies is 

that more intense flash flood events are likely in a future climate. The increase in flood risks have 

been shown to be exacerbated by deteriorating stormwater infrastructure, ongoing urbanization in 

flood-prone areas, and lack of integration between land-use planning and flood risk management 

(Georgescu et al., 2021; Junqueira et al., 2021; Sohn et al., 2019; Swain et al., 2020). There is a 

projected increase in the likelihood of unprecedented short duration rainfall amounts in areas that 

are not currently accustomed to flash flooding, including populated cities (Dougherty and 

Rasmussen, 2020; Kunkel et al., 2013b; Li et al., 2022b; Neelin et al., 2017), potentially 

exacerbated by an increasing urban heat island effect (Fowler et al., 2021). These concerning facts 

should incentivize the implementation of climate change adaptation measures to current 

infrastructure (e.g., Coelho et al., 2022), as well as a transition away from fossil fuels to help 

mitigate the negative effects of anthropogenic climate change on extreme weather events overall. 

 

1.6 Thesis Goals 

The main objectives of this thesis include the following: (1) to develop a new climatology of EREs 

over the central and eastern CONUS; (2) to look for evidence of potential changes in their 

frequency or characteristics with respect to their location, intensity, size, duration, and diurnal 
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cycle; and (3) to find correlations with LSMPs that can help explain the interannual variability or 

trends in EREs. Our findings aim to motivate the need to improve numerical weather prediction 

and climate modeling of continental nocturnal convection, provide insight into what large-scale 

circulation patterns may drive changes in convective EREs, and aid in longer term forecasts that 

can help assess potential risk from convective EREs. Our investigation employs the national 

network of weather surveillance radars, which allows the production of an hourly, high resolution 

gridded precipitation dataset capable of capturing EREs at the convective scale. The dataset now 

spans over 20 years, and its high horizontal resolution (4 km) enables us to capture more detailed 

spatial and temporal characteristics of convective EREs than studies that used solely in-situ 

measurements. 

The thesis is organized as follows: Chapter 2 describes the data and methodology, including 

the ERE identification algorithm, quality control, event type classification, and statistical methods. 

Results from the 20-yr climatology of the identified EREs are presented in chapter 3. Variability 

and apparent trends in the frequency and characteristics of EREs are presented and discussed in 

chapter 4. Correlations between EREs and seasonally-averaged meteorological fields are presented 

and discussed in chapter 5. Meteorological conditions associated with a selection of intense EREs 

with common characteristics are presented and discussed in chapter 6. Finally, chapter 7 will 

include a summary and discussion of the results and how they change the field, along with potential 

implications for society and future work.
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Chapter 2 

Data & Methods 

This chapter highlights the methods and datasets employed in this thesis. The methods for 

constructing a comprehensive object-oriented database of EREs1, quality control measures, 

classification procedures, and the datasets used will be discussed in section 2.1. The methods used 

for the analysis will be discussed in section 2.2. 

2.1 Creating a Database of EREs 

Previous studies investigating extreme precipitation have used various criteria to define an 

“extreme” event. Barlow et al. (2019) provides a thorough review of previous extreme 

precipitation studies highlighting the difficulty of comparing the results of these studies due to 

inconsistencies in methodology. In general, a typical definition of “extreme” consists of three 

distinct aspects (Barlow et al., 2019): (1) a metric (e.g., accumulation exceeding a fixed threshold 

or location-based percentile); (2) a timescale (e.g., short duration events employing 1-, 6-, or 24-

hr accumulations or long duration events spanning 15–30 days); and (3) a spatial scale (e.g., 

station-based or grid-based). The metric and timescale chosen often depends on the type of weather 

systems that are of interest in a particular study (e.g., short-duration events caused by convection 

or long-duration events caused by synoptic scale systems), and the spatial scale depends on the 

dataset being used (i.e., gridded versus station-based). 

1 While there may be some events that include hail or wintery precipitation, the majority of the 
events are assumed to be caused by heavy rainfall, so all events are referred to as EREs for 
simplicity. 
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2.1.1 ERE Definition & Datasets Used 

In this study, EREs were identified by comparing a high-resolution gridded precipitation dataset 

to the location-dependent 10-yr average recurrence interval (ARI) thresholds. Any grid point 

where the 12-hr accumulation exceeds the ARI threshold at that location is considered an instance 

of extreme precipitation. The ARI, also known as the return period, is a metric commonly used to 

express the probability of an extreme event occurring and can be interpreted as the average amount 

of time between repeated occurrences of a variable exceeding a threshold (Wilks, 2019). For the 

purposes of this study, an ARI is simply defined as 1/P, where P is the annual probability of 

exceedance. For example, stating that “the ARI of 12-hr precipitation exceeding 100 mm is 10 

years” at a grid point means that, within a given year, there is a 10% chance of precipitation 

accumulating at least 100 mm in 12 hours at that location. In other words, receiving 100 mm of 

precipitation in 12 hours would be a 1-in-10 year event. In this example we would call “100 mm” 

the “10-yr ARI threshold” at that grid point. 

Referring to the three previously described aspects of the definition of a rainfall “extreme” 

from Barlow et al. (2019) study, the “metric” used in our definition is an accumulation exceeding 

the 10-yr ARI threshold obtained from the National Oceanic and Atmospheric Administration 

(NOAA) Atlas 14 precipitation frequency dataset (e.g., Perica et al., 2018) developed by the 

National Weather Service Hydrometeorological Design Studies Center (NWS/HDSC). The data 

file was obtained from the HDSC server at https://hdsc.nws.noaa.gov/pub/hdsc/data/tx/. NOAA 

Atlas 14 provides precipitation frequency estimates for a range of durations and ARIs with a grid 

resolution of 30 arc-seconds (~800 m). The estimates are derived via frequency analysis of partial 

duration time series obtained from historical station data, provided that the station has a record 

length of at least 30 years for daily stations and at least 20 years for those recording at sub-daily 

https://hdsc.nws.noaa.gov/pub/hdsc/data/tx/
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durations with only a few exceptions (Perica et al., 2018). The uncertainty of the precipitation 

frequency estimates increases for larger ARIs, which is due to the limited observational records 

used to construct the dataset combined with the inherent non-stationarity of precipitation over time. 

An ARI of 10 years was chosen, as opposed to 50 and 100 years in similar studies (e.g., Stevenson 

and Schumacher, 2014), to account for the limited number of years observed in the study by 

increasing the event sample size. However, larger ARI thresholds (50- and 100-yr) were also 

examined and used to compare the results for higher-end EREs. 

With a focus on short term (< 24 hour) convective rainfall events, the timescale chosen for this 

study was 12 hours, shorter than the lifetime of long-lived propagating MCSs (e.g., Yang et al., 

2017), but reasonable for the maximum amount of time that a single MCS can precipitate over a 

single location. Unfortunately, this may not account for some EREs that result from multiple 

propagating MCSs training over the same area within a period that is longer than 12 hours, but for 

the purpose of examining the diurnal cycle of short-duration EREs, the timescale was not 

expanded. The 12-hr precipitation frequency estimates for a 10-, 50-, and 100-yr ARI over the 

CONUS from the NOAA Atlas 14 dataset is shown in Fig. 2.1. The values in Fig. 2.1a are the 10-

yr ARI thresholds used for identifying EREs in this study. 
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Figure 2.1: (a) 10-, (b) 50-, and (c) 100-yr ARI 12-hr precipitation frequency estimates from 
NOAA Atlas 14. 

 

This study utilized the Stage IV (Fulton et al., 1998) quantitative precipitation estimates 

(QPEs) produced by the National Centers for Environmental Prediction Environmental Modeling 

Center (Lin and Mitchell, 2005). The Stage IV data were obtained from the National Center for 
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Atmospheric Research’s Earth Observing Laboratory (Du, 2011). The dataset provides 1-, 6-, and 

24-hr precipitation accumulations for the entire United States with 4-km horizontal grid spacing 

on a polar stereographic projection from January 2002 to present. Stage IV is based on radar-

derived QPEs that are adjusted based on rain gauge observations (Hitchens et al., 2013). The radar 

data is sourced from the Next Generation Weather Radar (NEXRAD) network comprised of 

142 operational Weather Surveillance Radar - 1988 Doppler (WSR-88D) radars within the 

CONUS. The Stage IV data are processed and undergo some degree of manual quality control 

(QC) by the NWS River Forecast Centers (RFCs). Radar locations and the borders between all 

River Forecast Center domains are presented in Fig. 2.2. 

 

 
Figure 2.2: River Forecast Center domains and NEXRAD radar sites with range rings and overlap 
of other radars in the vicinity. (Fig. 1 of Nelson et al., 2016) 
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Given that the Stage IV precipitation dataset utilizes radar data, it has the distinct advantage of 

capturing extreme precipitation produced by deep convective cores, which are typically localized 

and sporadic in nature (e.g., Zhang et al., 2003). In contrast, studies that have just used in-situ 

measurements often miss EREs that occur between rain gauge sites (e.g., Risser et al., 2019) as 

these rain gauges are nonuniformly spaced and relatively sparse in some regions.  

However, we acknowledge that there are also several caveats to using the Stage IV dataset for 

the purposes of this study that include but are not limited to the following, as described by Nelson 

et al. (2016): (1) Hourly QPEs suffer from lack of manual QC. For example, bad rain-gauge reports 

are often not filtered out (addressed in section 2.1.3); (2) Different River Forecast Centers may use 

different processing algorithms for generating QPEs, resulting in spatial discontinuities across 

River Forecast Center boundaries (Fig. 2.2); (3) Inherent biases exist in radar-based QPEs due to 

spatially varying radar coverage, range-dependent detection, anomalous propagation, beam 

blockage, bright band contamination, and representativeness bias due to the physical nature of 

rainfall (i.e., stratiform vs. convective) affecting reflectivity-to-rainfall relationships; (4) Temporal 

inhomogeneities may exist due to multiple changes in River Forecast Center processing methods, 

upgrades to the NEXRAD sites from 2011–2013, and the gradual incorporation of Multi-Radar 

Multi-Sensor (MRMS; Zhang et al., 2016) products starting in 2016. 

Note that our methods of identifying EREs are similar to those used by Stevenson and 

Schumacher (2014). However, the differences between the two studies include that we analyzed 

20 years of Stage IV data (as opposed to 10 years), employed a more recently updated ARI 

threshold dataset, and used a timescale of 12 hours (as opposed to 1, 6, and 24 hours). Our method 

accounts for events that straddle the 6- and 24-hr time bounds (i.e., the measurement-interval 

truncation problem; Barbero et al., 2017) by using iteratively summed 1-hr data files, ensuring that 
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certain events are not overlooked by the algorithm. Finally, we also utilize consistent QC and event 

type classification procedures to avoid potential human bias that can arise from manual methods. 

2.1.2 Preliminary ERE Detection Algorithm 

The full domain of investigation for this study is the CONUS east of 104°W (i.e., east of the 

Rockies), aligning with the western borders of North Dakota, South Dakota, and Nebraska. 

Starting at the beginning of the available Stage IV dataset (2002-01-01), 12-hr EREs were detected 

within the domain by summing hourly Stage IV gridded data files over the previous 12 hours, 

iteratively, and subtracting the 10-yr ARI threshold (Fig. 2.1a) at each grid point. Stage IV data 

were restricted to land only and the thresholds from the NOAA Atlas 14 dataset were resampled 

to match the 4-km Stage IV grid via linear interpolation. Any point where the difference between 

the 12-hr summed Stage IV precipitation and the 10-yr ARI threshold was greater than zero was 

considered an instance of extreme precipitation. Our approach then grouped all exceedance points 

within a radius of 250 km from the point of maximum exceedance (PME) into an event object. 

Any subsequent iteration within 12 hours of a detected event that had a PME within 250 km of a 

previous iteration would replace the previous event object if (1) the maximum exceedance value 

was greater or (2) if only the number of exceedance points was greater. If all attributes matched a 

previous event, only the accumulation period of the first instance was retained. 

Each object identified as an ERE was assigned an identification number and several attributes 

were stored for each. Some of the key attributes include the following: (1) the maximum 

exceedance value above the 10-yr ARI threshold; (2) the 12-hr accumulation value associated with 

the PME; (3) the latitude and longitude of the PME; (4) the date and hour of the maximum hourly 

accumulation value recorded at the PME (i.e., the peak accumulation hour); (5) the first hour in 
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the 12-hr accumulation window over which at least 1 mm of precipitation fell at the PME (i.e., 

event onset) along with the end time of the accumulation window; (6) the number of exceedance 

points detected for the event. For each preliminary event, the 12-hr accumulation map array 

associated with the event, as well as the 1-hr accumulation map array during the peak accumulation 

hour, were exported for analysis, QC, and event type classification purposes. 

Before analyzing each 12-hr accumulation map derived from the hourly Stage IV analyses, the 

data were cross-checked with an 18-hr accumulation map derived from the three 6-hr Stage IV 

analysis files containing the 12-hr period. Any 12-hr accumulation values that exceed the 18-hr 

accumulation from the 6-hr analyses were considered erroneous and were replaced with the latter 

at those grid points. This process takes advantage of the manual QC that the 6-hr analyses undergo 

by the River Forecast Centers that is often not performed on the hourly analyses. While this 

procedure may lead to overestimates of 12-hr precipitation wherever it was erroneous by replacing 

it with 18-hr precipitation, a significant number of events that appeared to be due to bad data or 

radar overestimates in the hourly analyses were eliminated. However, additional QC was still 

necessary, and the procedures used are discussed in section 2.1.3. 

A maximum preliminary event radius of 250 km was chosen subjectively based on 

experimentation with typical simultaneous extreme-rain-producing MCS cases. One example of 

two simultaneous MCSs occurring just outside of their respective 250-km radii is represented in 

Fig. 2.3, with panels (a) and (b) presenting 12-hr accumulation maps associated with each 

respective event, with exceedance points highlighted in red and the 250-km range rings around the 

PME displayed. Both events had the same peak accumulation hour, and a radar mosaic showing 

both MCSs near that time is presented in panel (c). 
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Figure 2.3: Total Stage IV 12-hr accumulation (mm) maps for (a) Event #08857 (2021-06-08 
0600–1800 UTC) and (b) Event #08858 (2021-06-08 0300–1500 UTC) with a 250-km range ring 
around the PME and grid points exceeding the 10-yr ARI threshold outlined in red. (c) Multi-
Radar Multi-Sensor composite reflectivity mosaic during the peak accumulation hour of both 
EREs (2021-06-08 1100 UTC) with the PME for both events denoted by small white circles. 

There are several cases, however, where the exceedance points of a single event stretch farther 

than 250 km from the PME, or where exceedance points for one event overlap with another within 

the 12-hr time constraint. In these cases, the preliminary algorithm identified multiple events. To 

account for this issue, a post-processing algorithm was performed after implementing the QC 
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procedures described in section 2.1.3. Any events within 12 hours of each other that included any 

exceedance points that overlap the 250-km radius of another “event” were combined into a single 

event with updated attributes. If the 12-hr accumulation periods of the combined events are 

different, the accumulation maps are combined by only including the maximum 12-hr 

accumulation values. Fig. 2.4a is an example of a combined 12-hr accumulation map with 

exceedance points that extend outside the 250-km radius from the PME. This event was a case 

where a large, long-duration MCS produced its maximum extreme rainfall at a point relatively 

early in its lifecycle (Fig. 2.4b) before continuing to produce extreme rainfall greater than 250 km 

downstream (Fig. 2.4c). 

All events in 2002 were ultimately removed from the analysis due to a large number of which, 

relative to subsequent years, that appeared to be triggered by artificially high QPEs that were 

unfiltered by the QC procedures described in 2.1.3. Being the first year in the dataset, it is assumed 

that the data may be less reliable as River Forecast Centers may not have established their 

processing and QC techniques yet. 
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Figure 2.4: (a) Total Stage IV 12-hr accumulation (mm) map for Event #08899 from two merged 
12-hr periods (2021-06-25 0000–1200 UTC and 2021-06-25 0200–1400 UTC) with a 250-km 
range ring around the PME and grid points exceeding the 10-yr ARI threshold outlined in red. (b) 
Multi-Radar Multi-Sensor composite reflectivity mosaic during the peak accumulation hour 
(2021-06-25 0130 UTC) and (c) during the peak accumulation hour of the secondary event (2021-
06-25 1000 UTC) with the PME for both uncombined events denoted by small white circles. 

 

The preliminary ERE detection algorithm identified a total of 10,856 event objects between 

2003 and 2022, which was reduced to 9095 after QC and combining overlapping events. A map 

showing the number of events at all Stage IV grid points within the domain is displayed in Fig. 
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2.5. This map was obtained by summing binary map arrays of exceedance points for all QC-passed 

events in the 20-yr period. The results show significant spatial variability as some locations have 

apparently experienced up to 12 events, while large areas (e.g., coastal Massachusetts) apparently 

had none. This result is likely attributable to the spatial variations in EREs that are likely to occur 

over a relatively short period of study, and perhaps due to errors in the NOAA Atlas 14 thresholds 

and/or Stage IV QPEs. Ideally, given the ARI of 10 years used as a threshold and an observation 

period of 20 years, the average number of events over the entire domain would be 2, yet the average 

based on this analysis was ~1.3. The lack of events relative to the expected amount may be partly 

due to decadal changes in rainfall. However, this difference also implies that the Stage IV dataset 

may underestimate extreme rainfall amounts over several areas and caution should be used when 

comparing these amounts to the ARI thresholds from the NOAA Atlas 14 dataset. Indeed, Nelson 

et al. (2016), among other studies, have determined that Stage IV often underestimates heavy 

precipitation. Contrarily, Kim et al. (2022) suggests that the NOAA Atlas 14 precipitation 

frequency estimates are also underestimations and diverge from recent observations due to the 

inherent nonstationarity of precipitation over time. Thus, the underestimation of extreme 

precipitation in the Stage IV dataset may be significant over several areas, so it is likely that 

numerous lower-end EREs were missed by the detection algorithm. Conversely, several spurious 

events were detected that resulted from erroneously high Stage IV QPEs. The methods used for 

QC are described in the next section. 
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Figure 2.5: Map of total (QC-passed) 10-yr event counts at all Stage IV grid points over the full 
domain from 2003–2022. 

 

2.1.3 Quality Control 

As mentioned previously, the Stage IV data, particularly the hourly analyses, have significant 

problems with QC (e.g., Nelson et al., 2016). Poor data quality can result from random radar errors 

and bad rain gauge reports, which triggered the detection of numerous spurious events in the 

preliminary algorithm described in the previous section. Manual QC was considered, but in several 

cases, the decision on which events were erroneous would be rather subjective and could be 

inconsistent throughout the dataset, leading to the potential for unintentional human bias that can 

impact trend analyses. Instead, automated QC procedures were developed to filter out as many 
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spurious events as possible while minimizing the amount of potentially legitimate events that are 

falsely flagged as spurious events.  

Defining the conditions in which an event is flagged as “bad” required a general idea of what 

the erroneous QPEs look like. The 12-hr accumulation maps for four spurious events are displayed 

in Fig. 2.6. Example accumulation maps for QC-flagged events due to bad rain gauge reports are 

shown in panels (a) and (b), which can have circular or “bull’s-eye” patterns on the maps. Panel 

(c) shows another type of erroneous data with random isolated grid points having very high QPEs 

compared to their surroundings, and there is also a visible “hot and cold” bias along a River 

Forecast Center boundary (Fig. 2.2) in upstate New York, exemplifying the difference in River 

Forecast Center processing of Stage IV data. In panel (d), the patch of noisy data surrounded by 

lighter precipitation may be indicative of anomalous propagation embedded within a large 

stratiform precipitation field. 
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Figure 2.6: Example Stage IV 12-hr accumulation (mm) maps for QC-flagged events with 250-
km range rings around each (spurious) event’s PME and grid points exceeding the 10-yr ARI 
threshold highlighted in red. Accumulation maps are valid for the 12-hr periods ending (a) 2006-
05-14 0100 UTC, (b) 2007-01-17 1100 UTC, (c) 2006-11-17 1200 UTC, and (d) 2004-12-08 0600 
UTC. 

 

The most common characteristic of the accumulation maps associated with spurious events 

was that the PME had a very high value relative to the surrounding grid points (i.e., noisiness in 

the data). To quantify this property, the average accumulation over all Stage IV pixels adjacent to 

the PME (a total of 8 grid points) was compared to the accumulation value at the PME. A fraction 

of the surrounding average accumulation to the PME accumulation (or “PME noise parameter” for 

short) had to be chosen as a threshold to delineate between spurious and legitimate events. To 

determine the best fraction to use as a threshold, the effectiveness of the condition was tested 
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against human QC for a random sample of 1000 events. The manual QC was performed by visually 

inspecting the 12-hr accumulation maps for each event and flagging any event objects clearly 

associated with erroneous data (e.g., Fig. 2.6). For events that were uncertain, they would only be 

flagged if the accumulation map was unsupported by radar observations, examined from a radar 

composite archive (available online at http://www2.mmm.ucar.edu/imagearchive/). QC thresholds 

were chosen at the value where a parameter maximizes the agreement with manual QC. For 

example, the value of the PME noise parameter at which the agreement between the manual and 

automated QC flags was maximized is 0.32 with an agreement at ~97.8% (Fig. 2.7). Thus, one of 

the four conditions used in the automated QC process is that the PME noise parameter must be at 

least 0.32 to pass. 

 

 
Figure 2.7: Fraction of the total events in the random test sample where the automated QC flags 
match the manual QC flags vs. the PME noise parameter (QC condition #1). The vertical dashed 
line represents the optimal parameter value for the condition (0.32). 

 

http://www2.mmm.ucar.edu/imagearchive/
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Based on testing against the manual QC of 1000 randomly selected events, any event meeting 

at least one of the following conditions was flagged as “bad”, in order from most to least effective 

(note that condition #1 was described previously): (1) The average 12-hr accumulation at all Stage 

IV grid points adjacent to the PME was < 32% of the maximum exceedance; (2) The minimum 

12-hr accumulation value among all valid grid points adjacent to the PME was < 0.005 mm; (3) 

The fraction of the number of exceedance points divided by the maximum exceedance value (mm) 

was < 0.04; (4) The maximum 1-hr accumulation at the PME was > 254 mm. (Note: Condition #4 

was obtained to be near the minimum value at which no manually passed events were eliminated 

instead of the value of maximum total agreement.) The combination of all four conditions led to 

the best total agreement with the human QC, with ~89.1% of QC flagged events in agreement and 

~98.7% of QC passed events in agreement, leading to a total agreement of ~98.1%. 

While these automated QC methods were unable to capture all types of erroneous events and 

sometimes mistook legitimate events for “bad” events, this problem only impacted about 1.9% of 

the test dataset. The main purpose was to eliminate as many spurious events as possible while 

maintaining a consistent QC procedure throughout the dataset. Out of the 10,856 total preliminary 

event objects (2003–2022), 543 (~5.0%) were automatically flagged as spurious and were filtered 

out of the dataset for all subsequent analyses. 

The highest concentrations of QC-flagged events were found over the interior East Coast, 

especially over the Appalachians (Fig. 2.8), which is where radar data tended to be noisier due to 

orographic influences, such as the presence of ground clutter and beam blockage, and bad rain 

gauge reports were more prevalent. Throughout the sample period (2003–2022), there was a 

significant decreasing trend in the annual number of QC-flagged events (Fig. 2.9) due to 

improvements in data quality and QC methods over time. 
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Figure 2.8: All 2003-2022 QC-flagged event PME locations (translucent black dots) with Gaussian 
smoothed (σ = 0.5°) neighborhood event count (range = 100 km) (color fill), scaled up at the 
domain edges based on the inverse fraction of valid domain area within the radius. 

 

 
Figure 2.9: 2003–2022 time series of the fraction of total annual preliminary events that failed 
automatic QC. 

 

2.1.4 Event Type Classification 

EREs arise from a variety of rain-producing weather systems, but this study is focused specifically 

on summertime convection. Therefore, events associated with tropical cyclones and those 
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produced primarily by stratiform precipitation were identified and filtered out of the analysis. 

Among the different types of extreme-rain-producing convection, the localized variety, including 

air mass thunderstorms and supercells, have far different environmental properties than the 

nonlocalized variety and often have lesser impacts on society due to their sparse nature. Thus, 

methods were also developed to filter out events that were only associated with localized 

convection. Subclassifications were also created for events associated with MCSs and nocturnal 

convection. 

2.1.4.1 Tropical Cyclones 

All events where the center of a tropical cyclone (including tropical depressions and post-tropical 

cyclones) was present within 3 degrees of latitude or longitude of the PME and within 24 hours of 

the peak accumulation hour were classified as a TC-related event. The tropical cyclone track data 

that were utilized for this classification were obtained from the International Best Track Archive 

for Climate Stewardship (IBTrACS) dataset (Knapp et al., 2010, 2018). 

2.1.4.2 Stratiform Precipitation 

Stratiform precipitation is typically characterized by steady light to moderate accumulation rates 

over a large area that are persistent for several hours, often associated with synoptic scale weather 

systems (i.e., extratropical cyclones) and MCSs. While stratiform precipitation is typically lighter 

in nature, moderate steady rainfall over the same area can still lead to extreme precipitation over a 

12-hr period, especially where heavier bands of precipitation become quasi-stationary. Stage IV

accumulation patterns for events associated with primarily stratiform precipitation typically have 

a smoother appearance compared to convective events and their associated precipitation features 
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are typically larger in areal extent. A precipitation feature, adapted from the methods of Feng et 

al. (2016), can be defined as a contiguous area of 1-hr accumulation exceeding a threshold. 

Precipitation features were identified by grouping all adjacent grid points connecting to the 

respective event’s PME that exceeded the specified threshold. An example 1-hr accumulation map 

during the peak accumulation hour of a typical ERE classified as “primarily-stratiform-related” 

and its associated 12-hr accumulation map is presented in Fig. 2.10. The 1-hr accumulation map 

reveals a very large 0.1 mm hr−1 precipitation feature with relatively light precipitation rates and 

the associated 12-hr accumulation map has a “smooth” appearance relative to typical convective 

ERE accumulation maps (e.g., Fig. 2.3a). 

 

 
Figure 2.10: From an example ERE classified as primarily stratiform-related (Event #05925), (a) 
Stage IV 1-hr accumulation (mm) map during the peak accumulation hour (2015-05-17 1500–
1600 UTC) with the PME indicated by a small white circle, and (b) Stage IV 12-hr accumulation 
(mm; ending 2015-05-18 0100 UTC) map with a 250-km range ring around the PME and grid 
points exceeding the 10-yr ARI threshold highlighted in red. 
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Similar to the methods that were used for QC described earlier, an automated process was 

developed to consistently identify events associated with primarily stratiform precipitation2 

throughout the dataset. Again, a sample of 1000 events was visually inspected for characteristics 

of stratiform precipitation and verified against radar data. These classifications were more 

challenging and more subjective than the manual QC, but it was still worthwhile to find optimal 

parameters for a consistent definition of primarily-stratiform-related events. An event meeting at 

least one of the following conditions, provided it was not already classified as TC-related, was 

classified as an event associated with primarily stratiform precipitation: (1) The maximum hourly 

accumulation at the PME through the 12-hr accumulation period was < 25 mm and the area of the 

0.1 mm hr−1 precipitation feature during the peak accumulation hour was ≥ 40,000 km2; (2) >99% 

of the 0.1 mm hr−1 precipitation feature during the peak accumulation hour had values of < 10 mm 

hr−1. 

These conditions were developed to maximize the agreement between human-identified 

primarily-stratiform-related events, while keeping any convective events falsely classified as 

primarily-stratiform-related to a minimum. As a result, the conditions only identified about 47.1% 

of the human-identified primarily-stratiform-related events, but also only falsely identified about 

0.9%. Therefore, several primarily-stratiform-related events could remain within the filtered 

dataset, but only a few legitimate convective events were filtered out. 

 

 
2 Events classified as “primarily-stratiform-related” are not associated with stratiform 
precipitation from MCSs, but rather, large stratiform precipitation features associated with 
extratropical cyclones. However, extreme rainfall may still be associated with embedded 
convective elements within the stratiform precipitation shield. 
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2.1.4.3 Localized Convection 

Several methods were tested on the same random sample as used for stratiform classification to 

identify events associated with localized convection, which appear on radar and accumulation 

maps as relatively small areas of heavy precipitation surrounded by an absence of any notable 

precipitation (e.g., Fig. 2.11a–b), or can have a very “splotchy” appearance (e.g., Fig. 2.11c–d). 

The storms being classified as “localized” can include quasi-stationary ordinary cell convection 

(e.g., air mass convection), slow-moving or training supercells, or back-building clusters that do 

not have a large areal extent at any point in their lifecycle. Fig. 2.11a–b shows an example of the 

1- and 12-hr accumulation maps associated with a training supercell case, having a narrow streak 

appearance, and Fig. 2.11c–d shows the same for a quasi-stationary ordinary cell case, having a 

splotchy appearance. 

A consistent and objective way to define an event associated with localized convection utilized 

the length threshold for an MCS, defined by Feng et al. (2016) as a minimum major axis length of 

the 1 mm hr−1 precipitation feature being 200 km. See Fig. 2.12 for a demonstration of how the 

major axis lengths were obtained. An ERE was classified as being caused by only localized 

convection if the approximate major axis length of the 1 mm hr−1 precipitation feature containing 

the PME was < 200 km throughout the accumulation period, provided it was not a TC- or 

primarily-stratiform-related event. Fig. 2.12a would be a case where the convection was localized, 

with a maximum precipitation feature length of ~75 km. If that precipitation feature length did not 

exceed 200 km throughout the event’s accumulation period, then it was classified as a an ERE 

associated with localized convection. 
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Figure 2.11: (a) Stage IV 1-hr accumulation (mm) during the peak accumulation hour and (b) Stage 
IV 12-hr accumulation (mm) for a training supercell case (Event #09525; peak 2022-08-05 0300; 
end 2022-08-05 0500) with a 250-km range ring around the PME and grid points exceeding the 
10-yr ARI threshold highlighted in red. (c) and (d) as in (a) and (b) but for a quasi-stationary 
ordinary cell convection case (Event #9004; peak 2021-07-17 0000; end 2021-07-17 0400). 
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Figure 2.12: Stage IV 1-hr accumulation (color fill; mm) maps of the precipitation features 
associated with an event that evolved from (a) localized to (b) non-localized (Event #09514; peak 
2022-08-01 2200 UTC; end 2022-08-02 0800 UTC). The small white circle is located at the PME 
and the 1 mm hr−1 precipitation feature associated with the event is outlined in black. The end 
points of the approximate major axis of the precipitation feature (black dots) are connected by a 
dashed black line, which is ~75 km long in (a) and ~326 km long in (b). The time stamps on the 
top right are at the end of the 1-hr accumulation periods. 

 

2.1.4.4 MCSs 

For an ERE to be classified as MCS-related, the major axis length of the 1 mm hr−1 precipitation 

feature containing the PME exceeded 200 km for at least four consecutive hours during the 

accumulation period, provided it was not a TC- or primarily-stratiform-related event. In other 

words, the precipitation feature associated with the ERE was nonlocalized (according to the 

previous section) for at least four consecutive hours. This definition was adapted from Feng et al. 

(2016). However, our definition may be stricter as our method does not track the precipitation 
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feature as it approaches or moves away from the PME. Thus, the number of MCS-related EREs in 

our results may be conservative. In addition, since this method only utilizes the characteristics of 

the precipitation feature, but not the surrounding environment, several of the events classified 

under the MCS category may be associated with large synoptic scale systems that contained 

widespread convection (e.g., quasi-stationary frontal squall lines or coastal lows). No methods 

were developed to separate EREs related to MCSs and EREs related to large-scale synoptic 

systems. As such, a substantial portion of the events that were classified as “MCS-related” through 

the entire seasonal cycle may be incorrectly identified. During JJA, however, EREs caused by 

large-scale weather systems are much less common due to weaker synoptic scale forcing 

mechanisms, so including synoptic scale systems should not significantly affect the results when 

considering only JJA events. 

An example of an MCS-related event is shown in Fig. 2.12. Though the convection in that case 

began as localized, the associated precipitation feature attained a maximum major axis length of 

>200 km for 4 consecutive hours through the accumulation period, making it an MCS-related 

event. 

 

2.1.4.5 Nocturnal Rainfall 

An ERE was classified as nocturnal (i.e., being associated with rainfall occurring at night) if at 

least one of the following conditions was true: (1) The peak accumulation hour at the PME 

occurred between sunset and sunrise at that location. (The hours in which sunset or sunrise 

occurred do not count.); (2) At least half of the hours during the accumulation period at the PME 

occurred between sunset and sunrise at that location. For example, an event with the first hour of 

accumulation exceeding 1 mm hr−1 at the PME being 0500 UTC, the end of the accumulation 
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period being 1400 UTC (total accumulation period of 9 hours), and local sunrise at 1045 UTC 

would be considered nocturnal because the number of hours before sunrise would be counted as 5 

hours (0500–1000 UTC), which is greater than half of the 9-hr accumulation period. 

This approach may be somewhat conservative as events with a relatively modest nocturnal 

component to the accumulated rainfall, or where the associated precipitation feature propagates 

away from the PME into the nighttime hours, may not be classified as nocturnal. However, it is 

still important to differentiate between “nocturnal” and “diurnal” EREs in order to examine the 

diurnal cycle. 

2.2 Statistical Methods 

This section will briefly introduce our methods for detecting trends in EREs (chapter 4) and 

performing composite and correlation analysis with meteorological fields (chapter 5) along with 

their corresponding tests for statistical significance. Further details regarding the methods used to 

generate specific figures are stated in their respective results sections and/or figure captions. 

2.2.1 Trend Analysis 

Various subsets of the database of EREs described in section 2.1 (e.g., JJA MCS-related EREs) 

were used to construct time series of event counts per year through the sample period (2003–2022). 

These time series were investigated for possible trends using the Mann–Kendall nonparametric 

trend test, which tests against the null hypothesis that no trend is present in the time series (Wilks, 

2019). The Mann–Kendall trend test is commonly used for detecting statistically significant 

monotonic increasing or decreasing trends in time series data and has often been applied to extreme 

precipitation (e.g., Kunkel et al., 2013a; Li et al., 2022a; Rahmani et al., 2016; Westra et al., 2013). 
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Unlike testing for significance in the slope of an ordinary linear regression, the Mann–Kendall 

trend test is a robust statistical method of identifying trends that may not be linear. The Mann–

Kendall trend test is related to Kendall’s τ (τK), which is an alternative to the conventional Pearson 

correlation coefficient that is robust and resistant to outliers (Wilks, 2019). Like the Spearman 

rank correlation coefficient, Kendall’s τ is another type of rank-based correlation coefficient, 

which serves as a measure of the association between a variable and time, ranging from −1 to 1. 

In addition to the Mann–Kendall trend test for significance, Kendall’s τ will be presented as a 

metric for the confidence in any positive or negative trend, consistent with (Kunkel et al., 2013a) 

and their presentation of trends in extreme precipitation. Instead of using the slope of an ordinary 

linear regression, the magnitude of a monotonic trend relating to the Mann–Kendall test can be 

represented using the Theil–Sen slope (βTS) of the time series (Wilks, 2019). The Theil–Sen slope 

is calculated by computing the median of all pairwise combinations of points in the time series, 

yielding a robust estimate of the slope of a linear regression that is resistant to outliers. Kendall’s 

τ, Theil–Sen slope, and the Mann–Kendall trend test p-values (pMK) for a given time series were all 

calculated using the “pyMannKendall” Python package (Hussain and Mahmud, 2019). For 

individual tests, the trend was considered statistically significant when pMK was less than α at the 

specified confidence level (e.g., α = 0.05 for the 95% confidence level). However, if trends were 

calculated on a spatial grid, a correction was applied to the p-value significance threshold that 

addresses the false discovery rate for multiple hypothesis tests (described in section 2.2.3). 

While event counts are a discrete quantity, it is unnecessary to use Poisson regression since 

our intention was not to model event counts but to simply detect trends in the data. Thus, linear or 

Theil–Sen slopes may be expressed as a continuous quantity in some analyses for the purpose of 

comparing trends in relatively small sample sizes. 
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2.2.2 Composite & Correlation Analysis 

Composite and correlation analysis was used to identify potential relationships between seasonal 

LSMPs and JJA EREs associated with non-localized convection. Meteorological fields from the 

European Centre for Medium-Range Weather Forecasts Reanalysis v5 (ERA5; Hersbach et al., 

2020) were utilized for the analysis, with monthly averaged data on single levels and pressure 

levels obtained from the Copernicus Climate Change Service Climate Data Store (Hersbach et al., 

2023a,b). Some of the atmospheric variables that were analyzed include total column water vapor, 

850-hPa wind, and 500-hPa geopotential height. Each relevant meteorological field was averaged 

over JJA, as well as over winter (December–February) and spring (March–May), for each year 

(2003–2022) to generate a time series at each grid point for each respective season. 

Composite analysis was conducted by averaging relevant scalar meteorological fields during 

the appropriate season over the years with JJAs considered to be anomalously “active” and 

“inactive” regarding extreme rainfall (specified in section 5.1). The composite difference (“active” 

years minus “inactive” years) was then calculated and tested for statistical significance at each grid 

point using the Monte Carlo bootstrapping method (n = 5000), followed by a correction of the 

significance threshold (section 2.2.3). In each Monte Carlo simulation, a random selection of 

“active” and “inactive” years without replacement was used to recalculate the composite 

difference. The percentile of the true composite difference among the 5000 simulations was then 

converted to the p-value for a two-tailed test at each grid point. For vector fields (e.g., 850-hPa 

wind), the magnitude of the composite vector difference was tested for statistical significance 

using the same methods, but with a right-tailed test. 

Prior to correlation analysis, both the ERE time series and the ERA5 time series at each grid 

point were detrended to avoid inflating the correlation coefficients due to common underlying 
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trends. The Pearson correlation coefficient between the appropriate ERE time series and the 

seasonally-averaged ERA5 field time series at each grid point was then calculated. Statistical 

significance of the correlation coefficients was also determined using Monte Carlo simulations (n 

= 5000), again followed by the significance level correction (section 2.2.3). In each Monte Carlo 

simulation, a new 20-yr time series of the respective ERA5 field was constructed at each grid point 

by taking a random sample of 20 years with replacement, and the correlation coefficient with the 

ERE time series was recalculated. The percentile of the true correlation coefficient among the 5000 

simulated values was converted to the p-value for a two-tailed test at each grid point. For vector 

fields, the vector sum of the correlation coefficients calculated from the zonal and meridional 

components represents the direction in which the maximum positive correlation is found with the 

respective field. As with the composite vector difference, the magnitude of the maximum 

correlation vector was also tested for statistical significance using the Monte Carlo method with a 

right-tailed test. 

Further details regarding specific analyses (e.g., time series used, levels of statistical 

significance) will be described in chapter 5 and within the respective figure captions. 

 

2.2.3 Addressing Field Significance 

When performing multiple hypothesis tests on a geographical array of data that are not spatially 

independent, a problem arises known as “field significance” (Livezey and Chen, 1983). In 

atmospheric sciences, field significance is a common issue, where false rejections of the null 

hypothesis tend to group together on a spatial grid, leading scientists to overinterpret the results as 

physically meaningful (Wilks, 2016). Most studies in atmospheric sciences neglect the issue of 

field significance, and instead simply stipple significance on a map where the p-values from the 
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local tests are smaller than the chosen α (e.g., α = 0.05 for the 95% confidence level). According 

to Wilks (2016), a principled and straightforward solution to account for errors related to multiple 

hypothesis testing and field significance is to control the false discovery rate (FDR). Conceptually, 

the FDR is the expected fraction of rejections of the null hypothesis (i.e., “discoveries”) among 

the local tests that are incorrect. 

FDR correction of the significance tests can be achieved using the Benjamini/Hochberg 

procedure (Benjamini and Hochberg, 1995). This procedure involves ranking the p-values of the 

local tests and identifying the value of pFDR, which is defined as the maximum ranked p-value (p(i)) 

that is no greater than (i/N)αFDR, where i is the rank of the p-value, N is the number of tests, and 

αFDR is the chosen control level for the FDR (Wilks, 2016). All tests where the p-value is no greater 

than pFDR may be considered statistically significant for the chosen αFDR. 

The FDR approach using αFDR = αglobal is rather conservative when the underlying data are 

spatially correlated. According to Wilks (2016), choosing αFDR = 2αglobal yields approximately 

correct results given the typical spatial autocorrelation of meteorological fields (specifically 500-

hPa heights). An example of the ranked p-values from correlation significance testing in chapter 5 

is presented in Fig. 2.13. Note that the threshold for statistical significance using the FDR approach 

was drastically reduced, leaving ~7.2% being statistically significant (p ≤ pFDR where pFDR ~ 

0.0072), as opposed to ~30.1% being statistically significant using the “naive stippling approach” 

(p < αglobal where αglobal = 0.05). 
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Figure 2.13: A collection of 9075 ranked p-values from the Monte Carlo testing of correlation 
coefficients between an ERE time series and ERA5 JJA-averaged 500-hPa geopotential heights on 
a geographic grid (results in section 5.2.5). (a) All p-values plotted as a function of their rank that 
were statistically significant (green) and not statistically significant (black) using the FDR 
approach with αFDR = 0.1, yielding pFDR ~ 0.0072. The blue line represents the global 95% 
confidence threshold (αglobal = 0.05) and the orange line represents the curve used to determine pFDR 
(the maximum ranked p-value that is no higher than the orange curve). (b) As in (a) but zoomed 
in to the top 3000 ranked p-values for a more refined view. 

 

We acknowledge that multiplying α by a factor of two may be too lenient for fields with less 

spatial autocorrelation. Nevertheless, the amount of significance was still drastically reduced for 

all analyses when compared to using the “naive stippling approach”, thus accounting for a 

substantial amount of potentially overstated significance in the trends, composite differences, and 

correlations on spatial grids. Much of the significance at the 95% confidence level was eliminated 

when applying FDR correction, so significance at the 90% confidence level was also stippled in 
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the results. Another word of caution is that significance after FDR correction is sensitive to the 

distribution of the p-values, which may be sensitive to the geographical region being tested. The 

geographic footprint used for testing was kept consistent where appropriate and the bounds of the 

respective footprints are specified in the figure captions for the sake of reproducibility.
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Chapter 3 

20-Year Climatology of Short-Duration EREs

Previous studies have explored the climatology of extreme precipitation across the CONUS 

(chapter 1.1), including the seasonality of daily extreme rainfall and the diurnal cycle of hourly 

extreme rainfall. This chapter presents a 20-yr climatology of EREs based on the event object 

database described in section 2.1, including a breakdown of event types, intensities, and locations 

in section 3.1, seasonality in section 3.2, and the diurnal cycle of JJA EREs associated with 

nonlocalized convection in section 3.3. The key findings in relation to past studies will be briefly 

discussed in section 3.4. 

3.1 Event Type Climatology 

The algorithm described in section 2.1 identified a total of 9095 12-hr EREs exceeding the 10-yr 

ARI threshold from 2003–2022. A breakdown of the types of EREs based on the classification 

methods described in section 2.1.4 are presented in the first row of data in Table 3.1. TC- and 

stratiform-related3 events accounted for the least number of events (4.0% and 5.0%, respectively), 

while MCS-related4 events made up the largest portion of the dataset (43.5%). Filtering tropical 

cyclone, stratiform, and localized convection events out of the dataset left 6696 events, which is 

approximately 73.6% of the total. EREs associated with nonlocalized convection will be 

3 Events caused primarily by stratiform precipitation will simply be referred to as “stratiform-
related” in this chapter (see section 2.1.4.2). 

4 Events referred to as “MCS-related” may include events associated with convection embedded 
within large synoptic scale features, especially outside of JJA (see section 2.1.4.4). 



58 
 

subsequently referred to as filtered EREs. For comparison purposes, the filtered EREs can be 

separated into MCS and non-MCS subclasses. 

 

ARI (yr) Total Count % TC % Stratiform % Localized % Non-MCS5 % MCS 
10 9095 4.0 5.0 17.3 30.1 43.5 
50 2714 6.7 1.8 11.3 25.7 54.4 
100 1574 8.3 1.4 9.4 23.2 57.8 
500 367 10.6 0.5 7.6 18.8 62.4 
1000 198 13.1 0.5 7.1 19.7 59.6 

Table 3.1: 2003–2022 total ERE counts exceeding each ARI threshold and percentages of each 
event classification that make up the total count. 

 

Counts and proportions of the short-duration EREs that exceeded higher ARI thresholds (i.e., 

50-, 100-, 500-, and 1000-yr events) with respect to event type are presented in Tables 3.1 and 3.2. 

Referring to Table 3.2, stratiform events were the least likely to exceed higher thresholds. 

Although TC-related EREs were the least common, they were also the most likely event class to 

exceed higher ARI thresholds, with about half of them exceeding the 50-yr ARI threshold and 

about 7% of them being 1000-yr events (Table 3.2). Previous studies agree that tropical cyclones 

often produce the most widespread and destructive EREs (e.g., Ashley and Ashley, 2008; 

Schumacher and Johnson, 2006). MCS-related events were the second most likely to be intense 

with ~37% exceeding the 50-yr ARI threshold and ~3% exceeding the 1000-yr ARI threshold 

(Table 3.2). Since MCSs were the most common event class, Table 3.1 emphasizes the importance 

of studying extreme-rain-producing MCSs, since a majority of all higher-end events (50-yr ARI 

or greater) resulted from MCSs (e.g., about 60% of 1000-yr events). This result supports previous 

 
5 Referring to filtered EREs that were not classified as MCS-related. 
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findings that the majority of 24-hr EREs with a 50-yr ARI are associated with MCSs (Schumacher 

and Johnson, 2006; Stevenson and Schumacher, 2014). 

 

Class 10-yr count % 50-yr % 100-yr % 500-yr % 1000-yr 
TC 365 50.1 35.6 10.7 7.1 

Stratiform 457 10.7 4.8 0.4 0.2 
Localized 1577 19.5 9.4 1.8 0.9 
Non-MCS 2740 25.5 13.3 2.5 1.4 

MCS 3956 37.3 23.0 5.8 3.0 
All 9095 29.8 17.3 4.0 2.2 

Table 3.2: 2003–2022 total ERE counts by classification with percentages of which exceeding the 
50-, 100-, 500-, and 1000-yr ARI thresholds. 

 

As expected, TC-related EREs were most common over the southeastern CONUS (Fig. 3.1a), 

where tropical cyclones often make landfall and bring devastating freshwater flooding to inland 

areas. EREs related to stratiform precipitation were most common over the Northeast, Midwest, 

and Northern Great Plains (Fig. 3.1b), likely from precipitation associated with extratropical 

cyclones over areas with relatively lower thresholds. EREs resulting from localized convection 

were most common over the Southern and Central High Plains (Fig. 3.1c), where isolated slow-

moving afternoon convection often occurred during the summer over areas with generally lower 

ARI thresholds (Fig. 2.1a). Other hot spots for EREs associated with localized convection include 

the Southern Appalachians, where orographic influences likely play a role in producing more 

isolated intense rainfall (e.g., Smith et al., 2011), and South Florida, where afternoon air mass 

thunderstorms are common during the warm season, often associated with sea breeze circulations. 

MCS related events were more evenly distributed throughout the domain, with the most notable 
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relative maxima around portions of the Gulf Coast and over eastern portions of the Central Great 

Plains (Fig. 3.1d). 

 

 
Figure 3.1: All 2003–2022 ERE points of maximum exceedance (translucent black dots) associated 
with (a) tropical cyclones, (b) primarily stratiform precipitation, (c) only localized convection, and 
(d) MCSs, with Gaussian smoothed (σ = 0.5°) neighborhood event counts (radius = 100 km) (color 
fill), scaled up at the domain edges based on the inverse fraction of valid domain area within the 
radius. 
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3.2 Seasonal Climatology 

Consistent with previous studies, a JJA peak is evident for all classes of convective EREs (i.e., 

localized and filtered; Fig. 3.2). In contrast, TC-related EREs exhibit a peak in September and 

stratiform-related EREs have peaks in both May and September with a relative minimum during 

the summer. The peak in the overall frequency of EREs during JJA is expected due to the 

climatological maximum in convective activity over the central and eastern CONUS as discussed 

in section 1.1. Among filtered EREs, MCS event counts show a broader peak over the warm season 

than non-MCS events, with MCS events being much more common outside of JJA than non-MCS 

events. This variation in seasonality is likely due to stronger synoptic scale forcing mechanisms 

from the jet stream driving larger convective systems during the cool season. Since this study is 

motivated by convective EREs, the analysis focuses only on JJA, when about 60.1% of the total 

filtered EREs occurred, leaving a sample of 4024 events for the analysis. All JJA filtered ERE 

locations are plotted over the 10-yr ARI thresholds in Fig. 3.3. 

 
Figure 3.2: 2003–2022 event counts per month for events associated with tropical cyclones (blue), 
primarily stratiform precipitation (orange), only localized convection (green), and for filtered 
EREs that were not classified as MCS-related (red) and were classified as MCS-related (black). 
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Figure 3.3: 10-yr ARI 12-hr precipitation frequency estimates from NOAA Atlas 14 (color fill; 
mm) and the locations of all 2003–2022 JJA filtered EREs (4024 events) at their respective points 
of maximum exceedance (translucent black dots). 

 

The least number of events (~2.5%) occurred during the winter months (December–February), 

with most of the filtered EREs confined to the central Gulf Coast states (Fig. 3.4a). In the spring 

(March–May), ~18.4% of the filtered EREs occurred, with activity expanding north and west, 

especially into the Southern and Central Great Plains (Fig. 3.4b). During JJA, the EREs are most 

frequent and are focused farther north (Fig. 3.4c). The highest JJA event densities occur over the 

Central and Northern Great Plains, Mid-Mississippi Valley, Ohio Valley, and the Carolinas, with 

relatively lower event counts over the northern Gulf Coast states, where the ARI thresholds are the 

highest (Fig. 3.3). During the fall (SON), event counts are similar to springtime (~19.0%), with 

events more evenly distributed throughout the domain than any other season (Fig. 3.4d). 
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Figure 3.4: As in Fig. 3.1, but for 2003–2022 filtered EREs occurring during (a) December–
February (DJF), (b) March–May (MAM), (c) June–August (JJA), and (d) September–November 
(SON). 

 

While a 10-yr ERE can only be expected once every 10 years at a single location, the events 

are remarkably common during the summer when considering the entire central and eastern 

CONUS. In fact, an average of approximately 79 out of the 92 days in JJA (~86%) contained at 
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least one 10-yr ERE somewhere in the domain according to our 20-yr database, even with the 

Stage IV data likely underestimating precipitation over many areas (section 2.1.2). 

Instead of characterizing each event as one point on a map, it can be more informative to plot 

all exceedance points for each event. Summing all accumulated precipitation above the 10-yr ARI 

threshold from all filtered EREs in the respective subset (e.g., Fig. 3.5) reveals several 

characteristics of the EREs, with the larger and more intense events being more distinguishable 

(black streaks where exceedance ≥100 mm above the 10-yr ARI threshold in Fig. 3.5). Despite 

high event densities over the Carolinas and Florida during the summer (Fig. 3.4c), Fig. 3.5c reveals 

that most of those events had very few exceedance points or occurred over localized areas, making 

those events nearly indiscernible. Widespread and intense EREs were most numerous during JJA 

along an axis from Texas to the Ohio Valley and Midwest and commonly had a northwest–

southeast (NW–SE) orientation (Fig. 3.5c), unlike other seasons, where the exceedance swaths 

typically had more of a southwest–northeast orientation (Fig. 3.5a–b, d). This orientation is likely 

associated with the differences in large-scale flow patterns and perhaps the structure of convective 

systems during the summer. The environments associated with these NW–SE oriented EREs are 

examined in chapter 6 through case study composite analyses. 
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Figure 3.5: Total precipitation exceeding the 10-yr ARI threshold (mm) from all 2003–2022 
filtered EREs during (a) December–February (DJF), (b) March–May (MAM), (c) June–August 
(JJA), and (d) September–November (SON). 

 

JJA MCS-related EREs were most common over portions of the central CONUS (Fig. 3.6a), 

with the majority of JJA filtered EREs resulting from MCSs over that region (Fig. 3.6b). The area 

where MCS-related EREs were most common is similar to previous climatology studies on MCSs 

(e.g., Haberlie and Ashley, 2019; Fig. 1.1b), with a maximum in MCS precipitation occurring 
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between Oklahoma and Iowa. However, according to Fig. 3.6b, MCS-related JJA EREs account 

for over 80% of the filtered JJA EREs in some areas (e.g., northern Missouri), while total MCS 

rainfall contributes comparatively less (about 60%) of the overall May–August precipitation over 

those same areas according to Haberlie and Ashley (2019) (Fig. 1.1e). For analysis purposes, a 

subdomain over the central CONUS was selected to encompass the most climatologically active 

areas for MCS-related EREs (100–82°W, 34–46°N; Fig. 3.6). The sample size of JJA filtered EREs 

within the subdomain is 1656 events, with approximately 59% of them being classified as MCS-

related. One other observation of note is the relative lack of MCS-related EREs over the High 

Plains, which is related to the relatively small-scale nature of convection commonly observed over 

that region. 

 

 
Figure 3.6: (a) All JJA MCS-related ERE points of maximum exceedance (translucent black dots) 
with Gaussian smoothed (σ = 0.5°) neighborhood (radius = 100 km) event count (color fill), scaled 
up at the domain edges based on the inverse fraction of valid domain area within the radius. (b) 
All JJA filtered ERE points of maximum exceedance (translucent black dots) with Gaussian 
smoothed (σ = 0.5°) neighborhood (radius = 100 km) event count proportion of the total filtered 
JJA EREs that were classified as MCS-related (color fill; %). The black box is the central CONUS 
domain (100–82°W, 34–46°N). 
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3.3 JJA Diurnal Cycle 

Past studies that examined the diurnal cycle of extreme rainfall have only considered 1-hr extremes 

(e.g., Hitchens et al., 2013; Schumacher and Johnson, 2006; Stevenson and Schumacher, 2014), 

which can occur even with short-lived intense convection that does not produce substantial 

precipitation accumulations over large areas or last for several hours. This section will present the 

findings of the diurnal variations in EREs occurring over 12-hr timescales, focusing on the JJA 

filtered EREs. 

When examining the full sample of 4024 JJA filtered EREs, the climatological minimum in 

ERE peak intensity times was generally during the late morning and early afternoon (1500–1800 

UTC). The climatological maximum was between 2200 and 0100 UTC (Fig. 3.7a), which is during 

the early evening hours until around sunset throughout the domain during the summer. The peak 

end time of the 12-hr accumulation periods associated with the JJA filtered EREs was well into 

the night (0700–1000 UTC). The peak time of event onset was only about 1 hour before the peak 

in maximum intensity (2100–0000 UTC). This timing suggests that the heaviest precipitation often 

occurs relatively early in an event’s lifetime, with a gradual trailing-off of precipitation intensities 

over time. Given this result, it is important to consider the entire period of an event to determine 

if there was a sufficient nocturnal component before or after the peak accumulation hour for the 

event to be classified as nocturnal. Therefore, if at least half of the accumulation period was at 

night, the event was classified as nocturnal, even if the peak accumulation hour was during daylight 

hours (section 2.1.4.5). 
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Figure 3.7: 3-hr running mean ERE count (2003–2022) for (a,b) JJA filtered EREs within the full 
domain and (c,d) JJA filtered EREs within the central CONUS subdomain. Blue, black, and red 
lines in (a) and (c) represent the onset hour (first hour with accumulation ≥1 mm), peak 
accumulation hour, and end of the accumulation period at the points of maximum exceedance, 
respectively. Black and grey lines in (b) and (d) represent MCS- and non-MCS-related JJA filtered 
EREs, respectively. 

 

The 2200–0100 UTC peak in event times found in Fig. 3.7a is inconsistent with the peak in 1-

hr EREs found by Stevenson and Schumacher (2014) which was approximately 0400–0600 UTC 

(Fig. 1.3). However, for MCS-related events only, the climatological peak is broader and includes 

hours well into the night (Fig. 3.7b) with the actual peak in MCS event intensities between 0400 

and 0700 UTC. Thus, MCS-related EREs during JJA tend to peak later at night. The fraction of 

JJA filtered EREs that are MCS-related shows a clear maximum during the late night and morning 

hours (Fig. 3.8) with greater than 60% being classified as MCS-related between 0600 and 1500 

UTC (0100–1100 local time). 
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Figure 3.8: Percentage of the 3-hr running mean JJA filtered ERE counts that are classified as 
MCS-related, derived from Fig. 3.7b. 

 

Isolating the central CONUS subdomain reveals a true nocturnal maximum in ERE frequency, 

with a clear peak between 0400 and 0700 UTC (Fig. 3.7c), which is significantly amplified when 

considering only MCS events (Fig. 3.7d). This timing aligns with numerous past studies (e.g., 

Easterling and Robinson, 1985; Wallace, 1975), confirming that the nocturnal maximum in warm 

season precipitation over that region is consistent with the timing of the nocturnal maximum in 

short-duration EREs. 

Plotting the JJA filtered EREs that were classified as nocturnal in terms of event points (Fig. 

3.9a–b) and exceedance values (Fig. 3.10a) reveals that nocturnal events dominated over the 

central CONUS region, especially over northwestern Missouri and vicinity, where around 90% of 

the filtered JJA EREs were nocturnal. Nocturnal JJA MCS-related EREs were more confined to 

the central CONUS subdomain with a maximum over the same region, where over 70% of JJA 

filtered EREs were nocturnal MCS-related (Fig. 3.9c–d). This result is consistent with Haberlie 

and Ashley (2019) (Fig. 1.2a), and the same area also saw the most precipitation during the Plains 

Elevated Convection at Night field campaign in 2015 (Geerts et al., 2017; Weckwerth and 

Romatschke, 2019). 
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Figure 3.9: As in Fig. 3.6, but for (a,b) nocturnal JJA filtered EREs and (c,d) nocturnal JJA MCS-
related EREs. 
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Figure 3.10: Map of total precipitation exceeding the 10-yr ARI threshold from all JJA filtered 
EREs classified as (a) nocturnal and (b) diurnal from 2003–2022. 

 

Over the full domain, a little over half (~54%) of the filtered JJA EREs were classified as 

nocturnal, and ~60% within the central CONUS subdomain. However, event counts alone do not 

account for the relative magnitude nor spatial extent of the associated extreme rainfall, as it is 

evident that the nocturnal events (Fig. 3.10a) were often larger and more intense than diurnal 

events (Fig. 3.10b), especially over the central CONUS. In fact, nocturnal filtered EREs 

contributed to ~69% of the total extreme precipitation exceeding the 10-yr ARI threshold over the 

full domain, and ~78% over the central CONUS subdomain. 

Regarding the areal coverage of extreme rainfall, the larger EREs (i.e., having more 

exceedance points) were often nocturnal events, with, for example, approximately 77% of events 

having at least 300 exceedance points (extreme rainfall covering ≥4,800 km2) being classified as 

nocturnal (Table 3.3). Overall, the median number of exceedance points among the nocturnal JJA 
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filtered EREs is 12 (192 km2), while for diurnal events it is only 5 (80 km2). In other words, on 

average, nocturnal EREs were over double the size of diurnal EREs, which is an indication of more 

MCS versus non-MCS events. Referring to Table 3.4, events related to nocturnal MCSs were also 

the most likely to exceed higher ARI thresholds when compared to all JJA filtered EREs, with 

about 4% of nocturnal MCSs exceeding the 1000-yr ARI threshold, as opposed to 2.5% of all JJA 

filtered EREs. These findings serve as additional evidence that nocturnal MCSs are the most 

prevalent producers of extreme rainfall in the central and eastern CONUS during JJA. 

 

Exceedance Point Count JJA Filtered ERE Count % Nocturnal 
[1, 5) 1515 42.6 
[5, 25) 1399 55.3 

[25, 100) 772 63.9 
[100, 300) 263 72.6 

≥300 75 77.3 
All Filtered 4024 53.7 

Table 3.3: 2003–2022 total JJA filtered ERE counts and percentages of which that were classified 
as nocturnal within different exceedance point count (i.e., size) range bins, listed in interval 
notation up to 300. 

 

JJA Event Type 10-yr count % 50-yr % 100-yr % 500-yr % 1000-yr 
All Filtered 4024 33.0 19.4 4.5 2.5 

MCS 2030 40.5 25.5 6.7 3.6 
Nocturnal 2162 37.9 22.8 5.9 3.1 

Nocturnal MCS 1206 44.2 28.6 8.0 4.0 

Table 3.4: 2003–2022 total JJA filtered ERE counts by type with percentages that exceed 50-,  
100-, 500-, and 1000-yr ARI thresholds. 
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3.4 Discussion 

This chapter presented a 20-yr survey of EREs, having double the period of record used in the 

Stevenson and Schumacher (2014) study. Despite using different methods of classifying EREs, 

the result that MCSs produced the largest proportion of EREs and the majority of EREs exceeding 

50-yr ARIs (Table 3.1) is consistent with previous studies (e.g., Schumacher and Johnson, 2006; 

Stevenson and Schumacher, 2014). Also consistent with previous studies, convective EREs 

showed a strong annual peak in JJA (Fig. 3.2) and JJA EREs associated with MCSs were found to 

peak in intensity most often during the nighttime hours (Fig. 3.7). We also found EREs associated 

with nonlocalized convection to be focused more over the north-central CONUS during the 

summer than other seasons, where the thresholds for defining extremes are generally lower (Figs. 

3.3 and 3.4). 

As has been suggested in prior studies (e.g., Maddox et al., 1979; Stevenson and Schumacher, 

2014), our results provide new visual and quantitative evidence that nocturnal MCSs are the most 

prolific producers of extreme rainfall during the summer. For example, among all JJA filtered 

EREs, those that were classified as nocturnal contributed to nearly 70% of the total extreme rainfall 

volume over the domain, and produced extreme rainfall, on average, over double the geographical 

area of the diurnal events (Fig. 3.10). Nocturnal JJA MCS-related EREs were most common over 

eastern portions of the Central Great Plains, focused on eastern Kansas and northwestern Missouri 

(Fig. 3.9c–d) which is in line with previous observational studies (e.g., Haberlie and Ashley, 2019; 

Weckwerth and Romatschke, 2019). Prior research has established that a major short-coming of 

weather and climate models is the accurate representation of elevated nocturnal convection and 

propagating nocturnal MCSs that occur over land masses (e.g., Bechtold et al., 2014, 2020; Becker 

et al., 2021; Geerts et al., 2017; Tang et al., 2021). Thus, our results further motivate the need to 
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improve the depiction of nocturnal convection over continental locations in weather and climate 

models. 

This need is furthered by the localized and complex nature of the extreme rainfall associated 

with convection revealed in the maps of exceedance above the chosen 10-yr ARI threshold (e.g., 

Figs. 3.5 and 3.10). Even the most intense swaths of extreme rainfall only had widths ranging from 

20–40 km. The fine detail of the extreme rainfall captured in the Stage IV analyses demonstrates 

the importance of using high resolution gridded rainfall data for observational studies of EREs. 

The relatively small scale over which most of the EREs occur also raises a challenge for predicting 

the location and timing of EREs from convection. This challenge applies to forecasters as well as 

weather and climate models. Models with lower spatial resolutions, especially those that utilize 

convective parameterization schemes, are unable to resolve these convective EREs. Thus, the high 

resolution convection allowing models, which have greater skill in representing the diurnal cycle 

of rainfall (e.g., Ban et al., 2014), are necessary for the accurate representation of extreme-rain-

producing convection (e.g., Fritsch and Carbone, 2004). 

The climatology presented in this chapter provides critical insights into the nature and behavior 

of EREs, with a focus on those that are the most destructive and can have major impacts on society. 

While this chapter examines the nature of events over the entire 20-yr period, the next chapter will 

explore any observed changes in the EREs throughout the period.
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Chapter 4 

Interannual Variability & Trends 

 

Extensive research has been conducted on the changes in rainfall associated with global climate 

change (section 1.4) with numerous studies documenting or predicting an increase in extreme 

events. While the period of record used in our study spans only 20 years, how the frequency and 

intensity of EREs changed from year to year and if there were any statistically significant trends 

in their frequency or characteristics through the period are questions of scientific and practical 

importance to society and the environment. From the database of EREs described in section 2.1, 

the time series of the total number of events per year that satisfied specific conditions (e.g., 

classification, season, time of day, and region) were obtained. The time series data provide 

information on the interannual variability and potential trends in the EREs through the 20-yr period 

(2003–2022). However, in addition to a relatively short sample period, the caveats regarding the 

Stage IV dataset (discussed at the end of section 2.1.1) suggest that the results in this chapter 

should be interpreted with some caution. 

Annual event counts for separate classifications of EREs over the full domain will be presented 

in section 4.1. Seasonal trends in EREs are examined in section 4.2. The JJA filtered ERE time 

series, including counts of higher-end EREs and time series of different metrics of the EREs are 

presented in section 4.3. Changes in JJA filtered EREs are examined with respect to (1) the diurnal 

cycle in section 4.4, (2) storm size and duration in section 4.5, and (3) geographical subregion 

within the domain in section 4.6. The key findings will be discussed in relation to previous 

literature in section 4.7, along with a brief discussion of the caveats that may impact the 

interpretation of the results. 
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4.1 Annual Time Series for All ERE Types 

The time series of overall annual ERE counts (Fig. 4.1a) exhibits no statistically significant trend 

(τK ~ 0.18; pMK > 0.05) due to a lack of consistent trends among different temporal subdivisions of 

the time series. This result of no significant overall trend is inconsistent with previous studies 

examining long-term trends in EREs over the CONUS. For example, 2-day precipitation exceeding 

the 99th percentile using rain gauge measurements from 1957–2010 exhibited a significant 

increasing trend over the CONUS as a whole (τK ~ 0.34; pMK < 0.01) (Kunkel et al., 2013a). 

However, comparison of these previous results with our results should be interpreted with caution 

due to the different datasets, methods of defining EREs, and periods of record. Nevertheless, our 

approach of dividing the database of EREs into subsets and examining their trends through the 

period of study can provide new insights into what specific types of EREs may be changing given 

the increase found in some studies. 

Dividing the annual ERE count time series into their four main classes (defined in section 

2.1.4) revealed varying results. TC-related EREs had no trend through the period (Fig. 4.1b) and 

exhibited the greatest amount of variability compared to other types with the number of events 

ranging from 0 in 2009 to 42 events in 2020. The coefficient of variation (CV), calculated as the 

ratio between the standard deviation and the mean of the time series, was used as a relative measure 

of overall variability in each time series. The TC-related ERE count timeseries has an exceptionally 

high CV of ~67.3% indicating a large degree of interannual variability.  
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Figure 4.1: Annual ERE count time series for (a) all QC-passed events, (b) TC-related events, (c) 
primarily-stratiform-related events, (d) localized convection events, and (e) filtered events. 
Statistics, including sample mean (x̄), coefficient of variation (CV), Theil–Sen slope (βTS; events 
decade–1), Kendall’s τ (τK), and the p-value from Mann–Kendall trend tests (pMK) are listed to the 
right of each time series. The average percent increase according to the βTS of each time series is 
(a) 5.7, (b) 0, (c) –20.4, (d) –13.9, and (e) 15.5% decade–1. 

 

EREs from primarily stratiform precipitation (Fig. 4.1c) and from localized convection (Fig. 

4.1d) both exhibited statistically significant decreasing trends at the 95% confidence level (pMK < 

0.05). While the annual average number of localized convection EREs is over three times greater 

than the primarily-stratiform-related EREs, the trend in the latter (τK ~ –0.41) is slightly more 

confident than the former (τK ~ –0.34), despite slightly more variability. The relative magnitude of 
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the trends can also be expressed by the average percent increase according to the Theil–Sen’s 

slopes (βTS / x̄ × 100%). The primarily-stratiform-related events had a greater relative decrease than 

the localized convection events (–20.4 vs. –13.9% decade–1, respectively) 

The last subset is the filtered EREs (Fig. 4.1e), which is left with a substantial increasing trend 

(βTS ~ 52 events decade–1). Compared to the time series of total unfiltered EREs with an average 

percent increase of 5.7% decade–1, the filtered ERE time series has a relatively larger increase of 

15.5% decade–1. Although these trends are not significant at the 95% confidence level, the results 

suggest that any significant increasing trends in EREs would likely be related to the filtered EREs 

(i.e., EREs from non-localized convection), which will be the focus for the remainder of this thesis.  

 

4.2 Seasonal Trends in EREs 

Climatologically, EREs show a strong seasonal cycle (section 3.2), with the peak in event counts 

occurring during JJA (5526 total events and 4024 filtered events; Fig. 4.2a). When performing a 

Mann–Kendall trend test on each 3-month running count time series (2003–2022), statistically 

significant (pMK < 0.05) trends become evident during specific times of the year. Positive trends 

are maximized during the summer months according to the Theil–Sen’s slope values displayed in 

Fig. 4.2b and Kendall’s τ coefficients in Fig. 4.2c, with the peak values appearing in JJA. The 

positive trends among the filtered EREs during much of the warm season (May–July through 

August–October) are statistically significant, as shown by p-values of less than 0.05 displayed in 

Fig. 4.2d. Unfiltered EREs, on the other hand, had lower trends than filtered EREs over all months, 

as explained by the decreasing trends in primarily stratiform-related and localized convection 

EREs (section 4.1). Thus, the p-values associated with positive trends are much larger for 

unfiltered EREs, indicating a lack of statistical significance. 
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Figure 4.2: Centered at each month of the year, (a) the total 3-month running 20-yr (2003–2022) 
ERE count, and for the 20-yr time series of each 3-month running sum: (b) Theil–Sen slope (events 
decade–1), (c) Kendall’s τ, and (d) Mann–Kendall trend test p-values. Values are shown for all 
unfiltered 10-yr EREs (grey) and filtered EREs (black). The black horizontal line in (b) and (c) at 
zero is to help distinguish between positive and negative values. The dashed black line in (d) 
represents pMK = 0.05, with any values below the line indicating statistical significance at the 95% 
confidence level. Months are abbreviated by their first letters (e.g., DJF represents December–
February). 

 

Contrary to previous studies (e.g., Feng et al., 2016), our results show a lack of any increasing 

trend in EREs during the spring months, with March–May events actually showing a slight 

decreasing trend for both filtered and unfiltered EREs (Fig. 4.2b–c). However, this decreasing 

trend is not statistically significant (Fig. 4.2d). Feng et al. (2016) used April–June, which did have 

an increasing trend in filtered EREs according to our dataset, but again, the trend was not 

statistically significant. However, it is difficult to compare results among different observational 

studies due to the differences in data, methodology, and period of record. 



80 
 

The significant increasing trend found particularly among the JJA filtered EREs is intriguing 

and could have important implications for society. Therefore, the remainder of the thesis will focus 

exclusively on the JJA filtered EREs. 

 

4.3 JJA Filtered ERE Timeseries 

The time series of the annual JJA filtered ERE count (Fig. 4.3a) reveals substantial variability in 

the number of events with a minimum of 127 events in 2012 and a maximum of 268 events in 

2016 (more than double). With minimal investigation, the low event count anomaly in 2012 was 

likely associated with widespread extreme drought conditions over the Great Plains (NOAA 

National Centers for Environmental Information, 2013). As expected from the previous section, 

the JJA filtered ERE count time series exhibits a statistically significant increasing trend through 

the period (pMK < 0.05). The trend is also significant at the 99% confidence level (pMK < 0.01) with 

a Theil–Sen’s slope of 42 events decade–1 and a relatively large Kendall’s τ of ~0.5. 

EREs can also be expressed using different metrics besides event counts. Total exceedance 

volume will be defined as the sum of all 12-hr accumulation exceedance above the 10-yr ARI 

threshold from all exceedance points in a group of events. This metric has the advantage of 

weighting the events by both size (i.e., area of exceedance) and intensity (i.e., magnitude of the 

exceedance). Thus, years with higher values of total exceedance volume may have included more 

widespread and destructive EREs, but not necessarily a higher number of events. On the other 

hand, very large and intense events may dominate the total exceedance volume, making the weaker 

and more localized extreme events negligible. Thus, it is important to examine both total 

exceedance volume as a measure of ERE severity and event count as a measure of ERE frequency, 
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although the time series of the two metrics are strongly correlated, with a correlation coefficient 

of approximately 0.8. 

 
Figure 4.3: For JJA filtered EREs, 2003–2022 time series plots of (a) event count, (b) number of 
days with at least one event, and (c) total 10-yr ARI exceedance volume. As in Fig. 4.1, some 
relevant statistics are listed to the right of each time series. The average percent increase according 
to the βTS of each time series is (a) 20.9, (b) 38.9, and (c) 5.1% decade–1. 

 

The annual time series of total exceedance volume from JJA filtered EREs (Fig. 4.3b) reveals 

a very large amount of variability throughout the period (CV ~ 44.8%) compared to event counts 

(CV ~ 17.3%). This variability is likely, in part, due to some years having a few highly anomalous 

events compared to others. The time series of total exceedance volume also has a statistically 

significant positive trend through the period (pMK < 0.05), but the trend is much less confident than 
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that for event counts, with a Kendall’s τ of ~0.33. However, the relative magnitude of the trend in 

total exceedance volume according to the Theil–Sen’s slope (38.9% decade–1) is substantially 

greater than that for event counts (20.9% decade–1). 

The total number of days that contained at least one event (at its peak accumulation hour) was 

also analyzed. As mentioned in section 3.2, the vast majority of days in JJA typically have at least 

one event within the domain. The time series of event days (Fig. 4.3c) exhibits much less overall 

variability than for other metrics of EREs (CV ~ 7.9%) and does not include a significant increasing 

trend through the period (pMK > 0.05). However, the number of event days is not as relevant to the 

potential societal impacts (i.e., flooding) as the other metrics (i.e., event counts or total exceedance 

volume) since multiple EREs can occur in a single day. Therefore, no further analysis of event day 

counts will be shown. 

Analyzing the time series for events exceeding 50- and 100-yr ARI thresholds has the potential 

to reveal changes in “higher-end” EREs during the period when compared to the 10-yr EREs. Prior 

studies like Schumacher and Johnson (2006) and Stevenson and Schumacher (2014) also used 50- 

and 100-yr ARIs as extreme rainfall thresholds, not 10-yr ARI thresholds, so it is appropriate to 

consider these alternative thresholds for analysis. The time series of the number of JJA filtered 

EREs exceeding 50-yr ARI thresholds (Fig. 4.4a) and 100-yr ARI thresholds (Fig. 4.4b) are highly 

correlated to the 10-yr event count time series (Fig. 4.3a), with correlation coefficients of 0.92 and 

0.90, respectively. However, as the sample size decreases for higher-end events, overall variability 

in the time series increases (CV ~ 23.7% and 28.6% for 50- and 100-yr events, respectively). As a 

result, the confidence in any increasing trend decreases for the higher-end events (τK ~ 0.38 and 

0.33 for 50- and 100-yr events, respectively), despite the positive trends still being statistically 

significant (pMK < 0.05). However, the average percent increase is slightly higher for the higher end 



83 
 

events (20.9, 21.2, and 23.1% decade–1 for 10-, 50-, and 100-yr events, respectively), meaning that 

the higher end events increased slightly faster in a relative sense. 

 
Figure 4.4: 2003–2022 event count time series plots for JJA filtered EREs exceeding (a) the 50-yr 
ARI threshold and (b) the 100-yr ARI threshold. As in Fig. 4.1, some relevant statistics are listed 
to the right of each time series. The average percent increase according to the βTS of each time 
series is (a) 21.2 and (b) 23.1% decade–1. 

 

4.4 Changes in the JJA Diurnal Cycle 

As presented in section 3.3, JJA filtered EREs undergo a strong diurnal cycle, with the peak in 

event maximum 1-hr rainfall occurring during the early evening hours (2100–0200 UTC; 1600–

2200 local time) when considering the full domain (Fig. 3.7a). The 20-yr time series of JJA filtered 

EREs that were classified as diurnal (Fig. 4.5a) and those that were classified as nocturnal (Fig. 

4.5b) based on the definition in section 2.1.4.5 both show a statistically significant increasing trend 

(pMK < 0.05). The relative magnitude of the trend in the nocturnal events (17.6% decade–1) was 

slightly higher than that of the diurnal events (15.1% decade–1) and the confidence in both trends 

was nearly the same (τK ~ 0.40 and 0.41 for nocturnal and diurnal, respectively). This difference is 
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likely due to the larger overall variability in the nocturnal ERE time series (CV ~ 21.6% for 

nocturnal vs. 16.8% for diurnal). Thus, we cannot confidently say that the nocturnal events 

increased faster than the diurnal events. The proportion of JJA filtered EREs that were nocturnal 

(Fig. 4.5c) exhibited no significant trend through the period, but a fair amount of variation. For 

example, it is noteworthy that ~ 60% of JJA filtered EREs were nocturnal in 2010, but only ~47% 

were nocturnal in 2021, while both years had relatively high event counts (Fig. 4.3a). This variable 

relationship between diurnal and nocturnal events was not further explored in this thesis but may 

be a subject for future work that can employ a longer sample period. 

 

 
Figure 4.5: (a), (b) as in Fig. 4.4, but for JJA filtered EREs classified as (a) diurnal and (b) 
nocturnal. (c) The percentage of the total JJA filtered EREs per year that are classified as nocturnal. 
The average percent increase according to the βTS of each time series is (a) 15.1, (b) 17.6, and (c) 
2.1% decade–1. 
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Figure 4.6: Centered at each hour of the day, (a) the total 5-hr running mean of 20-yr (2003–2022) 
ERE count, and for the 20-yr time series of each 5-hr running sum: (b) Theil–Sen slope (events 
decade–1), (c) Kendall’s τ, and (d) Mann–Kendall trend test p-values. Values are shown for all 
filtered JJA EREs (black), and those that exceeded the 50-yr (blue) and 100-yr (red) ARI 
thresholds. The black horizontal line in (b) and (c) at zero is to help distinguish between positive 
and negative values. The dashed black line in (d) represents pMK = 0.05, with any values below the 
line indicating statistical significance at the 95% confidence level. 

 

The same trend analysis was performed on the JJA filtered EREs that were classified as MCS-

related and compared to those that were not (Fig. 4.7) and there is a striking difference between 

the two. Non-MCS-related JJA filtered EREs had no statistically significant trends throughout the 

diurnal cycle (p > 0.05), whereas MCS-related EREs exhibited an increasing trend that was 

statistically significant (p < 0.05) over nearly the entire diurnal cycle (Fig. 4.7d). This result may 

explain the previous finding that the increase in JJA filtered EREs was most prominent during the 

early morning hours. Visually, the graph showing the climatological diurnal cycle of percent 

contribution by MCS-related EREs (Fig. 3.8), closely resembles the trend statistics seen in Fig. 
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4.6b–d. As will be discussed in the next section, the finding that MCS-related EREs were the 

primary contributor to the increase through the diurnal cycle may imply that there was an increase 

in the size and/or duration of the convection associated with the EREs based on the Stage IV data. 

 

 
Figure 4.7: As in Fig. 4.6, but for JJA filtered non-MCS-related EREs (grey) and JJA MCS-related 
EREs (black). 

 

4.5 Changes in Storm Size & Duration 

Given the findings from the diurnal cycle trend analysis, there is a question on whether the positive 

trends found in the data were related to an increase in the size and duration of the storms associated 

with EREs. Since EREs were classified as MCS-related where the size and duration of the 

associated precipitation feature exceeded specific thresholds, comparison between the time series 

of event counts associated with MCS- and non-MCS-related JJA filtered EREs can provide some 

insight. As suspected, the increasing trend in the number of MCS-related JJA EREs was 

statistically significant (pMK < 0.05, Fig. 4.8a), whereas for the non-MCS portion of JJA filtered 
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EREs, there was no statistically significant trend (Fig. 4.8b, pMK > 0.05). In fact, the slope of an 

ordinary linear regression of the JJA MCS-related ERE time series is ~29 events decade–1, but only 

~6 events decade–1 for the JJA filtered non-MCS-related ERE time series. Quantitatively, this 

means that MCS-related events contributed to approximately 83% of the ordinary linear trend in 

JJA filtered EREs. 

 

 
Figure 4.8: As in Fig. 4.4, but for (a) JJA MCS-related EREs, (b) JJA Filtered non-MCS-related 
EREs, and (c) JJA EREs from only localized convection. The average percent increase according 
to the βTS of each time series is (a) 33.3, (b) 5.0, and (c) –16.7% decade–1. 

 

JJA EREs associated with localized convection exhibited a slight decreasing trend (Fig. 4.8c), 

but unlike the annual count time series for localized convection EREs, this trend was not 

statistically significant (p > 0.05). However, since localized convection related EREs are also 
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defined based on a precipitation feature size threshold (section 2.1.4.3), the result of a negative 

trend, in contrast to the filtered EREs, further suggests that the 20-yr trend in JJA convective EREs 

increases with respect to size of the associated storm. 

A more direct approach in determining the dependence of storm size and duration on the trend 

is by performing the trend analysis on the time series of EREs falling within different range bins 

of relevant size and duration attributes. For example, the maximum major axis length of an event’s 

associated 1 mm hr–1 precipitation feature was used as a measure of storm size, and the duration 

over which that value was at least 200 km throughout the event’s lifetime was used as a measure 

of storm longevity. The histogram of convective (non-TC and non-stratiform) EREs with respect 

to storm size (Fig. 4.9a) reveals that the largest number of events have maximum precipitation 

feature lengths between 200 and 400 km. Performing the Mann–Kendall trend test on the time 

series of each group of events within 200-km maximum precipitation feature length range bins 

reveals a stronger trend for larger values. The maximum statistically significant (pMK < 0.05) 

percent increase was evident for the filtered EREs with maximum precipitation feature lengths 

between 800 and 1000 km (~2.2% decade–1), with the relative trend increasing with each 200-km 

range bin up to 1000 km (Fig. 4.9b). Beyond 1000 km, the trend was insignificant or nonexistent, 

likely due to both lower sample sizes and perhaps the different dynamics involved in driving very 

large rain systems (i.e., stronger synoptic scale forcing). Grouping the JJA convective EREs by 

the number of hours where the precipitation feature was at least 200 km (Fig. 4.9c) and performing 

the Mann–Kendall trend test on each resulting time series reveals a larger relative increasing trend 

for the events with longer-duration MCSs (Fig. 4.9d). However, the trends are not statistically 

significant for durations of 8 hours or longer, perhaps attributable to the smaller sample sizes. 

Nevertheless, the results serve as confirmation that the JJA filtered EREs that exhibited the greatest 
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increasing trends were characterized by larger and longer-duration precipitation features, but only 

to an extent, with EREs having the largest precipitation features showing no trend. 

 

 
Figure 4.9: (a) 2003–2022 JJA convective (non-TC and non-stratiform) ERE count histogram with 
respect to the maximum major axis length of the associated 1 mm hr–1 precipitation feature (PF) 
through the accumulation period. The blue bar represents EREs associated with localized 
convection while the red bars represent the filtered EREs, where the portions that are classified as 
MCS-related are hashed. (b) Trends (% decade–1) calculated from the Theil–Sen slope of the JJA 
ERE count time series for events within the respective bins from (a). Bars are stippled where the 
trend is statistically significant (pMK < 0.05). The rightmost bar is for all events with max PF lengths 
exceeding 1200 km. (c,d) As in (a) and (b), but with respect to the maximum number of 
consecutive hours where the major axis length of the associated 1 mm hr–1 PF through the 
accumulation period was at least 200 km. 
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4.6 Regional Trends  

Thus far, we have explored the trends observed in different types of EREs over the full central and 

eastern CONUS domain, but it is also informative to determine what specific regions within the 

domain experienced the greatest trends. Previous studies have often subdivided the domain into 

fixed subregions, such as Kunkel et al. (2013a), who defined regions like “Southeast” and 

“Midwest” using state borders. In contrast, our regional analysis does not invoke these regional 

differences, but considers event counts within a 500-km radius at each grid point on a map with 

0.25° grid spacing. In this framework, evaluating the Theil–Sen’s slope for the neighborhood event 

count time series at each grid point reveals the areas where the strongest trends in ERE frequency 

were observed in the dataset. Performing a Mann–Kendall trend test on each time series and 

subsequently correcting the significance tests using the FDR approach (section 2.2.3) reveals areas 

where the trend was statistically significant. As a result, the overall statistical significance in the 

trends was reduced compared to the individual trend tests. Considering the short sample period, 

trends will be considered statistically significant on spatial grids at the 90% confidence level (αFDR 

= 0.2). Figs. 4.10–12 present maps of the Theil–Sen’s slope with stippling of statistical significance 

(a) and maps of Kendall’s τ (b) for several subsets of the JJA filtered ERE dataset. The 500-km 

radius where the maximum trend was observed is plotted on the maps, for reference, and the time 

series associated with the maximum trend is also presented in each figure (c). 

The regional trend analysis for all JJA filtered EREs reveals a large area with statistically 

significant trends at the 90% confidence level (Fig. 4.10a). Trends of the largest magnitudes (βTS 

> 10 events decade–1) and strongest correlations (τK > 0.4; Fig. 4.10b) were found over portions of 

the Mid-Atlantic, Ohio Valley, and Midwest. Though not as large, statistically significant trends 
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were also found over the Upper Midwest and the Lower–Mid Mississippi Valley. A lack of 

statistically significant trends were found over the Northeast, Southeast, and Great Plains. 

 

 
Figure 4.10: For JJA filtered EREs, (a) Theil–Sen slope (color fill; events decade–1) and (b) 
Kendall’s τ (color fill) applied to the 500-km neighborhood event count time series (2003–2022) 
at each point on a 0.25° grid over the full domain. The black circles indicate the 500-km radius 
where the trend is the largest, with the center point represented by a black dot. Stippling in (a) 
indicates where the trend is statistically significant (nonzero) at the 90% (αFDR = 0.2) confidence 
level. (c) 2003–2022 event count time series associated with the maximum trend with Mann–
Kendall trend test statistics, including Theil–Sen slope (βTS), Kendall’s τ (τK), and p-values (pMK) 
listed. 
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For JJA filtered EREs exceeding higher ARI thresholds, the regional trend analysis reveals that 

the increases were more confined to the central portion of the domain than the 10-yr JJA filtered 

EREs and did not include the Mid-Atlantic region. For example, the 50-yr JJA filtered EREs 

exhibited a maximum increasing trend centered over the Ohio Valley, with areas of significance 

over the Upper Midwest and extending southward into the Lower Mississippi Valley (not shown). 

The maximum increasing trend for 100-yr JJA filtered EREs was even farther west, centered over 

the Mid Mississippi Valley region (Fig. 4.11). The area where the increasing trends were most 

observed in higher-end EREs, compared to the 10-yr EREs, is likely explained by the climatology 

of MCS-related EREs, which account for the majority of all 50- and 100-yr EREs (Table 3.1). 

Supporting this idea, the areas with trends in 50- and 100-yr JJA filtered EREs over the central 

CONUS generally align with areas where the majority of JJA filtered EREs were MCS-related 

(Fig. 3.6b). 
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Figure 4.11: As in Fig. 4.10, but for JJA filtered EREs exceeding the 100-yr ARI threshold. 

 

As anticipated due to the strong increasing trend in JJA MCS-related EREs, statistically 

significant increasing trends in those events at the 90% confidence level were widespread 

throughout the domain (Fig. 4.12). The maximum trend in JJA MCS-related EREs (βTS ~ 10 events 

decade–1) was centered over the Mid–Upper-Mississippi Valley region (Fig. 4.12a), but there were 

several other areas throughout the domain where Kendall’s τ was greater than 0.4 (Fig. 4.12b). The 

only areas where no significant increasing trends were observed in JJA MCS-related EREs include 

the Northeast, Central High Plains, and Florida. 
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Figure 4.12: As in Fig. 4.10, but for JJA MCS-related EREs. 

 

Significant regional trends in diurnal and nocturnal JJA filtered EREs were less apparent. Only 

isolated patches of statistically significant trends appeared in the diurnal events, namely areas 

centered around the Ohio Valley and the Ark-La-Tex region (not shown). Increasing trends in the 

nocturnal events were greatest over parts of the Midwest, Ohio Valley, and Mid-Atlantic (not 

shown). However, despite areas with Kendall’s τ exceeding 0.4 over the Ohio Valley and Mid-

Atlantic regions, the trends in nocturnal events were not statistically significant at the 90% 

confidence level anywhere after FDR correction.  
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4.7 Discussion 

The results presented in this chapter offer a relatively unique perspective on the recent changes in 

short-duration EREs over the central and eastern CONUS. Unlike most previous studies on 

temporal variability and trends in EREs, this study utilized a database of event objects derived 

from a high resolution gridded precipitation product, namely Stage IV analyses. The hourly 

gridded data enables the examination of properties such as storm size, duration, and time of day, 

and no other observational studies have examined changes in all of those aspects of EREs. The 

Stage IV dataset has also never been used in any published studies for the purpose of detecting 

long-term trends, likely due to the relatively short period of record in the earliest days and possibly 

due to the potential caveats discussed earlier. 

Besides the short sample period, there are several additional caveats in using the Stage IV 

analyses that should lead to extreme caution in the interpretation of the results. Most of these 

caveats, such as the spatial and temporal inhomogeneities in the Stage IV dataset, were previously 

discussed in section 2.1.1. However, the methods involved in our trend analysis are not quite 

different from those employed in some prior published studies, and actually have some relative 

benefits. For example, Feng et al. (2016) considered ordinary linear trends from 1997–2014, only 

an 18-yr period of record, and employed an hourly gridded precipitation dataset that also 

incorporates radar data and has a spatial resolution of 12 km, as opposed to 4 km. 

Putting the caveats aside, one of our core findings was that the greatest increasing trend 

occurred in EREs associated with larger and longer duration MCSs, but not with localized 

convection (section 4.5). This finding also has implications on the diurnal cycle of EREs (section 

4.4), since the relative proportion of MCS-related EREs peak during the late night and morning 

hours (Fig. 3.8). The finding that MCS-related EREs increased relative to EREs associated with 
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localized convection is consistent with previous observational studies (e.g., Feng et al., 2016; Hu 

et al., 2020) that found statistically significant increasing trends in MCS precipitation and 

frequency during the spring and summer from 1997–2014, but a negative trend in non-MCS 

precipitation. This finding also aligns with the projected increase in MCS precipitation volume 

according to regional convection permitting climate model projections in a warming climate (e.g., 

Prein et al., 2017a). 

Some results from prior studies are somewhat contradictory to our findings. For example, 

Wasko et al. (2016) argued that the spatial extent of storms will decrease in a warming climate, 

but rainfall will be heavier and more concentrated within the convective cores. This concept 

appears to be supported by the decrease found in EREs resulting from widespread stratiform 

precipitation (Fig. 4.1c), but not supported by the increase in larger MCS-related EREs relative to 

EREs associated with localized convection. In addition, the regions found to have increasing trends 

(section 4.6) are not supported by future projections related to climate change. According to 

regional climate simulations by Prein et al. (2017b), a lack of significant increases in JJA extreme 

rainfall is present over the Midwest and Northern Plains, but significant increases are found 

elsewhere, including the Northeast. However, other past observational studies do show an increase 

over the Midwest (e.g., Kunkel et al., 2013a, Fig. 1.8). This increase may imply that the observed 

regional trends may not have a primary connection to anthropogenic warming but may be due to 

specific LSMPs that favor EREs over the Midwest (see chapters 5 and 6). 

One potential discovery that has not been discussed in prior extreme rainfall literature is a 

potential eastward expansion of EREs from the Great Plains. Significant increasing trends in the 

JJA filtered EREs were only found to the east of the Great Plains (Fig. 4.10a), while JJA filtered 

EREs were just as common, climatologically, over the Great Plains (Fig. 3.4c). For higher-end 
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EREs (e.g., 100-yr ARI exceedance; Fig. 4.11), a signal for an increase in the number of events 

peaking later into the morning hours was evident (Fig. 4.6), and since the increase in these higher 

end events was found slightly to the east of where nocturnal MCSs were most common (Fig. 3.9), 

it is possible that higher-end EREs are peaking later at night farther to the east. Further research 

would be required to determine the reasons for this apparent eastward expansion. Also, note that 

the regional trend maps in their current state should be interpreted with caution, as the addition or 

removal of a single year from the beginning or end of the time series can lead to drastic changes 

in the results. These changes are likely due to the relatively small sample sizes of events within 

each 500-km radius. Thus, a longer sample period would be beneficial to solidify the regional trend 

results. 

If our results are an indication of future trends as well, there could be significant negative 

impacts on society as an increased frequency of EREs means an increased likelihood of 

populations being impacted. However, it should be noted that the number of events and total 

exceedance volume is not always proportional to societal impacts, as even a relatively mediocre 

year in our timeseries, such as 2022 (Fig. 4.3), can have a few particularly destructive EREs that 

impact vulnerable or flood prone communities (section 1.5).  

One red flag in our results is the discontinuity in the time series showing JJA MCS-related 

ERE counts (Fig. 4.8a) between the first ten years (2003–2012) and the second ten years (2013–

2022). While the time series of JJA MCS-related EREs exhibited the most significant trend overall, 

there are no significant positive trends in the two subdivided time series. Kendall's τ for the first 

10-yr period (2003–2012) was approximately 0.22, and approximately –0.13 for the second period 

(2013–2022). Thus, the 20-yr trend in JJA MCS-related EREs appeared not due to a consistent 

increase, but due to a step-function-like jump in event counts, with an average of 82 events per 
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year for 2002–2012 and 121 events per year for 2013–2022. Therefore, there is some reason to 

suspect that the increase was influenced by a systemic change in the dataset around 2013, which 

is when the upgrade of the NEXRAD network to dual-polarization technology was completed. 

However, it is unclear how the NEXRAD upgrade would only affect the detection of EREs 

associated with MCSs. Our discussions with the staff at the River Forecast Centers (section 2.1.1) 

indicated that changes in their techniques, including quality control procedures and use of dual-

polarization technology, were not associated with a step function change around 2013. Thus, the 

trends observed in the data were likely not significantly influenced by the changes in the dataset, 

and instead may be attributed to natural variability, such as a shift in predominant weather patterns 

around the 2012–2014 timeframe, which will be explored in future work. Nonetheless, we stress 

the need for a more uniform high resolution long-term precipitation dataset to gain confidence in 

any observed trends, despite the agreement of the observed trends with past studies. 

The significant interannual variability discovered suggests the potential value of seasonal and 

annual forecasts of rainfall extremes. The potential environmental factors driving this variability 

will be explored in the next chapter by examining the LSMPs associated with more active years. 

Any evidence of those patterns exhibiting an increase according to past studies could also help 

explain the increasing trends that were observed.
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Chapter 5 

Connections to Seasonal LSMPs 

 

It has been well documented that EREs or periods of above average rainfall over the central and 

eastern CONUS are linked to specific LSMPs (section 1.3). Previous studies have examined 

LSMPs directly associated with the occurrence of EREs (e.g., Barlow et al., 2019), and seasonal 

(e.g., JJA-averaged) LSMPs associated with pluvial periods over specific regions (e.g., Abel et al., 

2022; Flanagan et al., 2018). However, prior studies have not linked the occurrence of seasonal 

LSMPs to the occurrence of short-duration EREs, which is relevant in this study given the 

substantial interannual variability in extreme rainfall activity through the sample period (chapter 

4). This chapter will present the results of both composite and correlation analyses between 

seasonally-averaged meteorological fields and a measure of JJA extreme rainfall activity (section 

5.1). This approach can provide valuable insight into what predominant LSMPs may be associated 

with more frequent and severe EREs6. Many of the results are robust and appear to be physically 

consistent despite the relatively short sample period and potential issues with the ERE dataset 

(section 2.1). These caveats will be set aside when discussing the results in this chapter. 

For contextual purposes, the ERE time series used for analysis as well as the difference in 

event locations between “active” and “inactive” summers will be presented in section 5.1. The 

results of correlation and composite analyses using various seasonally-averaged 2D 

meteorological fields from the ERA5 will be presented in section 5.2. Section 5.3 will discuss the 

major findings from the analysis and potential implications on trends and climate change. 

 
6 If unspecified, the terms “ERE” or “extreme rainfall” will refer specifically to the JJA filtered 
EREs for the remainder of this chapter. 
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5.1 ERE Index Time Series & Comparison of Anomalous Years 

Composite and correlation analyses (section 2.2) were conducted on various meteorological fields 

using several variations of the JJA filtered ERE time series. Some of these variations include the 

time series of total event counts (Fig. 4.3a), total exceedance volume (Fig. 4.3b), and counts of 

events exceeding higher thresholds (e.g., 50- and 100-yr ARIs). The patterns that emerged in the 

correlation maps that were similar when using these different variations of the time series for 

analysis were considered robust in this thesis. Thus, any results that were vastly different when 

using different variations of the time series for analysis will not be presented. 

Event counts will be considered a fair metric for overall ERE frequency, while total exceedance 

volume will be considered a fair metric of overall ERE intensity and spatial extent (section 4.3). 

The time series of these two metrics are highly correlated, but the composite and correlation 

analysis results using the two time series often exhibit notable differences in the areas of statistical 

significance. To avoid presenting the results of both analyses separately, the time series of overall 

ERE intensity and spatial extent were combined into a single index (Fig. 5.1). The time series of 

this combined index was constructed by standardizing the count and exceedance time series and 

taking the average value for each year. The Pearson correlation coefficient between the index time 

series and the time series of both event counts and exceedance volume is approximately 0.95, and 

thus, the index is a fair metric of both ERE frequency and severity. 
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Figure 5.1: For JJA filtered EREs, 2003–2022 standardized time series plot of event count (red), 
total exceedance volume (blue), and the standardized average (black). The years where the index 
was at least one standard deviation from the mean (dashed lines) are listed on the bottom right in 
order of most to least anomalous. 

 

For composite analysis, the difference was taken between the time-averaged meteorological 

fields during the years considered to be most active (i.e., “active years”) and least active (i.e., 

“inactive years”) based on the JJA filtered ERE index time series (Fig. 5.1). Years were considered 

anomalous if the index was at least one standard deviation from the 20-yr mean, leaving three 

active years (2016, 2021, 2010) and three inactive years (2012, 2003, 2006). When interpreting 

the composite analysis results, it is important to be aware of what regions were favored or not 

favored for JJA filtered EREs during active years compared to inactive years. The active years 

featured far more numerous events over the Great Plains, Midwest, and Ohio Valley regions (Fig. 

5.2) with many more large and intense EREs during the active years (Fig. 5.3). However, there is 

very little difference or a slightly lower number of events during the active years over much of the 

Southeast, Mid-Atlantic coast, and Northeast (Fig. 5.2c). Thus, the LSMP differences observed 
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from the composite analysis are likely to favor EREs over the Great Plains, Midwest, and Ohio 

Valley, but not over the Southeast, Mid-Atlantic coast, and Northeast. 

 

 
Figure 5.2: JJA filtered ERE points of maximum exceedance (translucent black dots) with 
Gaussian smoothed (σ = 0.5°) neighborhood event count (radius = 100 km) (color fill) during (a) 
all active ERE years (2016, 2021, 2010) and (b) all inactive years (2012, 2003, 2006). (c) The 
difference between the smoothed neighborhood event counts in (a) and (b) (active−inactive). 
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Figure 5.3: Total precipitation (mm) exceeding the 10-yr ARI threshold from all JJA filtered EREs 
during (a) all active years (2016, 2021, 2010) and (b) all inactive years (2012, 2003, 2006). 

 

5.2 Composite & Correlation Analysis Results 

In this section, results from the composite and correlation analysis between the JJA filtered ERE 

index time series (Fig. 5.1) and JJA-averaged ERA5 fields of various types will be explored, 

including single-level and surface fields, followed by moisture, wind, and geopotential height 

fields on multiple pressure levels. The purpose of this analysis is to identify LSMPs that distinguish 

between active and inactive summers. Relationships with parameters averaged over preceding 

spring and winter months will also be briefly discussed. 

The results from the composite and correlation analysis with each ERA5 field will be presented 

in a four-panel plot. For context on the typical values of the respective field, and for side-by-side 

comparisons, panels (a) and (b) will show the composites for active and inactive years, 

respectively. Panel (c) will present the composite difference and panel (d) will present the 
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correlation coefficients obtained from the correlation analysis, with stippling of statistical 

significance at the 90% and 95% confidence levels after applying FDR correction (section 2.2). 

5.2.1 Single-Level & Surface Fields 

Composite analysis of the ERA5 JJA-averaged daily precipitation reveals that the active ERE years 

exhibited more precipitation over much of the central CONUS and slightly less precipitation over 

the East Coast states (Fig. 5.4a–c). Correlation analysis reveals the same general pattern (Fig. 

5.4d), with positive correlations over the Great Plains and Midwest and slightly negative 

correlations over the Southeast states and New England. This depiction is fairly similar to the 

difference in the number of JJA filtered EREs between active and inactive years (Fig. 5.2), 

implying that summers with more EREs over a particular region are associated with more rainfall 

overall in that region. This result is expected, helping to validate our ERE database in comparison 

to the ERA5 dataset. However, only small areas of statistical significance were found, with the 

most notable area over the Midwest, centered on Wisconsin (Fig. 5.4c–d). This result implies that 

more rainfall over the northern tier of the domain likely coincides with more EREs overall, likely 

due to lower ARI thresholds with northward extent (e.g., Fig. 3.3). 
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Figure 5.4: ERA5 JJA-averaged daily precipitation (shaded; mm) composite for (a) the active years 
(2016, 2021, 2010) and (b) the inactive years (2012, 2003, 2006). (c) Composite difference 
between (a) and (b) (active−inactive). From the 0.25° resolution ERA5 field linearly interpolated 
onto a 0.5° resolution grid (125–65°W, 15–52°N; N = 9075 tests), any stippling indicates where 
the composite difference is statistically significant (from two-tailed tests) at the 90% (translucent 
stippling; αFDR = 0.2) and 95% (opaque stippling; αFDR = 0.1) confidence levels based on Monte 
Carlo simulations (n = 5000 random selections of three active and inactive years without 
replacement). (d) Correlation coefficients of the detrended JJA filtered ERE index time series 
(2003–2022) with the detrended time series of ERA5 JJA-averaged daily precipitation at each grid 
point (shaded). As in (c), stippling indicates statistical significance (FDR-corrected) based on 
Monte Carlo simulations (n = 5000), but determined by resampling the ERA5 time series at all 
grid points with replacement and recalculating the correlation coefficients in each iteration. 
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Some basic surface parameters in the ERA5 that were analyzed include 10-m wind, mean sea 

level pressure, 2-m temperature, and 2-m dew point temperature. No consistent areas of 

statistically significant composite differences or correlations were found with the 10-m wind field 

(not shown) nor with the mean sea level pressure (not shown). The composite analysis of 2-m 

temperature reveals higher temperatures during the active years over large portions of the  

 

 
Figure 5.5: As in Fig. 5.4, but for ERA5 JJA-averaged 2-m temperature (°C). 
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southeastern CONUS, Gulf of Mexico, and adjacent southwestern Atlantic with statistical  

significance at the 95% confidence level (Fig. 5.5a–c). Weak to moderate positive correlations (0.4 

< r < 0.6) with 2-m temperature were also found over those regions, with weak to moderate 

negative correlations over the Southern Great Plains vicinity, but the correlation coefficients were 

not statistically significant (Fig. 5.5d). 

The surface field that yielded the most robust results was the 2-m dew point (Fig. 5.6), which  

 

 
Figure 5.6: As in Fig. 5.4, but for ERA5 JJA-averaged 2-m dew point temperature (°C). 
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is a measure of moisture in the lowest levels of the atmosphere. Substantially higher dew points 

 (>2°C) were found over the Southern–Central Great Plains and Mid-Mississippi Valley during 

the active years compared to the inactive years (Fig. 5.6a–c) and a strong correlation (r > 0.7) was 

found between the ERE index and 2-m dew point over the Southern–Central Great Plains (Fig. 

5.6d). The positive composite differences and correlations were both statistically significant at the 

95% confidence level over the Southern and Central Great Plains, indicating a robust positive 

relationship between JJA extreme rainfall activity and 2-m dew point over that region. 

A potential relationship was also found between the EREs and convective available potential 

energy (CAPE)7, which is a measure of instability in the atmosphere that can lead to thunderstorms 

and heavy rainfall given adequate lift and/or a lack of convective inhibition. The active years 

exhibited significantly higher ERA5 JJA-averaged CAPE than the inactive years, with a substantial 

difference of over 600 J kg−1 and statistical significance at the 90% confidence level over a portion 

of the Central Great Plains and Mid-Mississippi Valley (Fig. 5.7a–c). There was also a moderate 

correlation (0.5 < r < 0.7) over parts of the Central Great Plains, but there was no statistical 

significance in the correlation coefficients (Fig. 5.7d). Thus, the relationship with CAPE may not 

be considered robust. While surface-based CAPE is directly related to near-surface moisture, this 

finding reveals that high instability may not be as important for extreme rainfall as low-level 

moisture by itself. This finding may be surprising for those working in the area of severe 

convection taking place over midlatitude continental locations, but the result is consistent with the 

long known finding that low values of CAPE occur with tropical convection over oceanic locations 

(e.g., Xu and Emanuel, 1989). 

 

 
7 In ERA5, CAPE is calculated on the most unstable parcel originating below the 350 hPa level. 
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Figure 5.7: As in Fig. 5.4, but for ERA5 JJA-averaged convective available potential energy (J 
kg−1). 

 

5.2.2 Moisture 

At the surface, the 2-m dew point had the strongest relationship with JJA filtered EREs (Fig. 5.6) 

compared to any other analyzed parameter. However, since extreme-rain-producing convection is 

often elevated rather than surface based, particularly for nocturnal convection over continental 
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locations, it is important to consider moisture above the surface, where stronger relationships may 

be found.  

To examine moisture throughout the atmosphere, we utilized the ERA5 total column water 

vapor parameter, which is a measure of the total mass of water vapor from the surface to the top 

of the atmosphere (kg m−2). Similar to 2-m dew point, composite and correlation analysis reveals 

a robust relationship between JJA filtered EREs and JJA-averaged total column water vapor from 

the Southern–Central Great Plains to the Ohio Valley (Fig. 5.8c–d), where statistically significant 

(95% confidence) positive differences and correlations were found. This result again stresses the 

relative importance of high water vapor contents for EREs. 

Performing the composite and correlation analysis on specific humidity fields at various 

pressure levels can help identify the layers of the atmosphere where moisture had the most 

significant relationship with the EREs. The pressure levels analyzed for moisture include 925, 850, 

700, and 500 hPa. The composite and correlation results for specific humidity at the 925- and 850-

hPa levels were very similar, so only the results at 850-hPa are shown (Fig. 5.9). A very robust 

signal is evident in the 850-hPa moisture field with statistical significance in the composite 

difference over the majority of the domain, with the maximum composite difference found, again, 

over the Southern–Central Great Plains and Mid-Mississippi Valley (Fig. 5.9c). A strong 

correlation (r > 0.7) was found over a relatively widespread region encompassing most of the 

Southern and Central Great Plains with a maximum correlation coefficient of approximately 0.90 

located in southern Kansas (Fig. 5.9d), thus explaining ~81% of the variance in the JJA filtered 

ERE time series. Statistically significant positive correlations at the 95% confidence level also 

extend south, into subtropical Mexico, and to the east into the Ohio Valley. Surprisingly, at 700 

hPa and 500 hPa (not shown), no statistically significant results were found, though the 
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relationships were still positive over the majority of the domain. Thus, moisture in the low-levels 

(925–850 hPa) over the Southern and Central Great plains had the most significant relationship 

with the EREs. 

 

 
Figure 5.8: As in Fig. 5.4, but for ERA5 JJA-averaged total column water vapor (kg m−2). 
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Figure 5.9: As in Fig. 5.4, but for ERA5 JJA-averaged 850-hPa specific humidity (g kg−1). 
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5.2.3 Vertically Integrated Water Vapor Flux 

Numerous studies have linked extreme rainfall to enhanced moisture transport (e.g., Mo et al., 

1997), which can be quantified by the ERA5 vertically integrated water vapor flux (IVF) 

parameter, calculated as the total column water vapor (kg m−2) multiplied by its vertically averaged 

horizontal advection (m s−1). While the difference in JJA-averaged IVF between active and 

inactive years based on a side-by-side comparison may appear subtle (Fig. 5.10a–b), the magnitude 

of the composite difference is statistically significant at the 95% confidence level over a wide 

swath, stretching from the Western Gulf Coast to the Great Lakes region (Fig. 5.10c). A strong 

positive correlation (r > 0.7) exists over the same general region but is slightly more confined (Fig. 

5.10d). The correlation with the meridional component of the IVF was statistically significant over 

that region, also at the 95% confidence level. Thus, there was a robust relationship between the 

JJA filtered EREs and northward moisture transport from the Gulf of Mexico to the Great Lakes. 

The vectors in both the composite difference and correlation maps indicate an anticyclonic flow 

pattern centered around the southeastern CONUS vicinity, suggesting that an anomalous 

anticyclone over that region may be responsible for anomalous poleward moisture transport around 

its western periphery. 
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Figure 5.10: ERA5 JJA-averaged vertically integrated water vapor flux (kg m−1 s−1) composite for 
(a) the active years (2016, 2021, 2010) and (b) the inactive years (2012, 2003, 2006). (c) Composite 
vector difference between (a) and (b) (active−inactive). (d) Correlation coefficients in the direction 
of their maximum positive value of the detrended JJA filtered ERE index time series (2003–2022) 
with the detrended time series of ERA5 JJA-averaged vertically integrated water vapor flux at each 
grid point. In (c) and (d), using the same significance testing methods as in Fig. 5.4c–d, but with 
right-tailed tests, any stippling with solid dots indicates where the magnitude of the composite 
difference in (c) or correlation coefficient in (d) is statistically significant at the 90% (translucent 
stippling; αFDR = 0.2) and 95% (opaque stippling; αFDR = 0.1) confidence levels. Any stippling with 
small open circles indicates statistical significance only in the zonal direction and any stippling 
with small ex symbols indicates statistical significance only in the meridional direction at the 
respective confidence levels using two-tailed tests. 



115 
 

5.2.4 Wind Fields 

Since moisture transport is dependent on both low–mid-level moisture and flow patterns, it is 

important to perform the analysis on wind fields at different levels of the atmosphere. This can 

help identify layers where the flow patterns may have a significant relationship with EREs. In 

addition to 10-m winds, where no robust relationships were found (not shown), wind fields at 925, 

850, 700, 500, 300, and 200 hPa were analyzed. 

At 925 hPa (not shown), a flow pattern begins to emerge in the composite difference map that 

closely resembles the IVF pattern, but there is no statistical significance. At 850 hPa (Fig. 5.11), 

the same flow pattern becomes more apparent in both the composite difference and correlation 

maps. Correlation coefficients with southwesterly 850-hPa winds exceed 0.5 from eastern Texas 

to the Great Lakes (Fig. 5.11d), but there is still no statistical significance. Thus, unlike moisture 

content at 925 and 850 hPa, there were no robust relationships found between EREs and flow 

patterns at those levels. 

At 700 hPa, the general flow patterns appear different than at 850 hPa, with much weaker 

southerly flow from the western Gulf of Mexico through the High Plains (Fig. 5.12a–b). However, 

a much stronger signal emerges in the relationship between EREs and 700-hPa wind compared to 

lower levels, especially from the correlation analysis. A strong correlation (r > 0.7) with 

southwesterly flow appears from the Texas Gulf Coast to the Midwest with statistical significance 

at the 95% confidence level with the northward component (Fig. 5.12d). This pattern is very similar 

to the correlation with IVF (Fig. 5.11d). 
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Figure 5.11: As in Fig. 5.10, but for 850-hPa wind (m s−1). 

 

At 500 hPa, the JJA-averaged flow pattern is also different from lower levels that were 

analyzed (Fig. 5.13a–b), with strong zonal flow dominating across the northern CONUS into 

Canada and very weak flow over the southern CONUS. One notable side-by-side difference 

between the active and inactive years is that the average 500-hPa flow over the northern CONUS 

and Canada during the active years is stronger and more zonal. This indicates that the active 

summers likely featured a stronger mid-level flow with less prominent ridging over the western 
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CONUS than during the inactive summers. In the composite difference map (Fig. 5.13c), the 

absence of ridging appears as a troughing pattern over the western CONUS, and the composite 

difference in the southerly flow was statistically significant at the 90% confidence level over the 

Missouri vicinity. A similar pattern appears in the correlation map, but with greater statistical 

significance (95% confidence) in the southerly component over a larger area (Fig. 5.13d). When  

 

 
Figure 5.12: As in Fig. 5.10, but for 700-hPa wind (m s−1). 
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comparing the 500-hPa flow composites for active and inactive years (Fig. 5.13a–b), the 

significant correlations and composite differences over the Lower–Mid Mississippi Valley region 

are indicative of less northerly 500-hPa flow over those regions. This significance is surprising 

given the relatively weak flow magnitudes over those regions. 

 

 
Figure 5.13: As in Fig. 5.10, but for 500-hPa wind (m s−1). 
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At jet stream level (300–200 hPa), the flow patterns that emerge from the composite and 

correlation analysis results (not shown) appear very similar to those observed in the 500-hPa flow 

analysis. The strongest correlations (r > 0.6) were found with southwesterly upper-level winds 

over the Mid–Upper Mississippi Valley, but there was no statistical significance in the composite 

differences or correlation coefficients. The lack of evidence of a southward-shifted polar jet stream 

during active years does not support the findings of Flanagan et al. (2018). 

 

5.2.5 Geopotential Height 

Large scale flow patterns on isobaric surfaces aloft are driven by geopotential height gradients, 

with the flow being approximately geostrophic above the planetary boundary layer and its speed 

being dependent on the strength of the gradient. Performing composite and correlation analysis on 

JJA-averaged geopotential height fields can be useful in distinguishing any prominent patterns that 

are associated with more extreme rainfall. It is expected that the height patterns that are associated 

with more active years drive the flow patterns that contribute to enhanced moisture transport from 

the subtropics (Fig. 5.10). Geopotential height fields were analyzed at the 925-, 850-, 700-, 500-, 

and 250-hPa pressure levels. 

The JJA mean geopotential height patterns at 925 hPa (not shown) and 850 hPa (Fig. 5.14a–b) 

are similar to the mean sea level pressure patterns (not shown), with the most notable feature being 

the semipermanent North Atlantic Subtropical High (NASH). During the active summers, the 

NASH extended farther to the west-northwest than during the inactive summers, with an area of 

higher 850-hPa heights evident over the southeastern CONUS and Southern Appalachians (Fig. 

5.14c). Weak to moderate positive correlations (0.4 < r < 0.6) between the JJA filtered ERE index 

and 850-hPa heights were found over the same general region (Fig. 5.14d), but none were 
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statistically significant. Similar results were obtained from the mean sea level pressure and 925-

hPa height fields (not shown), except that the positive correlations over the Southeast were slightly 

weaker. While these results were not statistically significant, higher heights over the Southeast 

relative to the Northern Plains is a signal for a stronger northwest–southeast height gradient during 

more active summers. This gradient would likely be associated with a stronger southwesterly flow  

 

 
Figure 5.14: As in Fig. 5.4, but for ERA5 JJA-averaged 850-hPa geopotential height (dam). 
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from the Southern Great Plains to the Great Lakes (Fig. 5.11), which would enhance the moisture 

transport (Fig. 5.10) assuming that the moisture over the Southern Great Plains is relatively high, 

as was the case during more active summers (Fig. 5.9). 

The analysis with 700-hPa geopotential heights (not shown) reveals a pattern that is similar to 

both the 850-hPa and 500-hPa results, but there is no statistical significance. In contrast to the 850-

hPa geopotential height pattern, at 500 hPa, ridging is more evident over the southwestern CONUS 

(Fig. 5.15b), commonly referred to in the weather community as the “Sonoran Heat Ridge”. The 

mid-level ridge associated with the NASH appears to be merged with the Sonoran Heat Ridge 

during the active years (Fig. 5.15a), but since the composites are seasonally-averaged, this may 

imply the presence of more prominent ridging over the eastern CONUS, which appears as a 

statistically significant (95% confidence) composite difference maximized over the Southern 

Appalachians (Fig. 5.15c). This height anomaly is often referred to in the weather community as 

the “Great Smokies Heat Ridge”, likely associated with significantly higher 2-m temperatures over 

the eastern CONUS during the active years (Fig. 5.5). A moderate to strong correlation (0.6 < r < 

0.8) between EREs and 500-hPa heights is evident over the Gulf of Mexico, which is also 

statistically significant at the 95% confidence level. This pattern appears to be a westward 

extension of mid-level ridging associated with the NASH. The enhanced 500-hPa height gradient 

that is created between the enhanced ridging over the southeastern CONUS relative to the Eastern 

Rockies could be responsible for stronger southerly 500-hPa flow that correlates with more active 

summers (Fig. 5.13d). The same would be true for the 700-hPa flow pattern (Fig. 5.12d). 
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Figure 5.15: As in Fig. 5.4, but for ERA5 JJA-averaged 500-hPa geopotential height (dam). 

 

From the JJA composites of 250-hPa heights, upper-level ridging is most evident over Mexico 

and the southwestern CONUS, but no longer associated with the NASH (Fig. 5.16a–b). The 

composite difference with 250-hPa heights reveals a similar result to the 500-hPa analysis, with 

the greatest statistically significant difference centered over the Ohio Valley. Statistical 

significance in the positive composite difference at the 95% confidence level was also found over 
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almost all of the tropics and subtropics within the analysis domain. The correlation analysis with 

250-hPa heights, however, reveals lower confidence in the relationship, with statistical 

significance only at the 90% confidence level and slightly weaker correlations than at 500-hPa (0.5 

< r < 0.7). This is still a robust signal that a significant relationship exists between the EREs and 

stronger upper-level ridging over the subtropics and southeastern CONUS. 

 

 
Figure 5.16: As in Fig. 5.4, but for ERA5 JJA-averaged 250-hPa geopotential height (dam). 
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5.2.6 Preceding Winter & Spring LSMPs 

Composite and correlation analysis with the JJA filtered ERE index time series using ERA5 fields 

averaged over preceding seasons (i.e., winter and spring) can identify LSMPs that may share a 

lagged relationship with the summertime EREs. Awareness of these LSMPs can provide additional 

insight into why interannual variations in summertime EREs occur and can potentially aid in 

seasonal forecasts of summertime extreme rainfall activity over the domain. However, unlike 

correlations between JJA EREs and JJA-averaged fields, it is more difficult to infer any direct 

physical linkages between JJA EREs and LSMPs occurring during preceding months. Given the 

short sample period, correlations may appear by chance, and thus, caution should be applied when 

attempting to infer any cause-and-effect relationships. 

During preceding spring months (March–May), the most robust correlations appeared with 

mid–upper-level wind and geopotential height fields, indicating a more prominent subtropical jet 

stream over Mexico and a weaker polar jet stream over the northern CONUS. For example, at 500-

hPa, strong correlations (r > 0.7) with easterly winds over the northern CONUS suggest a weaker 

polar jet stream, and strong correlations with southwesterly winds over Mexico suggest a more 

prominent subtropical jet stream during more active years (Fig. 5.17a). This jet stream pattern 

corresponds to lower geopotential heights over the northern Mexico vicinity and higher heights 

over the tropics and southwestern Canada (Fig. 5.17b), statistically significant at the 90% 

confidence level. Very similar results appeared using composite analysis and when using upper 

level (i.e., 300-hPa) fields (not shown).  
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Figure 5.17: (a) As in Fig. 5.11d, but for March–May-averaged 500-hPa wind and (b) as in Fig. 
5.4d, but for March–May-averaged 500-hPa geopotential height. ERA5 fields were linearly 
interpolated onto a 0.75° resolution grid (140–65°W, 9–60°N; N = 6969 tests) for the significance 
testing. 

 

Correlation analyses between JJA EREs and March–May-averaged 2-m temperatures and 

precipitation (not shown) suggest that more active years may have exhibited cooler temperatures 

and more rainfall over the Southern Great Plains vicinity than the inactive years, but there was no 

consistent statistical significance. However, these correlations would be consistent with the 

enhanced subtropical jet stream and negative 500-hPa geopotential height correlations just to the 

west (Fig. 5.17). A reasonable hypothesis emerges from this finding: warmer temperatures and 

below average rainfall during the spring over the Southern Great Plains could create drought 

conditions that persist into the summer months and limit extreme rainfall activity. To explore the 

relationship between antecedent drought over the Southern Great Plains and JJA extreme rainfall 

activity, the Palmer Drought Severity Index (PDSI; Alley, 1984) averaged over the state of Texas 

was correlated with the timeseries of neighborhood event counts (radius = 500 km) at each point 
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on a 0.25° grid. PDSI time series data were obtained from the NOAA National Centers for 

Environmental Information Climate Division dataset (https://psl.noaa.gov/data/timeseries/; Vose 

et al., 2014). A positive PDSI is associated with moist conditions, whereas a negative PDSI is 

associated with drought conditions. Statistically significant positive correlations with March–May-

averaged Texas PDSI can be found over the majority of the domain west of the Mississippi Valley 

(Fig. 5.18a). This finding suggests that summertime extreme rainfall activity may not only be 

linked to contemporaneous drought conditions (Fig. 5.18b), but also antecedent drought conditions 

over the Southern Great Plains, likely impacting ERE activity throughout the Great Plains. The  

 

 
Figure 5.18: Maps of Pearson correlation coefficients between the JJA filtered ERE 500-km 
neighborhood count time series (2003–2022) at each point on a 0.25° grid over the full domain 
and the time series of (a) March–May-averaged and (b) JJA-averaged Palmer Drought Severity 
Index averaged over the state of Texas. Stippling indicates where the correlation coefficients are 
statistically significant using the FDR approach (N = 7990 tests) at the 90% (translucent stippling; 
αFDR = 0.2) and 95% (opaque stippling; αFDR = 0.1) confidence levels from Monte Carlo simulations 
(n = 5000 recalculations of the correlation coefficient at each grid point from random samples of 
the count time series with replacement). The black circles indicate the 500-km radius where the 
correlation is the strongest, with the center point represented by a black dot. 

https://psl.noaa.gov/data/timeseries/
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linkage to contemporaneous drought over the Southern Great Plains is expected due to the 

correlations found with JJA-averaged precipitation and low-level moisture over that region, which 

affects downstream moisture transport towards the north and northeast. However, drought over the 

Southern Great Plains has no significant correlation with EREs east of the Mississippi Valley, 

except over New England, where a reversed relationship was found. Similar results were found 

using wintertime (December–February) averaged Texas PDSI, but with weaker correlations and 

maximum statistical significance only at the 90% confidence level throughout most of the Great 

Plains. 

Some of the strongest correlations with global circulation patterns were found when using 

December–February-averaged ERA5 fields, but it is difficult to infer any direct physical linkage 

to EREs during the following summer. These larger correlations are more likely a byproduct of 

stronger interannual variability of wintertime patterns compared to summertime patterns. During 

boreal winters, LSMPs over North America are often influenced by atmosphere–ocean coupling 

associated with the recurrent pattern of positive sea surface temperature anomalies over the central 

and eastern tropical Pacific known as El Niño, which varies naturally on interannual time scales. 

Any strong correlations with December–February-averaged fields reveal patterns that are often 

associated with El Niño conditions (e.g., Rasmusson and Wallace, 1983). Indeed, the correlation 

analysis with December–February-averaged global sea surface temperatures confirms the 

connection to El Niño, with moderate to strong correlations (0.6 < r < 0.8) evident over much of 

the central and eastern equatorial Pacific and widespread statistical significance at the 90% 

confidence level (Fig. 5.19). The pattern of sea surface temperature correlations also resembles a 

positive phase of the Pacific Decadal Oscillation (PDO), with a “blob” of negative correlations 
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over the north-central Pacific and an arc of positive correlations over the northeast Pacific (e.g., 

Mantua and Hare, 2002). 

 

 
Figure 5.19: As in Fig. 5.4d, but for ERA5 December–February-averaged sea surface temperature, 
except that the 0.25° resolution ERA5 spatial fields were linearly interpolated onto a 2° resolution 
grid with all grid points over land areas excluded (179°W–179°E, 89°S–89°N; N = 10684 tests) 
for significance testing. 

 

After removing any linear trends in the data, statistically significant correlations between JJA 

filtered EREs and several seasonally-averaged climate indices are evident (Table 5.1). Time series 

data for various climate indices were obtained from the NOAA Physical Sciences Laboratory 

website (https://psl.noaa.gov/gcos_wgsp/Timeseries/). For example, the December–February-

averaged Niño 3.4 index (area averaged sea surface temperature from 5°S–5°N and 170–120°W) 

had a moderate positive correlation with JJA filtered EREs, with statistical significance at the 99% 

confidence level. However, there is no correlation with the JJA-averaged Niño 3.4 index and even 

https://psl.noaa.gov/gcos_wgsp/Timeseries/
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a slight reversal in the correlation coefficients relative to December–February and March–May, 

which would potentially indicate a neutral or cold phase of ENSO during more active summers. 

One may speculate that more EREs occurred during years transitioning from El Niño to neutral or 

even La Niña conditions. However, testing this hypothesis on all three active years gives 

inconsistent results. For example, while 2016 did feature a strong El Niño transitioning to a neutral 

phase, 2021 featured a La Niña transitioning to a neutral phase. Thus, using El Niño as a predictor 

of JJA filtered EREs may be ineffective, and a longer period of study should be used to assess 

seasonal predictability. 

 

Index r (DJF) r (MAM) r (JJA) 
PDSI_TX 0.56* 0.63** 0.67** 
Niño 3.4 0.56** 0.50* -0.16 
PDO 0.47* 0.52* 0.42 
GLBT 0.47* 0.48* 0.14 
* Significant at the 95% confidence level. 
** Significant at the 99% confidence level. 

Table 5.1: Pearson correlation coefficients between the 2003–2022 detrended JJA filtered ERE 
index time series and the 2003–2022 detrended (1) Palmer Drought Severity Index averaged over 
the state of Texas (PDSI_TX), (2) Niño 3.4 sea surface temperature index (Niño 3.4), (3) Pacific 
Decadal Oscillation (PDO), and (4) global average temperature anomaly using stations and sea 
surface temperatures (GLBT), averaged over the preceding December–February (DJF), March–
May (MAM), and corresponding June–August (JJA). Asterisks represent the level of statistical 
significance, determined using Monte Carlo testing (n = 5000 recalculations of the correlation 
coefficient on random samples of the climate index time series with replacement). 

 

5.3 Discussion 

In this chapter, we have identified several large-scale meteorological features that likely play a 

role in the occurrence of summertime EREs over the central and eastern CONUS, especially over 

the Great Plains, Midwest, and Ohio Valley (Fig. 5.2c). Based on prior studies, a key ingredient 
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for the occurrence of heavy rainfall over the central CONUS is northward moisture transport from 

the Gulf of Mexico (e.g., Mo et al., 1997; Fig. 1.7). The robust correlation between the ERE index 

time series and JJA-averaged northward IVF from the Texas Gulf Coast to the Great Lakes (Fig. 

5.10) is validated due to consistency with these prior studies, despite differences in the definitions 

of extreme rainfall. This pattern of moisture transport originating from the Western Caribbean is 

highly reminiscent of the “Mayan Express” (Dirmeyer and Kinter, 2009), found during periods of 

excessive rainfall during the summer over the central CONUS (section 1.3). 

Significant correlations with the ERE index were found with low-level (surface–850-hPa) 

moisture parameters over the Southern and Central Great Plains (Figs. 5.6 and 5.9), with a lack of 

statistical significance with moisture at 700 hPa and above. However, the southerly flow 

correlation associated with enhanced moisture transport was only found to be statistically 

significant at 700 and 500 hPa (Figs. 5.12 and 5.13). The mismatch in the pressure levels that yield 

statistical significance in the moisture and wind fields may be a biproduct of greater interannual 

variability at those levels. For example, low-level moisture may be more variable from year to year 

than moisture at higher levels, and vice versa for flow, which is dampened by friction in the low 

levels. Thus, moisture transport is likely maximized near the top of the boundary layer, where the 

LLJ typically resides (near 850 hPa). While the flow correlation at 850 hPa was not statistically 

significant (Fig. 5.11), it did have the same pattern as the correlation with IVF. In that case, our 

results are validated by previous findings that moisture transport around 850 hPa is the most 

relevant for EREs due to the role of the LLJ in producing widespread elevated convection (e.g., 

Schumacher and Johnson, 2009; Trier and Parsons, 1993). However, the location of the enhanced 

IVF and 850–500-hPa flow correlations was generally from the Texas Gulf Coast to the Great 

Lakes, which is east of where the Great Plains nocturnal LLJ typically resides (e.g., Shapiro et al., 
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2016). Thus, we cannot connect the occurrence of a more prominent Great Plains LLJ to EREs 

during the summer, unlike Feng et al. (2016), who focused on the spring months. We note, 

however, that a linkage between the nocturnal LLJ over the Great Plains and the synoptic flow is 

an area of future exploration (see chapter 6). 

A pattern of enhanced northward low-level moisture transport from the Gulf Coast to the 

Midwest would likely result from a stronger west–east pressure gradient in the low levels. Though 

we did not find statistical significance, there is still a suggestion that the flow pattern is related to 

a western extension of the NASH, which extends from the surface to 850 hPa based on our 

composites. This expansion of the NASH is most evident in the composite difference of 850-hPa 

heights (Fig. 5.14a–c). Zorzetto and Li (2021) studied the impacts of the NASH western ridge 

position on daily JJA precipitation over the CONUS, applied to historical rainfall records from 

1948–2019. It was found that the westward extent of the NASH at 850 hPa significantly modulates 

the frequency of JJA extreme rainfall, especially over the Southeast and Upper Midwest, where a 

farther west NASH ridge would reduce and increase extreme rainfall, respectively. Our results 

generally agree that a westward extension of the NASH corresponds to more EREs, but we do not 

find statistical significance in the pattern, possibly due to our inclusion of EREs over the full 

domain instead of only the Midwest. Further analysis would be needed to verify the importance of 

the NASH western ridge position since the impact on extreme rainfall is regionally dependent. 

Statistical significance in the ERE relationship with geopotential height fields was only found 

in the mid–upper-levels. Based on the composite analysis with 500- and 250-hPa heights, we find 

significantly higher heights over the eastern CONUS, potentially indicating the presence of the 

Great Smokies Heat Ridge during the active summers (Figs. 5.15a–c and 5.16a–c). Correlation 

coefficients, however, are maximized with 500-hPa heights over the Gulf of Mexico (Fig. 5.15d), 
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suggesting that the western extension of mid-level ridging associated with the NASH is important. 

The association of mid–upper-level ridging over the eastern CONUS and Gulf of Mexico with 

EREs is likely a new finding that deserves attention in future studies. 

While we did not examine changes in LSMPs through the 20-yr period to help explain the 

increasing trend found in the JJA filtered EREs (chapter 4), there have been other studies that have 

previously documented these changes. For example, Feng et al. (2016) examined trends in the 

environments associated with MCSs during April–June from 1979–2014 and found that the 

strength of the meteorological patterns leading to heavier rainfall increased. For example, their 

study identified a significant increasing trend in surface moisture over the Central Plains and Mid-

Mississippi Valley region (Fig. 1.9b), which is the same general area as the significance in the 2-

m dewpoint composite difference in our study (Fig. 5.6c). According to Lenderink et al. (2017), 

large-scale moisture convergence appears to accelerate with surface dewpoint, and the strength of 

the moisture convergence has been directly linked to the size of extreme-rain-producing 

convection (e.g., Loriaux et al., 2017). Thus, an increasing trend in low-level moisture and 

associated convergence through the period may help to explain the apparent increase in extreme-

rain-producing storm size (chapter 4). At 850-hPa, the trend in specific humidity was found by the 

Feng et al. (2016) study to be maximized over the Southern and Central Great Plains (Fig. 1.9d), 

closely aligned with the strong positive correlations we found with JJA filtered EREs (Fig. 5.9d). 

Their study also documented an increasing trend in southerly 850-hPa winds over the Great Plains 

in association with the LLJ, linked to increasing heights over the southeastern CONUS and 

decreasing heights over the Southern Rockies (Fig. 1.9d). Li et al. (2011) also documented a 

westward shift in the NASH western ridge position from 1948–2007 and the trend is expected to 

continue due to anthropogenic climate change based on numerical model simulations. If these 
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patterns are indeed increasing, there may be a valid physical explanation for the trends discussed 

in chapter 4 as well as reason to believe that the trends may continue. 

Regarding LSMPs that were found during preceding winter and spring months, one physically 

plausible connection may be the effect of antecedent drought conditions over Texas during the 

spring on summertime extreme rainfall activity throughout the Great Plains (Fig. 5.18a). Drought 

conditions over the Southern Great Plains during the spring may persist into the summer months 

due to land-atmosphere feedbacks related to soil moisture (e.g., Miralles et al., 2019). There is also 

some suggestion that JJA filtered EREs may be connected to patterns related to El Niño, which 

would be supported by previous studies finding that above average summertime precipitation is 

favored over the Central and Northern Great Plains during El Niño years, with below average 

precipitation over the eastern CONUS (Wang et al., 1999). Armal et al. (2018) also found 

connections between summertime precipitation and El Niño, as well as the Pacific Decadal 

Oscillation and global temperatures, but the effects were regionally dependent. We also found 

correlations with those indices (Table 5.1), but there was no statistical significance, regionally. 

Again, however, further research is needed to assess the predictability of summertime EREs using 

climate indices.
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Chapter 6 

Intense NW–SE Oriented ERE Environmental Conditions 

Several intense NW–SE oriented swaths of extreme rainfall were evident over a large portion of 

the central CONUS during JJA (Figs. 3.5c and 3.10a), often associated with the most intense EREs. 

These EREs are associated with southeastward-training convection from MCSs, which appears to 

be almost an exclusively summertime occurrence, whereas other seasons typically include more 

EREs associated with northeastward-training convection (Fig. 3.5). Previous studies have not 

explicitly recognized southeastward-training MCSs as leading culprits for the most widespread 

and intense EREs during the summer. Thus, it can be useful to distinguish the environmental 

conditions and LSMPs associated with the occurrence of these events to aid in short-term 

forecasting. 

Unlike the previous chapter, which focused on seasonally-averaged environmental conditions, 

this chapter focuses on environmental conditions that are directly associated with a specific type 

of ERE. Meteorological field composites from five selected cases of intense NW–SE oriented 

EREs were examined. Details on the specific selected cases will be provided in section 6.1, and 

specific environmental conditions observed relating to mid–upper-level, low-level, moisture, and 

surface parameters will be presented in sections 6.2–6.5. The key findings and potential 

implications will be discussed in section 6.6. 

6.1 Case Selection 

Five cases of EREs producing NW–SE oriented extreme rainfall swaths were objectively selected 

from the 20-yr ERE database (Table 6.1). An event qualified as NW–SE oriented if the forward 
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azimuth of the 12-hr exceedance swath was at least 110° (east of north) with a major axis length 

of at least 100 km. Among the NW–SE oriented EREs with a major axis length of at least 200 km, 

the cases were ranked by total exceedance volume (i.e., sum of exceedance above the 10-yr ARI 

threshold from all points of exceedance in the event), and the top five exceedance events were 

selected for analysis. Total exceedance volume was used as a measure of an ERE’s spatial coverage 

and intensity, so the top-ranked events would be most likely to appear as dark streaks in Fig. 3.5. 

Table 6.1 displays the event information, and each event was assigned a case number based on its 

total exceedance volume rank. Of particular note is that, while the peak accumulation hours vary, 

all five events can be classified as nocturnal according to the definition given in section 2.1.4.5. 

 

Case ID Date Peak Hour (UTC) End (UTC) Lat (°N) Lon (°W) 
1 8899 2021-06-25 0100 1200 39.91 95.20 
2 2601 2007-08-19 0200 0900 43.96 91.70 
3 4418 2011-07-28 0000 1100 42.50 90.45 
4 9499 2022-07-26 0700 1600 38.88 91.02 
5 7154 2017-07-20 0700 1000 44.13 91.26 

Table 6.1: Selected NW–SE oriented ERE case information, ranked in order by total exceedance 
volume. The ID is associated with the event number in the 20-yr dataset, where more attributes 
associated with the events can be obtained. The date and peak accumulation hour at the PME, 
along with the end time of the 12-hr accumulation period are given. The latitude and longitude of 
the PME of each event is also given. 

 

Based on archived radar data, all five cases were associated with MCSs of the training 

line/adjoining stratiform archetype (Schumacher and Johnson, 2005; Fig. 1.4a). Most of these 

MCSs bare a resemblance to the plan view schematic in Fig. 1.5 (Corfidi, 2003), with a leading 

progressive line followed by a training line of deep convection oriented from west-northwest to 
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east-southeast. For example, radar reflectivity images of the MCS in Case 1 are shown in Fig. 2.4 

in the discussion of the methods that were utilized in this investigation. 

All five cases occurred over the same general region of the central CONUS with three events 

taking place in or near southwestern Wisconsin and the other two cases in the Missouri vicinity 

(Fig. 6.1). The relatively narrow swaths of extreme rainfall accumulations (roughly 20–40 km in 

width) associated with these NW–SE oriented EREs present a challenge for forecasters and 

numerical models. To investigate the environments associated with these five events, 

meteorological fields from the ERA5 (Hersbach et al., 2023c,d) were analyzed at the start of each 

event’s peak accumulation hour, centered at the location of each event’s PME. For display 

purposes the ERA5 grids were then shifted to the average of the cases’ PME locations  

 

 
Figure 6.1: Exceedance swaths associated with each of the five selected NW–SE oriented ERE 
cases, color coded by case, and alpha-scaled by exceedance amount (0–100 mm). Opaque shading 
indicates exceedance values of 100 mm or greater. The white circles are the PME locations 
associated with each individual event and the black box is the average PME location. 
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(approximately 41.88°N, 91.92°W; black box in Fig. 6.1) and averaged together. This composite 

analysis method is similar to those utilized by Schumacher and Johnson (2005) and Stevenson and 

Schumacher (2014). 

 

6.2 Mid–Upper Levels 

Composite analysis of 500- and 200-hPa geopotential heights (Figs. 6.2a and 6.3a, respectively) 

reveals that the intense NW–SE oriented EREs occur beneath a positive mid–upper tropospheric 

height anomaly (based on the deviation from the JJA 2003–2022 ERA5 climatology), or along the 

northern edge of a strong mid–upper tropospheric ridge. The anomalies indicate that the ridge over 

the southern CONUS is stronger and expanded farther north than average for JJA. This ridging 

pattern indicates a clear difference between these summertime ERE cases and cooler season EREs, 

when mid–upper-level synoptic scale forcing for ascent is typically associated with troughing. Any 

subtle shortwave troughs that may be present are not evident in the composite height contours. 

The NW–SE oriented EREs occurred within a zone of 15–20 m s−1 (30–40 knot) west-

northwesterly 500-hPa flow along the northern edge of the ridge (Fig. 6.2b). This enhanced flow 

is associated with 15–20 m s−1 (30–40 knots) of mid-level (925–500-hPa) shear, oriented from 

northwest to southeast around the event locations (not shown), nearly parallel to the orientation of 

the ERE swaths. Based on previous literature (e.g., Schumacher and Johnson (2005); Fig. 1.4a), 

cell motion for training line/adjoining stratiform MCSs is generally aligned with the mid-level 

(925–500-hPa) shear vector, thus explaining the NW–SE orientation of the accumulation swaths. 
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Figure 6.2: NW–SE case composite of ERA5 (a) 500-hPa geopotential height (contours; dam) and 
500-hPa geopotential height anomaly based on the ERA5 2003–2022 JJA-mean climatology (color 
fill; dam), and (b) 500-hPa wind (vectors/streamlines) and wind speed (color fill; m s−1). The white 
box in each map represents the average PME location. 

 

 
Figure 6.3: As in Fig. 6.2, but at 200-hPa. 
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At jet stream level (200 hPa), composite analysis suggests that the events occurred along the 

southern periphery of a strong jet streak, with 45–55 m s−1 (90–110 knot) flow curving 

anticyclonically around the northern edge of the ridge (Fig. 6.3b). Another key observation is the 

clearly discernable 200-hPa difluence evident near the event location, which would be consistent 

with ascent over that region according to the conservation of mass. 

 

6.3 850 hPa & the LLJ 

In the low levels (850 hPa), positive height anomalies are evident to the east of the EREs, appearing 

as a northwestward expansion of the NASH into the northeastern CONUS (Fig. 6.4a). To the west 

of the EREs, slightly negative 850-hPa height anomalies are evident, resulting in an enhanced 

NW–SE height gradient in the vicinity of the EREs. This height gradient results in a strengthened 

southwesterly 850-hPa flow of 15–20 m s−1 (30–40 knots) just south of the event location (Fig. 

6.4b). 

 

 
Figure 6.4: As in Fig. 6.2, but at 850-hPa. 
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The strong flow at 850 hPa is consistent with the presence of an LLJ (although the altitude of 

the LLJ wind maximum varies). It has long been known that the LLJ is responsible for advecting 

high θe air over a sloping frontal surface and/or creating strong moisture convergence at its 

terminus, which often results in elevated nocturnal convective initiation, upscale growth, and 

maintenance (e.g., Maddox, 1983; Maddox et al., 1979; Pitchford and London, 1962; Trier and 

Parsons, 1993). The composite of 850-hPa wind and specific humidity indicates that the events 

were centered at the northern terminus of a southwesterly LLJ (Fig. 6.4b), co-located with 

enhanced moisture (Fig. 6.5), and thus, strong moisture convergence. The strongest moisture flux 

convergence is only slightly offset to the north of the PME (black contour in Fig. 6.5), but likely 

co-located with the associated MCS. 

 

 
Figure 6.5: NW–SE case composite of ERA5 850-hPa specific humidity (color fill; g kg−1) and 
850-hPa wind (barbs; knots) with a thick black contour where the 850-hPa moisture flux 
convergence is 8 s−1. The white box represents the average PME location. 
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Time series plots of maximum 850-hPa wind speed (Fig. 6.6) for each event indicate a maximum 

LLJ magnitude ranging from 23 to 37 m s−1 (46–74 knots), all peaking between 0200 and 0700 

local time. The mean time series indicates a clear peak occurring between midnight and 0600 local 

time, consistent with a nocturnal formation of the LLJ (e.g., Shapiro et al., 2016). The most 

pronounced nocturnal enhancement of the LLJ occurred with the two southernmost cases (Cases 

1 and 4), but the enhancement was smaller in the other cases. On average, the EREs began before 

the LLJ increased and ended after the LLJ reached its peak intensity. The peak rainfall intensity 

occurred several hours before the peak LLJ intensity, suggesting that any nocturnal intensification 

of the LLJ likely contributed more to the maintenance than to the initiation of the convection. 

 

 
Figure 6.6: Time series of maximum 850-hPa wind speed within 5° of latitude and longitude from 
the PME for each NW–SE case, with the mean of all events displayed by the thick black line. The 
dashed black line represents the average peak accumulation hour of the events (~2300 local time). 
The shaded interval represents the time between the average start time (~1830 local time) and 
average end time (~0630 local time) of the events. Information on the timing of each individual 
event can be found in Table 6.1. 
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6.4 Total Column Moisture 

The composite of total column water vapor indicates a very moist environment near the event 

locations with values of 50–60 kg m−2, which is over 30 kg m−2 above normal for JJA based on 

the 2003–2022 ERA5 climatology (Fig. 6.7a). The relatively localized water vapor anomaly in the 

vicinity of the events may be attributed to the convergence and deepening of moisture near the 

northern terminus region of the LLJ. The composite of IVF indicates relatively strong 

southwesterly moisture transport surrounding the event location with subtle confluence also 

evident. On the large-scale, the moisture transport toward the event locations can be traced back 

to the subtropics around the western periphery of the NASH, but also from the Southern High 

Plains and Rockies. The moisture upstream from the event locations was near normal but did 

exhibit positive anomalies of 5–10 kg m−2 over many areas, especially over the Central Rockies.  

 

 
Figure 6.7: NW–SE case composite of ERA5 (a) total column water vapor (color fill; kg m−2) and 
vertically integrated water vapor flux (IVF) (vectors/streamlines; kg m−1 s−1) and (b) IVF vector 
anomaly (vectors/streamlines; kg m−1 s−1) and its magnitude (color fill; kg m−1 s−1) based on the 
ERA5 2003–2022 JJA-mean climatology. The white box represents the average PME location. 
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Moisture originating from land sources would be consistent with the findings of Abel et al. (2022), 

suggesting that the process of moisture recycling is important for extreme rainfall over the northern 

CONUS. 

The composite anomaly of IVF (Fig. 6.7b) indicates the anomalous northwestern extension of 

the NASH circulation centered over the Mid-Atlantic region, manifesting as an inverted ridge type 

feature in Fig. 6.7a. The magnitude of the IVF anomaly near the event location is also quite high, 

tracing back to the subtropical Atlantic. Thus, both moisture recycling from land sources and 

moisture transport from the Gulf of Mexico and subtropical Atlantic likely played a role in the IVF 

anomaly. The enhanced southwesterly IVF is likely associated with the enhanced southwesterly 

winds at 850-hPa given the similar location of the anomaly to the enhanced flow in Fig. 6.4b. 

 

6.5 Surface 

Near the surface (Fig. 6.8), composite analysis reveals a strong temperature gradient to the south 

of the event location in the vicinity of a surface trough and wind shift, indicating a synoptic scale 

frontal zone. The composite indicates that the events occur on the cool side (~100–200 km to the 

north) of a roughly west-northwest to east-southeast oriented front, indicating that the convection 

is elevated above the frontal layer as opposed to surface-based. In all five cases, the front was 

indicated as stationary according to archived surface analyses, but the orientation of the boundary 

and distance between the ERE and the boundary varied somewhat among the different cases. The 

surface pattern also includes an elongated surface low centered to the west-southwest of the events, 

creating a modest pressure gradient to the south of the associated frontal boundary. 
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Figure 6.8: NW–SE case composite of ERA5 2-m temperature (color fill; °C), mean sea level 
pressure (contours; hPa), and 10-m wind barbs (knots). The white box represents the average PME 
location. 

 

The presence of a surface front near these five EREs suggests the importance of the synoptic 

scale features in causing EREs. However, the presence of a stationary frontal boundary rather than 

a cold or warm front associated with a propagating extratropical cyclone during the cool season 

suggests that the summertime synoptic scale pattern associated with EREs is relatively unique. 

 

6.6 Discussion 

From composite analysis of the top 5 most intense NW–SE oriented EREs (all classified as 

nocturnal), we found a mesoscale and synoptic scale environment that aligns with previous studies 

of heavy-rain-producing warm season elevated MCSs (e.g., Moore et al., 2003). These 

environmental properties include anomalous deep layer moisture and strong moisture transport 

(Fig. 6.7a) and convergence in association with the LLJ (Figs. 6.4b and 6.5). The MCS position 

100–200 km north of a surface boundary (Fig. 6.8), and beneath upper level divergence to the 
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south of a jet max (Fig. 6.3b), also matches Moore et al. (2003). The main difference in our results 

is that the events occurred just to the east of the mid-level ridge axis instead of to the west (Fig. 

6.2a), leading to a northerly component in the mid-level flow and a resulting mid-level shear vector 

out of the northwest. Since the direction of the mid-level (925–500 hPa) shear vector dictates cell 

motion in training line/adjoining stratiform MCSs (Schumacher and Johnson, 2005; Fig. 1.4), this 

pattern explains the NW–SE orientation of the selected EREs. Another difference was a lack of 

evidence of an associated mid-level shortwave trough. However, it is possible that any subtle 

shortwave features evident in individual cases were cancelled out in the composite mean. 

We also found an anomalous northwestward extension of the climatological North Atlantic 

anticyclonic circulation (i.e., the NASH) into the Mid-Atlantic region (Fig. 6.4a). In Fig. 6.7, this 

pattern appears to be associated with enhanced moisture transport from the subtropical Atlantic to 

the Gulf of Mexico, and northward into the central CONUS beneath the mid–upper tropospheric 

ridge. These results are highly reminiscent of the seasonal composite analysis of 850-hPa 

geopotential heights and IVF (Figs. 5.14 and 5.10, respectively), indicating the westward extension 

of the NASH. The anomalous mid–upper tropospheric ridging evident in Figs. 6.2a and 6.3a is 

also supported by the JJA composite analysis in the previous chapter (Figs. 5.15 and 5.16), where 

statistically significant results were found. For example, when comparing Figs. 5.15c and 6.2a, the 

500 hPa ridge that was relatively absent during the inactive years (Fig. 5.15b) was indeed present 

during the EREs examined in this chapter. 

Another factor likely influencing the development and maintenance of the nocturnal quasi-

stationary MCSs producing the NW–SE oriented EREs is the apparent nocturnal enhancement of 

the LLJ. While the nocturnal LLJ is well-understood over the Great Plains in association with the 

sloping terrain (e.g., Shapiro et al., 2016), a relatively unexplored topic is the presence of LLJs 
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during the summer near stationary frontal systems to the east of the Great Plains, where the EREs 

occurred. The maximum 850-hPa wind speeds associated with the LLJs ranged from 23 to 37 m 

s−1 (46–74 knots), stronger than typical nocturnal LLJs found over the Great Plains, which 

normally have maximum speeds ranging from 12 to 25 m s−1 (25–50 knots) (Whiteman et al., 

1997). These wind speeds are more in line with cyclone induced LLJs, which typically have speeds 

of 20 to 35 m s−1 (40–70 knots) (Lackmann, 2002), and a weak surface cyclone was observed in 

the case composite of mean sea level pressure (Fig. 6.8). Thus, the dynamics of this LLJ are likely 

related to the enhanced pressure gradient in association with the synoptic scale disturbance (e.g., 

Browning and Pardoe, 1973; Lackmann, 2002). LLJs have also been shown to be coupled with 

upper level tropospheric jet streaks (e.g., Uccellini and Johnson, 1979). 

The LLJ near the stationary front in these cases did intensify during the night. Hence, it may 

be speculated that the observed nocturnal intensification of the LLJ may be due to similar 

mechanisms that drive the Great Plains nocturnal LLJ, namely, the Blackadar mechanism. At 

sunset, the effects of friction from boundary layer turbulent mixing are rapidly reduced, creating 

conditions favorable for inertial oscillations that can strengthen the low level flow to highly 

supergeostrophic levels (Blackadar, 1957; Shapiro and Fedorovich, 2010). These boundary layer 

processes are most often observed over the Great Plains and can occur in the absence of a synoptic 

scale disturbance due to differential heating of the gently sloping terrain (Holton, 1967; Shapiro et 

al., 2016). It is likely that similar dynamics may be at play in LLJs east of the Great Plains due to 

the reduction of surface stress and the shutdown of dry convective turbulence in the boundary layer 

at sunset (e.g., Laing and Fritsch, 2000). Studies on synoptically induced LLJs over land masses 

do not discuss the potential for a nocturnal enhancement of the flow outside of the Great Plains, 

so this topic may be an area for future investigation. 
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The findings in this chapter should provide valuable insight into the key ingredients involved 

in the production of some of the most prolific extreme-rain-producing MCSs during the summer. 

Recognizing these ingredients can aid in short term forecasting, which is of critical societal 

importance for these potentially destructive events. The narrow swaths of extreme rainfall 

accumulations in the cases discussed in this chapter suggest that short term forecasting of these 

events is a challenge. These extreme rainfall swaths are difficult to accurately represent in 

numerical weather prediction models with inadequate spatial resolutions, as simulations can 

generally accurately represent features greater than approximately 7 times their grid spacing 

(McTaggart-Cowan et al., 2020). For example, an extreme rainfall swath with a maximum width 

of 21 km may only be accurately represented by models with grid spacing of 3 km or less.
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Chapter 7 

Summary, Conclusions, & Future Work 

 

Short-duration EREs pose substantial risks to society due to their low predictability and potential 

to result in deadly flash flooding (e.g., Ashley and Ashley, 2008). With growing evidence that the 

frequency and intensity of these events are increasing over many areas due to climate change (e.g., 

Fowler et al., 2021), including the CONUS (e.g., Kunkel et al., 2013a), it is imperative that we 

understand any long-term changes in the structure, diurnal cycle, duration, and location of 

extreme-rain-producing convection. It is also important to identify the environmental conditions 

and LSMPs that may explain the wide range of interannual variability in the occurrence of these 

EREs to potentially aid in forecasting, as these LSMPs generally have medium range predictability 

(Barlow et al., 2019). This study developed a detailed database of 12-hr duration EREs that 

exceeded the 10-yr ARI thresholds (according to the NOAA Atlas 14 dataset) over the central and 

eastern CONUS using the high-resolution gridded Stage IV precipitation analyses over a 20-yr 

period (2003–2022). The Stage IV dataset has the distinct advantage of capturing relatively 

localized extreme rainfall produced by convection using radar estimates, unlike the sole use of 

relatively sparse and non-uniform rain gauge measurements. 

The few previous studies that utilized the Stage IV dataset (e.g., Stevenson and Schumacher, 

2014) only examined extremes on time scales of 1, 6, 24 hours, or longer for their climatological 

statistics and associated environmental characteristics over a maximum period of 10 years. Our 

study avoids the measurement-interval truncation problem associated with these previous studies 

by utilizing iteratively summed 1-hr data to capture extremes that may straddle the 6- and 24-hr 

time bounds. The accumulation interval of 12 hours was chosen for the purpose of targeting EREs 
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produced by nonlocalized convection, including MCSs, and the use of hourly data enables the 

investigation of the timing and diurnal cycle of those EREs. In addition, no prior studies have been 

able to utilize the Stage IV dataset for investigating both interannual and multidecadal changes in 

ERE frequency or characteristics, as this study accomplishes, but with acknowledgement of the 

potential caveats. 

7.1 Findings of the 20-yr ERE Climatology 

The results of our 20-yr climatology of EREs generally align with previous studies (e.g., 

Dougherty and Rasmussen, 2019; Hitchens et al., 2013; Maddox et al., 1979; Schumacher and 

Johnson, 2006; Stevenson and Schumacher, 2014). For example, our results verify that the largest 

portion of short-duration EREs occur during JJA and are associated with MCSs. The diurnal cycle 

of these MCS-related EREs peaked during the nighttime hours over the central CONUS. The areas 

where the largest proportions of nocturnal EREs occurred were found to align with the long-known 

nocturnal maximum in warm season precipitation (e.g., Easterling and Robinson, 1985; Wallace, 

1975). An area that stood out to have the highest concentration of intense nocturnal EREs was 

centered over eastern portions of the Central Great Plains, consistent with the nocturnal MCS 

climatology by Haberlie and Ashley (2019). Our climatology also provides new quantitative 

evidence in terms of extreme rainfall volume and spatial extent that nocturnal convection produces 

the most significant extreme rainfall over the domain during the summer, supporting previous 

studies. Since the representation of elevated nocturnal convection over continents is a significant 

challenge for numerical weather models (e.g., Bechtold et al., 2014), these findings should further 

motivate the need for improvement in the representation of nocturnal convection. 
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The unique mapping of accumulations from EREs that exceeded the 10-yr ARI thresholds 

reveals that these extremes often occur over very localized areas or narrow swaths (e.g., 20–40 km 

in width), even when the extreme rainfall is embedded within much larger precipitation features. 

The small-scale nature of these extremes poses a major challenge for operational forecasting as 

McTaggart-Cowan et al. (2020) found that models cannot well represent features less than 

approximately 7 times the model grid spacing. Thus, several studies have found that numerical 

models have low skill in predicting the precise locations of the extremes (e.g., Nielsen and 

Schumacher, 2016). Also, models without adequate spatial resolution, particularly those with 

convective parameterization, are unable to resolve convective scale processes that produce 

extreme rainfall amounts (e.g., Fritsch and Carbone, 2004). The finding that extreme rainfall can 

be so intense over localized areas motivates the need to improve the short term prediction of 

convective EREs via the use of high-resolution convection-allowing models. The challenge of 

accurately representing the location of these relatively small-scale events also suggests the need to 

employ ensemble modeling systems on these scales. 

 

7.2 Trends Discovered & the Caveats 

Time series of counts and total exceedance volume from EREs under various subsets reveal 

substantial interannual variability and statistically significant trends through the 20-yr period. 

Unlike previous studies that suggest an increase in springtime EREs associated with MCSs (e.g., 

Feng et al., 2016) with less evidence of an increase during the summer (e.g., Prein et al., 2017b), 

our database only revealed a significant increase in ERE frequency occurring during the summer 

months. This increase was only found with EREs associated with nonlocalized convection (i.e., 

filtered EREs), but sorting these events by their associated storm size and duration reveals that the 
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increasing trend was dominated by the larger and longer duration systems, classified as MCSs. The 

relative trend and overall variability in the time series of total exceedance volume of these EREs 

was also substantially greater than that for counts, with an observed increase of nearly 40% 

decade−1. This finding aligns with numerous studies on the impact of climate change on convective 

rainfall. Using regional convection-allowing climate models, these studies suggest that future 

convective storms will be larger and produce heavier rainfall volumes (e.g., Feng, 2017; Hu et al., 

2020; Prein et al., 2017a; Schumacher and Rasmussen, 2020) due to increasing moisture and 

instability. However, non-MCS precipitation, as well as the overall convective population, is 

projected to decrease due to increasing convective inhibition in a warming troposphere (e.g., 

Rasmussen et al., 2020), implying an increase in the occurrence of both droughts and floods in a 

future climate (Fowler et al., 2021). The increase in MCS-related EREs also has clear implications 

on a changing diurnal cycle of EREs as they tend to peak late at night and last into the morning 

hours, again motivating the need for improvement in the representation of elevated nocturnal 

convection. This thesis also discovered that the greatest increases in JJA filtered EREs were 

focused on the Mississippi and Ohio Valley regions, to the east of the Great Plains, where the EREs 

were found to be just as climatologically active. This regional contrast in trends suggests a possible 

eastward expansion of EREs from the Great Plains. The eastward expansion has not been 

previously proposed or discovered, suggesting that future research is needed to verify that this 

expansion is occurring and explain why these changes may be taking place. 

However, these results relating to trends should be interpreted with caution due to the 

combination of the relatively short 20-yr period of record and the limitations of the Stage IV dataset 

(e.g., Nelson et al., 2016). Trends over such a short period cannot be directly attributed to 

anthropogenic climate change as rainfall patterns and amounts can undergo changes over decadal 
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timescales due to natural climate variability. Thus, any trends found in a study of only two decades 

may not necessarily be representative of long-term change and the contribution of climate change 

to any regional trends cannot be determined from our analysis. While it is worth noting that several 

of our results aligned with prior peer-reviewed studies of how EREs may be affected by climate 

change, we cannot conclude with certainty that the observed changes in our study were due to 

climate change. 

The problem with using Stage IV analyses for detecting trends is that it is a relatively new and 

evolving dataset, meaning that the observed changes may have been affected by changes in the 

dataset itself. For example, a strong decreasing trend in the number of events per year that failed 

our QC indicates an increase in the quality of the data over time. Additionally, a few systemic 

changes took place during the period, including the 2011–2013 NEXRAD dual polarization 

upgrade and the gradual incorporation of Multi-Radar Multi-Sensor products into the Stage IV 

dataset. Upon discussions with representatives from multiple River Forecast Centers, the general 

consensus was that the NEXRAD upgrade should not have significantly affected quantitative 

precipitation estimates that would cause the jump in MCS-related EREs observed in the second 

half of the period. The incorporation of Multi-Radar Multi-Sensor products into the Stage IV data 

was not implemented by most River Forecast Centers until 2016 or later and the impact of the 

switch to Multi-Radar Multi-Sensor products on ERE detection is unknown. Discussion with the 

team creating the Multi-Radar Multi-Sensor products indicated that some dual-polarization 

variables were also not included in the calculation of radar-estimated quantitative precipitation 

estimates in their products until as late as 2020. However, the rain gauge technology used to correct 

radar-estimated precipitation and the River Forecast Centers’ methods of performing that 
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correction did not change through the period, suggesting that there should not be a significant 

change in ERE detection. 

 

7.3 Meteorological Conditions 

Another aspect of this study was to perform composite and correlation analysis using various 

meteorological fields from the ERA5. The aim of this analysis was to identify LSMPs that 

distinguish between summers with greater versus less extreme rainfall activity associated with 

nonlocalized convection over the domain. Identifying the predominant LSMPs during active years 

may help to explain the wide range of interannual variability in these EREs and potentially aid in 

long-term or seasonal forecasting of potential impacts. To our knowledge, this statistical approach 

has not been previously conducted on seasonal time scales for the purposes of studying short-

duration EREs. Composite analysis was also conducted on a sample of particularly intense 

nocturnal EREs occurring over the Mid–Upper Mississippi Valley region, associated with MCSs 

that had the common characteristic of training from northwest to southeast, a property that has not 

previously been explored. Similarities were found between the LSMPs associated with these 

events and the seasonal LSMPs found to distinguish more versus less active summers, which 

suggests a direct linkage of the seasonal LSMPs to the occurrence of intense EREs. 

The most common environmental feature associated with EREs or extended periods of 

excessive rainfall that has been identified by nearly all previous studies is anomalous moisture 

transport and convergence (e.g., Holman and Vavrus, 2012; Mo et al., 1997). Our analysis revealed 

this stream of moisture transport during more active summers and during the ERE cases, 

originating from the Western Gulf of Mexico and stretching towards the Great Lakes region. This 
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pattern can be identified as the “Maya Express” (Dirmeyer and Kinter, 2009), which is known to 

favor enhanced rainfall over much of the central and northern CONUS. 

While the seasonal LSMP composite and correlation analysis results regarding wind and 

geopotential height fields at and below 850 hPa lack statistical significance, there is a strong 

implication that the enhanced northward moisture transport may be driven by a westward 

expansion of the NASH. Dynamically, the increase in geopotential heights over the eastern 

CONUS relative to the Rockies would increase the pressure gradient in between, resulting in 

stronger southerly flow over that region, and stronger moisture transport from the subtropics as a 

result. Based on the case study composite of 850-hPa heights and wind, the enhanced pressure 

gradient in between is associated with an LLJ, which is a common ingredient for the initiation and 

maintenance of nocturnal MCSs (e.g., Trier and Parsons, 1993). Thus, the western extension of the 

NASH may also be associated with a stronger and/or more frequent LLJ over the central CONUS, 

which can directly result in more frequent and intense EREs. This westward expansion of the 

NASH has previously been linked to enhanced summertime rainfall over the Midwest (Zorzetto 

and Li, 2021). The NASH is also expected to expand westward overall in a future climate (Li et 

al., 2011), suggesting that the increasing trend in EREs over the central CONUS may continue as 

a result. 

The most significant composite differences and correlations with geopotential heights 

appeared in the mid–upper levels, especially at 500 hPa. However, the NASH is less apparent in 

the mid-levels and does not extend into the upper levels. To our knowledge, this 500-hPa height 

pattern has not been identified as a significant LSMP associated with EREs, but it is plausible that 

the mid–upper level ridging is a result of the warmer temperatures that accompany the western 

extension of the NASH over the eastern CONUS, since heights are directly related to the mean 
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atmospheric virtual temperature via the hypsometric relationship. Further analysis would be 

required to determine if this is the case. 

The strongest statistically significant correlations with JJA-averaged fields were found to be 

associated with low-level moisture over the Southern and Central Great Plains, particularly at the 

925- and 850-hPa levels. With the southwesterly LLJ identified in the case study composite 

originating over the Southern Great Plains, it is reasonable to suspect that enhanced moisture over 

that region can lead to more extreme rainfall activity over both the Great Plains and Midwest. 

Enhanced moisture over the Southern and Central Great Plains has also been shown to be 

increasing in MCS environments, leading to increasing rainfall volumes from MCSs over the 

central CONUS, at least during the spring months (Feng et al., 2016). Greater low-level moisture 

would also lead to enhanced large-scale moisture convergence, according to Lenderink et al. 

(2017), which has a strong correlation with the spatial extent of EREs (Loriaux et al., 2017). Thus, 

the observed increase in storm size associated with JJA convective EREs may be attributed to 

increasing moisture convergence. 

Correlations between the JJA filtered EREs and preceding winter and spring averaged 

meteorological fields revealed several statistically significant LSMPs. In theory, these results may 

be useful for seasonal prediction, but it is difficult to make physical connections between small-

scale short-duration EREs to LSMPs occurring several months prior, especially with a 20-yr 

sample period. For example, there is a suggestion of a positive correlation with El Niño and the 

Pacific Decadal Oscillation along with their associated weather patterns during the preceding 

winter, but testing these indices as a predictor proves to be ineffective, despite some agreement 

with previous studies (e.g., Armal et al., 2018). However, one physically plausible predictor of 

summertime EREs that was found to have statistical significance would be antecedent drought 
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conditions over the Southern Great Plains, which can carry into the summer, leading to less EREs 

throughout the Great Plains, and vice versa. No reasonable predictors of JJA filtered EREs to the 

east of the Mississippi River were found, which may be a subject for future work.  

The key ingredients identified from the case study of intense NW–SE oriented EREs were 

generally consistent with similar previous studies of extreme-rain-producing and/or nocturnal 

MCSs (e.g., Maddox et al., 1979; Moore et al., 2003; Schumacher and Johnson, 2005; Trier and 

Parsons, 1993), except for the lack of evidence of an associated mid-level shortwave trough. The 

EREs were found to occur near the northern edge of a strong mid–upper tropospheric ridge over 

the southern CONUS with a strong upper-level jet stream just to the north. The key environmental 

conditions involved in the production of these EREs include the following: (1) a strong 

southwesterly LLJ transporting moist air from the subtropics, and (2) a roughly east–west oriented 

quasi-stationary surface front, all in the presence of moderate to strong northwesterly mid-level 

shear, resulting in NW–SE training cell motions and sustained convection near the northern 

terminus of the LLJ, 100–300 km north of the front. These conditions typically peak at night, likely 

related to an enhancement of the LLJ. 

The nocturnal intensification of the LLJ observed to the east of the Great Plains is not well 

understood. While the LLJ is likely associated with a synoptic scale system (e.g., Browning and 

Pardoe, 1973), the reasoning for an intensification after dark may be related to the shutdown of 

dry convective turbulence (Blackadar, 1957), but this mechanism is idealized in association with 

a strongly mixed boundary layer during the day, which was not always the case. Adding additional 

cases and examining them in greater detail can be useful for future work. However, idealized model 

simulations of the nocturnal enhancement of a synoptically induced LLJ east of the Great Plains 

would be needed to fully understand the dynamics involved. 
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7.4 Final Remarks 

The uncertainties that arise in our results due to the limitations of the Stage IV dataset emphasize 

the need for a longer and more uniform gridded precipitation dataset. While the dataset can be 

improved if the River Forecast Centers utilize consistent processing and effective QC measures, a 

uniform dataset cannot be achieved due to the inherent limitations of our current radar technology 

for the purposes of estimating rainfall. However, given a longer period of record, repeating similar 

analyses as those employed in this study in the future can increase the confidence in any trends or 

significant LSMPs associated with summertime convective EREs.
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