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Abstract

The future cellular networks are expected to support an increasing number of users with

heterogeneous applications, requiring varying network resources. Therefore, the 6G and

beyond cellular networks need to be elastic, and user-centric. User-centric Radio Access

Networks (UCRAN), with virtual cells (S-zones), can provide on-demand connectiv-

ity, coverage and quality of service to different user applications while optimizing the

network for energy efficiency, area spectral efficiency, reliability and user service rate.

However, with high variability in the network, due to user mobility and fading, the selec-

tion of S-zone sizes which optimize the network performance for multiple types of users

simultaneously becomes a challenge. Therefore, to automate the selection of S-zone sizes

dynamically, we propose deep graph reinforcement learning (DGRL), a Soft actor-critic

model integrated with Graph neural network. DGRL infers from DeepWiN, a graphical

representation of UCRAN that encodes the non-euclidean topology of the network along

with its euclidean features, effectively encapsulating the wireless domain knowledge of

the network configuration. Our experiments show that the deep graph reinforcement

learning can learn to optimize S-zone sizes with 15% fewer training episodes in compar-

ison to the legacy neural-network-based reinforcement learning, hence demonstrating

the advantage of network topology-awareness for artificial intelligence.

ix



CHAPTER 1

Introduction

1.1 Motivation

The evolution of next-generation wireless networks anticipates serving an increasing

number of users per geographic area, leading the wireless research towards ultra-dense

networks with a higher area density of base stations [1, 2, 3, 4, 5]. However, in ultra-

dense networks, the overlapping area of coverage among closely located cells exasperates

the problem of inter-cell interference. Additionally, as future user applications become

increasingly diverse, encompassing new-age technologies such as virtual reality, online

surgery, and autonomous driving alongside low-resource intensive activities like internet

browsing and streaming, the conventional one-size-fits-all configuration may lead to

either a degradation of service quality or inefficient resource utilization in the face of

widely varying user requirements.

User-centric Radio Access Networks (UCRAN) [3, 6, 7] address these challenges by

introducing user-centric virtual cells which are non-overlapping; thus mitigating inter-

cell interference, and allow dynamic resizing; hence accommodating the varying quality

of service needs of different users. UCRAN consists of a low density of high coverage

Control Base Stations (CBS) with a high density of Data Base Stations (DBS). User

applications are divided into Quality of service (QoS) categories based on the user

service requirements such as throughput, latency and reliability. For each UE, a circular

virtual cell centered on the UE, defines the area of service (S-zone) in which, for each

Transmission time interval (TTI), 1) only the highest priority UE is scheduled 2) only

one DBS is active for the UE while other DBSs within the S-zone are powered off.

This scheduling scheme mitigates the problem of down-link interference among the cells
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in close proximity. In addition, the S-zone radii per UE category is elastically varied

allowing the system to optimize for heterogeneous UE requirements resulting in increase

in energy and area spectral efficiency of the network.

In realistic cellular networks with a large number of user QoS categories, the opti-

mal choice of S-zone size for all user categories becomes a challenging problem. This in

conjunction with the joint optimization of multiple key performance indicators and vari-

ability of the cellular environment, such as user mobility and fading, further complicates

the optimization of S-zone for all user categories. To that end, reinforcement learning-

assisted solutions are proposed to find the Pareto-optimal front; i.e., the S-zone radii

per UE category which jointly optimize the multiple KPIs of network while remaining

robust to user mobility and environmental changes [3, 6].

Even though the proposed reinforcement learning-assisted solutions in current literature

provide a potential solution to optimize the sizes of S-zones, these solutions do not take

into account a key element of wireless networks, that is, the network topology. A wire-

less network topology defines the spatial arrangement and interconnection of network

devices, outlining how they communicate or interfere with each other, thus embody-

ing essential wireless domain knowledge within the network structure and relationships

among its nodes. However, unlike Euclidean spaces with fixed dimensions, the wireless

network topology lacks a specific order, can change dynamically with variable distances

and adjacency criteria among communication devices. This non-Euclidean characteristic

[8] is crucial for accurately modeling the complex and ever-changing nature of wireless

networks. Notably, this non-Euclidean nature challenges the applicability of multi-layer

perceptron (MLP) or convolutional neural network (CNN) based reinforcement learning

(RL) agents, which are tailored for Euclidean data and struggle to fully capture the

complexity of wireless network topology. Therefore, the prior works [3, 6] on UCRAN,

which employ RL with classical neural networks agents are limited to only learning from

the network features/parameters, while not taking advantage of the domain knowledge
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latent in UCRAN topology.

Recently, Graph Neural Networks (GNN) have emerged as a tool to learn from non-

Euclidean data. By representing data as graphs, GNNs adeptly capture the inherent

characteristics of non-Euclidean data, such as non-fixed adjacency and dynamic order.

GNNs apply convolution over graph nodes, utilizing back-propagation to learn through

gradient descent—mirroring the processes seen in MLPs and CNNs designed for Eu-

clidean data such as images. This progress paves the way for augmenting reinforcement

learning by seamlessly integrating GNNs to enable RL to learn with a topology-aware

graphical representation of wireless networks.

Building on this context, we present a method for conceptualizing UCRAN architecture

as a Deep Wireless Network graph (DeepWiN), where network entities, parameters, and

interactions are respectively represented as nodes, node features, and the graph struc-

ture (edges and edge weights). This deep network representation encodes the wireless

domain knowledge, in the form of network topology along with network parameters, as

opposed to shallow representations in prior studies [3, 6], which only consisted of the

network parameters. Employing graph convolutions, we embed the DeepWiN graph

state for Reinforcement learning, introducing a variation of the Soft actor-critic (SAC)

algorithm designed with graph convolution layers in the actor, critic, and value networks.

This unified algorithm, Deep Graph Reinforcement Learning (DGRL), amalgamating

recent advancements in graph neural networks and reinforcement learning, demonstrates

significantly faster learning compared to RL with conventional neural networks. Specif-

ically, DGRL achieves convergence with 15% fewer training episodes than LegacyRL,

underscoring that the DeepWiN graph imparts a more profound understanding of the

UCRAN network to the RL agent than a shallow network state can.
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1.2 Related Work

The contemporary literature on this study can be divided into three categories: RL

applications for wireless optimization [3, 6, 9, 10], GNN applications of graphical models

of wireless networks [11, 12, 13], RL and GNN combined frameworks for distributed and

user-centric networks such as UCRAN [14].

Application of reinforcement learning for wireless network optimization is an active area

of research. In [9] various single-agent and multi-agent DRL methods are applied to op-

timize the cell edge user performance. However, the state is limited to a Euclidean

representation of the wireless network which does not consider the non-Euclidean net-

work topology. Furthermore, the action space, although continuous, is limited to a

discretized form such that the agent can only choose a fixed increase or decrease in the

network parameters instead of selecting from continuous parameter ranges. Allowing the

agent to only take constant length steps within the action space, increases the number

of steps it can take for an agent to reach the optimal state. [10] further emphasizes the

need of data driven RL to optimize wireless network parameters. Deep deterministic

policy gradient is used to maximize coverage and minimize interference while jointly

optimizing the transmit power and down-tilt. However, the study does not address the

joint optimization of various coverage and capacity parameters in ultra-dense networks

expected in 6G and beyond. [3, 6, 7] lay down the framework of UCRAN for ultra-dense

user-centric network and employ Q Learning to optimize S-zone sizes for multiple user

categories based on criticality of their application. Though, like [9] and [10], these stud-

ies do not explore graphical topology of the network and therefore fail to incorporate

the UCRAN’s configuration and domain knowledge into the network state at the loss

of state depth and generalization.

[11, 12] give insight into considerations for modeling various wireless network scenarios as

graphs and the design of graph neural network for specific research problems in wireless

domain. However, the studies do not address user-centric networks particularly.
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More recently, [14] laid down a framework of a GNN-RL model for connection manage-

ment in Open-RAN (O-RAN). O-RAN is modelled as a heterogeneous graph with users

and radio units (RUs) as nodes and the wireless links among them defining the edges.

In this study, the number of cells is limited to 6 with only 50 users. While there is a

discussion on scaling to a more realistic network with hundreds of cells, the study only

focuses on the aforementioned 6 cell network.

1.3 Research Objectives

Based on the discussed motivation and the corresponding literature study, the objectives

of this research are outlined as follows:

1. User-Centric Radio Access Networks: Explore and develop techniques within

UCRAN to mitigate interference issues by introducing non-overlapping, dynam-

ically resizable virtual cells, considering diverse user applications and service re-

quirements.

2. Reinforcement Learning for Network Optimization: Develop and evaluate rein-

forcement learning-assisted solutions to optimize the size of S-zones in realistic

cellular networks, considering multiple key performance indicators (KPIs), diverse

user QoS categories and accounting for factors like user mobility and environmen-

tal changes.

3. Wireless Domain Knowledge-Aware AI: Investigate the impact of wireless net-

work topology on the optimization process, emphasizing the spatial arrangement

and interconnection of network devices, and evaluate the limitations of existing

reinforcement learning approaches in capturing this non-Euclidean characteristic.

4. Integration of Graph Convolution with Reinforcement Learning: Identify the ap-

proach and challenges in enabling Reinforcement learning to learn from a graphical

state.
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1.4 Contributions

The contributions of this thesis can be summarized as follows:

1. Unveiled an innovative approach for modeling the UCRAN topology alongside net-

work parameters, encapsulating this insight into a Deep Wireless Network (Deep-

WiN) graph. We highlight the distinctive rationale guiding our methodology, to

be used as a roadmap for modeling various wireless networks as graphs allowing

researchers to take advantage of graph neural networks.

2. Modified a LegacyRL algorithm, Soft Actor Critic, to incorporate graph convolu-

tion such that the amalgamated graph neural network and SAC framework can

learn to embed and interact with the UCRAN graphical state. As a result, we

develop an Deep Graph Reinforcement Learning framework (DGRL) which opens

research opportunities for multitude of domains where graphical representation is

crucial such as social media, traffic forecasting, networking, drug discovery etc.

[8, 15].

3. Conducted a comparative analysis between LegacyRL and DGRL on training for

S-zone optimization, showcasing that with a topology-aware graph representation,

RL learns with a remarkable 15% reduction in episodes compared to a shallow

representation lacking topology awareness.

1.5 Articles Currently Under Review for Publication

1. M.S. Riaz, M. Shaukat, T. Saeed, A. Ijaz, H.N. Qureshi, I. Posokhova, I. Sadiq, A.

Rizwan, A. Imran, “ iPREDICT: AI Enabled Proactive Pandemic Prediction using

Biosensing Wearable Devices,” in Computers in Biology and Medicine Journal

(submitted Oct 25, 2023)
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2. M. Shaukat, S. K. Kasi, A. Imran, “DeepWiN: Deep Graph Reinforcement Learn-

ing for User-Centric Radio Access Networks Automation,” (Under Co-authors Re-

view)

Academic Awards

1. Generation Google Scholarship (North America) 2023

1.6 Organization

The rest of this thesis is organized as follows: Chapter 2 presents the system model for

UCRAN along with the algorithm used for scheduling users within the network. We

then outline the mathematical framework of major network parameters and key perfor-

mance indicators considered in this study, followed by the multi-objective optimization

problem formulation with the user category related as well as overall networks related

performance indicators. In Chapter 3, the components of the proposed solution are dis-

cussed including an explanation of non-Euclidean data, modeling of UCRAN as graph,

graph neural networks, soft actor critic and finally the deep graph reinforcement learning

framework. Chapter 4 discussed the details of the experimentation and results of DGRL

and LegacyRL training and evaluation. Lastly, Chapter 5 concludes this study with the

summarizing of our findings while Chapter 6 discusses future research directions.
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CHAPTER 2

System Model

2.1 UCRAN Architecture

UCRAN architecture is suited for user-focused ultra dense wireless networks. The ar-

chitecture, shown in Fig. 2.1, comprises of low density of Control base stations (CBS)

and a high density of Data base stations (DBS). The DBSs are connected to the pool

of Base band units (BBUs) at CBS through an optical fiber network. The users in the

network are classified into categories based on criticality of their applications depend-

ing on the latency, throughput and reliability requirements. The pivotal feature of this

network is the S-zone, a virtual circular cell centered on each user (UE) such that the

UE is connected to only one of the DBSs within its S-zone. The scheduled UEs and

corresponding connected DBSs are selected based on a scheduling algorithm as follows.

In each TTI, a UE is scheduled if and only if it belongs to the highest priority category

within its neighborhood where the neighborhood is defined by the respective S-zone of

each UE. Similarly, in each S-zone only one DBS providing the maximum single strength

to the UE is activated, while all others are powered off. Each UE category can have a

unique S-zone radius within a defined range.
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Fig. 2.1: UCRAN architecture.
Three UE quality of service categories are shown with their unique S-zone radii. The priority
of each category is based on its application in order of i) medical devices (red), ii) autonomous
vehicles (blue), iii) internet browsing users (green). In each S-zone, only the highest priority
UE is scheduled. Moreover, in each S-zone, only the DBU providing the highest signal strength

to the scheduled UE is powered on.

2.2 Simulation Model

We designed a comprehensive simulation model of UCRAN for this study. The details of

which are as follows: The UEs and DBSs are randomly distributed through two homoge-

neous Poisson point processes ΠDBS and ΠUE with densities λUE and λDBS respectively.

All UEs are divided randomly into C QoS categories with uniform probability such that

each category has a specific throughput, latency and reliability requirement as listed

in Table 2.1. Each category is then assigned a priority-level based on these require-

ments. The communication channel between a between an arbitrary UE x ∈ ΠUE and

activated DBS i ∈ Π
′
DBS experiences both large-scale and small-scale fading given by
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hl−PLE, where h is an exponential random distribution with a unit mean, and lxi. rep-

resents the propagation distance between x and i, PLE < 2 is the pathloss exponent.

UE and DBS have a single antenna and the transmission power of all DBSs is equal.

Each scheduled user is served by a DBS providing the highest channel gain within an

S-zone of radius rc whose SINR (Γx) is given as:

Γx =
hxil

−PLE
xi∑

j∈Π′
DBS

hxjl
−PLE
xj + no

, (2.1)

where i ̸= j and no is additive Gaussian white noise.

2.3 Network Key Performance Indicators

In this study we jointly optimize multiple key performance indicators (KPI) of UCRAN

namely area spectral efficiency, network energy efficiency, user service rate, and reliabil-

ity satisfaction.

2.3.1 Area Spectral Efficiency

The area spectral efficiency refers to the amount of information that can be transmitted

from a DBS per unit bandwidth channel per unit area to a UE, which can be defined

as follows for each QoS category c:

Ac =

∑
x∈Nc

log2(1 + Γx)

Å
, (2.2)

where Nc is the set of UEs belonging to QoS category c, and Å is the target area

considered in the simulations model.

The size of the S-zone in the QoS category has a pronounced impact on area spectral ef-

ficiency [7, 16]. In essence, enlarging the S-zone diminishes the scheduling ratio of UEs.

Conversely, reducing the S-zone size enhances SINR which is caused by high the number
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of neighboring interfering DBSs. Striking a balance between these conflicting influences

is essential to determine the optimal S-zone size, thereby maximizing achievable area

spectral efficiency. Achieving this optimization necessitates intelligent real-time adjust-

ments to simultaneously fine-tune the S-zone sizes for multiple QoS categories.

2.3.2 Energy Efficiency

According to [7, 17, 18], the network-wide energy efficiency is defined as the ratio of

area spectral efficiency and total power consumed for all scheduled UE’s. The power

consumption model, drawing inspiration from project Earth [19], characterizes the

power consumption of CBS and DBSs through a linear combination of fixed and load-

dependent power components. Given that energy efficiency is gauged on a network

scale, the cumulative power consumption values are summed across all scheduled users.

Mathematically, the total power consumption is calculated as follows:

P = λDBSPf + λ′DBS∆DBSPDBS + λ′UE(∆UEPUE + Pdisc), (2.3)

where λDBS is the density of all deployed DBSs, λ′DBS is the density of activated DBSs,

λ′UE is the density of scheduled UEs, Pf is the fixed DBS power consumption required

for DBS to operate in listening mode, PDBS is the DBS transmission power, ∆DBS is

the radio frequency component power at DBS, PUE is the UE transmission power, ∆UE

is the radio frequency component power at UE, Pdisc is the power required at UE for

discovery of the DBS with the highest channel gain.

The energy efficiency therefore can be given as:

E =

Å×
∑
c∈C

Ac

P
, (2.4)

In a cellular DBS, radio frequency components and data transmission account for the

majority of total power consumption [20]. Significant energy savings can be achieved by

dynamically activating DBSs, especially in dense deployments. The direct connection
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between energy efficiency and area spectral efficiency emphasizes that the S-zone size

of QoS categories plays a crucial role in impacting network energy efficiency. On an

intuitive level, enlarging the S-zone size results in a reduction of activated DBSs, leading

to a decrease in average power consumption. The diverging trends between area spectral

efficiency and power consumption pose a key design question: What S-zone size should

be chosen for QoS categories to optimize network-wide energy efficiency?

2.3.3 UE Service Rate

The UEs’ heterogeneous latency requirements necessitate scheduling more UEs within

each TTI while meeting UE quality of experience requirements. The mean UE service

rate (user service rate) for any QoS category c can be calculated as:

Uc =
λserviceUEc

λUEc

, (2.5)

where, λUEc is the density of all UEs belonging to QoS category c and λserviceUEc
is the

density of UEs belonging to QoS category c whose minimum throughput requirement is

met.

The S-zone size of QoS categories influences the user service rate in two different ways.

A decrease in the S-zone size leads to the scheduling of more users. However, decreasing

the S-zone size also increases the average distance between UE and DBS, thus, affect-

ing the average SINR. Due to these conflicting results with the change in S-zone size,

optimizing user service rate requires intelligent optimization of S-zone sizes for different

QoS categories.

2.3.4 Reliability Satisfaction

The concept of reliability, as per 3GPP, refers to the ability to transmit a specified

amount of traffic from the application server to UE within the required time constraints

with a high probability of success [21]. To quantify this reliability, we assess reliability
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satisfaction by calculating the weighted sum of the average probability of correctly

received packets for UEs in each vertical. The Block Error Ratio (BLER) serves as

a metric, representing the ratio of erroneously received blocks to the total number of

blocks sent at each TTI. UEs report a Channel Quality Indicator (CQI), which, in

conjunction with a Signal-to-Interference-plus-Noise Ratio (SINR) defined in Eq.2.1, is

utilized to map the CQI to a corresponding BLER value [22]. Mathematically,

Sc = Eτ

[∑N ′
c

i=1(1− βciτ )
|N ′

c|

]
, (2.6)

where |N ′
c| represent the number of scheduled UEs belonging to category c, βcjτ repre-

sents the BLER at UE i belonging to category c, Eτ [.] represents averaging over several

TTIs.

2.3.5 Multi-objective Optimization

Hitherto, the above definition of KPIs demonstrate the need for optimizing S-zone size of

QoS categories to maximize area spectral efficiency (ASE), energy efficiency (EE), user

service rate (SR) and reliability satisfaction rate (RS) individually. The challenge from a

network operator’s perspective is that all these KPIs should be optimized simultaneously,

leading to a Pareto-optimal tradeoff between them. To account for this tradeoff, this

study defines the multi-objective optimization problem as follows:

max
rc∈[rmin,rmax]

(
a
∑
c∈C

wcAc + b
∑
c∈C

ẇcUc + y
∑
c∈C

ẅcSc + zE

)
s.t. a+ b+ y + z = 1

(2.7)

wc ≥ 0, ∀i and
∑C

c=1wc ≤ 1 are network operator-defined weights assigned to prioritize

the area spectral efficiency of specific QoS categories. Similarly, ẇc and ẅc are weights

for user service rate and reliability satisfaction. a, b, y, z specify the weights of each

cumulative KPI in the multi-objective optimization.
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Note that all KPIs are normalized between 0 and 1 by using a pseudo min and max

KPI value which are drawn by a brute force sweep of the search space. The search

space is however significantly large: with [rmin, rmax] = [10, 40], there are 303 = 27, 000

combinations of S-zone radii. So for a pseudo-brute force search we randomly sample 10

value from S-zone range of each QoS category, reducing the search space to 1000 states.

Table 2.1: UE QoS categories: requirements and priority

Throughput Latency Reliability Priority
1000 50 50 I
10 2 5 II
99.9 99.999 99.99 III

Table 2.2: UCRAN simulation and DeepWiN graph parameters

Parameter Name Parameter Value
UE density (λUE), DBS Density (λDBS) 103/km2 ,

Range of min. and max. S-zone radius [rmin, rmax] [10, 40]
Path-loss exponent 3

Number of UE categories (C) 3
Simulation region 1 km2

Nominal∗ RSRP -150
Nominal SINR -20

Nominal Throughput 0
Edge weight factor (χ) 10

∗Minimum/Null value for this simulation
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CHAPTER 3

Proposed Solution

This chapter explains the building blocks of the proposed solution.

3.1 Euclidean vs. Non-Euclidean Data

The premise or our study is to recognize that wireless networks are non-Euclidean

in nature. Fig. 3.1 shows the difference between Euclidean and non-Euclidean data

structures. Euclidean data has fixed and uniform dimensions. For example, in an image

which is a prime example of euclidean data, each pixel is adjacent to a fixed number

of neighbouring pixels which are located at a pre-determined euclidean distance. In

contrast, non-euclidean data can change its dimensions and does not follow any specific

order. For instance, in a wireless network a mobile user can be adjacent to a variable

number of other users. In fact, the definition of adjacency is variable as well, as it can be

based on their geographic distance, interference or even similarity of characteristics. In

addition, as the users move around the network, the number of adjacent users can change

every second. Hence, the topology of a wireless system is more effectively modelled in a

non-Euclidean graph in comparison to vector or matrix which approximates the network

to a euclidean structure, hence ignoring its topological information.
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Fig. 3.1: Euclidean vs. non-euclidean data. In a euclidean structure, the number of neighbors
of each data-point are uniform across the data. In non-euclidean data, the definition of what

comprises as the neighborhood is highly flexible.

3.2 Deep Wireless Network Graphical Representation: DeepWiN

Wireless networks are inherently non-euclidean graph-structured. Graphs provide a

natural and efficient representation of network topology by capturing the complex con-

nectivity relationships among network elements. In a graph, nodes can represent wireless

devices, access points, and other network components, while edges represent the wireless

communication links or interference links between them. This graphical representation

simplifies the analysis of network topology, enables the application of graph algorithms

for tasks like routing and resource allocation, facilitates network design and optimiza-

tion, and aids in visualizing and understanding the structure of wireless networks, mak-

ing it an essential tool for network planning, management, and troubleshooting [11, 12].

Therefore, for UCRAN, we design a Deep wireless network graphical representation

(DeepWiN) Fig. 3.2 of the system using the following approach. Each UE serves as

one node in the graph while DBSs are not explicitly included as nodes. This is because

UCRAN is a user-centric system where the behaviour of each DBS is dependent on the

scheduling of UEs in its proximity. Secondly, while DBSs are geographically static, UEs

move in each time interval varying the spatial topology of the system. Thirdly, DBSs
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and UEs consist of different features and therefore a graph involving both the entities

is a heterogeneous graph containing different types of nodes and edges as opposed to

a homogeneous graph. Currently, most GNNs are designed for homogeneous graphs.

Therefore, an exploration of heterogeneous DeepWiN graph is aimed for future studies

with the progress on heterogeneous GNN research [8, 23].

For each node, a set of UE parameters is associated as node feature vector. The UE

parameters quantify the status of the UE in the network. In DeepWiN, we include

the following network parameters: RSRP, SINR, throughput, Probability of coverage,

spectral efficiency, BLER. In addition, we add two binary node features indicating if a

UE is scheduled and/or served. Lastly, the UE category is indicated as c < C and the

current S-zone radius of the respective UE category is also appended as a node feature.

So, in total each node feature vector consists of the above mentioned 11 parameters. It

is important to note that while GNNs are independent to the change in number of nodes

in a graph, the dimensions of feature vector in each node must remain consistent across

the graph data set. Therefore, even for UEs which are non-scheduled and therefore their

parameters such as RSRP, SINR are not measured, a null value of these parameters is

still required in the UE feature vector. However, the current graph convolution models

available do not support missing, null or undefined values. To circumvent this challenge,

we impute the feature vector with the nominal value of each parameter as a pseudo-null.

The pseudo-null values adopted for our UCRAN simulation are as listed in Table 2.2

Finally, in DeepWiN graph, all the edges are non-directional and are defined as: an

edge exists between two UEs xi and xj, if both the UEs are scheduled and the euclidean

distance between them is di,j < 2 ∗ rmax where rmax is the maximum possible S-zone

radius in the network Table 2.2. The edge signifies the interference effect among UEs

and therefore only exist between scheduled UEs which are in close proximity. The edge

weight is a real numbered value inversely proportional to the UE distance. Hence, for

each edge there is a weight ei,j = χ/di,j, where χ is a factor that controls the effect
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of edges in the DeepWiN graph. Higher the χ, higher will be effect of the edges, and

resultant the network topology, on the RL agent training. If χ is 0, the effect of edges is

diminished and the DeepWiN becomes equivalent to the shallow state with no network

topology.

In summary, DeepWiN is a graph GN
E with N nodes and E edges which represents the

UCRAN parameters and topology of UCRAN environment such that each UE is a node

x ∈ N consisting for k features f1, f2, . . . , fk of each UE while each edge e ∈ E is defined

by the distance between two nodes with the edge weight inversely proportional to the

distance among nodes.

The graph considered in this study, based on the simulation environment listed in Table

2.2, consists of 284 nodes, each with 11 features while the number of edges vary from

graph to graph due to UE mobility and scheduling changes.
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Fig. 3.2: UCRAN architecture as DeepWiN graph.
Nodes 1-6 are connected with each other with edges 1-7 as these nodes are scheduled and lie
withing 2∗rmax distance from each other. Node 0 and 7 are not scheduled, so, no edge extends
from them while node 9, although scheduled, is outside the distance threshold for an edge.
Each node 1-8 consists of a feature vector of length k and each edge has an edge weight e,

inversely proportional to the distance between the nodes.
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3.3 Graph Neural Network

Graph Neural Networks (GNNs) [24] are a class of neural network models designed for

processing and learning from non-euclidean raph-structured data. They leverage the

connections between nodes in a graph to perform convolutions and capture node re-

lationships. GNNs iteratively update node representations by aggregating information

from their neighbors, allowing them to learn expressive node embeddings that incorpo-

rate both local and global graph information. These embeddings can be used for various

tasks, such as node classification, link prediction, and graph classification, making GNNs

a powerful framework for analyzing and understanding graph data.

The building block of GNNs is graph convolution as explained here:

Graph Convolution Layer:
H(l+1) = σ

(
D̂− 1

2 ÂD̂− 1
2H(l)W (l)

)
(3.1)

Where:
H(l) - Node features at layer l

Â - Normalized adjacency matrix

D̂ - Degree matrix of Â

W (l) - Learnable weight matrix at layer l

σ(·) - Activation function (e.g., ReLU)

In essence, the information from neighboring nodes in the graph (represented by Â

is propagated to update the node features H(l) at the next layer l + 1 The learnable

weights W (l) control how this information is combined, and the activation function σ(.)

introduces non-linearity into the transformation. This process is central to how GNNs

operate, allowing them to capture graph-based relationships and perform tasks like node

classification or graph-level classification.

GNNs are scalable to different graph sizes and configurations. Therefore, in case of

wireless networks, where the network topology and the resultant graph changes with
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the user mobility, environmental factors, and network configuration, GNNs are able to

perform convolutions on such dynamic data when UEs of DBSs in a network deployment

vary in number and location.

3.4 Soft Actor Critic

Soft Actor-Critic (SAC) [25] is a state-of-the-art off-policy reinforcement learning algo-

rithm designed for training agents in environments with continuous action spaces. It

combines the actor-critic architecture with entropy regularization, aiming to maximize

not only expected rewards but also the entropy of the policy, promoting more effective

exploration. SAC employs target networks, deterministic policy improvement, and a

soft Bellman backup to ensure stability during training. This algorithm has proven to

be highly effective in a wide range of continuous control tasks, making it a popular

choice for developing autonomous systems and robotics applications due to its capacity

for efficient exploration and policy optimization.

In the proposed solution, SAC algorithm has been implemented as following:

• Environment State: The Graphical representation, GN
E of the UCRAN network

environment (DeepWiN) with N nodes and E edges.

• Action: A continuous action space comprising of S-zone radius for each UE QoS

category c such that rc ∈ [rmin, rmax].

• Reward: Multi-objective linear combination of UCRAN KPIs in Eq. 2.7

3.5 Deep Graph Reinforcement Learning

In DGRL, we implement the actor, critic and value networks of SAC as GNNs. Each

network consists of two graph convolution layers with 256 channels each, followed by a

global mean pooling layer which aggregates the embedding of all graph nodes into one
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vector of length 256. The embedding is then input to two linear layers with 256 neurons.

each. After every graph convolution and linear layer, a Rectified linear unit activation

is applied. In actor network, the final two linear layers output the mean µ and standard

deviation σ for a Guassian distribution from which the actions are sampled. In value

and critic networks, the final linear layers outputs q-value and state-value respectively.

An important consideration in the case of the critic network is to append the action

along with state as input. The state in case of DGRL is a graph structure DeepWin,

which is to be appended with actions which are in a vector. For this design question,

we considered two approaches:

1. Append the action vector to the feature vector of each node.

2. Append the action to the aggregated output of the global mean pooling layer.

The later approach was taken in DGRL as in this approach the action vector is appended

only once to the cumulative embedding of the graph after convolution. Whereas the

prior introduces redundancy in graph data because the same action is appended n times,

i.e., to each node.

Table 3.1: DGRL training parameters

Parameter Name Parameter Value
Actor learning rate (α) 0.0003

Critic, Value network learning rate (β) 0.0003
Discount factor (γ) 0.99

Target smoothing coefficient (τ) 0.005
Maximum memory buffer size 106

Mini-batch size 256
Maximum episode length (Tmax) 256

Number of actions 3
Reward scale (λ) 30

Multi-KPI reward coefficients (a, b, c, d) 0.25,0.25,0.25,0.25
UE category KPI weights (w1, w2, w3)

∗ 0.34,0.33,0.33
∗Same KPI weights for ẇ and ẅ
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Fig. 3.3: Deep graph reinforcement learning framework
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Algorithm 1 Soft Actor-Critic with Graph Neural Network (DGRL)

Initialize GNN-based actor network, critic network, and target networks
Initialize replay buffer D
Initialize hyperparameters α, β, γ, τ , batch size, etc
for episode = 1 to Nepisodes do

Sample initial state s (UCRAN graph)
for step = 1 to Tmax do

Select action a (S-zone radii) using the GNN-based actor network: a ∼ π(a|s)
Execute action a in the environment, observe next state s′ (update S-zone

radii) and reward r (eq x)
Store transition (s, a, r, s′) in D
if length of D > batch size then

Sample a minibatch of transitions from D
Update the critic network parameters using the Temporal Difference error:

ϕ← ϕ+ β · ∇ϕMSE(ϕ)
Update the actor network parameters using the deterministic policy gradi-

ent: ψ ← ψ + α · ∇ψJ(ψ)
Update the soft Q-network and target networks

end if
end for

end for
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CHAPTER 4

Experiment Evaluation and Results

DGRL is trained with the SAC and GNN hyper-parameters listed in Table 3.1. In each

episode, the radius rc of the 3 S-zone categories is initialized randomly between rmin

and rmax. UE locations are also initialized randomly by changing the seed for each

episode while DBS locations remain static. The network environment state is converted

into the DeepWiN graph, as explained in Section 3.2 which is input to the GNN actor,

critic and value networks. The actor outputs a probability distribution with mean µ

and standard deviation σ for a Gaussian distribution of each of the three actions i.e.,

selection of the S-zone radius from [rmin, rmax] for each of the three UE categories. The

agent applies the action sampled from this probability distribution to vary the S-zone

radii of the UCRAN environment. Reward is calculated as Eq. 2.7 to optimize multiple

UCRAN KPIs. The reward range lies between [0, 1] as all the KPIs are normalized in

this range. This cycle is repeated at each step in the episode, and the DeepWiN state,

action, reward etc., are saved in the replay buffer to be used for training the GNN agent

in SAC.
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Fig. 4.1: Soft actor-critic training with DeepWiN graph state vs. shallow state.
Former converges with 15% less number of episodes i.e., less number of training samples.

To compare the performance of the DeepWiN state and DGRL we train a baseline

model with shallow network state and LegacyRL. All training hyper-parameters are kept

the same, except that the graph convolution layers in the SAC actor, critic and value

networks are replaced by linear neural network layers with the same number of channels.

The state in the baseline model is a vectorized (Euclidean) approximation of the network.

Shallow state consists of a vector of all the 11 UE parameters but the topology of the

network is ignored as the edges and edge weights are not included. Training comparison

of DGRL and LegacyRL in Fig. 4.1 shows that DGRL with deepWIN state converges

with 15% less number of episodes that LegacyRL with shallow state.
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In Fig. 4.2, we can see the trained RL models in action.

The UCRAN KPIs are jointly optimized to a Pareto optimal front during an episode. As

the episode starts, the RS, EE, and ASE of the network is low but the trained DGRL and

LegacyRL agents select the S-zone radii to optimize the KPIs. Then, during the episode,

as fading and scheduling changes the network, the agent manages to dynamically select

the S-zone radii to keep the KPIs at the Pareto optimal value.

As visible in Fig. 4.2, even though the DGRL is trained on 15% lesser episodes then the

LegacyRL, after the training, they behave the same, i.e., they optimize the KPIs of the

UCRAN network to upto 90% of their maximum capacity in the start of the episode,

and then maintain the KPIs at this level despite changes in UCRAN environment.

Fig. 4.2: UCRAN KPIs varying over an episode as the trained RL agents select the S-zone
radii

In both DGRL and LegacyRL, the RL agent has learned to optimize and then maintain the
network S-zone radii to the Pareto-optimal throughout the episode
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In Fig. 4.3, the changes in the s-zone radii of three QoS categories can be observed to

change over the episode. The trained DGRL agent is selecting s-zone radii between the

range of rmin and rmax such that the system KPIs are jointly optimized over each TTI.

Fig. 4.3: S-zone radii of 3 UE categories selected by the trained DGRL agent over an episode
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CHAPTER 5

Conclusion

Over the past few decades, AI has emerged as a powerful tool with diverse applications.

Yet, deploying AI effectively in complex domains like wireless technology requires more

than generic machine learning algorithms. The valuable domain knowledge amassed

by experts and network operators through extensive experimentation and experience is

a crucial resource and AI needs to adapt to incorporate this knowledge to efficiently

solve the problems in wireless networks. Our study addresses this gap by enhancing one

aspect of AI, Reinforcement Learning, through the incorporation of one facet of domain

knowledge, network topology. With this adaptation, we show a visible improvement in

the learning capability of AI to more speedily solve the challenge under consideration.

Our approach involves modeling wireless networks as graph structures, specifically in

the context of UCRAN. We explain the design decisions taken in multiple challenges and

show the effectiveness of the selected DeepWiN graph design through experiments. The

approach, however focused on a wireless network, specifically UCRAN, can be translated

to other domains with non-euclidean and graph data.

We further modify components of RL, particularly in Soft actor-critic (SAC), to facili-

tate learning from graphical input. This involves introducing convolution layers in the

actor, critic, and value networks, adjusting state and action appending in the critic,

and enabling the sampling of graph batches from a replay buffer. Our cross-domain

framework, deep graph reinforcement learning, jointly trains the graph neural network

and SAC.

DGRL is employed in this study to learn the behavior of UCRAN environment with

users in three QoS categories prioritized based on their resources needs. DGRL learns
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to modify the key network parameter of S-zone radius for each QoS category to jointly

optimize for network area spectral efficiency, energy efficiency, user service rate and

reliability satisfaction rate.

In conclusion, our results demonstrate that DGRL, trained on the DeepWiN graph

state, requires 15% fewer training episodes compared to LegacyRL trained on a shallow

state of the UCRAN network. This study underscores the significance of incorporating

wireless network domain knowledge, such as topology, into AI models for enhanced

learning compared to generic and domain-oblivious network features.
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CHAPTER 6

Future Work

6.0.1 Heterogeneous Graph Neural Networks

DeepWiN design proposed in this thesis is homogeneous; containing only one type of

node and one type of edge. All UEs in UCRAN environment are modeled as nodes and

their inter-distance is used to define the edges. However, the DBUs are not included

in DeepWiN graph on the grounds of DBUs being immobile and UCRAN being user-

centric as explained in Section 3.2. More importantly, incorporating DBUs requires the

DeepWiN graph to be heterogeneous as the the number and type of features for DBUs

are different from that of UEs. In addition, the different types of edges are needed to

be including, such as UE-UE, UE-DBU, and DBU-DBU edges differing in their features

and edge weights as well. This complex heterogeneous DeepWiN graph can provide a

more holistic representation of the network and can facilitate reinforcement learning to

learn faster.

A heterogeneous DeepWiN design will require significant modification and research to

adapt DGRL as well. The current graph convolution layers implemented in the actor,

critic and value network in DGRL are compatible to work with only homogeneous

graphs. Therefore, the recent development in heterogeneous [23, 26, 27, 28] graph neural

networks is a promising direction to explore for future.
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6.0.2 Unsupervised and Semi-supervised GNN Training

In DGRL, we jointly train the graph neural networks in soft actor-critic. However, a

number of studies show that pre-training the graph convolution layers before incorpo-

rating them in reinforcement learning models, can significantly improve training. In

addition to supervised training [14, 29], GNNs can be pre-trained in an unsupervised

and semi-supervised manner [30, 31, 32, 33, 34].

Many different techniques, including edge perturbation, node dropping, node feature

masking, random walk sampling and diffusion are used to generate synthetic data from

the input graphs. The GNN models are then trained with a contrastive learning loss

using both the input and synthetic data. Another un-supervised training technique is

used in GNN transformers and auto-encoders where the input graphs are reconstructed

at the output enabling the models to learn embedding of the graphs. These generalizable

embeddings are then used in downstream tasks.
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