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ABSTRACT

Recent advancements in model-free control strategies, such as reinforcement learning

(RL) have led to more practical and scalable solutions for building energy system controls

These strategies do not require complex models of building dynamics and rely exclusively on

data to learn the control policy. Applications of these techniques in heating, ventilation and

air-conditioning (HVAC) systems are being studied under different operational scenarios,

including demand response programs. Conventional (unconstrained) reinforcement learn-

ing controllers often address indoor comfort constraints by incorporating a comfort violation

penalty in the reward function. While this approach can result in good performance in terms

of energy cost, it often leads to significant constraint violations when a small penalty fac-

tor is used. On the other hand, effective enforcement of constraints can be achieved, but at

the cost of economic performance degradation. Hence, a clear trade-off between economic

performance and constraint satisfaction poses a challenge to overcome. Motivated by this

challenge, this thesis presents a constrained RL-based control strategy for building demand

response. The proposed strategy handles the constraints explicitly, avoiding the use of arbi-

trarily set penalty factors that can significantly impact control performance. To demonstrate

its efficacy, simulation tests of the proposed strategy, as well as baseline model predictive

controllers (MPC) and conventional (unconstrained) policy optimization methods, were con-

ducted. The simulation tests showed that the constrained RL strategy achieved utility cost

savings up to 16.1%, similar to the MPC baselines, without requiring any model of the build-

ing and with minimum constraint violation. In contrast, the unconstrained RL controllers led

to either high utility costs or constraint violations, depending on the penalty factor setting.

xii



CHAPTER 1

INTRODUCTION

Building electrical loads represent 75% of the electricity consumption in the United States

[1]. Technologies and solutions for efficient and sustainable building operations have wit-

nessed growing attention in the past few years, with heating, ventilation and air conditioning

(HVAC) demand response being one of them. Demand response plays an important role in

improving electric power system reliability against uncertainties in renewable generation,

peak demand, asset availability, and other grid contingent conditions [2, 3].

The concept of demand response, originally rooted in the power utility sector, has found

its way into the realm of building control systems as a means to enhance energy resilience,

reduce peak load demands, and mitigate the environmental impact of energy consumption. It

provides a mechanism for building systems to adapt in real-time to changing energy supply

and demand conditions, allowing them to intelligently and autonomously adjust their energy

consumption patterns.

Model predictive control (MPC) is a broadly used technique in demand response control

of HVAC systems. While MPC offers a powerful framework that can explicitly consider

constraints during control decision making, a decent process model is needed to achieve

satisfactory control performance, the development of which would require significant engi-

neering costs, especially for complex systems such as buildings. Reinforcement learning

(RL) offers a promising model-free control approach that has been successfully applied in

different fields including building energy management [4].
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CHAPTER 2

LITERATURE REVIEW

MPC has become a popular approach in improving energy efficiency and optimizing perfor-

mance of building systems. Researchers have extensively explored the application of MPC

in a range of applications which include HVAC systems and building controls for energy

cost and occupant comfort optimization [5, 6]. An extensive and detailed review of MPC

applications in buildings can be found in [7].

In the context of demand response, MPC has been researched to reduce peak energy

demand under a real time pricing (RTP) regime for building climate control and proved to

be effective on reducing overall electricity costs [8]. MPC was also used under demand

response to optimize the battery energy storage system and HVAC system schedules to min-

imize annual electricity cost using MPC on an EnergyPlus building model [9]. Studies have

also focused on improving MPC performance in buildings. A study compared different MPC

formulations for commercial buildings under time of use rates. These proposed formulations

showed to effectively reduce energy costs and increase load-shifting capacity under demand

response events, while maintaining low peak demands [10]. In order to determine the max-

imum potential savings with MPC for commercial buildings under demand response, the

effects of look-ahead horizon, timing of peak demand and the initial peak demand target

have been studied. It was found that a 24 hour look- ahead horizon can achieve up to 78% of

the cost savings of a one shot monthly optimization [11]. While MPC is a promising control

approach, a complex and accurate model of the system is needed for its implementation.

Hence, model-free approaches are an attractive alternative when it is difficult or impossible

to obtain an accurate model or the cost and engineering efforts required to obtain one are

2



prohibitive.

RL offers a model-free control approach and numerous studies have researched the appli-

cation of RL techniques to building controls. These studies have highlighted the advantages

of RL over model-based control methods as well as challenges for its real-life implementa-

tion. One of these challenges is that the training process can be time-consuming and require

large data sizes. Model-based RL is a potential solution to address this problem since data

can be generated using the model at no cost. However, this requires a complex model of the

building and suffers from high upfront costs for model development, similar to model-based

control methods such as MPC. Ensuring the safety of the controls during the training phase

so that dangerous actions are not taken is also necessary. Lastly, the potential of improving

RL algorithms by using transfer learning for generalization and the use of trained building

policies on other similar buildings is an opportunity identified by many studies to accelerate

training and enable real-life implementation of RL algorithms [12, 13].

The earliest works in RL for HVAC systems used Q-learning techniques and highlighted

the challenges of RL techniques that need to be overcome and the direction the research in

this field could take. The use of Q-learning for the operation of thermal energy storage in

commercial buildings was investigated in [14]. This study found that for time of use (TOU)

rates, the RL controller achieved 8.1% of cost savings at a cost of 3.5% increase in total

energy use and 13.9% for real-time pricing at a cost of 6.2% increase of energy use. While

Q-learning showed the capability to learn a good policy, the algorithm applicability was

found to be limited due to the size of the Q-table increasing considerably with the action and

observation space size, which makes the problem intractable. At the same time, the training

time for achieving an acceptable control policy was found to be considerable and does not

allow for practical application of the algorithm [15, 16].

With the increase in available computation power and the development of new algo-

rithms, such as deep Q-networks (DQN) and policy optimization, better performance could

3



be achieved even for applications in the control of complex systems such as HVAC sys-

tems under demand response programs. For instance, early efforts to use deep RL sought to

minimize the electricity usage cost of the HVAC system. However, they utilized the DQN

algorithm without considering different temperature bounds for occupied and unoccupied

hours and the algorithm required hundreds of months of data to converge [17]. In another

study, DQN was used to minimize building energy use while maintaining CO2 concentra-

tion levels under an acceptable ppm threshold [18]. Seeking to improve the learning of the

DQN algorithm, an action processor to leverage previously known information from rule-

based controllers to reduce training time was used [19]. Better performance were shown

using algorithms similar or derived from DQN such as deep deterministic policy gradient

(DDPG) and asynchronous advantage actor critic (A3C). A study in the context of a lo-

cational marginal price in a multi-zone residential HVAC system used DDPG to minimize

energy costs [20]. In another study, DDPG was also used in a smart home energy manage-

ment system [21]. Asynchronous advantage actor-critic methods were applied for demand

response subject to demand charges in a multi-zone commercial building [22]. DQN strate-

gies have also been implemented and demonstrated in real buildings, e.g., a DQN strategy

pre-trained by a simulation model was deployed in a residential building demonstrating a

potential of 10 to 20% cost savings [23].

Policy optimization algorithms unlike value-based algorithms such as DQN directly learn

a policy from data samples of the building operation and have also been studied in the context

of demand response. A TRPO controller was proposed to be used in residential appliances

scheduling in residential buildings. The controller effectively generated a control policy for

the appliances although it did not consider occupancy-based comfort temperature bounds

[24]. A similar study used a multi-agent TRPO algorithm for an autonomous home energy

management system (HEMS). The algorithm is trained to optimize the scheduling of the

appliances considering the dynamic retail price and the local power generation and showed

better performance than simpler policy optimization algorithms such as REINFORCE. A

4



two-stage RL training framework was proposed integrating evolutionary strategies and prox-

imal policy optimization (PPO) to address a grid-interactive building control problem [25].

Pure PPO algorithms were also tested under different demand response scenarios in a build-

ing simulation tool (EnergyPlus) showing energy reduction of up to 22% and peak demand

reduction of up to 50% [26]. On a different application, PPO was used to find optimal indoor

airflow to minimize exposure of the building occupants to pathogents such as COVID-19 and

describes the advantages of using a model-free approach against computationally complex

CFD models [27].

All the studies above used unconstrained RL that cannot directly handle constraints, e.g.,

capacity and indoor comfort constraints, during control decision making. In unconstrained

RL implementations, constraints are often addressed heuristically, e.g., by adding a penalty

for constraint violations in the reward function. However, the control performance is sen-

sitive to the arbitrarily set penalty factor for indoor discomfort. It is difficult to put a price

tag on thermal discomfort as individuals would have different perceptions and tolerances

thereof. The local utility rate structures could further complicate the situation as the eco-

nomic consequence can highly depend on the energy rates as well as the peak-to-off-peak

ratio.

Constrained RL has arisen as a promising framework to address the challenges for ap-

plications that require constraints satisfaction. Constrained RL application has been studied

in other fields. A safety layer on top of a hierarchical approach for safe robot navigation

where the safety layer maps the actions proposed by the low-level controller and the con-

straint violation values to propose a safer action was proposed in [28]. Constrained RL

has been proposed for electric vehicle (EV) charging applications as well. The EV charg-

ing/discharging scheduling problem in a demand response context as a constrained Markov

decision process (CMDP) and uses the constrained policy optimization algorithm to obtain

a safe policy was formulated in [29]. This approach achieved the best performance in charg-
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ing cost and performed 10 times better on satisfying the constraint when compared with

the safest baseline. In another field, a flight decision optimization problem aiming to min-

imize the searching time is formulated as a CMDP [30]. This study used a UAV tracking

scheme using Gaussian process regression to estimate reference points and used it jointly

with multi-agent Q-learning to make flight decisions. These studies showed that constrained

RL offers an effective framework to solve problems that satisfy constraints while achieving

good performances.

Contributions of this work

This thesis reports the challenges of applying unconstrained RL algorithms to building HVAC

control: (1) sensitivity to the choice of the penalty factor, and (2) challenges in benchmark-

ing these algorithms with other techniques such as MPC-based strategies without guaran-

teed comfort constraint satisfaction. To overcome the challenges, this thesis presents a con-

strained RL-based strategy for building demand response and its numerical test results in

comparison with baseline unconstrained RL strategies as well as MPC. In addition, this

thesis also seeks to show that linear policies can work as well or better than deep neural

network-based policies in terms of convergence and performance depending on the problem

to be solved. To the author’s knowledge, this is the first work that applied constrained RL

strategies to tackle these challenges in building demand response.

This thesis is structured as follows. First, the numerical building model used as the em-

ulator that interacts with each RL agent is presented in chapter 3. Secondly, MPC is defined

and the MPC baselines are formulated in chapter 4. Next, chapter 5 introduces the general

RL concept along with the state-of-the-art algorithms for both unconstrained and constrained

policy optimization. Next, chapter 6 reports the simulation test results comparison with the

conventional RL and MPC baselines. Concluding remarks are provided in chapter 7.
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CHAPTER 3

BUILDING SYSTEM MODEL

This section introduces the building dynamic model used for control testing and MPC syn-

thesis. Note that in the MPC implementation, the same model is assumed for the plant and

control synthesis; therefore, the presented control performance represents the theoretical up-

per bound and mainly serves the benchmarking purpose.

A discrete-time state-space model is used to reproduce building thermal dynamics, based

on a thermal network approach [31]. The model uses the cooling rate as the control input

and outputs the zone temperature, in the following form:

xt+1 = Axt +Bww
t +BuQ

t
z, (3.1)

T t+1
z = Cxt+1, (3.2)

where xt is the state vector containing all nodal temperatures of a thermal network, Qt
z

is the average cooling rate within each time step, T t
z is the zone temperature, and wt is the

disturbance vector comprised of outdoor temperature, internal heat gains, and solar radiation.

The state-space matrices A, Bw, Bu and C are dependent on the thermal resistances and

capacitances of the thermal network. The model adopts a thermal network approach with

the network shown in Figure 3.1, which consists of two main wall branches: the floor branch

(Flr) that represents most of the thermal storage in the building construction; the external wall

(Ext) that bridges the indoor space to the ambient. The radiative internal heat gain (Qgain,rad)

is applied to the floor and external wall with a uniform heat flux while the convective internal

heat gain (Qgain,conv) interacts with the air node directly. A facade branch is used to capture

7



the dynamics of the facade cavity temperature (Tfac,space). The facade branch also captures

fasting couplings between the indoor, facade and outdoor spaces including infiltration and

heat transfer through windows. However, the case study building is a typical commercial

office space with negligible infiltration. The solar radiation transmitted through the windows

into the indoor space (Qsol,trans) and the facade space (Qsol,trans,fac) are also modeled where

the window transmittance is estimated in the training process.

This particular thermal network was obtained after rigorous identifiability analysis fol-

lowing the procedure detailed in [32], which uses norms of the Fisher information matrix

to evaluate the informativeness of training data relative to a given model structure. More

complex model structures (e.g., with more RC branches) may provide better match to ex-

perimental data but suffer from poor structural identifiability. Low-order models come with

better identifiability but may not capture all the dynamics. The thermal network structure

adopted here achieves a balance between accuracy and identifiability. The training data in-

cludes building operation data from the building management system, weather data collected

in a weather station on the building rooftop, and sub-circuit power meters that measure the

plug loads and lighting power usage. Further details of the training methodology and the

identified parameter values can be found in [31]. The resultant building load model uses the

cooling rate as input and predicts the zone temperature.

The model is used as a simulation test bed to evaluate the various control strategies. The

same model is adopted for the MPC implementation, while in RL-based control, the system

dynamics are not known to the agent and the control policy is learned from the recorded

interactions between the agent and the plant model that include control commands sent to

the building and the measurable observations.

The power used by the HVAC system can be estimated from the cooling rate by

P t =
Qt

z

COP
, (3.3)
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where the coefficient of performance (COP) assumes a constant in this study. Equation 3.1

to Equation 3.3 define the environment which the agent interacts with. The agent applies

a temperature setpoint and a set of measurable observations are available to the agent after

execution of the set-point. In this study, only a cooling scenario is considered although the

methods can be directly applied for heating seasons.

Figure 3.1: Thermal network model
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CHAPTER 4

MODEL PREDICTIVE CONTROL

This chapter introduces the MPC method which is broadly used in building control appli-

cations including demand response. It serves as a benchmark for evaluating the RL-based

control performance in this thesis. This section first describes the general concept of MPC

and then lays out the formulation used with the building system model. MPC optimizes sys-

tem performance by using a dynamic model to predict future behavior over a specified time

horizon. Key components include a dynamic model, a cost function, and constraints. At each

time step, an optimization problem is solved to find optimal control inputs, considering the

dynamic model and constraints over a moving horizon. MPC is advantageous for handling

complex systems, managing constraints, and adapting to changes in real-time. For building

demand response applications, an MPC uses the forecasts of the outdoor temperature, solar

radiation and convective and radiation internal heat gains and identifies the optimal control

(zone temperature set-point) trajectory within the look-ahead time horizon (e.g., 24 hours

in this thesis). Only the control decision of the first time step is implemented, while this

control decision procedure is repeated when next time step arrives. Two control objectives

are considered for bench-marking purposes.

4.1 Energy Minimization Control (E-Min)

The first baseline strategy represents the current practice for maximum energy efficiency.

This strategy tends to maintain the zone temperature as close to the upper limit of the comfort

temperature zone as possible to minimize the HVAC energy consumption of each time step,
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with the following cost function:

W1 = P t. (4.1)

The energy minimization strategy represents a greedy control policy over the HVAC energy

use with only one step ahead prediction. A number of operational constraints should be

respected in control decision making. Upper and lower limits are imposed for the zone

temperature in order to meet the indoor comfort requirements:

T t
z,min ≤ T t

z ≤ T t
z,max, (4.2)

where T t
z,min and T t

z,max are the lower and upper bounds of the comfort band. These tem-

perature limits can vary with the occupancy status: when the building is occupied, a tighter

temperature constraint is needed to ensure comfort, while during unoccupied hours, relaxed

temperature bounds can be used to achieve energy or cost savings. The cooling rate at each

time step should be bounded by the cooling capacity QT , which is assumed to be time-

invariant in this study:

0 ≤ Qt
z ≤ QT . (4.3)

4.2 Utility Cost Minimization Control (U-Min)

The second baseline strategy minimizes the electric utility cost under time-of-use rates over a

look-ahead time horizon (e.g., 24 hours in the case study) and represents the current practice

for predictive demand responsive control. This strategy can be implemented by solving an

LP with a cost function in the following form:

W2 =

tf∑
t=ti

(ut · P t), (4.4)
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where ut is the retail energy rate ($/kWh) that may change with time of the day, ti and tf are

the first and last time steps of the prediction horizon. The same constraints discussed for the

E-min strategy are also present in this cost-minimizing strategy, over the whole look-ahead

time horizon.
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CHAPTER 5

REINFORCEMENT LEARNING CONTROL

This chapter introduces the RL framework and algorithms used and formulates the optimiza-

tion problem that each algorithm seeks to solve. First, the Markov decision process (MDP)

is defined and its basic elements are described in the context of HVAC system control. Next,

important RL definitions used by the proposed algorithms, such as value functions, are de-

fined. It is followed by a technique to formulate the partially observable environment as an

MDP. In the second part of this chapter, unconstrained policy gradient methods are described

starting with vanilla policy gradient, continuing with TRPO and finishing with PPO. Lastly,

a constrained Markov decision process, the backbone of the control strategy proposed in

this work, to minimize energy costs while enforcing constraints on the zone temperature is

presented.

5.1 Building Control as a Markov Decision Process

This section introduces the fundamental framework used in RL. MDPs represent a system

as a set composed by states, actions and transition probabilities following the Markov prop-

erty that implies that any future state is only dependent of the current state and action. The

agents’ goal in MDPs is to find a policy that maps actions from states such that an objective

is maximized. In the context of the building HVAC system control, the basic elements of the

MDP are defined as follows:
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5.1.1 States

The states (st) are the observations available to the agent obtained through interaction with

the environment. At every 15-min time step, a set of observations is available to the agent,

which includes the current zone temperature T t
z , as well as the past six-step zone tempera-

tures T t−1
z , ..., T t−6

z ; the reason of including the previous zone temperature measurements is

discussed in section 5.3. The observation set also contains the hour of the day ht, and the 24-

hour forecasts of the outdoor temperature T t
out, ..., T

t+95
out as well as the global horizontal solar

radiation qtsol, ..., q
t+95
sol and the power P t required to achieve the temperature set-point. Note

that these observations are measurable and do not depend on the building system model.

st =

{
T t
z , . . . , T

t−6
z , ht, T t

out, . . . , T
t+95
out , qtsol, . . . , q

t+95
sol , P t

}
.

5.1.2 Actions

The actions (at) are the control inputs that the agent takes given a state st. The action taken

by the agent is the zone temperature setpoint T t+1
sp for the next decision step

at = T t+1
sp .

The action space is a discrete space with p elements equally spaced between the upper and

lower zone temperature comfort bounds.

A =
{
Tz,min, . . . , Tz,max︸ ︷︷ ︸

p available actions

}
.
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5.1.3 Transition probability

The transition probability (P (st+1|st, at)) is the probability of being in state st+1 after taking

an action at being in state st. Since the building system environment is deterministic this

probabilities are not considered in the problem formulation.

5.1.4 Rewards

The reward (rt) is a signal that depends on the current and next step states and the action

taken. It represents how good or bad the state-action pair is. The goal of the RL agent is to

maximize the reward (negative of the cost) under a time-of-use tariff while maintaining the

zone temperature within the comfort bounds.

Unconstrained RL: Conventional (unconstrained) RL techniques cannot explicitly handle

control constraints. In almost all previous building control applications, the comfort con-

straints were addressed as a soft penalty cost added to the energy cost with a prescribed

weighting factor.The reward associated with the energy cost is defined as:

rtcost = −utP t, (5.1)

where ut is the time of use energy usage price. The reward associated with the comfort

violation penalty is considered in the following form:

rtcom = −ψ
(
max (T t

z,min − T t
z , 0) + max (T t

z − T t
z,max, 0)

)
, (5.2)

where ψ is the constraint violation penalty factor. This comfort penalty is proportional to

the cumulative temperature excursions out of the comfort band. The overall reward for the

unconstrained RL case is rt = rtcost + rtcom.
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5.2 Reinforcement Learning Key Concepts

This section describes the key concepts that most RL algorithms use. These concepts are

well know by RL researchers and deeper theory about these can be found in [33].

5.2.1 Policy

A policy represents a map that take the observed states as inputs and outputs a set of prob-

abilities if the action space is discrete, or a pair containing the mean and standard deviation

of the action if the action space is continuous. In this work the policy is a discrete set, hence

it is represented as:

π(st, at) = P (at|st), (5.3)

where P (at|st) is the probability of taking action at given a state st.

5.2.2 Return

A trajectory of an episode consists of the collected states, actions and rewards under the

current policy.

τ = {s0, a0, r0, s1, a1, r1. . . sT , aT , rT}, (5.4)

where τ is a trajectory and T is the number of time steps taken of that trajectory. The return of

a trajectory is defined as the discounted or undiscounted cumulative reward for the episode.

R(τ) =
T∑
t=0

γtrt, (5.5)

where γ is the discount factor which determines the importance of future actions.

16



5.2.3 Value Function

The value function of a state is defined as the expected discounted or undiscounted cumula-

tive reward collected during an episode τ following a policy π given a state st.

V π(st) = Eτ∼π

[
T∑
l=0

γkrt+l+1|st

]
. (5.6)

5.2.4 Action Value Function

The action value function of a state and action is defined as the expected discounted or

undiscounted cumulative reward collected during an episode following a policy π given a

state and the action taken in that state:

Qπ(st, at) = Eτ∼π

[
T∑
l=0

γkrt+l+1|st, at

]
. (5.7)

Early stage tabular RL techniques use a table to store the action value function for each state

and action. While this technique is simple and straightforward to implement, its computa-

tion burden dramatically increases with the size of the table which limits its application to

complex problems. To address this issue, parameterized functions are used to represent the

state value functions, action value functions and policies.

V π(st) ≈ V π
ϕ (st), (5.8)

Qπ(st, at) ≈ Qπ
ϕq
(st, at), (5.9)

π(st, at) ≈ πθ(st, at), (5.10)

where ϕ, ϕq and θ are the parameters of each function. While several types of parameteriza-

tion can be used to represent these functions, this work uses deep neural networks and linear
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mapping to represent them.

5.2.5 Advantage Function

An advantage function Aπ(st, at) quantifies the benefit of taking an action at over sampling

the action from the policy π(·|st). A positive advantage Aπ(st, at) > 0 indicates that taking

an action at while being in state st is better than the expected action. A negative advantage

Aπ(st, at) < 0 indicates that taking an action at while being in state st is worse than the

expected action. Hence, the advantage function guides the learning process to encourage

actions that lead to improved overall performance.

Aπ(st, at) = Qπ(st, at)− V π(st). (5.11)

5.3 Partial Observability of the Environment States

In an ideal case, the states of a dynamic system are all measurable during interactions with

the environment where the control problem can be formulated as an MDP. In reality, however,

not all states are available to the agent, e.g., wall internal temperatures which characterize

building thermal dynamics, and only one or a few of the states are observable, e.g., zone

temperatures. Control of such systems can be addressed as a partially observable Markov

decision process (POMDP) [34] or as a regular MDP by including historical measurements

of the observable outputs and inputs in the state vector. The latter is analogous to the state-

space realization of a high-order linear system using the high-order time derivatives of the

inputs and outputs as the state variables. This MDP formulation has been used for RL im-

plementations for building HVAC controls.[19].
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5.4 Policy Gradient Methods

Value-based methods such as deep Q-learning showed remarkable performance in solving

popular games such as Atari [35] and has also been studied for HVAC systems controls.

These methods learn the value function and derive a greedy policy that chooses the action

with the highest action value function. In recent years, policy gradient methods have shown

the capacity for solving complex problems such as robot controls [36]. These methods di-

rectly learn the policy instead of using the action value function which allows them to have

better performance than value-based methods. For a discrete action space, the policy outputs

the probability of taking each action given a state.

πθ(st, at) = P (at|st). (5.12)

Then policy gradient methods seek to maximize the following cost function:

max
θ

J(πθ) = Eτ∼πθ

[
R(τ)

]
, (5.13)

which is solved by gradient descent:

θk+1 = θk + α∇θJ(πθk), (5.14)

where α is the learning rate and k is the update step. ∇θkJ(θk) has been shown to in the

following form:

∇θJ(πθk) = Eτ∼πθk

[
T∑
t=0

∇θ log πθ(at|st)|θkΦt

]
, (5.15)

where Φt can be chosen between the return R(τ), the action value function Qπ(st, at), the

reward-to-go defined as R̂t =
∑T

t′=t rt′ , or the advantage Aπ(st, at).

Expectations are estimated by a sample mean over trajectories and time steps in this
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study. If the agent collects N trajectories of T steps each, the expected value of the objective

function in Equation 5.19 can be estimated as follows:

1

NT

∑
N

T∑
t=0

∇θ log πθ(at|st)|θkΦt. (5.16)

5.4.1 Generalized Advantage Estimation

The large number of samples required and the unstability of the improvement become a

challenge for policy gradient methods. [37] identifies a correct estimation of the advantages

as the key to reducing variance and proposes to use general advantage estimation (GAE), a

method to reduce the variance of the estimated policy gradient at the cost of some bias. The

advantages are estimated using GAE as follows:

Âπ,GAE
t =

T∑
l=0

(γλGAE)
lδV

π

t+l, (5.17)

δV
π

t+l = rt + γV π(st+1)− V π(st), (5.18)

where δV π

t+l is the discounted TD residual which represents the difference between predicted

and actual value function V π(st). The variance and bias trade-off is controlled by two param-

eters λGAE and γ. Most of the studies that implement a policy optimization algorithm used

GAE to estimate the advantages. However, the ideal λGAE value for different applications

may differ. This thesis found that a value of λGAE = 0.52 would provide better estimation

of the advantages for building control applications.

5.4.2 Vanilla Policy Gradient

One of the simplest policy optimization algorithms is vanilla policy gradient (VPG). The

This algorithm takes m trajectories with the current policy and uses them to estimate the
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advantages and policy gradient. Then it uses gradient descent steps to update the parameter-

ized policy and updates the value function parameters at the end of each step using the mean

squared error (MSE) [38] as described in Algorithm 1. While this method is straightforward

to implement, it suffers from a proclivity to fall in local optima and has poor sample effi-

ciency and high variance. This thesis does not test this algorithm but it is discussed in this

section as the foundation of the RL algorithms used in this study.

Algorithm 1 RL - Vanilla Policy Gradient
1: Initialize policy and value function networks weights θ0 and ϕ0.
2: Initialize learning rates β1, β2.
3: for k = 0, 1, 2, 3, ... do
4: Collect set of trajectories Dm = {τi} with current policy πθk
5: Compute advantages Âπθk

6: Estimate the policy gradient as
ĝk =

1
|Dm|

∑
τ∈Dm

∑T
t=0 ∇θlogπθ(at|st)|θkÂπθk (st, at)

7: Perform an update on the policy network using gradient descent
θk+1 = θk + β1ĝk

8: Fit value function using regression and MSE using learning rate β2 for each iteration:
ϕk+1 = argminϕ

1
|Dm|T

∑
τ∈Dm

∑T
t=0(V

πθk
ϕk

(st)− R̂t)
2

9: end for

5.4.3 Trust Region Policy Optimization (TRPO)

The goal of RL is to obtain a policy π that maximizes the finite or infinite horizon discounted

total return J(πθ) = Eτ∼πθ
[R(τ)]. To overcome the proclivity to falling in local optimas of

VPG algorithms, TRPO [39] seeks to maximize a surrogate objective function subject to a

constraint that limits the size of a policy update during each iteration measured by the KL

divergence. This measure quantifies the difference between two policies. This sets an upper

bound on how much a policy can change at every update step.

max
θ

Eτ∼πθk

[
πθ(a|s)
πθk(a|s)

Âπθk (s, a)

]
(5.19)

s.t. Eτ∼πθ

[
DKL(πθ(·|s)||πθk(·|s))

]
≤ δ, (5.20)
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where Âπθk is the advantage that can be calculated using the GAE method [37] and δ is the

upper bound imposed on the KL divergence between two consecutive policy updates. This

problem is usually simplified using a linear approximation of the objective function and a

quadratic approximation of the KL divergence constraint. TRPO approximates this by taking

the 1st and 2nd order Taylor expansions of the objective function and constraint respectively

as follows:

L(θk, θk+1) ≈ gT (θk+1 − θk), (5.21)

DKL(θk+1||θk) ≈
1

2
(θk+1 − θk)

TH(θk+1 − θk), (5.22)

where L(θk, θk+1), is the approximation of the optimization goal in Equation 5.19, g is the

estimated objective function gradient and H is the estimated hessian of the KL divergence

or Fisher information matrix and δ is a constant that limits the KL divergence between new

and old policies. Then the approximate optimization problem is:

max
θ

gT (θ − θk) (5.23)

s.t.
1

2
(θ − θk)

TH(θ − θk) ≤ δ. (5.24)

Analytically solving this problem gives:

θk+1 = θk +

√
2δ

gTH−1g
H−1g. (5.25)

TRPO adds a backtracking line search to this update:

θk+1 = θk + αj

√
2δ

gTH−1g
H−1g, (5.26)

where α is the backtracking coefficient and j is the smallest nonnegative integer such that the

new policy satisfies the constraint and produces a positive advantage. The inverse of matrix
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H is hard to compute for high dimensional networks so TRPO uses the conjugate gradient

method to solve

Hx = g. (5.27)

Then x can be used to reformulate the update:

θk+1 = θk + αj

√
2δ

xTkHkxk
xk. (5.28)

TRPO starts collecting trajectories under the current policy πθk . With these trajectories, it

estimates the rewards-to-go, advantages and value function for the current state. With these

estimations, it computes the gradient and uses Equation 5.21 to Equation 5.28 to calculate

the policy parameters update. Finally, it fits the value function parameters using the value

function network and the rewards-to-go estimated values as described in Algorithm 2.

While TRPO overcomes some of the challenges of VPG algorithms, there are also some

drawbacks with TRPO. First, it is computationally expensive since it requires solving a sys-

tem involving the Fisher information matrix. While this can be improved by using approx-

imations or iterative methods, errors may be introduce as consequence of these procedures.

5.4.4 Proximal Policy Optimization (PPO)

PPO seeks to solve the same problem presented in the TRPO case in a simpler manner. Two

versions of PPO algorithms were proposed in the original work [40], while PPO-clip is more

broadly used. PPO-clip uses a clip function to limit the incentive of policy change to stabilize

training as follows:

max Eτ∼πθk
L(s, a, θk,θ), (5.29)
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Algorithm 2 RL - Trust Region Policy Optimization
1: Initialize policy and value function networks weights θ0 and ϕ0.
2: Initialize α, β, δ, K
3: for k = 0, 1, 2, 3, ... do
4: Collect set of trajectories Dm = {τi} with current policy πθk
5: Compute rewards-to-go R̂t

6: Compute Advantage estimates Â
πθk
t

7: Estimate the policy gradient as
ĝk =

1
|Dm|

∑
τ∈Dm

∑T
t=0 ∇θlogπθ(at|st)|θkÂ

πθk
t

8: Use the conjugatte gradient algorithm to compute:
x̂ ≈ Ĥ−1

k ĝk

9: Update the policy by backtracking line search with:

θk+1 = θk + αj
√

2δ

x̂T
k Ĥkx̂k

x̂k

10: Fit value function using regression and MSE using learning rate β for each iteration:
ϕk+1 = argminϕ

1
|Dm|T

∑
τ∈Dm

∑T
t=0(V

πθk
ϕk

(st)− R̂t)
2

11: end for

where

L(s, a, θk, θ) = min

(
πθ(a|s)
πθk(a|s)

Âπθk (s, a), h
(
ϵ, Âπθk (s, a)

))
, (5.30)

and the clip-range ϵ is a hyper-parameter that determines how far the new policy candidate

is allowed to deviate from the old one and the function h is defined as:

h
(
ϵ, Âπθk

)
=

 (1 + ϵ)Âπθk , Âπθk > 0

(1− ϵ)Âπθk , Âπθk < 0.
(5.31)

PPO starts in a similar manner as TRPO, collecting trajectories under the current policy and

estimating the rewards-to-go, advantages and state value function. Note that both TRPO and

PPO can use a parameterized network to approximate the value function Vβ(s) and compute

advantages at each timestep. Next, it uses Equation 5.29 to calculate the policy network

parameters update and lastly it fits the value function similarly with TRPO as described in

Algorithm 3. PPO is an effective policy gradient method and avoids some of the drawbacks

of TRPO since it does not rely on approximations or computationally expensive expressions.

However, the performance is sensitive to the choice of the clip-range hyper-parameter ϵ. An

24



Algorithm 3 RL - Proximal Policy Optimization
1: Initialize policy and value function networks weights θ0 and ϕ0.
2: Initialize ϵ, β, δ, K
3: for k = 0, 1, 2, 3, ... do
4: Collect set of trajectories Dm = {τi} with current policy πθk
5: Compute rewards-to-go R̂t

6: Compute Advantage estimates Â
πθk
t

7: Update the parameters using the PPO loss function
θk+1 = argmax

θ

1
|Dm|T

∑
τ∈Dm

∑T
t=0 L(st, at, θk, θ)

8: Fit value function using regression and MSE using learning rate β for each iteration:
ϕk+1 = argminϕ

1
|Dm|T

∑
τ∈Dm

∑T
t=0(V

πθk
ϕk

(st)− R̂t)
2

9: end for

improper setting of this hyper-parameter can result in unstable training and the policy can

get stuck in local optima quickly for high clip ranges.

5.5 Constrained Markov Decision Process (CMDP)

A CMDP is an extension of a MDP with constraints added to the formulation. These con-

straints limit the set of feasible policies for the MDP. A CMDP is defined as a set of states,

actions, transition probabilities and cost functions. The cost function is the only additional

element compared to unconstrained MDP, which represents a penalty for constraint viola-

tions.

5.5.1 Cost

The cost for a time step ct quantifies the violations of the constraints that the system must

satisfy. In the context of the building HVAC system it is defined in the same way as the

comfort reward rcom for the unconstrained scenario:

ct = −ϕ
(
max (T t

z,min − T t
z , 0) + max (T t

z − T t
z,max, 0)

)
. (5.32)
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5.6 Constrained Reinforcement Learning Key Concepts

CMDP expands MDP formulation and uses additional key concepts related to the constraint

violations.

5.6.1 Cost Return

The cost return of a trajectory is defined as the discounted or undiscounted cumulative con-

straint violation for the episode.

C(τ) =
T∑
t=0

γtct. (5.33)

5.6.2 Cost Value Function

The cost value function of a state is defined as the expected discounted or undiscounted

cumulative cost collected during an episode τ following a policy π given a state st.

V π
C (st) = Eτ∼π

[
T∑
l=0

γkct+l+1|st

]
. (5.34)

5.6.3 Cost Action Value Function

The cost action value function of a state is defined as the expected discounted or undis-

counted cumulative cost collected during an episode τ following a policy π given a state st

and action at.

Qπ
C(st, at) = Eτ∼π

[
T∑
l=0

γkct+l+1|st, at

]
. (5.35)
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These functions are also parameterized as:

V π
C (st) ≈ V π

C,ω(st), (5.36)

Qπ
C(st, at) ≈ Qπ

C,ωq
(st, at), (5.37)

where ω and ωq are the parameters of the value function and action value function respec-

tively.

5.6.4 Cost Advantage Function

The cost advantage function is defined in a similar way as the reward advantage function:

Aπ
C(st, at) = Qπ

C(st, at)− V π
C (st). (5.38)

5.7 Constrained Policy Optimization

An inherent challenge of non-constrained RL algorithms (e.g., TPRO and PPO) is the inabil-

ity to address constraints, while for most control applications, operational constraints exist to

ensure safe and quality services. A remedy is to incorporate a penalty for possible constraint

violations in the reward function but it is difficult to find an appropriate weighting factor

between the original merit and constraint satisfaction. While setting a high penalty factor

helps better enforce constraints, it limits the improvement in the original objective. On the

other hand, setting a low penalty factor prioritizes maximization of the original merit at the

expense of significant constraint violations.

CPO seeks to maximize the original merit function but restricts the set of feasible policies

so that a discounted constraint violation return JC(π) = Eτ∼π[C(τ)] is limited by a set

upper bound d [41]. Among the proposed algorithms in the literature, constrained policy
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optimization (CPO) [42] has been widely studied, which seeks to solve the optimization

problem:

max
θ

Eτ∼πθk

[
πθ(a|s)
πθk(a|s)

Âπθk (s, a)

]
(5.39)

s.t. JC(πθk) +
1

1− γ
Eτ∼πθk

[
Â

πθk
C (s, a)

]
≤ d (5.40)

Eτ∼πθ

[
DKL(πθk ||πθk)

]
≤ δ. (5.41)

The constraint advantage and return are defined in a similar manner to those of the reward

function. A positive slack variable d is introduced to stabilize training. CPO uses linear

approximations on the objective and the first constraint and a second-order approximation

on the KL divergence constraint to solve the optimization problem.

max
θ

gT (θ − θk) (5.42)

s.t. c+ bT (θ − θk) ≤ 0 (5.43)

1

2
(θ − θk)

TH(θ − θk) ≤ δ, (5.44)

where b is the gradient of the constraint values estimated in a similar way as g but using the

constraint advantages Â
πθk
C and c is the difference between the total constraint violation and

its the upper limit (c = JC(πθk) − d). This problem can be solved analytically to avoid the

use of solvers and reduce computational time. The analitycal solutions is as follows:

θk+1 = θk +
1

λ
H−1(g − bν), (5.45)

where λ and ν are the dual variables of the optimization problem whose analytical solution

can be found in [42]. CPO starts collecting trajectories using the currrent policy. Then it esti-

mates the gradients for the reward and constraint functions as well as the total costs JC(πk).

CPO recognizes two scenarios. When the problem is feasible it solves the constrained op-
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timization problem shown in Equation 5.42 to Equation 5.44. Due to approximation errors,

the approximate solution may not be feasible for the original problem. In this scenario, a dif-

ferent optimization problem that only reduces the constraint violation value is used to obtain

the update step. The analytical solution of this new problem is:

θk+1 = θk −
√

2δ

bTH−1b
H−1b. (5.46)

Lastly it performs backtracking line search to ensure the new parameters satisfy the con-

straints and result in a positive policy improvement. CPO uses two parameterized value

networks, for the constraint and reward value functions, respectively. As a final step it fits

the reward and constraint value functions V πk
ϕ and V πk

C,ω using the estimations collected dur-

ing the update step as described in Algorithm 4.

Algorithm 4 RL-Constrained Policy Optimization
1: Initialize policy and value functions networks weights θ0, ϕ0, ω0.
2: Initialize γ, d, δ, β.
3: for k = 0,1,2,3,... do
4: Collect set of trajectories Dm = {τi} with current policy πθk .
5: Compute rewards-to-go R̂t and costs to go Ĉt.
6: Compute Advantage estimates Âπθk and Â

πθk
C

7: if Optimization problem is feasible then
8: Update parameteres using Equation 5.45.
9: else

10: Update parameters to only reduce constraint violation using Equation 5.46.
11: end if
12: Fit value function using regression and MSE using learning rate β:

ϕk+1 = argminϕ
1

|Dm|T
∑

τ∈Dm

∑T
t=0(V

πθk
ϕk

(st)− R̂t)
2

ωk+1 = argminω
1

|Dm|T
∑

τ∈Dm

∑T
t=0(V

ωθk
C,ωk

(st)− Ĉt)
2

13: end for
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CHAPTER 6

CASE STUDY RESULTS

Simulation tests were conducted to assess the performance of the constrained RL algorithm

in comparison with the different baseline strategies. This chapter first introduces the charac-

teristics of the case study building and the operation requirements which include the comfort

bounds and demand response regime. Secondly, it shows the results obtained with the un-

constrained RL algorithms followed by the results obtained by the constrained RL algorithm.

A parametric study of the penalty factor and the constraint violation upper bound is also pre-

sented to illustrate the sensitivity of the algorithms to these parameters.

6.1 Case Study Building Description

The case study building is a single-zone office space with a total floor area of approximately

100 m2. The considered zone is part of a larger building with four identical office spaces all

serving graduate students. Each zone is equipped with a dedicated HVAC system. Cross-

zone thermal coupling is negligible due to the high-grade insulation used in the separating

walls. The office space is attached to a south-facing double façade with a gap of 1 m.

The TOU retail energy rates used in the simulations were obtained from El Paso Electric

Co. [43] and are shown in Table 6.1. A lower energy rate of $0.07/kWh is involved dur-

ing non-peak hours while electricity is charged at a much higher rate of $0.22/kWh during

on-peak hours. The zone temperature bounds change with the occupancy of the building,

with 9AM to 6PM being the occupied period. During occupied hours the upper and lower

temperature bounds are 21.5°C and 23.5°C, while during unoccupied hours are 20.5°C and
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24.5°C, respectively.

Table 6.1: Summer time of use tariff

Electricity price
($/kWh) Hours

0.222 12:00 to 18:00
0.077 Rest of day

6.2 MPC Baselines Results

The MPC baselines used a look-ahead horizon of 24 hours with a decision implemented

every 15-min time step. The MPC baselines were formulated using the CVX package in

MATLAB [44] and solved using Gurobi [45].

Figure 6.1: Zone temperature under MPC baselines.

Figure 6.1 and Figure 6.2 present the simulation results of the two MPC baseline strate-

gies. The energy minimization baseline (E-min) maintains the zone temperature at the upper
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Figure 6.2: Power profile under MPC baselines.

bound when mechanical cooling is called for, resulting in minimum energy usage. During

unoccupied hours the temperature floats and the HVAC system remains off. The utility-

cost-minimizing (U-min) strategy engages a pre-cooling action before each on-peak period.

The pre-cooling action maintains a lower zone temperature prior to on-peak hours so that

“cooling” energy is stored in the building thermal mass; during on-peak hours, the zone

temperature is adjusted upwards to allow the stored cooling energy to be released, resulting

in shifting of building electricity use to low-cost hours to reduce utility cost. While this

strategy presents utility cost savings, it increases the total energy used by the HVAC system.

Table 6.5 shows the cost break down for the MPC, unconstrained RL and constrained RL

strategies. Compared to strategy E-min, the cost-minimizing MPC strategy achieves cost

savings of 22.5%, with a total energy rebound of 4.6%. This represents the best economic

performance that can possibly be obtained under the same prediction horizon setting without

any comfort constraint violation. Actual MPC performance would be worse due to potential

control-plant model mismatches.
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6.3 Unconstrained RL Baseline Results

The RL strategies were trained using two years of simulation data following an on-policy

scheme. The RL baseline simulations were conducted using the Stable Baselines 3 OpenAI

library [46].

6.3.1 Simulation Setup

Episodic training was utilized with each episode or trajectory consisting of 1 days (96 steps).

TRPO and PPO with different constraint violation penalty factors, i.e. , ψ = 0.01, ψ = 0.1, ψ

= 1 and ψ = 10, were chosen as RL baselines to illustrate the effect of the weighting factor

on the control performance.

Policy Network: Policy networks use the observation set as input, 2 hidden layers of 64 neu-

rons and an output layer with 17 possible action logits. After each layer a hyperbolic tangent

(tanh) activation function is used. A final softmax layer is used to predict the probability of

choosing an action given an observation set.

Value Function Network: Value function networks use the observation set as input, 2 hidden

layers of 64 neurons, and output the of the estimated value function. After each layer, a

hyperbolic tangent (tanh) activation function is used.

Hyperparameters: The hyperparameters used in the simulation of TRPO and PPO algo-

rithms are shown in Table 6.2 and Table 6.3.

33



Table 6.2: TRPO baseline hyperparameters

Hyperparameter Value
δ 0.003

λGAE 0.52
α 0.8
β 0.001
K 25
γ 1
T 96

|Dm| 1

Table 6.3: PPO baseline hyperparameters

Hyperparameter Value
ϵ 0.003

λGAE 0.52
β 0.001
γ 1
T 96

|Dm| 1
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Figure 6.3: Zone temperature for unconstrained RL strategies with ψ = 0.01.

6.3.2 Simulation Results

Figure 6.3 to Figure 6.6 present the simulation test results under the two unconstrained RL

strategies subject to different constraint violation penalty factors. As expected, the uncon-

strained RL strategy with the lowest comfort penalty factors leads to the lowest energy cost,

with cost savings up to 26.2% relative to E-min, but at the expense of significant comfort

issues. The RL strategies with high comfort penalty factors are able to regulate the zone

temperature within the comfort zone but lead to high HVAC energy costs (savings of only

less than 3% relative to E-min). The high-comfort-penalty RL strategies execute very mild

pre-cooling actions for load shifting for most cases, which is the major cause of the high

energy cost as can be seen in Table 6.5. It is evident from these results that performance

achievable with the unconstrained RL strategies is highly dependent on the comfort penalty

factor setting. This also makes the comparison with the MPC benchmarks challenging.
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Figure 6.4: Zone temperature for unconstrained RL strategies with ψ = 0.1.

Figure 6.5: Zone temperature for unconstrained RL strategies with ψ = 1.
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Figure 6.6: Zone temperature for unconstrained RL strategies with ψ = 10.

6.3.3 Parametric Study of Penalty Factor

The simulations performed in the previous subsection consider penalty factors that are one

order of magnitude away from each other. Hence, a high-granularity analysis of the effect of

the penalty factor on performance is needed. Table 6.5 shows that better balances between

cost and constraint violations may be found with penalties between 0.1 and 1. For this

purpose, ten penalty factors between ψ = 0.1 and ψ = 1 are simulated and the average

performance over 10 random seeds is evaluated.

Figure 6.7 shows the performance of the PPO algorithm under different penalty factors.

The cost performance of CPO is shown in yellow dashed line and the comfort violation

performance is shown in green dashed line, as benchmarks. Detailed results of the CPO al-

gorithm performance will be covered in section 6.4. The red line shows the comfort violation

average while the blue line shows the average electricity use cost for the PPO cases. It can

be seen that unconstrained RL with penalty factors of ψ ≤ 0.4 outperforms the CPO strategy
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in terms of cost. However, these cases have a comfort violation of at least 30 ◦C-step which

is equivalent to 15 times the violations of CPO case. On the other hand, none of these cases

could outperform the CPO control strategy in terms of constraint satisfaction. As it will be

shown in next section, constrained RL with linear mapping performed better than any of

the PPO cases simulated in this subsection. These results confirm that CPO-based strate-

gies can successfully enforce constraints subject to a minor tolerance, without any need for

fine-tuning of a penalty factor.

Figure 6.7: PPO performance under different penalty factors.

6.4 Constrained RL Results

The constrained RL strategy was trained using two years of simulation data following an

on-policy scheme. The CPO algorithm was implemented using PyTorch [47].
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6.4.1 Simulation Setup

Episodic training was utilized with each episode or trajectory consisting of 1 days (96 steps).

The algorithm is trained on 10 different random seeds to assess average performance.

Policy Network: The policy network used the observation set as input, 2 hidden layers of

64 neurons and an output layer with 17 possible action logits. After each layer a hyperbolic

tangent (tanh) activation function was used. A final softmax layer was used to predict the

probability of choosing an action given an observation set.

Value Function Networks: The value function and cost value function networks used the

observation set as input, 2 hidden layers of 64 neurons and output the value of the estimated

value function. After each layer, a hyperbolic tangent (tanh) activation function was used.

Hyperparameters: The hyperparameters used in the simulation of the CPO algorithm are

shown in Table 6.4. The value function and cost value function share the same learning rate

β.

Table 6.4: CPO baseline hyperparameters

Hyperparameter Value
d 1
δ 0.003

λGAE 0.52
α 0.8
β 0.001
K 25
γ 1
T 96

|Dm| 1
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6.4.2 Simulation Results

Figure 6.8 shows the average learning curve for the constrained RL algorithm, while the

60-episode average constraint function value is shown in Figure 6.9. A slight decrease in

performance can be seen at the end of training as well as a relatively high variance of the fi-

nal performance. This is possibly caused by approximation errors in the policy optimization

where the obtained approximate solution may be infeasible for the original problem. When

the infeasibility issue happens, the update will solely reduce constraint violation shown in

Equation 5.46 causing performance degradations. Two representative control solutions out

of those associated with the 10 different seeds are discussed below, corresponding to the

best- and worst-performing strategies. Figure 6.10 and Figure 6.11 shows the hourly aver-

aged control behaviors for one of the best-performing seeds. Deep pre-cooling actions are

seen under this scenario, resulting in potential savings of 20.25% and minimal constraint

violations. On the other hand, a less-aggressive (worst-performing) strategy shown in Fig-

ure 6.12 and Figure 6.13 results in limited pre-cooling with potential savings of 11.13% and

slightly higher constraint violation. However, the violations are still considerably lower than

those seen in the unconstrained RL case. The total average cost and constraint violations are

shown in Table 6.5. The potential average savings are 12.4% with an average constraint vi-

olation of 4.24 ◦C-step. For all seed averages, it can be seen in Figure 6.9 that the constraint

violation approaches the set limit d = 1 and succeeds at enforcing the constraint satisfaction

within the set limit. Note that the constraint violations can be further reduced by lowering

the slack (d) setting, but a positive slack is needed for stable training. These results clearly

demonstrate the superior performance of constrained RL over the unconstrained counterparts

for predictive control of building flexible loads while ensuring indoor comfort.
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Figure 6.8: CPO learning curve for rewards.

Figure 6.9: CPO learning curve for constraint violations.
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Figure 6.10: Zone temperature for best CPO control strategy.

Figure 6.11: Power profile for best CPO control strategy.
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Figure 6.12: Zone temperature for worst CPO control strategy.

Figure 6.13: Power profile for worst CPO control strategy.
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6.5 CPO with Linear Policy Mapping

While in the literature, neural networks are widely used to parameterize the policies of RL

agents, some studies have found that for many control applications, complex networks may

not work well due to the poor data efficiency and linear mappings may perform better due to

the nature of the system dynamics being linear in the range of operation [48]. This section

seeks to empirically test this statement and presents the simulation results for the CPO al-

gorithm using only linear mappings. The policy, value function and cost value function are

represented by linear maps, hence activation functions are not needed. The hyperparameters

used for these experiments are the same as the neural network CPO shown in Table 6.4.

6.5.1 Simulation Results

Figure 6.14 shows the average learning curve for the CPO with linear mappings, while the

60-episode average constraint function value is shown in Figure 6.15. It can be seen that CPO

with linear mappings yields a more stable training and a lower variance. The performance

also improves monotonically as more training data is collected. Figure 6.16 and Figure 6.17

shows one of the best-performing control responses. This strategy yields potential savings of

22.7% which are slightly higher than the utility minimization MPC strategy; this is caused

by minor constraint violations which have an accumulative value of 2 ◦C-step during the

whole month. On the other hand, the worst-performing strategy shown in Figure 6.18 and

Figure 6.19 achieves potential savings of 8.5% while accumulating only 0.65 ◦C-step of

comfort violation during the month. The COP with linear mappings results in a much better

average performance with average potential savings of 16.1%, which is 30% better than the

neural network-based CPO average savings, and constraint violation of only 1.3 ◦C-step in

30 days, which is a 75% reduction compared with that of the neural network-based CPO.
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Figure 6.14: CPO algorithm learning curve with linear mapping.

Figure 6.15: CPO algorithm constraint violation learning curve with linear mapping.
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Figure 6.16: Zone temperature for best CPO control strategy with linear mapping.

Figure 6.17: Power for best CPO control strategy with linear mapping.
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Figure 6.18: Zone temperature for worst CPO control strategy with linear mapping.

Figure 6.19: Power for worst CPO control strategy with linear mapping.
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6.6 Parametric Study of Constraint Upper Limit

A logical assumption is that if the slack term is set to zero, then the control strategy obtained

will strictly enforce constraints. However, since the CPO implementation solves an approxi-

mate version instead of the original policy optimization problem, the obtained solution may

not be feasible for the original problem, leading to possible constraint violations. When the

solution is infeasible, the control tends to minimize the constraint violations instead of the

actual reward, which may result in sub-optimal performance cost-wise. This section seeks to

evaluate the performance of the constrained RL algorithm under different constraint violation

slack settings.

6.6.1 Simulation Setup

A series of constraint violation slack settings are considered in this parametric study. Eleven

different values are tested from 0 to 5 and are evaluated under 10 different random seeds.

6.6.2 Simulation Results

Figure 6.20 shows the average cost and constraint violation averages under different con-

straint violation slack settings. When this setting approaches zero, the training becomes

unstable since the agent is only seeking to reduce the constraint violation without any im-

provement in the cost performance. While a slack term of zero results in unstable training,

small values such as d = 0.1 proved to result in performances that are comparable to the

case study performed in section 6.5. It can also be seen that with the highest value tested,

i.e. d = 5, the performance is comparable with the utility minimization MPC strategy while

still having lower constraint violations than the unconstrained cases with similar electricity

usage cost. However, the slack term should remain low since increasing it will allow more
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constraint violations. In conclusion, the algorithm only requires the slack term to be slightly

higher than zero to perform well, and even higher values that allow for more constraint vio-

lations produce strategies that outperform the unconstrained cases.

Figure 6.20: CPO performance under different constraint violation limits.
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Table 6.5: Cost and Power Break-down

Energy
use (kWh)

Energy
cost ($)

Cost
savings (%)

Comfort
violation
(°C-step)

Emin 184.1 29.7 - -
Umin 192.7 23.0 22.5 -

TRPO0.01 168.2 23.2 21.8 238
TRPO0.1 168.60 23.1 22.2 231.2
TRPO1 186.6 28.6 3.7 3
TRPO10 193 28.8 3 0.1
PPO0.01 185.2 21.9 26.2 155.4
PPO0.1 190.2 22.0 25.9 121.4
PPO1 204.9 27.0 9.0 5.5
PPO10 217 27.2 8.4 0.36
CPO 220.2 26.0 12.3 4.2

CPOLinear 240.1 24.9 16.1 1.3
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CHAPTER 7

CONCLUSIONS

This thesis presented a constrained RL-based control strategy for demand responsive control

of building thermal loads. The performance was assessed through comparisons to MPC and

unconstrained RL baselines with different comfort penalty factors. The test results show that

the constrained RL-based strategy was able to reduce the electricity cost by 16.1%, relative

to an energy-minimizing controller, with very minor temperature excursions out of the com-

fort zone, while the unconstrained RL strategies led to either high energy costs or significant

constraint violations, depending on the comfort penalty settings. The constrained RL con-

troller achieved performances equivalent to 71% of the MPC utility minimization control

benchmark, demonstrating its superior performance over unconstrained RL techniques for

building demand response.

Two major observations can be made about the implementation of the proposed algo-

rithm. First, the CPO algorithm was shown to be sensitive to violation slack d settings,

especially when it approaches zero. This is due to the possibility of the approximate solution

being infeasible for the original problem, which is the case for most update steps where the

algorithm is mainly trying to reduce constraint violations instead of the control reward. A

small slack term is effective in enforcing the constraints and results in performances that are

better than the unconstrained cases. Secondly, it was shown that using linear mapping in-

stead of deep neural networks for the policy and value functions could yield better results in

terms of electricity cost and total constraint violations. The selection of an appropriate net-

work architecture is crucial to achieve satisfactory performance and depends on the nature

of the application.
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7.1 Future work

Further development is necessary to allow the implementation of these algorithms for field

applications. One of the weaknesses is the requirement of long training times because the

on-policy implementation only updates the policy once every day, and simulation tests show

that more than 24 months of training time is needed. Transfer learning and imitation learn-

ing are promising approaches to overcome this challenge. Transfer learning has been proven

to be effective in reducing training time since it transfers the parameters of already trained

buildings into untrained ones. This has been shown to improve learning speed even when

the buildings have different physical characteristics such as layout, materials, weather con-

ditions, or even different HVAC equipment [49]. Imitation learning algorithms also show

good potential since they can harvest operational data and provide a better starting point for

the constrained RL algorithm [50]. The integration of these techniques with constrained RL

algorithms will be addressed in future work.

Another promising research direction is the use of constrained off-policy RL algorithms

since they have the potential to use existing operational data and require less training time

than on-policy algorithms [51].
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