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Abstract 

Mass spectrometry (MS) has become an indispensable tool for transformed 

metabolomics studies, whereas exploring single-cell metabolomic profiles remains a 

challenge due to limited techniques and suitable algorithms. This dissertation delves 

into cell heterogeneity, including method development and applications to infectious 

disease, with a focus on Chagas disease caused by Trypanosoma cruzi. Using the 

effective Single-probe SCMS technique combined with a fixation method that can 

safely decontaminate samples, we examined individual cell responses during parasite 

infection. Our findings unveiled significant differences in cell metabolism, even in 

neighboring uninfected cells, shedding light on the broader impact of infection. This 

pioneering study, utilizing bioanalytical SCMS, offers versatile tools to understand 

infectious diseases and the complexities of cell behavior in diseases. 

Additionally, this dissertation tackles these challenges by merging the Single-probe 

single-cell MS (SCMS) technique with SinCHet-MS, a specialized bioinformatics 

software package. This combination allowed us to understand cell diversity, quantify 

cell subgroups, and identify key metabolites representing cells in subpopulations. 

Testing this approach with melanoma cancer cell lines revealed new subgroups after 

drug treatment, showcasing the potential for in-depth exploration of cell diversity and 

marker identification. This label-free method enhances our comprehension of cell 

metabolism in diseases and therapeutic responses. 

Furthermore, this research pioneers a novel approach by integrating CRISPR-Cas9 
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gene editing with the Single-probe SCMS metabolomics, focusing on FASN-knockout 

cells in the human cell model HEK293T. This innovative strategy provides valuable 

insights into gene-metabolite interactions at the single-cell level. By combining 

advanced SCMS techniques with gene editing, this dissertation opens new avenues for 

understanding gene editing efficiency and the complex relationship between genes and 

cell metabolomics. These integrated methods advance our understanding of cell 

diversity in cancer, infectious diseases, and gene therapy, offering a fresh perspective 

for future research and therapeutic intervention.
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Chapter 1 : Introduction 

1.1 Cell heterogeneity 

Due to genetic and phenotypic variances, nearly all biological systems are 

heterogenous.1 Understanding cell heterogeneity is critical for studies of cell biology 

and human diseases, especially in cancers. Cell heterogeneity in infectious diseases 

opens new avenues for understanding host cell responses to parasitic infections. This 

diversity within cell populations arises from stochastic processes in transcription, 

translation, and metabolism, and comprehending this heterogeneity is fundamental for 

unraveling fundamental cell biology and human diseases. For instance, tumors exhibit 

heterogeneous distributions of malignant cells shaped by intrinsic and extrinsic factors, 

influencing disease progression, drug resistance, and tumor relapse. Understanding cell 

heterogeneity is essential for advancing our knowledge of disease evolution and 

management strategies. 

In the context of infectious diseases such as Chagas disease caused by T. cruzi 

infection, metabolic deregulation in host cells is well-documented. T. cruzi infection 

results in a major deregulation of lipid and glucose metabolism in the host.2, 3 Metabolic 

alterations proportional to CD severity were observed in the heart during experimental 

T. cruzi infection.4, 5 Differential spatial distribution of metabolic alterations in 

experimentally-infected animals reflects sites of Chagas disease tropism.6-8 However, 

all of these reported studies have been performed using traditional metabolomic, gene 
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expression or functional studies from extracts and lysates prepared from cell population, 

which masks cellular-level heterogeneity and cellular-level spatiality. Traditional 

studies, using metabolomic, gene expression, or functional analyses from cell 

population extracts, have highlighted metabolic alterations in response to infection. 

However, these approaches mask cellular-level heterogeneity and spatial distribution, 

missing crucial information about individual cell responses. Investigating infectious 

diseases from a single-cell perspective provides valuable insights into the diverse host 

cell reactions and the spatial distribution of metabolic changes during infection. This 

approach could revolutionize our understanding of infectious diseases, paving the way 

for targeted therapeutic interventions at the cellular level. 

Cell heterogeneity plays a vital role in promoting cancer progression, metastasis, 

and development of drug resistance.9, 10 During the process of metastasis, cancer cells 

become heterogeneous during their metastasis,9 leading to formation of distinct 

subpopulations with diverse physiological properties. This heterogeneity within 

metastatic cells often serves as a major challenges in cancer therapy, contributing 

tremendously to treatment failure.11 Detecting metastatic cancer cells, particularly at 

early stage, is crucial as it allows for timely intervention, providing appropriate 

treatment for halting disease progression.12 However, the study of these rare metastatic 

cells within the heterogeneous cancer cell population has been challenging due to the 

lack of sensitive techniques.9 Addressing this challenge is important for developing 

targeted therapies and personalized treatments, offering a promising approach to 

improve cancer outcomes by studying cell heterogeneity using single cell technologies.  
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1.2 Single cell mass spectrometry 

Single cell technologies are capable of profiling individual cancer cells and 

uncovering rare and hidden subpopulations of cells. Mass spectrometry (MS) is a 

powerful analytical technique to perform single cell analysis. With the development of 

modern MS techniques, single cell MS (SCMS) methods have been established to 

sensitively detect and accurately identify metabolites in single cells. SCMS techniques 

are composed of two major types: vacuum-based and ambient-based techniques. 

 

1.2.1 Vacuum-based techniques 

Single Cell Mass Spectrometry (SCMS) techniques have undergone significant 

advancements, leading to the development of various methods employing distinct 

sampling and ionization techniques for investigating single cell metabolomics.13 

Among these, vacuum-based techniques, such as Matrix-Assisted Laser 

Adsorption/Ionization-Mass Spectrometry (MALDI-MS)14, 15  and Secondary Ion 

Mass Spectrometry (SIMS)16, have emerged as prominent technology. One of the key 

features of vacuum-based SCMS methods is their ability to operate in vacuum 

conditions, enabling rapid and sensitive analysis of samples at the single-cell level. 

These techniques offer distinct advantages, notably the relatively higher throughput 

they provide. For instance, Matrix-Enhanced (ME)-SIMS can analyze up to 2000 

cells,16 MALDI can process 1544 cells,17 and Fourier-Transform Ion Cyclotron 

Resonance (FT-ICR) has the capability to analyze 717 cells.18 This higher throughput 

makes vacuum-based SCMS techniques invaluable for studying diverse cellular 
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populations and unraveling the intricacies of single cell metabolomics. 

However, vacuum-based SCMS methods also come with their set of challenges. 

The vacuum environment required for these techniques demands meticulous sample 

preparation and handling, which can be time-consuming and technically challenging. 

Moreover, the sensitivity and accuracy of these methods are highly dependent on the 

quality of sample preparation, making standardization and optimization crucial for 

obtaining reliable results. Despite these challenges, the advantages offered by vacuum-

based SCMS, such as the ability to analyze a substantial number of cells, make them 

indispensable tools in the field of single cell metabolomics. Researchers continue to 

explore innovative approaches and improvements in vacuum-based SCMS techniques 

to overcome limitations and harness their full potential in deciphering the complex 

metabolic landscapes of individual cells. 

 

1.2.2 Ambient techniques 

Ambient-based techniques, such as live single-cell video-MS,19 probe ESI-MS,20 

LAESI MS,21 nano-DESI MS,22 and the Single-probe,23 have transformed mass 

spectrometry by enabling the study of live cells in their natural environments. Unlike 

traditional methods, these techniques allow real-time observation of cellular processes, 

capturing dynamic changes in metabolism and biomolecular interactions. This 

capability provides invaluable insights into cellular behavior, offering a deeper 

understanding of responses to stimuli, drug treatments, and environmental changes. 
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However, the application of ambient-based methods necessitates careful sample 

handling to minimize perturbations to live cell metabolism. Due to the delicate nature 

of live cell analysis, these techniques often yield relatively smaller numbers of cells per 

experiment, such as 140 cells from nanoPOTS,24 108 cells from Single-probe SCMS,25 

32 cells from microprobe CE-ESI-MS,26 and 15 cells from nano-DESI MS.22 This 

limitation can be challenging when studying heterogeneous cell populations or rare cell 

types, impacting the scalability and applicability of these techniques in certain research 

contexts. Despite these challenges, the ability to study live cells in near-native 

environments offers unique advantages, providing critical insights into cellular 

heterogeneity, drug responses, and disease mechanisms. As technology advances, 

addressing these limitations will likely lead to further refinements in ambient-based 

techniques, enhancing their utility and expanding our understanding of live cell biology. 

1.3 Single-probe single cell mass spectrometry 

Our group has developed multiple SCMS techniques for analysis of live single cells 

in ambient environment (i.e., room temperature and atmospheric pressure). Among 

them, the Single-probe SCMS has been routinely used in our studies.23,25, 27-30 In my 

studies, the Single-probe SCMS method has been used to profile the difference in 

molecular characteristics and to study biological pathways associated with both primary 

and metastatic cancer cells. Briefly, the Single-probe is a home-built device that can be 

coupled to a mass spectrometer for microscale sampling (e.g., from single cells and 

tissue slices) and ionization, followed by MS analysis. The Single-probe tip is small 
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enough for insertion into single cells to collect intracellular analytes, which are 

immediately ionized by MS analysis.23 We have utilized this technique in different 

single cell studies such as investigating the differences in drug resistance,31, 32 

quantifying anticancer drugs in single cells,33-36 comparing metabolites in cancer stem 

cells and non-stem cancer cells,37 and determining the influence of environment on 

algal cell metabolites.38 In addition, the Single-probe device has been utilized for MS 

imaging studies to acquire the spatial distribution of molecules on tissue slices39-43 as 

well as to analyze secreted metabolites inside multicellular spheroids.44 

1.4 Single cell metabolomics 

Single cell metabolomics has emerged as a powerful approach in understanding the 

intricacies of cellular function and heterogeneity. Due to the rapid turnover rate of cell 

metabolites (i.e., products of cell metabolism), metabolomics studies of live single cells 

can reveal status and molecular features of rare cells that cannot be studied using 

traditional bulk analysis. Metabolites are smaller molecules (<1.5 kDa), including 

sugars, lipids, amino acids, etc.18,19 Metabolites reflect cell status and unveil functions 

of associated metabolic pathways.  

The significance of single cell metabolomics lies in its ability to uncover the 

phenotypic variations from one cell to another, pave the way for advance research in 

cell heterogeneity that exists within cell populations. By studying metabolites at the 

single cell level, scientists can discover unique behavior of rare cells and hidden 

subpopulations that are often not able to analyze using conventional bulk analysis.20 

https://paperpile.com/c/m43uCR/etaA+frMg
https://paperpile.com/c/m43uCR/JnFr
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This precision is especially crucial when investigating heterogeneous cell populations 

or identifying specific cell types that play pivotal roles in disease progression or 

therapeutic responses.  

In metabolomic studies, MS stands out as the cornerstone technology. Its 

exceptional sensitivity, broad molecular coverage, and robust structural identification 

capabilities make it an indispensable tool in the realm of single cell metabolomics. MS 

enables researchers to unravel the intricate metabolic landscapes of individual cells, 

providing a deeper understanding of cellular heterogeneity and paving the way for 

advancements in fields such as disease research, drug discovery, and personalized 

medicine. 

1.5 Subpopulation analysis 

Studying cellular subpopulations is pivotal in understanding the intricate variations 

that exist within heterogeneous cell populations, offering valuable insights into disease 

progression, drug responses, and therapeutic strategies. However, until recently, there 

has been a gap in research methodologies capable of utilizing overall metabolomic 

profiles of single cells to quantify changes in cell heterogeneity and identify associated 

subpopulations. The challenge stemmed from the lack of appropriate metrics to 

quantify cell heterogeneity using single-cell metabolomics profiling data and the 

absence of unbiased data analysis methods for identifying subpopulations without prior 

knowledge. 
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To address these limitations, a groundbreaking approach named SinCHet-MS was 

introduced. This innovative method combines experimental techniques of Single-cell 

Mass Spectrometry (SCMS) with a sophisticated bioinformatics tool, providing a 

solution to the complexities of studying cell heterogeneity and subpopulations. 

SinCHet-MS facilitates a systematic and quantitative analysis of subpopulations, 

leveraging all detected ions to discern metabolomic heterogeneity changes induced by 

drug treatments. The technique enables the identification and visualization of distinct 

subpopulations based on their metabolomic features, even revealing new 

subpopulations emerging in response to drug-sensitive primary melanoma cancer cells. 

In essence, SinCHet-MS marks a significant milestone in the field of metabolomics, 

offering a label-free method to study subpopulations that is different from traditional 

targeted approaches. This method provides researchers with a powerful tool to explore 

single-cell metabolomic datasets from various instrument platforms. By gaining a 

profound understanding of cellular metabolism at both the cell heterogeneity and 

subpopulational resolution levels, SinCHet-MS opens doors to unprecedented insights 

into the complexities of cellular behavior and disease mechanisms, ultimately shaping 

the future of personalized medicine and drug development. 
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Chapter 2 : Single-Cell Mass Spectrometry Enables 

Insight into Heterogeneity in Infectious Disease 

2.1 Introduction 

Cell heterogeneity commonly presents in nearly all biological systems. In addition 

to the genetic variation, cellular heterogeneity can be induced by nongenetic 

mechanisms, i.e., cells possessing similar genotypes but actually expressing 

morphological and phenotypical differences.45, 46 Although cell heterogeneity has been 

reported in human diseases, such as cancer, diabetes, and chronic and age-related 

diseases47, it is largely understudied in infectious disease. For the first time, this study 

will pave the way to study the heterogeneity that presents in infection with 

Trypanosoma cruzi (T. cruzi) at the single-cell level. 

T. cruzi is a protozoan parasite causing Chagas disease (CD), which is an 

understudied tropical disease with severe cardiac and gastrointestinal symptoms. At the 

cellular level, T. cruzi trypomastigotes invade host cells and differentiate into 

amastigotes, which can proliferate, differentiate back into trypomastigotes, and then 

escape the host cells. These newly produced trypomastigotes can then invade new cells 

and continue this cycle of damage.48 T. cruzi infection results in a major deregulation 

of lipid and glucose metabolism in the host cells.2, 49 Metabolic alterations proportional 

to CD severity were observed in the heart during experimental T. cruzi infection.4, 5 

Differential spatial distribution of metabolic alterations in experimentally-infected 

animals reflects sites of Chagas disease tropism.6-8 However, all of these reported 
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studies have been performed using traditional metabolomic, gene expression, or 

functional studies from extracts and lysates prepared from cell populations or infected 

tissues, which masks cellular-level heterogeneity and cellular-level spatiality.  

 

Figure 2-1 (a) Single-probe single-cell mass spectrometry (SCMS) setup. (b) 

Schematic of the working mechanisms of the experimental setup. 

2.2 Methods 

2.2.1 Sample preparation 
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2.2.1.1. Parasite culture 

Beta-galactosidase-expressing T. cruzi strain Tulahuen (clone C4) were obtained 

through BEI Resources, NIAID, NIH52 and maintained in mouse C2C12 myoblasts by 

once-weekly passaging. Trypomastigotes were collected from culture supernatant and 

used for infections. 

2.2.1.2. Cell culture  

HeLa cells were cultivated in DMEM cell culture medium (Corning) supplemented 

with 10% iron-supplemented calf serum (HyClone) and 1% penicillin-streptomycin 

(Gibco) in 5% CO2 at 37 oC. C2C12 cells were maintained in DMEM media 

supplemented with 5% iron-supplemented calf serum (HyClone) and 1% penicillin-

streptomycin (Invitrogen), in 5% CO2 and at 37 oC, as previously described30.  

2.2.1.3. Cell infection and staining 

HeLa cells were infected at a host:parasite ratio of 1:10. Two days post-infection, 

cells were washed with ice-cold PBS and fixed with 0.7% glutaraldehyde for 5 min, 

fixing and killing the parasites. Cells were then rinsed three times with PBS for 4 min. 

Cells were then stained overnight with 1 mg/mL of X-Gal in PBS containing 2 mM 

MgCl2, 4.98 mM potassium ferricyanide and 5.76 mM potassium ferrocyanide,53 pH 

7.3 at 37°C.  

2.2.2 Single-probe SCMS techniques 

The single-probe SCMS setup includes a Single-probe, a digital microscope, a 

digital camera, a computer-controlled XYZ-translation stage system (CONEX-MFACC, 

https://paperpile.com/c/m43uCR/Hur5
https://paperpile.com/c/m43uCR/6cVn
https://paperpile.com/c/m43uCR/2gIn
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Newport Co., Irvine, CA, USA) and a Thermo LTQ Orbitrap XL mass spectrometer 

(Thermo Scientific, Waltham, MA, USA). The fabrication of the Single-probe and the 

SCMS set-up were detailed in details in our previous studies.8,33,36–39,40
 Briefly, the 

Single-probe was fabricated using a laser-pulled (P-2000 Micropipette Laser Puller, 

Sutter Instrument Co., Novato, CA) dual-bore quartz tubing (outer diameter (OD) 50 

μm; inner diameter (ID) 127 μm, Friedrich & Dimmock, Inc., Millville, NJ, USA) 

embedded with a fused silica capillary (OD 105 μm; ID 40 μm, Polymicro Technologies, 

Phoenix, AZ, USA) in one channel and a nano-ESI emitter, which is produced from the 

same fused silica capillary, in another channel. The three parts were sealed using UV 

curing resin (Light Cure Bonding Adhesive, Prime-Dent, Chicago, Il, USA).  

Glass coverslips containing cells were washed three times with fresh DMEM and 

placed on the XYZ-stage system of the Single-probe SCMS set-up for data acquisition. 

The targeted single cells were selected for analysis by precisely moving the stage 

system guided by the microscope. The sampling solvent (50% acetonitrile/50% 

methanol (v/v)) with 0.1% formic acid) was continuously delivered through the fused 

silica capillary to extract cellular contents followed by ionization via the nano-ESI 

emitter and real-time MS analysis. MS experiments were conducted under the 

following parameters: 200 nL/min flow rate; mass resolution, 60,000; +4.5 kV 

ionization voltage; 1 microscan; 100 ms max injection time. MS/MS experiments were 

conducted under the following parameters: 200 nL/min flow rate; mass resolution 

60,000; +4.5 kV ionization voltage; 3 microscan; 500 ms max injection time. Collision 

energies were included in supporting information (Figure S4). 

https://paperpile.com/c/m43uCR/MkdF+LPTJ+90bP+9ZYQ+T1zj+2c85
https://paperpile.com/c/m43uCR/GLuT
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2.2.3. SCMS data analysis     

SCMS data pretreatment was conducted following our established protocols 38,33
. 

MS data were exported with peaks (m/z values and relative intensities) generated by 

Thermo Xcalibur Qual Browser 3.0 (Thermo Scientific, Waltham, MA, USA). The 

exported raw data was subjected to background and noise subtraction in which all peaks 

with relative intensity < 3x103 are removed. Background signals derived from organic 

solvent, cell culture medium and parasite medium were subtracted using an in-house R 

script as described in our prior works35,54
. Normalization of ion intensities to the total 

ion chromatogram (TIC) was subsequently performed. The normalized data was 

uploaded to Geena2 online software 

(http://proteomics.hsanmartino.it/geena2/geena2_ssi_norm.php)55 for peak alignment 

with a mass tolerance of 10 ppm and the aligned m/z values are subjected for 

comparison. Geena2 parameters were as follows: analysis range from 150 to 1500 m/z, 

maximum   number of isotopic replicas: 3, maximum delta between isotopic peaks: 

0.01 Da, maximum delta for aligning replicates: 0.01 Da and maximum delta for 

aligning average spectra: 0.01 Da. After performing peak alignment, missing values 

(50%) were removed using an in-house Python script (SI Supporting File 1). 

Pretreated SCMS data were then imported to Metaboanalyst 5.0 56,,57,58,59,60 to 

perform principal component analysis (PCA), and hierarchical clustering. Random 

Forest analysis40 was used to identify misclassified and correctly classified adjacent 

uninfected cells in comparison to infected cells using an in-house R script (with 500 

https://paperpile.com/c/m43uCR/90bP
https://paperpile.com/c/m43uCR/2c85
https://paperpile.com/c/m43uCR/Mr3V
https://paperpile.com/c/m43uCR/WJsa
https://paperpile.com/c/m43uCR/HN7W
https://paperpile.com/c/m43uCR/7fg0
https://paperpile.com/c/m43uCR/y8nx
https://paperpile.com/c/m43uCR/M7hj
https://paperpile.com/c/m43uCR/CCS6
https://paperpile.com/c/m43uCR/wD2Q
https://paperpile.com/c/m43uCR/GLuT
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trees and 7 predictors) (SI Supporting File 2).  Then, the one-way analysis of variance 

(ANOVA)61 was performed with an adjusted p-value cutoff of 0.05 using False 

Discovery Rate (FDR) correction. The ANOVA test revealed the most significant 

metabolites that were detected in three groups of cells (infected cells, correctly 

classified and mis-classified bystander cells). The hierarchical clustering heatmap62 was 

generated using Ward’s minimum variance clustering method and Euclidean distance 

method, from normalized data with autoscale features standardization. To minimize the 

technical variance 8,63
, two replicates were performed for comparison under similar 

experimental conditions. Boxplots display median, upper and lower quartiles, with 

whiskers extending to largest and lowest datasets and outliers beyond the whiskers 

represented as dots. Annotations were generated as follows from the combined two 

replicates’ ANOVA test results. 1) Via LC-MS/MS to obtain MS/MS spectra (see below 

for parameters). 2) Via SC-MS/MS (see above). .  Annotations were generated from 

the resulting MS/MS spectra by spectral comparison to data deposited in METLIN 

(https://metlin.scripps.edu)64, HMDB (http://www.hmdb.ca)65 and GNPS 

(https://gnps.ucsd.edu/, see Table S3 for parameters)66,67. 

2.2.4. LC-MS/MS analysis 

Metabolites were extracted from uninfected and infected HeLa cells using a two-

step extraction with 50% methanol followed by 3:1 dichloromethane-methanol (all 

Fisher Optima LC-MS grade). Extracts were resuspended in 50% methanol, as in our 

prior work.30 LC analysis was performed on a Thermo Vanquish LC equipped with a 

https://paperpile.com/c/m43uCR/EKyX
https://paperpile.com/c/m43uCR/zoXO
https://paperpile.com/c/m43uCR/9ZYQ
https://paperpile.com/c/m43uCR/MYi2
https://metlin.scripps.edu/
https://paperpile.com/c/m43uCR/TN5V
http://www.hmdb.ca/
https://paperpile.com/c/m43uCR/WNvD
https://gnps.ucsd.edu/ProteoSAFe/static/gnps-splash.jsp
https://paperpile.com/c/m43uCR/YSlK+cJS1
https://paperpile.com/c/m43uCR/6cVn


15 

 

1.7 µm Kinetex C18 50 x 2.1 mm column, 100 Å pore size, protected by a 

SecurityGuard ULTRA C18 Guard Cartridge (Phenomenex).  Injection volume was 5 

µL. Auto-injector was washed with 10% methanol at a rate of 10 µL/s for 2 seconds. 

LC gradient was composed of mobile phase A (water + 0.1% formic acid) and mobile 

phase B (acetonitrile + 0.1% formic acid) at a flow rate of 0.5 mL/min (Table S1). The 

autosampler was maintained at 10 ℃ and the column compartment at 40 ℃.  

MS data were acquired on a Thermo Fisher Q-Exactive Plus hybrid quadrupole 

orbitrap mass spectrometer operating in positive parallel reaction monitoring (PRM 

mode, Table S2). Instrument calibration was performed using Thermo Fisher Calmix. 

All samples underwent a 12.5 minute runtime elution gradient as follows: start at 5% 

solvent B for one minute, gradual increase to 100% solvent B for eight minutes, hold 

at 100% solvent B for two minutes, drop to 5% solvent B for 30 seconds, and hold at 

5% solvent B for one minute. Full PRM parameters were: scan range set to 100-1,500 

m/z, default charge state was 1, resolution was 17,500, AGC target set to 2e5, maximum 

IT was 54 ms, isolation window set to 1 m/z, and normalized collision energy increased 

from 20-60%. MS source parameters were as previously described in 30. 

Raw data files were converted to mzXML format using MSConvert68.   

2.2.5. Data availability  

LC-MS data has been deposited in MassIVE, accession number MSV000087656. 

SCMS data has been deposited in MassIVE accession number MSV000089503.  

https://paperpile.com/c/m43uCR/6cVn
https://paperpile.com/c/m43uCR/HPmF
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2.3 Results and discussion 

In the current study, we focused on metabolomics of single cells infected by T. 

cruzi, due to the crucial role of metabolism in CD.8, 50 The experiments were conducted 

using the Single-probe SCMS technique to analyze HeLa cells, which were used as the 

model system in three different groups: T. cruzi-infected, bystander (i.e., uninfected 

cells that are adjacent to infected cells), and control cells (no parasite exposure). Our 

results revealed striking bystander effects of infection, including metabolic pathways 

commonly perturbed in infected cells and bystander cells. These results help improve 

our understanding of host pathways of CD pathogenesis and may help develop new 

treatments to address late-stage disease that cannot be cured by antiparasitic agents. 

Furthermore, our approach is compatible with biosafety protocols and thus should have 

broad applicability to other intracellular pathogenic agents.  

During chronic T. cruzi infection, only a minority of cells are infected.51, 52 

Although parasite persistence is required for disease progression53, CD symptoms can 

nevertheless develop even with low parasite load that may be spatially disconnected 

from sites of tissue damage.54, 55 SCMS analyses of infected and uninfected cells in the 

same culture plate, in comparison to control wells, can deconvolute direct effects of T. 

cruzi infection from bystander effects of infection. HeLa cells were used as a model 

and infected with beta-galactosidase-expressing T. cruzi.56 Cells were fixed by 

glutaraldehyde to kill the parasites and ensure biosafety. The fixed cells were stained 

by X-gal, enabling us to differentiate parasite-containing cells from bystander cells. The 
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invasion of amastigote stage of parasites can be observed in bright-field microscopic 

images (Figure 2-2a), and the infected cells containing amastigotes can be clearly 

distinguished from the bystander cells. These observations match with previous 

publications regarding this parasite strain.57, 58 SCMS measurements were performed 

not only on these infected and bystander cells, but also on control cells from a separate, 

uninfected culture well.  

PCA (principal component analysis) showed that the fixation and staining 

processes had no significant influence on the overall cellular metabolite profiles 

(Figure 2-2b, S4a). This conclusion was further confirmed (p = 0.49 from permutation 

test) by PLS-DA (partial least squares discriminant analysis) (Figure S4b and S4c). As 

expected, parasite-containing cells have different overall metabolite compositions 

compared with bystander cells. However, strikingly, both cell types differed in terms of 

overall metabolome from control and stained cells (both are uninfected). This finding 

supports bystander effects of T. cruzi infection on the overall cellular metabolome and 

provides a metabolic mechanism to explain the development of Chagas disease lesions 

at sites with low parasite burden.59  
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Figure 2-2 Influence of the optimized fixation and staining processes on the overall 

profiles of cellular metabolites in HeLa cells infected by T. cruzi. (a) HeLa cells were 

infected with beta-galactosidase-expressing T. cruzi, fixed by glutaraldehyde, and 

stained by X-gal. Infected cells (with stained parasites, circled) can be differentiated 

from unstained bystander cells (adjacent uninfected cells) by light microscopy.  (b) 

PCA results. Without parasite infection, cells have comparable profiles of metabolites 

without (control) and with (stained) the fixation and staining processes. Cells exposed 

to parasites (infected and bystander cells) present significantly different metabolite 

profiles than unexposed cells (control and stained).  

PCA results showed that a subset of bystander cells was particularly similar to (i.e., 

overlapped with) infected cells from the same culture plate (Figure 2-2b, Figure 2-3a). 

Indeed, random forest machine learning algorithms mis-classified 16 out of 53 

bystander cells as infected (Table 2-1). In contrast, 62 out of 68 infected cells were 

correctly classified. It is worth noting that a large portion of control cells was 

misclassified as stained cells and vice versa, supporting that fixation and staining 

processes have no significant influence on cell metabolites. We then manually 

regrouped the bystander cells into correctly classified and mis-classified subgroups and 

conducted PCA. We observed a high degree of similarity between the mis-classified 

and infected cells (Figure 2-3b). Similar trends were observed from results from 
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hierarchical clustering of metabolites (Figure S1). To determine metabolites with 

significantly different abundances among the infected and two bystander groups 

(correctly classified and mis-classified infected cells), we performed ANOVA (with 

False Discovery Rate (FDR) correction and adjusted p-value ≤ 0.05) (Table S4). We 

obtained 16 ions from all groups possessing strikingly similar patterns for both mis-

classified bystander cells and infected cells across two independent experimental 

replicates (e.g., lower levels of m/z 267.0620, 322.886, and 359.025 compared to 

correctly-classified bystander cells) (Table S4, Figure S2).  

 

Figure 2-3 Impact of T. cruzi infection on the metabolome of bystander uninfected cells. 

(a) PCA of SCMS data highlighting metabolic overlap between T. cruzi infected cells 

and a subset of bystander cells. (b) PCA analysis of SCMS data as in (a), colored based 

on random forest classifier prediction. Mis-classified uninfected bystander cells have 

similar overall metabolomes to infected cells. 

 

Table 2-1 Random Forest classification. 17 mis-classified bystander cells classified as 

infected cells and 36 correctly classified bystander cells, out of a total of 53 bystander 

cells. 

    Predicted Control Stained Infected Bystander Classification 
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Correct 

error 

Control 48 12 1 0 0.213 

Stained 25 13 0 0 0.658 

Infected 0 1 62 5 0.014 

Bystander 3 1 16 33 0.32 

 

To annotate these ions, we performed MS/MS of both single cells (using the 

Single-probe SCMS method) and cell lysate (using LC-MS/MS). Similar to our 

previous studies30, 60, some species could only be detected in the SCMS experiments, 

likely due to multiple reasons (e.g., differences in sample preparation methods, matrix 

compositions, and stabilities of molecules during sample preparation) (Table S4). As 

expected in untargeted metabolomics61, most metabolite features could not be annotated 

(Table S4). Among all annotatable metabolites, m/z 756.547 was annotated as PC(34:3), 

LPC(34:4), or PC(O-34:4)  (Table S4, Figure 2-4). This lipid significantly differed in 

abundance between cell groups (p = 2.33x10-4 using ANOVA test with False Discovery 

Rate correction (Figure 4a). It is interesting to note that, similar to infected cells, mis-

classified bystander cells also contain high abundances of this species (Figure 4a). 

Other infection-elevated metabolites were also annotated as glycerophosphocholines 

(GPCs), including m/z 768.583, 780.5460, 782.5630, 808.5770 and 810.5940 (Figure 

2-1Table S4, Figure S3). This observation concurs with our prior findings of infection-

elevated GPCs in heart tissue in proportion to disease severity and in the infected 
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esophagus and large intestine, in mice across multiple infection timepoints and parasite 

strains.4, 6, 7, 49 While confidently assigning a parasite vs host origin to these GPCs is 

challenging, very long-chain GPCs and lysoglycerophosphocholines (Lyso-GPCs) are 

elevated in isolated amastigote-stage T. cruzi compared to host cells.62 These findings 

may support further re-development of therapeutics targeting phosphatidylcholine 

metabolism, such as miltefosine, currently in clinical use for the related parasite 

Leishmania, but in this case to target the metabolic consequences of infection on the 

host.63, 64  

 

 

Figure 2-4 Representative glycerophosphocholine (m/z 756.547) differentiating 
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between cell groups. (a) Normalized intensity of PC(34:3) in three different cell types 

(p = 0.000233 using ANOVA test with FDR correction). (b) LC-MS/MS mirror plot 

supporting PC annotation. Green, reference library MS/MS spectrum for 1-Oleoyl-2-

palmitoyl-sn-glycero-3-phosphocholine (PC 34:1). Black, experimental MS/MS 

spectrum for  m/z 756.547. M/z 756.547 is smaller by 4.03 to 1-Oleoyl-2-palmitoyl-

sn-glycero-3-phosphocholine. 

2.4 Conclusions 

In conclusion, we used the Single-probe SCMS technique for metabolomics 

studies of cells with heterogeneous infection by T. cruzi at the single-cell level. This 

represents, to the best of our knowledge, the first implementation of single-cell 

metabolomics in mammalian-infectious disease. We discovered that necessary cell 

fixation (to kill the parasites) and staining (to illustrate T. cruzi infection) have no 

significant influence on the overall cell metabolome (Figure 2-2b, S4). Our results 

demonstrate for the first-time bystander effects of T. cruzi on infection-adjacent 

uninfected cells (Figure 2-2b, Figure 2-3, Figure 2-4). Although our current studies 

cannot fully explain the mechanisms of the bystander effects, it is very likely that the 

uneven infection was due to the heterogeneity of host cells. The bystander cells may 

belong to a subpopulation of host cells containing lower levels of glucose, which is 

needed to support parasites’ replication internally. It has been reported that T. cruzi 

amastigotes transport extracellular glucose to fuel their own metabolism and replicate 

in the host cytosol.65 In addition, nutritional deficiencies in the host cells will lead the 

failure of T. cruzi infection.66 

Our results provide a significant insight into CD pathogenesis, explaining lesion 

development in sites that do not contain parasites.54, 55 This has major implications for 
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CD treatment, indicating that killing parasites alone may not be sufficient. Our results 

may explain the failure of Benznidazole Evaluation for Interrupting Trypanosomiasis 

(BENEFIT) clinical trial67, and pave the way for future work to assess the role of 

metabolic heterogeneity in CD pathogenesis, tissue resilience, parasite dormancy and 

antiparasitic susceptibility. 
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Chapter 3 : Quantifying Cell Heterogeneity and 

Subpopulations Using Single Cell Metabolomics 

3.1 Introduction 

It has been well accepted that nearly all biological systems are heterogenous1 due 

to genetic and phenotypic variances. Even within the isogenic cell populations, cell-to-

cell heterogeneity is prevalent, because of stochastic processes in transcription, 

translation, and metabolism.69 Uncovering cell heterogeneity is critical for studying 

fundamental cell biology and human diseases. For example, tumors contain 

heterogeneous distributions of malignant cells with varied physiological and biological 

properties.70 Such cell-to-cell heterogeneity was reported as a result of intrinsic and 

extrinsic factors,71 and recognized to play a key function in diseases evolution, drug 

resistance, and tumor relapse.72 In particular, cell heterogeneity reflects the 

effectiveness of cancer treatment and management, because an escape of a small 

subpopulation of cells, such as circulating tumor cells and cancer stem cells, from drug 

treatment can cause disease remission.73  

To date, a variety of single cell studies using different approaches (e.g., flow 

cytometry,74 image-based signaling marker colonization,75 single cell genomics,75, 76 

single cell transcriptomics,77, 78 single cell western blotting,79 and single cell 

metabolomics80) have revealed the coexistence of multiple cell subpopulations in the 

same environment. Among various platforms, single cell RNA-seq quantification81, 82 
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has gained most attraction, likely due to the availability of the instruments (e.g., 10X 

Genomics83) and analytical software packages.84-87 Although the transcriptomic 

profiling is informative and powerful, the downstream proteomic or metabolomic 

responses are still unclear. As metabolites can rapidly and accurately reflect cell status 

and functions, single cell metabolomics is a promising approach to uncovering cell 

heterogeneity. Among all analytical techniques, single cell mass spectrometry (SCMS) 

has become the most popular tool for single cell metabolomics studies.14, 23, 88-94  

Heterogeneous cells could be grouped into subpopulations with similar biological 

traits95, 96 (e.g., morphology,97 surface marker expression level,98 and intracellular 

metabolism80). Several SCMS metabolomics studies have been performed to group 

cells into different sub-groups based on individual characteristic metabolites.99,100 

However, to the best of our knowledge, no methodologies have been reported to use the 

overall metabolomic profiles of single cells to quantify the changes of cell 

heterogeneity and the associated cell subpopulations. The absence of relevant work is 

likely due to two major reasons: (1) the lack of the metrics to quantify cell heterogeneity 

using the single cell metabolomics profiling data and (2) suitable data analysis 

approaches that can determine cell subpopulations with minimum artificial bias without 

prior knowledge of specific subpopulations. In this regard, we report a comprehensive 

method combining SCMS experimental method with a novel bioinformatics tool to 

address these challenges. 

Metastatic melanoma cancer cell lines have higher drug resistance than primary 
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melanoma cancer cell lines.101  In this proof-of-concept study, we used two cancer cell 

lines as models: the primary melanoma (i.e., drug-sensitive cell line) WM115 (Figure 

S1A) and metastatic melanoma (i.e., drug-resistant cell line) WM266-4 (Figure S1B). 

Previous studies reported differential expression of genes and global proteins in these 

two melanoma cell lines to unveil various proteins that are associated with the drug-

resistant phenotype.102 The Single-probe SCMS experimental technique,23, 25, 27, 28, 30, 37 

a homebuilt method for real-time in situ data acquisition of live single cells, was 

combined with a novel bioinformatics tool, SinCHet-MS, for quantitative analysis of 

cell subpopulations. Briefly, we cultured cancer cells under normal conditions. Cells 

were attached to glass cover slips during incubation, and then treated by 1 µM 

vemurafenib, an anticancer drug for melanoma therapy, for 48 h, and then analyzed 

using the Single-probe SCMS method (Figure 1). Although batch-to-batch variation is 

commonly recognized in conventional metabolomic studies (e.g., using liquid 

chromatography (LC)-MS),103, 104 it is under-appreciated in most SCMS metabolomic 

analyses. To accurately evaluate the cellular response to microenvironmental stimulus 

(vemurafenib), we examined the batch-to-batch variation, which is potentially 

introduced by minor difference in sample preparation and fluctuations of instrument 

conditions on different days, and thus separating it from biological variance. We 

performed experiments for both the control (untreated) and treated cells within a batch, 

and repeated the experiments on a different day for both cell lines (Table S1). We then 

performed data pre-treatment, including noise removal, background reduction, peak 

alignment, and ion intensity normalization, prior to analyses using SinCHet-MS (Figure 
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2).105  Built on SinCHet,106 a computational toolbox with a graphical user interface 

(GUI) for analyzing  single cell mRNA expression and methylation data, we 

developed SinCHet-MS to analyze SCMS data by devising three crucial features: batch 

correction, a novel d-statistic for determining default cell subpopulation resolution for 

further investigation, and the sGF score (Subpopulation Generalized Fisher Product 

Score) for prioritizing biomarkers defining cell subpopulations.  

 

Figure 3-1 (A) Setup of the Single-probe SCMS experiment. (B) Analyzing a single 

cell guided by high-resolution microscopes. 

3.2 Methods 

3.2.1 Cell culture and sample preparation 

Human melanoma cell lines, WM-115 and WM-266-4 cells (generously provided 

by Dr. Yinsheng Wang at the University of California, Riverside) were classified as the 

primary and metastatic cell lines, respectively, as established from the same melanoma 

patient. Cells were subcultured every three (WM-266-4) to five (WM-115) days in 

Dulbecco’s Modified Eagle Medium (Santa Cruz Biotechnology Inc., Dallas, TX) 

supplemented with 10% fetal bovine serum (FBS, Life Technologies, Grand Island, NY, 

USA) and 1% penicillin-streptomycin (Life Technologies, Grand Island, NY, USA). 
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Cells were maintained in a cell incubator (HeraCell) at 37 °C in a humidified 

environment containing 5% CO2. When cells reached ~ 80% confluence, they were 

rinsed twice using phosphate buffered saline (PBS) solution followed by trypsinization 

in the incubator for detachment. Trypsinization was quenched and the cell suspension 

were then transferred onto a glass cover slip (diameter = 18 mm, VWR International). 

After overnight incubation, cells were attached to the coverslip, and then transferred to 

the XYZ-translational stage system (MFA-CC, Newport Co., Irvine, CA, USA) for 

SCMS experiments. To conduct Vemurafenib treatment, 500 µM Vemurafenib stock 

solution in dimethyl sulfoxide (DMSO) (>99.9%, MilliporeSigma Co. St. Louis, MO, 

USA) was prepared and diluted in the complete culture medium at a final concentration 

of 1 µM. Cells after overnight culture were then treated with 1 µM Vemurafenib 

solution for a duration of 48 h and maintained in the incubator, followed by washing 

with fresh culture medium (without FBS) twice to remove residual drug molecules prior 

to SCMS analysis. 

3.2.2 SCMS experiments 

The Single-probe SCMS experiments were performed following our previously 

published protocols23, and only a brief description is provided here. A Single-probe was 

fabricated by embedding a solvent-providing fused silica capillary (O.D. 105m; I.D. 

40 m, Polymicro Technologies, Phoenix, AZ) , a nano-ESI emitter (produced from the 

same fused silica capillary using a butane micro torch) into a dual-bore quartz needle 

(produced from qual-bore quartz tubing (O.D. 500 m; I.D. 127 m, Friedrich & 
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Dimmock, Millville, NJ) using a laser micropipette puller (Sutter P-2000, Sutter 

Instrument, Novato, CA)). The Single-probe device was coupled to a LTQ Orbitrap XL 

mass spectrometer (Thermofisher Scientific, San Jose, CA) (Figure 1A). Cells were 

cultured, attached onto glass coverslip, treated by anticancer drug, and then rinsed by 

fresh culture medium (no fetal bovine serum). The glass coverslip containing cells was 

placed onto the XYZ-translational stage (step size = 0.1 µm). Guided by a digital 

microscope (Shenzhen D&F Co., China), a target cell was selected and penetrated by 

gradually moving the stage (Figure 1B). Cellular metabolites were extracted by the 

liquid junction (acetonitrile with 0.1% formic acid) formed at the tip of the Single-probe, 

and immediately ionized and analyzed. WM-115 and WM-266-4 cells prepared on the 

same day were randomly selected and analyzed with the MS analysis parameters listed 

as follows: ionization voltage +4.5 kV, mass range 150–2000, mass resolution 60,000 

at m/z 400, 1 microscan, 100 ms max injection time, and automatic gain control (AGC) 

on. 

3.2.3 SCMS Data Pre-treatment 

The obtained SCMS raw datasets of all single cells were accessed using Xcalibur 

5.0 (Thermofisher Scientific). Detection of single cells was confirmed from the mass 

spectra (including detected ions and their intensities) of common cellular species (e.g., 

PC (34:1); m/z 782.57). Background ions from the sampling solvent and culture 

medium were subtracted, and the instrument noise (i.e., ions with intensities < 103) was 

removed using an in-house developed software.105 We normalized ion intensities of 

each cellular metabolite to the total ion current (TIC) and submitted the datasets to 
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Geena2107 for peak alignment and isotope grouping. The pre-treated data were 

submitted to MetaboAnalyst 5.0108 to select commonly detected species with 50% 

missing value (i.e., metabolites that can be detected in > 50% of all measured single 

cells). All datasets were subjected to log2 transformation prior to the downstream 

analysis. 

 

3.2.4 SinCHet-MS 

Built on SinCHet,106 a bioinformatics toolbox for performing heterogeneity 

analysis of single cell transcriptomes, we introduced a new tool, SinCHet-MS, for 

analyzing SCMS data (Figure 2). Details on how to run SinChet-MS were described in 

the manual (Supporting Information).   There are five panels: (1) Input/Output, (2) 

Data Processing, (3) Heterogeneity Analyses, (4) Subpopulation, and (5) Biomarkers.  

In “Heterogeneity Analyses”, hierarchical cluster analyses were performed to group 

cells into subpopulations based on the similarities of metabolites’ profiles.  

Clustergram and heatmaps are available for visual examination.  The following three 

novel features of SinCHet-MS: 

(1) Batch effect evaluation and removal. In the panel of “Data Processing”, we 

include a function to evaluate and remove potential batch effects. First, principal 

component analysis (PCA), an unsupervised dimension reduction method, in “Data 

Processing” is used to quickly examine potential batch effect and then determine if 

undesirable batch or technical effect is observed. For instance, if data from different 

batches are clearly separated in PCA plot, especially when the separation of different 
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batches of cells is observed, say, along the first PC, which means the difference due to 

batch difference explains the largest variability of the data, while the experimental 

effect of research interest (e.g., treatment effect) explains less variability of the dataset. 

In this case, the user could remove this observed undesirable batch effect by selecting 

Yes from the drop-down option (YES/NO) for debatching. COMBAT,109 a commonly 

used debatching method (based on empirical Bayes frameworks), often used in 

transcriptomic studies, was implemented to remove potential batch effects here.   

(2) The d statistic. In the ‘Subpopulation’ panel, we introduce a d statistic to 

determine the default number of clusters for further investigation of subpopulations. 

The d statistic was modified from the D statistic defined previously46.  Briefly, the D 

statistic, quantifies the overall change of heterogeneity before and after treatment, is 

defined as the areas under the Shannon Profiles (SPs) between two conditions.  The d 

statistic is defined as the difference of the Shannon index (H) between two conditions 

of research interest at the minimum number of clusters with significance estimated 

using permutation (Equations S1 and S2 in the Supporting Information). It is worth 

noting that these two statistic methods are different: the D statistic can be perceived as 

the heterogeneity difference between two conditions considering all possible clustering 

resolutions, whereas our novel d statistic is defined as the difference of the Shannon 

index (H) between two conditions at a given clustering resolution of research interest. 

The default clustering resolution of SinCHet-MS is determined using the minimum 

number of clusters with the d statistic differs significantly between two conditions.  

SinCHet-MS has the flexibility for users to explore alternative clustering resolutions. 
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The statistical significance is estimated from the permutation test, similar to that 

reported in our previous publication106 and described in the Supplemental Equation S2 

(Supporting Information).  

(3) Subpopulation Generalized Fisher Product Score (sGF). As implemented in 

‘BioMarkers’ panel, this function can be used to prioritize biomarkers. sGF was devised 

to summarize the overall difference among cell subpopulations for each metabolite, 

with the consideration of p-values from multiple comparison tests and fold change of 

pairwise comparison between the subpopulation of interest and any other subpopulation 

(Supplemental equations S3 and S4 in the Supporting Information). Those metabolites 

with Benjamini-Hochberg false discover rate (FDR) adjusted p-values < 0.05 were 

regarded as the subpopulational biomarkers.  

 

 

Figure 3-2 The main Graphic User Interface (GUI) of the SinCHet-MS software 

package. This GUI integrates functions of batch correction, determination and 

visualization of cell subpopulations, and prioritization of subpopulation diagnostic 

features. 
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3.3 Results and Discussion 

In total, we analyzed 75 and 128 cells for WM115 and WM266-4, respectively. The 

representative mass spectra of single cells (before and after vemurafenib treatment) are 

shown in Figure S2. Rich metabolomic information can be observed in a mass range of 

m/z 650–950, which encompassed a variety of lipids, along with background ions (e.g., 

m/z = 493.25). Numerous species were detected in each cell. To extract the essential 

information from all mass spectra, experimental data need to be carefully treated and 

analyzed.  

3.3.1. Batch correction for SCMS datasets 

Batch effect may be present in SCMS experiments. Debatching can enhance 

statistical power by enabling concurrent data analysis across multiple batches obtained 

under the same experimental condition. We used PCA to visualize cellular metabolomic 

profiles (for all cells) to evaluate potential batch effect: a significantly different PCA 

grouping between two batches (i.e., from the same cell line with the same treatment 

conditions) indicates an evident batch effect. To remove the observed technical batch 

effect, we performed batch correction, which is integrated in SinCHet-MS based on 

COMBAT.109   

Our experimental results indicate that for the sensitive cell line WM115, no 

significant batch effect was observed (data not shown). For the resistant cell line 

WM266-4, there is observed batch effect even though the biological differences are 

larger than the batch effect (Figure 3A). Figure 3B indicated that the debatch functions 
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of SinChet-MS can remove the batch effect for further analysis. However, group 

separation due to treatment effect was not observed in the first four PC dimensions 

before and after debatching (Figures 3A vs 3B; Figure S3A vs S3B). Similar trends can 

also be observed using box plot (Fig. S4). Such minimum change in cellular profiles 

agrees with earlier publications reporting higher drug resistance of metastatic 

melanoma, which corresponds with the hardness of medical therapies for melanoma 

cancer.24 As a proof-of-concept study, we demonstrated batch correction of SCMS data, 

which were acquired from the same passage of cells but with different time of 

experiments. The batch effect originated from different cell passages needs to be 

investigated in future studies. 

  

Figure 3-3 Batch correction. PCA plots of WM266-4 cell lines (A) before and (B) after 

COMBAT in the PC1 and PC2 dimensions. (Symbols represent control (○) and 

treatment (∆) groups, and colors represent batch 1 (red) and batch 2 (blue) experiments.) 

https://paperpile.com/c/A9a4Kl/WuHL
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3.3.2. Quantitative analysis of cell subpopulations and heterogeneity 

differences  

Cellular subpopulations can be reflected from variances of metabolite expression 

levels and their associated metabolic noise distributions. Previous studies have 

investigated cell subpopulations by fitting the relative abundances of certain 

metabolites using probability functions such as normal, lognormal, and gamma 

distributions.93, 110 These pioneering studies have demonstrated the possibilities of using 

the combined SCMS experiments and statistical data analyses to reveal subpopulations 

of cells. However, only a limited number of metabolites were selected for analyses, 

whereas the majority of mass spectra information was not efficiently used. Our previous 

studies, in which machine learning and SCMS experiments were combined to predict 

phenotypes of cells, indicate that analyses involving all detected species produced 

higher reliability than those using selected metabolic biomarkers, which may result in 

information loss.25, 30  

For the first time, we performed systematic and quantitative analysis of the changes 

of subpopulations. In the current study, all detected ions (after pretreatment) were 

utilized for cell heterogeneity analyses. From SinChet-MS, our results showed that 

metabolomic heterogeneity was significantly changed by drug treatment in both cell 

lines (D = 83.2, p < 0.001 for WM115 (Figure S5A); D = 54.2, p < 0.001 for WM266-

4 (Figure S5B)). When there is no different D (with statistical significance between 

conditions (i.e., p ≥ 0.05)), the default number of cell clusters for user investigation is 

determined using the minimum value of the change points derived from the multivariate 
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adaptive regression splines (MARS) model106. In this study, the number of 

subpopulations is determined using the d statistics with heterogeneity significantly 

different between the control and treatment groups (d = 0.13, p < 0.001 for WM115 

(Figure 5A); d = 0.02, p < 0.001 for WM266-4 (Figure 5B)). The composition of cell 

subpopulation before and after the treatment were examined and visualized in 

hierarchical heatmap and pie chart (Figure 4). For the sensitive cell line WM115, there 

was only one population in the control group; however, a new subpopulation emerged 

after treatment (Figure 4A and 4B). For WM266-4 cells, the number of subpopulation 

(two) was unchanged, but their relative abundances were altered: ~7:3 and ~3:7 in the 

control and treatment groups, respectively (Figure 4C and 4D). The subpopulations of 

these two cell lines can also be intuitively visualized using tSNE (t-distributed 

stochastic neighbor embedding) without detailed quantitative information (Figure S6). 

These findings agreed with published studies reporting an increase in cell heterogeneity 

upon drug treatment for cancer cell line24. In addition, as shown in the representative 

single cell MS spectra corresponding to each subpopulation (Figure S7), the 

metabolomic features (m/z 650‒950) can be visually differentiated. 

 

https://paperpile.com/c/A9a4Kl/WuHL
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Figure 3-4 Visualization of subpopulation compositions of control and drug treated 

single cells before and after drug treatment for (A & B) WM115 and (C & D) WM266-

4 cell lines using hierarchical heat map (left column) and pie chart (right column). The 

determination of cell subpopulation is based on the minimum number of clusters where 

d statistic indicates significantly different heterogeneity found between control and 

treatment.  

3.3.3. Identification of Subpopulational Biomarkers 

As metabolites reflect cell metabolism, cells in different subgroups likely possess 

different metabolomic features.  For the first time, we identified and prioritized 

biomarkers for different subpopulations. SinCHet-MS provides three types of GF 

scores (Generalized Fisher scores): 1) subpopulation GF score (sGF), 2) grouped GF 

score (gGF), and 3) the widely used GF score as previously described.106 In the current 

study, sGF was utilized to prioritize subpopulation diagnostic features. The top three 

species with the highest sGF, representing significant contributions to the subpopulation 

discrimination, were visualized among all subpopulations in both cell lines (Figure 5). 
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The diagnostic features with high loadings for the first two PCs were also displayed in 

the loading plot for each cell line (Figure S8). It is worth noting that, unlike 

metabolomic biomarkers discovered in conventional LC-MS111, 112 and other single cell 

metabolomic studies,90, 113, 114 the subpopulation biomarkers reported here were based 

on differences of metabolites’ abundances among cell subpopulations, rather than 

different treatment conditions or types of cells. Based on multiple comparison among 

subpopulations (FDR < 0.05), we prioritized 95 and 67 subpopulational diagnostic 

features from WM115 and WM266-4 cells, respectively (Table S2–S3). Further, we 

conducted MS/MS to identify these diagnostic features using single cells and cell 

lysates (as detailed in the Supporting Information). As a result, a majority of identified 

subpopulation biomarkers are cellular lipids (e.g., phosphatidylcholine, 

phosphatidylethanolamine, diacylglycerol, triacylglycerol) that are related to cellular 

signal transduction,115 and their compositions are sensitive to cells’ ambient 

microenvironment.116 Through the current proof-of-concept studies, these identified 

subpopulational biomarkers are likely associated with the emergence, expansion, or 

reduction of certain cell subpopulations due to change of  microenvironment (i.e., drug 

treatment). However, the correlation between cell subpopulations and drug mechanisms 

are still to be understood.  

 

3.3.4. Evaluation of Technical and Biological Variation of SCMS 

Datasets 
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We considered the influence of SCMS technical variation on our analyses. Our 

previous studies indicated that the technical variation of the Single-probe SCMS 

method is ~20%, which is determined from the relative standard deviation (RSD) of the 

ion intensities of standard compound solutions measured using different Single-probe 

devices.30 The combined biological and technical variance (RSD = 95%~110%) of cells 

induced by drug treatment was estimated from the RSD of intensities of the top-121 

(WM115) and top-103 (WM266-4) ions due to drug treatment. Similarly, the combined 

biological and technical variance between different subpopulations (RSD = 75~98%) 

was also estimated from those 95 (WM115) and 67 (WM266- 4) metabolite biomarkers 

of subpopulations. Our results indicate that the technical variance is significantly less 

than the combined biological and technical variance in all cases, indicating the 

reliability of discovered biomarkers using our method. 

3.3.5. Limitations of SCMS Datasets 

One limitation for this proof-of-concept study is that the sample size is small for 

the analysis, primarily due to the limited throughput of the Single-probe SCMS 

technique. We analyzed a total of 75 WM115 cells (i.e., 31 and 44 cells from batch 1 

and 2, respectively) 128 WM266-4 cells (i.e., 62 and 66 cells from batch 1 and 2, 

respectively). To evaluate if our biological findings shown above are reproducible, we 

performed the combined analysis (by pooling the data from both batches) and compared 

the results with those per-batch analyses, performed using the data from each batch 

separately. The observed agreement (Figure S9 and S10) indicated that findings from 
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per-batch analysis are similar to those from the combined analyses. For sensitive cell 

line WM115, two subpopulations were identified in batch 1 and batch 2, respectively. 

Those two subpopulations represent the control and treated groups of cells separately 

(Figure S9A and S9B), which are the same as those two subpopulations identified in 

the combined analyses (Figure 4A).  In the combined analysis, only one cell from the 

treatment group was clustered differently from the rest of the cells in the treatment 

group (Figure 4A).  In addition, there are statistically significant correlations of sGF 

score, which were used to prioritize the subpopulation diagnostic features, between 

each batch and the combined analysis (Figure S9C). For the resistant cell line WM266-

4, even though the proportions of two subpopulations in batch 1 and batch 2 are 

different (Figure S10A and S10B), their proportions changed by treatment are similar 

to findings in the combined analysis (Figure 4C and 4D). Furthermore, there are 

statistically significant correlations of sGF score of subpopulation biomarkers between 

analyses by each batch and results from the combined analysis (Figure S10C). In 

summary, per-batch analysis generated similar conclusions drawn from the combined 

analyses.  Although the sample size is small, but the observations made between 

batches were similar.  
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Figure 3-5 Relative abundances of top-three subpopulation diagnostic features (with 

top-three highest sGF scores) for (A) WM115 and (B) WM266-4 cell lines. Annotated 

species were identified through MS/MS analyses.  

3.4 Conclusions 

In conclusion, for the first time from a metabolomics perspective, we reported a 

combined experimental and bioinformatic method to reveal changes of cell 

heterogeneity and quantify subpopulation compositions. Cellular metabolomic profiles 

of drug-sensitive and drug-resistant cancer cells were measured using the Single-probe 

SCMS techniques, and experimental data were subjected to batch correction prior to 

downstream analysis. Using comprehensive statistical analyses, we revealed that the 

subpopulations were evidently changed, and a new subpopulation emerged in drug-

sensitive primary melanoma cancer cells (WM115) treated with vemurafenib. The 
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emergence of new subpopulations was not clearly observed in the drug-resistant cell 

line (WM266-4); however, it was evident that proportional change between 

subpopulations occurred. Although the exact correlation between the determined cell 

subpopulations and specific cellular biophysical properties of each subpopulation is 

currently unclear, our technique provides a new label-free method, which is different 

from traditional targeted approaches (isotope tracing,117 fluorescent labeling,118 etc.), to 

study subpopulations. In addition, we integrated multiple functions for SCMS 

metabolomic studies, including the batch correction, visualization of cellular 

metabolomic profiles, comparison of cell heterogeneity, determination of 

subpopulations, and prioritization of subpopulational biomarkers, in a package with a 

user-friendly GUI (SinCHet-MS, freely available for non-profit academic use at 

http://lab.moffitt.org/chen/software/). SinCHet-MS could be applied to analyze single 

cell metabolomic datasets obtained from different instrument platforms. Profound 

understanding of cellular metabolism can be gained not only from the cell heterogeneity 

perspective, but also at the subpopulational resolution. 
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Chapter 4 : Using Single Cell Mass Spectrometry to 

Evaluate CRISPR-Cas9 Gene Editing Results 

4.1 Introduction 

Cas9 protein120, which belongs to the Clustered Regularly Interspaced Short 

Palindromic Repeat (CRISPR)-CRISPR-associated (Cas) system, is a revolutionary 

and powerful tool in the field of molecular biology and genomic engineering.121, 122 

CRISPR-Cas9 system comprises a Cas endonuclease (Cas9) and a guide RNA.123 A 

Cas9 enzyme, which acts as a molecular scissor, cuts the DNA at a specific site targeted 

by a single guide RNA (sgRNA) molecule.124 Once Cas9 introduces a double-strand 

DNA (dsDNA) break in the host cell’s genome, it can be repaired by the cell’s natural 

DNA damage repair machinery.124, 125 CRISPR-Cas9 has been widely used to alter the 

genome of mammalian cells which allow gene editing by knocking-in or knocking-out 

of a host genome rapidly and efficiently.126 One of CRISPR-Cas9 gene knockout 

techniques is to deliver plasmids into the cells via transfection to express the Cas9 

enzyme and the sgRNA.127 As an established gene editing technique, CRISPR-Cas9 can 

add and remove nucleotides, thus altering genomic sequences.128 This technology offer 

several advantages in gene editing, including its precision in enabling highly targeted 

modifications in the genome,129 its versatility across a wide range of cell types and 

organisms (e.g., in vitro cell models, in vivo animal models, human cells, cancer cells, 

crop plant, fungi),129, 130 and its application in developing genetically modified crops 

that are more resistant to diseases, pests or have enhanced nutritional value in 
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biotechnology and agriculture research.131, 132 Despite these advantages, the CRISPR-

Cas9 system also presents several drawbacks. These include variance in editing 

efficiency133 and off-target effect,134 where the Cas9 nuclease binds and cleaves DNA 

at off-target sites in the genome.135 As a result, CRISPR-Cas9 knockout often suffers 

from low editing efficiencies and creates heterogenous populations of cells.136 Bulk 

analysis methods are not able to investigate heterogeneous population resulting from 

off-target effects, establishing new analytical methods is essential to evaluate the gene 

editing efficiency, and measure off-target effects in single cells.137, 138  

Single cell technologies (e.g., single cell genomics139 and transcriptomics140) are 

capable of profiling individual cells and uncovering rare and hidden subpopulations of 

cells.9 Conventional bulk analysis ignores the unique behavior resulting from cell-to-

cell variations, specifically cellular metabolism.1, 141 Due to the rapid turnover rate of 

cell metabolites, which are final products of cell metabolism, metabolomics studies of 

live single cells can reveal status and molecular features of rare cells that cannot be 

studied using traditional bulk analysis. Mass spectrometry (MS) is a powerful analytical 

technique to study single cell metabolomics. Various methods for single-cell mass 

spectrometry have been developed, employing different sampling and ionization 

techniques. These techniques fall into two major categories: vacuum-based and 

ambient-based methods. Vacuum-based techniques, such as matrix-assisted laser 

adsorption/ionization-mass spectrometry (MALDI-MS)142 and secondary ion mass 

spectrometry (SIMS),143 require samples to be analyzed in vacuum conditions. On the 

other hand, ambient-based techniques, including live single-cell mass spectrometry,19 
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probe electrospray ionization MS (probe ESI-MS),144 laser ablation electrospray 

ionization MS (LAESI MS),21 nanospray desorption electrospray ionization MS (nano-

DESI MS).22 We have developed multiple ambient-based MS techniques, in which we 

fabricated our own sampling and ionization devices, such as the Single-probe,23 

micropipette capillary,145 and T-probe,146 to couple with mass spectrometry for live 

single cells in an ambient environment (i.e., room temperature and atmospheric 

pressure). The Single-probe SCMS technique has been routinely used in our studies,23,25, 

27-30 and this novel method can be potentially utilized to investigate the cell-to-cell 

variation in cell metabolism resulting from altered genes.  

The Single-probe is a microscale device that can be coupled to a mass spectrometer 

for sampling and ionization in single-cell metabolomics studies. This method has been 

applied to investigate cell heterogeneity in parasite infection in Chagas disease,68 study 

influence of drug treatment on cell metabolism,119 quantify anticancer drugs in 

individual cells,15, 33 compare metabolites in cancer stem cells and non-stem cancer 

cells,37 and assess the influence of the environment on algal cell metabolites.27 

Additionally, the Single-probe device has been used in previous mass spectrometry 

imaging studies to determine the spatial distribution of molecules on tissue slices42 and 

analyze secreted metabolites from multi-cellular spheroids.43, 44  

Our long-term goal is to develop a novel approach of integrating CRISPR-Cas9 

gene editing with Single-probe SCMS metabolomics to rapidly evaluate the gene 

editing results. The central hypothesis is that modifying a functional gene can induce 

alteration in cell functions and metabolism. Specifically, fatty acid synthase (FASN) 
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regulates fatty acid synthesis, thereby implying the fatty acids and lipids profiles in 

FASN-knockout cells will differ from those in control cells. The research plan is novel 

as it marked the integration of Single-probe SCMS metabolomics and CRISPR-Cas9 

gene editing techniques. This research approach presents a novel strategy to investigate 

gene editing efficiency and establish a direct correlation between cell metabolomics, 

lipidomics and genes at the single-cell level. The innovation lies in using SCMS 

metabolomics as a method to assess successful target gene editing in individual cells. 

Moreover, this novel approach expedites the determination of gene editing efficiency 

without conducting sequencing and allow for the investigation of off-target effects 

within the CRISPR-Cas9 system.  

In this study, fatty acid synthase (FASN) is selected as a target gene for knockout 

in HEK293T, a human embryonic kidney cell model. Because FASN-knockout inhibits 

the de novo synthesis of fatty acids and mediates the lipid metabolism, the changes in 

fatty acids and lipids are expected to be observed in successfully gene edited cells. 

FASN overexpression is associated with nonalcoholic fatty liver disease (NAFLD), 

nonalcoholic steatohepatitis (NASH), and many types of cancers.147 In particular, FASN 

knockouts can decrease metastatic potential in multiple cancers such as breast,148 

prostate149, and colorectal150 cancers. FASN-knockout cells are generated through the 

use of CRISPR-Cas9 Knock-out (KO) Plasmids (Santa Cruz Biotechnology, Dallas, 

TX), containing cas9 and sgRNA genes. The sgRNAs are typically about 100 

nucleotides (nt) long.151 Each sgRNA contains its unique 20 nt guide region that directs 

the protein to cut a specific site within the targeted DNA (Figure 1). In the cas9 gene 
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knockout process, the guide RNA sequence present in sgRNA that is bound to cas9 to 

guides cas9 to the FASN locus in the genome. Targeting of the right DNA activates cas9 

to induce a site-specific double-strand break (DSB) in FASN DNA of the target cells. 

This precise DSB formation disrupts production of the FASN protein in edited cells, 

leading to its loss of function. As a result, FASN-knockout cells are generated.  

 
Figure 4-1 CRISPR-Cas9 Knockout (KO) plasmid (#sc-400440-KO-2) (Santa Cruz 

Biotechnology, Dallas, TX) comprises three distinct plasmids designed to improve the 

identification and cleavage of FASN gene to maximize FASN-knockout efficiency. Each 

plasmid contains its unique 20nt guide region, which cuts at a different site within the 

targeted DNA (FASN). 
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4.2 Methods 

4.2.1 Sample preparation 

4.2.1.1. Cell culture 

Human embryonic kidney cells, HEK293T cells, were purchased from ATCC 

(Manassas, Virginia). HEK293T cells were sub-cultured in T-75 flasks every three days 

in Dulbecco’s Modified Eagle Medium (DMEM) cell culture medium (Gibco) 

supplemented with 10% fetal bovine serum (FBS, Life Technologies, Grand Island, NY, 

USA) and 1% penicillin-streptomycin (PS, Life Technologies, Grand Island, NY, USA) 

in 5% CO2 incubator at 37 oC (HeraCell, Heraeus, Germany).  

 

4.2.1.2. Plasmid transformation and isolation 

Chemically competent E. coli DH5α cells (Invitrogen, Waltham, MA) were used 

for the plasmid transformation. The plasmid containing both cas9 and single-guide 

RNA (sgRNA) expression cassettes was added to the competent cells and incubated for 

30 mins on the ice. This was followed by heat shock for 45 seconds at 42 °C in the 

water bath and placing them back to the ice for 2 mins (PMID: 2265755; 18997900)152. 

Heat shock is used to temporarily form pores in the cell membrane, allowing transfer 

of exogenous DNA into the cell. After the heat shock, the transformed cells were 

incubated in LB media (or SOC media) for 1 hour at 37 °C for recovery. The 

transformed cells were then pelleted and resuspended in the same recovery media and 

plated 50 uL on LB agar plate (with ampicillin, 100 ug/ml) followed by 

overnight incubation at 37 °C.  
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Transformants grown on the plates were confirmed after extracting the plasmids from 

single colonies and sequencing the plasmid through nanopore sequencing 

(Plasmidsaurus, Eugene, OR).153 Oxford nanopore sequencing were carried out for 

different isolated plasmid constructs and successfully obtained the distinct sequences 

of three distinct sgRNA plasmids (sgRNA #1: GATCGGTGGCGTGCACCCGC; 

sgRNA #2: TGGTGATTGCCGGCATGTCC; sgRNA #3: 

GGATGGTGGCGTACACCCGC), which were confirmed with the sequences of 

FASN CRISPR/Cas9 KO Plasmid (#sc-400440-KO-2) provided by the vendor  (Santa 

Cruz Biotechnology, Dallas, TX).  

 

4.2.1.3. Lipofectamine Transfection 

Three different isolated plasmids (sgRNA #1, #2, and #3) were prepared to 

transiently transfect HEK293T cells using Lipofectamine 2000.154 HEK293T cells (0.3 

x 106 cells) were plated in a 6-well plate and cells were transfected at 70 – 80% 

confluency. Reduced serum medium (Opti-MEM, Gibco) was substituted with 

complete cultured medium prior to transfection. A ratio of 1:20 Lipofectamine 2000: 

opti-MEM medium (v/v) was mixed and incubated for 30 minutes to allow complex 

formation. After that, plasmid DNA was added to the Lipofectamine-containing mixture 

at a ratio of 1 µg plasmid DNA: 5 µL Lipofectamine and incubated for 30 minutes to 

allow the formation of DNA-Lipofectamine complex. The DNA-Lipofectamine 

complex was then added to the cells and incubated. After 24 hours, complete cultured 

medium (with 10% FBS and 1% Penicillin-Streptomycin) was replaced to supplement 

nutrients to the transfected cells. Over the remaining 48 hours, the cells express the 
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sgRNA plasmids which can be observed as fluorescent cells using Green Fluorescent 

Protein as a marker. At 72 hours, the cells’ microscopic images were captured to 

monitor the successfully transfected cells. (Figure 4). Then, cells were washed with 

PBS, quenched with trypsin, resuspended in new complete cultured medium prior to 

sorting.  

 

4.2.1.4. GFP-positive cells sorting 

Transfection efficiency was observed at 72 hours post transfection. To isolate 

successfully transfected (GFP-positive) cells for both SCMS and Western blot 

experiments, fluorescence-activated cell sorting (FACS, BD FACSAria III Cell Sorter, 

BD Biosciences, San Jose, CA, USA) was performed under sterile conditions to obtain 

the GFP-positive cells. Regular HEK293T cells (no GFP-expression) were used as 

negative control to gate GFP-positive cells.  
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4.2.2 Single-probe SCMS 

 

Figure 4-2  (a) Diagram of Single-probe SCMS experiment set-up. (b) Real-life image 

of the Single-probe, which were made of three major components, including nano-ESI 

emitter, solvent-providing capillary, and dual-bore quartz needle.  

 

4.2.2.1. Single-probe fabrication 

The single-probe comprises three major components, including a nano-ESI emitter, 

a solvent proving capillary, and a dual-bore quartz needle. The Single-probe SCMS 

setup consists of a Single-probe, a digital microscope, a digital camera, a computer-

controlled XYZ-translation stage system (CONEX-MFACC, Newport Co., Irvine, CA, 

USA), and a Thermo LTQ Orbitrap XL mass spectrometer (Thermo Scientific, Waltham, 

MA, USA). Details about the fabrication of the Single-probe and the SCMS setup can 

be found in our previous studies.23, 68, 155 In summary, the Single-probe was created 

using laser-pulled dual-bore quartz tubing (O.D. 500 μm; I.D. 127 μm, Friedrich & 

Dimmock, Inc., Millville, NJ, USA) embedded with a fused silica capillary (O.D. 105 

μm; I.D. 40 μm, Polymicro Technologies, Phoenix, AZ, USA) in one channel and a 
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nano-ESI emitter, made from the same fused silica capillary, in another channel. These 

components were sealed using UV curing resin (Light Cure Bonding Adhesive, Prime-

Dent, Chicago, Il, USA). 

 

4.2.2.2. SCMS analysis of FASN knockout cells and controls 

During the experiment, glass coverslips containing cells were washed with fresh 

DMEM and placed on the XYZ-stage system of the Single-probe SCMS setup for data 

collection. The single cells were chosen for analysis by precisely moving the stage 

system under the guidance of the microscope. Four groups of cells (HEK293T controls, 

GFP-positive (sgRNA#1), GFP-positive (sgRNA#2), and GFP-positive (sgRNA #3) 

cells) were prepared for SCMS experiments. GFP-positive cells were sorted using 

Fluorescent activated cell sorter (FACS) flow cytometry and recovered for 12-24 hours 

prior to SCMS analysis. Each individual cell was carefully analyzed using the Single 

probe with an optimized tip size of ~9 µm. The sampling solvent (acetonitrile with 0.1% 

formic acid) was continuously delivered through the fused silica solvent-providing 

capillary to extract small molecules. The extracted cellular contents were then ionized 

via the nano-ESI emitter and analyzed in real-time SCMS analysis. The MS 

experiments were conducted in both positive ion mode (ESI+) and negative ion mode 

(ESI-) with an m/z range of 150-2000, and 50-900, respectively. Other MS parameters 

were described with a flow rate of 200 nL/min; a mass resolution of 60,000; a 4.5 kV 

ionization voltage; 1 microscan; and a maximum injection time of 100 ms. MS/MS 

experiments followed these parameters: CID, HCD mode; 200 nL/min flow rate; 

60,000 mass resolution; 4.5 kV ionization voltage; 3 microscans; and 500ms maximum 
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injection time. Normalized collision energies ranged from 15-30 NCE, and 30-45 NCE 

for CID, and HCD mode, respectively.   

 

4.2.2.3. SCMS data analysis 

Our pretreatment of SCMS data adhered to established protocols.23 Initially, MS 

data peaks (m/z values and relative intensities) were exported using Thermo Xcalibur 

Qual Browser 3.0 (Thermo Scientific, Waltham, MA, USA). Noise subtraction involved 

eliminating peaks with relative intensity below 3x103 in positive ion mode, and below 

3x102 in negative ion mode. Background signals from organic solvent and cell culture 

medium were removed using a customized R script, as detailed in previous studies.105 

Ion intensities were normalized to total ion current (TIC) and underwent peak alignment 

(with a 10 ppm mass tolerance) using Geena2 online tool 

(http://proteomics.hsanmartino.it/geena2/geena2_ssi_norm.php)107 with specified 

parameters. Geena2 parameters were as follows: analysis range from 150 to 2000 m/z, 

maximum number of isotopic replicas: 3, maximum delta between isotopic peaks: 0.01 

Da, maximum delta for aligning replicates: 0.01 Da and maximum delta for aligning 

average spectra: 0.01 Da. After performing peak alignment, missing values (50%) were 

removed using an in-house Python script (SI Supporting File). 

Subsequently, the pretreated data underwent statistical analysis, including principal 

component analysis (PCA), ANOVA, student t-test, and hierarchical clustering, 

conducted using Metaboanalyst 5.0.156 Significantly different ion abundances among 

cell groups were determined using one-way analysis of variance (ANOVA)157 (for >2 

cell groups) or student t-test119, 158 (for 2 cell groups) with an adjusted p-value of 0.05 

http://proteomics.hsanmartino.it/geena2/geena2_ssi_norm.php
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using False Discovery Rate (FDR) correction. Hierarchical clustering heatmaps119 were 

generated using Ward's minimum variance clustering method and Euclidean distance. 

Hierarchical clustering heatmaps119 were generated using Ward's minimum variance 

clustering method and Euclidean distance. Technical variance30, 158 was minimized by 

conducting two replicates under similar experimental conditions. Boxplots depict the 

median along with the upper and lower quartiles, and their whiskers extend to the 

highest and lowest quartiles. The resulting SCMS/MS and LC-MS/MS data were 

annotated using databases such as METLIN, HMDB, and GNPS. 

 

4.2.3 Western Blotting analysis 

HEK293T cells were collected and centrifuged to form a cell pellet before 

preparing the cell lysate. The cell pellet was lysed in 1x RIPA lysis buffer (25 mM Tris-

HCl, 150 mM NaCl, 1% NP40, 1% sodium deoxycholate, 0.1% SDS), containing 1 

mM phenylmethanesulfonyl fluoride (PMSF) protease inhibitor cocktail (Sigma-

Aldrich, Burlington, MA). Cells were lysed through sonication using an Ultrasonic 

processor at an amplitude of 40 for approximately 20-30 pulses. The lysate samples 

were then centrifuged, and total protein concentration was determined by the Pierce 

BCA assay (Thermo Fisher Scientific, Rockford, IL). 20ug of protein samples were 

resolved by electrophoresis on 8% SDS-PAGE gels and transferred onto nitrocellulose 

membranes. The membranes were blocked in Licor blocking buffer (Licor, Lincoln, NE) 

at room temperature for 1 hour and then incubated with primary antibodies at 4oC 

overnight. Then next day, blot was rinsed in 1x Tween-TBS thrice and incubated in anti-
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rabbit IR 650 or anti-mouse IR 800 fluorescent secondary antibody (Licor, Lincoln, NE) 

at 1:25,000 dilution for 1 h at room temperature. The primary antibodies used were as 

follows: anti-FASN (Cell signaling, Danvers, MA) Rabbit mAb at 1:1000, anti-

GAPDH (Proteintech, Rosemont, IL). ). Protein expression was visualized using Azure 

C600 Imager (Dublin, CA). Statistical analysis of immunoblotting results was 

performed using one-way ANOVA with Tukey’s multiple comparison test was used to 

compare means across genotypes (GraphPad Prism version 9). The threshold for 

statistical significance was set to p<0.05.  

 

 

 

Figure 4-3 The working principle of assessing CRISPR-Cas9 gene editing result, 

specifically assessing the efficiency of knocking out FASN in HEK293T cells, by 

combining Single-probe SCMS with Western Blot analysis. The bright field and 

fluorescent images of transfected cells with sgRNA #1 plasmid were captured at 72-

hour post transfection. 

 

 

Table 4-1 Cells analyzed by the Single-probe SCMS technique. 

No. of detected 

single cells 

Control 

(HEK293T) 

GFP+ cells 

(sgRNA #1) 

GFP+ cells 

(sgRNA #2) 

GFP+ cells 

(sgRNA #3) 

ESI+  45 41 42 41 

ESI-   58 49 50 57 
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4.3 Results and discussions 

4.3.1. Transfection efficiency of HEK293T cells  

 

Figure 4-4 Representative microscopic images were captured for transfected cells with 

sgRNA #2 plasmid at 72-hour post transfection with their (a) bright field image and (b) 

fluorescent image using Fluorescence Microscope (with 10X lens). 

 

Lipofectamine transfection facilitated the transient transfection of three distinct 

sgRNA plasmids (sgRNA #1, #2, and #3) into HEK293T cells, creating three different 

cells groups post-transfection. Figure 4 illustrates the assessment of transfection 

efficiency 72 hours after transfection. Successfully transfected cells expressed the green 

fluorescent protein (GFP) present in the plasmid as a marker. In contrast, cells that did 

not take in the cas9-sgRNA plasmid remained non-fluorescent. Bright field and 

fluorescent images were captured using a fluorescence microscope (10X objective lens). 

ImageJ software was employed for rapid counting of green, fluorescent cells, total cells, 

and estimation of the percentage of successfully transfected cells. Transfected (GFP-

positive) cells were isolated through cell sorting, as GFP expression did not necessarily 

guarantee FASN gene knockout. Three groups of GFP-positive cells (transfected cells 
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with sgRNA #1, #2, and #3) and regular HEK293T cells were subjected to perform 

Single-probe SCMS metabolomics and Western blot experiments to monitor the 

alterations in cell metabolism and FASN protein expression resulting from FASN 

knockout. 

 

4.3.2. Overall metabolic profiles of GFP-positive cell 

 

 

Figure 4-5 Influence of CRISPR-Cas9 FASN knockout process on the overall cell 

metabolism. (a) PCA results demonstrated that GFP-positive cells have significantly 

altered their metabolic profiles due to FASN knockout (using SCMS results obtained 

from ESI+ mode) (b) Boxplots indicated that the abundance of most common fatty acids 

had drastically decreased in GFP-positive cells (using SCMS results obtained from ESI- 

mode). Fatty acids (C18:0 and C18:1) profiles are statistically significant with p-

value<0.05.  

PCA reveals global metabolomic profiles between GFP-positive (transfected) cells 

from the three plasmids (sgRNA #1, #2, and #3) and controls (Figure 4a). The 

metabolomic profiles of GFP-positive cells are significantly different from those of 

control cells. Knocking out the FASN gene led to substantial alterations in metabolomic 

profiles, particularly evident in the decreased abundances of fatty acids  in GFP-

positive cells (Figure 4b).159 Long-chain fatty acids (LCFAs) have chain-lengths of 
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C11-20, of which C16 and C18 LCFAs are the most abundant fatty acids (FAs) in cells. 

The FAs longer than C20 (C>20) are classified as very long chain FAs and are less 

abundant than LCFAs.160 The FASN knockout aims to disrupt the gene responsible for 

fatty acid synthesis, potentially affecting the production of these fatty acids and altering 

cellular metabolism.161 Notably, FASN knockout downregulated the relative abundance 

of long chain fatty acids (LCFAs) in cells, specifically most abundant fatty acids 

(saturated FA, C18:0) and (unsaturated FA, C18:1) (p < 0.05). This downregulation 

highlights FASN 's crucial role in cellular lipid metabolism. The observed metabolic 

shifts underscore the impact of FASN knockout on the overall cellular metabolic profile, 

offering valuable insights into the intricate relationship between FASN gene expression 

and cellular metabolism.  

 

4.3.3. Subpopulation analysis of GFP-positive cells  

 

 

Figure 4-6 Subpopulation analysis was performed representatively for a pairwise 

comparison of GFP-positive cells (expressing sgRNA #1 plasmid) and controls. The 

analysis was developed based upon the hierarchical clustering analysis.  
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Figure 4-7 Subpopulation analysis identities were revealed with dendrogram 

classification to distinguish the metabolomic profiles of non-edited cells from the edited 

cells. 

 

 Utilizing the hierarchical clustering analysis (Figure 5a) and dendrogram 

classification (Figure 5b) developed in previous project,119 subpopulation analysis was 

conducted revealing two major clusters in Figure 5. Subpopulation analysis determined 

based upon the minimum number of clusters.119 The hierarchical heatmap in Figure 5a 

compares the overall metabolomic profiles of GFP-positive cells (expressing sgRNA 

#1 plasmid) with their controls. Interestingly, some of GFP-positive cells clustered with 

controls, suggesting that they share similar metabolites as the control, highlighting that 

all GFP-positive cells are not FASN knockouts. This indicates that even though the 

 



61 

 

plasmid is taken up by the GFP-positive cells, the target FASN gene was not edited, 

likely due to multiple factors such as faulty expression of sgRNA, Cas9, and issues in 

accessing the FASN genomic region.  

 To further distinguish edited (FASN -knockout cells) from non-edited cells among 

GFP-positive cells, dendrogram classification (Figure 4-7) was performed. 

Subpopulation 1 showed a mix of GFP-positive cells and controls, indicating 

unsuccessful FASN knockout and generating non-edited cells, leading to similar 

metabolic profiles. In contrast, subpopulation 2 exclusively consisted of GFP-positive 

cells, which were distinctly different from the controls, confirming successful FASN 

knockout in this subpopulation. As a result, 17 cells from subpopulation 2 were 

identified as successfully edited, constituting 41% of the total cells using sgRNA #1 

plasmid. This percentage offers valuable insights for assessing the FASN knockout 

efficiency using the three distinct plasmids (sgRNA #1, #2, and #3), indicating which 

plasmid yields the most favorable editing results. 

 

4.3.4. Evaluating gene editing efficiency using SCMS subpopulation 

analysis and Western blotting analysis 

 

Table 2-2. Gene editing efficiency determined from SCMS experiments in both ESI+ 

and ESI- ion mode.  

SCMS results sgRNA #1 sgRNA #2 sgRNA #3 

ESI+ 41% 97% 68% 

ESI- 53% 44% 49% 

 

Table 3-3. Gene editing efficiency determined from FASN protein expression level.*  
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Replicates sgRNA #1 sgRNA #2 sgRNA #3 

1 52% 35% 42% 

2 72% 47% 36% 

3 44% 38% 53% 

4 59% 37% 39% 

Average 57% 39% 43% 

Standard Deviation 11.89% 5.31% 7.42% 

*Western blotting experiments were conducted using of GFP-positive (transfected) 

cells by sgRNA #1, #2, and #3. 

 

Figure 4-8 Western blot analysis of FASN protein expression levels in GFP-positive 

cells. Cells transfected by sgRNA #1, #2 and #3 show significantly lower FANS 

compared to control cells (***: p < 0.05; ****: p < 0.01).  

Using SCMS results obtained from both ESI+ and ESI- modes, the percentage of 

successfully edited cells using each sgRNA plasmid was estimated (Table 4-2). A 
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significant difference in the percentage of successfully edited cells have been observed 

between ESI+ and ESI- experiments because ESI+ results were from a different batch 

of samples. ESI- experiments were conducted at a different time. Besides, ESI+ 

experiments can detect a variety of lipids, such as glycerophospholipids and other 

membrane lipids (e.g., diacylglyceride and triacylglycerides) in cells. In our studies, 

ESI+ results show a comprehensive metabolite change which does not only explain the 

specific focus on FASN knockout's impact on fatty acid abundance, but it also includes 

the change of other small molecules in cells. FASN knockout changed fatty acid levels, 

which can be demonstrated by ESI- ion mode results, allowing us to estimate the editing 

efficiency. In Table 4-3, the FASN protein expression levels of GFP-positive cells were 

reported as 57, 39, and 43% for sgRNA #1, #2, and #3, respectively. By comparing the 

editing efficiency across Single-probe SCMS results and Western blotting analysis, the 

ESI- results (53% for sgRNA #1, 44% for sgRNA #2, and 49% for sgRNA #3) share a 

similar trend with the average percentage estimated from Western blotting results. In 

Western blot analysis, pairwise comparison of each individual sgRNA plasmid with 

controls are shown to have their FASN protein expression level to be statistically 

significant (p < 0.05) (Figure 4-8). As a result, subpopulation analysis was conducted 

based upon Single-probe SCMS data which successfully estimates the efficiency of 

gene editing. Western blot analysis is capable of cross validating the efficiency of FASN 

knockout.  
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4.4 Conclusions 

In summary, our study delves into the intricate connection between gene editing 

and cellular metabolism after FASN knockout in HEK293T cells. We found that 

transfection efficiency is influenced by experimental conditions, especially the choice 

of sgRNA plasmids. Through single cell mass spectrometry (SCMS) analysis, global 

metabolic profiles of GFP-positive (transfected) cells following FASN knockout have 

been altered compared to controls, which established a direct link between gene editing 

and metabolic shifts. SCMS metabolomics analyses distinguished different 

subpopulations within GFP-positive cells and revealed comprehensive metabolic 

alterations, including variations in fatty acids, phosphatidylcholines (PCs), 

diacylglycerides (DGs), and triacylglycerides (TGs). Specifically, the decrease in fatty 

acid synthesis underscored the impact of FASN knockout on cellular lipid metabolism. 

The proportion of successfully edited cells directly mirrored the efficiency of our gene 

editing approach. SCMS metabolomics data can be used to estimate the efficiency of 

gene editing. In addition, Western Blot analysis confirms the effective sgRNA-mediated 

FASN knockout in human cells, and cross validate the FASN knockout efficiency with 

percentage obtained from SCMS results. Besides, genomic DNA sequencing is 

conducted since it has been widely used as an approval method to obtain indel 

percentage and accurately determine the editing efficiency, which provides clear 

evident and validates our novel approach. 
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Chapter 5  Conclusions and Future Directions of 

Applications of Single-Probe Single Cell Mass 

Spectrometry for Subpopulation Analysis 

5.1 Summary of work 

In this dissertation, the applications of Single-probe SCMS have been explored to 

investigate cell heterogeneity and unveil hidden subpopulations. First, the Single-probe 

SCMS was employed in conjunction with biosafety standard protocols to examine the 

heterogeneity in the metabolic response of cells infected with parasites in Chagas’ 

disease. With two subpopulations of cells, namely T. cruzi-infected cells and bystander 

uninfected cells, statistical analysis revealed a concealed subgroup of bystander cells 

that have been misclassified and shared majority of a metabolomic profiles with T. 

cruzi-infected cells. In addition, Single-probe SCMS demonstrated for the first-time 

bystander effect of T. cruzi on infection-adjacent uninfected cells. This work represents, 

to the best of our knowledge, the first implementation of single cell metabolomics in 

mammalian-infectious disease.  

Subsequently, Single-probe SCMS metabolomics research was integrated with a 

bioinformatic tool, SinCHet-MS, to subtract batch effect, identify cell subpopulations, 

and prioritize metabolite biomarkers. This analysis extended beyond drug-sensitive 

cells, encompassing observations of changes in the composition of cell subgroups in 

drug-resistant cells. Using comprehensive statistical analysis in SinCHet-MS,   

significant changes in subpopulation have been identified, particularly the emergence 
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of a new subpopulation in drug-sensitive primary melanoma cancer cells (WM115) 

treated with vemurafenib. While the drug-resistant cell line (WM266-4) did not exhibit 

clear emergence of new subpopulations, proportional changes between subpopulations 

were evident. Our technique offers a label-free method distinct from traditional 

approaches and sheds light on cell subpopulations' dynamics. Additionally, our SCMS 

metabolomic studies integrated various functions through SinCHet-MS (freely 

available at http://lab.moffitt.org/chen/software/). This approach enhances our 

understanding of cellular metabolism not only from a cell heterogeneity perspective but 

also at the sub populational resolution. 

Having successfully developed subpopulation analysis utilizing global 

metabolomic profiles of cells, Single-probe SCMS was employed to rapidly assess 

CRISPR-Cas9 gene editing results based on subpopulation analysis. Given the off-

target effects of CRISPR-Cas9, subpopulation analysis proved effective in 

distinguishing edited cells from non-edited cells within a heterogeneous population. 

Initially, Single-probe SCMS analysis revealed altered global metabolic profiles in 

GFP-positive (transfected) cells following FASN knockout compared to controls, 

establishing a direct link between gene editing and metabolic shifts. The observed 

decrease in fatty acid synthesis underscored the impact of FASN knockout on cellular 

lipid metabolism. Then, SCMS results distinguished subpopulations within GFP-

positive cells, as not all of GFP-positive cells had successfully undergone FASN gene 

knockout. This discovery of concealed subgroups of cells within the heterogenous GFP-

positive cell population provides a rapid method to estimate the efficiency of CRISPR-
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Cas9 gene editing. In addition, Western Blot analysis and genomic DNA sequencing 

validated the effectiveness of sgRNA-mediated FASN knockout, cross-validating the 

efficiency with the percentage obtained from SCMS results. In summary, Single-probe 

is a powerful analytical sampling and ionization device coupled with mass spectrometry 

to conduct single-cell metabolomics and lipidomics studies in mammalian-infectious 

disease, cancers, and genome engineering research. The results obtained from Single-

probe SCMS significantly contribute to the discovery of hidden subgroups of cells 

using unique metabolomic features.  

5.2 Future directions 

Future research endeavors could focus on utilizing Single-probe SCMS to have a 

better understanding of the metabolic responses of host cells in mammalian-infectious 

disease. Investigating a broader range of infectious agents, and host response could 

provide more insights into pathogenesis. Additionally, exploring real-time dynamics 

of metabolic changes during infection and treatment could unveil critical insights for 

targeted therapeutic interventions. The infection time could be increased to observe 

the progress of Trypanosoma cruzi (T. cruzi) infection in cells. Benznidazole is in the 

frontline drug used against T. cruzi, the causative agent of Chagas disease.162 The 

influence of Benznidazole will alter cell metabolism of T. cruzi-infected cells and 

bystander uninfected cells, which will contribute the treatment of Chagas disease. Due 

to the advantage of sampling single cells using Single-probe SCMS, microscopic 

pictures could be captured prior to SCMS analysis to measure the distance between T. 
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cruzi infected cells and their bystander uninfected cells. It is possible that T. cruzi 

altered the cells metabolism of not only infected cells, but also adjacent bystander 

cells, especially those in close proximity. For those bystander cells that lie far away 

from T. cruzi-infected cells, their metabolomic profiles are expected to be very 

different compared to those within closer proximity. Integrating advanced analytical 

techniques, such as mass spectrometry imaging (MSI) (e.g., DESI-MSI, Single-probe 

MSI) , may further enhance our ability to visualize and characterize localized 

metabolic changes within infected cells and tissues. 

Future research directions should center on refining and expanding the integration 

of Single-Probe SCMS with the bioinformatic tool SinChet-MS. Investigating novel 

applications for SinChet-MS in diverse cellular contexts and cell models can provide 

valuable insights into cell subpopulations and metabolite biomarkers. Exploring the 

integration of other bioinformatics tools or machine learning algorithms could further 

enhance the accuracy and efficiency of subpopulation identification. Additionally, 

extending the methodology to analyze multi-omic data, such as integrating genomics 

and proteomics, could offer a more holistic understanding of cellular processes and 

dysregulations. 

Future direction endeavors should concentrate on optimizing and expanding the 

use of Single-Probe SCMS for the rapid evaluation of CRISPR-Cas9 gene editing 

efficiency. Investigating the applicability of this approach to different cell types, 

tissues, and gene targets will broaden its utility. Single cell omics research should be 

integrated knowing that CRISPR-Cas9 has a capability to knock-out and knock-in 
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functional genes. Changing a functional gene will result in alteration in cell function, 

change in cell metabolism, protein expression and genomic expression. Single cell 

proteomics and genomics are great research approaches that will contribute the 

overview of how particular functional gene, FASN, can regulate the fatty acid 

synthesis in cells. As a result, FASN knockout will downregulate fatty acids. FASN 

knockout also results in a significant reduction in FASN protein expression level. 

Incorporating real-time monitoring capabilities during the gene editing process could 

provide valuable insights into the temporal dynamics of metabolic changes associated 

with CRISPR-Cas9 activity. Furthermore, exploring the potential integration of 

Single-Probe SCMS with emerging gene editing technologies, such as base editing or 

prime editing, can contribute to advancing the precision and efficiency of genome 

engineering strategies. 
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Appendix A 

Chapter 2 

 

Figure S1. The schematic of the working mechanisms of the Single-probe SCMS 

experimental set-up. 
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Figure S2: Hierarchical Clustering of metabolite features differing between infected 

cells (I/C), correctly classified bystander cells (C/B) and mis-classified bystander cells 

(M/B). The annotated features are marked (*).  

 

Figure S3. Box plots for 16 metabolites showed comparable behavior in infected cells 

(I/C) and in mis-classified bystander cells (M/B), as determined by ANOVA test with 

an adjusted p-value ≤ 0.05. 
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Figure S4. Annotated MS/MS spectra of [PC(P-20:0/14:0)+Na]+  at m/z 768.5813 

(upper panel) and [PC(16:0/18:2)+Na]+ at m/z 780.5493 (lower panel), acquired from 

individual HeLa cells. CE: collision energy. 

 

 

m/z 
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Figure S5. Annotated MS/MS spectra of [PC(16:0/18:1)+Na]+  at m/z 782.5654 (upper 

panel) and [PC(18:1/18:1)+Na]+ at m/z 808.5801 (lower panel), acquired from 

individual HeLa cells. CE: collision energy. 

 

Figure S6. Annotated MS/MS spectrum of [PC(18:0/18:1)+Na]+ at m/z 810.6273 from 

individual HeLa cells. CE: collision energy. 

m/z 

m/z 
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Chapter 3 

 

Figure S1. Photos of WM115 (A and C) and WM266-4 (B and D) cells before (A and 

B) and after treatment (C and D) (1 µM for 48 h). 

 

 

 

 

 

 



86 

 

 

 



87 

 

 

 

Figure S2. Representative mass spectra of single WM115 (A-B) and WM266-4 (C-D) 

cells before (A and C) and after treatment (B and D) (1 µM for 48 h). The zoomed-in 

mass spectra illustrate m/z regions with abundant cellular species. Major lipid species 

including PC 34:1 and PC 36:2 are present in both cell lines before and after treatment 

with different relative intensity. 



88 

 

 

Figure S3. The main Graphic User Interface (GUI) of the SinCHet-MS software 

package. It integrates functions of debatching, determination and visualization of cell 

subpopulations and prioritization of subpopulational biomarkers. 

 

 

Figure S4. PCA score plots of WM266-4 cells (A) before and (B) after debatching in 

the PC3 and PC4 dimensions. The shapes of the symbol represent control (○) and 

treatment (∆), and the colors of the symbol represent batch 1 (■) and batch 2 (■).  
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Figure S5. Change of cell heterogeneity before and after drug treatment for the (A) 

WM115 and (B) WM266-4 cell lines using d-statistics. 

 

Figure S6. PCA score plots of (A) WM115 and (B) WM266-4 cells classified by 

subpopulations. The shapes of the symbol represent control (○) and treatment (∆), and 

the colors of the symbol represent batch 1 (■) and batch 2 (■).   
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Figure S7. Representative mass spectra of single WM115 (A-B) and WM266-4 (C-D) 

cells with different subpopulation. (A) Subpopulation 1 of WM115; (B) Subpopulation 2 

of WM115; (C) Subpopulation 1 of WM266-4; (D) Subpopulation 2 of WM266-4. Major 

lipid species including PC 34:1 and PC 36:2 are present in both cell lines before and 

after treatment with different relative intensity. 
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Chapter 4 

 
Figure S1. Phosphatidylcholines (PC) are decreased significantly in GFP-positive cells 

which indicates that knocking out FASN suppresses the production of PCs.  

 

 

 
Figure S2. Diacyglycerides (DG) and Triacyglycerides (TG) are reduced in GFP-

positive cells which indicate that knocking out FASN decreases the synthesis of DGs 

and TGs.  
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Figure S3. Glycerophospholipids are downregulated in GFP+ cells (transfected) with 

the expression of sgRNA #1, #2 and #3.  
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Appendix B 

Chapter 2 

Table S1. Parameters of the Thermo Fisher Q-Exactive Plus hybrid quadrupole orbitrap 

mass spectrometer used for Full MS/dd-MS2 analysis. 

Properties of Full MS/dd-MS2 

General 

Runtime 0 to 12.5 min 

Polarity Positive 

Default Charge 1 

Inclusion - 

Exclusion On 

Full MS 

Resolution 70,000 

AGC target 1 x 106 

Scan range 70 to 1050 m/z 

Maximum IT 246 ms 

dd-MS2 

Resolution 17,500 

AGC target 2 x 105 

Maximum IT 54 ms 

Loop count 5 

TopN 5 

Isolation window 1.0 m/z 

Fixed mass - 

(N)CE/stepped NCE: 20, 40, 60 
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dd Settings 

Minimum AGC 8.00e3 

Peptide match Preferred 

Exclude isotopes on 

Dynamic exclusion 10.0 s 

ESI Ion Source 

ID HESI 

Sheath gas flow rate 35 

Auxiliary gas flow rate 10 

Sweep gas flow rate 0 

Spray voltage 3.80 kV 

S-lens RF level 50 V 

Capillary temperature 320 ℃ 

Auxiliary gas temperature 350 ℃ 

 

Table S2. GNPS parameters used for annotation. 

 

GNPS Search Single Spectrum 

Search Options 

Find Related Datasets Do it 

Select Databases to Search All 

Parent Mass Tolerance 0.02 Da 

Ion Tolerance 0.02 Da 

Min Matched Peaks 4 

Score Threshold 0.7 

Advanced Search Options 

Library Class Bronze 

Search Analogs Do Search 
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Search Unclustered Data Don’t Search 

Top Hit Per spectrum 5 

Maximum Analog Search Mass Difference 500.0 

Advanced Filtering Options 

Filter StdDev Intensity 0.0 

Minimum Peak Intensity 0.0 

Min Peak Int 0.0 

Filter Precursor Window Filter 

Filter Library Filter Library 

Filter peaks in 50 Da Window Filter 
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Table S3. Metabolites differing between cell groups as determined by ANOVA (p-value 

<0.05, FDR-corrected) 

m/z Annotation p value FDR-corrected p value 

267.0620 N/A 1.66E-10 4.34E-09 

302.1440 N/A 0.001722 0.011115 

322.885 N/A 2.01E-27 5.66E-24 

359.0250 N/A 6.65E-16 3.99E-14 

429.9390 N/A 0.001033 0.007073 

431.9630 N/A 0.000185 0.001564 

515.2590 N/A 0.005041 0.026922 

523.2850 N/A 0.00346 0.019204 

537.3000 N/A 1.60E-06 2.15E-05 

665.3820 N/A 0.010602 0.048378 

756.5470 PC(34:3) or LPC(34:4) or PC(O-

34:4) (Library match to 1-Oleoyl-2-

palmitoyl-sn-glycero-3-

phosphocholine (PC 34:1)) (*) 

0.000168 0.001429 

768.583 [PC(P-20:0/14:0)+Na]+ (**) 0.000742 0.005306 

780.5460 [PC(16:0/18:2)+Na]+ (**) 2.59E-07 4.06E-06 

782.5630 [PC(16:0/18:1)+Na]+ (**) 9.58E-08 1.63E-06 

808.5770 [PC(18:1/18:1)+Na]+ (**) 2.57E-06 3.31E-05 

810.5940 [PC(18:0/18:1)+Na]+ (**) 0.000114 0.001031 

(*)Features were annotated by GNPS (cosine score = 0.92; number of shared peaks = 5; mass difference 

to library reference =4.03)  and supported by the annotated spectrum in Figure 4b. 

(**) Features were annotated manually and supported by the annotated spectra in the Figure S4-S6. 

N/A: Metabolites were not annotatable 
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Chapter 3. 

Table S1. Summary of the groups of cells used in the SCMS experiments. 

Cell Lines Batch Treatment Condition* Analyzed Cells 

 

WM115 

1 Control 13 

 Treatment 18 

2 Control 26 

 Treatment 18 

 

WM266-4 

3 Control 32 

 Treatment 30 

4 Control 29 

 Treatment 37 

* 1 µM Vemurafenib was used treat cells for 48 h in the treatment groups. 

 

Table S1. Subpopulational biomarkers between subpopulations 1 and 2 in WM115 cells. 

m/z RSD Identification PPM Ppost hoc
* 

189.987 128.1056 [2(3H)-Benzothiazolethione + Na]+ 23 0.03309 

192.039 123.7538 [Phosphodimethylethanolamine + Na]+ 3 0.012697 

203.052 103.7025 [D-Psicose + Na]+ 3 5.50E-05 

225.034 129.3706 [Cysteinyl-Cysteine + H]+ 3 0.01681 

296.065 150.745 
[5-amino-1-(5-phosphonato-D-

[(ribosyl)imidazol-3-ium + H]+ 
3 9.37E-05 

341.012 176.1595 
[Bis(4-nitrophenyl) hydrogen phosphate + 

H]+ 
14 0.000441 

354.077 128.0285 [Didesethylflurazepam + Na]+ 3 0.040612 

383.115 137.969 [Mollicellin B + H]+ 6 0.000359 

405.097 173.8225 [Mollicellin B + Na]+ 6 0.008092 

589.478 83.80356 [DG(32:1) + Na]+ ‡ 4 9.45E-08 

605.452 116.7758 [DG(33:0) + Na]+ ‡ 18 8.01E-10 

615.493 76.47161 [DG(14:0/0:0/20:2n6) + Na]+ 5 8.92E-07 

617.509 73.18834 [DG(34:1) + Na]+ ‡ 4 5.66E-06 

631.467 108.898 [DG(35:1) + Na]+ ‡ 16 8.01E-10 

633.483 93.51578 [DG(35:0) + Na]+ ‡ 17 9.28E-10 

641.509 84.88917 [DG(38:6) + H]+ ‡ 4 0.000501 

643.524 75.0312 [DG(36:2) + Na]+ † 4 0.000169 

657.483 116.3986 [PA(P-16:0/18:2(9Z,12Z)) + H]+ 4 8.01E-10 

659.498 98.13423 [PA(i-24:0/10:0) + H – H2O]+ 5 9.15E-10 

700.486 95.96191 [PE-NMe2(15:0/14:0) + Na]+ 4 8.01E-10 
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721.554 186.793 [DG(PGD2/0:0/i-20:0) + H] 10 0.000521 

723.491 74.77151 [PA(20:2(11Z,14Z)/16:0) + Na]+ 3 7.04E-06 

726.501 71.44518 [PC(32:4) + H]+ ‡ 8 8.01E-10 

728.518 56.08359 [PC(30:0) + Na]+ † 2 1.70E-06 

740.553 100.734 [PE(O-35:1) + Na]+ † 4 8.01E-10 

742.475 109.1735 [PE(O-36:0) + Na]+ ‡ 13 8.01E-10 

742.533 80.06013 [PE(20:0/14:0) + Na]+ 4 8.43E-10 

742.569 89.43842 [PC(O-16:1(9Z)/18:2(9Z,12Z)) + H]+ 7 8.43E-10 

744.491 79.16645 [PE(P-18:1(9Z)/18:4(6Z,9Z,12Z,15Z)) + Na]+ 4 9.53E-10 

752.517 61.77599 [PC(34:5) + H]+ ‡ 7 1.01E-08 

754.534 50.81652 [PC(32:1) + Na]+ †‡ 2 1.88E-05 

756.549 51.33026 [PC(34:3) + H]+ ‡ 6 0.000429 

766.569 83.4998 [PE(O-37:2) + Na]+ † 4 3.97E-07 

768.49 92.68474 [PC(32:1) + Na]+ ‡ 33 8.01E-10 

768.549 76.8444 [PC(16:1(9Z)/17:0) + Na]+ 3 0.00706 

768.585 47.3431 [PE(P-37:0) + Na]+ † 3 0.002989 

770.507 69.87939 [PC(34:4) + H]+ ‡ 34 1.01E-08 

772.523 70.82742 [PE(36:4) + H]+ ‡ 14 7.45E-07 

776.516 96.64662 [PC(36:7) + H]+ ‡ 8 8.01E-10 

778.533 62.08769 [PC(34:3) + Na]+ † 3 1.23E-07 

780.55 50.97458 [PC(34:2) + Na]+ † 1 0.000145 

782.566 50.84661 [PC(34:1) + Na]+ † 1 1.05E-05 

784.522 111.4313 [PC(36:3) + H]+ ‡ 12 8.01E-10 

788.516 100.5926 [PE(38:5) + H]+ ‡ 5 0.007988 

790.568 66.30461 [PC(O-18:2(9Z,12Z)/18:2(9Z,12Z)) + Na]+ 5 1.05E-09 

794.506 99.14211 [PC(18:3(9,11,15)-OH(13)/P-16:0) + K]+ 5 8.01E-10 

794.564 74.30683 [PC(36:1) + H]+ ‡ 50 1.43E-06 

794.601 130.933 [PC(O-18:1(9Z)/18:1(11Z)) + Na]+ 3 0.000428 

796.523 64.26495 [PC(34:2) + K]+ † 2 2.51E-08 

796.58 76.08471 [PC(18:1(9Z)/17:0) + Na]+ 3 8.81E-07 

798.539 76.09119 
[PE(P-18:1(9Z)/22:5(4Z,7Z,10Z,13Z,16Z)) + 

Na]+ 
2 4.37E-09 

804.549 51.08599 [PC(36:4) + Na]+ † 2 0.00061 

806.565 55.84285 [PC(38:6) + H]+ ‡ 5 0.010579 

808.582 49.38926 [PC(36:2) + Na]+ †‡ 0 0.008852 

810.597 46.10142 [PC(36:1) + Na]+ † 1 0.00692 

816.585 61.71127 [PC(38:4) + Na]+ ‡ 3 5.00E-07 

818.601 102.5192 [PC(38:3) + H]+ ‡ 3 8.01E-10 

820.522 75.10244 [PE(39:4) + K]+ † 4 9.79E-10 

822.539 70.32211 [PC(36:3) + K]+ † 2 7.34E-09 

824.554 66.77384 [PC(36:2) + K]+ † 3 4.27E-08 

825.691 73.80641 [SM(d41:0) + Na]+ ‡ 11 1.50E-07 

826.571 101.7181 [PE(42:3) + H]+ ‡ 14 8.01E-10 

828.71 89.96173 [PC(P-40:1) + H]+ ‡ 31 3.93E-09 
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830.565 62.75414 [PC(40:8) + H]+ ‡ 5 2.83E-05 

832.58 53.71502 [PC(38:4) + Na]+ † 3 0.001517 

834.597 77.88288 [PC(38:3) + Na]+ † 1 1.08E-09 

836.613 114.3903 [PE-NMe(20:2(11Z,14Z)/20:0) + Na]+ 1 0.000186 

841.665 100.8033 [TG(49:1) + Na]+ ‡ 40 8.01E-10 

843.681 93.34589 [PA(46:1 + H]+ ‡ 3 9.53E-10 

846.539 79.29715   8.01E-10 

848.554 82.36365   8.01E-10 

851.707 69.3612 [TG(52:6) + H]+ ‡ 6 8.12E-06 

853.722 50.85418 [TG(48:6) + H]+ ‡ 4 0.002183 

856.741 73.06928 [PC(P-42:1) + H]+ ‡ 30 4.73E-07 

858.596 85.44335 [PC(40:5) + Na]+ ‡ 3 5.34E-09 

867.681 90.26346 [PA(46:0) + Na]+ ‡ 0 8.01E-10 

869.697 80.84171 [PA(24:1(15Z)/24:1(15Z)) + H]+ 3 4.88E-09 

871.713 92.1332 [PA(24:1(15Z)/24:0) + H]+ 2 1.95E-09 

877.722 71.98826 [TG(16:0/14:0/22:4(7Z,10Z,13Z,16Z)) + Na]+ 4 0.003149 

879.738 53.06125 [TG(14:1(9Z)/20:1(11Z)/18:1(9Z)) + Na]+ 4 0.043587 

881.754 49.77383 [TG(52:2) + Na]+ ‡ 3 0.01081 

893.696 85.14766 [PA(48:1) + Na]+ ‡ 1 1.61E-09 

895.712 73.01709 [PA(48:0) + Na]+ ‡ 0 1.22E-07 

897.728 75.97223 [TG(52:2) + K]+ 3 1.25E-07 

899.744 124.2535 [TG(52:1) + K]+ 3 8.01E-10 

909.786 101.0202 [TG(16:0/18:1(11Z)/20:1(11Z)) + Na]+ 2 0.001135 

919.713 87.96139 [TG(54:5) + K]+ 2 4.77E-08 

921.728 71.15654 [TG(54:4) + K]+ 3 5.35E-07 

923.744 74.74833 [PA(a-25:0/a-25:0) + Na]+ 0 1.09E-07 

925.76 112.0745 [TG(54:2) + K]+ 2 8.01E-10 

947.744 114.6453 [TG(56:5) + K]+ 3 3.02E-09 

*FDR adjusted p-value from post hoc pairwise comparison between subpopulation 1 and 2 

under a familywise error rate. 
†Biomarker identified at the population level. 
‡Biomarker identified at the single cell level. 

PC: phosphatidylcholine; PE: phosphatidylethanolamine; PA: Phosphatidic acids, SM: 

sphingomyelin; DG: diglyceride; TG: triglyceride. 

Species in blue font color are tentatively labeled. 
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Table S2. Subpopulational biomarkers between subpopulations 1 and 2 in WM266-4 

cells. 

m/z RSD Identification PPM Ppost hoc
* 

174.013 159.4572   0.00298 

176.065 184.2156 [Guanidinosuccinic acid + H]+ 9 0.001055 

184.073 54.73049 [Phosphorylcholine + H]+  5 2.97E-10 

189.987 159.1209   0.030178 

203.052 163.2219 [cis-Inositol + Na]+ 3 0.000611 

219.026 134.2137 [cis-Inositol + K]+ 2 0.036753 

226.95 134.136 
[2,5-Dichloro-4-oxohex-2-

enedioate + H]+ 
4 0.045047 

354.076 219.6756 [Sanguinarine + Na]+ 5 0.005098 

383.115 202.9088 [Mollicellin B + H]+ 6 0.001485 

650.434 111.3089   1.44E-07 

672.416 130.9384   0.005258 

678.501 99.25205 [PC(28:0) + H]+ ‡ 9 2.97E-10 

692.553 88.21998 [PC(29:0) + H]+ ‡ 8 3.05E-10 

703.573 159.5482 [SM(34:1) + H]+ ‡ 3 4.07E-08 

704.516 77.16659 [PE(O-34:1) + H]+ ‡ 9 2.97E-10 

706.534 80.57585 [PC(30:0) + H]+ † 5 2.97E-10 

718.568 74.11582 [PC(O-16:0/16:1(9Z)) + H]+ 9 2.97E-10 

720.547 90.48607 [PE(34:0) + H]+ ‡ 9 3.37E-10 

720.586 105.4016   2.97E-10 

725.55 207.105 [SM(34:1) + Na]+ ‡ 9 0.000322 

730.531 90.67068 
[PE-NMe(20:2(11Z,14Z)/14:0) + 

H]+ 
10 4.43E-09 

731.599 131.3111 [SM(36:1) + H]+ ‡ 10 1.97E-05 

732.55 76.242 [PE(35:1) + H]+ †‡ 5 2.97E-10 

734.566 80.08571 [PC(32:0) + H]+ ‡ 5 2.97E-10 

742.566 106.06 [PE(O-36:0) + Na]+ ‡ 11 0.01014 

744.546 117.12 
[PE(18:1(9Z)-O(12,13)/P-18:0) + 

H]+ 
10 4.40E-10 

744.584 73.40015 [PC(33:2) + H]+ ‡ 8 2.97E-10 

746.562 65.493 [PC(16:1(9Z)/17:0) + H]+ 10 3.80E-10 

746.579 86.20477 [PC(O-34:1) + H]+ ‡ 13 2.97E-10 

746.602 82.15653 [PC(O-34:1) + H]+ ‡ 5 2.97E-10 

748.616 101.1125 [PC(O-16:0/18:0) + H]+ 7 3.05E-10 

758.566 63.44769 [PE(37:2) + H]+ † 4 2.97E-10 

760.582 65.28295 [PC(34:1) + H]+ † 4 2.97E-10 

762.584 66.62915 [PC(P-34:3) + Na]+ ‡ 22 8.37E-08 

762.596 78.46355 [PE(22:0/15:0) + H]+ 6 1.17E-08 

770.599 54.68057 [PC(O-34:0) + Na]+ ‡ 6 2.97E-10 

772.577 83.68257 [PC(35:2) + H]+ ‡ 10 2.97E-10 
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772.615 71.29696 [PC(O-18:1(9Z)/18:1(11Z)) + H]+ 8 3.02E-10 

774.593 84.97327 [PC(35:1) + H]+ ‡ 10 2.97E-10 

774.631 96.38335 [PC(O-18:1(9Z)/18:0) + H]+ 8 2.97E-10 

784.582 74.77287 [PC(36:2) + H]+ ‡ 1 2.97E-10 

786.597 67.40736 [PE(39:2) + H]+ † 4 2.97E-10 

794.612 116.6464 [PC(O-36:1) + Na]+ ‡ 8 1.35E-06 

796.614 69.19304 [PC(37:4) + H]+ ‡ 6 2.97E-10 

811.661 141.1078 [SM(40:0) + Na]+ ‡ 10 0.000206 

812.609 106.9853 [PC(37:4) + H]+ ‡ 9 1.00E-06 

813.677 151.3288 [SM(42:2) + H]+ ‡ 9 0.001812 

814.625 91.72509 [PC(38:2) + H]+ ‡ 9 2.97E-10 

830.545 132.5015 [PC(40:8) + H]+ ‡  11 0.00117 

834.593 103.2547 [PC(38:3) + Na]+ † 6 0.032411 

1464.086 120.3208 [CL(18:0/18:0/18:1(9Z)/18:0) + H]+ 2 2.97E-10 

1466.101 112.6823 [CL(i-16:0/i-17:0/i-17:0/22:0) + H]+ 3 2.97E-10 

1478.138 125.9171   2.97E-10 

1480.153 131.1825 [CL(i-16:0/i-17:0/i-17:0/23:0) + H]+ 22 2.97E-10 

1490.102 109.0322 
[CL(i-16:0/a-

17:0/18:2(9Z,11Z)/23:0) + H]+ 
2 2.97E-10 

1492.117 101.9152   2.97E-10 

1504.153 120.7291 
[CL(i-16:0/a-17:0/18:2(9Z,11Z)/i-

24:0) + H]+ 
22 2.97E-10 

1506.168 119.1866   2.97E-10 

1516.117 104.9038 
[CL(i-16:0/a-17:0/i-20:0/i-21:0) + 

Na]+ 
1 2.97E-10 

1518.132 99.1318 
[CL(i-16:0/a-

17:0/18:2(9Z,11Z)/25:0) + H]+ 
3 2.97E-10 

1520.147 104.2193   2.97E-10 

1542.133 104.062   5.47E-10 

1544.148 101.6704 
[CL(i-16:0/a-17:0/i-21:0/i-22:0) + 

Na]+ 
1 2.97E-10 

1546.163 106.3662 
[CL(16:0/18:2(9Z,11Z)/i-22:0/i-

22:0) + H]+ 
3 2.97E-10 

1570.164 119.6729   2.97E-10 

*FDR adjusted p-value from post hoc pairwise comparison between subpopulation 1 and 2 

under a familywise error rate. 
†Biomarker identified at the population level. 
‡Biomarker identified at the single cell level. 

PC: phosphatidylcholine; PE: phosphatidylethanolamine; PA: Phosphatidic acids; SM: 

sphingomyelin; DG: diglyceride; TG: triglyceride; CL: phospholipid cardiolipin.  

Species in blue font color are tentatively labeled. 



103 

 

Chapter 4 

Table S1. The Western blot analysis review the endogenous and exogenous fasn protein 

expression using sgRNA #1 and sgRNA #2 plasmid at different concentration.  

 


