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Abstract

We develop a flexible methodology for predicting slip events in a sheared granular sys-

tem. The considered system consists of two-dimensional soft disks between two rigid

horizontal walls, where the top wall is exposed to downward pressure and horizon-

tal elastic shearing force, resulting in intermittent stick-slip regimes. The prediction

methodology first uses topological data analysis to compute the persistent homology

between successive force networks of the system and then quantifies the topological

change by placing a metric between the respective persistence diagrams, resulting in

a time series. Next, we construct a Bayesian stochastic state space model, which

describes the behavior of the time series during the stick regime. We also create

similar models for the stick regime behavior of the time series of more traditional

measures on the granular system. A model identifies departure from the stick regime

by detecting when the predictive error exceeds a specified threshold. The resulting

detections demonstrate that this approach can detect the slip events in advance, with

further investigation revealing a rough sequence of events. First, a local change ap-

pears in the force network and either dissipates or spreads globally. Next, the global

change either triggers a slip event or a much smaller ‘micro-slip,’ depending on if its

magnitude exceeds a critical threshold.

viii



Chapter 1

Introduction

Granular materials are conglomerations of discrete macroscopic particles, and such

materials are ubiquitous in the natural world. Consider the omnipresence of sand,

gravel, and dirt; these are all granular materials. There is a deep connection between

granular media and geological processes [16, 5, 13]. Granular materials also populate

industrial settings, of which seeds, grains, and gravel are just a few examples. Since

the storage, transport, and manipulation of such materials is a facet of daily life, much

research is devoted to understanding their behavior, which can be quite complex.

We will focus on a particular class of granular media systems, those exposed to

shearing force. Fig. 1.1(a) depicts a snapshot of the considered system. The granular

system consists of two-dimensional particles in a rectangular domain. The bottom

wall is static, while the left and right walls have periodic boundary conditions. Both

downward pressure and elastic shearing force are applied to the top wall. The elastic

force is induced by a spring attached to the top wall being pulled horizontally at a

constant velocity.

Sufficiently chosen values of the system’s parameters result in two basic regimes of

behavior, classified by the movement of the top wall [2]. The first, the stick regime, is

characterized by slow movement of the top wall. In this period of minimal movement,

the downward pressure and resulting friction force the top wall to be essentially stuck,

hence the terminology. The second type of behavior, the slip regime, is characterized

by rapid movement of the top wall (relative to the stick regime). These intermittent
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Figure 1.1: (a) DEM simulation of the granular system at a fixed time, with particles
colored by force. The rigid row of particles forming the bottom wall are stationary,
while elastic shearing force and normal compression force are applied to the rigid
row forming the top wall. (b) Horizontal displacement of the top wall for the first
10,000 frames, where n is the number of frames after data collection initialization.
Red points mark the start of slip regimes as determined by the offline method for
regime change identification, which is detailed at the end of Ch. 2.
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regimes are visible in the temporal evolution of the top wall position shown in Fig.

1.1(b).

At a basic level, the transition between these two regimes is caused by the force

built up in the spring attached to the top wall [2, 29]. In the stick regime, the slow

movement of the top wall causes the spring to grow taut, eventually resulting in

regime change. These are the marked points in Fig. 1.1(b). In contrast, during the

slip regime, the rapid movement of the top wall releases the built-up tension of the

spring. After enough energy is spent, the wall becomes stuck again, transitioning into

the stick regime once more.

In sheared granular systems, the prediction of regime change is of great interest.

One component of this interest is the similarity between regime changes in sheared

granular media systems and earthquakes/landslides in geophysical systems [6]. In

particular, the stick-slip transition in sheared granular media bears a resemblance to

the high-level tectonic behavior governing earthquakes [17, 13]. Tectonic plates have

pressure forcing them together with the resulting friction temporarily locking them

in place. During that period, shearing force builds, culminating in the earthquake

event.

With geophysical systems, in some cases, earthquakes have notable precursors:

observable phenomena that precede the event. Foreshocks, smaller events that pre-

cede a large-scale earthquake event are one example, though their predictive potential

is unclear [3, 29]. Another example of precursor behavior is documented in [34], which

analyzes a series of displacement measurements taken at the site of a landslide. The

authors show that the cliff separates into distinct groupings of similarly moving parts

of the cliff, or kinematic clusters, before collapse. The rise in data availability and

precision has caused a recent expansion in the research of tools to properly analyze

signs of imminent geophysical failure events [33].
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Geophysical systems are highly complex, and the prediction of earthquakes is

outside the scope of our research. However, geophysical precursors have an analog in

sheared granular media systems; signs of regime change are known to appear before

the slip transition [3]. In particular, for the considered system depicted in Fig. 1.1,

we will show examples of observable internal changes that occur well before the wall

begins to move.

To utilize the precursors in the considered system for the prediction of upcom-

ing regime change, we apply a novel fusion of topological data analysis (TDA) and

Bayesian statistical models. We focus on precursors seen in the force network, the

dynamic network formed by particles in contact, and the forces between them. Fig.

1.2 depicts a snapshot of the force network of the considered system.

The structure of the force network is visibly quite complex. To overcome this

complexity we use TDA to encode the important properties of the force network

compactly [23]. In Fig. 1.2, we can see a structure of lighter-colored areas, similar to

mountains rising above the darker-colored valleys. By considering the force network

to be a function defined over the network whose vertices correspond to the particles

and edges to the contacts between the particles, we can obtain a powerful description

of the overall structure through persistent homology. Persistent homology succinctly

describes the changes in the topology of the super-level sets of this function through

a persistence diagram. Distance between the persistence diagrams can then be used

to quantify the changes in the consecutive force networks.

We will show that the distance between the persistence diagrams of consecutive

force networks indeed reflects the precursors to regime change. However, the time

series formed by this sequence of persistence diagram distances exhibits complicated

behavior that needs to be analyzed with statistical techniques. This is where we

apply Bayesian methods. We first show that the typical behavior of the time series
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Figure 1.2: Example of the force network of the considered. The force value between
interacting particles is the magnitude of the normal force between them. Force chains,
linked configurations of particles with high levels of force, are heterogeneously dis-
tributed and extend throughout the system.

during the stick regime can be modeled by a particular class of Bayesian models, a

dynamic linear model (DLM). Then we will show that during the slip regime, the

constructed model performs poorly, with large predictive error. We will further find

that the predictive errors of this model can rise well before the wall begins to move
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appreciably, giving this method its predictive potential.

Moreover, the Bayesian modeling approach is not restricted to topological mea-

sures but applies to any measure on the system whose signal during the stick regime

can be modeled by a DLM. We apply the same approach to other more classical mea-

sures, such as the wall velocity and the percolation force. Through this approach, we

will find that out of the considered measures, TDA gives the earliest warning of an

upcoming slip.

This dissertation expands on our research published in the prestigious Physical

Review E [7], providing more detail on our methodology and the underlying theory.

The manuscript is organized as follows. In Chapter 2 we briefly introduce granular

materials and the dynamics relevant to the stick-slip regimes. We then describe the

simulated granular system. In Ch. 3 we introduce the topological measure used to

quantify change between successive force networks, as well as more classical measures

on the dynamics of the granular system. In Ch. 4 we describe the Bayesian modeling

framework used to analyze the measures. In Ch. 5 we detail some types of behavior a

DLM can describe and then specify the model for each of the considered measures. In

Ch. 6 we analyze the events detected by our method before offering our conclusions

and directions for future work in Ch. 7.
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Chapter 2

Granular media and the considered granular system

A system of granular media is a large collection of discrete, macroscopic particles.

Granular systems are typically modeled as large dynamical systems following New-

tonian physics, see [15] for a review. At a high level, the state of the whole system

consists of the individual states (position, momentum, etc.) of each of the particles.

The dynamics of the system’s state are modeled by a system of differential equations

that encode the Newtonian evolution of particles, including the result of particle in-

teraction. The solution of this system of differential equations is the trajectory of the

system, and the state at each time.

Granular media is often contrasted with continuous media. The former is inher-

ently discrete, while the latter consists of a homogeneous material such as a liquid,

gas, etc. Continuous media is typically modeled by partial differential equations; the

Navier-Stokes equations [1]. These two classes of models, a large system of ordinary

differential equations compared to a partial differential equation, encode the funda-

mental difference between these types of media: granular media is discrete, while

continuous media is, as the name suggests, continuous. This difference results in

emergent behaviors in granular systems that do not appear in continuous media [16].

In the case of the experiment depicted in Fig. 1.1, the granular system produces

a stick-slip dynamic in the top wall - a dynamic that would not be present if the

rectangular box contained continuous media.
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2.1 Dynamics of sheared granular media

There are two basic regimes of behavior in the sheared system of granular media that

we consider: the stick and slip regimes, visible in Fig. 1.1(b) in Ch. 1. These regimes

are not unique to our experiment, but have a rich history in sheared granular systems

[2]. However, not all sheared granular systems exhibit stick-slip dynamics.

Recall the sheared system described in Ch. 1. The presence of the intermittent

stick-slip regimes is primarily a result of the interplay between two parameters: the

magnitude of the downward pressure N and the speed of the spring V , sometimes

called the loading velocity. Fig. 2.1 describes the interplay between these parameters

as a phase diagram. For sufficiently large pressure and small loading velocity, the

sheared granular system displays stick-slip dynamics. However, if the pressure is too

small or the spring moves too fast, the system never enters a stick regime [10, 2]. The

behavior of the system under these conditions is referred to as continuous flow, to

indicate that the top wall is moving continuously instead of in alternating regimes.

To cause the considered system to display the desired stick-slip regimes instead of

continuous flow, we performed a numerical investigation to choose appropriate values

of these parameters.

So, with proper selection of the loading velocity and the downward pressure, a

sheared granular system will result in stick-slip dynamics, as in Fig. 1.1(b). But

what is the threshold of shearing force that marks the transition between regimes in a

sheared granular system? Perhaps surprisingly, there is often no definitive threshold.

The stick and slip regimes are defined through the movement of the top wall by

convention. However, the actual causes of regime transitions extend well beyond just

the top wall; regime change is a result of the interactions of particles throughout the

entire system [10].
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Figure 2.1: Diagrammatic depiction of dependence of stick-slip dynamics on magni-
tude of downward pressure N and loading velocity V in a sheared granular system.
Actual values depend on the considered system. For previous experiments on this
dependence, see [2].

Due to the complexity of granular systems, the exact causes of regime change

remain somewhat mysterious [2]. Indeed, this is why our research is important; we

wish to shed light on these critical dynamics. To discuss more of what is currently

known about the mechanics of regime change, we first define a fundamental tool used

to describe systems of granular media: the force network.

The force network, an example of which is depicted in Fig. 1.2, is a weighted

graph. Each particle is assigned a node, and edges are placed between particles in

contact, this unweighted graph is called the contact network. The weight on an edge

is a measure of force between the two particles; in our work, we use the magnitude of

the normal force.

A common feature of force networks in granular systems is a heterogeneous, or

anisotropic distribution of forces [16]. In this context, a heterogeneous distribution

refers to the appearance of connected groups of edges with high forces that extend
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throughout the material interspersed among edges with lower forces. An example of

these groupings, referred to as force chains, is visible in Fig. 1.2.

The force network is deeply connected to the mechanical properties of the material

[23]. A quintessential example of this grain in a silo, which has prompted numerous

experiments [16]. With continuous media, the pressure at the base of the silo increases

with the height of the material. However, this is not the case with a granular material

like grains. Instead, chains of particles in contact with each other, and the walls, can

lock in place and distribute the pressure, causing the silo walls to support additional

weight after some threshold height.

In a dynamic setting, granular materials tend to form temporarily stable micro-

structures, with particles that are ‘jammed’ together. Jammed groups, reflected as

force chains in the force network, exist as solids, with forces transferring from particle

to particle through the self-organized grouping [23, 9].

In sheared granular systems, the stick regime is characterized by such jamming,

while the slip regime is accompanied by large-scale rearrangements of the force chains

[10]. In our system, we observe that at the end of the slip regime, the decreased

shearing force allows for more stable micro-structures to form until eventually the

force chains extending throughout the system are stable enough to ‘catch’ the top

wall. During the stick regime, the force chains remain relatively stable. Then, as the

shearing force builds, it seems that an internal change occurs in the system, triggering

the onset of the slip regime. So, regime change does not just depend on the sheared

wall, but on complex internal dynamics that are still not fully understood.

Full access to the exact force network to study such micro-mechanics in detail

is a strong motivation for the numerical simulation of granular systems. Granular

media is frequently studied computationally through discrete element method (DEM)

simulations [15]. Such simulations numerically solve the system of ordinary differential
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equations to evolve the conglomeration of granular particles forward in time. Since

the number of differential equations to solve increases directly with the quantity of

particles, the size of a simulated system is limited by computational resources. Despite

recent advances in computing, the number of particles remains a practical limitation

[15]. Indeed, the considered system from Fig. 1.1 is a DEM simulation that consists of

a few thousand particles, a relatively small size. We give the details of the simulated

system in the following section.

2.2 Description of the sheared granular system

To produce intermittent stick-slip regimes, we use the previously mentioned elasti-

cally sheared system of granular media. The system consists of N = 2500 circular

particles densely placed in a rectangular domain with periodic boundary conditions

on the right and left. The bottom is fixed, while the top wall is exposed to normal

compressive force and elastic shearing force, resulting in the desired stick-slip dy-

namics. Gravitational force is not included. Figure 1.1(a) shows a snapshot of this

system, which we further describe here.

The state of the system consists of the position, linear momentum, and angular

momentum of the particles, which are modeled by 2-dimensional soft frictional disks.

For particles that are not in contact with others, the Newtonian evolution is linear. To

model particle interactions, we use the linear spring-dashpot model [21]. This model

decomposes the force between two contacting particles into normal and tangential

components, each modeled by a spring.

We use a bi-disperse sample of particles, with a 25% / 75% split between large

and small particles, where the small particles have diameter d = 1.27 cm and mass

m = 1.32 g and the large particles are 25% larger in diameter. The top and bottom
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walls consist of equally spaced (small) particles in a rigid row. The spacing of the

particles forming the bottom row is exactly d. The row of top particles can move,

subject to an elastic shearing force, a normal compressive force, and the contacting

particles below it. The top row also has wider spacing, which allows the internal

particles touching the top wall to more easily ‘catch’ it when transitioning to the

stick regime. Additionally, we also use a larger static friction coefficient for particle-

wall interaction than for particle-particle interaction.

The small particle diameter d and mass m provide the length scale and mass scale

for the linear spring-dashpot model, respectively. The time scale is the binary collision

time τc = 1.25× 10−3. These choices of scale are motivated by previous experiments

with photoelastic particles [11]. In particular, the Young modulus of elasticity that

corresponds to τc is Y ≈ 0.7 MPa.

The linear spring-dashpot model with spring constants for the normal and tan-

gential components that are dependent on τc. The normal spring constant is kn =

mπ2/2τ 2c ≈ 4.17 N/m. Static friction is modeled by the Cundall-Strack method [15],

where a damped tangential spring with spring constant kt = 6kn/7 appears between

particles upon contact. For particle-particle interaction, the static friction coefficient

is µp = 0.7, while as mentioned previously, particle-wall interaction uses a larger

coefficient of µw = 2.

The simulation results in slip-stick dynamics when a sufficiently large pressure p

is applied to the top wall in the −y direction and a spring attached to the top wall

moves at a sufficiently small speed vs in the +x direction. The spring coefficient of the

spring inducing the elastic shearing force is ks = kn/400 (with a restitution coefficient

of 0.5) and is two orders of magnitude smaller than the spring coefficients that govern

particle interactions. The chosen pressure p = 0.02 and spring speed vs = 1.5× 10−3

were selected via numerical investigation as values that induced slip-stick dynamics,

12



as in [2, 10].

The above model for the dynamical system is numerically simulated as a DEM

simulation. The simulation progresses by integrating the Newtonian equations of

motion: basic linear evolution for non-interacting particles and the linear spring-

dashpot model for particles in contact. This is done with a fourth-order predictor-

corrector method using a time step of dt = 0.02 s. We store the results of the

simulation at times spaced by δt = 10dt. The simulation is initialized by first applying

pressure p to the top wall until the particles have ‘settled.’ This is determined by

a sufficiently small ratio of kinetic energy to potential energy. Then, the spring

starts to move in the +x direction at speed vs, causing the system to enter an initial

transient regime, characterized by erratic stick-slip dynamics. After an initial period,

the transient regime transitions to the intermittent stick-slip regimes shown in Fig.

1.1(b), at which point we begin collecting data.

Remark 2.1. In this manuscript, all time-dependent figures are shown in units of δt,

using the index n ∈ N, which denotes the number of δt units that have passed since

data collection was initialized. The corresponding time is tn = nδt + t0 where t0 is

the first data collection time. We will refer to n as the ‘number of frames,’ while any

reference to ‘time’ uses the variable t [seconds].

2.3 Delineation of regimes in the considered system

By design, the considered system detailed in the previous section exhibits intermittent

stick-slip regimes. This can be seen in the sample of top wall position x, and velocity,

vx, shown in Fig. 2.2. The top wall, which is the focus of the downward pressure and

elastic shearing force, undergoes periods of small vx, the stick regime, punctuated by

shorter periods of larger vx, the slip events.
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Figure 2.2: (a) The top wall horizontal position x and (b) the horizontal top wall
velocity vx for the first 10,000 frames of the considered system. The first inset depicts
a sample of vx during the stick regime; the oscillations are typical. The second inset
shows another sample of the stick regime with a micro-slip.

To begin our investigation into the intermittent stick-slip dynamics, we must first

delineate the stick and slip regimes. The two regimes are defined by the speed of

the top wall: low vx corresponds to the stick regime while large vx identifies the slip,

as seen in Fig. 2.2(b). Under this principle, a basic approach for identifying the

slip regime would consist of setting a threshold and if vx surpasses it, identifying the

beginning of the slip event. Then, once the velocity falls below that threshold, the

new stick regime begins.

However, the problem is choosing this threshold. As shown in the inset of Fig.

2.2(b), the wall often oscillates during the stick regime. The amplitude of these

oscillations can remain relatively high even at the end of stick regimes. Consequently,

14



to apply this basic approach, we must choose a threshold that is larger than this

amplitude. However, if we do so, the point where the wall velocity rises above this

relatively large threshold occurs well after the wall has begun to move. So, to more

accurately identify the point at which vx begins to increase, we must use a second,

smaller threshold.

A further complication in the choice of large threshold is the existence of so-called

‘micro-slips,’ events in which the wall moves, but on a smaller scale than large slip

events. An example of a micro-slip in the considered system can be seen in the second

inset in Fig. 2.2(b). This nomenclature is motivated by the literature [28, 9, 18, 19],

though the distinction between slip events and micro-slips is often subjective, based

on the focus of the researcher. In our case, the demarcation is based on a critical

velocity threshold. Events in which the wall movement exceeds this threshold are

defined as slip events and are the focus of our predictive efforts. We will later show

that our choice of critical threshold appears to separate two distinct classes of events

inherent in the system.

With the oscillations and micro-slips in mind, we provide an offline approach for

identifying slip events using two thresholds. ‘Offline’ indicates that this method uses

data after the slip event has begun to identify it, making such a method not useful for

prediction. The algorithm first identifies a slip event when the wall velocity exceeds

a critical threshold vL = 2× 10−3. This is the threshold that distinguishes slip events

from micro-slips. It is also sufficiently larger than the oscillations and noise in the

stick regime. For the identified slip event, the method uses a second, smaller threshold

vS = 2 × 10−4, to determine the beginning of the slip event. We stress that large

fluctuations of the velocity make it impossible to use a single threshold to precisely

identify when slip events start.

In more detail, the algorithm for offline delineation of the stick-slip regimes is as
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follows. First, if the wall velocity exceeds the larger threshold, vL, then a slip event is

detected. Then, the algorithm moves back in time until the value of vx drops below

the smaller threshold vS. The detected beginning of the slip then occurs at the time

when the wall velocity exceeds vS. The end of the slip is identified as the time at

which vx as well as its average over the preceding 50 frames (roughly the period of

typical oscillations in the stick regime) is smaller than vL. For more details on this

method, see [22], where it was introduced.

In this method, the choice of vL is critical, as it is the threshold separating slips

from micro-slips, oscillations, and noise. Our choice of vL = 2× 10−3 is not arbitrary

but instead marks an apparent bipartite classification between slips and micro-slips

in the considered system. In a similar experiment of a granular system under elastic

shearing force, the authors also found a bipartite classification [10]. So, it is not

surprising that we observe evidence of this classification in the frequency plot shown

in Figure 2.3. This panel shows (on the logarithmic scale) the number of detections

made by the offline method for different values of vL. The marked change in slope

indicates a bipartite classification: detections made at that threshold form one class

while the additional detections made at lower thresholds form the other class.

Due to the oscillations in the stick regime, this offline approach was necessary. If

we wish to identify an upcoming regime change as it occurs (i.e., an online approach),

we will need to develop a more sophisticated approach that accounts for them. The

online method we developed is our answer to this. Moreover, the flexibility of the

resulting framework allows us to examine not only the wall velocity vx but also other

measures on the system. Since the transition to the slip regime is deeply connected

to the complex internal structure of the granular system, we hope that appropriate

measures of internal change may allow for the prediction of an upcoming slip. It

is with this motivation that we introduce the topological measures in the following

16



Figure 2.3: The count of offline detections for varying values of vL. The dashed line
marks the selected vL = 2×10−3, roughly located at the changepoint between differing
rates of decrease. The different slopes (on the logarithmic scale) are indicative of a
bipartite classification: events detected at the selected vL form one class (the slip
events) while the additional detections made at smaller vL form another class (the
micro-slips).

chapter.
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Chapter 3

Quantifying topological change between force networks

In the previous chapter, we defined the contact network of a granular system. We

begin by making the definition more precise. At time t, the contact network CNt is a

graph where each vertex corresponds to a particle in the system, and edges are placed

between particles in contact. Each particle has a position, a point in R2 located at

its center1. So, CNt has a natural embedding in R2: each vertex is mapped to the

position of its particle, while each edge is mapped to the line segment connecting the

positions of the particles it connects. Fig. 3.1(a) shows a simple contact network,

which we will use for illustration throughout this chapter.

In particular, since the contact network CNt is a collection of vertices and edges

where the embedded edges are straight, non-intersecting line segments, it is a simpli-

cial complex. Fig. 3.1 shows that this is the case for a simple contact network. For

more details on the precise definition of a simplicial complex and the proof that CNt

is always a simplicial complex, see Sec. 3.1.

Since CNt has a simplicial complex representation, its topological structure can

be captured by simplicial homology, which describes the number of connected compo-

nents and distinct loops in the contact network. Moreover, simplicial homology can

be computed algorithmically [35].

As introduced in Ch. 2, we further associate a value to the edges in the contact

1All the theory in this chapter applies equally to a three-dimensional granular system, where the
position of each particle is a point in R3
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Figure 3.1: Example of particles (a) with a force network (b): an embedded contact
network CNt of four vertices and five edges, with a force function f : CNt → R that
takes values 0, 1, 2, 3. The super-level sets for the decreasing sequence of thresholds
3, 2, 1, 0, depicted in (c)-(f), are a nested sequence of sub-complexes, a filtration. The
persistence diagrams at the zero and one-level are shown in (g)-(h).

network that quantifies the force between each edge’s two particles, the force network.

The force network is a real-valued function on the contact network ft : CNt → R.

Recall in Ch. 2 that we define ft on an edge in CNt to be the magnitude of the
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normal force between the edge’s particles at time t. The force network is extended to

each vertex v by defining ft(v) to be the maximum of ft over the edges with v as an

endpoint. Fig. 3.1(b) depicts an example force network over the contact network in

panel (a).

This extension to the vertices guarantees that each super-level set of the force

network is also a simplicial complex. That is, the super-level sets are sub-complexes of

the contact network. Moreover, as depicted in Fig. 3.1(c)-(f), the super-level sets for

a decreasing sequence of force thresholds result in a nested sequence of sub-complexes.

This sequence of sub-complexes is called the filtration of the force network.

As each super-level set is a simplicial complex, we can associate a simplicial ho-

mology group with each force threshold. For example, in Fig. 3.1(d) the super-level

set has two connected components and no loops while in (e) the super-level set has

one connected component and one loop. To understand the topological structure of

the force network, we study how homology changes with the force threshold. This is

quantified by persistent homology which, like simplicial homology, can be computed

algorithmically [35].

Persistent homology describes how the homology of the super-level sets of a force

network changes with a threshold value r decreasing from ∞ to −∞. Note that due

to the finite number of edges, the force function takes a finite set of values that can

be listed in descending order, e.g., r1 > r2 > ... > rm. At r = ∞, the super-level set

is empty, so there are no connected components or loops. This continues until r = r1,

the maximal value in the force network, upon which a super-level set with connected

component(s) and possibly loops appears (e.g., at r = 3 in Fig. 3.1).

As the force threshold r decreases from r1 to the next discrete force value r2, the

super-level set is unchanged until the threshold reaches r2. In this new super-level

set, new connected components and loops may appear, but connected components
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may also merge (as in Fig. 3.1 at r = 1). As r continues to decrease, loops appear2

and connected components appear/merge whenever r reaches the next discrete force

value until the threshold reaches the lowest force value. At this point, the super-level

set is the entire contact network, and this remains the case as the threshold decreases

to −∞.

The appearance and disappearance of topological features (connected components

and loops, captured by the homology groups) as the force value decreases can be

encoded in a collection of pairs (b, d). Each topological feature is assigned a pair

(b, d) where b, called the ‘birth’, is the force value at which the feature appeared and

d ∈ [−∞, b), called the ‘death’, is the force value at which the feature disappeared

(e.g., when connected components merge, or when a loop is filled). A death of d = −∞

indicates a feature present at the lowest force value, i.e., a feature in the contact

network, and the associated point is called a ‘point at infinity.’

The collection of these pairs for the zero-level homology is called the zero-level

persistence diagram, denoted PD0. Similarly, the collection of pairs for the one-level

homology is the one-level persistence diagram, PD1. As a convention, persistence

diagrams also include a countably infinite set of copies of birth-death pairs of the

form (x, x) for every x ∈ R, referred to as the ‘diagonal’ of the diagram. A persistence

diagram can be visually represented by plotting the birth-death pairs (and diagonal)

in the plane, with points at −∞ placed just below the lowest force level.

Fig. 3.1(g) and (h) depict the zero and one-level persistence diagrams of the

example force network. At the zero level, a connected component appears at threshold

r = 3, a second at r = 2, the two merge at r = 1, and that single connected component

is present at the lowest level. Hence, the diagram PD0 in Fig. 3.1(g) has two points:

2If higher dimensional simplices are allowed, loops may also disappear by being ‘filled in’ by
2-simplices, and in general, an element in the k-th homology group can be filled in by k+1-simplices
[23].
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(2, 1) represents the component that merges, and (3,−∞) represents the component

that is still present at the lowest level. Similarly, the diagram PD1 has two points,

(1,−∞) and (0,−∞), representing the loops that appear at thresholds 1 and 0,

respectively, and remain at the lowest threshold.

Recall from Ch. 2 that we will be examining the force network of a sheared

granular system designed to exhibit intermittent stick-slip regimes. Based on similar

experiments [2, 10], we expect the force network of the sheared granular system to

exhibit signs of regime change before the onset of a slip. To identify these precursory

changes, we first quantify the complex structure of the force network at fixed times by

computing its zero and one-level persistent diagrams. Next, we quantify changes in

the persistence diagrams of the force network over time, providing us with a measure of

topological change. To do this, we define a distance between two persistence diagrams

in Sec. 3.4. This allows us to quantify topological changes between successive force

networks.

At the end of this section, we will introduce more conventional measures for quan-

tifying changes between successive force networks. We will show in Ch. 6 that the

measure based on persistent homology allows us to detect an upcoming slip event

earlier.

3.1 Simplicial representation of the contact and force networks

We began this chapter by stating that the contact network is a simplicial complex,

as are the super-level sets of the force network. To make this claim precise, we first

properly define simplices and simplicial complexes.

Definition 3.1. Let {v0, ..., vk} be a collection of affinely independent points in Rn

and σ ⊂ Rn be their convex hull. We then say that σ is a simplex of dimension k.
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If τ is the convex hull of a subset of {v0, ..., vk}, we say that τ is a face of σ. We

refer to {v0, ..., vk} as the vertices of σ and use the shorthand [v0, ..., vk] to denote

σ.

Lower-dimensional simplices are familiar objects: points, line segments, filled tri-

angles, and tetrahedrons for 0, 1, 2, and 3-dimensional simplices, respectively. By

construction, the contact network is indeed a collection of simplices, where the parti-

cles are 0-simplices and the edges, line segments connecting particles, are 1-simplices.

Later, we will show that the contact network is a simplicial complex, as defined below.

Definition 3.2. Let X be a collection of simplices in RN . We say that X is a

simplicial complex if it satisfies the following conditions:

1. For each σ ∈ X, if τ is a face of σ then τ ∈ X

2. For each σ1, σ2 ∈ X, if σ1 ∩ σ2 ̸= ∅ then σ1 ∩ σ2 ∈ X

We then call the subset of RN consisting of the union of the simplices of X the

carrier of X, and denote it by |X|. A simplicial complex Y is a sub-complex of X

if Y ⊆ X.

Observe how the contact network and super-level sets depicted in Fig. 3.1 im-

mediately fit this definition: the vertices on the endpoints of each edge are always

in contact network/super-level sets (condition 1) and edges only meet at vertices

(condition 2). For the general case, we give the following proposition and its proof.

Proposition 3.3. Let CN be the contact network of a granular system and f : CN →

R be a force function defined on the edges and each vertex v by defining f(v) to be

the maximum of f over the edges with v as an endpoint. Then CN is a simplicial
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complex and each super-level set at a threshold r ∈ R, denoted by

Xr = {σ ∈ CN : f(σ) ≥ r}

is a sub-complex of CN3. Further, r1 ≥ r2 implies Xr1 ⊆ Xr2.

Proof. As already stated, CN is a collection of 0 and 1-simplices (the vertices and

edges). Property 1 in Def. 3.2 is quickly satisfied. For any edge e ∈ CN, its (proper)

faces are the vertices it connects, which are in CN.

Property 2 is satisfied due to the physical nature of contacting particles. As shown

in Fig. 3.2, two particles in contact meet along a line segment of positive length. We

impose the physical restriction that particles cannot overlap, e.g., each point on the

interior of a particle cannot also belong to another. Observe in Fig. 3.2 how a δ/2-

neighborhood of the line segment connecting the centers of the particles (i.e., the

edge in the contact network) belongs to either the first particle, the second, or the

boundary at which they meet.

Suppose, for contradiction, that two edges in the contact network, connecting

intersect at a non-vertex point. Let δ1 be the length of the line segment along which

the contacting particles of the first edge meet, and let δ2 be the same for the second

edge. For δ = min(δ1, δ2), consider a point in the δ/2 neighborhood of the non-vertex

intersection that is not on the boundary of any of the four particles. This point must

simultaneously be in the interior of one of the first edge’s particles and one of the

second edge’s particles, which contradicts the non-overlapping restriction. So, two

edges cannot intersect at a non-vertex. Since properties 1 and 2 of Def. 3.2 are

satisfied, CN is a simplicial complex.

3The empty set is considered a simplicial complex, so the claim that Xr is a sub-complex is
trivially true for r > max f .
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Figure 3.2: Diagram of two particles in contact meeting along a line segment of length
δ.

Next, let r ∈ R. The super-level set Xr is a subset of CN and is therefore a

collection of simplices where property 2 in Def 3.2 is satisfied. Property 1 is satisfied

by defining f on each vertex as the maximum of f on the vertex’s edges. By this

definition, for any edge e ∈ CN and one of its vertices v, f(v) ≥ f(e). Consequently,

if e ∈ Xr then v ∈ Xr, since f(v) ≥ f(e) ≥ r. So, each Xr is a sub-complex of CN.
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Lastly, suppose r1 ≥ r2. Let σ ∈ Xr1 ; then f(σ) ≥ r1. But then f(σ) ≥ r2, so

σ ∈ Xr2 . As a result, a decreasing sequence of thresholds corresponds to a nested

sequence of sub-complexes.

3.2 Homology of simplicial complexes

A simplicial complex has a definitive topological structure. In the case of the contact

network and super-level sets of the force network, the topology is characterized by two

quantities: the number of connected components and the number of loops. In this

section, we will show how a purely algebraic characterization of simplicial complexes

allows us to extract those quantities through the simplicial homology of a simplicial

complex.

We begin by defining the k-th chain group of a simplicial complex, the abstract

algebraic characterization of the simplices of dimension k.

Definition 3.4. Let X be a simplicial complex. The k-th chain group over a ring

R, denoted by Ck, is the collection of all formal sums of the form

c =
∑
i

aiσi

where each σi is a k-simplex of X and ai ∈ R. Each c ∈ Ck is called a chain. We

will only consider the case where R = Z2 so that Ck is a vector space for which the

collection of k-simplices forms a basis.

To extend the definition of the chain groups of X to all k ∈ Z, we use the conven-

tion that the k-th chain group is considered trivial if there are no k-simplices, which

is trivially the case for k < 0.

With Z2-valued coefficients a k-chain c has a straightforward interpretation: c
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represents a collection of k-simplices where a coefficient of one for a simplex indicates

the simplex is present in the collection and a coefficient of zero indicates the simplex

is not.

In addition to the sequence of chain groups {..., Ck−1, Ck, Ck+1, ...}, the purely

algebraic formulation of a simplicial complex includes a sequence of homomorphisms,

called the boundary maps, that keep track of the faces of the simplices. The k-th

boundary map is simply a linear operation from Ck to Ck−1 that maps each k-simplex

to its k− 1-dimensional faces, or more precisely, the chain representing the collection

of its faces.

Definition 3.5. The kth boundary operator for chain groups over Z2 is the linear

operator ∂k : Ck → Ck−1 defined on a k-simplex σ = [v0, ..., vk] by

∂kσ =
∑
i

[v0, ..., v̂i, ..., vk]

where v̂i indicates the removal of the vertex vi. The boundary operator extends linearly

to general k-chains. For the definition of the boundary operator on chain groups over

a general ring R, see [35].

The boundary maps have the property that their composition is trivial, which is

made precise in the following proposition and its proof.

Proposition 3.6. Let {..., Ck−1, Ck, Ck+1, ...} be the chain groups (over Z2) of a sim-

plicial complex. Then the composition ∂k∂k+1 : Ck+1 → Ck−1 is trivial:

∂k∂k+1 = 0

Proof. To see why the composition of boundary maps is trivial, consider a k + 1-

simplex σ = [v0, ..., vk+1]. If k < 1, ∂k∂k+1σ = 0 because ∂0 is trivial. So, suppose
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k ≥ 1. From Def. 3.5, the k-simplex ∂k+1σ is the formal sum of the k + 2 simplices

made by removing each of the vertices v0, ..., vk+1. Note that each particular vertex,

vj, is present in exactly k+1 terms in the sum. Next, when examining ∂k∂k+1σ, note

that by the linearity of the boundary operators,

∂k

(∑
i

[v0, ..., v̂i, ..., vk+1]

)
=
∑
i

∂k[v0, ..., v̂i, ..., vk+1]

Each term in the sum on the right, ∂k[v0, ..., v̂i, ..., vk+1], is a k − 1 simplex that is

the formal sum of k + 1 simplices made by removing each of the vertices v0, ..., vk+1,

except for vi, which was already removed. Further, any vertex vj ̸= vi is present in

exactly k terms of this sum.

So, ∂k∂k+1σ is a double formal sum of k − 1-simplices composed of all possible

permutations of removing exactly two vertices. More importantly, each vertex vj is

present in exactly k(k+1) terms of the double sum. Since the coefficients of the chain

groups are taken over Z2 and k(k+1) is an even number, the coefficient of each vertex

vj is zero, resulting in ∂k∂k+1σ = 0. By extending linearly to general k+1-chains, we

can conclude that the composition of boundary maps, ∂k∂k+1 is trivial4.

Let us return to Fig. 3.1 to illustrate how chain groups and boundary maps

capture topological structure and the importance of Prop. 3.6. If we consider the

simplicial complex in panel (c), we can state all the chain groups and boundary

maps. There are two vertices, v1 and v3, and a single edge, e2, connecting them. So,

C0 = {0, v1, v3, v1+v3}, C1 = {0, e2}, and the remaining chain groups are trivial. The

only non-trivial boundary map is δ1, which maps e2 to its vertices, the chain v1 + v3.

Observe how the connected component can be viewed as the quotient in C0 of

the kernel of ∂0, all of C0, and image of ∂1, the subgroup {0, v1 + v3}. This quotient
4The composition of boundary maps on chain groups over a general ring is also trivial, see [35].
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identifies v1 with v3, effectively ‘collapsing’ the two vertices along their connecting

edge. The triviality of ∂0∂1 guarantees that this quotient group is well-defined since

∂0∂1 = 0 implies the kernel of ∂0 is a subgroup of the image of ∂1.

In general, a sequence of groups and homomorphisms where quotient groups of

the kernel and image of subsequent homomorphisms are well-defined is called a chain

complex, defined below.

Definition 3.7. Let C∗ = {..., Ck+1, Ck, Ck−1, ...} be a sequence of groups and let

∂∗ = {..., ∂k+1, ∂k, ...} be sequence of homomorphisms between them with each ∂k :

Ck → Ck−1. We say that (C∗, ∂∗) is a chain complex when

∂k∂k+1 = 0 (3.1)

In a chain group, every quotient group

Hk :=
ker ∂k
im ∂k+1

(3.2)

is well-defined. The quotient group Hk is called the k-th homology group of the

chain complex.

For a simplicial complex X, we call the homology groups of its chain complex the

simplicial homology of the complex. As we have alluded to previously, the simplicial

homology of a complex is the same as the singular homology of its carrier as a subset

of R2, which captures the subset’s topology [35].

Proposition 3.8. Let X be a simplicial complex. Then the homology groups Hk of its

chain complex are equivalent to the respective singular homology groups of its carrier

|X| up to homomorphism. The dimension dim(Hk) is called the k-th Betti number,

denoted by βk.
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From this remarkable proposition, we can rest assured that the purely algebraic

homology groups of the chain complex of a simplicial complex return information

about its topology. In particular, β0 is the number of connected components and

β1 is the number of loops. The advantage of simplicial homology is that it can be

computed algorithmically, allowing us to calculate the Betti numbers of a simplicial

complex.

The algorithmic computation of homology is based on matrix manipulation of

matrix representations of the boundary maps, for which we provide a summary here.

With respect to the bases of the chain groups, the boundary maps can be represented

as Z2-valued matrices. For example, in Fig. 3.1(f), the matrix representation of ∂1

with respect to the basis of {v1, v2, v3, v4} for C0 and {e1, e2, e3, e4, e5} for C1 is

M1 =



1 1 0 0 0

1 0 1 1 0

0 1 1 0 1

0 0 0 1 1


To compute H1, we would need to find the kernel of ∂1 and the image of ∂2 in C1 in a

format where we can take their quotient. In the case of the former, we can extract the

kernel of ∂1 from M1 by using elementary row and column operations to manipulate

the matrix into its Jordan-Normal form. The column operations correspond to a

change in the basis of C1. With the Jordan-Normal form of M1 and the corresponding

new basis of C1, we can identify the kernel of ∂1 as the span of a subset of this new

basis, as per the Jordan-Normal form.

We can similarly apply elementary operations to M2 to find the image of ∂2. In

this example, ∂2 is trivial, so its image is simply {0}. However, in general, we first
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apply row operations to change the basis of C1 to that obtained from the column

operations on M1. Next, we apply column operations to M2 to manipulate it into

row-echelon form, from which we can extract the image as the span of a subset of

the new basis of C1. Because the kernel of ∂1 and the image of ∂2 are taken over the

same basis, we can easily compute their quotient.

In general, this is the process for computing Hk: apply row and column operations

to put Mk in its Jordan-Normal form, then apply row and column operations to put

Mk+1 in the row-echelon form with the same basis in Ck. A full description of the

algorithmic computation of homology can be found in [35].

3.3 Persistent homology of filtered simplicial complexes

We have shown that in a force network, the super-level sets are simplicial complexes.

So, for each force threshold, we can associate simplicial homology groups where the el-

ements of H0 correspond to connected components and the elements of H1 correspond

to loops of the super-level set above that threshold. In this section, we will examine

how to track these elements over the homology groups associated with a decreasing

sequence of thresholds. The persistent homology of the force network captures at

what thresholds these elements first appear and when/if they disappear.

Persistent homology requires a filtration, a nested sequence of simplicial complexes.

Definition 3.9. Let X be a simplicial complex and f : X → R such that each super-

level set

Xr = {σ ∈ X : f(σ) ≥ r}

is a sub-complex of X. For a decreasing sequence r0 > r1 > ... > rm we call the nested
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sequence of simplicial complexes

∅ ⊆ Xr0 ⊆ ... ⊆ Xrm ⊆ X

a filtration of X. Equivalently, we also refer to X as a filtered simplicial com-

plex when the filtration is understood.

The force network has a natural filtration over its contact network. Since its

force function only takes a finite set of values (defined on the finite set of edges),

we can sort these values in descending order into a unique sequence of thresholds

r0 > ... > rm = 0. We refer to the resulting sequence of super-level sets as the

filtration of a force network. For example, the filtration in Fig. 3.1 is induced by the

thresholds 3, 2, 1, and 0 and is the depicted complexes in (b)-(e).

For the remainder of this section, let us consider a general filtered simplicial com-

plex

∅ ⊆ Xr0 ⊆ ... ⊆ Xrm = X

and let (Ci
∗, ∂

i
∗) denote the chain complex of the simplicial complex Xri .

First, note that the natural inclusion map from each Xri → Xri+1 maps each

simplex at filtration level ri to the same simplex at level ri+1. Based on this natural

inclusion, we can construct an inclusion map between chain groups, the map ιi :

Ci
∗ → Ci+1

∗ which maps each simplex σ ∈ Ci
∗ to the same simplex in Ci+1

∗ and extends

linearly to general chains.

Next, observe that the inclusion maps commute with the boundary maps. To

see why, consider a k-simplex σ ∈ Ci
k. Applying the boundary map results in the

32



k − 1-simplex ∂kσ ∈ Ci
k−1 consisting of the formal sum

∂kσ =
∑
i

σî

where σî is shorthand for removing the i-th vertex, as in Def. 3.5. Applying the

inclusion map results in the same formal sum, now at the filtration level i+1, ιi∂kσ ∈

Ci+1
k−1

ιi

(∑
i

σî

)
=
∑
i

ιiσî =
∑
i

σî

Conversely, applying the inclusion map first yields the same formal sum in Ci+1
k−1:

∂kι
iσ = ∂kσ =

∑
i

σî

Because of this commutativity, we can consider an inclusion-induced homomor-

phism from the homology groups at the i-th filtration level to the homology groups

at the i+ 1-th filtration level5. This is made precise in the following proposition.

Proposition 3.10. For a filtered simplicial complex, define the map ϕi
k : H

i
k → H i+1

k

by

ϕi
k([ck]

i) = [ιi(ck)]
i+1

where [ck]
j indicates the element of the quotient group Hj

k with a representative ck ∈

ker ∂k ⊆ Ci
k. Then the map ϕi

k is a well-defined homomorphism.

Proof. Suppose [ck]
i ∈ H i

k, then ck ∈ ker ∂k ⊆ Ci
k. The first condition for the map in

Prop. 3.10 to be well-defined specifies that the mapping of the representative ck at

the i + 1-th level must be in the kernel of the boundary map. By commutativity of

the inclusion and boundary maps, ∂k(ι
i(ck)) = 0, so ιi(ck) ∈ ker ∂k ⊆ Ci+1

k .

5For more details on the rich theory behind the structure of homology groups over a filtration,
see [35].
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Second, we must show that the map, which is stated using a representative of the

equivalence class of the quotient groups, is well-defined over the equivalence class.

Suppose [c̃k]
i = [ck]

i. That is, c̃k− ck is in the image of ∂k+1 in Ci
k. By commutativity

of the inclusion and boundary maps, ιi(c̃k − ck) is in the image of ∂k+1 in Ci+1
k .

Then by linearity of the inclusion map, ιi(c̃k) − ιi(ck) is in the image of ∂k+1, so

[ιi(c̃k)]
i+1 = [ιi(ck)]

i+1.

So, ϕi
k is well-defined. Lastly, by linearity of the inclusion map, ϕi

k is a homomor-

phism.

With the sequence of homomorphisms between the homology groups over the

filtration, we can track the appearance and disappearance of different elements. For

each element mk ∈ H i
k, if mk is not in the image of the homomorphism from the

previous filtration level, ϕi−1
k : H i−1

k → H i
k, then we say that the element is born

at the filtration threshold ri. For such an element, if we can identify the first level

j where ϕj
k(...ϕ

i
k(mk)) = 0, then we say the element dies at the filtration threshold

rj. If this does not occur, then we say the element mk persists through the entire

filtration.

Using this approach, we can parameterize the k-level persistent homology by a

multiset of birth-death pairs [35]. In addition to the persistence pairs, we also consider

a countable set of abstract elements representing copies of the diagonal, {∆1,∆2, ...}.

Each copy ∆i of the diagonal represents the diagonal line b = d where birth is equal

to the death, and can be thought of as a topological feature that instantly disappears

[26]. The distance between a persistence pair and a copy of the diagonal is the shortest

distance from that point to the diagonal line, while the distance between two copies

of the diagonal is zero. This collection is called the persistence diagram of the filtered

complex, defined below.
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Definition 3.11. Let X be a filtered simplicial complex. For each k ∈ Z, the k-level

persistence diagram of a filtered simplicial complex, denoted PDk, is the multiset

of ordered pairs of the form (ri, rj) with ri > rj ∈ Z ∪ {−∞} be the birth-death

pairs of the k-th level persistent homology of X, along with a countable set of abstract

elements {∆1,∆2, ...}. Each ∆i is called a copy of the diagonal. Each pair represents

a k-dimensional homology element that first appears at filtration threshold ri and

persists until disappearing at filtration threshold rj (or through the entire filtration if

rj = −∞). Further, a metric d is placed on the space of persistence diagrams, where

d(x, y) is the Euclidean distance for two persistence pairs, the shortest distance to the

diagonal line if x or y is a persistence pair and the other is a copy of the diagonal,

and zero if both x and y are copies of the diagonal.

Similarly to the computation of homology of simplicial complexes, persistent ho-

mology can be calculated by manipulation of matrix representations. In this case, the

boundary maps across filtration levels are represented by Z2[t]-valued matrices that

encode the filtration levels of simplices. Details on an algorithm for this computation

can be found in [35]. The described algorithm, similar to Gaussian elimination, is

O(N3) in the worst case, where N is the number of simplices. The authors note that

the typical behavior appears to be O(N).

3.4 Distances between persistence diagram representations of successive force

networks

To quantify the topological change between successive force networks in the granular

system, we will consider metrics that quantify the difference between the persistence

diagrams of successive force networks. While there are numerous such metrics, we will

consider the family of Wasserstein distance for persistence diagrams, which are based

35



on the general principle of measuring the minimal ‘work’ required to move the points

in one diagram to the other. These metrics are closely related to the Wasserstein

distance for probability measures, whose historical context we explore below. We will

show the distinction between the two, which is intrinsically connected to the role of

the ‘diagonal’ in persistence diagrams.

The Wasserstein distance for probability measures is historically formulated in

the context of optimal transport [26]. The classical optimal transport problem is

as follows: for a distribution µ on a space X, we wish to find the minimal work to

‘transport‘ the mass represented by µ to a second distribution ν on X. In the Kan-

torovich formulation, a transport plan is a measure on the product X ×X indicating

the mass transported. More precisely, γ is joint distribution with marginals µ and ν.

If w : X ×X → R is the function where w(x, y) is the work to transport mass from

x to y, the minimal work is the infimum of
∫
X×X

wdγ over transport plans.

The p-th Wasserstein distance for probability measures is defined as this quantity

raised to the 1/p-th power where the work is the distance raised to the p-th power.

For example, the 1-th Wasserstein distance for probability measures is exactly the

minimal distance over transport plans where the work required is simply distance.

This is formulated precisely in the definition below.

Definition 3.12. Let (X, d) be a metric space, and µ, ν be two distributions on X.

The p-th Wasserstein distance is given by

Wp(µ, ν) =

(
inf

γ∈Γ(µ,ν)

∫
d(x, y)pdγ

)1/p

(3.3)

where Γ(µ, ν) is the set of joint distributions with marginals µ and ν, the allowable

transport plans.

Before moving on, we note that when µ and ν are empirical distributions with
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the same number of elements, then the Wasserstein distance reduces to an infimum

over permutations of the elements [14]. Without the diagonal, a persistence diagram

can be viewed as an empirical distribution on R2. However, the classical formulation

of the optimal transport problem does not apply, since we wish to allow points (i.e.,

persistence pairs) to be transported to the diagonal. Nevertheless, the underlying

principle is still the same; the Wasserstein distance between two persistence diagrams

can be interpreted as the minimal work to move the points from one diagram to the

other.

With this in mind, we will define the Wasserstein distance for persistence diagrams

through bijections, the standard approach in the literature [26]. To build up the

intuition behind a transport plan for persistence diagrams, consider the two example

persistence diagrams in Fig. 3.3(a)-(b), where (a) is the zero-level persistence diagram

of the example force network in Fig. 3.1. Panel (b) depicts a slightly different zero-

level persistence diagram for a fictional force network. There are an infinite number

of bijections between the two diagrams, since each persistence pair in (a) can be

mapped to not only another pair in (b) but any point on the diagonal. Fig. (c) shows

one example of such a bijection in which the points at infinity are mapped together,

the short-lived point in (b) is mapped to the diagonal, and the remaining pairs are

mapped together.

Recall that a persistence diagram PD is a finite multi-set of persistence pairs

along with countable copies of the diagonal, {∆1,∆2, ...}. Consequently, a bijection

can always be found between two persistence diagrams. Next, recall that the distance

d between a persistence pair and any ∆i is the shortest distance from the point to the

diagonal line. Additionally, the distance from two copies of the diagonal, some ∆i and

∆j is zero. So, for a bijection between two persistence diagrams, we can consider a

metric of distance based on the distances between mapped elements in the bijection.
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Figure 3.3: Panel (a) shows the zero-level persistence diagram of the force network of
Fig. 3.1, while (b) is the zero-level persistence diagram of a different example force
network. Panel (c) depicts a possible bijection between the diagrams.

This is the basis of the Wasserstein distance for persistence diagrams, defined below.

Definition 3.13. Let PD and PD′ be persistence diagrams and p ∈ [1,∞). The p-

th Wasserstein distance for persistence diagrams is defined as the following

infimum over bijections between PD and PD′, Γ(PD,PD′):

Wp(PD,PD
′) = inf

γ:PD→PD′

(∑
x∈PD

d(x, γ(x))p

) 1
p

(3.4)

After this point, the term Wasserstein distance will be used exclusively to refer to the

Wasserstein distance for persistence diagrams.

Note that for any p ∈ [1,∞) the term inside the infimum in Def. 3.13 is non-

negative. So, the Wasserstein distance is always non-negative, though it need not

be finite. Indeed, if two diagrams have a different number of points at infinity, their

Wasserstein distance is infinite.

To guarantee a finite Wasserstein distance, we follow the convention that the

lowest filtration level of a force network is the high-dimensional simplex composed of

all the vertices in the network. E.g., if the network has k+1 vertices v0, ..., vk, this is
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the k-simplex [v0, ..., vk]. While generally this simplex cannot be embedded in R2, it

still fits the abstract algebraic formulation of simplicial complexes in Sec. 3.1. This

level is artificially placed at a threshold below the contact network.

Of course, from the introduction of this artificial level, the persistent homology

is no longer that of the original force network. However, the alterations are fairly

straightforward since this complex is a single component topologically equivalent to

a point. Applying this convention results in all components being connected and all

loops being filled in. So, all zero-level diagrams have a single point at infinity (which

can be mapped together in bijections) and all higher-level diagrams have no points

at infinity. Fig. 3.4 depicts the persistence diagram of the simple example in Fig. 3.1

when this convention is applied. Observe the minimal difference to Fig. 3.1(f)-(g).

Figure 3.4: (a) The zero-level persistence diagram and (b) the one-level persistence
diagram of the simple force network in Fig. 3.1(b) under the convention that an
artificial lowest level is the four-dimensional simplex [v1, v2, v3, v4]. Compared to the
true persistence diagrams in Fig. 3.1(g)-(h), PD0 is unchanged, and in PD1 the two
points at infinity now have a death at the threshold 0.

One of the motivating factors for considering the Wasserstein distances between
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filtered simplicial complexes is stability: small changes in the force network induce

small changes in the persistence diagrams, as measured by the Wasserstein distances.

In the inequality below, the functions f and g are abstractions of the filtration of a

filtered simplicial complex. Note that the convention of having the lowest level of all

force network filtrations artificially defined as the simplex of all vertices results in a

uniform domain, allowing successive force networks to be directly comparable, as in

the following theorem. For the proof of a more general version, see [8].

Theorem 3.14. Let X be a triangulable, compact metric space and f, g : X → R be

tame Lipschitz functions. Then the p-th Wasserstein distance between the persistence

diagrams6 of the respective functions, denoted Wp(f, g) satisfies

Wp(f, g) ≤ C
1
p · ||f − g||

1− k
p

∞

for constants C and k that depend on the Lipschitz constants of f and g and the space

X.

So, the p-th Wasserstein distance is stable in the sense that an increase in the

value of Wp between successive force networks implies a corresponding increase in the

maximal difference between those force networks. Conversely, if the maximal force

differential is smaller, the value of Wp will be correspondingly smaller.

The p-th Wasserstein distance is analogous to lp norms. At the extreme, the abso-

lute Wasserstein distance W1 is the sum of all changes between the infimal transport

plan. So, the bottleneck distance is highly sensitive to outliers in differences between

the persistence diagrams (similar to the l∞ norm). In contrast, the W1 is dominated

by the average difference between persistence pairs, and larger changes can be ob-

scured when there is a large number of pairs, which is the case for the considered

6This inequality holds for the persistence diagrams at any level.
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granular system.

In our work, we use the second Wasserstein distance, a middle ground between

those two extremes. Large changes are less obscured than with the W1, but outliers

do not dominate the measure. We define the following univariate measure on the

granular system, a sample of which is shown at the end of this chapter in Fig. 3.6(c).

Definition 3.15. For the considered sheared granular system, let PD0(n) denote the

zero-level persistence diagram of the force network at frame n. The second Wasser-

stein distance, hereafter denoted by W2, is given by

W2(n) = W2

(
PD0(n− 1),PD0(n)

)
.

3.5 Additional measures of change between successive force networks

To analyze the evolution of the sheared granular system, we focus on measures that

provide some metric of change between successive force networks. One simple measure

which we have already encountered in Ch. 2, is the horizontal wall velocity vx.

We have also introduced a persistent homology-based measure, the zero-level second

Wasserstein distance W2, which is a metric on the changes between the persistence

diagrams of successive force networks of the granular system.

However, Wasserstein distances, and persistent homology in general, are far from

the only way to capture changes between successive force networks of a granular

system. A more conventional metric we will consider is based on the differential force

network (DFN) of the sheared granular system. The DFN at frame n, denoted by

DFN(n), is a function over the union of the contact networks at frames n− 1 and n.

For an edge present in both, the differential force is the difference between the force

values at frames n− 1 and n, while for an edge present at only one of the frames, the
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differential force is the force value at that frame.

The measure on the differential force network that we consider is the percolation

force. The percolation force is the largest differential force level df ∗ such that the

super-level set of DFN(n) above df ∗ is a graph that ‘percolates’ through the system.

More precisely, we give the following definition for the left-right percolation force.

Definition 3.16. The left-right percolation force fplr(n) is the maximal value

df ∗ such that the super-level set of DFN(n) above df ∗ has a connected component in

contact with both the left and right boundaries of the domain of the granular system7.

Figure 3.5: Example of the differential force network DFN in (a), and the resulting
super-level set at the level of the left-right percolation force fplr in (b). The largest
connected component in (b) indeed connects the left and right walls.

The value fplr(n) marks the force at which a force chain percolates across the

entire differential force network. An example of this is shown in Figure 3.5, with

the corresponding super-level set shown in panel (b). The left and right walls are

7A similar measure is the top-bottom percolation force fptb. In the analyses we performed, we
found that these measures are interchangeable, so we focus exclusively on fplr for brevity.
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connected by that super-level set, while the super-level set for a larger differential

force threshold would not connect the walls. So, higher values of this measure indicate

larger changes in the successive force networks that percolate across the entire system.

Note that localized changes in the differential force network are not necessarily

reflected in the percolation force value. For example, in Fig. 3.5 suppose that at one of

the edges, the force value at frame n is significantly larger, increasing the differential

force of that edge accordingly. In all likelihood, with such a localized change the

left and right walls would remain unconnected for values larger than fplr, and the

percolation force would remain unchanged. In contrast, the persistent homology at

frame n would almost certainly reflect this changed force value, changing the value

of the W2 metric accordingly.

We refer to the percolation force as a global measure in the sense that it is relatively

unaffected by localized changes in the force network. Similarly, we refer to the W2 as

a local measure as it is more sensitive to localized changes in the force network. For

more examples of global and local measures on the force network, see [11]. A sample

of the left-right percolation force, along with the W2 and horizontal top wall velocity

vx is shown in Fig. 3.6.
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Figure 3.6: Sample of the evolution for first 10,000 frames in (a) the horizontal velocity
of the top wall vx, (b) the right left percolation force fplr, and (c) the W2. The red
dots mark the start of large slip times, as defined using the offline method at the
beginning of this chapter. The horizontal wall movement vx shows two alternating
regimes of behavior: long periods of stick, in which the wall moves slowly, and shorter
periods of slip, where the wall shifts rapidly. In many of these instances, the fplr and
W2 measures already show movement before the identified slip start times.
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Chapter 4

Bayesian framework for modeling considered measures

In Ch. 3 we introduced three measures that we hope have the potential to predict

slips: the wall velocity vx, the percolation force fplr, and the Wasserstein distance W2.

The wall velocity is the baseline against which slip is defined, while the latter two

measures often increase before the wall has begun to move appreciably. An example

of such an increase can be seen in the sample shown in Figure 4.1. In particular, the

W2 increases well before the start of the slip near n = 1000.

Ideally, we wish to identify a slip right at the beginning of such increases, which

in the case of fplr and W2 are before the start of the slip. However, recall from

Ch. 2 that the oscillations of vx during the stick regime, highlighted in the inset of

Fig. 4.1(a), are an obstacle to using a single threshold to identify the start of a slip.

Consequently, we developed an offline method for slip identification, in which the

start of a slip is identified using later data. In the same way, the oscillations in the

fplr and W2 measures, highlighted in the insets of (b)-(c), impede the identification

of their increase before the slip regime.

To identify when the measures start changing their behavior and increasing, we

construct models. For each measure, the model captures its dynamic behavior during

the stick regime: the oscillations and trend (slow decrease). We consider stochastic

state space models, which consist of a deterministic element that captures the modeled

behavior (e.g., the oscillations and overall decrease) and a stochastic element that

models uncertainty in a Bayesian manner. Each model produces predictions of its
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Figure 4.1: Small sample of the evolution of (a) the horizontal velocity of the top wall
vx, (b) the right left percolation force fplr, and (c) the W2 from just before the onset
of a slip event to shortly after the start of the next slip. The insets show a sample of
the stick regime for each of the measures.

measure’s future value during the stick regime, and since the vx, fplr, and W2 all have

different behavior during the stick and slip regimes, the predictive error (the difference

between the prediction and the observed value) rises sharply upon the onset of the

slip regime. The predictive error can then be used to predict slips by identifying sharp

increases of the type in Fig. 4.1 as they occur.
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4.1 Introduction to Bayesian statistics

The Bayesian approach models unknown quantities through probability distributions.

These distributions are updated as our knowledge about the unknown quantity(ies)

increases with observed data. While this is a fairly simple principle, it has a rich

mathematical basis in formal probability theory. To make the abstract ideas more

concrete, throughout this section we will use a toy example to describe and illustrate

the Bayesian approach.

In this example, we will suppose that we have recorded a series of temperature

measurements y1, ..., yN taken by a thermometer in a room, where the true room tem-

perature at the time of the n-th measurement is θn. First, we will suppose that the

true room temperature is constant over the measurement period. However, to illus-

trate stochastic state space models in the next section, we will expand the example to

consider the case where the room temperature increases due to a heater being turned

on. The corresponding stochastic state space model will then allow us to statistically

infer information about each unknown temperature θn given the measurements up to

that time, y1, ..., yn. But for now, suppose θ1 = ... = θN , and denote the unknown

temperature by θ.

Fig. 4.2 shows an example of what this series of temperature measurements could

look like, with the (unknown to us) true temperature θ marked by the dashed line.

If the thermometer perfectly measured the room temperature, then each yn would

be equal to θ. However, measurements are imprecise, resulting in observation errors.

For simplicity, we will suppose that we are given a statistical model for each yn that

describes the imprecision in measurement for the thermometer as well as interactions

between the measurements, or lack thereof. This statistical model is given by a

parameterized distribution for each measurement. To make this more precise, we
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Figure 4.2: Simulated observed thermometer measurement values, with the true room
temperature marked by the dashed line.

need to introduce the following nomenclature. We start with the measure-theoretic

definition of a probability space below, and assume a level of familiarity with basic

measure theory.

Definition 4.1. Let Ω be a set, F be a σ-algebra on Ω, and P be a measure on

(Ω,F). We say that the triple (Ω,F , P ) is a probability space if

P (Ω) = 1

The above definition of a probability space formally captures the notion of out-

comes, events, and the probability of an event. In that definition, an outcome is

any element ω ∈ Ω, an event is a subset A ⊆ Ω in the σ-algebra A ∈ F , and the

probability of event A is defined as P (A). For example, in the context of the toy

scenario, outcomes are the temperature measurements, and an appropriately selected

probability measure will describe the relative likelihood of different temperature mea-

surements. To begin to formalize the notion of relative likelihood, we first define a

real-valued random variable and its cumulative distribution function.
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Definition 4.2. For a probability space (Ω,F , P̂ ), we say that a measurable function

X : Ω → R is a real-valued random variable and define a probability measure P on

R by

P (E) = P̂ ({ω ∈ Ω : X(ω) ∈ E}) (4.1)

for each measurable E ⊆ R. The probability measure P is called the distribution of

X and P (E) is interpreted to be the probability X takes a value in E. The cumula-

tive distribution function of X is the function FX : R → [0, 1] given by

FX(x) = P ((−∞, x]) (4.2)

In the toy scenario, the statistical model for observations with observation error

will consist of a sequence of random variables Y1, ..., YN where the random variable Yn

is the real-valued temperature measurement of the thermometer when the room tem-

perature is θ. If we are given real-valued random variables describing the observation

results, we can quantify the probability of each measurement Yn taking certain values

through its distribution. In fact, the distribution of a real-valued random variable

can be fully specified through a cumulative distribution function, which we will make

clear shortly.

The cumulative distribution function of any real-valued random variable satisfies

certain properties. Suppose FX : R → [0, 1] is a cumulative distribution function.

Then FX(x) → 0 as x → −∞, FX(x) → 1 as x → ∞, it is non-decreasing, and it is

right-continuous [20]. Conversely, for any function F satisfying those four properties,

a random variable can be constructed whose cumulative distribution function is ex-

actly F . We make this claim explicit in the following proposition, whose proof can

be found in [20].
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Proposition 4.3. Let F : R → [0, 1] be a function that is non-decreasing, right-

continuous, and where

lim
x→−∞

F (x) = 0

and

lim
x→∞

F (x) = 1

Then there exists a random variable X with a cumulative distribution function FX(x) =

F (x) for all x ∈ R. Moreover, two random variables with the same cumulative dis-

tribution function have the same distribution.

Because of Prop. 4.3, it is common practice to characterize a real-valued random

variable with its cumulative distribution function, or, as we will show shortly, an

equivalent. While the cumulative distribution function is defined for any real-valued

random variable, the temperature measurement random variables Y1, ..., YN provided

to us will be of a particular class. Namely, they are continuous random variables,

since the measurements take values continuously rather than discretely over R. More

precisely, each Yn is absolutely continuous, according to the definition given below.

Definition 4.4. We say that a real-valued random variable X is absolutely con-

tinuous if its cumulative distribution function FX is absolutely continuous. In this

case, the derivative of FX , which we will denote by fX , is defined almost everywhere

and

P ([a, b]) =

∫ b

a

fX(x)dx

The function fX is called the probability density function of X. When the random

variable in reference is understood, we typically leave off the subscript. We further
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say that the mean of X is the quantity

X̄ =

∫
R
xfX(x)dx

and the variance of X is the quantity

V (X) =

∫
R
(x− X̄)2fX(x)dx

when these integrals are defined.

The distribution of an absolutely continuous random variable is fully specified

by its probability density function. An example of a simple but extremely useful

distribution is the normal distribution, also sometimes referred to as the Gaussian

distribution. The probability density function of the normal distribution is given

below.

Definition 4.5. For θ, V ∈ R, the probability density function of a normally dis-

tributed random variable X with mean θ and variance V is given by

fX(x) =
1√
2πV

e
−
(x− θ)2

2V

To denote that X is distributed normally with mean θ and variance V , we write

X ∼ N (θ, V )

A Gaussian distribution is fully characterized by two quantities, its mean and

variance. Values closer to the mean are more likely than those that are further away,

and the distribution is symmetric around its mean (an outcome x less than the mean
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is exactly as likely as an outcome x greater than the mean). For further details on

Gaussian distributions, see [20] pp. 45-47, 51-53.

In our example, we suppose that each of the thermometer’s measurements Yn

is distributed normally with a mean of θn and a specified variance V . Due to the

translation invariance of the Gaussian distribution [20], this is equivalent to supposing

that the observation errors, Yn − θn, are distributed normally with a mean of zero

and a variance V . Consequently, we will refer to V as the observation error variance.

Under this model, the thermometer does not systematically over or underestimate

the true room temperature, and the scale of the measurement error is the same with

each measurement, given by the observation error variance V .

Note that the probability density function of each random variable Yn depends

on the value of the (unknown) room temperature θn. When the distribution of a

random variable depends on an unknown value as Yn does on θn, we say that the

random variable is parameterized by the unknown value. The precise definition of a

parameterized distribution is given below.

Definition 4.6. Consider a multivariate function f : R × Rd → [0,∞) where, for

each fixed value of θ ∈ Rd, the function f(·,θ) is a probability density function of

an absolutely continuous random variable denoted by X;θ. We denote this family of

probability density functions by

fX;θ(x;θ)

and say that the corresponding family of random variables X;θ is parameterized

by θ.
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So, Yn is parameterized by the unknown temperature θn
1 with the distribution

Yn; θn ∼ N (θn, V )

In addition to providing this parameterized distribution function, the statistical

model must consider potential interactions between the random variables Y1, ..., YN .

That is, it is certainly possible that the taking of one measurement could influence

the value of another. In our example, the model will assume that any such influence is

negligible, a concept known as independence between the random variables. To define

independence, we first define a multivariate random variable to formally describe a

collection of random variables that could potentially influence each other.

Definition 4.7. For a probability space (Ω,F , P̂ ), we say that a measurable function

X : Ω → Rn is a multivariate random variable and define a probability measure

P on Rn by

P (E) = P̂ ({ω ∈ Ω : X(ω) ∈ E}) (4.3)

for each measurable E ⊆ Rn. The probability measure P is called the joint distribu-

tion of X. The joint cumulative distribution function FX : Rn → R is given

by

FX(x) = P ((−∞, x1]× ...× (−∞, xn])

where x = (x1, ..., xn). Lastly, we say that X is absolutely continuous if FX is

absolutely continuous, and in that case the joint probability density function fX

1We do not consider Yn to be parameterized by V , as the value of V is a fixed quantity provided
to us as part of the statistical model.
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is defined almost everywhere and is characterized by

P (E) =

∫
E

fX(x)dx

for each measurable E ⊆ Rn.

Independence of random variables can be characterized through conditional prob-

ability, a concept based on the joint distribution. The definition below defines condi-

tional probability for two absolutely continuous random variables and can naturally

be extended to a collection of n random variables.

Definition 4.8. Suppose two absolutely continuous real-valued random variables X

and Y have a joint probability density function denoted by fX,Y (x, y). The condi-

tional probability density function of Y given X, denoted by fY |X , is defined

as

fY |X(y|x) =
fX,Y (x, y)

fX(x)

For each fixed value of x, the resulting univariate density function is interpreted to be

the density function of the random variable Y after observing the value X = x. The

conditional density is undefined when fX(x) = 0.

Using the terms in the above definition, along with its interpretation, we say that

Y is independent of X if the members of the family of conditional densities fY |X(y|x)

are the same regardless of the value of x;

fY |X(y|x) = fY (y)

This is equivalent to the joint density function factoring into the product of the
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individual density functions,

fX,Y (x, y) = fX(x)fY (y)

In the same way, we say that a collection of absolutely continuous real-valued random

variables X1, ..., Xn captured in a multivariate random variable X = (X1, ..., Xn) are

jointly independent when

fX(x) = fX1(x1) · ... · fXn(xn)

In this sense, the provided statistical model of the observation variables Y1, ..., YN

assumes that they are jointly independent by supposing that the joint probability

density function of Y = (Y1, ..., YN) is the product of the individual density functions

of each Y1, ..., YN .

With the provided statistical model for the observation error, we now turn to the

fundamental question of statistics: what information can we infer about the unknown

room temperature θ after observing the thermometer values y1, ...yN? The Bayesian

approach to this question relies on two main components: the likelihood function and

the prior distribution. We will begin by defining the likelihood function, a function of

the unknown parameter θ that returns the relative likelihood of observing the values

y1, ..., yN for each fixed value of θ.

Definition 4.9. Let X;θ be a continuous random variable parameterized by θ. Recall

that the family of density functions fX;θ(x;θ) is a function f : R×Rd → [0,∞). For

the fixed value of X;θ = x, the real-valued function f(x, ·) of θ is called the likelihood

function, denoted by

L(x;θ)
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Similarly, the joint likelihood function L(x;θ) of a parameterized multivariate contin-

uous random variable X;θ for the fixed value of X;θ = x is the real-valued function

of the parameter given by the joint probability density function evaluated at x.

As the name suggests, the likelihood function L(x;θ) for a parameterized random

variable X;θ describes how likely the outcome x is for different values of θ. One

important characteristic of the likelihood function is that, for a collection of out-

comes x = (x1, ..., xn) of independent random variables X;θ parameterized by θ, the

likelihood function factors into the product of the individual likelihood functions:

L(x;θ) = L(x1;θ) · ... · L(xn;θ)

So, in the toy example, the statistical model of independent normal distributions

yields the following likelihood function:

L(y1, ..., yN ; θ) =
N∏

n=1

1√
2πV

e
− 1

2

(
yn−θ√

V

)2

Since the quantities y1, ..., yN and V are fixed and known, this truly is a function of

the single variable θ.

The likelihood function is the first component of Bayesian statistics. It is the result

of the statistical model connecting the unknown parameter θ to the observation(s).

The second component of Bayesian statistics is the prior distribution, which describes

our initial knowledge about the unknown quantity θ before observing the data. That

is, in the Bayesian approach the unknown parameter θ is treated as a random variable,

which is the key difference between Bayesian and classical frequentist statistics [20].

Bayesian inference combines the likelihood function and the prior distribution to

produce a new distribution of θ called the posterior distribution. The posterior dis-
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tribution captures the updated knowledge of the unknown quantity θ after observing

the data. It is formed by taking the product of the likelihood function and the prior

distribution’s probability density function (both functions of θ) and then normalizing

so that the result is a probability density function of θ. This process is formally

expressed by Bayes’ formula, which is the foundation of Bayesian statistics.

Definition 4.10 (Bayes’ formula). Let x be an outcome of an absolutely continuous

random variable X;θ that is parameterized by θ. Given the prior distribution on

θ with probability density function f(θ) the posterior distribution on θ is given

by

Posterior︷ ︸︸ ︷
f(θ|x) =

Prior︷︸︸︷
f(θ)

Likelihood︷ ︸︸ ︷
L(x;θ)∫

θ
f(θ)L(x;θ)dθ

(4.4)

Remark 4.11. For a series of independent observations y1, ..., yN , Bayes’ formula can

be applied with the joint likelihood of the vector of observations or sequentially, using

the likelihood of each observation and the posterior from the previous observation(s)

as a prior.

The posterior distribution is a compromise between the prior and the likelihood.

Values of θ for which the observed data is more likely are assigned a higher value in

the likelihood function. Similarly, values of θ which are initially believed to be more

likely are assigned a higher value in the prior distribution. By taking the product of

the two, values of θ that are relatively [un]likely in both are relatively [un]likely in the

posterior and when the two disagree, the result is a compromise. This connects to

the previously mentioned vague prior; in a vague prior, the values of θ are relatively

equally likely, so the posterior will largely be a reflection of the likelihood function.

The specification of the prior is a critical task, and is, to a degree, subjective.

In the toy example, we suppose that the a priori information we have about the
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room temperature θ is minimal, and we wish to select a prior distribution reflecting

that. Here we reach a conundrum: a complete lack of a priori information would

imply that all values in R are equally likely, however, a uniform distribution on R is

impossible2. Further, due to the property of prior conjugacy, which we will explain

in detail shortly, a normal distribution is a desirable choice for the prior when the

observations are modeled with normal distributions.

We will use a common method, the so-called vague prior approach [20] pp. 56-57

in combination with the prior conjugate choice of a normal distribution3. Roughly

speaking, a vague prior is a distribution that has a negligible effect on the poste-

rior distribution. For a normal distribution, this takes the form of extremely large

variance, in comparison to the typical values the parameter could take. In the toy

example, we would be quite surprised to see temperatures outside a reasonable range,

even a range like 20◦F to 120◦F stretches the bounds of credibility. To express such

a vague prior with a normal distribution, we pick a mean somewhere in that range,

say 70◦F , and a variance a few orders of magnitude larger than the range, say 104. In

practice, the exact values are unimportant, since a sufficiently large variance results

in a distribution that is roughly uniform within the reasonable range, and, as a result,

a posterior distribution that is primarily influenced by the observed data.

We now explain why a normal distribution is desirable in this example. The choice

of prior distribution is closely related to the practical implementation of obtaining

the posterior distribution. Bayes’ formula holds for any pair of a likelihood function

and prior distribution. However, for a given likelihood function, there is often a

2A uniform probability density function on R must be constant, however the integral of such
a function over R can either be ∞ or 0, never 1. That is, due to lack of compactness, a uniform
distribution on R does not exist.

3In this example, we use a fixed prior variance for simplicity. However, the prior conjugacy
framework can model the variance of the normal prior distribution as a random variable with a
gamma distribution, a concept explored in Sec. 4.3.2.
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corresponding parameterized distribution that, when selected as a prior with specific

parameters, results in the same parameterized distribution for the posterior, simply

with different specific parameters4. This is called prior conjugacy. In this case,

the process of finding the posterior distribution is reduced to determining how the

hyperparameters change between the prior and posterior in response to the observed

data. Without prior conjugacy, numerical methods like Monte Carlo Markov chains

are typically used to approximate the posterior distribution [20] ch. 6. A prior

conjugate model drastically reduces the computation load and avoids the introduction

of error from numerical methods.

In our toy example, we assumed that each Yn is normally distributed. If we also

select a normal distribution for the prior on the unknown temperature θ, then the

likelihood function and prior distribution are prior conjugate. That is, the posterior

distribution resulting from Bayes’ formula in Eq. 4.4 is normally distributed. Further,

the posterior mean and variance can be quickly calculated from the prior mean and

variance, the observed values y1, ..., yN , and the observation error variance V , all

of which are known. Further, the posterior mean can be expressed as a weighted

average of the prior mean and the observed data, with a weight K that depends on

the relative uncertainties of the observed data and the prior mean, expressed through

the observation error variance V and the prior variance, respectively. The posterior

distribution of a normally distributed observation using a normally distributed prior

is given explicitly in the proposition below, and a proof can be found in [20] pp. 59-60.

Proposition 4.12. Let y be an outcome of a normally distributed random variable

4These specific parameter values are typically called hyperparameters to distinguish them from
unknown parameters in the context of Bayesian inference.
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Y parameterized by its unknown mean θ and known variance V

Y ; θ ∼ N (θ, V )

Suppose the prior distribution for the parameter θ is normal with mean θ̂ and variance

R:

θ ∼ N (θ̂, R)

The posterior distribution defined by Eq. 4.4 is also distributed normally

θ|y ∼ N (θ̄, C)

with the posterior mean θ̄ and variance C given by

θ̄ = θ̂ +K(y − θ̂) = (1−K)θ̂ +Ky (4.5)

C = (1−K)R (4.6)

where K is given by

K =
R

R + V
.

The valueK is a quantity in (0, 1) that indicates the relative weight to assign to the

observation y over the prior mean θ̂. This value depends on the relative uncertainties

of the prior (expressed through the prior variance R) and the likelihood (expressed

through the observation error variance V ). As the ratio V/R approaches ∞, K → 0.

The interpretation is that when the observation error variance is significantly larger

than the prior variance, there is correspondingly more trust in the prior, and less

weight is assigned to the observation y when calculating the posterior mean in Eq.

4.5. On the other hand, as the ratio R/V approaches ∞, K → 1. In this case,
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significantly more trust in the data corresponds to more weight assigned to y in Eq.

4.5.

Further, note that since K is always between zero and one, the posterior variance

C is always less than the prior variance R. This can be seen in Eq. 4.6, since the

quantity 1 −K is also in (0, 1). The basic interpretation is that incorporating data

reduces uncertainty in the Bayesian framework.

In the toy example, we choose a normal distribution for the prior on θ to illustrate

the prior conjugacy in Prop. 4.12. This prior distribution is specified by the mean

θ̂ and variance R. These are called hyperparameters to distinguish them from θ, the

unknown parameter of interest. The hyperparameters are fixed, chosen values that

are selected to represent prior knowledge of θ. In our example, we use a vague prior

with large variance R to model a lack of prior knowledge. Recall that if R/V ≫ 1

the prior mean has little effect on the posterior mean in Eq. 4.5.

To make the Bayesian process concrete, we return to our example with specific

numbers, as depicted in Fig. 4.2. Suppose we are provided with the measurement

model described up to this point, with an observation error variance of 4 (i.e., an

observation error standard deviation of 2◦F ). That is, we assume that the mea-

surements are independently normally distributed around the (unknown to us) room

temperature θ with a variance of V = 4. In fact, the 50 measurements depicted in

Fig. 4.2 were simulated using this exact model; they are independent random samples

from a normal distribution around a true temperature of θ = 75◦F .

With the statistical model and prior specified above, we perform the Bayesian

inference from Prop. 4.12. To do so, we select a vague prior. As already mentioned,

in this case, the prior mean has minimal influence on the posterior mean. We consider

the following prior, θ ∼ (70, 104). The mean of 70◦F was chosen simply as a reasonable

value for the temperature of a room, while the variance 104 results in a sufficiently
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vague prior, as it is a few orders of magnitude larger than typical temperature values.

The resulting distributions of sequentially applying Bayes’ formula to the measure-

ments are depicted in Fig. 4.3 with the mean highlighted and two standard deviations

shaded. We can see that despite the initial mean of 70◦F being fairly different from

the true room temperature of 75◦F , the posterior means quickly approaches the room

temperature as more data is incorporated. By the final measurement, the posterior

mean is 74.92◦F , with a fairly small standard deviation of 0.28◦F .

Figure 4.3: Posterior mean when sequentially using Normal conjugate prior inference
to assimilate the values in Fig. 4.2, along with two standard deviations of the prior
distribution shaded.

4.2 Stochastic state space models and the Kalman filter

In the previous section, we considered a scenario where a series of temperature mea-

surements, depicted in Fig. 4.2, were taken over a time interval during which the

underlying room temperature was constant. Now we will consider a more complex

scenario, in which the room temperature changes over time.

The measurements for this are depicted in Fig. 4.4. In addition to the observation

errors, we see an increasing trend in the room temperature. This roughly linear trend

is one example of dynamic behavior, an observable pattern of behavior in a time series.
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Figure 4.4: 50 noisy temperature measurements over a dynamically changing room
temperature.

Later, we will also consider oscillations, shown in Fig. 4.1, a different type of dynamic

behavior. For additional types of dynamic behavior that are amenable to the class of

models described in this section, see [27].

As before, denote the temperature measurements by y1, ..., yN , where the unknown

temperature at the time of the n-th measurement is θn. Like in the previous section,
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we will use a statistical model that assigns a parameterized distribution to each

measurement. The primary difference, as seen in Fig. 4.4, is that the parameters,

θ1, ..., θN , are different at each measurement time. Consequently, we can no longer

use a single unknown θ. Instead, when performing Bayesian inference, we will model

each unknown temperature in the sequence θ1, ..., θN as a distinct random variable.

When this is the case, one may wonder how well Bayesian inference can work, since

for each unknown temperature θn, we only have a single data point yn. The key is that

while θ1, ..., θN are no longer the same, they may not be completely independent of

each other. Suppose we have a forecast model that describes how θn depends on θn−1.

In that case, we can use the posterior distribution of θn−1 along with the forecast

model to obtain a prior distribution on θn.

We will consider the case where the forecast model has two elements: a deter-

ministic element and a stochastic element. The deterministic element consists of a

forecast function that returns a predicted value of θn based on the value of θn−1. The

stochastic element describes the model error, the difference between this predicted

value and the actual value of θn, by assigning it a probability distribution.

The full statistical model that describes the sequence of measurements will have

two components: a forecast model mentioned above, and an observation model, a

sequence of parameterized distribution that describes the observation error for each

yn, see 4.1. We have stated that in our forecast model, the variables θn each depend

(stochastically) only on θn−1 and are independent of θn−2, θn−3, ...θ0. Similarly, we

will only consider observation models where each yn depends only on θn. This notion

of dependence can be formalized as conditional independence, defined below in terms

of conditional probability.

Definition 4.13. Let X1, ...Xn, Y , and Z be absolutely continuous random variables.
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If

fX1,...,Xn,Y |Z(x1, ..., xn, y|z) = fX1,...Xn|Z(x1, ..., xn|z) · fY |Z(y|z)

for all x1, ..., xn, y, z, then we say Y is conditionally independent of X1, ..., Xn

given Z, or alternatively, Y is conditionally dependent on Z (with respect to the

random variables X1, ..., Xn).

Figure 4.5: Conditional dependency structure of state-space models, where an arrow
indicates the target is conditionally independent of the other random variables, given
the source. That is, each θn is conditionally dependent only on θn−1 and each Yn is
conditionally dependent only on θn.

In the stochastic state space models that we consider, each true temperature θn is

modeled as conditionally dependent on θn−1 and each measurement Yn is conditionally

dependent on θn. Visually, this dependence is depicted in Fig. 4.5, where an arrow

indicates conditional dependence. The following definition formalizes the concept of

a stochastic state space model.

Definition 4.14. Let {θ0, ...,θN} and {Y1, ...YN} be two collections of random vari-

ables where each θn is d-dimensional5. We say that these two collections form a

stochastic state space model when

5While the theory extends to multivariate Yn, in our context we will only consider univariate Yn.
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1. Each θn is conditionally independent of the other random variables in the se-

quence, given θn−1 and

2. Each Yn is conditionally independent of the other random variables in the se-

quence, given θn.

The conditional distributions of θn|θn−1 for each n = 1, ..., N are called the forecast

distributions, the conditional distributions of Yn|θn for each n = 1, ..., N are called the

observation distributions, and the distribution of θ0 is called the initial distribution.

For shorthand, we will typically denote such a stochastic state space model by {θn, Yn}.

In a stochastic state space model, the sequence of random variables {θ0, ...,θn}

is called the state. In many engineering applications, θn does indeed represent the

state of a physical system that produces a measured output yn. For example, in

meteorology, the state may be the vector consisting of the temperature at a grid of

locations on Earth, while the observation is the temperature measured at a particular

location [12]. Or, in robotic movement, the state may be the position and velocity of

the robot, while the observation is a noisy measurement of the current location [32].

However, in the context of signal processing, the components of the vector θn model

individual dynamic behaviors present in a signal. We will use stochastic state space

models in this manner to model the measures on our granular system in the stick

regime, as depicted in Fig. 4.1.

In our toy example, mentioned above, we will consider the following model. The

state θn consists of both the unobserved temperature value θ0n and its time derivative6

θ1n. The stochastic element captures model error in the deterministic forecast by

6More precisely, the second component of the state is the derivative with respect to the time
step. This normalization of the derivative, while not required, results in the simple update in Eq.
4.7, where the deterministic forecast temperature value is the sum of the previous value and the
normalized time derivative.
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adding a normally distributed random variable, ωn ∼ N2(0,W ), to the deterministic

forecast. The deterministic forecast itself consists of updating the temperature value

through its time derivative and assuming the time derivative is unchanged.

θ0n|θn−1 = θ0n−1 + θ1n−1 + ω0
n (4.7)

θ1n|θn−1 = θ1n−1 + ω1
n (4.8)

In a model where the full forecast is the sum of a deterministic forecast and normally

distributed model error, the matrix W is called the model error covariance matrix.

The model error covariance matrix captures the variance of both ω0
n and ω1

n, and

their dependence. In this section, we will assume that the matrix W is known to us

a priori, but in practice, the specification of W can be complicated. We will discuss

one approach in Sec. 4.3.1.

The observation distributions are modeled as (conditionally) independent nor-

mally distributed random variables centered around the true (unknown) temperature

with an error variance V :

Yn|θn = θ0n + vn (4.9)

where vn ∼ N (0, V ). As before, we will assume that V is known a priori.

In a stochastic state space model, Bayesian statistics can be applied to sequentially

update the distribution of each current state θn in light of the most recent observation

yn, while also considering the previous updated state distribution of θn−1. The process

of obtaining the distribution θn|y1:n7, often called the current filtering distribution,

from the previous filtering distribution θn−1|y1:n−1 and the observation yn is called

sequential filtering. Sequential filtering consists of two steps: forecasting and data

assimilation. In the forecast step, the previous filtering distribution and the forecast

7y1:n is shorthand for the collection of values y1, ..., yn
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distribution θn|θn−1 of the model are combined to form the distribution θn|y1:n−1, the

predictive state distribution. Next, after observing the value yn, the data assimilation

step combines the likelihood function L(yn|θn) of the model and the predictive state

distribution using Bayes’ formula. This results in the desired filtering distribution

θn|y1:n, and the process repeats with the next observation. This is made precise in

the following proposition and corollary.

Proposition 4.15. Suppose {θn, Yn} is a stochastic state space model. If y1, ..., yn are

outcomes of the random variables Y1, ..., Yn, respectively, then the following relations

on the probability density functions hold:

f(θn|y1:n−1) =

∫
f(θn|θn−1)f(θn−1|y1:n−1)dθn−1 (4.10)

and

f(θn|y1:n) =
f(θn|y1:n−1) · L(yn|θn)∫
f(θn|y1:n−1) · L(yn|θn)dθn

(4.11)

Corollary 4.16. Given an initial density function f(θ0), the above equations can be

recursively applied to the sequence of data y1, ..., yn to obtain f(θ1|y1) from y1 and

f(θ0), f(θ2|y1:2) from y2 and f(θ1|y1), etc. This process is sequential filtering

where the application of Eq. 4.10 is called the forecast step and the application of

Eq. 4.11 is called the data assimilation step.

For a general state space model, the resulting probability density functions cannot

be computed analytically. Consequently, methods such as Monte Carlo algorithms

are usually used to approximate the relevant distributions [27] pp. 207-229. A good

example of such an implementation is the ensemble Kalman filter utilized in meteo-

rology [12] or the particle filter for target tracking [32]. However, the computations
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become much simpler if we consider a special class of stochastic state space models for

which sequential filtering uses Bayesian conjugate prior distributions: the dynamic

linear model, or DLM.

DLMs are a particular type of stochastic state space model where restrictions on

the initial distribution, forecast distributions, and observation distributions allow for

efficient sequential filtering. The restrictions require each forecast distribution θn|θn−1

to be the sum of a linear function of θn−1 and a normally distributed random variable

and the initial distribution to be normal. Similarly, each observation distribution

Yn|θn must be the sum of a linear function of θn and a normally distributed random

variable. These conditions are collectively referred to as Gaussian-linearity. Below is

the precise definition of a DLM, explicitly stating the Gaussian-linearity assumptions

mentioned above.

Definition 4.17. Let {θn, Yn} be a stochastic state space model with a d-dimensional

state. We call this model a dynamic linear model (DLM) if it has the following

dependency structure and initial state distribution. The distributions of θn|θn−1 and

Yn|θn for each n are given by a pair of equations

Yn|θn = Fnθn + vn

θn|θn−1 = Gnθn−1 +wn

(4.12)

where {Gn} and {Fn} are known sequences of matrices of order 1 × d and d × d

respectively and {vn} and {ωn} are two independent sequences of normal random

variables distributed as vn ∼ N1(0, Vn) and wn ∼ Nd(0,Wn) where the values of the

sequence of variances {Vn} and covariance matrices {Vn} are given. The initial state
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distribution of θ0 is given by a normal d-dimensional distribution,

θ0 ∼ Nd(m0, C0) (4.13)

for a given vector m0 and covariance matrix C0.

In the model given by Eqns. 4.7, 4.8, and 4.9, if we further assume that the initial

state distribution is normally distributed, the model is a DLM. In this model, the

forecast and observation functions are time-independent. While this is not always

the case in a DLM, it is fairly common. To indicate the time independence of the

forecast and observation functions, we will drop the subscripts when giving the matrix

representations of Gn and Fn, a convention that we will use when defining other DLMs

later. The forecast given by Eqns. 4.7, 4.8 can be represented by the matrix

G =

1 1

0 1


and the observation function given by Eq. 4.9 can be represented by the matrix

F =

[
1 0

]

The aforementioned efficiency of sequential filtering of DLMs comes from the fact

that all distributions resulting from the sequential filtering of a DLM are normally

distributed. In the forecast step, this follows from the fact that the linear transfor-

mation of a normal random variable is again normal, as is the sum of two normal

random variables [20]. In the data assimilation step, the normality of the filtering

distribution results from the prior conjugacy of Proposition 4.12. Consequently, se-

quential filtering of a DLM consists of updating the mean and covariance of the state
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distribution, first in the forecast step, and then in the data assimilation step. The

relevant formulas describing the computations that track these values are collectively

called the Kalman filter. We summarize the Kalman filter in the following proposition

from [27].

Proposition 4.18 (Kalman Filter). Consider the DLM specified by (4.12) and

(4.13). Let

θn−1|Y1: n−1 ∼ Nd(mn−1, Cn−1).

Then the following statements hold.

1. The predictive state distribution is Gaussian

θn|Y1: n−1 ∼ Nd(an, Rn).

where the parameters are given by

an = E(θn|Y1: n−1) = Gnmn−1

Rn = Var(θn|Y1: n−1) = GnCn−1G
′
n +Wn.

(4.14)

G′
n denotes the transpose of Gn.

2. The predictive observation distribution is Gaussian

Yn|Y1: n−1 ∼ N1(fn, Qn)

where the parameters are given by

fn = E(Yn|Y1: n−1) = Fnan

Qn = Var(Yn|Y1: n−1) = FnRnF
′
n + Vn.

(4.15)
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3. The filtering distribution is Gaussian

θn|Y1: n ∼ Nd(mn, Cn)

where the parameters are given by

mn = E(θn|Y1: n) = an +Kne
′
n

Cn = Var(θn|Y1: n) = (I −KnFn)Rn.

(4.16)

where e′n = yn − fn is the forecast error and the d× 1 matrix Kn is the Kalman

gain matrix given by

Kn = RnF
′
nQ

−1
n . (4.17)

In summary, the forecast step of sequential filtering for a DLM starts with the

state mean at the previous time, mn−1, obtains the state mean at the current time

an, and then obtains the predicted observation mean fn. Next, the data assimilation

step obtains an updated estimate of the current state mean mn from the predictive

error, the difference between the observed value yn and fn.

The data assimilation step uses the Kalman gain matrix Kn, which depends on

the predictive state and observation covariances, Rn and Qn. Analogous to the weight

K in Prop. 4.12, each entry in the Kalman gain matrix is the weight assigned to the

forecast error e′n in order to correct the corresponding component in the predictive

state mean an. As in that proposition, a larger predictive observation error variance

Qn will lead to less weight placed on the forecast error while a larger predictive

observation error variance Rn leads to greater weight.

The forecast error e′n is an important quantity, as it is a measure of the deviation of

the model from the observed values. Note that since each observation yn is an outcome
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of the observation random variable Yn|Y1:n−1 ∼ N (fn, Qn), each forecast error e′n is

an independent outcome of a random variable distributed N (0, Qn). Further, if we

define the normalized model error (NME) by

en =
yn − fn√

Qn

(4.18)

then each NME value is an independent outcome of a random variable distributed

N (0, 1), the standard normal distribution. As a result, a posteriori testing of the

assumption that the observations follow a specified stochastic state space model is

typically reduced to testing that the NME values are independent and normally dis-

tributed [27].

To make the Kalman filter concrete, we return to our example of predicting tem-

perature from the observations in Fig. 4.4. For simplicity, we will consider a DLM

where the model error covariance matrixWn is time-independent, as is the observation

error variance Vn. Further, we will assume that the model error for the temperature

and its derivative are independent, with a standard deviation of 0.1◦F and 0.02◦F ,

respectively. These relatively small values on the scale of degrees Fahrenheit depict a

model with a comparatively small deviation of the true temperatures from a straight

line (i.e., the deterministic forecast). In matrix form, we have

W =

0.12 0

0 0.022


In contrast, we will assume the observation error variance has a standard deviation

of 1◦F . The larger magnitude of the observation error models observed temperature

values normally distributed around the relatively straight line implied by the smaller

model error values. This is exactly the behavior of the observations in Fig. 4.4.
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Indeed, those values were simulated using this exact model.

With this DLM, we can apply the sequential filtering process of the Kalman filter,

starting with an initial distribution on θ0. As in standard Bayesian filtering, if we

select a vague initial distribution, the initial mean will have minimal influence on the

filtered values after a sufficient, typically small, number of observations. This initial

period is commonly called a burn-in period [27], and for a vague initialization, it is

characterized by filtered values that are nearly identical to the observed values. As

in the previous section, the initial temperature mean is chosen to be 70.0◦F , simply

as a reasonable value. The initial derivative mean is chosen to be zero to indicate

no knowledge of the time derivative. The covariance matrix has entries that are

sufficiently large for a vague initialization, on the same scale as in the static example.

In summary, the initial distribution is θ0 ∼ N2(m0, C0) where

m0 =

70
0

 and C0 =

104 0

0 104

 .

The resulting filtered distributions are shown in Fig. 4.6 with the filtered mean

temperature highlighted and two standard deviations shaded8.

The inset panel shows the resulting NME defined by Eq. 4.18. Recall that if

the observations are outcomes of the specified DLM, then the NME values are each

distributed N (0, 1) and are mutually independent. This does appear to be the case

in the depicted NME. In contrast, when we later construct a DLM to model the stick

regime behavior of a measure on the granular system, we expect that the constructed

DLM will not perfectly model the true signal. The degree to which this is the case

will be indicative of the appropriateness of the constructed DLM model.

8The initial state distribution is not depicted, as it is not a filtered distribution.
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Figure 4.6: The Kalman filter applied to a series of simulated data points with a
stochastically varying trend. The 50 data points are shown as points, with the true
temperature marked by the solid blue curve and the filtered estimated temperatures
given by the dashed blue curve. The shaded region marks the sequence of 2× standard
deviation credible intervals for the filtered temperature estimates. The inset shows
the normalized model error from Equation 4.18.

Note that, unlike the static example in Fig. 4.3, after the initial tuning, the stan-

dard deviation is relatively constant. Intuitively, the asymptotic size of the filtered

state error is a compromise between the error introduced by the stochastic forecast
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at each time and the error reduction that occurs when Bayes’ formula incorporates

the data at that time. While in this dynamic example, this compromise results in the

apparent convergence of the state variance, one can imagine a scenario in which suf-

ficiently large model error variance causes the state variance to grow without bound.

As a simple exercise, consider the dynamic example above, but suppose the ob-

servation function maps the state to 0:

F =

[
0 0

]

Intuitively, this results in the observations giving no information on the state. For-

mally, the application of the Kalman filter in this case can be performed analytically,

resulting in the entries of Cn growing without bound as n → ∞.

For a time-invariant DLM, convergence of the state variance is called filter stability.

More precisely a DLM is stable in this sense if there exists a limiting state covariance

matrix C∞ such that Cn → C∞ as n → ∞. The existence of this limit is equivalent

to the existence of a solution of the Riccati equation [27] pp. 80-82. In practice, we

typically assume that a filter is stable if the state covariance appears to converge (as

is the case here).

4.3 Specification of error structure

To specify the DLM one needs to specify the model error covariance matrices {Wn}

and observation error variances {Vn}. In our toy example, these were assumed to be

known a priori. In practice, minimal information is known about the model error and

observation error, which makes specifying these terms in the DLM challenging. In

this section, we describe the approaches we use in Ch. 5 to model these two types of

error.
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4.3.1 Discount factor specification of model error covariance matrices

First, consider the matrix Wn, which is the covariance of the model error arising from

the forecast step, Equation 4.14. Without a deep understanding of the structure

of the model error, directly specifying this matrix is difficult. The method we use

increases the state covariance in the forecast step in the simplest manner: multiplying

the forecast state covariance matrix by a scaling factor.

More precisely, we dynamically specify Wn based only on a single parameter δ ∈

(0, 1], referred to as the discount factor, by

Wn =
1− δ

δ
Pn (4.19)

where Pn refers to the raw forecast state covariance given by Pn = G′
nCn−1Gn in Eq.

4.19, where the term ‘raw’ is used to indicate that Pn is the state covariance resulting

only from the deterministic component of the forecast. Recall that this equation

states that full forecast state covariance, Rn, is the sum of this term, Pn, and the

stochastic component Wn that captures model error:

Rn = Pn +Wn.

Consequently, when specifying Wn by Eq. 4.19, the resulting forecast state covariance

is simply

Rn =
1

δ
Pn.

In summary, the discount factor δ specifies Wn in such a way that its reciprocal

1
δ
inflates the uncertainty on the unknown state. The discount factor is commonly

interpreted as a measure of model trust [27]. This interpretation results from the fact
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that δ = 1 corresponds to no increase in state covariance in the forecast step while

δ ≪ 1 yields an arbitrarily large state covariance after forecasting.

By applying this approach, we no longer need to specify the d2 entries of Wn,

which requires a detailed understanding of the error structure of the model. Instead,

we set the single value δ. Of course, directly specifying the matrix Wn is preferable

when we have specific knowledge of the model’s error structure, but since we do not

have such information, we use the discount factor methodology. We will discuss how

this value is chosen (as well as the specification of other parts of the DLM) in Ch. 5.

4.3.2 Conjugate-variance Kalman filter for observation error variance

Now that we have discussed model error, let us turn our attention to the observation

error variance, Vn. As with the model error, we do not have an a priori understanding

as to the scale of this error. We have already encountered this type of uncertainty

when introducing the time-invariant thermometer example in section 4.1. We men-

tioned that one common approach is to use a Bayesian model for the observation

error variance, and that is the approach we describe here.

To incorporate uncertainty on the observation error term, we treat it as an un-

known, in the Bayesian sense. We model the observation error variance as a time-

independent random variable V that is considered to be part of the state. When we

do so, the resulting model is not a DLM since V does not interact linearly with the

rest of the state. Consequently, the Kalman filter does not apply.

However, we can still efficiently conduct sequential filtering by applying an ex-

tension to the Kalman filter. For prior conjugacy to apply, V needs to have an

inverse-gamma distribution. Equivalently, the random variable V −1, which we will

denote by ϕ, needs to have a gamma distribution. The variable ϕ is typically called

the precision. Further, the non-linear dependence of the rest of the state on ϕ is
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captured through the joint normal-gamma distribution, according to the definition

below.

Definition 4.19. Let (θ, ϕ) be a multivariate random variable. That is, the compo-

nents of the vector θ and the value ϕ are each random variables. We say the (θ, ϕ)

is distributed joint normal-gamma with parameters (m, C̄, α, β) if ϕ ∼ G(α, β) (i.e.,

distributed gamma) and, conditional on ϕ, θ|ϕ ∼ Nd(m, C̄ϕ−1). We denote the joint

normal-gamma distribution by

(θ, ϕ) ∼ NG(m, C̄, α, β).

This distribution is most easily interpreted with a univariate state, in the case

where C = 1. In that case, the joint normal-gamma distribution simply states that,

conditional on ϕ, the state θ is distributed normally with a variance of ϕ−1. In the

more general case, the precision ϕ plays the role of a scaling factor on the error

covariance of θ. As the precision increases, the error covariance is scaled down. For

example, if C̄ = I, then ϕ−1 is exactly the variance of each component of θ.

Modeling the observation error precision ϕ = V −1 as a time-invariant random

variable results in a new random variable in addition to the time-varying state random

variables θ0,θ1, ...,θN . As with the state, ϕ is estimated from the data at each time

via Bayes’ formula. We utilize the joint multivariate Normal-Gamma distribution

described by Def. 4.19 to express the uncertainty around both the state θn and the

unknown observation error precision ϕ, which follows a gamma distribution.

Due to prior conjugacy, this choice of distribution allows for an exact sequential

filtering algorithm similar to the Kalman filter for standard DLMs. The primary

difference is that the distributions are no longer normal, but joint normal-gamma

for the state distributions and student-t for the observation distributions. Further,
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all error covariance and variance terms are scaled by the random variable ϕ, which,

similar to the above definition, is distributed gamma with parameters αn, βn. Those

hyperparameters are adjusted as the filter ‘learns’ the distribution of the precision ϕ

through the prior conjugate application of Bayes’ formula. We refer to the resulting

collection of equations as the conjugate-variance Kalman filter [27] pp. 158-160.

Proposition 4.20 (Conjugate-Variance Kalman Filter). Let the conjugate-variance

DLM be specified with a joint normal-gamma prior distribution

θ0, V
−1 ∼ NG(m0, C̄0, α0, β0)

and the dependency structure (4.12), conditional on the unknown V in the following

manner

vn|V ∼ N1(0, V )

wn|V ∼ Nd(0, V W̄n)

where W̄n is specified. Then the following statements hold.

1. The one-step-ahead predictive state distribution is joint normal-gamma

θn, V
−1|Y1: n−1 ∼ NG(an, R̄n, αn−1, βn−1).

where the parameters are given by

an = Gnmn−1

R̄n = GnC̄n−1G
′
n + W̄n.

(4.20)
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2. The one-step-ahead predictive observation distribution is scaled student-t

Yn|Y1: n−1 ∼ T
(
fn, Q̄n

βn−1

αn−1 − 1

)

with 2αn−1 degrees of freedom where the parameters are given by

fn = Fnan

Q̄n = FnR̄nF
′
n + 1.

(4.21)

3. The filtering distribution is joint Normal-Gamma

θn, V
−1|Y1: n ∼ NG(mn, C̄n, αn, βn)

where the parameters are given by

mn = an +Kne
′
n

C̄n = (I −KnFn)R̄n

αn = αn−1 +
1

2

βn = βn−1 +
1

2
Q̄−1

n e2n

(4.22)

where e′n = yn − fn is the forecast error and the n× 1 matrix Kn is the Kalman

gain matrix given by

Kn = R̄nF
′
nQ̄

−1
n . (4.23)

Remark 4.21. For a conjugate-variance DLM as described above, the normalized
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model error (NME) is given by

e′n =
yn − fn√

Q̄n
βn−1

αn−1 − 1

(4.24)

and follows a standard Student-t distribution with 2αn−1 degreees of freedom. Note

that for large αn−1 (i.e., large n) this converges to the standard normal distribution.

The conjugate-variance DLM still allows for discount factor specification, this time

of W̄n. In this model, if we let P̄n = GnC̄nG
′
n then R̄n = P̄n + W̄n. As before, when

we express W̄n as a fraction of P̄n

W̄n =
1− δ

δ
P̄n

then R̄n = 1
δ
P̄n. The discount factor δ has the same interpretation as before.

4.4 Extended Kalman filter (EKF)

In some cases, the forecast function Gn is non-linear. Since such a stochastic state

space model is not a DLM, the Kalman filter can no longer be used for sequential

filtering. A field where this frequently occurs is meteorology, where non-linear dy-

namics are common [12]. In our case, the model we will use in Ch. 5 to describe

the signal of the W2 measure during stick has a non-linear forecast function. To al-

low for non-linear deterministic evolution, we can consider applying the Kalman filter

equations using the linearization of the forecast function Gn(·) around the state mean

mn−1

Gn(θn−1) ≈ Gn(mn−1) + dGn(mn−1)(θn−1 −mn−1) (4.25)
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where dGn(mn−1) is the Jacobian matrix of the non-linear Gn(·) evaluated at the

previous state estimate mn−1. This approach is called the extended Kalman filter

(EKF).

The EKF uses the linearization of the forecast function to obtain an approximate

forecast state distribution that is Gaussian with an approximate forecast mean and

covariance matrix. Naturally, this approach is accurate only to the level that the

linearization approximates Gn. As is often the case, approximation error can affect

the fidelity of the resulting method.

Definition 4.22 (Extended Kalman Filter). Assume a non-linear forecast model

θn|θn−1 = Gn(θn−1) + ωn.

Suppose θn−1|Y1:n−1 ∼ Nd(mn−1, Cn−1). The extended Kalman filter approximates

the one-step ahead predictive state distribution as Gaussian

θn|Y1:n−1 ∼ Nd(an, Rn)

with parameters

an = Gn(mn−1)

Rn =
(
dGn(mn−1)

)
Cn−1

(
dGn(mn−1)

)′
+Wn

The conjugate-variance Kalman filter can be extended to include non-linear Gn in the

same manner.

The primary concern about using the EKF is that it is an approximation based on

the linearization of the forecast function and is therefore prone to numerical error from

a variety of sources. To understand these sources, we distinguish the approximate
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predictive distribution, a Gaussian distribution obtained using the above linearization,

and the true predictive distribution. Recall the basis of the Kalman filter: linear

transformations of normal random variables are themselves normal. However, due to

the non-linearity of Gn(·), the true predictive distribution is not necessarily Gaussian.

In addition to the non-Gaussianity of the true predictive distribution, the forecast

point estimate and error covariance are also approximations. More precisely, the

forecast point estimate an is the expected value of the Taylor expansion:

an = E
[
Gn(θn−1)

]
≈ E

[
Gn(mn−1) + dGn(mn−1)(θn−1 −mn−1)

]
= Gn(mn−1) + dGn(mn−1)

(
E
[
θn−1

]
−mn−1

)
= Gn(mn−1) + dGn(mn−1)(mn−1 −mn−1)

= Gn(mn−1).

The difference between an and the mean of the true predictive distribution depends

on the accuracy of the approximation in the second line.

Similarly, the covariance matrix Rn is an estimate on the second moment of the

difference between the true state θn = Gn(θn−1) + ωn and forecast point estimate

an = Gn(mn−1)
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Rn = E

[(
Gn(θn−1) + ωn −Gn(mn−1)

)(
Gn(θn−1) + ωn −Gn(mn−1)

)′]
= E

[(
Gn(θn−1)−Gn(mn−1)

)(
Gn(θn−1)−Gn(mn−1)

)′]
+ E

[
ωnω

′
n

]
≈ E

[(
dGn(mn−1)(θn−1 −mn−1)

)(
dGn(mn−1)(θn−1 −mn−1)

)′]
+Wn

=
(
dGn(mn−1)

)
E

[(
θn−1 −mn−1

)(
θn−1 −mn−1

)′](
dGn(mn−1)

)′
+Wn

=
(
dGn(mn−1)

)
Cn−1

(
dGn(mn−1)

)′
+Wn.

As before, the difference between Rn and the error covariance of the true predictive

distribution is dependent on the approximation (located on the third line). With these

sources of error, it is important to have processes in place to identify if the a filter

diverges from the observations in the application of the EKF. In our implementation

we set lower and upper bounds on the state covariance to identify filter divergence.
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Chapter 5

Model specification for considered measures

Our goal is to use the theory of dynamic linear models (DLMs) developed in Ch. 4

to predict slips. To do so, we model the signal of the considered measures during

the stick regime. For the convenience of the reader, small samples of the measures

defined in Ch. 3: the wall velocity vx, the left-right percolation force fplr, and the

Wasserstein distance W2, are shown again in Fig. 5.1. The models we use are fairly

rigid, so that the onset of slip can be identified when the predictive errors grow large.

In this chapter, we develop the theory to show why the measures in Fig. 5.1 are

amenable to the structure of a DLM, before specifying each of the precise models.

Recall from Def. 4.17 what it means to specify a DLM. We must specify each of

the following: the forecast matrix Gn, the observation matrix Fn, the forecast error

covariance matrix Wn, the observation error variance Vn, and the initial prior mean

m0 and covariance matrix C0. In the previous chapter, we described how to specify

the error structure with Wn and Vn, and we will be using a vague initial prior. Here

we focus on the selection of Gn and Fn. Colloquially, we refer to setting these two

matrices as the construction of the state.

In the synthetic example in the previous chapter, shown in Fig. 4.6, the structure

of the state was provided, based on the physical assumption that the time derivative

was relatively constant. In many other contexts, such as meteorology [12] and target

tracking [32] the state represents physical quantities, and the DLM structure is derived

from the underlying physics. However, the measures in Fig. 3.6 are more complex;
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Figure 5.1: Small sample of the evolution of (a) the horizontal velocity of the top wall
vx, (b) the right left percolation force fplr, and (c) the W2 from just before the onset
of a slip event to shortly after the start of the next slip. The insets show a sample of
the stick regime for each of the measures.

each time series is a result of the dynamics of interacting particles in the granular

system, condensed into a sequence of scalar quantities. So, we must use a different

approach to construct the state for these measures.

To specify Gn and Fn for the considered measures we use an empirical approach,

as suggested in [27]. The structure of the state is based on observable dynamic

components : visible patterns of behavior during the stick regime. To elucidate this
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approach, we will first begin with the synthetic data set depicted in Fig. 5.2. Unlike

the toy example of the previous chapter, we will not assume any underlying physics.

Instead, we will construct a state that describes the visible dynamic components:

oscillations superimposed over a slowly increasing level.

Figure 5.2: Sample of synthetically constructed observations from a dynamic linear
model of oscillations superimposed over a linearly increasing trend

Before going into the details of constructing the state, we wish to emphasize
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the important role of stochasticity in our models. As mentioned, the dynamics of

the granular system are quite complex. So, while we typically observe fairly rigid

behavior in the measures during the stick regime, the underlying complexities quickly

result in a departure from deterministic versions of the models that we will be using.

The stochasticity captured in the model error Wn and observation error Vn lend the

DLM a degree of flexibility that a deterministic model does not possess. As a result,

the models adjust to small deviations, while large changes in behavior, e.g., the slip

regime, are visible in the predictive error. This is especially important in our case,

as the empirically derived models are not inherently connected to the physics of the

underlying granular system.

5.1 State construction for a synthetic example

The process of empirically constructing the state consists of two basic steps: first,

create a deterministic model for the observed signal, then identify the appropriate

state variables of the deterministic model. By appropriate, we mean that the chosen

variables have linear forecast and observation functions. In Fig. 5.2, the synthetic

data appears to roughly consist of a sinusoid superimposed over a line. So, a basic

deterministic model is

yn = β0 + β1n+ a cos(ωn) + b sin(ωn)

The first two terms describe the underlying line while the last two terms specify a

sinusoid of amplitude
√
a2 + b2 and frequency ω. Equivalently, the period is P = 2π

ω
.

As a small note, observe that while yn is evaluated at integer values n ∈ Z, there

is no requirement that the period P be an integer. That is, with such a deterministic

model, we are considering yn to be the restriction of a real-valued function y(t) to
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the integers. This is the sense in which we say that yn is periodic with a non-integer

period. We allow for this because the period of the considered measures does not

appear to be strictly integer-valued. For more details on both integer-valued and

general periodicity, see [27].

To turn this deterministic model into a DLM, we must capture how the individual

variables evolve from frame n to n+1 (the forecast Gn), and then how they combine to

reconstruct the value yn (the observation Fn). Moreover, the forecast and observation

functions must be linear. To make this more clear, let us specify the state in this

example. It will consist of two dynamic components: one corresponding to the line,

and the other to the sinusoid. This will require a state vector with four variables, two

for each dynamic component.

We have already seen the model structure for the dynamic component of the line

in the toy example in the previous chapter. If θ0n is the value of the line at n, and θ1n

is its slope, the forecast function is

θ0n = θ0n−1 + θ0n−1

θ1n = θ1n−1.

The dynamic component of the sinusoid is slightly more complicated. First, to be

consistent with the DLM framework (linear evolution and observation), the frequency

ω must be known a priori (or estimated from the data). We then define the harmonic

value Sn of the sinusoid to be its height

Sn = a cos(ωn) + b sin(ωn).

For the forecast function, we wish to calculate the value of Sn based on the value of
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Sn−1. Without further information, this is not possible. With this in mind, we define

the conjugate harmonic to be

S∗
n = −a sin(ωn) + b cos(ωn).

Under this construction, the time evolution of both Sn and its conjugate S∗
n can be

expressed in terms of each other. That is, even though a and b are not known, if we

have the values Sn−1 and S∗
n−1 we can find Sn and S∗

n via the following equations:

Sn = Sn−1 cos(ω) + S∗
n−1 sin(ω)

S∗
n = Sn−1[− sin(ω)] + S∗

n−1 cos(ω)

(5.1)

The full derivation of this is shown in [27] pp. 105-106, following naturally from

trigonometric sum identities. Alternatively, from a geometric point of view, the pair

(Sn, S
∗
n) can be thought of as a point on the circle of radius

√
a2 + b2 (equal to√

S2
n + (S∗

n)
2, which is constant for varying n) that rotates at frequency ω.

With ω fixed and known this update is linear. In matrix form, Eq. 5.1 becomes

Sn

S∗
n

 =

 cos(ω) sin(ω)

− sin(ω) cos(ω)


Sn−1

S∗
n−1


To add the sinusoidal dynamic component to the state, we set θ2n = Sn and

θ3n = S∗
n. The forecast, in matrix form, is
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θn =



1 1 0 0

0 1 0 0

0 0 cos(ω) sin(ω)

0 0 − sin(ω) cos(ω)


θn−1

Lastly, to reconstruct yn, the observation function sums the value of the line θ0n

and the value of the sinusoid θ2n. In matrix form, this is

yn =

[
1 0 1 0

]
θn

With this we have largely completed the construction of the state for the synthetic

example, capturing the observed trend and overlaid oscillations. The only task re-

maining is specifying the value of ω. For the actual measures, which similarly exhibit

oscillations (see Fig. 5.1), we do this through Fourier analysis of a small sample of

the signal.

5.2 Modeling higher frequency oscillations

This example serves to illustrate how a signal with a linear trend and superimposed

oscillation can be decomposed into two dynamic components. However, while the

measures we examine sometimes contain nearly pure oscillations as in Fig. 5.2, many

appear to have higher frequencies as well, see Fig. 5.1. To model this, we introduce

additional dynamic components for higher frequency oscillations. Specifically, we

choose frequencies that are multiples of the base frequency.

We refer to the dynamic components as Fourier modes, as this model is based on

the Fourier decomposition of a periodic function. We briefly review this decompo-

sition here for the convenience of the reader. First, consider a general well-behaved
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periodic function yn with known frequency ω, referred to as the fundamental fre-

quency. Equivalently, the function has a known period P = 2π
ω
.

Since we model any local level around which the fluctuations occur by a separate

dynamic component, suppose for illustration that yn is zero-centered. To understand

the idea of a zero-centered function, recall that we model yn as the restriction of a

continuous function y(t) to the integers. A zero-centered periodic function is then

characterized by ∫ P

0

y(t)dt = 0

The Fourier decomposition states that a zero-centered periodic function can be

approximated by the sum of sinusoids whose frequencies are multiples of the funda-

mental frequency. Similarly to the single sinusoid Sn in the synthetic example, the

j-th such sinusoid will be denoted by Sn,j, and we call it the j-th harmonic. More

precisely, at frequency ωj = jω the j-th harmonic is given by

Sn,j = aj cos(ωjt) + bj sin(ωjt)

Then the Fourier approximation states

yn ≈
J∑

j=1

Sn,j (5.2)

Proof of this approximation can be found in [31].

The construction of the j-th Fourier mode proceeds identically to the single-

frequency construction for the synthetic example. First the j-th conjugate harmonic

is defined by

S∗
n,j = −aj sin(ωjn) + bj cos(ωjn)
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then the forecast is given by

Sn,j = Sn−1,j cos(ωj) + S∗
n−1,j sin(ωj)

S∗
n,j = Sn−1,j[− sin(ωj)] + S∗

n−1,j cos(ωj)

(5.3)

for each j = 1, ..., J .

In the zero-centered case, the state θ is a vector of length 2J consisting of

[Sn,1, S
∗
n,1, ..., Sn,J , S

∗
n,J ]

′. The observation function reconstructs the value yn by the

Fourier sum in Eq. 5.2. In matrix form, Gn consists of the block-diagonal concatena-

tion of J 2×2 matrices, one for each of the Fourier modes, while F =

[
1 0 ... 1 0

]
.

Much of the value of the general periodic model given above lies in its parameter-

ization. Only two values need to be specified: the fundamental frequency ω and the

number of Fourier modes J . Then, as in the synthetic example, any underlying trend

is captured by a separate dynamic component.

5.3 Model specification for considered measures

In this section, we specify the three DLMs that model the evolution of the vx, fplr, and

W2 measures during the stick regime, respectively. For each of the three measures,

we begin by constructing the state. As in the synthetic example in Sec. 5.1, the state

structure for each measure is decomposed into an underlying trend and oscillation(s).

Further, recall from Sec. 5.2 that the oscillations are further decomposed into Fourier

modes, for which we must simply specify the fundamental frequency ω and the number

of Fourier modes J .

After constructing the state, we specify the model error covariance matrix and

observation error variance. Recall from Sec. 4.3.1 that we specify the model error

covariance matrix using the discount factor methodology, by setting the parameter
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δ, the discount factor. Further, using the conjugate-variance theory of Sec. 4.3.2,

we model the observation error variance as a time-invariant random variable updated

by the data at each frame n by Bayes’ formula. In the models for each of the three

measures, the required initial distribution is always chosen to be the inverse gamma

distribution IG(2, 10−3), a vague prior.

Lastly, for each model, we specify the initial prior for the state that is distributed

multivariate normal. As noted in Ch. 4, with a vague initial prior the precise value

of the mean is relatively unimportant, as the Kalman filter quickly adjusts to the

observed data. So, for each measure, we select a prior where the state mean is on the

same scale as the typical values of the measure, and the initial state covariance is very

large. Notably, when using a conjugate-variance model, the large state covariance

is already specified by choosing a vague prior for the observation error variance.

Additionally, in all the analysis, we discard the first one hundred frames, to definitively

guarantee the filter has adjusted to the data.

Altogether, defining each model consists of specifying: (1) the underlying trend,

(2) the fundamental frequency ω, (3) the number of Fourier modes J , and (4) the

discount factor δ. The underlying trend in each measure is based on a visual exam-

ination of the signal over a few samples of stick frames, a process discussed in more

detail later in this section. The frequency ω is determined from Fourier analysis of a

sample of the data, the first ten percent. Lastly, J and δ were determined from model

diagnostics of a few samples of stick frames. Our extensive numerical investigation

confirmed that all results discussed in Ch. 6 are robust under rather large variations

of J and δ and even small variations of ω.

The model diagnostics governing the choice of J and δ are based on the normalized

predictive error (NME) of the model defined in Eq. 4.24. If the model is a good fit

for the data, then the errors are uncorrelated and they are distributed according to
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the standard normal distribution [27]. We use the Ljung-Box statistic to test [24] for

possible autocorrelation and the Shapiro-Wilk test [30] to see if the normalized errors

are distributed according to the standard normal distribution. We chose the models

that yield the best diagnostics during the stick regimes shown in Figure 5.3 (and later

in Figs. 5.4 and 5.5).

We start by setting up the model for the wall velocity, vx. Fig. 5.3 shows that

during the stick regime, vx oscillates around an almost constant value. Note that

oscillations exhibit multiple frequencies. Their dominant frequency ω = 0.2476 was

determined from the first 10% of the data. These oscillations are modeled with two

harmonic components with frequencies ωi = i ∗ ω, for i = 1, 2.

The value around which the oscillations occur is represented by the last component

θ5 of the state vector θ. The value of θ5n changes very slowly, and in the deterministic

forecast we consider θ5n to be constant. In the deterministic forecast, the Fourier

modes evolve according to Eq. 5.1. For the convenience of the reader, we state the

forecast function G as

(Gθn−1)
2i−1 = θ2in−1 sinωi + θ2i−1

n−1 cosωi, (5.4a)

(Gθn−1)
2i = θ2in−1 cosωi − θ2i−1

n−1 sinωi, (5.4b)

(Gθn−1)
5 = θ5n−1, (5.4c)

for i = 1, 2. Next, recall from Sec. 5.2 that the observation function, F , sums the

harmonics of the signal and the underlying trend. In this case, F is given by

Fθn = θ1n + θ3n + θ5n. (5.5)

To specify the model error covariance, we use the discount factor δ = 0.6. Lastly, the

96



Figure 5.3: Samples of wall velocity vx for individual stick-slip cycles. The green dots
mark the beginning of the stick regime while the red dots mark the end, as determined
from the offline method. Each inset displays a sub-sample of the stick regime. The
stick regime from our simulations is characterized not just by low wall movement, but
low-amplitude periodic behavior. This behavior varies from purely oscillatory in (b)
to the more erratic periodicity observed in (c). In contrast, the behavior of vx during
slip is far more erratic, only roughly characterized by its magnitude.

initial prior distribution for the state is a normal distribution with mean m0 where

mj
0 = 0, for j = 1, . . . 4, m5

0 = vx(0), and a scaled covariance matrix C̄0 = I. As
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noted, this prior is vague as a result of selecting a vague prior for the observation

error variance.

Figure 5.4: Samples of the fplr measure. Periodic behavior is often present in the
stick regime.

Now we turn our attention to the left-right percolation force, fplr, shown in Fig.

5.4. The dominant frequency of oscillations for this measure is ω = 0.5401. Again

we use two harmonic components. As in the case of vx, the evolution of the variables
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θ1, . . . , θ4, representing the harmonic components, is described by Eqs. 5.4(a)-(b).

The most important difference between the behavior of vx and fplr is that the

value around which fplr oscillates is not changing slowly. This value decreases in an

approximately linear manner. To incorporate this decrease into the model, we use

a linear trend (just as in the synthetic example in Sec. 5.1). We specify two state

variables: θ6n which models the slowly changing slope, and θ5n which captures the

decreasing value around which the signal oscillates. These two components evolve

according to the following equations

(Gθn−1)
5 = θ5n−1 + θ6n−1 (5.6a)

(Gθn−1)
6 = θ6n−1. (5.6b)

The observation function, F , again sums the variables capturing the oscillations and

the variable θ5n representing the value around which the oscillations occur, so (Fθn) =

θ1n + θ3n + θ5n. To specify the model error covariance we use the discount factor δ =

0.93. As in the case of vx, the initial distribution for the state vector θ0 is a normal

distribution centered at m0 where mj
0 = 0, for j = 1, . . . , 4, m5

0 = fplr(0), m
6
0 = 0,

and the scaled covariance matrix C̄0 = I.

Fig. 5.5 shows samples of the last considered measure, the zero-level Wasser-

stein distance W2. This measure exhibits oscillations with the dominant frequency

ω = 0.5387, and using two harmonic components is once again sufficient. The most

important difference between the behavior of fplr and W2 is that the value around

which W2 oscillates decays in a roughly exponential manner, see Figure 5.5. Thus,

it can be modeled by a function eµt where the value of µ is allowed to change slowly

through the error term. To incorporate this exponential decrease in the model, we use

two state components: θ6n which models the slowly changing value µ, and θ5n which
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Figure 5.5: Samples of the W2 measure. The stick behavior exhibits oscillations at
multiple frequencies.

captures the behavior of eµt. The following equations ensure the desired evolution of

these components

(Gθn−1)
5 = θ5n−1e

θ6n−1 , (5.7a)

(Gθn−1)
6 = θ6n−1. (5.7b)
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The discount factor is δ = 0.67 and the initial distribution for the state vector θ0 is

a normal distribution centered at m0 where mj
0 = 0, for j = 1, . . . 4, m5

0 = W2(0),

m6
0 = 0 and the scaled covariance matrix C̄0 = I.

Eq. 5.7(b) is non-linear, so the model is not a DLM. However, recall the theory

developed in Sec. 4.4; the extended Kalman filter (EKF) can be used to accommodate

the non-linearity of the forecast function [12]. The EKF uses the Jacobian matrix of

the forecast function, evaluated at the current state mean, to produce a linearized es-

timate of the predictive distribution of θn. There are well-known divergence problems

with EKF [12] since using the Jacobian matrix can lead to unrealistically small values

of the covariance matrix of the state distribution. This can impede the ability of the

filter to assimilate the observed data and eventually cause divergence of the model.

In our case, this happens when the value of θ5n becomes too small and is rounded

to zero. To retain numerical integrity during our computations, we re-initialize the

filter upon encountering filter divergence. We note that this occurred only once in

the entire data set.

In summary, for all of the measures the DLMs are combinations of a trend com-

ponent (constant, linear, exponential decrease) and a periodic component. The fun-

damental frequency of the periodic component is different for each measure, as is

the discount factor for specifying model error. The models are summarized below in

Table 5.1.

vx fplr W2

Trend Constant Linear Decrease Exponential Decrease
ω 0.2476 0.5401 0.5387
J 2 2 2
δ 0.60 0.93 0.67

Table 5.1: Model specifications for vx, fplr, and W2, detailing the type of trend,
the fundamental frequency of the periodic component ω, the number of harmonic
components J , and the discount factor δ.
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5.4 Detections from dynamic linear models (DLMs)

By construction, the DLM for a measure models the typical stick regime behavior.

Consequently, the predictive error sharply rises upon departure from the standard

stick regime, such as during a slip event. To identify such events we specify a maximal

acceptable value of the NME, Te. For a given DLM and a value Te, we say that the

model detects the beginning of a slip event at frame n0 if the NME, en, satisfies

|en0−1| < Te and |en0| > Te. We could say that this slip event ends when the value of

|en| drops below Te. However, it can happen incidentally that the value of |en| becomes

small during the slip. Therefore, to declare the that slip ends at n1 we require that

all the values |en1|, |en1−1|, . . . , |en1−m| have to be smaller than Te for m = 25. The

value of m is chosen to be roughly one period of the dominant oscillations during the

stick phase, see Fig. 5.3.

We refer to the period during [n0, n1] as a detection, defined precisely here.

Definition 5.1. Let e0, ..., eN be the sequence of normalized model errors of a dynamic

linear model. For an error threshold Te > 0 and minimum event duration m > 0, the

period during [n0, n1] is a detection at Te if

1. |en0−1| < Te,

2. |en0 | > Te, and

3. n1 = min{n > n0 : |en′ | < Te∀n′ ∈ [n−m,n− 1]}.

As previously mentioned, while such a detection may indeed correspond to a slip

event, it also may not. The term ‘detection’ indicates the broad variety found by the

online method for the various measures, each of which corresponds to some marked

change in the force network of the granular system.
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Additionally, note that this detection approach is online in the sense that the

identification of n0 depends only on data (i.e., the model error values) before it,

and the same for n1. This is in contrast to the offline two-threshold approach to

identifying slips detailed in Ch. 2, in which the slip start is determined using data

after the fact.

Remark 5.2. For a DLM that accurately models the observed time series, the normal-

ized model error NME will be distributed standard normal. Theoretically, this allows

for Te to have a standard interpretation across models as a credible interval (−Te, Te)

for the standard normal distribution at the corresponding significance level [20]. In

practice, the accuracy to which the DLM models the observed time series can affect the

magnitude of the NME, occluding the specificity of that interpretation. Nevertheless,

the standardization allows us to compare models on a similar scale, regardless of the

scale of the underlying time series.
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Chapter 6

Results

We now show the results of using the dynamical linear models (DLMs) specified

in the previous chapter to detect upcoming regime changes. First, recall the three

measures introduced in Ch. 3: the top wall’s horizontal velocity vx, the left-right

percolation force fplr, and the zero-level second Wasserstein distance W2. Based on

similar research in sheared granular systems [10, 2] discussed in Ch. 2, we expect the

W2 to be the most sensitive to localized changes that occur before slips, the fplr to

reflect the more globalized changes, and the vx to act as a baseline.

For reference, we consider the slips as defined in Ch. 2 from large increases

in vx, where the threshold velocity is based on an observed bimodal distribution

often present in sheared granular systems [17, 10]. As in Ch. 2, any detection

corresponding to this second category is called a micro-slip, as in that literature.

Notably, our methodology observes not only these two classes of detections but a

third distinct class, visible only in the W2 measure. We refer to detections in this

class as purely local changes, detected only by the zero-level Wasserstein distance W2

model. Detections in this category are characterized by localized disruptions in the

force network which do not spread across the whole system.

With further analysis, we find that the percolation force fplr model identifies

roughly the same events as the vx model (e.g., slips and micro-slips), but slightly

earlier, implying global changes in the force network tend to occur before increased

wall movement. Lastly, the W2 DLM identifies nearly all these slips and micro-slips
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even earlier, as well as the additional category of local changes. This supports our

premise that topological measures, such as the W2, can be used for the prediction of

upcoming slips.

6.1 Tri-partite classification of detections

Before continuing to the results, we define precisely what we refer to as ‘slip detec-

tions.’ We draw a sharp distinction between what we term reference slips, the fixed

intervals defined in Ch. 2, and slip detections, detected by one of the three models at

a specific error threshold Te, see Def. 5.1. The former is fixed and effectively treated

as a ground truth in our analysis, while the latter varies based on the error threshold

and modeled measure.

Definition 6.1. A slip detection is a detection, as defined in Def. 5.1, whose time

interval overlaps a reference slip, as defined in Ch. 2.

This distinction between reference slips and slip detections allows us to analyze

how far in advance a measure detects reference slips as the difference between the

detection time, the start of a slip detection, and the start time, the beginning of its

reference slip. Note that detection time, and even whether a slip is detected at all,

varies with the chosen error threshold. Hence, much of our results focus on the effects

of varying the error threshold for each measure.

As already noted, all three considered measures have detections that do not fall

into the category of slip detections. The second category is composed of detections

made by the wall velocity vx model that are not slip detections, and are termed micro-

slip detections. Unlike reference slips, the references for micro-slips are detections,

specifically, those made by the vx model at a critical error threshold of Te = 0.1. The

justification of this critical threshold is explained in Sec. 6.2, but here it suffices to
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say that is the smallest error threshold for which Def. 5.1 is reasonably defined over

the vx model.

Definition 6.2. Detections, as defined in Def. 5.1, made by the vx model at the

critical threshold Te = 0.1 that are not slip detections are the reference micro-

slips, while any detection whose time interval overlaps a reference micro-slip is a

micro-slip detection.

Fig. 6.1 shows the densities of two metrics on slip size over the detections of the vx

DLM at Te = 0.1: the maximum velocity during and magnitude of wall displacement,

denoted by dx, over the detections. The densities clearly show that for either metric,

the distributions are bimodal. This bimodality confirms the bi-classification noted in

Ch. 2. We note that the slip and micro-slip detections are roughly delineated by the

valley separating the peaks.

Figure 6.1: Probability density of (a) maximum of wall velocity vx and (b) dx, the
wall displacement in the x direction, on the log10 scale during detections made by the
wall velocity model at the critical error threshold of Te = 0.1. The bimodal nature of
these distributions indicates the presence of two classes.
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The third category we consider is seen exclusively in the W2 metric. A significant

portion (28%) of the detections made by the W2 model do not fall into the category

of slip or micro-slip detections. Fig. 6.2 shows an example of such a detection. The

fact that there is no visible change in the fplr quantifying the global changes of the

network implies that the detected change of the force network is localized. Indeed,

for this particular detection, there is a large spike in the broken force, fbc as shown in

Fig. 6.2(d), which is a measure of the force network defined as the sum of all (normal)

forces at the contacts that are broken between subsequent frames. The spike in fbc is

the result of a single large broken contact, indicating that, at least for this case, the

W2 detection is strongly related to broken contacts and highly localized.

The example of Fig. 6.2 is not unique; nearly all the detections in the third

category, which we will define shortly, are not detected by the fplr model. Hence, we

feel justified in calling these local changes. Similarly to the reference micro-slips, a

set of reference local changes is defined based on detections made by the W2 model

at a critical error threshold. In this case, a threshold of Te = 0.4 is used, which will

be justified in Sec. 6.2.

Definition 6.3. Detections, as defined in Def. 5.1, made by the W2 model at the

critical threshold Te = 0.4 that are not slip or micro-slip detections are the reference

local changes, while any detection whose time interval overlaps a reference local

change is a local change detection.

We note that similar local changes, including non-affine motion or rotations of the

particles, have been discussed in previous works [25, 4].
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Figure 6.2: Example of a detection from the W2 model at Te = 0.4 that is not
detected by the vx (or fplr) model. Panels (a)-(c) show the vx, fplr, and W2 with the
inset displaying the corresponding NME, while (d) depicts the broken contact force,
fbc. The red point marks the detection time of the W2 model. The fact that vx and
fplr do not detect this event suggests that it corresponds to a local change in the force
network. The corresponding spike in fbc is the result of a single broken contact with
a large force value.

6.2 Detections for varying error thresholds

Detection time, and even the detections themselves, depends on the error threshold

Te. Fig. 6.3 is a representative example of how detection depends on the error

threshold for a slip (a)-(c), and a micro-slip (d)-(f). We begin by exploring the trends

in this example before generalizing to the entire data set.

Starting with Fig. 6.3(a)-(c), we compare the detection times of a slip made by
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Figure 6.3: Two detection examples: (a)-(c) a slip event detected by the offline
method (shown in Figs. 5.3(b), 5.4(b), and 5.5(b)), and (d)-(f) a micro-slip event.
The measure vx is shown in (a), (d), fplr in (b), (e) and W2 in (c), (f). In (a)-(c), the
red dots identify the start of the slip event determined by the offline method. The
insets show the respective NME for individual DLMs, with the vertical lines marking
detection times for individual DLMs using three different values of Te = 0.1, 0.4, and
1.5 for the solid green line, dashed orange line, and dotted red line, respectively.
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the vx, fplr, and W2 models, respectively, for three different error thresholds. In this

example, decreasing the value of the error threshold Te leads to an earlier detection

time. We note that for each fixed value of Te, the W2 model detects the slip first,

followed by fplr, and then vx.

Next, Fig. 6.3(d)-(f) showcases micro-slip detections and illustrates some difficul-

ties that may arise at different error thresholds. First, observe how the vx model does

not detect this event for the larger thresholds Te = 1.5 and Te = 0.4, since its NME

rises only slightly above 0.1. On the other hand, using the smaller threshold Te = 0.1

with the W2 model does not result in a detection inside the depicted time window.

Rather, at this threshold the entire depicted time window is inside a detection that

starts far earlier. So, if Te is too large, then slip events may be detected late or even

missed, while choosing Te too small can cause large stretches to be captured in a

single detection, merging detections that should be distinct.

Fig. 6.4(a) shows the number of detections as a function of Te, for the three

measures. Observe that each of the measures shows a prominent peak, located at

Te = 0.1 for the vx and fplr, and Te = 0.4 for the W2. If we decrease Te below this

threshold (as specified for each of the measures), then distinct detections start to

merge and their number decreases. Hence, we consider these to be critical thresholds

(mentioned in Sec. 6.1 in Def. 6.1, 6.2, and 6.3), as they are the lowest threshold

for which distinct detections do not merge. This is made precise in the following

definition.

Definition 6.4. The base detections for each of the three considered models are the

detections made by a model at its critical error threshold, denoted by T c
e : T

c
e = 0.1

for the vx and fplr models and T c
e = 0.4 for the W2 model.

For the remainder of our analysis, we will only consider the values of Te ≥ T c
e .
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Figure 6.4: Panel (a) shows the total number of detections from the vx, fplr, and
W2 models as a function of Te. The curves corresponding to vx and fplr show a
well-pronounced maximum at Te = 0.1, while the curve corresponding to W2 shows a
maximum at Te = 0.4. The dashed line indicates the number of reference slips in the
data set. Panel (b) shows the number of detections after removing aftershocks, i.e.,
the number of base detections (as defined by Def. 6.4) that are still detectable at Te.

Note that with this terminology, the reference micro-slips in Def. 6.2 are simply the

vx base detections that are not slip detections, while the reference local changes in

Def. 6.3 are the W2 base detections that not slip or micro-slip detections.

Observe how in Fig. 6.4(a) for the vx and fplr there is a pronounced plateau

followed by a gentle rise. Further investigation revealed that some slips are followed

by almost immediate aftershocks, see Fig. 5.3(b) for an example. Detection of these

aftershocks causes this rise because, for small values of Te, the main event and its

aftershock are identified as one detection; however, as Te increases, both the main

event and the aftershock are eventually identified separately. To avoid the identi-

fication of aftershocks as separate events and to accurately capture the number of

distinct detections, we consider an adjusted detection count, shown in Fig. 6.4(b).

The aftershocks are removed by considering ‘different’ detections at some Te ≥ T c
e
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to be the same if they occur during a single base detection. The adjusted detection

count steadily decreases for all measures and error thresholds Te ≥ T c
e .

6.3 Insight provided by different measures

Now we turn our attention to the relation between the reference slips and the detec-

tions from each of the measures. To better understand how the composition of the

detections varies over the error threshold Te, we use two ratios: the true positive rate

and the false positive rate. For a given measure, the true positive rate, rtp(Te), is the

ratio of the number of reference slips detected at the threshold to the total number of

reference slips. The false positive rate, rfp(Te), is the ratio of the non-slip detections,

to the total number of detections made at that threshold.

Fig. 6.5 depicts the ratios, rtp(Te) and rfp(Te). Observe in Fig. 6.5(a) that for

each measure there is a range of error thresholds for which rtp = 1. That is, each

of the three models is capable of detecting all reference slips, within these respective

ranges. However, in Fig. 6.5(b) note that for each measure there is a considerable

number of false positives at thresholds near the critical threshold T c
e . The large false

positive rates are caused by the micro-slip detections (and local change detections, in

the case of the W2 model).

So, increasing the error threshold Te reduces the proportion of non-slip detections

but also results in some reference slips not being detected (and, as we will show in

Sec. 6.4, later detection times). At this point, we cannot reliably distinguish between

slip detections and the other two types until after the fact. Further research will be

necessary to address this issue; we propose some potential avenues in Ch. 7.

As with the detection counts in Fig. 6.4, we calculate an adjusted false positive

rate that does not distinguish aftershocks and is thus more representative of the
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Figure 6.5: (a) True positive rate, rtp(Te), and (b) false positive rates, rfp(Te). The
dashed line marks the false positive rate and the solid line marks the adjusted false
positive rate obtained by removing the aftershocks.

proportion of non-slip detections. The adjusted false positive rate at Te is the ratio of

base non-slip detections still present at Te, and the total number of base detections

still present at Te. Fig. 6.5(b) shows that the adjusted rfp(Te) is always decreasing

and decreases significantly faster than the non-adjusted rfp(Te).

To further investigate the relation between wall movement and force network

rearrangements, we introduce a measure defined over the base detections, themaximal

error threshold Tm
e . The maximal error threshold of a base detection is defined as

the largest value of Te for which it is still detectable. The maximal error threshold

is a measure of model error during a detection, indicative of the magnitude of the

deviation from typical stick regime behavior for that model. So, we use Tm
e for the

fplr as a proxy measure of global change and Tm
e for the W2 as a proxy measure of

local change.

Fig. 6.6 shows the relation between the values of Tm
e for different measures, with
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Figure 6.6: Scatter plot of the Tm
e values for base detections made by both considered

measures (a) vx and fplr, (b) W2B0 and vx, and (c) W2B0 and fplr. The blue color
indicates slip detections while the green color indicates micro-slip detections.

each point corresponding to a base detection made by both of the measures specified

on the axes labels. For each pair of measures, there is a general correlation between

the Tm
e values, indicating a rough agreement between the ‘magnitude’ of detections,

at least as quantified by the maximal error threshold.

However, in the comparison between the vx and fplr base detections shown in Fig.

6.6(a), there is a notable difference in slope between the slip and micro-slip detections.

The maximal error thresholds of the vx slip detections increase more rapidly with the

fplr maximal error thresholds, compared to the micro-slip detections. Further, an fplr

Tm
e value larger than ≈ 3, almost certainly indicates a slip detection (this can also

be seen in the near-zero adjusted rfp in Fig. 6.5(b)), while an fplr detection with

Tm
e < 1 is a micro-slip. That is, there is a relatively well-defined critical value for the

‘magnitude’ of the global change of the force network, and surpassing this value leads

to a slip event.

In contrast, Fig. 6.6(b)-(c) indicates that the magnitude of local change, as mea-

sured by the W2 T
m
e , is far less connected to the distinction between slips and micro-

slips. While very large (small) values ofW2 T
m
e always correspond to a slip (micro-slip)
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detection, there is a wide range of maximal error thresholds obtained by theW2 model

for which we observe both slip and micro-slip detections. That is, the connection be-

tween wall activity and local changes in the force network, viewed through persistent

homology, is not clear, since even large local changes may not lead to a slip.

Next, we explore the relation between maximal error thresholds of base detections

and the more traditional measure of wall displacement, dx, over a detection. Fig.

6.7(a) shows that the values of Tm
e obtained by the vx measure are linearly propor-

tional to the wall displacement. We also observe a relatively clear distinction between

micro-slip and slip detections, since Fig. 6.7(b) shows a clear change of slope around

the boundary between the slip and micro-slip detections. This change of slope further

indicates that for the slips the wall activity increases more rapidly with the growing

global change in the force network than for the micro-slip detections. Fig. 6.7(c)

relates the size of the local change of the force network and the wall displacement. As

in Fig. 6.6(b)-(c), there is a large range of values Tm
e obtained by W2 for which both

slip and micro-slip detections occur. A local change of the force network with Tm
e in

this range has uncertain consequences. It might dissipate without causing a global

change in the force network or trigger a global change accompanied by a micro-slip

or slip. However, sufficiently small local changes never trigger a slip while sufficiently

large ones always do.

6.4 Predictive power of different measures

So far, we have compared the detections made by each of the three measures. This

section examines how far in advance the reference slips can be detected by our online

methodology. The representative example of Fig. 6.3(a)-(c) suggests that the detec-

tion time of a slip depends on both the considered measure and Te. To examine this
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Figure 6.7: Scatter plot of the wall displacement during a base detection and its
values Tm

e , for events detected at T c
e by (a) vx, (b) fplr, and (c) W2. The blue color

indicates slip detections while the green color denotes micro-slip detections. In c) the
red color indicates local change detections.

quantitatively, we consider the times at which the offline method detects the start of

the reference slips as a baseline, referred to as the start times. We compare the start

times with the detection times obtained by different measures and values of Te, the

first frame of the detection. From this, we focus on two metrics: the median advance

notice and the advance ratio, measuring how far in advance slips are detected and

how many slips are detected in advance, respectively. We emphasize that the pur-

pose of this comparison is quantifying the effectiveness of the online methods based

on DLMs, and not comparing the performance of online and offline methods. The

offline approach uses future data for identifying slip events and is not appropriate for

predictive purposes.

For a given slip detection, let t0 and t′0(Te) be the start time and detection time,

respectively. We then define the advance notice of the detection as ta(Te) = t0−t′0(Te).

If ta(Te) > 0, then the slip is detected in advance. To analyze how far in advance the
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Figure 6.8: Comparison of offline and online methods: a) the median advance notice
⟨ta⟩ taken over slip detections by the given measure at Te; (b) the ratio of slip detec-
tions that were detected in advance ra(Te).

reference slips can be detected, using different measures and values of Te, we consider

the median advance notice ⟨ta⟩ defined as follows. For a given measure and Te, the

value ⟨ta⟩(Te) is the median over the slip detections at that error threshold. The

advance ratio, ra(Te) is simply the ratio of the number of reference slips detected in

advance and the total number of reference slips. Fig. 6.8 shows these two metrics as

functions of Te ≥ T c
e .

We immediately observe in Fig. 6.8(a) that the W2 measure tends to provide

the earliest detection times for a wide range of error thresholds. In particular, for

Te = T c
e , the median advanced notice is over ten frames, while the best value that can

be achieved by fplr is only around five, and vx barely detects slip events in advance

at all.

Fig. 6.8(b) shows that ra, as expected, decreases with Te for each considered

measure. Once again, the shape of the W2 curve is different from the other two. This
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Figure 6.9: The median magnitude of the wall velocity at the detection time for
different measures and Te. For each measure, the solid lines mark the median of vx,
and the shaded regions mark one standard deviation. The dashed lines show the two
thresholds used by the offline method: (black) vL used to identify slip events and
(red) vS used to identify their start.

curve decreases slower and is the only one that approaches unity as Te gets close to

T c
e . That is, this measure is the only one that can predict almost all slips in advance.

Lastly, we investigate the wall velocity at detection times over different measures

as further confirmation that the W2 metric can detect slips before the wall has begun

to move. Fig. 6.9 shows the median (and one standard deviation) of vx at detection

times as a function of Te. The median at each fixed Te value is taken over all slip events

detectable by the given model and Te. As expected, all the curves are increasing with

Te. Consistent with the results shown in Fig. 6.8, we find significantly lower values of

⟨vx⟩ when considering the W2 measure. That is, persistent homology indeed detects

changes in the force network well before the wall has begun to move appreciably.
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Chapter 7

Conclusions and future work

In this manuscript, we present a method for detecting the onset of slip that can be used

for an incoming stream of data. We consider three different measures on the granular

system: the wall velocity vx, maximum percolation force of the differential force

network, fplr, and the zero-level second Wasserstein distance between the persistence

diagrams quantifying the force networks, W2. For each of these measures, we build a

dynamical linear model (DLM) capable of accurately predicting its behavior during

the stick regime. Naturally, the predicted values of the models become increasingly

inaccurate leading up to and during slips. Hence, to detect the upcoming slip we

analyze the predictive error: the differences between the predicted and observed values

of these models.

Our analysis of vx shows a clear classification between slip and micro-slip detec-

tions. We find that global changes in the network, as measured by fplr, are nearly

always followed by a subsequent slip or a micro-slip. So, the fplr model provides a

slightly earlier prediction of the upcoming slip events than that of the wall velocity.

Next, by using the W2 measure, we can identify local changes in the force network

which can either dissipate or spread over the force network, culminating in a slip or

micro-slip. While micro-slips were reported in the previous works considering similar

systems, see e.g. [10], and local changes (called ‘local avalanches’) were discussed

recently as well [4], we are not aware of such events being used for predictive pur-

poses. From the predictive perspective, we note that the W2 model shows the best
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performance, in terms of sensitivity. On the other hand, the high sensitivity of this

measure also leads to a significant percentage of ‘false positives,’ in the form of local

changes that do not lead to slip events.

In summary, we observe the following timeline of the changes leading to a slip

event. Typical slip events start with a local change in the force network, the magni-

tude of which can be roughly quantified by the model error of the W2 DLM. If the size

of the local change is sufficiently large, then it always becomes global and triggers a

slip. On the other hand, a sufficiently small local change does not trigger a slip. There

is, however, a large range of local change sizes for which the outcome is uncertain;

the initial local disruption may either dissipate or trigger a global change resulting in

a micro-slip or even slip event. While the chronology of a slip described above has

been discussed in the literature already, our method allows for precise quantification

of this timeline.

7.1 Future avenues of research

As noted above, a significant fraction of the local changes of the force network fall

into an intermediary range and may or may not result in a slip or micro-slip event.

Naturally, it is of great interest to explore whether there are distinguishing charac-

teristics of local changes that could be used to predict if the given change will lead to

a slip event. One potential route is the analysis of individual dynamic components of

the DLMs, similar to the component-wise analysis of models in [34].

Figure 7.1 isolates the amplitude of the periodic components(s) of the individ-

ual DLMs, focusing on the start of the detected events. In separating the slips,

micro-slips, and local changes, there do appear to be subtle differences between these

categories, even before detection. However, at the time of detection, the distribu-
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Figure 7.1: Median amplitude of the periodic component(s) of the DLMs for (a)
vx, (c) W2, and (e) fplr at the frames near detection (marked by n = 0), taken over
detections. The medians are separated over slips (blue), micro-slips (green), and local
changes (red). Panels (b), (d), and (f) show the full distributions of amplitude values
at detection time. The detection time is from the W2 model at its critical threshold
T c
e = 0.4.

tions largely overlap, which impedes the ability to distinguish the detection category.

Nevertheless, these plots suggest this type of analysis could be useful in future work.

Another potential avenue is the examination of other measures. In this work, we
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use W2 to identify local changes. This measure compares the topological properties of

the force network encoded by the persistence diagrams. Hence, the precise geometry

of the force network is ignored. Further research will be necessary to establish if

the geometry of the network, or even more detailed information on the particles, can

be used to predict the outcome of local changes. Our results suggest that the DLM

framework can be a powerful tool when considering the appropriate measures on the

granular system.
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