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Abstract

There has been an increasing interest over the past ten years in the use of Machine

Learning (ML) algorithms such as Random Forests (RF) in the context of severe

weather prediction. RF-based methods have even been shown to outperform human-

generated operational convective outlook guidance in some cases. However, there

remain obstacles to fully integrating the ML algorithms into the operational forecasting

process of severe wind, hail and tornado events. For example, the perceived black-box

nature of complex RF models can inhibit forecaster confidence in the ML guidance

for high impact or atypical events. Since the error characteristics of predictors

based on numerical weather prediction, or NWP, and the relationships between these

predictors and severe weather risk can vary in different flow patterns, there is a

need to better understand the impacts of large-scale flow patterns on RF model

performance. In addition to improving confidence in the RF-based forecast products,

such understanding can also be incorporated into the model building process to further

improve their performance.

This thesis discusses the development and evaluation of a flow-dependent approach

to training RF models to produce severe weather convective outlook guidance. This

work leverages 53 real-time cases from the 2019 and 2021 real time convection-allowing

FV3-based ensemble forecasts produced by the University of Oklahoma (OU) Multi-

scale data Assimilation and Predictability (MAP) Lab during the 2021 Hazardous

Weather Testbed (HWT) forecasting experiments as model predictors. This study will

focus mainly on the 29 cases from 2021. As a first step, the composite difference in

large-scale flow between cases with relatively high and low importance of key predictors

using Permutation Feature Importance were calculated. These composite differences

were used to evaluate if discernible large scale flow patterns could be when the non-flow

dependent model would perform the best. Two different methods of classifying cases

based on the large-scale flow patterns are then evaluated for the purpose of training

separate RF models on cases of similar flow patterns. The appropriate RF model for

the pattern is then used to generating convective outlook guidance for a forecast case

xi



not included in the RF model training. First, the CAPE/shear parameter space over

the region of interest is used as a classification metric. Second, EOF patterns that

are qualitatively similar to the previously described composite flow patterns related

to predictor importance and used as the classification metric. Finally, both methods

will check how sensitive the performance is to changes in sample size by adding the

2019 cases. Both flow-dependent training methods will be compared to the non-flow

dependent models and compared to each other. Results will emphasize both objective

impacts on forecast skill and physical explanations of the difference in performance

among the RF training approaches. Results show that both methods of flow-dependent

training initially show improvement in forecasting severe weather compared to the

non-flow dependent model. However, the parameter space classification remain to

show significant skill with an increase in sample size while not all EOF patterns skill

remained significant.

xii



Chapter 1

Introduction

Severe local storms are the most frequent meteorologically-related disaster in the

United States (NOAA 2017). From 2011 to 2021, severe thunderstorms and tornadoes

have cost the United States (US) $26 billion on average each year (Munich 2023).

Furthermore, the United States annually averages about 113 deaths and roughly

1,265 injuries from severe thunderstorms and tornadoes (SPC 2023). The accuracy

of severe weather forecasts is important in the preservation of both life and property.

Despite inherent predictability limits of individual convective storms (Melhauser and

Zhang 2012; Hohenegger and Schar 2007), numerical model guidance from ensembles

of convection-allowing models (CAMs) play an important role in operational severe

weather prediction. CAM ensembles (CAEs) are useful because they are able to

provide probabilistic forecast guidance based on realistically simulated convective

systems (Mass et al. 2002; Weisman et al. 2008; Clark and Loken 2022). However,

the performance of CAE-based severe weather forecast guidance is limited by an

inability to directly resolve the severe hazards (Clark and Loken 2022), the presence

of systematic model/physics errors and ensemble underdispersion (Vié et al. 2011;

Romine et al. 2014; Schwartz et al. 2014), and an incomplete understanding of why

some storms produce severe weather and others do not (Roebber 2009; Anderson-Frey

et al. 2016).
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Many studies have used Machine Learning (ML) techniques together with CAEs

to produce skillful forecasts of tornadoes (Marzban and Stumpf 1996; Alvarez 2014;

Sobash et al. 2016; Gallo et al. 2018; McGovern et al. 2019), hail (Marzban and Witt

2001; Brimelow et al. 2006; Adams-Selin and Ziegler 2016; Gagne et al. 2017; McGovern

et al. 2019; Burke et al. 2020), and wind (Marzban and Stumpf 1998; Lagerquist

et al. 2017) to improve probabilistic severe weather forecasts based on CAEs. One

ML technique that has gained a lot of popularity for severe weather forecasting is the

Random Forest (RF) (Ahijevych et al. 2016; Hill et al. 2020; Loken et al. 2020). It has

been demonstrated that the probabilistic forecasts from RF lead to either comparable

(Hill et al. 2020) or better skill (Gagne et al. 2017) to Storm Prediction Center (SPC)

forecasts for different types of severe weather. One reason why the RF is chosen

frequently in meteorology is that it is relatively easy to interpret compared to other

ML methods (Herman and Schumacher 2018; Loken et al. 2020). Another advantage

of RF is its ability to identify spatiotemporal relationships and relationships across

different predictors that we may not observe (Herman and Schumacher 2018) but

we can infer from the trained RF model (Burke et al. 2020; Clark and Loken 2022).

The RF approach also allows the resolved model variables to be directly related to

unresolvable processes related to the occurrence of severe weather (Clark and Loken

2022). The RF approach can account for the systematic bias of models and mitigate

ensemble underdispersion (Loken et al. 2020).

Many previous studies have used one of two methods of subsetting the available

training data for training of the RF. These two common methods are training based

on region or seasonally (Hill et al. 2020; Loken et al. 2020; Burke et al. 2020). The

training samples used for these methods came from either the specific region or

season that the RF was used to forecast. This subsetting of training samples is done
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because of different temperature and/or precipitation climates in different regions and

seasons (Bukovsky 2011) and different systems being responsible for severe weather

in different regions and seasons (Smith et al. 2012). Therefore, it can be expected

that training models based on regions/season can account for different model biases or

ensemble underdispersion as well as represent different relationships among variables

in these different patterns. When compared to SPC forecasts, general results show

that the RF models trained for the central (or midwest) US tends to have the highest

forecast skill, with the worst forecast skill region being the Western US (Loken et al.

2020). The combined/aggregate model, or the version that takes the RF of different

regions/seasons and combines their average forecasting statistics, of the regional model

is similar to SPC forecasts (Hill et al. 2020). The two seasons that produce the poorest

results are summer and fall (Hill et al. 2020; Loken et al. 2020). The combined version

of the model averaging performance over all regions performs well even with these

two seasons performing poorly.

While the previous studies have shown competitive skill of severe weather forecasts

with regional and seasonal RF model training, compared to SPC forecasts, some

aspects of the region/season-dependent training were not considered. The impact of

forecast skill of a specific region/season was not compared against a model trained

on all samples. Additionally, systematic model errors and the relationships between

severe weather and predictors may also depend on the large-scale flow, which may

vary across a single region or within a season. For example, during northwest (NW)

flow patterns the RF might benefit from placing more emphasis on different predictors

than a traditional Southwest (SW) Flow pattern. Herein, one can hypothesize that

an RF model can effectively account for differences in systematic model errors and
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relationships between severe weather and model predictors by training the RF based

on cases with a similar large scale flow pattern.

I will introduce a new approach to determine if RF model training based on

the large-scale flow pattern can improve upon RF-based severe weather forecasts

trained independently of the flow pattern. Specifically, different methods will be used

to classify the large scale flow pattern based on domain average values and spatial

patterns of convective available potential energy (CAPE) and bulk wind shear. The

flow dependent models are trained separately based on whether or not a case meets the

corresponding pattern. The goals of this study are to determine if a flow-dependent

RF model can outperform a non-flow dependent model and compare different methods

of quantifying the flow pattern.
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Chapter 2

Data and Methods

In this chapter, I will introduce the dataset used during this work as well as the region

within the CONUS that the forecast are verified with in Section 2.1. I will then discuss

the creation of the RF model, predictor selection method, and hyperparameters chosen

in Section 2.2. Then, I will introduce the different classification of flow for the creation

of the flow-dependent model training in Section 2.3. Finally, I will discuss the different

diagnosis tools and methods that I selected for this work to give context of how the

research questions were answered in Section 2.4.

2.1 Data Selection and Preprocessing

In this section, I will explain the dataset in detail, including the forecasting domain

and where the data comes from. Additionally, I will explain the preprocessing of

predictors to show what their inputs will be for the RF model. Finally, I will discuss

each of the predictands to give an idea of what each of the models will try to predict.

2.1.1 Ensemble Forecast Model

The numerical weather prediction model used for this study was the University of

Oklahoma’s Multi-scale data Assimilation and Predictability (MAP) FV3 Convection-

Allowing Data Assimilation and Ensemble Forecast System run in real time during
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the 2021 Hazardous Weather Testbed (HWT) (Gasperoni et al. 2022). This model is

a 10-member ensemble forecast at 3-km grid spacing over the entire continental US

(CONUS) domain. However, for the purposes of this experiment, the domain labeled

in green in Figure 2.1 below was the region used for forecast training and verification.

The main reasoning for focusing on the green region is to include climatologically

more frequent severe weather compared to the Western United States (SPC 2023),

to avoid ocean and international regions in which severe reports are unavailable, and

to not have adverse effects from the Rocky Mountains. The cases used in this study

consist primarily of the cases from the 2021 HWT, though additional forecasts have

since been run retrospectively during the 2019 Spring season. The 2021 cases span

the period of April 12 through June 4 for a total of 29 cases. Thirty six-hour forecasts

were initialized at 0000 UTC and the hourly outputs at one-hour intervals starting

at forecast hour 12 were used to produce the predictors for the RF. This study will

focus on severe weather probability over the 1200 UTC to 1200 UTC 24-hour forecast

period.
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Figure 2.1: A physical representation of the NWP forecast domain and the regions
used for training and verification shaded in green.

2.1.2 Preprocessing of Predictors

The native 3-km grid was remapped to an 80-km grid following Loken et al. (2020)

in order to fit all predictors onto a similar grid to match the probabilities of an SPC

outlook. The model variables selected to generate predictors are loosely categorized

into 3 distinct groups (Table 2.1), intended to primarily represent synoptic, mesoscale,

and storm-scale features. The large-scale predictors output are the ensemble average

of the temporal average value over the forecast period to account for the movement of

these synoptic features over the forecast period. For example, the u500 windspeed

would be the ensemble average of the average strength of the u500 winds over the

24-hour forecast. The mesoscale forecast variables ouput are the ensemble average of
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the maximum/minimum value over the entire forecast period to account for the most

favorable mesoscale environment for severe weather during the period. For example,

for the output predictor of sbcape, the temporal maximum of CAPE is calculated for

each ensemble member, then the ensemble average of this most favorable mesoscale

environment is used as the predictor. Finally, the storm-scale variables output the

maximum ensemble value of the maximum value over the forecast period to see if

the models are initializing storms at any time during the valid forecast period and if

so, how intense the storms will be based on the model. For example, the maximum

updraft helicity in the 2-5 km region would be determined by the max ensemble

member’s value over the entire 24-hour forecast period. The resulting predictors are

similar to previous studies (Hill et al. 2020; Clark and Loken 2022), with a combination

of all predictors from previous studies to forecast severe weather.

Table 2.1: All possible predictors used for the creation of the model. The predictors
used in the creation of the RF model are represented in bold text.

Large-scale Meso-scale Storm-scale

u/v500, 850, 250
(u250,v250,u500)

SBCAPE, SBCIN maxuh25,
maxuh03

Tmp 2m, 850, 700, 500 MUCAPE, MUCIN hrprecip

dew 2m, 850, 700, 500 SB LCL

Change in z500 1km helicity, 3km helic-
ity

pw

lat, lon
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2.1.3 Predictands

The predictands, or what the model is trying to predict, for this study were obtained

by using the reported severe weather from SPC filter storm reports database and

remapping them to the same 80-km grid of an SPC outlook (based on their probabili-

ties). For this study, we treat each grid point as a binary value. A value of one would

indicate at least one severe report occurred during the 24-hour period. A value of 0

would indicate that no severe weather was reported within this grid point during the

24-hour period. The goal of mapping the predictands to an 80-km grid is to have the

model be able to predict these predictands similar to an SPC convective outlook, which

is a probabilistic forecast of any severe weather occurring within 25 miles (40 km) of

any given point, which is similar to predicting the probability severe weather occurs

within an 80-km grid box.

2.2 Random Forest Model Creation

In this section, I will go in-depth behind the making of the RF model for this study. I

will explain how a RF model works, how the predictors are selected for the model, and

what the hyperparameters are for the model in this study. Additionally, I will explain

how the selection method for this study varies compared to normal applications of

that method. Finally, I will present key components of how the model generates a

probabilistic forecast.
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2.2.1 Random Forest Description and Selected Hyperparameters

A Random Forest is an ensemble of decision trees, where each decision tree is trained

on a random subset of the training data. Each decision for a branch of the tree uses a

predictor randomly selected from a subset of the predictors seen in Table 2.2. The

maximum depth of the tree can be limited as seen in Table 2.2. Eventually, each

tree ends with a leaf, which must contain a minimal number of samples as seen in

Table 2.2. In this study, a forest size of 1000 trees was used, (2.2) similar to other

studies (Hill et al. 2020). The RF model is trained using the leave-one-out technique,

wherein the model is trained on all other cases but one and is used to forecast on the

remaining case. The leave-one-out training is repeated for all cases within the training

set (Bhuiyan et al. 2019). Furthermore, other hyperparameters were determined

loosely based on values used in similar studies (Clark and Loken 2022). While a

comprehensive optimization testing was not conducted, limited sensitivity tests show

that model performance or skill was minimally impacted if values in the table were

changed, which is consistent with other studies (Clark and Loken 2022).

Table 2.2: Hyperparameters used in the creation of the RF for this study.

Hyperparameter Value

Number of trees 1000

Maximum depth 10

Predictors used at each branch
√
# of predictors

Fraction of training samples used for each tree 0.25

Minimum leaf size 30
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2.2.2 Predictor Selection

The Forward Predictor Selection (FPS) method is similar to the Ließ et al. (2016)

method used to select predictors for the RF. The FPS consists of first training a model

with a single predictor, using each predictor in turn. The predictor that provides

the highest BSS is retained. Then, a new set of models is trained with the retained

predictor(s) plus one additional predictor from the remaining predictors. Then the

next predictor added is the one that provides the highest improvement in BSS. This

process repeats until a threshold value of improvement in skill is not met (BSS does

not improve by 0.001 or more). However, unlike what was done in Ließ et al. (2016),

additional iteration(s) are conducted after reaching the stopping condition because

of how much poorer the model was compared to a model trained on all predictors.

Continuing more iterations led to models that were better (had higher BSS) than the

model trained on all predictors. In other words, the stopping condition was required

to be met in more than one iteration in a row in order to stop adding predictors to

the model. While arguably not necessary to optimize performance of the RF, FPS

was used to increase the interpretability of the model by simplifying the number of

predictors included without loss of skill. RF may even benefit from the exclusion of

redundant or unnecessary predictors which can only add noise to the predictions (Hall

et al. 2011; Ahijevych et al. 2016). Although the difference is not likely statistically

significant in our study, this potential benefit of FPS may explain the slightly higher

skill than the model trained using all possible predictors
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2.3 Flow-Dependent (FD) Model Training

The goal of this study is to test the two methods of classifying large scale flow

patterns, I explored both the Domain Average Classification and the Spatial Pattern

Classification methods. Both methods were calculated based on a regional domain

selected by HWT participants as regions of the greatest severe threat during the day

of the forecast (Figure 2.2). Each of these methods is explained in respective sections.

Additionally, I will discuss a non-flow-dependent control experiment (explained later

in this section) was used as a baseline for comparison. The two flow-dependent models

will be compared against the baseline to determine the benefits of training the RF on

cases with similar flow patterns compared to not using a flow-dependent training.

Figure 2.2: All 2021 HWT Domains and their locations throughout the sample cases.
The plotted contours are the location in which averages/any computations will be
re-centered and plotted for a consistent place of reference while still representing of
the spatial scale of the HWT Domain.
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2.3.1 Domain Average Classification

The first method of flow-dependent training of the RF is based on two widely used

parameters used in severe weather forecasting today. In particular, two parameters

used frequently to obtain a first-order estimate of the possibility of severe weather

are both CAPE and 0-6 km bulk shear. The CAPE parameter is related to the

possible strength of the updraft and resulting strength of the convection (Romps 2016).

However, CAPE by itself does not determine the potential for storm organization.

Shear affects the organization of thunderstorm updrafts by the separation of the

downdraft from the updraft. More separation of the updraft/downdraft leads to a

more organized storm and potentially a stronger storm (Weisman and Klemp 1982).

While other factors (forcing for ascent, other mesoscale features, etc) are important

ingredients to forecast severe weather, the average CAPE (mesoscale predictor) and

shear (synoptic predictor) over the HWT domain is used to quantify aspects of the

large scale flow that are important for severe potential. The values from the individual

forecast cases can be seen in Figure 2.3.

As an initial proof of concept on the impacts of training separate RF models for

different categories of large scale flow patterns, two categories of the eight highest and

lowest CAPE/shear cases are selected. For each of the extreme cases, or case that do

meet the criteria to be classified in a flow pattern, the RF model is trained on the

other cases within the same category (cases that also were extreme high or extreme

low CAPE/shear). The cases that have only marginally high or low CAPE/shear

are not included in the FD training. To get distinct groups, the eight highest and

lowest cases are used for the training and forecast evaluation of the RF. The reason

behind this is that a case on either side of a single threshold could be more similar
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to each other than cases in the same category. This can be seen in Figure 2.3 below,

where the extreme low and extreme high thresholds are drawn. The cases to the left

of the lower bound is extremely low shear in this case and the cases to right of the

higher threshold is extreme high shear. The marginal cases are defined as any cases in

between the two thresholds. This experiment is intended as a proof of concept of the

idea of training only on cases that are unambiguously similar domain average CAPE

or shear. For reference throughout the rest of the paper, these models will be called

parameter space (or PS) models.
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Figure 2.3: CAPE/shear domain average parameter space values for all 29 of the 2021
cases. Additionally, the two thresholds those being the lower being extreme low shear,
and upper being extreme high shear for PS classification with marginal cases in the
middle.

2.3.2 Spatial Pattern Classification

It has been shown in other meteorological studies that Principal Component Analysis

(PCA) can identify patterns within a dataset that explain the majority of the variance

within the dataset. Consequently, this study uses PCA to identify spatial patterns

(Empirical Orthogonal Functions or EOFs) in both CAPE and shear when quantifying

the large scale flow in terms of CAPE and shear in addition to using a domain average
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value of CAPE/Shear as stated in the previous section. For this study, the two leading

modes of variability in both CAPE and shear are used to classify cases and their scalar

projection onto these EOFs will be referred to as the principal component value of

the case (or PC).

Figure 2.4 shows the leading modes of variability of shear (left column) and CAPE

(right column). PC1 of shear shows a higher amount of shear over the entire domain,

particularly over the northern portions of the domain, for cases with a positive value

of PC1 (Figure 2.4a). PC2 for shear represents shear that is generally lower over the

majority of the domain while shear is generally higher over the northern third of the

domain, for cases with a positive value of PC2 (Figure 2.4c). Positive values of PC1 of

CAPE indicate a higher amount of CAPE over the HWT period except for a bimodal

decrease over the northern portion of the domain (Figure 2.4b). Positive values of PC2

of CAPE shows a narrow warm sector, with the highest instability over the southwest

corner of the domain (Figure 2.4d). Similarly to excluding the marginal cases for

classification based on the domain average value, each PC is used to identify cases

that project strongly positively (G1) or strongly negatively (G2) on the corresponding

PC. Similar to the classification based on domain average values, the marginal cases

are excluded from consideration when evaluating FD model used for cases above the

high-threshold or below the low-threshold. However, in order to include the same set

of all cases in a skill score for comparing different flow pattern classification methods,

the marginal cases are still forecast using a RF model trained on a random set of cases

for both the FD and non-FD skill. These models for this study will be reference as

the PC models.
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(a) (b)

(c) (d)

Figure 2.4: The EOFs of (a) PC-1 of shear, (b) PC-1 of SBCAPE, (c) PC-2 of shear,
and (d) PC-2 of SBCAPE.

2.3.3 Control Experiment (Randomly Trained Model)

The purpose of the experiments described in Sections 2.3.1 and 2.3.2 is to determine

if the flow dependent RF model forecasts severe weather better than a non-flow

dependent RF model. Therefore, a control model is trained on the same number of

cases as the model that it is compared against (e.g., eight cases for the high shear

model), where the training cases are randomly selected with replacement from the full

set of 29 available cases and repeated 27 times. The purpose is to not gain the best

possible skill for this type of model, but rather to have a fair model of comparison to
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see if the training cases that are selected can cause models to forecast severe weather

within certain flow patterns better or worse, while controlling the training sample size.

This approach also important to consider the impacts of sample size as a way to see if

these results are sensitive to small or large sample sizes.

2.4 Diagnostic and Verification Techniques

In this section, I will explain the different diagnosis tools used to determine the

model performance. This study uses a variety of plots and scores to determine

model skill compared to both a reference forecast and how accurate the forecast is in

general. Additionally, I opted to use other tools to determine how important predictors

are and how much they contribute to the model performance. Feature Importance

was used primarily on the flow-dependent models to quickly compare differences in

predictor importance compared to the much slower, albeit more rigorous, permutation

feature importance. Since FI is characteristic of the trained model, it is suitable

for comparing what predictors different models are using but it is not suitable for

evaluating differences in how each predictor contributes to RF performance on different

groups of cases. Permutation Feature Importance was ran primarily on the non-flow

dependent model to get a rigorous idea of which predictors were importance and in

what cases to then further investigate with composite differences. Tree Interpreter

purpose is to visualize on specific cases the contribution of predictors and how that

looks compared to the normal output of the RF. Therefore, TI can provide physical

understanding and qualitative interpretation of case studies that cannot be obtained

from FI or PFI. Finally, I will explore the contribution of individual predictors to

18



the forecast on a gridpoint basis to see what meteorological factors are impacting the

forecast.

2.4.1 Brier Score, AUC, Reliability

Numerous studies use Brier Score as a way to diagnose the Root Mean Square Error

(RMSE) of a model’s probabilistic forecast (Berner et al. 2015; Hill and Schumacher

2021; Ahijevych et al. 2016; Hill et al. 2020; Loken et al. 2020). A breakdown of the

Brier Score can be seen in the Equation 2.1 where k is the forecast bin, pk is the

forecast probability of the bin, ōk is the observed frequency within the bin, and N is

the total number of samples and nk is the number of forecasts in bin k. Finally, ō is

the overall frequency through all k forecast bins. The reliability term is interpreted as

the error in the calibration of the forecast probabilities. The resolution shows how

the different values of forecast probability resolve different conditional probabilities of

the event occurring. Unlike the reliability component, a larger resolution component

decreases the overall Brier Scores, indicating a more accurate forecast. Finally, the

uncertainty term is just a function of the mean climatology over the verification period.

This term is a function of the event occurrence on the cases being forecast and does

not depend on the forecast itself.

BS =
1

N

K∑
k=1

nk(fk − ōk)
2 − 1

N

K∑
k=1

nk(ōk − ō)2 + ō(1− ō) (2.1)

The Brier Skill Score (BSS) is used to quantify reduction in forecast error compared

to a reference forecast (Berner et al. 2015). The equation for the Brier Skill Score

can be seen in Equation 2.2. While low BS indicates better forecasts, higher BSS

indicates better forecast compared to the reference forecast. This will be one of the
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main forecasting skill metrics used to compare models against each other in this study.

One important note is that to make comparison of different flow dependent model

training methods, an equal comparison is needed in addition to the BSS over one

group. To achieve a fairer comparison of the different FD methods, both BS and

BSref are calculated over all cases, including the marginal cases which the forecasts

use the randomly-trained model for both BS and BSref .

BSS = 1− BS

BSref

(2.2)

Two more diagnostic tools that are used in this study are the reliability curve

and ROC plots. The ROC plots (Figure 2.5a) show on the x-axis the Probability

of False Detection (POFD) and on the y-axis the Probability of Detection (POD).

This can demonstrate the model’s ability to discriminate an event as a severe event

or as a null event as well as indicate the model’s ability to detect severe events. The

area under the ROC curve (AUC) generates a value between zero and one with 0

meaning the model cannot detect any severe events and 1 meaning the model detects

every severe event in the training data. The reliability curve plots shows on the x-axis

the model’s forecast probability and on the y-axis the observed relative frequency of

severe events within that forecast probability. The reliability plot visualizes if the

model is well calibrated by if the forecast probability is equal to the observed relative

frequency. If the forecast probability does equal the observed relative frequency, then

the model is well calibrated as seen by the diagonal line in in Figure 2.5b. If the

model forecast probability is lower than the observed relative frequency, the model

has an underforecasting bias, while if the model forecast probability is higher than

the observed relative frequency, the model has an overforecasting bias.
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(a) (b)

Figure 2.5: A sample (a) ROC curve plot and (b) reliability plot. The ROC can be used
to determines how good a model is a detecting severe events and discriminating severe
events from null events. The reliability plot shows how well calibrated the model’s
output probability is compared to observed relative frequency in each forecasted
probability.

2.4.2 Feature Importance and Permutation Feature Importance

Feature Importance (FI) is a way to see the entropy gained at each branch by using

the data the model is trained on (McGovern et al. 2019). The FI can be interpreted

as how effective a predictor is from separating severe occurrences from non-severe

occurrences, or how much a predictor decreases impurity (McGovern et al. 2019). In

this study, FI will be used on both the FD and baseline models to see how important

each predictor is, or how good the predictors are at separating the data. Specifically,

the goal of using FI is to demonstrate how the predictor importance changes from the

random model to the FD model to understand if the different cases used to train the

models lead to different relationships among predictors being represented by the RF.

Permutation Feature Importance (PFI) is different from FI as it tests how the

performance of the model changes when the statistical connection between predictors

and predictands are broken (McGovern et al. 2019). The PFI tells us that if the model

performance does not worsen significantly, then that predictor is considered generally
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not important. If model performance does begin to worsen, then that predictor is

considered important (McGovern et al. 2019). The PFI is used in this study to

determine what features are important in the non-flow dependent model to increase

skill, then determine on a case-by-case basis which predictors have relatively high or

low importance on different cases. This will allow us to visualize differences in the

flow patterns on cases with relatively high and low importance of specific predictors

to potentially give ideas of how to classify flow patterns.

2.4.3 Tree Interpreter

While there are many good methods to evaluate how a model understands predictors, a

method to visualize how predictors contributed to the forecast is preferred. A Python

package called Tree Interpreter (Saabas 2023) used in other studies (Loken et al. 2022)

has shown to be very useful in understanding how certain predictors contribute to a

forecast probability in a given case. Specifically, the Tree Interpreter package reports

the changes in probability within a tree resulting from each branch based on a given

predictor, then it is the average contribution from all trees over multiple validation

samples (Loken et al. 2022). As shown in Equation 2.3, the forecast probability is

the sum of the contributions from all predictors plus a bias term. The bias term is

the base rate of the forecasted variable before any predictors begin to change the

probability. You then add the contributions from your features (different predictors)

as seen in Equation 2.3. An example plot of a single feature contribution can be

seen below in Figure 2.6. Red values indicate positive contributions to the forecast

probability and blue indicates negative contributions to the grid point forecast.

22



predicton = bias+ feature1 contribution+ ...+ featuren contribution (2.3)

Figure 2.6: An example of a single predictor (in this case, 0-1 km helicity) contribution
to this case forecast. Red values indicate positive (increasing probability) contribution
while blue values indicate negative (decreasing probability) contribution.
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Chapter 3

Results

In this chapter, I will go through the creation and evaluation of the non-flow dependent

model. I will also see how well as how predictors were selected for this model while

seeing if certain flow patterns lead to good or poor performance of the model in

Section 3.1. Then, I will explore the diagnosis of the first flow dependent classification

method (Section 3.2), the PS model. I will then discuss the second flow dependent

model classification, the PC model, as compared to the PS model (Section 3.2. Finally,

I will demonstrate the sensitivity of both methods to sample size by adding more

cases to train the models on in Section 3.3.

3.1 Evaluation of Non-Flow Dependent Model

In this section, I will explore the creation of the non-flow dependent model. Section 3.1.1

the performance of this model when predictors were added through the FPS method.

Furthermore, I will explore the cases in which certain predictors are important and

compare them to cases which those predictors are not important. This will give

motivation to the flow-dependent model training discussed in Sections 3.2.
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3.1.1 BSS Comparison of Full Model to FPS Model

Before evaluating the differences in performance between flow dependent (FD) and

non-flow dependent (NFD) models, an NFD model was built using all available cases

within the 2021 training cases. The Forward Predictor Selection (FPS) is used on this

NFD model and will be the basis of predictors for all models in this study. Figure 3.1

below shows that although at iteration three the BSS did not improve, adding more

variables allowed for further improvement to the NFD model. When multiple iterations

did not increase BSS, the resulting model has slightly higher skill than a model using

all predictors. The resulting model will be used as a baseline for the majority of the

resulting experiments, with only changing the case sizes to allow for equal comparisons

of models.
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Figure 3.1: The resulting BSS for each iteration of the FPS. The red horizontal line
was the model BSS if all predictors were used to forecast the cases. Notice that
iterations 4-6 decreased or maintained the same skill before increasing skill above the
full model.

3.1.2 Exploring Composite Difference?

Using the PFI, we can get an idea of spatial patterns that occur when a variable is or is

not important for that model. A composite difference in this case is the spatial pattern

difference between the cases in which a predictor has relatively high importance and

the spatial pattern of cases when a predictor has relatively low importance as seen

in Equation 3.1. In this equation, we focus on cases of high importance of 500 mb

heights and take a difference between cases of low 500mb heights. I can then plot

the environmental fields that result from these differences. A hypothesis I created is

that if flow pattern is not a factor in the predictor importance, then the composite

difference between high and low importance would show no real discernible flow

26



pattern over the domain. Conversely, coherent patterns distinguishing cases with

high and low importance of specific predictors would be consistent with a different

relationship between predictors and predictands in different large scale flow pattern,

further motivating the experiments on FD training of RF.

Composite Difference = mean(hgt500high importance)−mean(hgt500low importance)

(3.1)

3.1.3 Efficacy of Using Composite Differences to Identify

Meteorological Patterns

To determine the relatively high/low importance, PFI is conducted on the NFD model.

The resulting PFI as seen in Figure 3.2 shows that the top five most important variables

are, in order, maxuh03, maxuh25, u500, lat, and mucape. It is clear that lat that

is more important, albeit slightly, than mucape base on their PFI values. However,

to focus on the meteorogical differences, the variables that will be used to evaluate

composite differences are maxuh03, maxuh25, u500, and mucape. Additionally, PFIs

for each case were then recalculated to get Z-scores compared to the average PFI,

to further emphasize cases which had high or low importance while also normalizing

the amount of importance for each variable on a given case. The composite field

calculated for these predictors are the change in 500 mb heights, SBCAPE, u500

winds, and v500 winds. The reasoning behind these fields is that 500 mb heights will

represent the large-scale, or synoptic, flow pattern when combined with u500/v500

winds. Additionally, some mesoscale information is needed to see if the mesoscale
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features are similar in these setups or vastly different, so sbcape will represent that

information. While useful in forecasting convective storms, no storm-scale variables

(maxuh03, maxuh25, or hrprecip) were chosen to calculate composite differences

on as those variables can vary greatly from one case to another over small spatial

scales, making any signal unclear to represent a discernible pattern. For each case,

HWT selected regions of interest where the participants believe the highest chance for

severe weather would be located and those regions ended up being the regions used

in this study. The composites are re-centered on the HWT domains to isolate single

flow patterns driving the regional severe weather risk aside from what was driving

the weather risk elsewhere in the country on that case and avoid averaging out the

important regional flow pattern due to movement of which region is important from

one case to the next.

Figure 3.2: PFI values for all predictors used within the NFD Model. It’s clear that
maxuh03, maxuh25, u500, lat, and mucape are the most important predictors based
on PFI.
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3.1.4 Patterns Determined from Composite Differences

3.1.4.1 maxuh03

The most important variable from PFI, maxuh03, shows a strong signal of more

troughing and less ridging (Figure 3.3a) for cases with high importance, particularly

over the northwestern quadrant of the domain. Additionally, higher instability on

average was noted for high importance cases particularly over the southern portion

of the domain in Figure 3.3b. While minimal differences exists for u500/v500 winds

from high to low importance cases (as seen in Figure 3.4a and Figure 3.4b), a synoptic

pattern can still be inferred from the Z and CAPE fields. A possible explanation is

that a trough, likely of low amplitude given weak v500 winds for high importance cases,

moves into the northwestern portion of the forecast domain throughout the period. A

strong, unstable airmass setups over the entire HWT domain giving strong amounts

of potential energy for thunderstorms. This would be considered a strongly-forced

setup when the maxuh03 predictor does best in the NFD model.
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(a)

(b)

Figure 3.3: (a) 500 mb height composite and (b) SBCAPE composite for the predictor
of maxuh03.
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(a)

(b)

Figure 3.4: (a) u500 wind composite and (b) v500 wind composite for the predictor of
maxuh03.

3.1.4.2 maxuh25

For the second predictor, maxuh25, we can notice a lot of similarities between the

composite differences of maxuh03 and maxuh25. Similarly, less ridging, or more

troughing, can be observed particularly focused in the northwestern quadrant of the

domain in Figure 3.5a. While to a lesser extent, it is still a similar 500 mb height
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pattern, suggesting that a trough is moving into the western/northwestern portion

of the domain. A similar instability pattern exists in maxuh25 composite difference

for SBCAPE as seen in Figure 3.5b to that of maxuh03. The biggest difference

between maxuh03 composite difference and maxuh25 composite difference is the u500

winds (Figure 3.6a). The combination of more negative v500 winds (Figure 3.6b)

with stronger u500 winds for stronger cases indicate anticyclonic shear, similar to that

ahead of the main trough east of a ridge axis. Similarly to maxuh03, this is likely a

low-amplitude trough given the weak v500 wind component noted on the composites.
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(a)

(b)

Figure 3.5: (a) 500 mb height composite and (b) SBCAPE composite for the predictor
of maxuh25.
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(a)

(b)

Figure 3.6: (a) u500 wind composite and (b) v500 wind composite for the predictor of
maxuh25.

3.1.4.3 u500

The u500 wind composites show a drastically different pattern compared to maxuh25

and maxuh03. High importance cases do show less trough and more ridging at a

similar intensity to that of the other predictors, but this signal is focused in the

eastern portion of the domain rather than the western portion of the domain as seen
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in Figure 3.7a. Additionally, the SBCAPE composite difference reflects this pattern

of less ridging (more troughing) over the eastern portion of the domain. This higher

instability mainly being focused in the eastern portion as seen in Figure 3.7b of the

domain compared to other predictors which focus on the majority of the southern

portion of the domain. This indicates that a trough starting in the domain during the

forecast period. This trough is likely low amplitude, given the strong u500 signal in

the high importance cases (as seen in Figure 3.8a) but weak v500 signal (as seen in

Figure 3.8b) with the warm sector setting up in the eastern portions of the domain.
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(a)

(b)

Figure 3.7: (a) 500 mb height composite and (b) SBCAPE composite for the predictor
of u500.
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(a)

(b)

Figure 3.8: (a) u500 wind composite and (b) v500 wind composite for the predictor of
u500.

3.1.4.4 mucape

The final predictor composite difference of this study, mucape, has the most unique

spatial patterns of all features that have been examined. mucape has a 500 mb height

pattern that shows less ridging/more troughing over the domain, has a very weak

signal focused in the eastern portion of the domain as seen in Figure 3.9a. A strong
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instability pattern is present throughout the domain, except for a small section in the

northern part of the domain as seen in Figure 3.9b. Furthermore, there are some hints

of a higher amplitude feature on the eastern edge of the domain with strong u500 and

v500 winds as seen in both Figure 3.10a and Figure 3.10b, although just barely in the

domain. This pattern is a very uncommon placement for severe weather. One reason

for this is that the HWT Domain is relatively small for these larger scale features,

so it is hard to determine if the entire trough is inside the domain given the small

spatial extent. While the composite difference for mucape pattern seems atypical, a

discernable pattern is still able to be visualized.
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(a)

(b)

Figure 3.9: (a) 500 mb height composite and (b) SBCAPE composite for the predictor
of mucape.
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(a)

(b)

Figure 3.10: (a) u500 wind composite and (b) v500 wind composite for the predictor
of mucape.

3.1.4.5 Case Study of High and Low Importance

While we can suggest some of these flow patterns based on the composite differences,

do those patterns actually occur within high/low importance cases? For this, we

will look at the example of the high/low importance case for maxuh25 for a high

importance (28 April 2021) case and a low importance case (27 April 2021). First, we
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can examine the model’s output probability and see that both cases produce relatively

high probabilities (40-50%) as seen in both Figure 3.11a and Figure 3.11b. Similar to

the composite differences, this case study will examine the 500 mb heights, SBCAPE,

u500, and v500 winds to see if the cases match up with their composite differences.

(a)

(b)

Figure 3.11: The (a) high importance and (b) low importance cases output probability
from the NFD model.
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First, examining the actual maxuh25 values, big differences between the high

importance and low importance case become apparent. The high importance case

maxuh25 as seen in Figure 3.12a actually co-aligns with the majority of the storm

reports (with values of 125 m2/s2 or higher for the majority of storm reports). The

low importance case, however, appears to miss a good number of storm reports with

only minimal values of maxuh25 co-aligned with the majority of severe reports as seen

in Figure 3.12b. This demonstrates that maxuh25 helps improve the model forecast

for the high importance case while worsens the model for the low importance case.
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(a)

(b)

Figure 3.12: The (a) high importance maxuh25 maximum value from the 10 member
ensemble and (b) low importance maximum value from the ten-member ensemble
cases output probability from the NFD model.
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Looking at the environment of the two cases, we notice that the low importance

feature has a large trough over the western CONUS. The high importance case has

more of a subtle, low-amplitude feature over the central/northern portion of the

domain as seen in Figure 3.15a. This reflects what is expected with the 500 mb height

pattern that was observed in the composite differences. The instability patterns also

reflects the composite differences previously plotted, with the high importance case

having predominantly higher instability over the southern portion of the domain seen

in Figure 3.15b except for the far western portion of the domain. The low importance

case having higher instability more in the northern portion of the domain as seen in

Figure 3.13b. The u500 and v500 winds also reflect the patterns seen in the composite

differences, as u500 is maximized over the northern portion of the domain for high

importance case (Figure 3.16a) and is maximized in the southern/western portion

of the domain for low importance case as seen in Figure 3.14a. The v500 winds

follows a similar pattern with the high importance case having very low values of v500

which demonstrates a low-amplitude feature as seen in Figure 3.16b while the low

importance case has strong v500 winds which suggests a long-amplitude feature as

seen in Figure 3.14b.
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(a)

(b)

Figure 3.13: The low importance case (a) 500 mb heights, (b) SBCAPE environment.
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(a)

(b)

Figure 3.14: The low importance case (a) u500, (b) v500 environment.
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(a)

(b)

Figure 3.15: The high importance case (a) 500 mb heights, (b) SBCAPE environment.
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(a)

(b)

Figure 3.16: The high importance case (a) u500 and (b) v500 environment.

3.1.4.6 Summary of Composite Differences

The composite difference results have demonstrated that the relationship among

predictors change as physically useful and meaningful signals were noticed on the

composite difference. The general pattern of the high importance cases was to have

more height falls or lower heights compared to the low importance case, were the
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cases for the model forecasts did the best, as that would suggest stronger forcing for

storms to initiate. The u500 and v500 winds reflect this, however, demonstrating

a low-amplitude feature about the size of HWT domain or smaller. Additionally,

stronger instability over the southern portion of the domain supports stronger storms,

which would have a higher tendency to develop updraft helicity (or rotation) in the

mid-levels in combination with stronger u500 winds (particularly over the northern

portion of the domain), meaning more organized convection moving off of a forcing

boundary. This demonstrates the apparent qualitative relationship between the 80-

km grid predictors and the synoptic-scale pattern, further motivating a quantitative

approach to FD model training.

3.2 Impacts of Flow Dependent Training

In this section, I will explore the impacts on model performance by training on the

flow-dependent classifications. Additionally, I will examine a case study for the PS

model to see if the skill makes physical sense. Additionally, I will explore the second

flow dependent classification, the spatial pattern classification performance. Finally,

I will compare these methods to each other to see if one method performs better

compared to the other.

3.2.1 Domain Average Classification

3.2.1.1 BSS Comparison to NFD Model

The BSS of the FD model forecast is evaluated using the baseline model BS evaluated

on the same cases as the FD model as the reference forecast in Equation 2.2. Looking
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at the first FD model Classification of Domain Shear (Figure 3.17a) and CAPE

(Figure 3.17b), we notice that the FD model outperforms the baseline model by

5-15%. Some important results to note are that the high versions of both shear and

CAPE have the highest skill, but also the largest spread, likely due to the majority

of cases happening in higher (or more conducive for severe) shear and CAPE. The

low parameter skills are smaller compared to the high parameter model, but their

corresponding spread is also much lower. Regardless of category, all models are

statistically significantly better than the random model as the BSS was greater than

two standard deviations above zero, which suggests that there is some benefit of

training the RF model based on flow pattern rather than over multiple flow patterns.

BSS = 1− BSFD

BSRM

(3.2)
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(a)

(b)

Figure 3.17: The BSS for the (a) PS shear and (b) PS CAPE model. A single SD is
plotted for clarity.

3.2.1.2 AUC, Reliability Curves, and Model Diagnosis

Beginning with the high/low shear Models, the ROC curves drastically outperform

the random model (Figure 3.18c and Figure 3.18d). This is further supported with the

AUC values showing 3-4% higher values compared to the random model (Table 3.1),
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showing the model’s ability to detect severe events is much better than the random

model. The model’s probabilities seem to be reasonably calibrated until probabilities

exceed roughly 20% for the low shear model (Figure 3.18a) and probabilities exceed

roughly 30% for the high shear model (Figure 3.18b). This is possibly due to limited

sample size for those higher probabilities, leading to an underforecating bias at higher

probabilities. The random model, however, exhibits an overforecasting bias, with

higher probabilities occurring at a low frequency. However, the random model’s

reliability value for all categories is better than the FD model’s mainly due to some

calibration issues that could be fixed in the future with an additional calibration step.

These results are also consistent for the high/low CAPE FD model. However, two

differences are noticeable with the high/low CAPE FD model. The high CAPE AUC

is only 1-2% higher than the baseline model from Table 3.1 compared to 3-4% for

other FD models. Additionally, the high CAPE reliability is actually slightly lower

than the baseline model unlike all other categories. Overall, the PS Model is very good

at detecting severe events compared to the random model, though some calibration is

needed to improve the probability magnitudes.
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(a) (b)

(c) (d)

Figure 3.18: On the left, the (a) Low Shear Reliability and (c) ROC curves. On the
right, the (b) High Shear Reliability and (d) ROC curves.
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Table 3.1: The Reliability, Resolutions, and AUC for each PS Model.

Model
Name

Reliability Resolution AUC

Low Shear
Model: 0.001350
Baseline: 0.0000824

Model: 0.00459
Baseline: 0.00286

Model: 0.93669
Baseline: 0.89696

High Shear
Model: 0.002984
Baseline: 0.002289

Model: 0.01334
Baseline: 0.00771

Model: 0.94463
Baseline: 0.91275

Low CAPE
Model: 0.001430
Baseline: 0.000716

Model: 0.00423
Baseline: 0.00249

Model: 0.94275
Baseline: 0.90670

High CAPE
Model: 0.002993
Baseline: 0.003271

Model: 0.01895
Baseline: 0.01429

Model: 0.93559
Baseline: 0.92331

3.2.1.3 Subjective Differences between NFD Model and FD Model

While objective differences are always good in determining which model is better, it is

important to see how these differences qualitatively appear in individual cases. As a

result, a subjective view of the differences between the FD model on 13 May 2021 and

the random model can give insights on what differences might be occurring. First, we

can confirm that this case is indeed Low CAPE per the SPC outlook (Figure 3.19a)

having low probabilities and the SPC discussion (Figure 3.19b) only mentions low

instability of 500 J/kg of ML CAPE. The FD probability output demonstrates that

the model has skill as the highest probabilities occur within the region of storm reports

as seen in Figure 3.20. This when compared to multiple random model outputs, shows

a different output than the random models. Particularly, the random models have

higher probabilities compared to the FD model and also higher probabilities outside

of the regions of storm reports. To investigate the differences between these two

different outputs, we can look at Feature Importance (not PFI) of the models to see

that predictor importance does change from the RM model, particularly SBCAPE,
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mucape, u500, and 0-1 km SRH (Figure 3.24). Investigating these predictors with

a tree interpreter, one predictor’s change from the random model and FD model

is drastic is the contributions to the 0-1 km SRH. The FD model contribution(s)

(Figure 3.25a and Figure 3.26) is highest from this predictor compared to the random

model (Figure 3.25b and it includes a lot of the region where storm reports occurred.

A possible reason for this is that in low instability setups, storms can overcome the

shortcoming in instability with increased dynamics, in this case 0-1 km SRH. This

suggests that the FD model identifies different relationships among predictors that

the random model is otherwise unable to determine.

55



(a)

(b)

Figure 3.19: (a) The SPC 1630 UTC Outlook overlayed with storm reports and (b)
the 1630 UTC SPC Discussion for the 14 May 2021.
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Figure 3.20: FD model output for 13 May 2021. Probability covers the storm report
region well, but note a locally higher probability region on the southern portion of the
domain.

57



(a)

(b)

Figure 3.21: Two different iterations of the NFD model baseline and the probability
generated for each iteration.
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(a)

(b)

Figure 3.22: Two more different iterations of the NFD model baseline and the
probability generated for each iteration.
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(a)

(b)

Figure 3.23: (a) The FD model FI, (b) the average FI of the NFD model.
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Figure 3.24: The difference between the FD model FI and the average FI of the NFD
model. More emphasis was place on low-level shear parameters and less on instability
parameters, which reflects what you would expect in a Low CAPE setup.
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(a)

(b)

Figure 3.25: (a) The 0-1km Helicity Contribution to the FD model, (b) the average
contribution of 0-1km Helicity to the NFD model.
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Figure 3.26: The difference between the two. This is the largest difference in contribu-
tion between the NFD and FD model, and helps increase probabilities over the storm
report region and decrease it to the NW and N of the reports region.

3.2.2 Spatial Pattern Classification

3.2.2.1 BSS Comparison to NFD

Looking at the BSS for all the PC Models, we notice similar trends to that of the

PS models. We do notice that particularly from PC1 G1 and PC2 G2 for both

CAPE/Shear has the best skill (Figure 3.27a and Figure 3.27b). Their skills do

have a lot of spread, but similar to the Domain Average Classification, all models

are statistically better than the baseline model. It appears that both methods have

improved skill compared against the random model baseline, demonstrating that FD

model training provides some skill that training on random cases cannot provide.
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(a)

(b)

Figure 3.27: (a) BSS plot for shear PC model and (b) BSS plot for the CAPE PC
model.

3.2.2.2 Reliability and Resolution

To avoid unnecessary amounts of plots, below is the reliability, resolution, and AUC

values as this will provide similar information as those plots. Similar to the Domain

Average Classification, we see the similar trend of better AUC, better resolution, but
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slightly worse reliability as seen in Table 3.2. This would support the Spatial Pattern

classification like the Domain Average Classification can identify severe events at a

higher rate than the baseline models. However, like the Domain Average method,

some calibration of the probabilities is necessary to address some of the reliability

issues.

Table 3.2: The Reliability, Resolutions, and AUC for each PC Model.

Model
Name

Reliability Resolution AUC

CAPE PC1
G1

Model: 0.002831
Baseline: 0.004163

Model: 0.002309
Baseline: 0.001734

Model: 0.94303
Baseline: 0.93446

CAPE PC1
G2

Model: 0.001050
Baseline: 0.000780

Model: 0.00385
Baseline: 0.00219

Model: 0.94616
Baseline: 0.92129

Shear PC1
G1

Model: 0.003187
Baseline: 0.002022

Model: 0.01318
Baseline: 0.00771

Model: 0.94062
Baseline: 0.90391

Shear PC1
G2

Model: 0.00119
Baseline: 0.000678

Model: 0.00370
Baseline: 0.00252

Model: 0.94528
Baseline: 0.91555

CAPE PC2
G1

Model: 0.002096
Baseline: 0.002015

Model: 0.01311
Baseline: 0.00982

Model: 0.94210
Baseline: 0.92467

CAPE PC2
G2

Model: 0.00138
Baseline: 0.000969

Model: 0.004994
Baseline: 0.00348

Model: 0.95271
Baseline: 0.91915

Shear PC2
G1

Model: 0.00112
Baseline: 0.000872

Model: 0.005567
Baseline: 0.00387

Model: 0.9347
Baseline: 0.89988

Shear PC2
G2

Model: 0.00219
Baseline: 0.00245

Model: 0.01430
Baseline: 0.1084

Model: 0.94702
Baseline: 0.92937

3.2.2.3 Comparison of Both Methods

While both methods have shown statistical significantly better models than the random

models, which method would be considered the best method? While it would be easy
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to try and compare the model diagnosis above to determine which model is better, it

is not a direct and equal comparison. Besides the cases not being the exact same in

each category, the number of cases within each category are not the same. However,

the combined model allows for all models to be forecasting the same number of cases,

and thus a direct and equal comparison. Examining the BSS of the combined model,

we notice that all models are statistically better than the random model baseline. This

means that both methods appear to improve the training of the RF model compared

to the random model or more of a traditional method. Additionally, all model’s

spread encompass every other model, meaning that no real model or classification

method appears better than the other. Both methods of Flow Dependent model

training improves the forecast compared to the baseline, however, no clear advantage

is observed between the PS and PC methods. Future studies, potentially using even

larger sample sizes, may find more effective ways of using the spatial pattern to

improve the PS Model even further.
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Figure 3.28: A comparison of both the PS and PC Models using the Combined BSS
as mentioned earlier. No FD model has a clear advantage over the other, but all FD
models are statistically significantly better than the baseline. For each model, one SD
is plotted for clarity.

3.3 Impacts of Sample Size on Model Performance

In this section, I will discuss the impacts of sample size on the FD model performance.

I will compare both the PS and PC model performance with the increased sample

sizes. Any substantial model performance degradation will be explored as it arises.

Finally, any conclusions of how a FD model does will be briefly stated with implication

of findings discussed further in Chapter 4.

3.3.1 Combined BSS Comparison

While the conclusions reached were statistically significant, the dataset was a relatively

small dataset (e.g., only 8 cases in each PS category). Would this strong conclusion
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extend if more samples were included in the model training or would it begin to fall

apart? For this study, the additional dataset of the 2019 HWT cases were added,

increasing the case size to 53 cases. Furthermore, most FD model’s case sizes became

approximately double with the exception of CAPE PC1 as that did not really project

well (particularly in the negative) into 2019. Another important thing to note is that

the original PCs/EOFs were used, meaning the new cases would be projected onto

the leading EOFs to see which group that would fall in to mimic what could be an

operational version of the model in the future, and keep definition of flow categories

the same while only changing the number of cases in each category.

Looking again at the combined BSS output for the different FD models as seen in

Figure 3.29, we notice that there are some differences. For example, all PC Models

except for PC1 Shear are no longer statistically better than the random model, but

both PS models are statistically better. In fact, the PS model skill remains roughly

the same for PS Shear or slightly improved in the case of PS CAPE. This only occurs

with a slight adjustment to the original PS cutoffs in order to double the case sizes of

each model (from 8 cases to 16 cases).
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Figure 3.29: A comparison of both the PS and PC Models using the Combined BSS as
mentioned earlier on the larger sample size. PS Model remain statistically significantly
better than the baseline, but all PC Models (except for PC1 Shear) do not remain
statistically better than the baseline.

3.3.2 Reasons for Differences

While it is important to see how the models react to a larger number of cases, it is also

important to speculate on why the number of cases (particularly for the PC Models)

drastically decreases model skill. One reason for this is that 2019 does not project

onto the original 2021 EOFs well (particularly for PC 1 CAPE). This means that

the case may not truly represent the pattern that it is projecting onto well. Another

reason could be that the Spatial Pattern Method is not a great way of classifying Flow

Pattern. However, this seems to not be the case, as there were significant results with

the smaller sample size. As a result, it is possible that the poor project of the spatial

patterns into the 2019 is to blame for the poor performance with increased sample

size. However, the PS FD model still has a statistically better model than against the
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baseline even with the increase in sample size. This suggests that FD model training

can still be better than the baseline model even with more samples to add, suggesting

that the PS method benefits can persist even into other seasons or with larger sample

sizes.
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Chapter 4

Conclusion

4.1 Summary of Work and Findings

The purpose of this study was to explore the possibility of FD model training of

RF to improve probabilistic severe weather forecasts. First step, I explored if RF

predictors performed better or worse (high/low importance) based on the flow pattern.

Considering the results from the RF predictor experiments, this study introduced,

implemented and evaluated two different methods of classifying the flow pattern

based on the domain-average parameter space and spatial pattern as quantified using

principal components. The goal of these experiments was to see if models trained

on certain flow patterns could perform better than a baseline random model, and

determine how much these different classification methods affect the relative skill of

FD vs baseline. Finally, this study explored the impacts of increasing sample size on

the FD model performance.

The different flow patterns were evident for each predictor in the composite

differences between cases where a given predictor has relatively high versus relatively

low importance. Three unique flow patterns arose from the four different predictors

from their composite differences. Predictors maxuh03 and maxu25 had similar flow

patterns, with high PFI cases showing more strongly forced setups. However, some

limitation exists as the domain cannot include the amplitude and depth of the trough
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with a unstable warm sector for high importance cases. The u500 composite difference

favored a more compacted trough within northwest flow, but shifted east and with a

much smaller warm sector compared to the previous two predictors. The final predictor,

mucape, shows the most atypical pattern, with the trough moving out of the domain,

but a stronger warm sector present throughout the entirety of the domain for high

importance cases. A case study based on the maxuh25 importance demonstrated that

high and low importance cases not only make physical sense, but reflect elements of

their composite differences, further justifying the idea that FD model training may

provide skill that might not otherwise be obtained using traditional model training

methods.

Using the Domain Average Classification method, examinations of PS shear show

increased skill in forecasting the PS case(s) flow pattern compared to the baseline

random model. Examining the different diagnostic metrics, PS shear model excelled

in detection and resolution of severe events, but had worse reliability compared to

the baseline model. The case study demonstrates that instability predictors (sbcape)

contributed less positively. The 0-1km helicity predictor contributed more negatively

to the probability forecast outside of the region of storm reports for the FD model

compared to the baseline model. Since the instability predictors (sbcape, mucape)

relates to the instability in the environment, placing less importance on the instability

predictors helped decrease spurious high probability in this case for the FD model.

The FI on the FD model shows that in general, decreased emphasis on instability and

increased emphasis of low-level shear. The differences represented in this case are why

the FD model outperforms the baseline model.

Exploring the PC models, I noticed a similar trend for individual models that was

observed to that of the PS models. High resolution and detection of severe events
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seem to override the poorer reliability compared to the baseline model. However, the

observed high reliability was likely due to low samples similar to the PS model. A

comparison between models showed that all models provide statistically significant

positive skills compared to the baseline model and that all models have similar skills

to each other.

To confirm that these results were not sensitive to sample size, I increased the

sample sizes for all models (including the baseline) by adding data from the 2019

severe season. As a result, the comparison of model skill showed that the PS model

performed statistically better than the random baseline model. However, the PC

models (with the exception of PC-1 of shear) did not remain statistically significant.

One reason for this change is that the EOFs projected poorly onto the 2019 cases,

particularly for the EOFs of CAPE, meaning that the leading modes of variability

in 2021 were not necessarily representative of those in 2019. This led to an uneven

split between positive and negative projections of the 2019 cases. This issue could be

resolved by increasing the base sample size for the PCs or EOFs to account for more

of the cases more accurately. However, the significance of the PS model remained

consistent (or slightly higher skill) while increasing the sample sizes showed the promise

of this method of training RF models.

4.2 Future Work

While the results are statistically significant, there are some limitations that need to

be considered with the results. One limitation is that the sample sizes were relatively

small compared to other studies on RF. Larger sample sizes could allow for better

classification categories, such as high shear low cape (HSLC) and other traditional PS
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classification methods used in severe weather prediction. It would also potentially help

the PC models help more accurately explain the variances within the dataset compared

to projecting one year’s EOFs onto another years. Additionally, the entire 24-hour

period was average/use for the PS and PC model rather than the period associated

with the highest severe occurrence. Some cases may have had higher instability or

shear if a smaller time average (e.g., 4-hour average) than the 24-hour average, allowing

for more accurate classifications of cases. Future work will include the impacts of

this methodology on the forecasting of different severe hazards (tornado, wind, hail,

and significant severe of the same type). Another piece of future work is to try to

use 4-hour winds to forecast severe weather rather than the 24-hour period and see if

model performance remains positive and significant. The potential improvements in

RF forecast by FD model training could help the forecasting of severe weather, which

in the end could help protect life and property from this most frequent hazardous

weather.
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