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Abstract

The field of causal inference has experienced rapid growth and development in

recent years. Its significance in addressing a diverse array of problems and its relevance

across various research and application domains are increasingly being acknowledged.

However, the current state-of-the-art approaches to causal inference have not yet gained

widespread adoption in mainstream data science practices.

This research endeavor begins by seeking to motivate enthusiasm for contemporary

approaches to causal investigation utilizing observational data. It explores the existing

applications and potential future prospects for employing causal inference methods to

enhance desired outcomes in data-driven learning applications across various domains,

with a particular focus on their relevance in artificial intelligence (AI). Following this

motivation, this dissertation proceeds to offer a broad review of fundamental con-

cepts, theoretical frameworks, methodological advancements, and existing techniques

pertaining to causal inference.

The research advances by investigating the problem of data-driven root cause analy-

sis through the lens of causal structure modeling. Data-driven approaches to root cause

analysis (RCA) have received attention recently due to their ability to exploit increas-

ing data availability for more effective root cause identification in complex processes.

Advancements in the field of causal inference enable unbiased causal investigations

using observational data. This study proposes a data-driven RCA method and a time-

to-event (TTE) data simulation procedure built on the structural causal model (SCM)

framework. A novel causality-based method is introduced for learning a representa-

tion of root cause mechanisms, termed in this work as root cause graphs (RCGs), from

observational TTE data. Three case scenarios are used to generate TTE datasets for

evaluating the proposed method. The utility of the proposed RCG recovery method is

demonstrated by using recovered RCGs to guide the estimation of root cause treatment

effects. In the presence of mediation, RCG-guided models produce superior estimates

of root cause total effects compared to models that adjust for all covariates.

The author delves into the subject of integrating causal inference and machine learn-

ing. Incorporating causal inference into machine learning offers many benefits including

x



enhancing model interpretability and robustness to changes in data distributions. This

work considers the task of feature selection for prediction model development in the

context of potentially changing environments. First, a filter feature selection approach

that improves on the select k-best method and prioritizes causal features is introduced

and compared to the standard select k-best algorithm. Secondly, a causal feature se-

lection algorithm which adapts to covariate shifts in the target domain is proposed

for domain adaptation. Causal approaches to feature selection are demonstrated to

be capable of yielding optimal prediction performance when modeling assumptions are

met. Additionally, they can mitigate the degrading effects of some forms of dataset

shifts on prediction performance.

xi



Chapter 1

Introduction

1.1 Motivation

Many scientific questions and subsequent investigations are fundamentally causal in na-

ture. Yet, often times such questions are not answered in explicit causal terms because

of the difficulty in reaching objective causal conclusions in research. Doing causal infer-

ence is a notoriously difficult and often controversial scientific proposition (Maathuis

and Nandy 2016; Pearl and Mackenzie 2018). Even the very idea and definition of

causality constitutes a philosophical debate (Holland 1986; Cartwright 2004; Rothman

and Greenland 2005). As a result of a lack of consensus about how to conclusively

establish causality in science, for a long time causal inference has been treated with

extreme caution in many scientific fields. Not only did many scientific investigators

avoid making explicit conclusions about causality, there was also a conservative atti-

tude and even discouragement of causal inference in many quarters of science, with

causal reasoning being thought to be ‘unscientific’ by some theorists (Spirtes et al.

2000; Rothman and Greenland 2005; Frosch and Johnson-Laird 2011; Gelman 2011;

Hernán and Course 2018; Hernan et al. 2019; Grosz et al. 2020).

Establishing causality poses a formidable scientific challenge due to the stringent

conditions required to definitively affirm causal relationships among variables within

any phenomenon of reasonable scale. In addition, there has been a lack of consensus

on the precise definition of causality and the necessary conditions for inferring causal

1



relationships. One of the most widely accepted sets of conditions requires three types

of evidence: (1) time order or precedence: the cause must come before the effect,

(2) association: the cause and effect must be related, and (3) non-spuriousness: the

possibility that a third possibly unobserved variable induces the relationship between

the presumed cause and effect must be ruled out (Zheng and Pavlou 2010; Chambliss

and Schutt 2018). This third condition is often the most difficult to satisfy. Also, the

first condition may not be possible to demonstrate when working with certain types of

observational datasets. Given such conditions,1 the randomized controlled experiment

or randomized controlled trial (RCT) is widely regarded as the gold standard for causal

inference (Cartwright 2010).

A well-designed experiment is effective for identifying causes and estimating their ef-

fects, but they are not always feasible to implement. Indeed, RCTs are often too expen-

sive, too time consuming, unethical or impractical for many applications (Spreeuwen-

berg 2010). Also, when a large number of variables are involved, the number of ex-

periments required to sufficiently identify causes makes the option of experimentation

unrealistic (Eberhardt et al. 2005). Hence, there has been a growing enthusiasm about

developing alternative methodologies for causal inference, which do not depend solely

on experimental data. This, along with a realization that the study and resolution

of problems in causality could help to solve some important challenges in automated

learning systems and artificial intelligence (AI), has given rise to the development of

“a new science of cause and effect” as Pearl (2018) describes it. This new science

of causality emphasizes well-defined causal models and permits plausible assumptions

in the modeling of a system under study. It features a rich representation for causal

mechanisms, a theoretical foundation for manipulating causal models, and a growing

set of methods and algorithms for extracting causal information from observational

1see also Hill’s criteria (Thygesen et al. 2005).

2



data. The structural causal model (SCM) framework articulates the basic tenets of

this modern approach to causal inference.

Observational data as opposed to experimental data, is data collected through

studies where the researcher has little or no control over the data generating process.

This type of data is often more readily available than experimental data. It is used

extensively in problems of prediction where the goal is to estimate the value of a variable

of interest based on its relationship to other observed variables in a system. In such

problems, the relationships between variables only need to be based on association,

not necessarily causation. Yet, it is often desirable to be able to explain how the

estimates are obtained, or to gain insights about the nature of such systems through

the techniques used for modeling them. Machine learning (ML) been tremendously

successful in prediction and pattern recognition problems. However, its limitations as

a technique for enabling critical decision support and the development of advanced

intelligent systems are increasingly being acknowledged. ML on its own is unable to

provide reliable answers to fundamental questions about causality, and struggles with

generalization (Pearl and Mackenzie 2018; Pearl 2019a; Scholkopf et al. 2021).2

Causal inference offers tools which have the potential for addressing many of the

concerns about current and future AI systems. With regard to generalization, causal

approaches can be used to improve the stability of ML models in the presence of changes

in the data distribution. This benefit can be exploited in transfer learning and domain

adaptation applications (Zhang et al. 2020; Scholkopf et al. 2021; Yang et al. 2021;

Spirtes and Zhang 2016). Such causal methods can be used to identify the sources of

changes in the data distribution, predict the impact of the changes, and expose how

those changes are propagated throughout the system (Guyon et al. 2007; Subbaswamy

et al. 2019; Makhlouf et al. 2020). In addition, causality-based modeling approaches

2The problem of generalizing models trained in a specific domain to other domains.
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can enhance the transparency of prediction models by revealing how they arrive at

their predictions. Developing such modeling approaches could have a huge impact on

some of the current challenges with ML and AI. An especially thrilling prospect lies in

the capacity to reason with data beyond mere statistical associations, delving into the

realms of interventions and counterfactuals through the utilization of causal inference

techniques (Pearl 2019b). This capability could serve as a catalyst that propels AI

research closer to the realization of the aspiration to attain a form of intelligence akin

to that of humans, commonly referred to as Artificial General Intelligence (AGI) (Pearl

and Mackenzie 2018; Scholkopf et al. 2021).

Modeling techniques which merely map inputs to outputs by computing parameters

of a joint distribution or by estimating an approximating function using data without

consideration of the data generating process can barely be considered truly intelligent

(Pearl and Mackenzie 2018). These systems are often not able to immediately adapt

and respond to changes in the underlying data generation process. They do not pro-

vide reliable answers to the “why” or “how” questions, as per a reliable explanation for

the phenomenon predicted. Without this, their usefulness as decision-making tools is

limited. Decision support is often a key need for businesses seeking to adopt AI tech-

nologies. Ryall and Bramson (2013) summarize the importance of a modern causal

modeling approach for business applications by stating that “In a world of resource

scarcity, a decision about which business elements to control or change – a manage-

rial intervention, must precede any decision on how to control or change them, and

understanding causality is crucial to making effective interventions.”

Other emerging issues and concerns about the prominent autonomous learning and

AI methods have to do with bias/fairness, explainability, trust, reproducibility, security

and ethical use. As AI technologies gain wider adoption, these issues come into greater

focus and the need to address them becomes more urgent. This introduction delves

4



into several emerging issues concerning contemporary AI methodologies and explores

how causal inference could be harnessed to address these challenges.

1.2 Towards Improving ML and AI Outcomes using

Causal Inference

1.2.1 Issues and Limitations of Current AI Systems

Progressive developments in machine learning techniques have been the driving force

behind most recent advancements in the field of artificial intelligence. The current

state-of-the-art techniques, particularly in deep learning (DL), have performed spec-

tacularly and beyond earlier expectations, even though there is still a lack of in-depth

understanding, and comprehensive theoretical explanation of why they work so well

(Sejnowski 2020). Statistical learning, ML and DL techniques represent the prevailing

approach to AI known as Narrow AI. Narrow AIs are designed and trained to perform

a specific task. This approach has been so impressive in numerous applications leading

some to believe that narrow AIs such as deep learning models provide a path to achiev-

ing the so-called holy grail of AI research – achieving AGI or “Strong AI” (Tucker et al.

2008). AGI is an idealized type of AI that is equipped with complex human-like intelli-

gence and can solve a wide variety of problems. It is often imagined as a machine that

is capable of a range of abilities in the spectrum of human intelligence (Goertzel 2014).

However, many experts do not believe that the models developed using current narrow

AI methods can simply be scaled up to create a Strong AI, nor that deep learning in

its current form offers a direct path to AGI, due to various fundamental limitations

of the current methods (Pearl 2019a; Gobble 2019; Ng and Leung 2020). Despite the

excitement at the present rate of AI advancement particularly with the emergence of
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successful large language models, current methods are limited in a lot of ways, and we

are still a long way from a transformative AI that can truly be considered to be AGI.

Schölkopf (2022a) makes an interesting comparison of current ML-powered AI sys-

tems to animal intelligence, highlighting the problem of generalization as a key limi-

tation of current AI systems. The validity of machine learning predictions depend on

certain assumptions about the data on which models are trained and deployed. Most

notably, the assumption that the source and target data are sampled from the same

distribution, is routinely violated in the real world (Pan and Yang 2009; Weiss et al.

2016; Zhou et al. 2022). Generally, ML models tend to become unreliable when there

is a shift in the data distribution between source and target domains (Subbaswamy

et al. 2019). This also results in the inability of such systems to transfer what has been

learned in one environment to another environment, or to generalize learned patterns

in one problem setting in order to make predictions and inference in similar problems.

Beyond predictive analytics, machine learning is increasingly being applied to ad-

vance scientific discovery efforts. In applications focused on knowledge discovery, a

significant challenge when using many statistical techniques and ML models arises

from their tendency to imply relationships between variables that do not reflect real-

world dependencies. This is because ML methods do not necessarily model the data

generating process (Li et al. 2020). It is not uncommon for ML models to achieve pre-

dictive power by learning spurious relationships among data features. This can result

in poor reproducibility of ML outcomes. Furthermore, the opacity of many contempo-

rary successful models owing to their complexity, can create difficulties in establishing

confidence that the obtained results are defensible, particularly in scientific knowledge

discovery tasks.
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The increasing complexity of state-of-the-art ML models renders them obscure to

human comprehension, impeding our ability to understand and interpret them effec-

tively. Consequently, many ML models are often perceived as black-box systems that

simply generate predictions when given an input, but they do not readily support

inferential or decision-making tasks due to the challenge of providing comprehensive

explanations regarding the rationale behind their predictions. This is problematic in

sensitive applications (e.g., healthcare), or where there are ethical concerns (e.g., law

enforcement), and where there is need to understand how a process really works in or-

der to make the right decisions or take appropriate actions to influence future outcomes

(e.g., policy evaluation). This challenge has sparked a revival in the field of explain-

able artificial intelligence (XAI), as evidenced by notable works such as Berrada et al.

(2018); Samek and Müller (2019); Vilone and Longo (2020); Angelov et al. (2021). This

resurgence is encouraged by the observation that in some domains there is resistance

to embracing new AI applications because of a lack of trust or due to ethical apprehen-

sions on the part of users (Miller 2019; Confalonieri et al. 2021). These concerns are

often linked to the limited transparency and interpretability of complex AI systems.

Despite these limitations, AI systems driven by ML and DL are experiencing

widespread adoption across numerous sectors. Powerful AI algorithms are now de-

ployed in critical operations, including medicine, law enforcement, financial systems,

business processes, autonomous vehicles, various industrial automation processes, and

even in military operations. However, these AI systems, while being highly capable,

lack the sort of adaptable complex reasoning and emotional intelligence found in hu-

mans. This deficiency raises concerns as these systems which humanity is increasingly

becoming dependent on, may not be readily alignable to human values and could be

vulnerable to manipulation. This leads to the critical issue of AI ethics and the poten-

tial for misuse.
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AI misuse can occur intentionally or unintentionally. Unintentional misuse has

garnered considerable attention recently and is addressed in a growing body of liter-

ature on algorithmic/ML bias and fairness (Hajian et al. 2016; Barocas et al. 2017;

Corbett-davies and Goel 2022; Leslie 2020; Mehrabi et al. 2021). On the other hand,

intentional or malicious misuse has the potential to result in even more catastrophic

consequences. Adversarial AI is emerging as a field that utilizes AI for various attack

and defense strategies (Huang et al. 2011; Ng and Leung 2020). The work of Brundage

et al. (2018) delves into the landscape of malicious AI use, uncovering current vulnera-

bilities within AI systems and the security threats posed to human society. The field of

Ethical AI has emerged in response to these concerns about AI misuse (Siau and Wang

2020; Eitel-Porter 2021). Trustworthy AI, a related field, focuses on enhancing trust

between humans and AI technologies. Surveys on trustworthy AI literature by Liu

et al. (2021) and Kaur et al. (2022) explore various dimensions of AI-related concerns,

encompassing safety, reliability, privacy, discrimination and fairness, explainability, ac-

countability, and environmental sustainability.

1.2.2 Prospects and Opportunities in Causal Inference for

Improving AI Outcomes

This section confronts the issues raised in the previous section by highlighting how

causal inference concepts and methods may be useful for resolving current challenges

in AI/ML and statistical learning methods. Pearl (2018; 2019b), in discussing the

constraints of machine learning in the context of advanced intelligent systems, charac-

terizes AI systems founded on ML and DL as primarily proficient in “curve fitting,”

which represents only a basic intelligence capability. Causal models, unlike ML models,

are intentionally crafted to capture the authentic influence mechanisms inherent in the
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processes they represent, linking relevant factors in a network of causal relationships

that elucidate how changes in one variable can affect others. Consequently, it is likely

more feasible to emulate natural reasoning patterns using causal models.

Pearl (2018; 2018; 2019b) further suggests how AI models can make the progression

towards higher level reasoning using the “ladder of causation”. The ladder of causation

is a three-level hierarchy that describes what types of questions an intelligent agent can

answer based on what causal information it is able to use. Within this hierarchy, knowl-

edge about associations (acquired through observing or “seeing”), which represents the

learning capability of standard ML techniques, constitutes the most rudimentary form

of causal knowledge and is situated at the lowest rung of the causal hierarchy. True

causal reasoning capabilities are attained in the second and third rungs of the ladder

of causation, specifically: in the ability to reason about interventions (learned by “do-

ing”) and in the capacity to reason about counterfactuals (learned by “imagining”).

The integration of these advanced causal reasoning capabilities into AI systems has the

potential to elevate their overall intelligence capabilities.

Schölkopf (2022b) supports this idea by suggesting that causality’s focus on model-

ing and reasoning about interventions can help with the understanding and resolution

of the issues that are currently limiting ML and AI. With the impressive predictive

performance of current machine learning methods, an enticing prospect is the incor-

poration of structural causal models into ML to enable it to be useful for answering

questions of an interventional or counterfactual nature. Pawlowski et al. (2020) take a

step in this direction by suggesting a framework for building structural causal models

using deep learning networks.

A key motivation behind the growing engagement of ML&AI researchers with causal

inference lies in the aspiration to enhance the generalization capabilities of ML mod-

els. This is substantiated by the recent exploration of causal inference principles for
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tackling challenges in domain adaptation and transfer learning, as indicated by the

works of (Spirtes and Zhang 2016; Zhang et al. 2020; Yang et al. 2021; Scholkopf et al.

2021). Causal inference can enable stable prediction in the presence of dataset shifts,

enhancing the dependability of ML predictions when changes to the data distribution

are likely. Furthermore, it offers the prospect of mitigating the costly need for fre-

quent retraining of ML models to align them with the evolving state of the processes

they model. Subbaswamy et al. (2019) show how generalization from source to target

distributions can be improved by incorporating knowledge about the data generating

process in the form of a causal graph which reveals features that may experience a

distribution shift due to an intervention on one or more variables.

In data-driven knowledge discovery, achieving high prediction accuracy in ML is

not an indication that the results will be highly reproducible in the real world (Li

et al. 2020). The challenge of poor reproducibility in ML models can be addressed by

aligning a prediction mechanism with the true causal mechanisms governing the process

it models. Li et al. (2020) advocates for a shift from accuracy-based to robust, causality-

based model development. An ML paradigm known as informed machine learning (also,

physics-guided machine learning) revolves around the incorporation of prior knowledge

about the physical world into machine learning models (Vonrueden et al. 2021). This

approach involves leveraging logic rules and algebraic expressions to introduce prior

knowledge, often in the form of constraints, into neural networks (Xu et al. 2018;

Daw et al. 2017; Shakya et al. 2021). As knowledge representations themselves, causal

models are well-suited for such integration which could further enhance the alignment

of AI models with the true data generating process of the systems they model. An

additional benefit of aligning a prediction mechanism with the true causal mechanism is

the mitigation of spurious correlations that lead to biased predictions. This can result

in enhanced prediction performance on both test and target data, with reduced model
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overfitting. Demonstrations by Bahadori et al. (2017) and Kyono et al. (2020) illustrate

that causality-based regularization methods can improve the prediction performance

of neural network models.

In decision support applications, causal inference methods offer a direct avenue for

assessing the potential impacts of different decisions and courses of action, all without

necessitating direct intervention or experimentation on an existing process. Naren-

dra et al. (2019) demonstrate this using a methodology that transforms business pro-

cess modeling notation (BPMN) into DAGs, and subsequently employs non-parametric

models to estimate various counterfactual effects. This can be vital for business pro-

cess improvement by identifying appropriate interventions to be triggered during the

execution of a process in order to optimize its performance (Shoush and Dumas 2021).

Moreover, the capacity to predict the effects on the outcome, of interventions on fea-

tures in prediction models can be invaluable (Blöbaum and Shimizu 2017; Kiritoshi

et al. 2021).

Developing causality-based prediction models can enhance the explainability of ML

models by simplifying the understanding of how the model integrates features to gen-

erate reliable predictions. The incorporation of causal models simplifies the task of

understanding and explaining to users and stakeholders why the model functions as

it does, ultimately contributing to the establishment of more trustworthy AI systems

through improved transparency. Despite considerable recent efforts to enhance the

transparency and interpretability of ML and DL, many of these approaches still rely

on correlations rather than causation which limits their effectiveness. Feder et al.

(2021) demonstrate why such methods are insufficient due to their inability to distin-

guish between strong correlations and real causes. They introduce a causal framework

for explaining predictive models using counterfactual language representation models,

and also show how this approach helps to mitigate bias in predictive models.
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The notion that causality-based solutions are needed to properly address the prob-

lem of fairness in ML is increasingly being acknowledged (Loftus et al. 2018; Makhlouf

et al. 2020). Kilbertus et al. (2017) and Makhlouf et al. (2020) illustrate the inade-

quacies of non-causal statistical fairness notions and provide a review of various causal

characterizations of the fairness problem that could address those limitations. An

emerging body of research is dedicated to characterizing, identifying, and mitigating

various forms of discrimination in both data and algorithms, leveraging principles from

causal inference theory and methods (Zhang et al. 2017; Bonchi et al. 2017; Zhang et al.

2016; Wu et al. 2019; Zhang and Bareinboim 2018). Kusner et al. (2017) introduce a

framework for modeling fairness using causal concepts. They use the notion of coun-

terfactual fairness to evaluate the fairness of decisions made by algorithms (e.g., label

classification) based on how different the decision would be in a counterfactual world

where the individual belonged to a different demographic group. A better understand-

ing of the underlying structure of the relationships between variables also provides

further insight for constructing models that are not biased or discriminatory.

One noteworthy area of opportunity for the application of modern causal inference

concepts, which has received comparatively less attention is in combating the malicious

use of AI. Causal methods capable of reverse-engineering the underlying process mech-

anism from observational data can serve as a powerful tool for assessing the effects

of unusual interventions or adversarial counterfactual scenarios before they material-

ize. They can be designed to identify sources of the changes in data and may expose

how those changes can be propagated throughout the system (see Guyon et al. 2007;

Subbaswamy et al. 2019; Makhlouf et al. 2020). Consequently, an AI system equipped

with such capabilities can detect and potentially prevent adversarial manipulations of

its data or algorithms. Additionally, it can make informed determinations about the

suitability of specific datasets for training fair prediction models. This is important
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for AI applications where bias detection and mitigation are paramount, such as those

that bear significant consequences on human lives and society.

1.3 Objectives

The overall goal of this research is to develop causality-based solutions capable of har-

nessing observational data to enhance various outcomes derived from machine learning

and other data-driven learning systems. To achieve this goal, the following objectives

are specified:

� Survey and discuss approaches for causal inference using observational data.

� Explore the theoretical underpinnings of structural causal models and the land-

scape of causal learning tasks, discussing the fundamental concepts, prominent

methodologies and emerging techniques that form the bedrock of modern causal

inference.

� Identify research opportunities for integrating causal methodologies into data-

driven systems, aiming to bolster knowledge discovery, and address specific cur-

rent limitations of machine learning.

� Develop a causality-based method that addresses an important limitation of ma-

chine learning.

� Develop a data-driven causality-based solution that can be applied to an impor-

tant problem in industry.

� Assess the methods developed through this work by conducting simulation studies

that employ datasets with well-understood properties and well-defined ground-

truth data generation mechanisms.
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� Discuss in detail the results obtained from the studies, highlighting the contribu-

tions of each study.

1.4 Organization of Dissertation

The rest of this dissertation is organized as follows. Chapter 2 features a discussion on

theoretical frameworks which enable causal inference using observational data. Funda-

mental causal concepts are introduced through the potential outcome model framework

before a more in-depth exploration of the principles of the broader structural causal

model (SCM) framework.

Chapter 3 engages in a broad exploration of current methods and approaches for

causal inference using observational data. The author delves into the diverse types of

learning tasks utilized for addressing causal inquiries in a variety of scenarios. The

causal learning tasks are categorized into two primary groups: tasks aimed at estimat-

ing treatment or causal effects, and tasks centered around modeling the causal structure

of the variables within the system under study. The author contends that in a general

context, the latter task is a prerequisite for the former to be accomplished. This sets

up a broad discussion of algorithmic techniques for learning causal structures from

observational data, commonly referred to as causal discovery methods. Finally, two

strategies for integrating causal inference and machine learning are briefly introduced.

Chapter 4 confronts the problem of data-driven root cause analysis (RCA). A graph-

ical causal model representation termed as root cause graphs (RCG) is suggested for

depicting the structural mechanism that leads to an observed event of interest. In

industrial settings, the event of interest is often some type of failure. A novel causal

learning method based on SCMs is proposed for RCA using observational time-to-event
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(TTE) data. This method is demonstrated to improve the estimation of the impacts

of changes to variables within the system on the outcome of interest.

In Chapter 5, the integration of causal inference and machine learning through

feature selection is explored. With the goal of improving the outcome of ML gen-

eralization through domain adaptation, as well as enhancing the interpretability of

prediction models, two novel causal feature selection algorithms are proposed. The

first algorithm is shown to enhance prediction performance in comparison to a related

non-causal filter feature selection method. The second algorithm demonstrates the

capability to adapt the feature selection process to a target domain, mitigating the im-

pact of certain distribution shifts between source and target datasets. The findings of

this study shed new light on the specific problem settings and conditions where causal

feature selection approaches can excel.

Finally, the dissertation concludes in Chapter 6 with a recap of the contributions

of this work. The synergies between causal inference and statistical/machine learning

are further emphasized.
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Chapter 2

Frameworks for Causal Learning

Cartwright (2004); Rubin (2005); Pearl (2009a, 2013) emphasize the need for the

formalization of causal inference as a scientific theory with linguistic, symbolic and

methodological developments, in order to complement the tools provided by statistics

and probability for the effective elicitation of causal knowledge from data. Two of

the most popular theoretical frameworks for causal inference are the Potential Out-

come Model (POM) framework (Rubin 1974, 2005; Imbens and Rubin 2015) and the

Structural Causal Model (SCM) framework (Pearl 2000, 2009a). These frameworks

generalize and extend principles for causal inference in the ideal experimental setting

to allow for inference in the observational setting. Many of the prominent methods

for causal inference today are based on these frameworks. The theories and concepts

reviewed in this section serve as a foundation for subsequent discussions in the rest of

this dissertation.

Besides the POM and SCM frameworks, it is worth mentioning that other frame-

works exist for causal inference. Granger Causality (Granger 1969; Stern 2011), a

special notion of causation which is prediction-based is used for causal inference with

time series data and is popular in the social sciences. Structural econometrics provides

several tools for parametric modeling and estimation of causal effects. Elements of

the econometric approach are reflected in SCMs through structural equations models

(SEMs). The Sufficient Component Cause (SCC) model (Rothman and Greenland
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2005; Flanders 2006) which can be found in various biology and epidemiology litera-

ture, tries to describe a complete causal mechanism including events and states that are

necessary and sufficient for the realization of an outcome of interest, while recognizing

that the conditions may differ between different individuals or groups. The Quanti-

tative Comparative Analysis (QCA) method (Marx et al. 2014; Berg-Schlosser et al.

2009) is a way of using boolean logic and set theory to model situations where multiple

combinations of several variables may be sufficient to produce an outcome. The SCC

and QCA frameworks may be able to capture very specific and complex behaviors in

certain causal mechanisms by taking a deterministic view on the nature of causality.

Assumptions are necessary for practical causal inference and these causal frame-

works are useful for articulating the relevant assumptions for causal inference in dif-

ferent scenarios. This dissertation refrains from delving into the age-old debate on

whether causality is deterministic or probabilistic - see Rosen and Press (1978); Frosch

and Johnson-Laird (2011). From the author’s view of existing literature, most of the

recent advancements in the science of causality, including its algorithmization and pro-

gressive incorporation into ML & AI techniques, have been achieved by leaning towards

a probabilistic view of causality. However, while the SCM approach which has been

central to many recent advancements in causality is primarily probabilistic, it does

invoke deterministic characterizations – notably through the Markov condition (Pearl

1996).

2.1 Potential Outcome Model Framework

The POM framework characterizes the fundamental challenge of causal inference and

lays down principles that allow causal effects to be estimated not only from RCTs, but

17



also from imperfect experiments and observational settings. Causal inference practi-

cally involves assessing how the manipulation of a treatment affects the outcome, while

holding other relevant variables constant (Heckman 2008).

Consider a set V, of random variables under study with subsets X, Y , and Z where

X represents a treatment variable for which its causal effect on the outcome variable

Y is of primary interest. Z represents a set of covariates measured alongside X and

Y which may confound the relationship between X and Y . Assuming X and Y are

a binary treatment and outcome respectively, both variables can take on the value of

0 or 1. For an experimental unit or observed instance i, a potential outcome Y x
i is

an outcome which will be observed given a particular treatment X = x. For example,

when Xi = 1 is observed, the potential outcome is expressed as Y 1
i . Note that Y 1

i may

manifest two possible outcome values: Yi = 0 or Yi = 1.

The potential outcome model framework hypothetically formulates the problem of

causal inference as the difference in potential outcomes.1 Practically, this implies that

one needs to measure all possible outcomes for each potential treatment and compare

them in order to estimate causal or treatment effects. For individual i in our example,

this causal effect is the difference between the two potential outcomes as expressed in

Equation 2.1.

Causal Effect = Y 1
i − Y 0

i (2.1)

However, in reality only one potential outcome can be observed for an individual at

any given time. This is the fundamental problem of causal inference – for any particular

subject, we can only observe one of the potential outcomes (Imbens and Rubin 2015).

Regardless of whether X = 1 or X = 0, only one of the two possible outcome values,

Yi = 1 or Yi = 0, can be observed for any individual. A counterfactual outcome is an

outcome that would be observed had the treatment been different. So for individual i,

1Other comparison operators besides difference could also be used, e.g. ratio.
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if X = 1 is observed, the counterfactual outcome for unit i, Y 0
i , would be the outcome

that would have been obtained had X = 0 been observed.

Because of the fundamental problem of causal inference, it is impossible to directly

compute causal effects for an individual unit using Equation 2.1. Since in reality

only one realization of all potential outcomes for a sample unit can be observed, the

common strategy is to compare multiple units in order to estimate the average effect

of a treatment on an outcome. This means that treatment effects are estimated at

the population level. Assuming treatment X is binary, the average causal effect (ACE)

or average treatment effect (ATE) is the difference between the expected values of Y

given treatment X = 1 on the whole population, and treatment X = 0 on the whole

population.2 Hence ATE can be expressed as

ATE = E(Y 1)− E(Y 0) (2.2)

where Y 1 is the potential outcome when treatment is X = 1, and Y 0 is the potential

outcome when treatment is X = 0

Equation 2.2 is still a theoretical expression that cannot be directly computed since

both potential outcomes cannot be observed for all samples in the same population,

however it is easier to estimate compared to 2.1. Note that the ATE is not the same as

a naive causal estimator (NCE) which is simply calculated by directly comparing

the average values of the outcomes observed from two different samples given differ-

ent treatments, without accounting for the differences between the individuals in the

sample groups. Without ensuring that the individuals being compared are reasonably

similar, the analysis becomes prone to confounding and selection bias.

NCE = E(Y |X = 1)− E(Y |X = 0) (2.3)

2Causal effect and treatment effect are used interchangeably in this work.
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NCE is the difference between those who got the treatment and those who did not.

This measure by itself does not consider sample selection mechanism (e.g., treatment

selection could have been by individual choice) and thus is not a reliable causal estimate

when using observational data. With well-designed RCTs however, the naive estimator

is expected to approximate the ATE since randomization nullifies selection bias.

At the population level, it is easier to estimate causal effects by comparing the differ-

ence between two sample groups randomly drawn from the same population that have

been assigned different treatments. So, in practice different subsets of the population

are actually compared since the same group can not be assigned different treatments

at the same time. The goal is to have two sample groups that can be assumed to be

similar to each other except that they are subjected to a different treatment. This is

the basis for most methods for treatment effect estimation. The similarity between

sample groups to be compared can be achieved by randomization as in RCTs or by

other techniques such as propensity score methods. The average difference in out-

comes between the two similar sub-populations which have been exposed to different

treatments is the estimated ATE.

Several other treatment effect measures are also defined theoretically in terms of

potential outcomes. For example, the average treatment effect on the treated (ATT)

considers only the treated sub-population.

ATT = E(Y 1|X = 1)− E(Y 0|X = 1) (2.4)

The average treatment effect on the non-treated (ATN) considers only the untreated

sub-population.

ATN = E(Y 1|X = 0)− E(Y 0|X = 0) (2.5)
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The conditional average treatment effect considers a subset of the population with

similar values of covariates or confounders Z.

CATE = E(Y 1|Z = z)− E(Y 0|Z = z) (2.6)

The CATE is an important measure because in many applications sub-populations

with different characteristics could be affected in different ways by a particular treat-

ment. When this happens, the ATE can be a misleading indicator of causal effects

when considering sections of the population since the population is not homogeneous.

CATE isolates the treatment effects for different sub-populations, partitioned based on

the values of relevant covariates. This accounts for the heterogeneity in the population

being studied with respect to the effect of the treatment. Hence, CATE is also referred

to as the heterogeneous treatment effect. The isolation of effects in sub-populations

can be done up to the individual level in which case CATE would reflect the individual

treatment effect (ITE). ATE is sometimes calculated from CATE by taking a weighted

average of the CATE over all sub-populations.

2.1.1 Assumptions for Causal Inference

To compute reliable estimates of causal effects, certain conditions are assumed about

the subjects and the variables in the data. The POM framework is grounded in the

following assumptions (Imbens and Rubin 2015).

Ignorability : This assumption states that treatment assignment is independent of

potential outcomes conditional on a set of covariates. This means that there can be no

unmeasured or unaccounted variables which confound the causal relationship between

the treatment and the outcome. Hence treatment assignment is said to be ignorable,
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given the relevant set of covariates Z. This is often the most consequential assump-

tion in most causal inference tasks. It is also sometimes referred to as the assignment

assumption, or unconfoundedness assumption, or exchangeability assumption in var-

ious literature. While unconfoundedness can be achieved through randomization in

experimental settings, it is typically more difficult to satisfy this assumption in obser-

vational studies. However, there are several methods for enhancing the plausibility of

this assumption in observational settings.

Stable Unit Treatment Value (SUTVA): This assumption has two aspects. The first

entails that there is no interference between the subjects being studied. This precludes

interactions and influence between the units under study. The second aspect assumes

that there are no hidden variations of the treatment values. So all treatment levels are

assumed to be known.

Positivity : This states that the probability of receiving any value of treatment is

non-zero for all subjects given covariates Z. So there is some chance that any subject

could receive any treatment, and treatment is not deterministic as a function of Z.

2.2 Structural Causal Model (SCM) Framework

The Structural Causal Model (SCM) framework is a broad theoretical framework that

combines features of the potential outcome framework, structural equations modeling,

and probabilistic graphical modeling (Pearl 2009a, 2018). In this framework, causal

mechanisms can be represented using graphical models or by a corresponding set of

equations known as a functional causal model (FCM). These representations describe

the structural dependencies that exist between a set of variables without having to

specify the precise functional forms and parameters characterizing the relationships
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(Pearl 2009b). The functional parameters can subsequently be fully specified as in lin-

ear structural equations models (SEMs). Thus, FCMs consist of a set of non-parametric

SEMs.

In probabilistic graphical models, the nodes in the graph represent the variables

in the system under study, while the edges represent dependencies between pairs of

variables. The basic type of graph used to represent causal structures is the Directed

Acyclic Graph (DAG) in which directed paths that start and end at the same node

(cycles) are not permitted. DAGs can be used to encode information about joint

distributions and conditional independencies via a criterion known as d-separation (see

Definition 2.2.2). Graphical models are visual, easy to interpret, and make explicit

the beliefs and assumptions of the modeler about the process under study.

The Bayesian Network (BN) is a type of probabilistic graphical model that is based

on DAGs (Koller and Friedman 2009). It represents a set of variables, with associated

marginal and conditional probabilities, and their joint probability distribution (Korb

and Nicholson 2008).3 A BN encodes the set of conditional independencies in the joint

probability distribution over the variables in the system. With BNs, it is important

to pay attention to the missing edges in the network because they reflect the main

assumptions about the data. As Korb and Nicholson (2008) explain “the lack of an

edge between two variables must be reflected in a probabilistic independence in the

system being modeled.”

BNs may be causal or non-causal depending on the assumptions supporting a par-

ticular representation. In this work, we are mainly interested in causal BNs where a

directed edge is assumed to indicate the direction of causation between two adjacent

nodes and DAGs are assumed to represent the underlying causal structure for a set of

3The terms BN and DAG are commonly used interchangeably in causal inference literature. The
main difference between the two is that a Bayesian network maps a probability distribution, while a
DAG is a representation that does not have to be linked to a probability distribution.
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variables.4 Hence, for a causal graph, G, of a set of variables, V, a directed edge from

Vi to Vj indicates that Vi is a direct cause of Vj relative to V. For in-depth discussions

on causal graphs, graphical models, and Bayesian networks, see Lauritzen (1996); Pearl

(2000); Greenland and Pearl (2006); Koller and Friedman (2009); Korb and Nicholson

(2010); Pearl et al. (2016).

A B

C H

D E F

G

Figure 2.1: DAG representation

A := fa(εA)

B := fb(εB)

C := fc(A,B, εC)

D := fd(C, εD)

E := fe(D, εE)

F := ff (C,E, εF )

G := fg(E, εG)

H := fh(εH)

Figure 2.2: FCM representation

Figure 2.1 is an example of a causal DAG or BN while Figure 2.2 outlines its corre-

sponding FCM or set of SEMs5. This model consists of eight variables {A,B,C,D,E,F,G,H}

and the dependencies between the variables are expressed in both the graph and the

set of structural equations comprising the FCM. In an SEM, each variable is a function

of its direct causes and an error term ε. Notice that the SEMs do not commit to a

specific functional form at this stage. Also, the unidirectional assignment operator :=

4(Korb and Nicholson 2008) explain that causal models are often the simplest of Bayesian networks
capable of representing the probabilistic fact.

5In this context, the author uses SEM and FCM interchangeably. In some fields SEMs denote
parametric sets of equations with explicitly specified functional forms and parameters, and may not
necessarily imply a causal relationship. (Glymour et al. 2019) discuss the class of parametric structural
equations models which describe each variable as a deterministic function of its direct causes.
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is used in the SEMs instead of the equals sign (=) to make it clear that the relationship

depicted is asymmetric.6

Error (ε) terms have been omitted in the graph for simplicity, as is usual in the

graphical representation. The error terms represent the uncertainty or noise in the

relationship. They also account for the effect of variables that may exclusively affect a

particular node but are not accounted for in the model. The error terms together are

assumed to be jointly independent. For example, for the variable D, εD is a source of

variation that only affects D relative to the rest of the variables in the model, and εD

is independent of all other ε’s.

In BN terminology, familial relationships are used to describe connections between

a set of variables or nodes in a graph. In the BN in Figure 2.1, {A,B} are parents

of C, and {D,F} are children of C. Similarly, {F,G} are children of E, and this makes

F and G siblings. D and F are grandchildren of both A and B. The set {C,D,E,F,G}

consists of descendants of A and B, while A and B are likewise their ancestors. A is

the spouse of B and vice-versa, while H is unrelated to any other node in the Bayesian

Network.

2.2.1 Definitions and Assumptions

Definition 2.2.1 Conditional independence: Given a joint probability distribution

consisting of a set of variables {X,Y,Z}, Y is conditionally independent of X given Z

if the conditional distribution of Y given X and Z does not depend on X. This is

expressed mathematically as

Y ⊥⊥ X | Z, if P (Y | X,Z) = P (Y | Z).

This also implies:

P (Y,X | Z) = P (Y | Z)× P (X | Z).

6some texts use the symbol ← instead.
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Consider the basic graph structures graphs of the variables {X,Y,Z} with the con-

figurations in Figure 2.3. These three types of graph junctions are useful for illustrating

how conditional independencies are encoded in causal graphs.

X Z Y

(a) A chain

X

Z

Y

(b) A fork

X

Z

Y

(c) An inverted fork

Figure 2.3: Three basic graph junctions

The graph in Figure 2.3a is called a chain. In this graph the effect of X on Y is

transmitted through Z. Hence, the variable Z is called a mediator because it explains

the causal effect of X on Y . There is marginal dependence between every pair of nodes

in this graph which entails that Y 6⊥ X. However, Y is conditionally independent of

X given Z (Y ⊥ X | Z).

Figure 2.3b is referred to as a fork. In this graph Z exerts causal influence on

both X and Y . In this case X and Y are associated and hence marginally dependent

(Y 6⊥ X) because of their mutual dependence on Z, however, they are not causally

dependent. Their marginal dependence is due to their common causal relationship

with Z. Hence Z is referred to as a confounder because of the spurious relationship it

induces between X and Y . Y becomes conditionally independent of X when Z is given

(Y ⊥ X | Z). This confounding relationship is a great example of how correlation

does not imply causation. Note that the chain and fork structures encode the same

conditional independencies.

The graph in Figure 2.3c is called an inverted fork. Z in this case is referred to as

a collider because the separate causal influences of X and Y meet (collide) at Z. A

collider node in a graph has two or more edge arrows pointing into it. In this setting,

X and Y are marginally independent (Y ⊥ X) , but given Z they become dependent
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(Y 6⊥ X | Z). Notice that the inverted fork encodes a different set of independence

constraints compared to the chain and fork structures. Such structures can be uniquely

determined from a joint distribution through conditional independence testing under

certain conditions.

The following graphical causal modeling concepts as formalized in Pearl (2014) are

hereby introduced. First, a path is defined as a sequence of adjacent nodes and edges

in a graph.

Definition 2.2.2 D-Separation: A path p is said to be d-separated by a set of nodes

Z in a graph if either

1. Z includes at least one arrow-emitting node in path p

2. p contains a collider node that is not in Z and has no descendant in Z.

A path that satisfies the above condition is said to be blocked by Z, otherwise it is said

to be activated by Z. If the collider node referred to has a descendant in Z, then it is

a partial block. Hence, we say that a set of variables Z d-separates two or more other

variables, e.g., X and Y if it blocks the path between them. Z blocks the path from

X to Y in both Figure 2.3a and Figure 2.3b, but activates the path in Figure 2.3c.

Definition 2.2.3 I-map DAGs: A DAG G is an independence map (I-map) of a

dependency model M if every d-separation condition in G corresponds to a conditional

independence relationship in M. A DAG is a minimal I-map if none of its edges can

be deleted without nullifying its I-map property

Definition 2.2.4 Bayesian network: Given a joint probability distribution P on a

set of variables V, a DAG G is a Bayesian network if and only if it is a minimal I-map

of P.
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Definition 2.2.5 Perfect maps: A DAG G is a perfect map of a probability distri-

bution P if P embodies all independencies present in G, and no others.

A perfect map satisfies both the Markov and Faithfulness conditions (Markov con-

dition is introduced below while faithfulness condition is discussed in section 3.2).

Definitions 2.2.3 and 2.2.4 encapsulate two important assumptions about the type of

graphical representations used in structural causal models: the causal Markov con-

dition and the minimality condition described below. But first, causal sufficiency, a

common assumption in many causal inference methods is introduced.

Causal sufficiency: The causal sufficiency assumption states that the set of mea-

sured variables V includes all common causes of all pairs of variables in V. V is said

to be causally sufficient if for every pair of variables V1, V2 ∈ V, every common direct

cause of V1 and V2 relative to V is also a menber of V (Zhang 2008). That is, there

are no unmeasured confounders in the set of variables in V.

Causal Markov Condition: For a Bayesian network G, every variable Vi in G is

conditionally independent of its non-descendants (non-effects) given its parents (direct

causes) Pa(Vi). This assumption is known as the Markov condition. The Markov

condition has an implication on the factorization of joint distributions using graphi-

cal criteria. Via the chain rule of probabilities, the probability of a joint distribution

{V1, V2, ...Vn} ∈ V can be factorized as P (V) =
∏n

i=1 P (Vi|Pa(Vi)) according to this

condition. The Causal Markov Condition (CMC) interprets these dependencies ex-

pressed by a Bayesian Network as causal (Scheines and Sobel 1997; Spirtes and Zhang

2016).

Minimality Condition: The minimality condition states that any proper sub-graph

H of graph G would violate the Markov Condition (Spirtes et al. 2000). That is,

removing any edge in G would cause the graph to imply a conditional independence

that does not exist in P (G is a minimal I-map of P ). The CMC and minimality
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conditions connect a DAG to the probability distribution it represents (Spirtes et al.

2000).

Acyclicity : Just like the DAGs that are used to represent them, the causal structures

considered in this work are assumed to be acyclic. Cyclic causal mechanisms in the

real world can often be modeled as acyclic by temporally unfolding relevant variables

or events. It’s worth noting that ongoing research is addressing cyclic causal structures

within the SCM framework. The reader is referred to the paper by Bongers et al.

(2021) for a detailed discussion of the desirable properties and limitations of acyclic

causal graphs, and recent theoretical work on cyclic graphical models.

2.2.2 Intervention and Counterfactual Analysis

One area where association-based prediction methods struggle is when a change occurs

in the modeled system that results in a modification of its joint probability distribution.

Such a change can occur due to an “intervention” on one or more variables. Causal

inference can enable reliable inference and prediction of outcomes of interest in the

presence of interventions that affect the data distribution. Intervention-type queries are

important in many applications where decision makers need to understand what actions

to take in order to affect a possible outcome. Conducting controlled experiments allow

the direct manipulation of variables to see how they affect the outcome. In situations

where experimentation is impractical, the capability to address intervention queries

using observational data takes on significant importance.

A conditional probability distribution can be useful for investigating possible con-

founding effects. However, the probabilistic conditioning operation, e.g., P (Y | X),

stems from mere observation and is ambiguous as to whether the observed association

is causal (Eberhardt 2017). Pearl (2000; 2009a; 2016) introduced the do-operator to

operationalize the intervention mechanism, enabling intervention queries using data.
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Consider a situation where the value of a variable X is fixed by an intervention X = x

as opposed to allowing X to obtain its values organically from its natural data gener-

ation process.7 While the probability that Y = y conditional on observing X = x is

expressed as P (Y = y | X = x), the probability of observing Y = y after manipulating

X (X = x) is expressed as P((Y = y) | do(X = x)). P (Y | do(X)) can be described as

the post-intervention distribution of {X, Y }.

In graphical models, an intervention is performed by removing all incoming arrows

into the variable such that the variable has no natural causes but takes on values set by

a manipulator. Consider the task of investigating the effect of X on Y in Figure 2.3b,

fixing X will result in the graph in Figure 2.4 which allows the correct estimation

of P (Y | do(X)). In this graph it becomes clear that Y is no longer statistically

associated with X so one can infer that X is not a cause of Y in this distribution.

On the other hand, in SEMs, intervention is performed by setting the treatment X =

x as in the corresponding SEMs in Figure 2.4. Modeling an intervention using the

X

Z

Y

x
X := x

Z := fz(εZ)

Y := fy(Z, εY )

Figure 2.4: Intervention on X in Fig. 2.3b and corresponding SEMs

do-operator allows the causal effect of X on Y to be defined as the distribution of

Y after performing do(x), that is P (Y | do(X)). By this hypothetical definition of

interventional distribution, the causal effect of an intervention x1 relative to another

x0 is given by

P (Y | do(X = x1))− P (Y | do(X = x0)) (2.7)

7As in how a variable may be manipulated in an experiment.
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This is analogous to the potential outcome definition of causal effects in Equations 2.1

and 2.2. It is also evident that the fundamental problem of causal inference applies

here and so do the same constraints that make the calculation of individual treatment

effects difficult as discussed in Section 2.1.

Consider the graph in Figure 2.5a. The effect of X on Y cannot be disentangled

from the effect of Z on Y using observational data alone. Suppose we fix X as in

a controlled experiment, we get the graph in Figure 2.5b. The causal effect of an

intervention on X becomes obtainable, and can in fact be derived from the conditional

probability observed from the manipulated model Pm as in Equation 2.8. Pearl (1995;

2016) further derives the backdoor adjustment formula (or simply adjustment formula)

in equation 2.9 for computing causal effect of variable X on variable Y , given data

on a sufficient set of confounders Z ′.8 Assuming the covariate Z is equivalent to Z ′,

this operation amounts to adjusting for or controlling for Z. The derivation of the

adjustment formula successfully stripped out the do-expression leaving only marginal

and conditional probabilities which can be estimated from observational data. This

way the adjustment formula can compute the causal effect of X on Y by evaluating

the association between X and Y at each value of Z, and averaging over those values.

X

Z

Y

(a) Probability model P

X

Z

Y

x

(b) Manipulated probability model Pm

Figure 2.5: Intervention modeling

8In this article, the author often refers to the set of variables sufficient for the control of confounding
- Z ′, as simply the sufficient set. Z ′ is introduced to indicate that the set of measured covariates is
not necessarily equivalent to the sufficient set. Z ′ is used instead of Z to specifically indicate that the
covariates being referred to constitute the sufficient set.
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P (Y = y|do(X = x)) = Pm(Y = y|X = x) (2.8)

P (Y = y|do(X = x)) =
∑
z

P (Y = y|X = x, Z = z)P (Z = z) (2.9)

Another type of causal query is the counterfactual query. This type of query is of

interest in many applications and takes the form of “If X were true, would Y have

been true?”(Balke and Pearl 2013). The perspective of the query is after the fact.

That is, after data about a series of events has been observed, what would have been

the outcome if say one of the events had not occurred? Its essence is that of a “What

if” analysis. Pearl et al. (2016) outlines this idea of counterfactuals clearly as a tool for

comparing two alternate (potential) outcomes under the same exact conditions except

for the antecedent, which is an alternate treatment. It differs from intervention queries

in that an intervention query does not refer to a world where a different event had

already occurred and its resultant outcome had been observed.

A counterfactual can be defined as follows: Given a unit i with variables X and Y

related by model M (which is defined by a set of equations), the counterfactual value

of Y for an individual i when X = x, Y x(i), is given by Y x(i) = YMx(i). Where Mx is

the modified M model with X set to X = x. For a binary treatment X, suppose we

have observed X = 0 and Y = y, the counterfactual effect can be expressed as

E(Y 1 | X = 0, Y = Y 0 = y) (2.10)

where Y 1 is the hypothetical outcome (potential outcome) if treatment had beenX = 1.

This hypothetical outcome is conditioned on the fact that the treatment X has already

been observed as X = 0 resulting in the outcome Y 0.
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Counterfactual analyses allow the prediction of features of a system as if the system

had been different (Hernan et al. 2019). They can answer causal questions at the indi-

vidual level where intervention queries may struggle due to the fundamental problem

of causal inference. Hence the result of a counterfactual query is an actual value of the

variable, while intervention queries are typically answered in probabilistic terms (Pearl

et al. 2016). Pearl et al. (2016) note that interventional query estimates could be used

to approximate counterfactuals in certain applications. For a comprehensive treat-

ment of how SEMs encode counterfactuals and approaches to counterfactual analysis,

see (Balke and Pearl 2013; Pearl et al. 2016). For practical examples and applications

of counterfactual estimation, see (Bottou et al. 2013; Pan and Qiu 2021)

2.2.3 Identification, Confounding, and Covariate Selection

Causal effect identifiability involves assessing whether causal effects can be inferred

from data given a structural model (Galles and Pearl 1995; Pearl 2000; Tian and Pearl

2002; Hünermund and Bareinboim 2023). Elwert (2013) aptly describes identification

analysis as determining whether and when it is possible to strip an observed association

of all spurious components. Causal effects are generally identifiable in the absence of

unmeasured confounders (Tian and Pearl 2002). Confounding is a primary challenge

in causal inference using non-experimental data.

Consider again the graph in Figure 2.5a where Z is a confounder in the relationship

between X and Y . X has a direct effect on Y , but this effect is confounded by the

variable Z which affects both X and Y . To estimate the causal effect of X on Y , we

want to measure P (Y | do(X)) and not the conditional P (Y | X), so the direct effect

X → Y needs to be disentangled from this confounding situation. With reference

to a causal graph, to estimate causal effects, we have to measure effects along causal

(front-door) paths alone (X → Y , not X ← Z → Y ).
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In many types of analyses this is achieved by “adjusting” for the confounding set

of covariates, Z. In practice, adjusting for Z can be achieved by controlling Z in an

experiment, or by including Z in a statistical model such as a regression model, or

conditioning on Z in a statistical analysis.9 Using graphical causal models, adjustment

can be done via the backdoor adjustment formula described in Equation 2.9. The

challenge then becomes – how to identify the sufficient set Z ′, for adjusting for con-

founding? Pearl’s (Pearl 1995, 2000) back-door criterion is a useful graphical criterion

for determining the sufficient covariate set Z ′.

Definition 2.2.6 Back-door criterion: Given a set of variables V and its corre-

sponding DAG G, a set of variables Z ′ ⊂ V satisfies the back-door criterion relative to

X and Y in G if:

1. No variable in Z ′ is a descendant of X.

2. Z ′ d-separates X and Y . That is Z ′ blocks every path between X and Y that

contains an arrow into X (back-door path).

Without the aid of a structural causal model, the process of identifying Z ′ becomes

notably less certain. VanderWeele and Shpitser (2011) recount the debate by experts

on whether all pre-treatment covariates should be adjusted for. While adjusting for

all measured covariates was once considered conventional wisdom in many fields, it

has been shown to be a potentially hazardous general rule that can result in biased

inferences in certain cases (Greenland and Pearl 2011; Pearl and Mackenzie 2018; Van-

derWeele 2019; Tafti and Shmueli 2020). For example, adjusting for colliders or medi-

ators can be counter-productive (See Figure 2.3 for reference) . Adjusting for a collider

can open a causal path where none exists leading to the estimation of spurious causal

effects. On the other hand adjusting for a mediator could block the very causal path

9Z here corresponds to the sufficient set Z ′.
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one is interested in measuring since the effect of interest may completely flow through

a mediator. A simple example is a case such as Figure 2.3c, where adjusting collider Z

opens the path between X and Y . Estimating the causal effect of X using P (Y | X,Z)

rather than P (Y | X) in this scenario will lead to the wrong conclusion that X is a

cause of Y . Notice that X is marginally independent of Y (when Z is not considered)

according to the d-separation principle. It is necessary to consider principled identi-

fication criteria when trying to estimate causal effects from observational studies as

over-adjustment or under-adjustment of covariates can both be problematic10 (Green-

land and Pearl 2011; Pearl and Mackenzie 2018; VanderWeele 2019; Hernán and Robins

2018; Tafti and Shmueli 2020). Elwert (2013) concisely reviews several causal effect

identification criteria.

Pearl’s backdoor criterion provides graphical conditions for when and how covariate

adjustment can be used to sufficiently control for confounding. Thus it is a tool for

covariate selection when given a graphical model. Given this criterion, it is easy to

determine that variable Z is a sufficient adjustment set, given that the DAG in Fig-

ure 2.5a is true for the set of variables {X, Y, Z}. Hence we can compute the the effect

of an intervention on X using P (Y | do(X)) =
∑

z P (Y | X,Z)P (Z) from equation 2.9.

Shpitser et al. (2012) generalize this criterion by proposing a ‘complete’ criterion for

determining a sufficient set for covariate adjustment. Similar to the back-door criterion

though, this criterion requires that all confounders are observed and measured. Pearl

proposed another graphical identification criterion known as the the front-door crite-

rion (Pearl 1995, 2000) together with an accompanying adjustment formula known as

the front-door adjustment formula for a special case when a confounding variable is not

observed, but a known mediator exists in the causal path between the treatment and

10Over-adjustment and under-adjustment are sometimes referred to using the terms included vari-
able bias and excluded variable bias respectively.
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the outcome. In such a case covariate adjusment can be performed using the front-door

adjustment formula (Pearl et al. 2016).

In some cases, for example high-dimensional data, it may be unrealistic to expect

a precise understanding of the underlying causal mechanism in the dataset such that a

precise graphical model could be constructed. In such scenarios where there is limited

knowledge of the true causal structure of a process, VanderWeele and Shpitser (2011)

propose the disjunctive cause criterion which only uses knowledge of whether a variable

is a cause of the treatment X, or the outcome Y to determine if it belongs in the set

of variables to be adjusted.

It is worth noting how the back-door adjustment formula has only conditional prob-

abilities and no do-operator. This means that the expression can be evaluated using

observational data. This is the purpose of graphical adjustment formulas – to rid in-

terventional expressions of the do operator so that interventional distibutions can be

computed from observational data. Pearl’s do-calculus (Pearl 1995, 2000, 2009b, 2012)

provides a set of operations for deriving adjustment formulas given a graphical model.

The equations of the do-calculus together are sound and complete for determining the

identifiability of causal effects from data given a graphical causal model of the data

distribution (Huang and Valtorta 2006; Shpitser and Pearl 2008; Pearl 2012). Proba-

bility distribution equations containing the do-operator can be resolved into equations

without the do-operator using the do-calculus, enabling the ability to predict the effect

of interventions without having to intervene in the real world.
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Chapter 3

Causal Inference Tasks

Most causal investigations can be categorized under two general groups of tasks; treat-

ment effect estimation and causal structure modeling. The first category involves esti-

mating the magnitude of the effect of one variable (the presumed cause or treatment)

on another variable (the outcome or response) in a system under study. The second

category of causal learning tasks has to do with eliciting and representing the struc-

ture of the causal relationships between a set of variables. This structure delineates

beliefs and assumptions about the direct connections between variables, the directions

of influence, and how influence propagates through the system. This chapter provides

a review of prominent methods, as well as emerging techniques used for both causal

inference tasks.

3.1 Treatment Effect Estimation

With data obtained from randomized controlled experiments, average treatment effects

(ATE) can be estimated using the expression in Equation 2.2. In observational studies

or data obtained from “imperfect” experiments, other techniques need to be employed

to mitigate confounding. Methods that adjust for confounding generally produce condi-

tional ATE (CATE) estimates. This discussion to a degree aligns with the classification

of treatment effect estimation methods in Guo et al. (2020) by grouping these methods
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into the following classes: (1) traditional methods addressing ignorability, (2) tradi-

tional methods relaxing the ignorability assumption, (3) advanced estimation methods,

and (4) adjustment formulas using graphical criteria. Methods that employ graphical

identification criteria such as the backdoor criterion were discussed briefly in Section

2.2.2.

3.1.1 Traditional Methods Addressing Ignorability

The ignorability assumption (see Section 2.1.1) implies that there are no unmeasured

covariates which affect the treatment selection and the outcome. Randomized Con-

trolled Trials (RCTs) are widely held as the “gold standard” for causal inference by

many because confounding influences can be nullified through randomization. This

section focuses on methods that attempt to address ignorability by adjusting for con-

founders. These approaches allow causal effects to be estimated from observational

data. However they can also be useful in experimental settings due to the difficulty in

designing and executing perfect experiments in many scenarios. Issues of selection bias,

confounding bias or covariate imbalance may yet arise even in experimental settings

(Rosenberger and Lachin 2015).

Matching and Propensity Scores: The problem of covariate imbalance arises

when the distribution of certain covariates is significantly uneven between the treat-

ment group and control group of a sample under study. In a binary treatment setting,

matching involves selection by pairing treatment and control units. The goal of match-

ing methods is to eliminate copious differences between treatment and control samples

on important covariates that may influence outcomes (Pattanayak et al. 2011). This

mitigates confounding by ensuring that treatment and control units are directly com-

parable, and any differences can be attributed to the causal effect of the treatment.
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There are several strategies for executing matching. For a wider discussion on the

topic refer to Gu et al. (1993); Austin (2014); de los Angeles Resa and Zubizarreta

(2016). A popular metric used for matching is the propensity score. The propensity

score is the probability of a unit being selected for treatment conditional on a set of

covariates. The propensity score for a sample unit i, πi, is given by πi = P (Xi = 1 | Zi),

where X is the treatment variable and Z is ideally the set of variables that is sufficient for

control of confounding in this setting. In Propensity Score Matching (PSM), matching

of treated and control units is performed based on similarity of propensity scores.

Propensity scores simplify the matching process by allowing matching to be done based

on one derived value rather than the all values of a set of covariates. For a detailed

discussion on matching techniques and propensity scores, see Steiner and Cook (2013);

Rosenbaum (2020).

Re-weighting: Similar in objective to matching methods, re-weighting methods

enable the estimation of average treatment effects by addressing confounding through

covariate balancing. Re-weighting methods achieve balance by creating a pseudo-

population where all units have equal probability of being treated given a set of co-

variates. Under-represented samples in treatment or control groups are up-weighted,

while over-represented samples are down-weighted based on the values of relevant co-

variates. Propensity scores are also commonly used for re-weghting (Imai and Ratkovic

2014). Inverse Probability of Treatment Weighting (IPTW) is a re-weighting

scheme that involves re-weighting units in the samples by the inverse of the estimated

propensity score. In a binary treatment variable case, the units under treatment are

assigned weights of 1/πi, and the control units are assigned weights equal to 1/(1−πi),

where πi is the propensity score of unit i in this simple case and is obtained from the

exposure/treatment model g(Z) = P (X = 1 | Z). The goal is to estimate the average

causal effect, and this is given by E(Y 1 − Y 0) = E{f(X = 1, Z) − f(X = 0, Z)}.
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Hence IPTW mitigates confounding by correcting for the contribution of each unit in

the sample by the assigned weight (Chatton et al. 2020). For more elaborate discussion

on re-weighting and IPTW see Mansournia and Altman (2016); Thoemmes and Ong

(2016); Chesnaye et al. (2022).

Sub-classification: Matching and re-weighting methods enable the direct es-

timation of the average treatment effect (ATE) using an expression of the form in

Equation 2.2. In some applications, the conditional average treatment effect (CATE)

is a more useful measure of causal effects because treatment effects may differ system-

atically throughout the population based on the values of certain covariates. In such

cases, there may exist sub-groups of the population under study that are affected in dif-

ferent ways by the same treatment (heterogeneity). Sub-classification or stratification

methods allow the estimation of CATE by first creating approximately homogeneous

subgroups of the population using the values of relevant covariates. ATE can be esti-

mated by taking a weighted average of the estimated CATE for all sub-group, weighting

by the proportion of observations in each sub-group. Propensity scores are also often

used as a basis for sub-classification. Rosenbaum and Rubin (1984); Lunceford and Da-

vidian (2004); Brand and Thomas (2013); Imbens and Rubin (2015) provide a detailed

discussion on heterogeneous causal effects and methods for sub-classification.

Regression adjustment: Regression methods are extremely popular for modeling

the relationships between variables. They are often the tool of choice for economists and

social scientists and are can be useful for the investigation of causal effects. Consider

the simple linear regression model Y = α+ βX + ε that relates a continuous outcome

Y to a treatment X, where ε is the error term, and α is the intercept. The coefficient β

is by default a naive causal effect estimator. If it can be assumed that the functional

form of the regression model is correctly specified, and if X is randomly assigned, then
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β is an unbiased estimator of the causal effect of X on Y (Schochet 2010; Hernán and

Robins 2018; Funk et al. 2011; Morgan and Winship 2015).

When treatment is not randomly assigned, it is necessary to adjust for the suffi-

cient set of confounders in the regression model. This can be done in multiple linear

regression by including the variables in the sufficient set Z ′ in the regression model, as

in Y = α + βX + δ1Z1 + δ2Z2....+ δnZn + ε. In this model, δ1 to δn isolate the effects

of the covariates Z1,Z2,...Zn ∈ Z ′ from the primary effect of interest β. Hence β can

be interpreted as the mean effect of X on Y conditional on the set Z ′. For a compre-

hensive discussion on the conditions that are necessary for such causal interpretations

of linear regression coefficients, refer to Wooldridge (2015); Rebonato (2016); Morgan

and Winship (2015).

Regression-type models are particularly important when dealing with continuous

treatments and outcomes where the direct estimation methods discussed previously can

become problematic as demonstrated in Chapter 11 of Hernán and Robins (2018). It

is important to note that without causal assumptions, regression functions are merely

descriptive. Pearl et al. (2016) highlight the difference and inter-relationship between

regression equations and structural equations models which have causal assumptions

embedded in them.1

G-methods: The generalized methods (G-methods) are a family of methods

introduced by Robins (1986) which require less restrictive conditions for identification

of causal effects than standard regression models (Naimi et al. 2017). They enable the

modeling of more complex causal effects such as effect modification (mediation analysis)

and time-varying effects (Daniel et al. 2011; Coffman and Zhong 2012; Wang and Arah

2015). Models under this family include marginal structural models (MSMs) and the

G-formula. MSMs model the mean of a potential/counterfactual outcome. So instead

1Regression models are generally considered a type of structural equations model.
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of modeling E(Y ) directly, E(Y 1) and E(Y 0) are modeled separately for a binary

outcome. The average causal effect is then obtained by taking the difference between

the expected values of the potential outcomes. MSMs are often used in conjunction with

IPTW and can be useful for modeling time-varying causal effects using longitudinal

data (Thoemmes and Ong 2016).

As a maximum likelihood estimation approach for the G-formula, the G-computation

approach involves the estimation of ‘the full data set’ comprising all potential outcomes

of the observed units given various treatments (Snowden et al. 2011). The causal ef-

fect can be estimated from the full data set which is often obtained by first fitting a

regression model using the observed data (the outcome model), and using this model

to predict counterfactual outcomes under different treatments. The outcome model is

given as Y = f(X,Z) = E(Y | X,Z). For detailed discussion on MSMs and other

G-methods, see (Hernán and Robins 2018; Naimi et al. 2017, 2021).

Doubly robust estimators: Using IPTW, if the propensity score model is cor-

rectly specified, the causal effect estimator is unbiased. On the other hand, using the

G-formula or an outcome regression model, if the outcome regression model is correctly

specified, the estimator is unbiased. Doubly robust estimators combine the propensity

score model E(X | Z), and the outcome regression model E(Y | X,Z), such that only

either of both models needs to be correctly specified for the estimator to be unbiased

(Funk et al. 2011; Hernán and Robins 2018). The estimator obtained is said to be

robust to the misspecification of one of the two component models (Naimi et al. 2021).

3.1.2 Traditional Methods Relaxing Ignorability

The methods in the previous sub-section depend on the credibility of the ignorabil-

ity assumption with respect to the specific dataset. This sub-section briefly considers

research designs for causal inference in settings where there may be unobserved or
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unidentified confounders in quasi-experimental settings. Such designs are often used in

scenarios regarded as natural experiments in the economic, biomedical and social sci-

ence literature (Meyer 1995; Kim and Steiner 2016; White and Sabarwal 2014). Propen-

sity score methods such as matching and re-weighting are also commonly employed in

these settings when the ignorability assumption is considered to be reasonable.

The methods considered here exploit unique variation patterns in certain mea-

sured covariates which may influence treatment assignment, or other special condi-

tions which create approximate localized experiments such that all confounders do

not have to be observed. These methods include Regression Discontinuity Designs

(RDD) (Imbens and Lemieux 2008; Lee and Lemieux 2010; Stevens 2016), Difference-

in-Differences(DiD) (Lee and Kang 2006; Dimick and Ryan 2014), and Instrumental

Variables(IVs) (Imbens 2014; Martens et al. 2006; Angrist and Krueger 2001; Angrist

et al. 1996).

In observational studies, these approaches have a restricted scope of applicability

due to their reliance on particular study designs or quasi-experiments. RDD relies on a

cut-off point within a narrow range of the treatment values where treatment assignment

can be assumed to be randomized. DiD uses data that includes similar groups of

treated and control units before and after an intervention. IV methods exploit random

variation in a special variable called the instrument which directly affects treatment but

indirectly affects the outcome only through its effect on treatment. These approaches

to causal inference are well established in the social sciences The reader is referred to

Remler and Van Ryzin (2021) for a more elaborate discussion.

3.1.3 Advanced Estimation Techniques

This section highlights advanced approaches that build on the fundamental principles

for causal effect estimation, and allow the use of non-parametric models and machine
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learning for the estimation of causal effects. Parametric estimators are widely used

because of their simplicity, and the ease of interpretation of their model parameters.

However, they are limited because of the restrictions they impose on the data dis-

tribution, e.g., linear functional form and Gaussian errors in ordinary least squares

regression. Model misspecicification issues arise when parametric methods are used

to model data distributions which substantially deviate from their assumptions and

can lead to biased parameter estimations. To mitigate model misspecification issues,

non-parametric and semi-parametric modeling approaches are gaining wider adoption

for causal effect estimation (Imbens 2004; Hill 2011; Curth and van der Schaar 2021).

Thoemmes and Ong (2016) highlight the potential problems with the common practice

of using parametric models like the logistic regression for propensity score estimation in

methods like PSM, IPTW, and weighted regression. A misspecified logistics regression

model would not remove all confounding bias even if the confounders are included in

the model. One way to mitigate this problem is to use non-parametric machine learn-

ing models to estimate the propensity score (as in Westreich et al. 2010; Maguire et al.

2007) or for assessing covariate balance (as in Linden and Yarnold 2016). Similarly, the

use of tree ensemble methods for the estimation of counterfactuals in G-computation

methods have been explored (as in Austin 2012).

Machine learning methods have demonstrated remarkable success in predicting var-

ious estimands across numerous applications and effectively handling large datasets.

Thus, the growing trend of employing machine learning to support the estimation of

causal effects comes as no surprise. (Alaa and Schaar 2018; Diaz 2020; Curth and

van der Schaar 2021). However, procedures that use machine learning methods for the

estimation of causal effects have to be carefully designed as machine learning models

by themselves can be very poor estimators of causal parameters (Chernozhukov et al.
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2017b; Alaa and Schaar 2018; Balzer and Petersen 2021). Naimi et al. (2021) empha-

size this point through a simulation study that investigated bias in causal estimation

under several scenarios. Rolling and Yang (2014); Alaa and Schaar (2018) suggest

guidelines for principled choice and design of procedures and algorithms which employ

non-parametric models in the estimation of causal effects.

In light of the escalating demand for modeling techniques capable of deciphering

large, high-dimensional observational datasets and the wealth of big data in contempo-

rary information systems, a pivotal challenge in causal research lies in the automated

selection of a covariate set Z ′ that is approximately sufficient for confounding adjust-

ment within such data. Works by Belloni et al. (2012); Belloni and Chernozhukov

(2013); Belloni et al. (2014b,a, 2016); Urminsky et al. (2016); Chernozhukov et al.

(2017b,a); Belloni et al. (2017); Chernozhukov et al. (2018) constitute a string of pa-

pers that seek to address “sparse” covariate selection in high-dimensional data using

machine learning techniques.2

Some of the methods considered in this section are direct extensions of the tra-

ditional methods in Section 3.1.1 but using non-parametric estimators instead. For

example, the Bayesian additive regression trees (BART) model (Hill 2011) and its

extension, the Bayesian Regression Forests (Hahn et al. 2020), are non-parametric

alternatives to linear parametric regression adjustment. The term doubly robust

learners is sometimes used when non-parametric models are used flexibly in doubly

robust estimation procedures.3

Regularized Regression and Double Selection: Regularized regression meth-

ods such as the least absolute shrinkage and selection operator (LASSO) can be used

for principled variable selection for covariate adjustment (Belloni et al. 2012; Belloni

2sparsity here refers to a scenario where only a few covariates affect the outcome (Athey and Imbens
2016)

3see (Dudik et al. 2011; Jacob 2021).
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and Chernozhukov 2013; Belloni et al. 2014a; Urminsky et al. 2016). The goal is to

select a (sparse) set of covariates Q, which are most “relevant” to the outcome variable

Y , from the set of all measured covariates Z. A further “post-LASSO” step of using a

standard OLS regression of Y on Q is recommended to minimize bias in the coefficients

of the covariates (Belloni and Chernozhukov 2013).

Using predictive variable selection directly for confounder selection can be prob-

lematic (Diaz 2020). This is because these methods are based on identifying strong

correlations. As a result, further steps need to be taken to ensure that the most rel-

evant variables are chosen in order to increase the likelihood that these are causally

influential variables. In a related approach often described as Double Selection, reg-

ularized regression is not only used to select the set of covariates Q relevant to the

outcome Y , but also the set of covariates R, relevant to the treatment X (Belloni et al.

2014b,a). These two sets of covariates are combined and assumed to form the sufficient

set of variables Z ′ = Q∪R, where Z ′ ≤ Z, and Z is the original set of covariates. This

approximate sufficient set Z ′, is then used in a final regression step for adjusting for

confounding in the estimation of treatment effects.4 This method minimizes omitted-

variable bias and also provides robustness by allowing for imperfect variable selection

in either selection step (Belloni et al. 2014b,a). Belloni et al. (2017) formally generalize

these regularized regression approaches to allow the use of a wide variety of machine

learning methods as long as they are good approximators of the data distribution and

do not overfit.

Double Machine Learning: Double/debiased machine learning (Double ML or

DML) takes the concept of Double Selection a step further by exploiting the predictive

ability of machine learning algorithms for estimating causal effects through a set of

carefully designed procedures. The procedures are set up to guard against additional

4Notice how the Double Selection method for covariate selection seemingly aligns with the disjunc-
tive cause criterion mentioned in Section 2.2.3.
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challenges brought about by using complex ML models for causal effect estimation

including regularization and overfitting. They creatively use sampling techniques to

minimize bias in the estimation of treatment effects and to produce an estimator with

desirable theoretical properties such as consistency and rate of convergence (Cher-

nozhukov et al. 2017b,a, 2018). The basic DML procedure assumes the partially linear

structural form described in the following two equations (Chernozhukov et al. 2017b):

Y = Xθ0 + g0(Z) + U, E(U | Z,X) = 0 (3.1)

X = m0(Z) + V, E(V | Z) = 0 (3.2)

where Y is the outcome, X is the treatment, θ0 is the treatment effect parameter to

be estimated, Z is the set of covariates, g0 and m0 are functions which relate the Z

to Y and X respectively, and U and V are disturbances or error terms. The functions

g0 and m0 can be estimated using machine learning models such as random forests,

support vector machine, and neural networks. The procedure continues as follows: (1)

use ML to model Y as a function of Z and predict Ŷ , (2) use ML to model X as a

function of Z and predict X̂, (3) regress the residuals from (1), Y − Ŷ , on the residuals

from (2), X − X̂, to get an estimate of θ0. The procedure guards against confounding,

reduces regularization bias, and strives to satisfy the desirable Neyman-orthogonality

condition (Chernozhukov et al. 2017a; Witlox and Naghi 2018). A cross-validation

technique known as cross-fitting is used to avoid overfitting and minimize bias.5

Targeted maximum likelihood estimation (TMLE): TMLE (Van Der Laan

2010) is a doubly robust estimation method that starts out like G-computation, but

includes a “targeting” step which incorporates the selection/exposure mechanism, for

5see also (Jung et al. 2021) for a direct connection of SCM and DML, and discussion on the
theoretical properties of DML.
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minimizing bias in the target parameter (ATE) (Gruber and Van Der Laan 2009;

Schuler and Rose 2017). This model of the selection mechanism is used to update the

initial G-computation estimates iteratively (Van Der Laan 2010; Chatton et al. 2020).

TMLE often involves the use of adaptive machine learning and ensembling algorithms

such as the Super Learner (Van der Laan et al. 2007) for estimation.

Metalearners: Metalearners are a superclass of methods for estimating the CATE

function which allow flexible choice of machine learning algorithms. Künzel et al.

(2019) describe Metalearners as meta-algorithms that build on base machine learning

algorithms which are designed for prediction tasks (regression and classification), to

estimate CATE. In general, the Metalearners take advantage of the estimation capa-

bilities of machine learning algorithms, while remaining model-agnostic and allowing

the choice of arbitrary ML models in their procedures.

Jacob (2021); Künzel et al. (2019) provide a detailed discussion on the various

meta-algorithms considered as Metalearners. The T-learner is a Metalearner which

involves the two-step approach of first estimating the conditional mean of the outcomes

separately for treated and control units using different models, and then taking the

difference to give the estimate of the treatment effect. The S-learner uses a single model

to estimate the outcome using the treatment and covariates. The CATE estimate in

this case is the difference in the predicted values of the outcome at different levels of

the treatment, with all other covariates held constant.

The T-learner and S-learner can suffer from sample imbalance and poor choice of

outcome model. Künzel et al. (2019) propose an expansion of the T learner, the X-

learner, which estimates individual treatment effects (ITEs) in its first step,6 and then

estimates CATEs from the ITEs of the treated and untreated groups. Jacob (2021)

6Recall that ITEs cannot be directly calculated because only one potential outcome is observed
(see section 2.1). X-learners estimate the unobserved outcomes using models created with observed
outcomes, and then use them as if they are actually observed to estimate ITEs from both potential
outcomes.
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include in their classification of Metalearners, the set of Double-ML-esque estimators

known as as R-learners (Nie and Wager 2021), and the doubly robust estimators re-

ferred to as as DR-learners (Kennedy 2020). Curth and van der Schaar (2021) suggest

a reclassification of Metalearners, aligning them with their underlying theoretical foun-

dations, while also offering valuable insights into the selection of algorithms, with a

particular focus on the use of neural networks and meta-algorithms in the context of

causal Metalearning.

Causal Trees and Forests: The sub-classification or stratification method dis-

cussed in Section 3.1.1 can be used for dividing the units under study into multiple

groups so as to learn heterogeneous treatment effects (CATE) at different values of

covariates. This approach is feasible when there are a reasonably low number of rele-

vant covariates and a relatively large number of measured observations such that there

are enough observations in each group after splitting on covariates to reliably calculate

treatment effects within each subgroup. When the data is high-dimensional, then this

approach can become problematic. Athey and Imbens (2016) note that unlike most

other machine learning methods, decision trees produce a partition of the population

based on covariates. They take advantage of this property to propose the Causal Tree

method for partitioning a population based on relevant covariates, and the estimation

of conditional average treatment effects within the partitions under the assumption of

randomized treatment assignment given the covariates.

Decision tree algorithms such as Classification and Regression Trees (CART) are

not built for causal inference. As a result, Causal Trees modify CART by using an

“honesty” condition, and changing the splitting criterion from minimizing the predic-

tion error, to maximizing the heterogeneity in treatment effects between leaf nodes in
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the tree (Jacob 2021; Powers et al. 2018).7 Honesty is an important quality of Causal

Trees which refers to the separation (especially in terms of the information used) of the

modeling step (or initial partitioning step), from the estimation step given the model

structure. In the estimation step,8 the difference between the conditional mean of the

treatment and control groups within each final partition is the estimated CATE (Pow-

ers et al. 2018). An additional benefit of Causal Trees is the ability to obtain confidence

intervals for estimated treatment effects, and also the interpretability of decision trees

(Athey and Imbens 2016). Wager and Athey (2018) expand and improve this approach

by ensembling Causal Trees into Causal Forests, similar to Random Forests. Athey

and Wager (2019) demonstrate a practical application of Causal Forests.

Neural Network Approaches: The success of deep learning models has led

to widespread adoption of neural network models in many applications (Sejnowski

2020). An advantage of neural networks is the flexibility in constructing modeling

structures and the ability to automatically discover representations and features for

prediction from unstructured raw data. Neural network models can be plugged into

the previously discussed model-agnostic procedures for estimating causal effects, and

used as an estimator of causal parameters at various stages of the procedure. However,

some authors have recently explored deep neural networks as a special approach for

causal effect estimation, investigating how to optimize them for causal effect estimation

tasks.

7This heterogeneity of treatment effects is maximized by adjusting the mean square error (MSE)
to an alternative measure of the expectation of MSE over test and estimation samples – see (Athey
and Imbens 2016).

8This separation is achieved by dividing the dataset into two parts; one to be used for each step of
the process. One part is used to construct the structure of the model through recursive splitting (like
in a decision tree). The learned structure is then used to split the other part of the dataset before
estimating CATE in each subgroup obtained.
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Hartford et al. (2017) use deep learning for estimation tasks in the Instrumental

Variable (IV) framework. Shi et al. (2019) propose two adaptations of standard mul-

tilayer perceptron (MLPs) for constructing the propensity score and outcome models

before using those in a downstream causal effect model, as part of the 2-step regression

approach similar to the Double Selection procedure. The first adaptation is a modified

architecture (Dragonnet) employing a representation layer, while the second adaptation

is a TMLE-based regularization technique (targeted regularization). This approach is

similar to Shalit et al. (2017)’s CFR and TARNet, which are in turn improvements on

Johansson et al. (2016)’s BNNs for estimating ITEs and counterfacuals.

Some other modifications of neural networks for causal effect estimation are the

Variational Autoencoder based CEVAE (Louizos et al. 2017) for estimating latent con-

founders and causal effects, the Generative Adversarial Network (GAN) based GAN-

ITE Yoon et al. (2018) for estimating ITE. Yao et al. (2018) propose the SITE network

which uses a representation learning network that preserves local similarity informa-

tion and balances data distributions in treated and control groups, for the estimation

of ITE. Garrido et al. (2021) propose using a neural auto-regressive density estimator

(NADE) approach for modeling causal mechanisms and estimating effects according to

principles of the SCM framework.

Shalit et al. (2017); Farrell et al. (2021); Koch et al. (2021) study the theoretical

properties of neural networks for non-parametric estimation of causal effects under

the usual assumption of ignorability, and establish valid inference for treatment and

counterfactual effects using standard deep learning architectures. Farrell et al. (2021)

further provide non-asymptotic bounds for such networks and demonstrate the utility

of deep learning for causal inference using an empirical study. Koch et al. (2021)

provide a detailed review of deep learning methods for causal effect estimation, and

classifies the main approaches into deep outcome modeling methods, balancing through
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representation learning methods, methods extending inverse propensity score weighting

(IPW), and methods for adversarial training of generative models, representations, and

IPW.

3.2 Causal Discovery

3.2.1 Causal Structure Modeling

The term causal structure modeling is used in this work to describe methodologies

for the identification of the structure of causal relations among a set of variables, and

the representation of the identified relationships. This structure is useful for expressing

one’s understanding of the causal interconnections between variables, without the need

to delve into the specific magnitudes of their effects. SCMs are able to encode this type

of information regarding the direct and indirect connections between the variables,

and the direction of the flow of causal influence. This allows SCMs to be useful for

inferring which variables are expected to change as a result of the manipulation of

another variable. Graphical SCM representations are invaluable for expressing such

structural relationships between variables in a system explicitly.9

Some form of causal structure modeling always precedes any attempt to estimate

treatment effects. While many studies about treatment effect estimation do not ex-

plicitly declare a causal structure before attempting to estimate causal effects, the

authors of these works whether they realize it or not implicitly assume a causal struc-

ture between the treatment X and the outcome Y . Often times the implicit structural

causal model seems obvious. For example, when investigating the effect of a drug on

symptoms, the model drug → symptoms is assumed rather than drug ← symptoms.

9Graphical SCM representations may include various forms of graphs ranging from basic repre-
sentations like DAGs or BNs, to more complex representations such as ancestral graphs and cyclic
graphs.
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Nevertheless, the model drug ← symptoms may be appropriate in a different study

where the objective is to examine how different symptoms may influence the prescrip-

tion or consumption of certain medications. Such implicit assumptions about causal

structure apply even in cases where randomized controlled trials are used to investigate

causal relationships.

Often researchers have to contend with a set of covariates Z, which may confound

the effect of X on Y . A good deal of the discussion so far in this chapter have had

to do with identifying and dealing with possible confounders when investigating causal

effects. As discussed in Section 2.2.3, having a graphical causal model of the process

under study enables the identification of the sufficient set of covariates for the adjust-

ment of confounding (assuming the causal structural model is correct). Figure 3.1

illustrates a typical graphical causal model an analyst may implicitly assume when es-

timating the effect of a variable X on another variable Y . The dashed edges represent

arbitrary relationships (may be causal or non-causal, or no association at all) between

covariates Z and the variables of interest.

X

Z

Y

Figure 3.1: A typical form of implicit causal model for causal effect estimation tasks

Causal structure modeling, whether subconsciously or explicitly performed, is in

reality one of the first steps of causal inference before any effect estimation tasks can

be conducted. Depending on the research interest or application, it could be the only

step needed but typically, it is a precursor to further causal analysis. Traditionally, the

task of constructing some form of structural causal model for a set of variables is carried

out in the absence of data using domain knowledge (see Koller and Friedman 2009;

Pearl and Mackenzie 2018), a task sometimes referred to as knowledge engineering.
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Tafti and Shmueli (2020) provide a set of guidelines for creating a causal diagram

using background knowledge. In many causal inference tasks involving the estimation

of causal effects, researchers are already convinced about the nature and structure of

the causal relationship based on intuition, domain knowledge, experimental evidence

or previous experience. However, it is often the case that this information is not clear.

SCM theory makes it possible to learn aspects of causal structures from observational

data under certain assumptions.

This section focuses on methods, techniques and algorithms that attempt to re-

cover underlying causal structures from data. These techniques, referred to as causal

discovery methods, enable the automation of causal structure modeling.

3.2.2 Causal Discovery Principles

Recovering causal structures from observational data usually requires additional as-

sumptions to those introduced in Section 2.2.1. The causal Markov condition (CFC)

and minimality condition together establish that every independence relation in a

Bayesian network G is also present in its probability distribution P . However, this

does not mean that the converse is necessarily the case. It is possible to have indepen-

dence relations in P that are not present G. In such cases, G is said to be “unfaithful”

to P . The faithfulness condition requires that G is faithful to P .

Causal Faithfulness Condition (CFC): A probability distribution P is faithful to

its DAG G if every independence relation that exists in P is represented in G (G is a

dependence map of the data). P is said to be faithful if there exists some DAG G to

which it is faithful. There has been a debate about whether faithfulness is too strong

a general assumption for causal modeling, but Korb and Nicholson (2008) explain

that given that realistic examples of unfaithful distributions are not common, it is a

methodological assumption that can be generally accepted unless there is good reason
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to doubt that a faithful model exists for a particular distribution.10 Examples of

unfaithful distributions are the chessboard problem and the effect cancellation problem

(described in Scheines and Sobel 1997; Guyon et al. 2007; Kubus 2015; Marx et al.

2021).

Note that to be faithful, P must also satisfy the Markov condition relative to G

as well. Thus, for a faithful distribution there exists a DAG that encodes exactly

all of its independence relations and no more. Together, the CMC and the CFC

match the conditional independence relations in a probability distribution P , to the

relations entailed by its causal graph or Bayesian network G. They guarantee the

mutual correspondence between conditional d-separation and conditional probabilistic

independence: X ⊥ Y | Z ⇔ X ⊥⊥ Y | Z (Eberhardt 2017). This makes causal

discovery possible.

Given the CMC and CFC conditions, as well as other standard assumptions such

as causal sufficiency and acyclicity (see Section 2.2.1), it is possible to identify causal

structures in a data distribution by testing for marginal and conditional independen-

cies in data. Methods that learn causal structures through conditional independence

constraints are known as constraint-based methods. In many cases, the direction of

some edges in the causal Bayesian network cannot be identified uniquely from data.

This is because more than one Bayesian network can encode the same set of condi-

tional independence constraints. Employing constraint-based methods, a generalized

DAG consisting of a mixture of edge types, including directed and undirected edges

can be learned. This generalized DAG, known as a Markov Equivalence Class (MEC)

graph, encapsulates all statistically equivalent DAGs relative to a data distribution.

10See also Weinberger (2018).
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3.2.3 Constraint-Based Methods

Constraint-based methods elicit causal graphs by exploiting conditional independence

constraints in the data distribution.11 Because multiple causal graphs can encode the

same set of conditional independencies, constraint-based methods are often not able to

identify a unique, completely directed causal graph such as a DAG or a Maximal An-

cestral Graph (MAG) (Richardson and Spirtes 2002).12 Usually, they return a Markov

Equivalence Class (MEC) causal graph such as a Completed Partially Directed Acyclic

Graph (CPDAG) or Partial Ancestral Graph (PAG) in which some edge directions may

be undetermined or ambiguous. As a MEC graph, a CPDAG can represent a collec-

tion of several Markov equivalent DAGs, and may contain a mixture of edge types

including directed and undirected edges. It is useful to think of MEC graphs as one

compact representation of several causal models outputted by a causal discovery algo-

rithm (Malinsky and Danks 2018). DAGs belonging to the same MEC are statistically

indistinguishable based on independence relationships over the set of variables in a

data distribution.

The most prominent constraint-based causal discovery algorithm is the PC algo-

rithm (Spirtes et al. 2000). In the PC algorithm, two variables are considered to have

a direct causal relationship relative to the set of observed variables if there is no sub-

set of the remaining variables conditioning on which they are independent, under the

assumptions of CMC, CFC, and causal sufficiency (Glymour et al. 2019). The PC al-

gorithm starts with a complete (fully-connected) undirected graph (example in Figure

3.2a) from which it estimates the skeleton structure (example in Figure 3.2b) using

11For an overview of available conditional independence tests, refer to Kitson et al. (2021); Yu et al.
(2016).

12Ancestral graphs, unlike DAGs allow modeling of causal relations in a distribution with latent
variables, thus not requiring causal sufficiency (Zhang 2008).
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conditional independence tests applied iteratively on the nodes in the graph.13 The

algorithm then proceeds to determine edge orientations by first finding unshielded col-

liders in v-structures. V-structures are variable triples, e.g. {X,Z,Y}, such that they

are connected as an undirected chain-like structure as in X — Z — Y. In this structure,

if Z was not part of the conditioning set that made X and Y independent, then Z is

an unshielded collider (Glymour et al. 2019). Other edge orientation rules allow the

algorithm to asymptotically converge to an MEC graph of the type CPDAG. For ex-

ample, the edge propagation rule allows the algorithm to find directed chain structures

by converting a structure like X → Z — Y to X → Z → Y.

A B
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(a) Fully connected graph

A B

C H

D E F

G

(b) Skeleton structure

Figure 3.2: Fully connected and skeleton of the BN in Figure 2.1

Some other constraint-based algorithms have been developed to improve specific

performance aspects of the PC algorithm or to relax some of its assumptions. For

example, the FCI (Spirtes et al. 2000) and RFCI algorithms (Colombo et al. 2012)

are generalizations of the PC algorithm that are able to perform causal discovery

13The skeleton is the undirected graph obtained after some edges have been eliminated using con-
ditional independence testing.
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in the presence of hidden or latent variables. This generalization is useful because

causal sufficiency may be difficult to guarantee in practice (Yu et al. 2016; Spirtes

et al. 2000). These algorithms make it possible to perform causal discovery in causally

insufficient datasets, although the ancestral graphs they produce are more complicated

(Triantafillou and Tsamardinos 2016).

3.2.4 Score-Based Methods

Score-based methods learn causal structures from data by searching for an optimal

graph that maximizes the likelihood of observing the data distribution. They make

use of a predefined score which measures how well a candidate graph fits the data, to

search for an optimally scoring MEC graph. There are many different search strategies

and score functions which could be used in this class of causal discovery algorithms,

and scores could be Bayesian or information theory based (Maathuis and Nandy 2016;

Huang et al. 2018; Kitson et al. 2021). The most prominent score-based method is the

Greedy Equivalence Search (GES) algorithm (Chickering 2003).

The GES algorithm learns the Markov equivalence class graph by performing a

two-phase search for an optimally scoring DAG while penalizing the complexity of the

DAG. The forward phase starts with an empty graph (only nodes, no edges) and adds

single edges sequentially with the goal of achieving the maximum improvement of the

score each time. The backward phase starts with the best scoring DAG produced by

the forward phase and removes single edges sequentially to achieve maximum score

improvements until no more improvements can be made.

Score based methods depend on similar assumptions as constraint-based methods,

but it may be harder to meaningfully relax some of the assumptions. For example, it

is apparently more challenging to adequately relax the causal sufficiency assumption

with score-based algorithms, but algorithms exist within the constraint-based domain
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that do this and successfully recover MAGs from causally insufficient data.14 Being

a combinatorial optimization problem, these methods generally do not scale well as

the number of variables becomes very large. Score-based methods may offer some

computational performance advantages over constraint based methods by finding ways

to limit the search space of candidate DAGs (Maathuis and Nandy 2016). Overall they

are expected to converge to the same Markov equivalence causal graph as constraint-

based algorithms asymptotically (Pearl et al. 2016).

3.2.5 Functional Causal Model Approach

This section explores a set of methods that exploit the functional causal model (FCM)

representation for causal discovery. An FCM for {X,Y} describes the outcome Y as a

function of its direct cause(s) X and an error or noise term ε:

Y := f(X, ε, θ) (3.3)

where θ is the set of parameters of the function f , and the error term ε is assumed to

be independent of the cause X.

Consider an example involving two continuous variables {X, Y } where it is not

known prior to investigation which is the cause and which is the effect. With only two

variables, there are no conditional independence relations so constraint-based methods

cannot be used to determine the direction of causal influence. One can proceed by try-

ing to determine the asymmetry in the relationship between the two variables instead.

This approach is based on the expectation that the model which correctly assigns the

direction of causality will be less complex and more natural, and will be in accordance

with the data generating process (Spirtes and Zhang 2016; Mooij et al. 2016; Glymour

14See discussions in (Ramsey et al. 2012; Triantafillou and Tsamardinos 2016; Yu et al. 2016).
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et al. 2019). This will be a model that tries to recover effect from cause Y = f(X, ε),

rather than cause from effect X = f(Y, ε).

Zhang et al. (2015b); Spirtes and Zhang (2016) show that the assumption of inde-

pendence between the error term ε and the cause X, under certain structural conditions

on the FCM, allows the determination of causal asymmetry between the two variables.

It is also assumed that the two variables have a direct causal relationship and that

there are no confounders. To exploit this for the two variable scenario, one can fit

two models to characterize the relationship between X and Y in both directions of

influence, and test to see in which model the error term is approximately independent

of the hypothetical cause.

Shimizu et al. (2006) found that while many causal discovery algorithms require that

the error terms are Gaussian,15 assuming that they are non-Gaussian is particularly

useful for finding the complete causal structure rather than the set of statistically

equivalent structures typically recovered based on conditional independence. They

propose the Linear Non-Gaussian Acyclic Model (LiNGAM) (Shimizu et al. 2006)

which uses the statistical method known as independent component analysis for model

discovery under the assumption that the causal model is linear in its functional form,

and the error terms are non-Gaussian.

Hoyer et al. (2008)’s non-linear additive noise model extends this idea to non-linear

models. They further show that non-linearity can be advantageous to causal identifica-

tion as it helps to break the symmetry between cause and effect. Zhang and Hyvärinen

(2010, 2009) generalize the approaches in LiNGAM and the non-linear additive noise

model to propose the post-nonlinear (PNL) causal model which accounts for the non-

linear effects of the causes and noise, specifically including measurement distortion

in the model and allowing for Gaussian errors. Zhang and Hyvärinen (2009) further

15Independence tests often assume linear models and Gaussian error/noise (Hoyer et al. 2008).
Non-linear, non-Gaussian tests however do exist - see Ramsey (2014).
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discuss the model’s identifiability conditions in detail and outline the five situations

in which causal direction is not identifiable using this type of model. The scenarios

however include the popular linear Gaussian case.16

Using FCMs or SEMs for causal discovery offers some advantages (Spirtes and

Zhang 2016; Glymour et al. 2019). One advantage is that the faithfulness condition

is not required, instead, the rather weak non-Gaussian error condition is relied upon

(Eberhardt 2017). FCM methods can be used to distinguish between DAGs in the

same equivalence class produced by constraint-based and score-based methods. They

are particularly useful for causal identification in the two-variable case since condi-

tional independence tests cannot be used in the two-variable case. Also, large samples

may be needed to get reliable conditional independence tests, so FCM models may be

preferred with small sample data. FCM methods can be used in the multivariate case

by exhaustively testing every pair of variables in the set V, although the challenge is

that the complexity of such an exhaustive search increases super-exponentially (Zhang

et al. 2015b).

3.2.6 Hybrid Methods and Other Bayesian Network Learning

Approaches

Several other techniques have been explored for uncovering causal structures from

data. Many of these techniques are hybrids of the methods discussed above. Most

hybrid methods try to optimize the best of two worlds by combining two different

approaches. One approach is to use a constraint-based approach to restrict the search

space for a score-based method, leading to improvements in accuracy and scalability.

The adaptively restricted GES (ARGES) algorithm (Nandy et al. 2018) and the Greedy

Fast Causal Inference (GFCI) algorithm (Ogarrio et al. 2016) are examples of this

16See Eberhardt (2017).
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hybrid approach. Functional methods can also be incorporated to find the orientation

of undetermined edges in the Markov Equivalence class graphs produced by constraint-

based methods(Zhang and Hyvärinen 2009).17

Another approach is to use interventional or experimental data when available in the

causal discovery process so as to exploit the improved causal identifiablity of interven-

tional data. An example of an algorithm that can incorporate interventional data is the

Greedy Interventional Equivalence Search (GIES) algorithm (Hauser and Bühlmann

2012). Similarly, background knowledge can be incorporated into the search process

via various means including imposing hard constraints on the search space to improve

accuracy and computational performance (Tian and Pearl 2001; Perković et al. 2017;

de Campos and Castellano 2007; De Campos et al. 2009). Some methods use standard

Boolean satisfiability solvers to find causal structures after encoding prior knowledge

as constraints in propositional logic (Triantafillou and Tsamardinos 2015; Hyttinen

et al. 2013; Eberhardt 2017).18 Active learning is a broad term encompassing the

approach of integrating human expertise or empirical knowledge into an algorithmic

causal discovery process. This approach can be used to improve edge determination

after finding MEC graphs. Active learning can take various forms and the human input

could come from targeted intervention experiments or expert/domain knowledge (Yu

et al. 2016; He and Geng 2008; Masegosa and Moral 2013; Tong and Koller 2001; Ma

et al. 2016; Hauser and Bühlmann 2014; Kitson et al. 2021).

The approaches for causal discovery outlined in the previous sub-sections employ

combinatoric or search-based optimization techniques. Finding high-scoring DAGs

from data is an NP-hard problem (Chickering et al. 2004). Thus these methods strug-

gle to scale effectively with very high dimensional data. Aliferis et al. (2010a) outline

17See also Huang et al. (2020a) for a review of models and approaches for non-stationary data.
18Prior knowledge could also be obtained from conditional independence tests or graph search

methods.
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several approaches that have been developed to mitigate this scalability problem. These

methods often employ some heuristic local neighborhood learning approach. A promi-

nent hybrid method that combines heuristic local learning with constraint-based and

score-based methods is the Max-Min Hill-Climbing (MMHC) algorithm. The algo-

rithm first learns the skeleton of the causal graph via constraint-based method, and

then orients the edges of the graph using a greedy hill-climbing score-based search.

There is a new promising approach when it comes to learning Bayesian networks

from data in a manner that scales more effectively with increasing number of variables.

Zheng et al. (2018) propose a reformulation of the score-based DAG learning prob-

lem from a combinatorial optimization problem to a continuous optimization problem.

This allows the problem to be efficiently solved with standard numerical optimization

algorithms such as gradient descent. They introduce a new constraint to the problem

to enforce acyclicity in the learned graphs.19 Their method, NOTEARS, has sparked

the emergence of several methods for Bayesian network discovery via continuous opti-

mization and especially using neural networks and deep learning. Vowels et al. (2022)

provides a review of methods that take this approach. While this continuous optimiza-

tion approach to learning Bayesian networks is promising and exciting, the theoretical

properties and implications of the methods based on this approach are still being un-

packed (Wei et al. 2020; Ng et al. 2022). It is not immediately clear what assumptions

are necessary to interpret any recovered DAG as a causal BN – see discussions in

(Reisach et al. 2021; Kaiser and Sipos 2022).

Several other approaches have also been explored for Bayesian network recovery

from data including penalized regression (Bühlmann et al. 2014; Gu et al. 2019), in-

formation theory and entropy (Weilenmann and Colbeck 2017; Kocaoglu et al. 2020;

Chaves et al. 2014), decision trees (Li et al. 2017), evolutionary algorithms (Contaldi

19The method actually learns linear SEMs first before translating to a causal graph.
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et al. 2019; Dai et al. 2020), reinforcement learning (Huang et al. 2020b; Zhu et al.

2019), unsupervised learning (Brady 2020), dynamic programming and graph search

algorithms (Koivisto and Sood 2004; Silander et al. 2006; Xiang and Kim 2013; Yuan

and Malone 2013). For more detailed discussions, comparisons, and implementations of

a broad range of algorithms for casual discovery and ayesian network recovery, refer to

Kalisch and Bühlmann (2014); Singh et al. (2018); Neapolitan (2004); Martin (2019);

Kalisch et al. (2012); Aliferis et al. (2010a); Vowels et al. (2022); Kitson et al. (2021);

Ma and Statnikov (2017).

3.3 Towards Integrating Causal Inference and Machine

Learning

This section briefly introduces two compelling approaches for integrating causal infer-

ence and machine learning methods.

3.3.1 Causal Feature Selection

Causal feature selection is a direct way to incorporate causal considerations into ML.

Feature selection is a critical step in ML model training but most classical methods for

feature selection are based on association. Guyon et al. (2007) in their seminal paper

on the topic, explore causal approaches to feature selection and contrast them with

classical statistical approaches. They outline the benefits that causal-based feature

selection approaches can bring to a machine learning process. These benefits include

robustness to violations of the assumption that source and target distributions are

similar, increased parsimony of selected feature sets, improved interpretability, and

enhanced data understanding.

64



Causal feature selection involves local causal discovery using observational data,

and hence depends on the theoretical framework of structural causal models. The

notion of Markov blanket is used to describe the set of most relevant causal features

for predicting the outcome variable Y . The Markov blanket of Y , MB(Y), is a set of

variables that d-separates Y from other variables which are not in the Markov blanket,

hence shielding it from the influence of variables outside the Markov blanket (Guyon

et al. 2007; Aliferis et al. 2010a). Using this notion, a goal of causal feature selection is

to identify a minimal set of features S from the set of measured covariates in the data

V , such that including any other variables in V but not in S in a model for predicting

Y generally does not improve the prediction of Y .

For a causal Bayesian network that satisfies the causal Markov and causal faith-

fulness conditions, there is a unique Markov blanket relative to the outcome variable

which includes the variable’s parents (direct causes), its children (direct effects), and

its spouses (direct causes of direct effects). A related set of variables to MB(Y ) which

is typically more parsimonious, is the set of parents & children of Y , PC(Y ). This

set includes only the direct causes and direct effects of the variable of interest. Guyon

et al. (2007); Aliferis et al. (2010a,b); Yu et al. (2020); Pellet and Elisseeff (2008)

explore these concepts in detail and present analyses and reviews of causal discovery

algorithms, demonstrating their usefulness for causal feature selection.

3.3.2 Causal Representation Learning

Representation learning refers to the set of algorithmic learning methods that allow

a computer to be fed with raw, unstructured data which is used to extract useful in-

formation in the form of representations that enable further learning tasks such as

classification and regression (Bengio et al. 2013; Lecun et al. 2015). The ability to au-

tomatically discover useful feature representations from raw data is a major advantage
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of neural networks and deep learning methods over traditional ML algorithms (Lecun

et al. 2015). With the elevated interest in causal inference in the AI research commu-

nity, the area of causal representation learning (CRL) is emerging as a central problem

for AI and causality (Scholkopf et al. 2021). CRL involves the discovery of high-level

causal features from low-level data and observations.

Causal representation learning furthers the quest to incorporate causal inference

methodologies into machine learning to improve aspects of AI performance such as

generalization. It can also be used to build new capabilities like counterfactual predic-

tion into sophisticated ML methods. Specifically, new methods have been proposed to

directly incorporate SCMs into neural networks, or in cases where the causal structure

is unknown, to automatically learn the causal model before embedding it into the net-

work (Zhang et al. 2020; Leeb et al. 2020; Yang et al. 2021). Yu et al. (2020) suggest

a design approach for deep learning networks where the hierarchy of independencies in

the input distribution is encoded in the hidden layers according to the structure of a

Bayesian network automatically learned from the data. CRL makes possible the appli-

cation and automation of causal reasoning in unstructured data forms such as images

(Lopez-Paz et al. 2017). Scholkopf et al. (2021) provide an overview and wide-ranging

discussion on causal representation learning.

Some of the methods discussed in Section 3.1.3 for the estimation of causal effects

using neural networks involve some form of causal representation learning. The tech-

nique has been suggested for the determination of the direction of causality between a

set of variables (causal discovery) in the context of disentangling causal representations

(Bengio et al. 2019; Li et al. 2022). CRL is gaining increasing attention in the area of

domain adaptation and transfer learning.
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Chapter 4

Data-Driven Root Cause Analysis via Causal

Discovery using Time-To-Event Data

4.1 Introduction

Root cause analysis (RCA) refers to structured investigations that are used to identify

underlying causes of an observed phenomenon or event. In industrial processes RCA

is used to discover the causes of process or device failures, and is critical for improving

quality, reliability and safety (Rooney and Heuvel 2004; Vuković and Thalmann 2022).

Traditional root cause analysis tools such as the cause and effect (Ishikawa) diagram

are qualitative in nature. They rely on subjective judgments about factor relationships

and often fail to address system-wide problems (Doggett 2005; Yuniarto 2012). Data-

driven approaches to RCA have received growing attention recently (e.g. He et al.

2017a, 2019; Lin et al. 2020; Ma et al. 2021; Rocha et al. 2022; Thakar and Kalbande

2023). They take advantage of increasing data availability and provide quantitative

tools for discovering the root causes of systemic problems.

Root cause analysis is fundamentally a causal problem. However, attempts to

address data-driven root cause analysis in various domains have mostly been built on

statistical methods and machine learning (ML) techniques based on association (e.g. He

et al. 2017a,b; Samantha et al. 2018; Liu et al. 2018, 2020; Ma et al. 2021). Techniques

that employ such methods for causal investigations should be carefully designed, and
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application must be guided by robust causal theory (Alaa and Schaar 2018; Pearl

2019b; Balzer and Petersen 2021). Efforts to address RCA using a causal framework

(as in Li et al. 2016; Chen et al. 2018; Alizadeh et al. 2018; Liu et al. 2020, Wang et al.

2023; Zhang et al. 2023) are mostly dependent on Granger causality (or some variant),

which has been criticized for its limitations as a causal theory because of its dependence

on prediction (Stern 2011; Maziarz 2015). Moreover, these methods are designed for

time-series data. A goal of this study is to develop data-driven RCA methods that

are based on a rigorous causal framework and can be applied to time-to-event (TTE)

data. Such methods should allow flexible incorporation of statistical or ML estimation

techniques in a principled manner in line with established causal theory.

Advancements in the field of causal inference have led to the development of the

structural causal model (SCM) framework; a general theoretical framework for model-

ing and analyzing causal relationships (Pearl 2009a). Also, algorithms for learning the

structure of causal relationships from data, known as causal discovery methods have

received a lot of attention (Glymour et al. 2019). This work builds on such cummu-

lative progress in the field of causal inference using observational data to develop a

method for RCA that is applicable to censored TTE data.

The existing methods for data-driven RCA outlined above have been applied to

regular cross-sectional and time series data. We focus on TTE data because of its

popularity for studying failure trends in industrial process. Also, TTE data has received

limited attention in causal discovery research. Unlike temporal datasets such as time-

series data where observations are repeated measurements of the same quantity across

a set of time intervals, TTE data consists of measurements of the duration from a

pre-defined time of origin to the occurrence of an event of interest (often times some

type of failure in industrial settings) for a set of units sampled from a population under

study. This type of data has unique features that make it unsuitable to traditional
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statistical and machine learning methods (Vittinghoff et al. 2006). For example, it is

able to capture information about incomplete event observations such as censoring, and

the outcome of interest consists of not only whether an event of interest occurred but

also when the event occurred (Klein and Moeschberger 2003; Kartsonaki 2016). These

features allow event data to be collected and analyzed in a way that avoids bias and

loss of critical information. The field of survival analysis provides a suite of specialized

techniques for modeling and analyzing TTE data (for an introduction, see Lemeshow

et al. 2011; Smith 2017).

A challenge that causal learning methods must overcome to be successful for root

cause analysis using censored TTE data is correctly handling the dual variable rep-

resentation of the outcome of interest in censored TTE data typically consisting of

the variables time of event T and status S, where T represents the duration before

the event and S represents the status at time T for every sample unit in the data.

Statistical associations between covariates and the observed event times in such data

can be learned using techniques in survival analysis, however, the discovery of causal

structures and algorithmic learning of root causes from censored TTE data has not

been explored in existing literature to the best of our knowledge. This work exploits

techniques in survival analysis for TTE data, but goes beyond statistical associations

to reveal causal relationships in event data. The method proposed in this paper is es-

pecially suitable for investigations where events that occur up to a certain time-point

is of primary interest, such as in the root cause analysis of product infant failure.

We propose a method for estimating a graphical model of the causal relationships

between a set of covariates and a suitably defined outcome of interest. We refer to

this graphical model as a root cause graph (RCG). Integral to the proposed method is

the definition and estimation of an alternative single outcome variable for the dataset

that becomes the focus of a subsequent causal discovery procedure. The RCG depicts
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the structural mechanism that leads to the outcome of interest (often some measure

of failure) relative to the set of observed variables. Graphical models like RCGs are

visual, easy to interpret, and explicitly encode assumptions about the process under

study.

Through RCGs learned from data, the proposed method is useful for summarizing

answers to root cause investigations using a graphical depiction of how variables in

the data are related. The causes of the observed event relative to the set of covariates

in the dataset are made explicit. This is crucial for making decisions about how to

intervene in a process to improve the outcome of interest. Since RCGs reveal the

causal mechanism connecting all the variables in the data, potential intervention points

suggested by this method are not limited to the root cause variables alone. As a result,

other variables that mediate the effects of the root causes which might be easier to

manipulate can be considered for intervention actions. Furthermore, recovering RCGs

from data facilitates principled causal effect estimation. This aids decision making by

enabling an evaluation of the effects on the outcome, of potential changes to covariates.

This usage is demonstrated later in this paper.

The novel contributions of this study include: (i) a data-driven framework for

root cause analysis using observational time-to-event data. (ii) a methodology for

causal discovery using time-to-event-data. (iii) a two-part simulation framework for

generating realistic time-to-event datasets from causal structures. (iv) a demonstration

of how root cause treatment effect estimation can be improved using a principled

approach informed by RCGs. The rest of this paper is organized as follows. Section

4.2 provides an overview of structural causal models and causal discovery. Section 5.3

presents the proposed methodology for RCG recovery and the TTE data simulation

framework. Section 4.4 describes the nature of root cause analysis problems addressed

by this study and summarizes the charateristics of the simulated datasets. Section 5.4
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discusses the results obtained and demonstrates the use of the root cause graph for

treatment effect estimation in the presence of mediation. Section 4.6 provides further

discussion on the relevance of the proposed RCG recovery method and considerations

for practical applications. The paper concludes in Section 5.5.

4.2 Background

4.2.1 Structural Causal Models

The Structural Causal Model (SCM) framework is a broad theoretical framework that

combines features of the potential outcome framework, structural equations modeling,

and probabilistic graphical modeling (Pearl 2009a, 2018). In the SCM framework,

causal mechanisms between variables in a data distribution can be represented as

graphical models known as Bayesian networks (BN), or by a corresponding set of non-

parametric structural equations models (NPSEM) (Pearl 2009a; Maathuis and Nandy

2016). These representations describe the causal dependencies that exist between a set

of variables. Both representations can be easily transformed from one to the other.

Figure 4.1 shows an example of graphical and NPSEM representations of the same

causal structure of a data distribution consisting of variables A,B,C,D,E and Y .

In the NPSEM (Figure 4.1b), each variable is a function of its direct causes and an

error term (ε), and the unidirectional assignment operator := is used to depict the

asymmetrical nature of causal relationships. In the BN (Figure 4.1a), error terms are

commonly omitted for simplicity.

In probabilistic graphical models, the nodes in the graph represent the variables in

a data distribution while the edges represent dependencies between pairs of variables.

The Bayesian Network (BN) is a type of probabilistic graphical model that is based on
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A

B

C

D

E

Y

(a) Graphical (BN) representation

A := fa(εA)

B := fb(εB)

C := fc(A,B, εC)

E := fe(C, εE)

D := fd(εD)

Y := fy(C,D, εY )

(b) NPSEM representation

Figure 4.1: Graphical and NPSEM representations of the same causal structure.

directed acyclic graphs (DAGs). It represents a set of variables and their joint prob-

ability distribution (Korb and Nicholson 2008; Koller and Friedman 2009). Familial

terms are used to describe connections between variables or nodes in Bayesian net-

works. For example, in the BN in Figure 4.1, A and B are parents of C, and ancestors

of Y . In causal BNs, a directed edge in the graph is assumed to represent the direction

of causation between two adjacent nodes.

A Bayesian Network encodes the set of conditional independencies in the joint prob-

ability distribution of the variables in some observed data. Given a joint probability

distribution consisting of a set of variables {A,B,C}, B is said to be conditionally inde-

pendent of A given C if the conditional distribution of B given A and C does not depend

on A. This is expressed mathematically as B ⊥⊥ A | C, if P (B | A,C) = P (B | C).

Consider the variables A,B,C with the relationships depicted in Figure 4.2. These

three types of graph junctions are useful for illustrating how conditional independen-

cies are encoded in causal graphs.

The graph in Figure 4.2a is called a chain. In this graph the effect of A on B is

transmitted through C, hence the variable C is known as a mediator because it explains

the causal effect of A on B. There is marginal dependence between every pair of nodes

in this graph. Notably, B is not independent of A (mathematically, B 6⊥⊥ A). However,
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A C B

(a) A chain, C acts as a me-
diator here.

A

C

B

(b) A fork, C acts as a con-
founder here.

A

C

B

(c) An inverted fork, C acts
as a collider here.

Figure 4.2: Three basic graph structures with node C playing different roles in each
case.

B is conditionally independent of A given C (B ⊥⊥ A | C). Figure 4.2b is known as a

fork, with C exerting influence on both A and B. In this case, A and B are associated

and hence marginally dependent (B 6⊥⊥ A) because of their mutual dependence on C.

However, they are not causally dependent. C is referred to as a confounder as it is said

to confound the relationship between A and B. B becomes conditionally independent

of A given C (B ⊥⊥ A | C). Notice that the chain and fork structures encode the same

marginal and conditional independencies and so cannot be uniquely distinguished by

conditional independence in observational data. They are said to belong to the same

equivalence class.

Figure 4.2c depicts an inverted fork, and C in this case is known as a collider. A

collider node in a graph has two or more edge arrows pointing into it. This particular

type of collider in Figure 4.2c is known as an unshielded collider because its parents are

not adjacent in the causal graph. In this setting, A and B are marginally independent

(B ⊥⊥ A), but given C they become dependent, (B 6⊥⊥ A | C). The inverted fork

encodes a different set of independence constraints compared to the chain and fork

structures and can be uniquely identified from a joint probability distribution.

4.2.2 Causal Discovery

Causal discovery methods are techniques for recovering a data distribution’s underly-

ing structural causal model. Constraint-based algorithms for causal discovery identify
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causal structures in a data distribution by testing for marginal and conditional inde-

pendencies in the data distribution. They typically assume certain conditions about

the data distribution and its Bayesian network including the causal Markov condition

and causal faithfulness condition (Spirtes and Zhang 2016; Glymour et al. 2019). An-

other common assumption is causal sufficiency. Causal sufficiency means that the set

of measured variables includes all common causes of all pairs of variables in the set.

That is, there are no latent confounders relative to the set of observed variables.

In many cases, the direction of some edges in the causal Bayesian network can

not be identified uniquely from data though conditional independence testing. This

is because more than one Bayesian network can encode the same set of conditional

independence constraints. However, some edges like the edges incident to unshielded

colliders, can be identified uniquely using constraint-based methods (Eberhardt 2017;

Maathuis and Nandy 2016). Hence, using constraint-based methods, a generic type of

causal graph consisting of a mixture of edge types (including directed and undirected

edges) can be recovered. This graph is known as a Markov equivalence class (MEC)

graph and it represents all statistically indistinguishable DAGs that can be elicited

from a particular data distribution.

The most prominent constraint-based causal discovery algorithm is the PC algo-

rithm (Spirtes et al. 2000). It returns an MEC graph known as a Completed Partially

Directed Acyclic Graph (CPDAG) which may include undirected edges or bi-directed

edges in addition to directed edges. An ambiguous undirected or bi-directed edge be-

tween a pair of variables signifies when the algorithm is not able to uniquely determine

which variable is the cause and which is the effect. Incorporating background knowl-

edge into algorithmic causal discovery can help with correctly orienting ambiguous

edges and improve the correctness of recovered graphs. This is a significant oppor-

tunity for causal discovery applications in industrial processes since aspects of causal
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dependencies in the process are likely to be well known by process subject matter

experts.

4.3 Methodology

4.3.1 Root Cause Graphs (RCGs)

We define the root cause graph (RCG) as a graphical model that describes the structural

mechanism between features in data and their relationship to an outcome of interest.

The true RCG for any process is a causal Bayesian network. Using a constraint-

based method, it is possible to learn a Markov equivalence class of the RCG. In this

work, the ground truth RCG is referred to as the true RCG or true causal BN, while

the RCG learned from data is referred to as the recovered RCG or estimated RCG.

As a representation of the data generating process that leads to the values of the

outcome event observed, the root cause graph is a data-driven alternative to traditional

representations of cause and effect mechanisms like the Ishikawa diagram which are

derived from subjective approaches to root cause analysis.

4.3.2 Procedural Framework

To precisely evaluate methods for recovering the root cause graph from observational

TTE data, the true causal structure and data generating process must be known. To

achieve this, a simulation framework is developed to simulate TTE data for scenarios

where root cause analysis techniques may be employed. A novel root cause graph

recovery method is then applied to the simulated datasets. Figure 4.3 is a high-level

depiction of this procedure.
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Figure 4.3: Overall procedure for simulating TTE data and recovering its root cause
graph.

Consider a hypothetical system where it is desirable to learn the root cause graph

of a failure trend using time-to-event data. For evaluation purposes, assume the SCM

of the system is known, all data generating parameters are known, and all relevant co-

variates are represented in a causal BN. This BN may be transformed to an NPSEM,

which can then be parameterized for data simulation. Censored time-to-event data

along with covariate data is generated according to the specified SCM using the simu-

lation framework described in Section 4.3.3. The method described in Section 4.3.4 is

used to recover the root cause graph from the simulated data. The recovered RCG is

then evaluated against the ground truth.

4.3.3 Data Simulation

Let {X, T, S} be the data distribution of a right censored time-to-event data to be

simulated, where X is the set of covariates X = X1, X2, ..., Xm measured alongside

event times T for every observed unit in the study sample. Let S denote the status

variable indicating whether a particular observation is censored (S = 0) or not (S = 1).

Our goal is to generate realistic datasets of the form {X, T, S}, sampled from standard

distributions. Existing simulation methods are designed to simulate either causal co-

variate data X (as in Sofrygin et al. 2017; Al Hajj et al. 2023) or the event times {T, S}

(as in Crowther and Lambert 2012; Harden and Kropko 2019) alone. Our simulation
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approach builds on existing methods and provides an integrated framework for sim-

ulating both covariate data and event times in censored TTE data. This framework

enables the flexible simulation of covariate data from complex Bayesian networks whose

nodes may exert direct or indirect influence on the generation of censored event times

through variously specified direct and mediated covariate effects. The ability to easily

specify mediated covariate effects on event times is a key feature of this framework.

We implement a two-part simulation procedure. The first generates the covari-

ate data X based on the specified SCM while the second part generates event times

and status, {T, S} from a combination of the covariates X and a parametric function

that describes the baseline hazard of the event time distribution h0(t). This two-part

simulation procedure is depicted in Figure 4.4.

In the first part of the simulation process, a pre-specified NPSEM is used to generate

covariate data in a stochastic fashion. The variables in the NPSEM are assumed to

follow a particular parametric distribution which needs to be specified prior to data

generation. Hence, to generate data for a specific variable in the NPSEM, we sample

from its standard parametric distribution. The parameters of exogenous variables

are precisely specified while the parameters of endogenous variables are defined as a

function of their parents in the SCM.

In the second part of the simulation procedure, an event time for each sample unit

is generated under a proportional hazards assumption based on the covariates X and a

baseline hazard function. One method that can be used to simulate realistic event times

is the cummulative hazard inversion method (Bender et al. 2005; Brilleman et al. 2021).

Through this method, a function is derived for computing survival times by inversion

of the cummulative hazard function.
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Figure 4.4: Two part simulation procedure for generating time-to-event data distribu-
tion X, T, S according to specified SCM. Part 1 generates X while part 2 generates
{T, S}

.

The survival function S(t) = P (T > t) of a proportional hazard model can be

expressed as

S(t | x) = exp[−H0(t)exp(βx)] (4.1)
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Where x is the realized values of covariates X, β is the vector of the coefficients of x,

and H0(t) is the cumulative baseline hazard function.

Now, the probability of survival at a particular event time Ti for a sample unit i

in the study, is given by the cumulative distribution function (CDF) of its survival

function. The CDF of a continuous random variable is expected to follow the uniform

distribution U(0, 1), therefore we can write,

Si(Ti) = Ui ∼ U(0, 1) (4.2)

From Equation 4.1,

Si(Ti) = exp[−H0(Ti)exp(βixi)] = Ui ∼ U(0, 1) (4.3)

The event times can then be obtained by inverting the baseline cumulative hazard

function and rearranging Equation 4.3 to give

Ti = H−10 [−log(Ui)exp(−βixi)] (4.4)

where H−10 is the inverted baseline hazard.

Assuming a parametric distribution for the event times, this expression allows event

times to be computed after sampling individual survival probabilities from a uniform

distribution (Brilleman et al. 2021). For a discussion including methods for inverting

the hazard function, see Crowther and Lambert (2013).

Two right-censoring mechanisms are implemented on the generated event times.

The first is end-of-study censoring which occurs when for a sample unit, the event is not

observed before the study comes to an end. By this mechanism, simulated event times

that are larger than a pre-specified study duration Tmax are considered censored. The
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event time T is accordingly assigned the value Tmax and censoring status S = 0. The

second mechanism of censoring implemented is random censoring which is a common

censoring mechanism in real survival data that occurs for a variety of reasons but in

a non-systematic manner. To implement random censoring, a proportion of the study

sample (including samples which could have been subject to end-of-study censoring)

are randomly selected, and for each observation with simulated event time T , we draw

its random censoring time T ′ from a uniform distribution U(0, T ) and reassign this

value to T . For all censored observations, the status variable S is set to 0, while S

remains 1 when event has been observed at recorded time T .

4.3.4 Root Cause Graph Recovery

To recover the root cause graph for an event of interest from observational TTE data,

we propose using causal discovery techniques to reverse-engineer the structure of the

causal relations between variables associated with the event. We employ in this work

the constraint based causal discovery algorithm, the PC algorithm (Spirtes et al. 2000).

The PC algorithm starts with a fully-connected undirected graph of the variables,

from which it estimates the graph’s skeleton structure. The skeleton is the undirected

graph obtained after edges between variables in the fully connected graph that are

not directly related have been eliminated using conditional independence tests. The

algorithm then proceeds to determine edge orientations by first finding unshielded

colliders in v-structures. V-structures are variable triples, e.g. {A,B,C}, such that

they are connected as an undirected chain-like structure as in A — C — B. In this

structure, the algorithm determines that if C was not part of the conditioning set

that made A and B independent, then we have an unshielded collider in C. Other

edge orientation rules allow the algorithm to asymptotically converge to a Markov

equivalence class DAG (Glymour et al. 2019). For example, the edge propagation rule
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allows the algorithm to find directed chain structures by converting A → C — B to A

→ C → B.

One challenge with causal discovery using censored time-to-event data is that the

outcome of interest is described by two variables, the event time T and the event

status S. Choosing to use either of these variables alone as the outcome variable would

result in loss of critical information. Our solution is to estimate an alternative outcome

variable Y that captures relevant information from T and S in a single variable. This

single outcome variable becomes the focus of a causal discovery procedure that reveals

how the outcome is related to other variables in the data. Ideally, it will be a variable

that can be used as a causal estimand. One such measure that can be estimated from

event data is the survival probability for individuals in the study sample at a specific

time of interest. As a causal estimand, it can be used for quantifying the effect of a

change in any of the covariates on the outcome in terms of a risk scale that measures the

difference in the marginal survival functions given different treatments. For example,

the average causal effect (ACE) at time t of a change in a variable x from a value of 0

to 1 can be evaluated as

ACE(t) = P (T > t | x = 1)− P (T > t | x = 0)

where T is the survival time, and all other relevant covariates are kept constant.

Considering a specific time-point of interest tint for which an analyst seeks to un-

derstand the process during 0 ≤ t ≤ tint. We define the alternative outcome variable

Y as the survival probability at time tint given x S(t = tint | x). Given an observed

TTE data distribution {X, T, S}, and a stipulated time of interest tint, the estimator
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for the new outcome variable for each sample unit Ŷi is the probability that the sample

unit survives beyond tint given its covariate values xi.

Ŷi = P (Ti > tint | xi) (4.5)

where Ti is the actual survival time for the sample unit. This definition leaves the

analyst with the flexibility of choosing what time-point is most relevant to the research

question. This single outcome replaces the event time and event status in the original

data distribution.

{X, T, S} ⇒ {X, Y }

The root cause graph recovery procedure is described in Figure 4.5. Survival regres-

sion models like proportional hazards and accelerated failure time models can be used

to estimate the probability of survival for individual units at a specific time. Other

specialized machine learning survival models such as the multi-task logistic regression

(Yu et al. 2011) and random survival forests (Ishwaran et al. 2008) models can also be

used for predicting individual survival probabilities at a specific time.

Figure 4.5: Method for recovering the root cause graph via causal discovery.
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4.3.5 Implementation

Three datasets are generated from different case scenarios using the simulation frame-

work described in Section 4.3.3 for the purpose of evaluating the proposed method for

root cause analysis using TTE data. The case scenarios have different data generation

processes representing different applications where the methods proposed in this paper

can be utilized. Not only have different Bayesian network structures been explored,

different sample sizes, data types, and parameters of the hazard function have been

experimented with during data simulation. Baseline hazards are specified using the

Weibull family of distributions along with reasonable fixed effects for the covariates in

each case.

The proposed root cause recovery method is applied to each dataset before evalu-

ating the degree to which the true casual DAG was recovered. The semi-parametric

Cox model is used to fit the hazard function of the event as

h(t | x) = h0(t)× exp(βx) (4.6)

Using Equation 4.6, the survival function can be obtained from the expression the

S(t) = e−H(t) where H(t) is the cummulative hazard. Sample unit covariate values can

then be applied to the survival function to obtain the desired single outcome estimate

of survival probabilities (Equation 4.5).

Finally, the stable PC algorithm is used to recover the structural causal model of the

dataset which gives the estimated root cause graph. Stable PC is an order-independent

version of the PC algorithm (Colombo and Maathuis 2014). The likelihood-ratio test

for mixed data types proposed by Andrews et al. (2018) is used as the conditional

independence test in this implementation.
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4.4 Problem Description

The proposed methodology for root cause analysis can be applied to a variety of situ-

ations where principled root cause analysis can lead to improvements on an outcome

of interest. This includes problems under the domains of operations management,

process improvement, device management, product life cycle management and failure

diagnostics.

For our current implementation of the proposed RCG recovery method, the follow-

ing conditions about the problem and its associated data are assumed:

1. Causal sufficiency: The set of measured variables includes all common causes of

all pairs of variables in the data. There are no latent confounders in the data.

2. The set of relevant covariates X are random variables which form a multivari-

ate Gaussian distribution. The relationships between the covariates are approxi-

mately linear and the hazard function of the event can be modeled using a Weibull

distribution.

3. Proportional hazards: The covariates have a constant multiplicative effect on the

hazard function of the survival outcome, and the hazard functions for any two

subjects at any point in time are proportional.

4. The TTE data is right-censored, and censoring is uninformative.

4.4.1 Case Scenarios

The case scenarios in this work are hypothetical problems which mimic realistic

scenarios in industry where the proposed method for root cause analysis could be ap-

plied. These scenarios are described in subsections 4.4.1.1 to 4.4.1.3. In each case, the
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outcome variable Y is the censored event time. The case datasets are simulated ac-

cording to the structural causal models assumed to govern the data generating process

of these scenarios. Several problem characteristics and parameters for data generation

are varied in the different scenarios. The properties of the three different cases are

summarized in Table 4.1 and the survival plots of the datasets are shown in Figure 4.6.

(a) Case 1 (b) Case 2

(c) Case 3

Figure 4.6: Survival plots for the case scenarios.
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Table 4.1: Characteristics of the case scenarios.

Case 1 Case 2 Case 3

Objective for outcome (Y ) maximize maximize minimize

No. of observations 6000 50000 730

No. of nodes 6 8 11

No. of edges 5 10 9

No. of {discrete, continuous}

covariates in X

{1, 4} {3, 4} {4, 6}

Baseline hazard trend Increasing Decreasing Increasing

Weibull distribution

parameters {Shape(γ),

Scale(λ)}

{2, 0.5} {0.99, 50} {3.5, 0.0001}

End-of-study censoring rate 20% 95.5% 2.5%

Random censoring ratea 10% 0.1% 0%

Overall censoring rate 28% 95.5% 2.5%

Duration of study 5000 minutes 3000 days 90 minutes

Time-point of interest 100th minute 365th day 30th minute

a End-of study censoring candidates could also be random censored. 86



4.4.1.1 Case 1

The SCM depicted in Figure 4.1 is used for case 1. This case relates to the observed

failures of different models of some rotational equipment (such as a drill) when operated

continuously for a long duration. 6000 manufactured units of the equipment are studied

for a maximum of 5000 minutes of continuous operation and their failure (event) times

and status recorded as part of a large-scale testing program. Equipment which do not

fail within 5000 minutes are considered censored via end of study. About 10% of the

study samples are also randomly censored due to measurement errors. This specific

study uses the data to investigate the root causes of systematic early failures at or

before the 100th minute of continuous operation. The set of covariates {A,B,C,D,E}

are summary properties of the equipment and their operating conditions and can be

described as follows: A - surface hardness; B - average operating torque; C - relative

aggregated stress; D - equipment model; and E - average wear rate.

4.4.1.2 Case 2

The true causal BN for case 2 is depicted in Figure 4.7. This case portrays the chal-

lenge of understanding the factors driving observed failure trends of computer hard-

ware components in data center infrastructure. In this case, 50000 units of a specific

hardware component deployed in data center servers across geographic locations are

monitored for 3000 days. The goal is to use the TTE data from this study to unravel

the root causes of early failures of the components under study. The set of covari-

ates {A,B,C,D,E, F,G} are summary characteristics of the hardware units and the

conditions under which they operate. They can be described as follows: A - overall
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A B

Figure 4.7: Case 2 Bayesian network

monitoring at rack level; B - location of data center; C - machine functional designa-

tion; D - rack temperature regulation score; E - voltage regulation score; F - outside

temp; and G - data center energy consumption.

4.4.1.3 Case 3

The causal BN for case 3 is depicted in Figure 4.8. This scenario mimics a use case for

data-driven root cause analysis in logistics operations improvement. In this scenario,

the goal is the improvement of a warehouse operations key performance index; the

truck-turn-around (TTA) time. The task is to investigate the contributing factors

to patterns of delays being observed in the operational work flow for unloading and

reloading delivery trucks. The duration of interest in this case is the average TTA

time per shift, and the TTE data is at shift level; with different work crews rotating

shift duties. Unlike the previous case scenarios, in this case high event times are

undesirable, and the goal of the logistics department is to minimize average TTA

times. The covariates in this study can be described as follows: A - forklift crew on

duty; B - storekeeper on duty; C - operational losses; D - check-out staff experience

level; E - check-in staff experience level; F - average forklift availability; G - warehouse
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layout adherence score; H - housekeeping score; Q - luminance; and R - fresh order

level.

Y

D E F G

H

C

A BQ R

Figure 4.8: Case 3 Bayesian network

4.5 Results and Analysis

The recovered root cause graph is a Markov equivalence class graph known as a Com-

pleted Partially Directed Acyclic Graph (CPDAG). The directionality of some recov-

ered edges may remain unresolved and ambiguous. We compare the true causal BNs

of the case scenarios to the RCGs recovered using the proposed method. Figure 4.9

shows the true causal BN and the recovered RCG for case 1. In this ideal scenario, the

proposed method is able to recover the true causal BN exactly.

A

B

C

D

E

Y

(a) True causal BN for case 1.

A

B

C

D

E

Y

(b) Recovered RCG for case 1.

Figure 4.9: Comparing the true RCG and recovered RCG in case 1
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The recovered RCG in case 2 includes two ambiguous edges as shown in Figure

4.10. The remaining eight edge directions are correctly oriented. All node and edge

adjacencies are also correct. The ambiguous bi-directional edges, B ←→ F and B ←→

G, present an example where background knowledge if available, could be used to

reorient edges to improve the result of an algorithmic causal discovery process.

Y

C D E F G

A B

(a) True causal DAG for case 2.

Y

C D E F G

A B

(b) Recovered root cause graph for case 2.

Figure 4.10: Comparing the true RCG and recovered RCG in case 2.

The recovered RCG in case 3 (Figure 4.11) includes four ambiguous edges; A←→ C,

A ←→ F , B ←→ G and B ←→ H, but also one extra edge A −→ Y . Similar to

case 2, background knowledge could potentially be useful for correctly reorienting the

ambiguous edges.
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(a) True causal DAG for case 3.

Y

D E F G

H

C

A BQ R

(b) Recovered root cause graph for case 3.

Figure 4.11: Comparing the true RCG and recovered RCG in case 3.

We use the pattern metrics in Table 4.2 to evaluate the recovered root cause graphs.

Other metrics for comparing the performance of different causal discovery methods

including adjacency/arrowhead precision and recall, and structural hamming distance,

can be computed from these pattern metrics (Raghu et al. 2018; Nogueira et al. 2022).
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Table 4.2: Pattern metrics for recovered RCGs relative to their true RCGs in the three
case scenarios.

Metric Case 1 Case 2 Case 3

Correct directed edgesa 5 8 6

Incorrect directed edgesb 0 2 4

Correct adjacenciesc 5 10 9

Incorrect adjacenciesd 0 0 1

Missing edgese 0 0 0

Extra edgesf 0 0 1

a Number of correctly directed edges in the recovered RCG.
b Number of incorrectly directed edges in the recovered RCG.
c Number of undirected edges (disregarding arrowheads) that are present in both true and recov-
ered RCGs.
d Number of undirected edges (disregarding arrowheads) present in one RCG but absent in the
other.
e Number of edges that are present in the true RCG but absent in the recovered RCG.
f Number of edges that are present in the recovered RCG but absent in the true RCG.

4.5.1 Root Cause Effect Estimation

Root cause graphs are useful towards effecting desirable changes on an outcome of

interest such as increasing survival times of a device fleet. Root cause graph recovery

from data allows further analyses, decisions and corrective actions to be approached

in a principled, informed manner, taking advantage of the ability of a causal Bayesian

network to encode knowledge about the process under study. In this section, we con-

sider how the effects of root causes (treatment effects) can be estimated in a principled

manner using a recovered RCG. This is useful for predicting the effect that changes to

a root cause would have on the outcome.

Regression models can be used for estimating the causal effect of a treatment vari-

able on an outcome. This requires the absence of selection bias in the data, and

adjusting for any confounders in the relationship between the treatment and the effect.

Assuming that the regression model is correctly specified, and confounders have been
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properly adjusted, the coefficient of the treatment variable in such a regression model

can be interpreted as an unbiased estimate of the causal effect of the treatment variable

on the outcome (Schochet 2010; Hernán and Robins 2018; Funk et al. 2011).

Covariate selection for confounder adjustment is critical for causal inference using

observational data but remains a major challenge (VanderWeele 2019). Traditional

approaches to confounder selection can be prone to over-adjustment which can amplify

biases in the estimation of causal effects (Greenland and Pearl 2011; Shrier and Platt

2008). It is not uncommon for researchers to try to adjust for most/all measured covari-

ates or all covariates that are correlated with the outcome variable (VanderWeele and

Shpitser 2011; Pearl and Mackenzie 2018). Causal DAGs provide a basis for principled

confounder selection by explicitly revealing which variables confound the relationships

being studied. Several recent criteria that have emerged for reliable covariate selection

depend on knowledge of the causal DAG (Greenland and Pearl 2011; VanderWeele

2019; Tafti and Shmueli 2020).

Consider a root cause variable for which some treatment effect measure on the

outcome Y is to be estimated. A naive approach to covariate adjustment in a regression

model for estimating such treatment effect, is adjusting for the full set of measured

covariates. The independent variables in such model is the full set of X variables

including the treatment variable whose coefficient will be the estimated treatment

effect. However, this approach often leads to over-adjustment which can lead to biased

causal estimates. Specifically, adjusting for variables which act as mediators or colliders

would likely diminish or exaggerate the estimated total effect of the treatment on the

outcome (Greenland and Pearl 2011; Pearl and Mackenzie 2018). Mediators are of

particular interest in root cause analysis applications because it is often the case that

some or all of the effects of certain root causes of an outcome are mediated by another

intermediary variable.
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For root cause treatment effect estimation in the three case scenarios, we apply

principled covariate selection to Cox regression models using their recovered RCGs.

We call such models RCG-informed models or RCG-guided models. We also fit another

model that adjusts for all measured covariates which we call the full model, and obtain

the coefficients of the root cause treatment variables from this model. The estimated

total effects of root causes from the RCG-informed model and the full model are com-

pared to the ground truth effect sizes which are obtained from the data simulation

functions.

Table 4.3 shows the the coefficients of mediated root cause variables from the two

estimating models: the full model and the RCG-informed model. These coefficients

of the treatment are considered to be estimates of the total effects of the root causes

on the outcome which in this case is the hazard of survival times. The true effects on

the hazard are shown in the last column of the table. Also included in the table are

measures of prediction performance and model fit for the two estimating models; the

concordance index (CI) and Akaike Information Criteria (AIC).

Notice that the estimates from the RCG-informed model are much closer to the

true values of total root cause effects while the estimates from the full model are

either diminished or exaggerated. In several cases, the +/- signs of the full model

coefficients are reversed. The poor estimation of mediated root cause treatment effects

in the full model occurs notwithstanding the fact that the full model achieves superior

predictive performance than the RCG-informed model in all cases, as indicated by

the concordance-index and AIC. Adjusting for mediators when estimating treatment

effects leads to poor estimates because the mediators tend to ‘explain away’ the true

effects being investigated. This clearly demonstrates the value of learning the root

cause graph before attempting to estimate treatment effects of potential root causes.

94



Table 4.3: Comparison of effect estimates for root causes with mediated effects on the
outcome. {CI,AIC} stand for the concordance index and Akaike Information Criteria.

Case
Study

Variable Full model RCG-informed
model

True effect

Case 1

A 0.0016 -0.289 -0.3

B 0.0118 -0.164 -0.18

{CI,AIC} {0.802,64094} {0.794,64474}

Case 2

Aa -0.0644 -1.908 -1.95

B2b -0.031 0.2 0.2

B3b 0.0194 -1.441 -1.485

{CI,AIC} {0.891,42079} {0.866,43056}

Case 3

B2c -0.507 0.07 0

B3c 0.0066 0.812 1

A2c 0.0275 1.89 2.4

{CI,AIC} {0.798,7336} {0.757,7610}
a A is an ordinal categorical variable that is treated like a continuous variable under the assumption
that its effect is proportional to the ordinal progression of its factor levels.
b B2 and B3 are different levels of the categorical variable B in case 2. Their values are with respect
to the reference level B1.
c Similarly, the values of B2 and B3 reference B1 in case 3, while A2 references A1.

Tables 4.4, 4.5, 4.6 show all model coefficients for the full model and RCG-informed

model, as well as the true values of the effects for all three cases. Notice that the esti-

mated covariate effects in the full model are close to the true values for variables where

there is no mediation but considerably far off for variables where there is mediation.
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Table 4.4: Comparison of all covariate coefficients in case 1 outcome models.

Variable Full Cox model RCG-informed
model

True effect

A* 0.0016 -0.2886 -0.3

B* 0.0118 -0.1644 -0.18

C 0.6057 0.6

E 0.0055 0

D2 -1.1085 -1.08 -1.1

D3 -0.5339 -0.5175 -0.5

* Mediated variables.

Table 4.5: Comparison of all covariate coefficients in case 2 outcome models.

Variable Full Cox model RCG-informed
model

True effect

A* -0.0644 -1.9084 -1.95

C2 -0.0318 -0.021 -0.07

C3 -0.2552 -0.265 -0.3

B2* 0.031 0.2 0.2

B3* -0.0194 -1.4411 -1.485

D -0.5615 -0.6

E -0.7728 -0.75

F 0.0067 0

G -0.0064 0

* Mediated variables.

For non-mediated root causes, including mediators from other root causes can lead to

better estimates of their effects.
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Table 4.6: Comparison of all covariate coefficients in case 3 outcome models.

Variable Full Cox model RCG-informed
model

True effect

E -0.6097 -0.4764 -0.6

D -0.3147 -0.2448 -0.4

B2* -0.5065 0.0738 0

B3* 0.0066 0.8116 1

G 0.4371 0.4

A2* 0.0276 1.8934 2.4

F -0.6413 -0.6

C 0.0081 0

H -0.0108 0

Q -0.0056 0

R -0.0138 0

* Mediated variables.

4.6 Discussion

The general framework for RCG recovery proposed in this work as depicted in Fig-

ure 4.5 is algorithm/model-agnostic. This allows for flexibility in the choice of causal

discovery algorithms and models for estimating the survival probability outcomes dur-

ing implementation. These choices should depend on what is known about the data

and what can be assumed about its generating process. For example, in a process where

the observed set of variables in the data cannot reasonably be assumed to be causally

sufficient, a causal discovery algorithm which does not assume causal sufficiency such

as the RFCI (Colombo et al. 2012) or GFCI (Ogarrio et al. 2016) algorithms should be
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used instead of the PC algorithm used in this implementation. Likewise, for datasets

where the proportional hazards assumption is not tenable, or where more complex es-

timators might be required for predicting survival probabilities, the Cox model used

in this work would need to be replaced by a suitable alternative model such as the

accelarated failure time model (Saikia and Barman 2017) or random survival forests

model (Ishwaran et al. 2008). Other tradeoffs such as the loss of explainability when

using more complex models like random survival forests would need to be considered.

Therefore, for any application of the proposed RCG recovery method, it is important

to check the assumptions of the candidate estimating models and causal discovery

algorithms against the particular dataset RCG recovery is to be performed on.

In research involving causal structure learning, simulations are commonly used and

are often necessary for the validation of new methods for learning causal models like

RCGs. This is because with simulated data the ground truth causal structure is known.

With real world data there is no way to guarantee accurate knowledge of the precise

structure and parameters of data generation. The RCG recovery framework is applied

to three datasets generated from known Bayesian networks from real world inspired

industrial case scenarios, as described in Section 4.4.1.

The datasets simulated from these case scenarios are used to evaluate the effective-

ness of the proposed root cause graph learning method. The method is able to recover

useful approximations of the ground truth causal BNs with high rates of correct edge

adjacencies. The recovered RCGs depict causal dependencies between measured covari-

ates and how their effects are propagated through the system to affect the outcome of

interest. The proposed method can be applied to various operations and processes un-

der the domains of manufacturing, process improvement, reliability and maintenance

engineering, and device/product life cycle management. It can also be extended to

other domains like healthcare where time-to-event data are commonly used.
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In real world applications, the recovered RCGs can be used by process experts

as a tool for checking their understanding and assumptions about the processes they

manage while also evaluating the plausibility of the recovered RCGs. Learning about

root causes often involves expensive experimentation in industry. The proposed RCG

recovery method can help to eliminate the need for costly experiments or simplify

these experiments by revealing potential confounders that need to be controlled for.

Also, RCG recovery unveils aspects of the process where causal direction is identifiable

from data so that experimentation and other knowledge discovery efforts can focus on

aspects where the direction of causation is difficult to determine.

In all three cases studied in this paper, the recovered RCGs are shown to be useful

for improving downstream analyses and decision-making tasks. This is demonstrated

through principled estimation of the total effects of the identified root causes using the

RCGs as a guide for covariate adjustment. In particular, using RCG-guided models

for estimating the treatment effects of mediated root cause variables produces effect

estimates that are much closer to their true values compared to models that do not

consider mediation mechanisms. Adjusting for a mediator variable while estimating

treatment effects of a mediated root cause variable diminishes or exaggerates the esti-

mated effect of the root cause relative to the true effects. RCGs are useful for clearly

identifying mediator variables.

Future research should address assumptions used in the current implementation

of the RCG recovery method which may not be reasonable in different datasets. For

example, the assumption of causal sufficiency is difficult to guarantee in many datasets

collected from real world processes. When that is the case, causal discovery algorithms

which relax this assumption may be used for RCG recovery. Additionally, in collab-

oration with industry process owners, domain-specific research that incorporate RCG

recovery can be used to evaluate how much the recovered root cause graphs validate or
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challenge the contemporary understanding of stakeholders about the causes of system-

atic failures in their respective processes leading to improvements in component failure

times.
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Chapter 5

Causal Feature Selection for Machine Learning

Interpretability and Domain Adaptation

5.1 Introduction

Causal machine learning is an emerging field that incorporates ideas and techniques

from causality research into machine learning (ML). This approach to ML offers several

benefits including enhancing ML generalization and domain adaptation, facilitating

model transparency and interpretability, improving fairness in artificial intelligence

(AI), and amplifying opportunities for knowledge discovery (Pearl 2019b; Schölkopf

2022b; Kaddour et al. 2022).

With the current emphasis on interpretable/explainable ML&AI, developing models

with causal intuitions is highly desirable for many reasons (Miller 2019; Molnar et al.

2020; Cheng et al. 2021; Saeed and Omlin 2023). Such models are useful for decision-

making, knowledge discovery, and building safety, ethics and trust into AI systems.

Traditional methods for explaining ML models are based on superficial correlation and

may lead to misleading interpretations of the real world mechanism generating the

observed data (Xu et al. 2020; Feder et al. 2021). The field of causal inference offers

tools that can be leveraged for deeper insights into how ML models arrive at their

predictions and the real-world implications of the models.
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The assumption in machine learning that source data and target data are simi-

lar, and are drawn from the same distribution is routinely violated in practice (Pan

and Yang 2009; Weiss et al. 2016; Zhou et al. 2022). This same source/target dis-

tribution (SSTD) assumption forms an important limitation for most ML algorithms

which often leads to significant performance decline in changing environments. As a

result, research fields which tackle this problem such as domain adaptation and transfer

learning are growing in importance. This factor drives the increasing interest among

machine learning researchers in causal inference, given its recognized potential for bol-

stering the generalization capabilities of machine learning models (Zhang et al. 2015a;

Subbaswamy et al. 2019; Zhang et al. 2020; Yang et al. 2021; Scholkopf et al. 2021).

This work considers the subject of feature selection for prediction modeling. Causal

approaches to feature selection offer a direct and accessible way to integrate causal con-

siderations in machine learning. We explore the suggestion that causal feature selection

techniques can improve prediction performance in machine learning over comparable

methods that are not based on causality. A feature selection algorithm that prioritizes

relevant causal relationships is proposed and its prediction performance is compared

to a related classical feature selection approach based on statistical dependence alone.

Furthermore, we focus on the problem of domain adaptation and the performance of

prediction models when the SSTD assumption does not hold. Introducing a new causal

feature selection algorithm, a domain adaptation approach that dynamically adjusts

selected causal features to the target environment is proposed. This is achieved through

the identification of univariate covariate shifts and the subsequent removal of predictors

that are likely to degrade performance in the target environment.

The feature selection algorithms introduced in this paper are experimentally eval-

uated on regression tasks, with the results strongly corroborating the theory that the
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set of causal features known as the Markov blanket delivers optimal prediction perfor-

mance, while upholding the interpretability of prediction models. The experiments on

simulated datasets with well-understood properties demonstrate the impact of dataset

shift on prediction models and how causal strategies for feature selection can improve

in-distribution and out-of-distribution prediction performance.

5.1.1 Related Work

Domain adaptation and transfer learning have garnered substantial attention in the

realm of machine learning research (Zhou et al. 2022). Supervised methods for do-

main adaptation require labeled data from the target domain (Daumé 2007; Pan et al.

2011). A problem setting that is increasingly being studied is when some data sam-

ples from the target domain with no labels (or few labels) are available during model

development rather than fully labeled target data which is often unavailable. This

allows for an unsupervised/semi-supervised strategy for domain adaptation. Feature-

based unsupervised methods focus on the data’s features rather than individual sample

instances.

Most feature-based domain adaptation methods involve some form of transforma-

tion, remapping, or acquisition of new representations of the original feature space

before training a prediction model (Pan et al. 2011; Sun et al. 2016; Shen et al. 2018;

Farahani et al. 2021; Dhaini et al. 2023). Such manipulations add a layer of complex-

ity and abstraction which impacts the interpretability of prediction models. Also, it is

possible that the new representations may be less informative to the prediction model

thereby impacting the discriminative ability of the model (Sun et al. 2019). Further-

more, as highlighted in Dhaini et al. (2023), methods based on this approach may

exhibit performance limitations when applied to regression problems.
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One way to avoid such feature transformations and reduce prediction model perfor-

mance degradation in the target domain is through a suitable feature selection strategy.

The goal is to select a set of invariant features across source and target distributions

in order to minimize the effects of distribution shifts when predicting in the target

domain. Uguroglu and Carbonell (2011) propose a feature-based domain adaptation

method that identifies invariant features through an unsupervised approach using the

maximum mean discrepancy statistic. Their method requires that at least one feature

is variant across the two domains and involves solving an optimization problem which

can be computationally limiting for practical problems. Sun et al. (2019); Yan et al.

(2022) follow a similar feature selection strategy but their methods lose the model-

agnostic property of the feature selection step due to its integration with a specific

prediction model class. Deng et al. (2019) highlight the limitations of the approach in

Uguroglu and Carbonell (2011) including two issues addressed in this work: the lack

of consideration of the conditional distribution and the local structure of the data,

and the use of computationally expensive optimization procedures. However, their

proposed method also involves feature transformation.

Evolutionary optimization algorithms such as particle swarm optimization have

been explored for domain adaptation via feature selection (e.g., Nguyen et al. 2018;

Sanodiya et al. 2020; Dhrif et al. 2020), but in these methods the feature selection step

is not independent of the prediction step as the prediction error is used for optimizing

the selected feature set in a computationally costly procedure. Castillo-Garćıa et al.

(2023) attempt to separate the feature selection step from the prediction step by using

complexity measures instead, but under the assumption that good feature sets would

have lower data complexity.

Some published works have investigated the impact of causal feature selection on

predictive performance through experimental studies. The Causation and Prediction
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Challenge at the 2008 IEEE World Congress on Computational Intelligence (WCCI

2008) inspired a series of articles compiled in Guyon et al. (2010) which explore the

use of causal inference techniques for machine learning. In the analysis of the results

of the challenge, although the organizers confirmed the link between causation and

prediction, they found that the prediction performance of causal feature selection and

causal discovery methods generally did not meet expectations (Guyon et al. 2008).

Overall, they did not consistently perform better than methods which do not consider

causality (non-causal methods) both in tasks where the target sets were drawn from

the same distribution as the training set, and those where some variables in the test

set had undergone some manipulation or intervention.

However, there is supporting evidence from other studies indicating that causal

feature selection can indeed improve prediction performance. Aliferis et al. (2010a,b)

compare the prediction performance of various feature selection algorithms and found

that the causal methods generally did achieve theoretically expected performance in

terms of optimal prediction performance and feature set parsimony. In Yu et al. (2020)

the causal feature selection algorithms mostly achieve better prediction performance

compared to the non-causal methods evaluated. These studies however did not examine

the impact of distribution shifts.

Some recent works have explored causality-based approaches for dealing with distri-

bution shift. Causal methods allow the relaxation of the covariate shift assumption and

have the advantage of improved robustness. Rojas-Carulla et al. (2018); Subbaswamy

et al. (2019); Kügelgen et al. (2019) suggest causality-based approaches for stable mod-

eling and prediction in potentially changing environments using only invariant causal

features. Their methods however require prior knowledge of the causal structure of the

data generating process and which features may change in new environments. Maglia-

cane et al. (2018) relax this need for prior background knowledge but makes additional
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assumptions about the causal structure based on the joint causal inference framework

of Mooij et al. (2020). The techniques introduced in this present work offer the bene-

fits of a causal approach to feature selection and domain adaptation without requiring

prior knowledge of the data generating process. This is achieved without imposing fur-

ther restrictive assumptions beyond those inherent in the SCM framework and specific

causal discovery algorithms used.

5.1.2 Contribution

The novel contributions of this study include: (i) a new filter feature selection algorithm

that prioritizes relevant causal relationships. (ii) a new domain adaptation strategy via

a causal feature selection algorithm which adapts to univariate distributional changes

between source and target data. (iii) a demonstration of the ability of causal ap-

proaches to feature selection to improve prediction performance for regression tasks

in both in-distribution and out-of-distribution target datasets. (iv) new insights into

the conditions that may lead to the Markov blanket delivering sub-optimal prediction

performance as observed in some previous studies.

5.2 Background

5.2.1 Covariate Shift Adaptation

Changes in the probability distribution between source and target data distributions

are an important challenge and key source of failure in machine learning (Moreno-

Torres et al. 2012; Subbaswamy et al. 2022; Polo et al. 2023; Rahmani et al. 2023).

This problem, often referred to as dataset shift has mostly been studied under three

main categories: covariate shift, label shift, and concept shift. Let X be the set of
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predictors and y the response or outcome variable in a data distribution, with the

probability distribution of the source and target data represented by Ps and Pt respec-

tively. Covariate shift is when Ps(X) 6= Pt(X), prior probability or label shift is when

Ps(y) 6= Pt(y), and concept shift is when Ps(y | X) 6= Pt(y | X). The covariate shift is

the most commonly observed and studied form of dataset shift (Dharani et al. 2019;

Xu et al. 2021).

Methods for covariate shift adaptation often rely on the covariate shift assumption

which requires that the conditional distribution of the outcome remains invariant (i.e.,

no concept shift) (Sugiyama and Kawanabe 2012; Kügelgen et al. 2019). In this work,

in addition to the standard covariate shift, we relax the covariate shift assumption so as

to also consider a more extreme case of covariate shift which is caused by manipulations

on covariates forcing them to take on a specific value. This type of shift which may or

may not lead to some form of concept shift is referred to as intervention shift in this

work.

Domain adaptation methods can be effective for mitigating the effects of covariate

shifts on machine learning model performance (Kouw and Loog 2021; Xu et al. 2021).

Most unsupervised domain adaptation methods can be classified into instance-based

approaches and feature-based approaches. Instance or sample-based approaches are

used for sample bias correction and often involve importance sampling and sample

reweighting. Feature-based methods usually entail some transformation of the feature

space for mapping the source distribution to the target distribution. Feature trans-

formations often have a detrimental effect on model transparency and interpretability

(Molnar 2019; Gosiewska et al. 2021; Fuchs et al. 2022).

The domain adaptation approach introduced in this paper is feature-based but does

not entail any transformations of the feature space. Instead, we employ a univariate

covariate shift detection strategy and a causality-based feature selection approach,
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taking advantage of continued advancements in structural causal models (Pearl 2009b)

and causal discovery (Glymour et al. 2019).

5.2.2 Causal Feature Selection

One aspect of machine learning that can benefit considerably from advancements in

causal discovery is feature selection. Causal feature selection involves the learning of

local causal structure around the outcome variable y for predictive modeling (Guyon

et al. 2007; Aliferis et al. 2010a). Algorithms for learning such local causal structure

from observational data can be grouped into two categories: (i) parents and children

PC(y) algorithms infer the direct causes (parents) and direct effects (children) of y,

and (ii) Markov blanket MB(y) algorithms infer the parents, children and spouses

(direct causes of effects) of y.

The Markov blanket of y, MB(y), by definition refers to any set of variables such

that y is conditionally independent of all other variables in the data when conditioned

on the variables in MB(y) (Guyon et al. 2007). However, this term is often used loosely

(as we do in this paper) to refer to the unique and minimal set of variables including

the graphical neighborhood of y that consists of its parents, children and spouses, and

which render all other variables conditionally independent of y (e.g., Tsamardinos et al.

2003; Pellet and Elisseeff 2008; Aliferis et al. 2010a). Some texts do distinguish the

latter (minimal set) using the term Markov boundary (e.g., Yu et al. 2020).

Causal feature selection methods can be considered as part of the class of feature

selection methods known as filters which function independently of a prediction model.

The most common type of filter feature selection algorithm is the select-k best family

of algorithms (Aliferis et al. 2010a). The select k-best approach is used for executing

feature selection before prediction model training by first ranking the available features

using some statistical criteria before selecting the k highest ranked features where k
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is determined by the user (Miao and Niu 2016). Causal feature selection methods on

the other hand generally attempt to identify an ‘optimal’ set of features for prediction.

Optimal in this sense is in terms of the feature set with the minimum size that achieves

the maximum predictive performance (Guyon and Elisseeff 2003; Tsamardinos et al.

2003; Yu et al. 2021).

Guyon et al. (2007) outline some benefits that a causal approach to feature selection

may bring to machine learning over classical feature selection methods. These bene-

fits include robustness to violations of the SSTD assumption, improved parsimony of

selected feature sets, and enhanced data understanding and model interpretability. It

has also been suggested that causality-based feature selection approaches can improve

prediction performance in machine learning (Guyon et al. 2007; Kulynych 2022). This

is to be expected from a theoretical point of view considering that causal feature se-

lection methods are designed to find theoretically optimal feature sets like the MB(y).

This should help to avoid using features which contribute spurious information for

model development, thereby improving the stability of machine learning models and

reducing prediction errors.

In practice though, there is a lack in consistency of evidence that supports the

optimality of the Markov blanket for prediction and the superiority of causal fea-

ture selection methods over non-causal (classical) filter methods in terms of prediction

performance. The reported prediction performance in comparative studies have been

somewhat mixed or heterogeneous (e.g. Cawley 2009; Guyon et al. 2008; Yu et al. 2021;

Lemmon et al. 2023), with only a few studies demonstrating consistent maximal clas-

sification performance for causal feature selection (e.g. Aliferis et al. 2010a; Yu et al.

2020). It has also been suggested that the more parsimonious PC(y) feature set gen-

erally does not produce inferior predictive performance compared to the theoretically

optimal MB(y) set in prediction tasks (e.g. Aliferis et al. 2010a; Yu et al. 2020, 2021).
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The apparent contrasts between theoretical expectations and empirical observations

with regard to the prediction performance of causal feature selection methods raises

an interesting research question.

5.3 Methods

Let X = {x1, x2, ..., xp} be a set of variables that may be used for fitting or training a

model for estimating an outcome variable y, {Xs, ys} forms the source data distribu-

tion to be used for model training. The model be used for obtaining predictions of the

outcome in the target domain yt using the covariates Xt. However, without employing

special techniques to maintain model stability within the target domain, model per-

formance is likely to deteriorate significantly in cases where substantial distributional

shifts occur between the source and target domains.

The following two feature selection problem settings are considered in this work in

the context of potentially different source and target data distributions:

1. The problem of selecting the k-best features from all available p features in Xs,

for predicting yt where k and p are integers.

2. The problem of selecting an optimal feature set for predicting yt using labelled

data from the source domain {Xs, ys} and unlabelled data samples {Xt0} from

the target domain, where {Xt0} ⊆ {Xt}.

5.3.1 Causal Feature Prioritization

The select k-best feature selection method works by calculating some score of each fea-

ture based on the strength of its relationship to the outcome variable before selecting
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the k features with the best ranked scores. The scores are usually a measure of statisti-

cal dependence or mutual information. A commonly used ranking score for regression

tasks is the linear correlation coefficient ρ given by Equation 5.1 for a pair of variables

{x, y}, where x̄ and ȳ are the means of x and y respectively.

ρi =

∑
i (xi − x̄)(yi − ȳ)√∑

i (xi − x̄)2
√∑

i (yi − ȳ)2
(5.1)

A causal approach to the select k-best method would need to consider the data

generation mechanism in order to give priority to features that hold the highest causal

relevance to the outcome. We suggest that prioritizing causal features in the selection

of the k-best features could improve overall prediction performance across the range of

k values. In this context, a feature selection algorithm that improves on the classical

select k-best method by prioritizing causal features is hereby introduced.

As described in Algorithm 1, the proposed algorithm first learns two causal feature

subsets consisting of the set of parents and children of the outcome PC(y) and the

Markov Blanket of the outcome MB(y). It then proceeds to rank all features using

a traditional ranking score such as ρ in Equation 5.1. Finally, k features are selected

by considering the contents of the inferred causal sets PC(y) and MB(y), as well as

the score rankings. Effectively the algorithm prioritizes the selection of features in the

folowing order: 1) parents & children set, 2) spouses 3) statistical dependence ranking.

In the present implementation of Algorithm 1, PC(y) set is learned using the Semi-

Interleaved Hiton-PC (SI-HITON-PC) algorithm (Aliferis et al. 2010a) while MB(y)

set is learned using the Interleaved Incremental Association MB (Inter-IAMB) algo-

rithm (Tsamardinos et al. 2003). The score(x, y) function in Algorithm 1 calculates ρ

and uses it to rank each predictor in the data.
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Algorithm 1 Causal Feature Prioritizing (CFP) select k-best

Input: k, Xs, ys
PCy ← find PC(y) of ys
MBy ← find MB(y) of ys
NCy ← score all features in Xs using score(x, y) and sort
FSy ← initialize empty list of selected features
c ← 1; initialize counter
if k ≤ length(PCy) then

while length(FSy) ≤ k do
if NCy[c] ∈ PCy then
FSy.insert(NCy[c])

end if
c = c+ 1

end while
return FSy

else
if k ≤ length(MBy) then

while length(FSy) ≤ k do
if NCy[c] ∈ MBy then
FSy.insert(NCy[c])

end if
c = c+ 1

end while
end if
return FSy

else
FSy ←MBy

while length(FSy) ≤ k do
if NCy[c] not in FSy then
FSy.insert(NCy[c])

end if
c = c+ 1

end while
return FSy

end if
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5.3.2 Shifted Child Feature Elimination for Domain Adaptation

Consider a setting where the objective is to train a prediction model using the source

data {Xs, ys}, for prediction of yt given Xt in a target domain. Additionally, an

unlabelled sample of the target data Xt0 is available during model development. This

setting which has received significant attention in the field of domain adaptation and

transfer learning enables unsupervised adaptation to the target domain (Sun et al.

2016; Kouw and Loog 2021; Dhaini et al. 2023). We develop a feature-based domain

adaptation strategy in the form of a feature selection method based on structural causal

models (SCMs) that is capable of adapting to the target domain.

One of the benefits of representing a data generation process using an SCM is

that SCMs clearly depict how influence flows through the network of variables in the

data distribution and how changes are propagated through the network. For a quick

introduction to SCMs and how they can be represented using both Bayesian networks

(BNs) and structural equations models, see Mbogu and Nicholson (2023). In a causal

BN representation, changes in the system follow a directional flow from parent nodes to

children nodes, and not in the opposite direction. This knowledge can be exploited to

design a feature selection strategy that is robust to distributional changes from source

to target data by helping to decide which shifted covariates may affect the prediction

of yt.

A special case of covariate shift caused by ‘perfect’ interventions which fix the val-

ues of affected variables in a system is hereby considered. This type of fixed or surgical

intervention as modeled by Pearl’s (2009b) do-operator is useful for illustrating how a

severe type of distribution shift in one node may affect the other variables in a data

distribution (Pearl et al. 2016). Consider Figure 5.1 where an intervention on a vari-

able x1 brought about by a manipulation by an external agent forces x1 to take on a

specific value x1 = 0 in the target domain. The effect of this type of manipulation is to
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disconnect x1 from all of its natural causes by externally setting its value as depicted

in Figure 5.1b. Supposing x3 is the outcome variable in this case, as a child of x3,

x1 will likely prove to be a useful feature for predicting x3 in the source domain (pre-

intervention distribution). However, in the post-intervention target distribution using

the model trained in the source domain, the presence of x1 as a predictor for x3 will

indeed hamper prediction performance in the target domain because the changes to x1

are not propagated to its parent. Hence, this work proposes to identify when such sig-

nificant univariate distribution changes have occurred in specific features between the

source and target distributions, and exclude children of the outcome variable affected

by such a change from the training feature set in the source domain.

x1

x3

x2

(a) Source: pre-intervention model

x1

x3

x2

0

(b) Target: post-intervention model

Figure 5.1: A BN illustration of a fixed/surgical intervention within the target domain.

We introduce a causal feature selection method that learns the Markov blanket of

the outcome variable in the source domain, tests for distribution changes in individual

features in the data, and adapts the Markov blanket to the target domain by excluding

children of the outcome variable that have been remarkably impacted by a distribution

shift. The adjusted Markov blanket forms the set of selected features for training a

model for predicting yt. The proposed method is described in Algorithm 2.

In the current implementation of Algorithm 2, the MB(y) set is selected using the

Inter-IAMB algorithm. The children of the outcome are identified after learning the

full causal structure using the stable PC algorithm (Colombo and Maathuis 2014). The
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Algorithm 2 MB Shifted Child Feature Elimination (SCFE)

Input: Xs, ys, Xt0, α

MBy ← find MB(y) of ys
CHy ← find set of children of ys
SHx ← find shifted covariates using isShifted(Xs, Xt0, α)
SHch ← obtain set of shifted children of y SHx ∩ CHy

FSy ← initialize list of selected features
for each variable v in MBy do

if v /∈ SHch then
FSy.insert(v)

end if
end for
return (FSy)

function isShifted(Xs, Xt0, α) in Algorithm 2 performs a univariate distribution test

on all features in the data, with α representing the significance level for the test. Its

purpose is to identify which features have undergone a substantial distribution shift

between the source and target domains. A small α is recommended to ensure that only

features with remarkable distribution changes are singled out by the function.

The distributional test employed in the current implementation is the non-parametric

Kolmogorov-Smirnov (KS) two-sample test or Smirnov test (Simard and L’Ecuyer 2011;

Berger and Zhou 2014). The KS test is used for deciding whether two data samples

come from the same distribution. For a given variable xi the test statistic is the max-

imum value of the difference between the cummulative distribution functions (CDF)

of the two samples. Suppose that xi in the source data has sample size m with CDF

Fs(xi) and in the target data has sample size n with CDF Ft(xi), the test statistic

Dm,n is given by Equation 5.2. The null hypothesis which states that the two samples

are from equal distribution functions is rejected if Dm,n > c(α)
√

m+n
m.n

where c(α) is the

critical value at α.

Dm,n = maxx | Fs(xi)− Ft(xi) | (5.2)
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5.3.3 Experimental Setup

Five sets of data are simulated for evaluating different filter feature selection meth-

ods under three types of covariate shift in the target dataset: (1) no shift (base-

line/unshifted target data), (2) simple covariate shift (covariate-shifted target data),

and (3) fixed intervention shift (intervention-shifted target data). All simulated datasets

are generated from linear structural causal models with Gaussian distributions. For

each dataset, one out of its p features is selected as the outcome variable to be predicted

while the rest of the q = p− 1 features make up the full set of potential predictors.

Two experiments are conducted to evaluate the utility of causal approaches to

feature selection. Algorithms 1 and 2 are respectively assessed in Experiments 1 (Sec-

tion 5.3.3.3) and 2 (Section 5.3.3.4). Two regression models, ordinary least squares

(OLS) regression and support vector regression (SVR) with polynomial kernel are used

for prediction of the outcome in the experiments. Given that the simulated datasets

represent linear systems with Gaussian data distributions, OLS is a simple and ap-

propriately specified estimating model. The support vector regression model is used

as a more complex, more adaptive, but possibly slightly mispecified and overfitting

alternative.

5.3.3.1 Data

Datasets used in the experiments are simulated from randomly generated structural

causal models with different data generation hyperparameters. The procedure for data

simulation is similar to the first part of the two-part simulation framework described in

Mbogu and Nicholson (2023) where the data is generated from parametrized structural

equations models. In this case, the SCMs and their model parameters are randomly

generated.
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First, a Bayesian network (BN) or directed acyclic graph (DAG) is generated at

random given the number of nodes in the network (numNodes) and a probability value

(probConnect) which specifies the probability that each node would be connected to

other nodes in the network with higher topological ordering. The direction of graph

edges in this DAG can only go from lower to higher topological ordering. This means

we can have x1 → x2 or x10 → x20 but never x1 ← x2 or x10 ← x20 in the true

DAG. Thus, a higher value of probConnect produces a more densely connected DAG.

The generated DAG is converted to an equivalent non-parametric structural equa-

tions model (SEM) which is then parametrized and used to simulate data. In the

SEM, each variable is a function of its parents in the DAG, and the coefficients of the

variables in these functions are drawn from Gaussian distributions whose parameters,

the mean and standard deviation, are in turn drawn from uniform distributions. The

training datasets are then sampled from these parametrized Gaussian distributions.

Five sets of data D1, D2, D3, D4 and D5 are generated with each set including a

source dataset and three target datasets. The first target dataset BaseTarget is drawn

from the same SEM and standard distributions as the training data. The second and

third target datasets are generated by simulating a covariate shift and intervention shift

respectively, on some features of the training data. This is achieved by introducing

some disruption or perturbation in the parameters of the SEM. A binary vector of size

p is used to indicate which variables will be perturbed and the elements of this vector

are drawn from a Bernoulli distribution (the outcome variable is never perturbed).

A hyperparameter, disruptV ecProb, is used to specify the parameter of the Bernoulli

distribution which sets the probability that each variable in the data will undergo some

perturbation.

The second target dataset CovTarget, is covariate shifted. The covariate shift

is achieved by adding an integer drawn from a uniform distribution to the mean of
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the Gaussian distribution from which each perturbed variable is sampled from. For

the third target dataset IntTarget, the perturbed variables are set to a specific value

(zero), mimicking the effect of a fixed intervention. The user specified data generation

parameters used for simulating the five datasets are summarized in Table 5.1.

Table 5.1: Data generation hyperparameters for the 5 simulated datasets: D1, D2,
D3, D4, D5.

Hyperparameter D1 D2 D3 D4 D5

numNodesa 31 31 61 81 101

probConnectb 0.1 0.07 0.07 0.05 0.03

disruptV ecProbc 0.6 0.3 0.5 0.7 0.7

nSourced 20000 5000 20000 5000 40000

nTargete 10000 2000 10000 2000 15000

a Number of nodes in the generated graph. Also translates to number of variables p in the
simulated data.
b Probability that a node in the DAG is a parent of any other node of higher topological ordering.
A measure of density/sparsity of the DAG.
c Probability that a node will experience some form of externally caused distribution change for
target datasets CovTarget and IntTarget.
d Source data sample size.
e Target data sample size.

5.3.3.2 Assumptions

Overall, the datasets on which Algorithms 1 and 2 have been evaluated have the fol-

lowing characteristics which are generally favorable to the causal discovery methods

employed: relatively large samples, fairly sparse graphs, moderately sized feature set

sizes, and causal sufficiency. A significant proportion of the features in the out-of-

distribution target datasets are manipulated or shifted. The algorithms rely on the

assumption that the data generating process can be modeled by a structural causal

model and that the relevant parts of the SCM can be learned reliably from the data
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using an appropriate causal discovery method. Algorithms 1 and 2 allow for freedom in

the choice of causal discovery algorithms – this means that the standard assumptions

of any causal discovery method employed applies. Additionally for Algorithm 2, an un-

labelled sample of the target data Xt0, large enough for reliably detecting distribution

changes in individual features is assumed to be available during model development.

5.3.3.3 Experiment 1

Experiment 1 is designed to investigate how the strategy of prioritizing causal fea-

tures during feature selection may improve machine learning outcomes, particularly

prediction performance. Using the seleck k-best approach, the goal is to compare

prediction errors at various values of k for the Causal Feature Prioritizing (CFP) algo-

rithm to those obtained using the correlation-based select k-best method (CB). This

allows for a fair comparison in terms of similar selected feature set sizes. In addi-

tion, the performance of the theoretical optimal feature set, MB(y), and its more

parsimonious alternative, the PC(y) set are to be noted. This experiment enables

an evaluation of the Markov blanket induction theory which predicts maximal feature

compactness/parsimony and optimal prediction performance when using the Makov

blanket set (Aliferis et al. 2010a).

For the CFP and CB methods, the value of k starts from k = q/15 for q = 30, or

k = q/20 for q = 60, 80 or 100, where q is the number of predictors in the dataset. The

value of k is then progressively increased in each iteration by the same starting value

while k ≤ q. This way the maximum value of k corresponds to minimal or no feature

selection. In each iteration the two select k-best algorithms, the classical CB and the

CFP algorithms, are applied before ML models are trained using their selected feature

sets. The models are then used to make predictions on the various target datasets.
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5.3.3.4 Experiment 2

Experiment 2 is a follow up to Experiment 1 designed to test the hypothesis that

excluding shifted children of the outcome from the training features could mitigate

the effects of covariate shift on machine learning prediction performance in the target

domain. The experiment compares prediction errors on the target datasets for models

trained with the following feature sets: the set selected by Algorithm 2 (SCFEPred),

the Markov blanket set (MBPred), the parents and children set (PCPred), and the full

set of predictors with no feature selection applied (FullPred).

5.4 Results

5.4.1 Experiment 1 Results

Figure 5.2 depicts results obtained from Experiment 1 using data D1. It shows plots

of mean squared error (MSE) values obtained from the OLS and SVR models using

the three target sets BaseTarget, CovTarget and IntTarget. The results for data

D2 to D5 generally follow similar trends as Figure 5.2, and are shown in Appendix

A. Notice the trends of the prediction performance of the feature sets selected using

CFP and CB methods as k increases. The MSEs for the MB(y) and PC(y) sets are

included for reference. Note the single k values associated with the MB(y) and PC(y)

methods. As these methods do not take k as input, k in those instances is the size of

the selected feature sets after the algorithms converge.

On the BaseTarget dataset which follows a data distribution similar to the source,

the CFP algorithm consistently outperforms the CB select k-best algorithm across the

range of k values (e.g. Figures 5.2a and 5.2b). This indicates that causal feature

prioritization can improve prediction performance when the SSTD assumption holds.
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(a) OLS on BaseTarget (b) SVR on BaseTarget

(c) OLS on CovTarget (d) SVR on CovTarget

(e) OLS on IntTarget (f) SVR on IntTarget

Figure 5.2: Plots of prediction errors on data D1 using OLS & SVR models.
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Also, in this setting the MB(y) feature sets consistently achieve the lowest MSEs using

the fewest number of features particularly in the correctly specified OLS model. This

is in line with theoretical expectations regarding the optimality of the Markov blanket

for prediction modeling.

In the covariate-shifted (e.g., Figures 5.2c and 5.2d) and intervention-shifted target

datasets (e.g., Figures 5.2e and 5.2f), it becomes evident that the CFP approach no

longer assures enhanced performance compared to the CB approach. Similarly, the

MB(y) set seems to lose its optimality under these circumstances. Indeed the PC(y)

set seems likely to perform better under severe distribution shifts. These observations

are more pronounced in the intervention-shifted target datasets where smaller values

of k tend to perform better than larger k values. The performance of the MB(y) set

declines more dramatically compared to the PC(y) set on IntTarget as it appears

that some features which are helpful for prediction in the BaseTarget dataset become

detrimental in the shifted target sets. Given that this trend arises when the SSTD

assumption is violated, these results may explain why some previous experimental

studies which did not consider the validity of the SSTD assumption in their datasets

did not observe consistently superior performance of the MB(y) set over the PC(y)

set.

5.4.2 Experiment 2 Results

Tables 5.2 and 5.3 show the mean squared error (MSE) values respectively achieved

by OLS and SVR models using the three target datasets for data D1 to D5. The

number of features in the selected feature sets used in the models are provided in

parenthesis. Again, BaseTarget, CovTarget, and IntTarget are the unshifted base-

line target set, covariate-shifted target set and intervention-shifted target set respec-

tively. The selected feature sets used for training the models include: the full feature
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set without any feature selection (FullPred), the feature set selected by the SCFE

algorithm (SCFEPred), the MB(y) feature set (MBPred), and the PC(y) feature

set (PCPred).

Again, it can be observed that the MB(y) set (MBPred) achieves optimal predic-

tion performance in the BaseTarget set where the SSTD assumption holds (compared

to FullPred and PCPred), particularly in Table 5.2 where the model is correctly

specified. As in Experiment 1, this optimal performance is no longer sustained in the

presence of distribution shifts as observed in the CovTarget and IntTarget datasets,

with the more compact PC(y) set performing better than the MB(y) set in several

instances. In addition, the deterioration of prediction performance is much more severe

in the intervention-shifted target sets.

In Table 5.3, again it is observed that the more adaptive SVR model seems to

benefit from the availability of more features. For example, using the FullPred set it

is able to outperform MBPred in some instances. Nonetheless, it is clear that the OLS

model is a more precisely specified model as it always outperforms the SVR model in

the in-distribution target set BaseTarget. In the shifted target sets however, the SVR

model exhibits greater robustness to severe distribution changes in the target set.

Interestingly, the MSEs from the SCFEPred set show that the SCFE algorithm

usually succeeds in minimizing the detrimental effects of covariate and intervention

shifts in the target data on prediction performance. When the prediction model is cor-

rectly specified as in the OLS models (Table 5.2), the SCFE algorithm always improves

on or at least maintains the MB(y) performance when predicting on the shifted target

sets. The improvements are more remarkable in the intervention-shifted sets.

The SCFE algorithm appears to exhibit some sensitivity to model mispecification

as its performance improvements on the MBPred and FullPred feature sets are di-

minished in the SVR model (Table 5.3). This apparent sensitivity may also have to
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do with the superior adaptability of the SVR model which allows it to better tolerate

distribution shifts when there are more variables in the prediction set to learn from, as

is normally the case with FullPred. This adaptability would be derailed in the more

parsimonious causal feature sets.

Notice from the feature set sizes in parenthesis that unlike the other methods which

select the same number and set of features without any consideration of the target

distribution, the SCFE feature selection method may produce different sets of features

given different target/test sets. This is because the SCFE algorithm adapts the Markov

blanket to the intended target domain in an attempt to retain the optimality of the

Markov blanket in that domain.
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Table 5.2: Comparison of MSE scores of OLS regression models trained using different
feature sets (FullPred, SCFEPred, MBPred, PCPred) and predicting on different target
sets (BaseTarget, CovTarget, IntTarget) from the five sets of data used in Experiment
2. In parenthesis beside every MSE score is an integer denoting the number of features
in the selected feature set.

Data Target Set FullPred SCFEPred MBPred PCPred

D1

BaseTarget 2.12 (30) 2.12 (14) 2.12 (14) 2.60 (7)

CovTarget 4.39 (30) 3.69 (12) 4.38 (14) 4.31 (7)

IntTarget 473.91 (30) 79.31 (12) 465.23 (14) 311.83 (7)

D2

BaseTarget 5.37 (30) 5.34 (8) 5.34 (8) 5.95 (6)

CovTarget 7.34 (30) 7.00 (8) 7.00 (8) 6.56 (6)

IntTarget 161.93 (30) 6.94 (7) 156.34 (8) 26.89 (6)

D3

BaseTarget 4.06 (60) 4.05 (17) 4.05 (17) 6.61 (8)

CovTarget 8.61 (60) 6.65 (15) 8.54 (17) 6.73 (8)

IntTarget 1112.34 (60) 6.68 (15) 1156.46 (17) 58.83 (8)

D4

BaseTarget 7.22 (81) 7.09 (8) 7.09 (8) 7.59 (6)

CovTarget 8.06 (81) 7.82 (8) 7.82 (8) 8.60 (6)

IntTarget 9.18 (81) 7.95 (8) 7.95 (8) 16.05 (6)

D5

BaseTarget 0.75 (100) 0.75 (22) 0.75 (22) 0.90 (8)

CovTarget 1.73 (100) 1.41 (19) 1.70 (22) 1.99 (8)

IntTarget 119.16 (100) 14.36 (19) 119.06 (22) 121.08 (8)
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Table 5.3: Comparison of MSE scores of SVR regression models trained using different
feature sets (FullPred, SCFEPred, MBPred, PCPred) and predicting on different target
sets (BaseTarget, CovTarget, IntTarget) from the five sets of data used in Experiment
2. In parenthesis beside every MSE score is an integer denoting the number of features
in the selected feature set.

Data Target Set FullPred SCFEPred MBPred PCPred

D1

BaseTarget 2.28 (30) 2.33 (14) 2.33 (14) 2.80 (7)

CovTarget 4.24 (30) 3.90 (12) 4.26 (14) 4.34 (7)

IntTarget 155.75 (30) 55.60 (12) 139.46 (14) 113.29 (7)

D2

BaseTarget 5.69 (30) 5.66 (8) 5.66 (8) 6.26 (6)

CovTarget 10.76 (30) 11.49 (8) 11.49 (8) 9.24 (6)

IntTarget 40.39 (30) 10.72 (7) 35.06 (8) 18.48 (6)

D3

BaseTarget 4.32 (60) 4.26 (17) 4.26 (17) 6.76 (8)

CovTarget 15.21 (60) 9.06 (15) 16.35 (17) 9.25 (8)

IntTarget 23.82 (60) 103.90 (15) 21.14 (17) 55.22 (8)

D4

BaseTarget 7.80 (81) 7.26 (8) 7.26 (8) 7.79 (6)

CovTarget 37.34 (81) 62.13 (8) 62.13 (8) 58.75 (6)

IntTarget 432.25 (81) 393.76 (8) 393.76 (8) 390.76 (6)

D5

BaseTarget 0.79 (100) 0.81 (22) 0.81 (22) 0.99 (8)

CovTarget 1.56 (100) 1.49 (19) 1.52 (22) 1.74 (8)

IntTarget 43.07 (100) 17.32 (19) 46.36 (22) 44.45 (8)
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5.5 Discussion

The value of causal inference is widely recognized in its capacity to provide tools for

improving specific outcomes and addressing emerging concerns within ML/AI, par-

ticularly in the realms of model interpretability/explainability and decision-making.

However, questions remain about whether employing causal methods to tackle these

issues inadvertently leads to a reduction in prediction performance. In this work, we

focus on investigating how causal machine learning can also lead to improvements in

prediction performance, and consider prediction settings with both in-distribution and

out-of-distribution target data. This inquiry leads us to consider the class of feature

selection methods known as filters, which attempt to select the features most relevant

to the outcome variable independent of any subsequent prediction model. The promi-

nent causal feature selection methods belong to this class. Furthermore, we conduct

experiments using simulated datasets in which the data properties are well understood.

5.5.1 CFP Algorithm

This paper suggests an improvement to the classical select k-best filter feature selec-

tion method that prioritizes causal features. This algorithm is referred to as the causal

feature prioritizing (CFP) select k-best algorithm in this work. An experiment is con-

ducted to investigate if when given a feature set size k, whether this feature selection

approach can yield improved prediction performance over a comparable non-causal

method. The results indicate that this is the case with in-distribution target datasets

when the model is correctly specified. However, when dealing with out-of-distribution

target datasets with covariate or intervention shifts, the consistent performance im-

provement observed in the in-distribution target set is not sustained. Furthermore,

it’s worth noting that although the theoretically optimal Markov blanket feature set
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demonstrates the expected optimal performance within the in-distribution target set,

it falls short in out-of-distribution target sets.

5.5.2 SCFE Algorithm

Following the first experiment, we explore how causal theory could be used to restore

the optimality of the Markov blanket in out-of-distribution target datasets. A causal

feature selection algorithm is proposed as a domain adaptation strategy for improving

prediction performance within a target environment in the presence of substantial

distribution shifts between the source and target datasets. This algorithm referred

to as the MB Shifted Child Feature Elimination (SCFE) algorithm is evaluated in a

second experiment using the same sets of source and target datasets as in the first

experiment.

The results from the second experiment indicate that the proposed algorithm is

able to mitigate the detrimental effect of covariate-type shifts on the performance of

the Markov blanket set. In the correctly specified OLS model, the algorithm retains the

optimality of the Markov blanket by delivering the best performance among the feature

sets considered across all target datasets. When there is no detectable distribution shift

in relevant features, it returns the same prediction performance as the Markov blanket

feature set. Therefore, the algorithm exhibits the capability to adapt the Markov

blanket to shifted target datasets.

Two limitations of previous works addressed by the domain adaptation strategy

introduced in this paper are mentioned in Section 5.1.1. First, the lack of considera-

tion of the conditional distribution and the local structure of the data is addressed by

relaxing the covariate shift assumption in order to tolerate changes in the conditional

distribution of the outcome from source to target domain, particularly those caused

by interventions. Learning the Markov blanket ensures that the local structure around
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the outcome variable is considered. Secondly, computationally expensive optimization

procedures are avoided through a simple technique that employs covariate shift detec-

tion using a univariate distribution test which allows only features that are unlikely

to degrade performance in the target domain to be retained in the Markov blanket.

Furthermore, the proposed approach preserves model interpretability by avoiding the

common feature-based domain adaptation strategy of learning new feature representa-

tions for adapting to a target domain.

5.5.3 Markov Blanket Induction Theory

The Markov blanket induction theory posits that the Markov blanket delivers opti-

mal prediction performance using a minimal set of features (Aliferis et al. 2010a). In

essence, one can achieve efficient and effective predictive modeling by focusing on the

minimal set of features that are closely related to the outcome variable and which ren-

der all other variables independent of the outcome. This has the advantage of reducing

the dimensionality of the problem, avoiding predicting based on spurious relationships

and potentially improving model interpretability. Results from some previous experi-

mental studies have raised questions about both the maximal prediction performance

and minimal feature set properties expected of the Markov blanket. For example,

Guyon et al. (2008); Cawley (2009) found that the Markov blanket did not outperform

non-causal feature selection or no feature selection in their studies, while (Aliferis et al.

2010b; Yu et al. 2020) suggest that the PC(y) feature set which usually has fewer fea-

tures than MB(y) does not exhibit inferior prediction performance compared to the

MB(y). Indeed, these results represent an apparent deviation from the theoretical

expectations established by the Markov blanket theory. However, the findings from

this study provide a new perspective and offer empirical support for the theory.

129



The results from this study indicate that the optimality of the Markov blanket

remains valid in close to ideal conditions where the SSTD assumption is met, the

prediction model is correctly specified, and the assumptions of the Markov blanket

induction algorithms are reasonable with respect to the data. Causal discovery algo-

rithms depend on specific assumptions which need to be taken into account in order

to derive sound conclusions (Vonk et al. 2023). Therefore, the methods in this study

are assessed using datasets with known properties and reasonable adherence to the

assumptions of the causal methods employed.

Not adequately accounting for factors related to distribution shifts, bias in predic-

tion models, and assumptions of Markov blanket learning algorithms may be responsi-

ble for the observed underwhelming prediction performance of the Markov blanket in

some previous studies, especially those part of the causation and prediction challenge.

As acknowledged by Guyon et al. (2008, 2010), the datasets used in the challenge in-

volve complicated dependencies, and may likely violate some commonly made causal

modeling assumptions. There were also a limited number of sound causal discovery

and Markov blanket learning techniques available at the time of the challenge and most

participants depended on a set of similar techniques based on the “work of Aliferis and

Tsamardinos and their collaborators” (Aliferis et al. 2010a). Fortunately, since the

challenge several causal discovery algorithms which relax various standard assump-

tions have emerged – see Zanga et al. (2022) for a recent review of the landscape.

These findings offer experimental evidence that helps clarify the specific prediction

scenarios in which causal feature selection strategies excel. We observe that while using

the MB(y) for prediction is optimal when the prediction model is correctly specified,

more adaptable non-parametric models may perform better in less-than-ideal settings

given larger sets of statistically relevant features than the MB(y). Also, given that

most prior experimental studies have focused on classification problems, our results
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in the context of regression problems demonstrate the significance of the concept of

causal feature selection to regression.

5.5.4 Limitations and Future Work

From a feature selection point of view (not considering domain adaptation), the in-

corporation of causal discovery by the algorithms introduced in this paper introduces

additional computational costs relative to comparable methods that rely on statistical

dependence alone. In the current implementation of the CFP algorithm, the children of

y are identified after learning the full structure of the data. An improvement in terms

of computational cost could be achieved by exploring causal discovery methods that

can distinguish parents from children without learning the full causal structure of the

data. As Yu et al. (2020) indicate, score-based causal discovery algorithms may be use-

ful for this specific purpose. It would also allow for causal features to be prioritized in

the order of parents > children > spouses instead of parents & children > spouses,

which may lead to further performance improvements in target datasets.

The causal feature selection methods proposed in this work exhibit sensitivity to

model misspecification. Exploring the underlying causes of this sensitivity and devel-

oping approaches to mitigate it represents an interesting avenue for future research.

Furthermore, there is need for research to explore methods for adapting the Markov

blanket in other dynamic environments beyond the covariate or intervention shifts in

the target distribution studied here.

Finally, the next logical step for this study is to validate the findings using real-world

datasets. This will also enable a more in-depth exploration of important considerations

for the selection of appropriate causal discovery methods and prediction models to be

employed within the model-agnostic methods proposed in this work.
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Chapter 6

Conclusions

The research endeavor culminating in this dissertation set out to investigate how causal

inference methods can be used to improve outcomes in data-driven learning systems.

This inquiry is motivated by an increasing appreciation among researchers of the po-

tentials of causal approaches, with respect to offering solutions for resolving problems

in AI. The major novel contributions of this work are elucidated in Chapters 4 and 5.

In Chapter 4, a data-driven root cause analysis method is developed for learning a

graphical representation of root cause mechanisms, termed in this work as root cause

graphs (RCGs), from time-to-event data. RCGs can be useful for identifying and an-

alyzing the underlying causes of systemic problems in a wide range of settings. A

simulation framework is suggested for generating realistic time-to-event datasets based

on known causal structures and data generation parameters. Datasets generated from

this framework are used to evaluate the root cause graph recovery method. In all sce-

narios tested, useful approximations of the ground truth causal structures are recovered

with high rates of correct edge adjacencies. The utility of learning these root cause

graphs from data is demonstrated in their use for improving the estimation of causal

effects of mediated root cause variables.

In Chapter 5, two causal feature selection methods are proposed for improving ma-

chine learning outcomes in two different prediction settings. Outcomes of particular

interest include domain adaptability and model interpretability. This study demon-

strates that a strategy centered on prioritizing causal features in prediction models can
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lead to improvements in both in-distribution and out-of-distribution prediction perfor-

mance. Also, a causal feature selection approach that leverages structural causal model

(SCM) theory for adjusting the Markov blanket feature set to a target dataset can be

a successful approach to domain adaptation in scenarios where severe and widespread

distribution changes are anticipated between source and target distributions.

Future research should work on relaxing common assumptions for causal inference

so that they can be reasonably applied to a wider range of problem settings with more

complex datasets. Collaboration with industry process owners and domain experts

on research that incorporates causal discovery can be used to learn how to adapt

existing methods to domain-specific problems. They can also be useful for validating

or rethinking the contemporary understanding of stakeholders about the workings of

their processes. Furthermore, the causal feature selection methods proposed in this

work exhibit sensitivity to model misspecification. Exploring the underlying causes

of this sensitivity and developing approaches to mitigate it represents an interesting

avenue for future research. Additionally, there is need for research to explore methods

for adapting the Markov blanket feature set in other dynamic environments beyond

the covariate or intervention shifts in the target distribution studied here.

The remaining objectives of this research outlined in Section 1.3 are addressed

by initially delving into the theoretical frameworks that support causal inference using

observational data. The SCM framework incorporates aspects of the potential outcome

framework, probabilistic graphical modeling, and structural equations modeling, for

a broad theory of causality that includes tools for representing, manipulating and

identifying causal relationships in various scenarios. This comprehensive framework

enables advanced causal investigations using observational data. Additionally, several

other frameworks and causal methodologies are continually being developed, building

upon the foundation laid by the SCM framework.
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Expanding upon the concepts introduced within the frameworks for causal learning,

this work conducts a review of techniques for causal inference, with a focus on utilizing

non-experimental data. The majority of causal learning methods are categorized into

two primary tasks: treatment effect estimation, and causal structure modeling. Causal

discovery methods fall within the realm of causal structure modeling tasks and have

garnered significant attention recently for their capacity to uncover elements of causal

structure from observational data, contingent on specific assumptions. This work ex-

plores a diverse range of techniques for achieving both causal learning tasks, as well as

strategies for integrating causal inference and machine learning.

A central focus of this dissertation has been the intersection between causal infer-

ence and statistical/machine learning. The objectives of prediction and inference can

both be improved significantly by combining these modeling approaches. The recipro-

cal benefits that each learning paradigm affords the other are summarized as follows:

Causal inference aids ML by:

� improving ML generalization capabilities.

� enhancing model transparency, interpretability and trustworthiness.

� improving reproducibility and external validity of ML models.

� facilitating inference and knowledge discovery.

� providing tools for mitigating bias and advancing fair ML.

ML aids causal inference by:

� providing flexible tools for modeling and estimating treatment effects.

� providing efficient estimators for counterfactual effects.

� providing techniques for efficiently handling high dimensional data.

� providing new approaches for Bayesian network and causal structure learning.
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The new methods presented in this work successfully integrate causal inference

techniques and statistical/machine learning methodologies to offer solutions for resolv-

ing challenges in data-driven learning applications. Specifically, the proposed RCA ap-

proach synergizes causal discovery techniques with effect estimation models to enhance

the identification of the underlying causes of events of interest and the estimation of

their effects, using time-to-event data. Furthermore, the causal feature selection meth-

ods introduced here incorporate causal learning strategies into machine learning and

prediction modeling techniques. This approach not only improves model generalization

for domain adaptation problems where the target data may be out-of distribution, it

is also shown to improve prediction performance on in-distribution target data when

modeling assumptions are met.

Although specific models have been implemented to demonstrate the utility of the

proposed methods, it is important to note that these methods are intentionally de-

signed to be model-agnostic. This allows for flexibility in the selection of models and

algorithms for specific tasks within the procedures such as outcome prediction, causal

discovery, and causal effect estimation. This flexibility is important as it empowers data

scientists to make informed choices regarding models and algorithms to be employed

within the proposed methods. These choices can be tailored to the unique require-

ments of a given problem and properties of the data when implementing the suggested

solutions. This ensures that the assumptions underlying the chosen approaches are

reasonable with respect to the problem at hand.

In summary, this work represents a significant step toward climbing the ladder of

causation. It contributes to the ongoing efforts aimed at developing more capable,

reliable, and trustworthy AI technologies.
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Blöbaum, P., and S. Shimizu, 2017: Estimation of interventional effects of features on
prediction. 2017 IEEE 27th International Workshop on Machine Learning for Signal
Processing (MLSP), IEEE, 1–6.

Bonchi, F., S. Hajian, B. Mishra, and D. Ramazzotti, 2017: Exposing the probabilis-
tic causal structure of discrimination. International Journal of Data Science and
Analytics, 3 (1), 1–21, https://doi.org/10.1007/s41060-016-0040-z.
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Hauser, A., and P. Bühlmann, 2014: Two optimal strategies for active learning of causal
models from interventional data. International Journal of Approximate Reasoning,
55 (4), 926–939, https://doi.org/10.1016/j.ijar.2013.11.007, 1205.4174.

He, Y., C. Zhu, Z. He, C. Gu, and J. Cui, 2017a: Big data oriented root cause iden-
tification approach based on Axiomatic domain mapping and weighted association
rule mining for product infant failure. Computers and Industrial Engineering, 109,
253–265, https://doi.org/10.1016/j.cie.2017.05.012.

He, Y. B., and Z. Geng, 2008: Active learning of causal networks with intervention
experiments and optimal designs. Journal of Machine Learning Research, 9, 2523–
2547.

He, Z., Y. He, F. Liu, and Y. Zhao, 2019: Big Data-Oriented Product Infant Failure
Intelligent Root Cause Identification Using Associated Tree and Fuzzy DEA. IEEE
Access, 7, 34 687–34 698, https://doi.org/10.1109/ACCESS.2019.2904759.

He, Z., Y. He, and Y. Wei, 2017b: Big data oriented root cause identification ap-
proach based on PCA and SVM for product infant failure. Proceedings of 2016
Prognostics and System Health Management Conference, PHM-Chengdu 2016, 1–
5, https://doi.org/10.1109/PHM.2016.7819776.

Heckman, J. J., 2008: Econometric causality. International Statistical Review, 76 (1),
1–27, https://doi.org/10.1111/j.1751-5823.2007.00024.x.

Hernán, M. A., and O. F. Course, 2018: The C-word: scientific euphemisms do not
improve causal inference from observational data. American journal of public health,
108 (5), 616–619, https://doi.org/10.2105/AJPH.2018.304337.

Hernan, M. A., J. Hsu, and B. Healy, 2019: A Second Chance to Get Causal In-
ference Right: A Classification of Data Science Tasks. Chance, 32 (1), 42–49,
https://doi.org/10.1080/09332480.2019.1579578.

Hernán, M. A., and J. M. Robins, 2018: Causal Inference. Boca Raton, FL: Chapman
& Hall/CRC.

Hill, J. L., 2011: Bayesian nonparametric modeling for causal inference. Journal of
Computational and Graphical Statistics, 20 (1), 217–240, https://doi.org/10.1198/
jcgs.2010.08162.

145



Holland, P. W., 1986: Statistics and causal inference. Journal of the American Sta-
tistical Association, 81 (396), 945–960, https://doi.org/10.1080/01621459.1986.
10478354.

Hoyer, P. O., D. Janzing, J. Peters, B. Sch, J. M. Mooij, J. Peters, and B. Schölkopf,
2008: Nonlinear causal discovery with additive noise models. Advances in neural
information processing systems, 21.

Huang, B., K. Zhang, Y. Lin, B. Schölkopf, and C. Glymour, 2018: Generalized
score functions for causal discovery. Proceedings of the ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, 1551–1560, https://doi.org/
10.1145/3219819.3220104.

Huang, B., K. Zhang, J. Zhang, J. Ramsey, R. Sanchez-Romero, C. Glymour, and
B. Schölkopf, 2020a: Causal discovery from heterogeneous/nonstationary data. Jour-
nal of Machine Learning Research, 21, 1–53.

Huang, L., A. D. Joseph, B. Nelson, B. I. P. Rubinstein, and J. D. Tygar, 2011:
Adversarial machine learning. Proceedings of the 4th ACM workshop on Security
and artificial intelligence, 43–58.

Huang, X., F. Zhu, L. Holloway, and A. Haidar, 2020b: Causal Discovery from In-
complete Data using An Encoder and Reinforcement Learning. arXiv preprint, (1),
2006.05554.

Huang, Y., and M. Valtorta, 2006: Identifiability in causal bayesian networks: A
sound and complete algorithm. Proceedings of the national conference on artificial
intelligence, AAAI, 1149–1154.

Hünermund, P., and E. Bareinboim, 2023: Causal Inference and Data Fusion in Econo-
metrics. The Econometrics Journal, 1–62.

Hyttinen, A., P. O. Hoyer, F. Eberhardt, M. Jarvisalo, and J. Matti, 2013: Discov-
ering cyclic causal models with latent variables: A general SAT-based procedure.
Uncertainty in Artificial Intelligence, 301.

Imai, K., and M. Ratkovic, 2014: Covariate balancing propensity score. Journal of the
Royal Statistical Society: Series B (Statistical Methodology), 76 (1), 243–263.

Imbens, G., 2014: Instrumental variables: an econometrician’s perspective. Statistical
science, (29), 323–358.

Imbens, G. W., 2004: Nonparametric estimation of average treatment effects un-
der exogeneity: A review. Review of Economics and Statistics, 86 (1), 4–29,
https://doi.org/10.1162/003465304323023651.

146



Imbens, G. W., and T. Lemieux, 2008: Regression discontinuity designs: A guide
to practice. Journal of Econometrics, 142 (2), 615–635, https://doi.org/10.1016/j.
jeconom.2007.05.001.

Imbens, G. W., and D. B. Rubin, 2015: Causal inference in statistics, social, and
biomedical sciences. Cambridge University Press.

Ishwaran, H., U. B. Kogalur, E. H. Blackstone, and M. S. Lauer, 2008: Random
survival forests. Annals of Applied Statistics, 2 (3), 841–860, https://doi.org/10.
1214/08-AOAS169.

Jacob, D., 2021: CATE meets ML. Digital Finance, 3 (2), 99–148, https://doi.org/
10.1007/s42521-021-00033-7.

Johansson, F. D., U. Shalit, and D. Sontag, 2016: Learning representations for counter-
factual inference. 33rd International Conference on Machine Learning, ICML 2016,
6, 4407–4418, 1605.03661.

Jung, Y., J. Tian, and E. Bareinboim, 2021: Estimating Identifiable Causal Effects
through Double Machine Learning. Proceedings of the AAAI Conference on Artificial
Intelligence, 35 (13), 12 113–12 122, URL https://ojs.aaai.org/index.php/AAAI/
article/view/17438.

Kaddour, J., A. Lynch, Q. Liu, M. J. Kusner, and R. Silva, 2022: Causal Machine
Learning: A Survey and Open Problems. arXiv preprint, (1), 2206.15475.

Kaiser, M., and M. Sipos, 2022: Unsuitability of NOTEARS for Causal Graph Discov-
ery when Dealing with Dimensional Quantities. Neural Processing Letters, 1–9.
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(English Edition), 64 (10), 897–903.

Pawlowski, N., D. Coelho de Castro, and B. Glocker, 2020: Deep structural causal
models for tractable counterfactual inference. Advances in Neural Information Pro-
cessing Systems, 33, 857–869.

Pearl, J., 1995: Causal diagrams for empirical research. Biometrika, 82 (4), 669–688,
https://doi.org/10.1093/biomet/82.4.669.

Pearl, J., 1996: Structural and probabilistic causality. Psychology of learning and mo-
tivation, 34, 393–435.

Pearl, J., 2000: Models, reasoning and inference. Cambridge, UK: CambridgeUniver-
sityPress, 19.

Pearl, J., 2009a: Causal inference in statistics: An overview. Statistics Surveys,
3 (September), 96–146, https://doi.org/10.1214/09-SS057.

Pearl, J., 2009b: Causality: Models, reasoning and inference. Cambridge University
Press, Cambridge, https://doi.org/10.1017/CBO9780511803161.

Pearl, J., 2012: The do-calculus revisited. Uncertainty in Artificial Intelligence - Pro-
ceedings of the 28th Conference, UAI 2012, 4–11, 1210.4852.

Pearl, J., 2013: The mathematics of causal inference. Joint Statistical Meetings Pro-
ceedings, American Statistical Association.

Pearl, J., 2014: Probabilistic Reasoning in Intelligent Systems: Networks of Plausible
Inference. Elsevier.

Pearl, J., 2018: Theoretical Impediments to Machine Learning With Seven Sparks from
the Causal Revolution. Proceedings of the Eleventh ACM International Conference
on Web Search and Data Mining, 3, https://doi.org/10.1145/3159652.3176182.

Pearl, J., 2019a: The limitations of opaque learning machines. Possible minds: twenty-
five ways of looking at AI, 13–19.

Pearl, J., 2019b: The seven tools of causal inference, with reflections on machine learn-
ing. Communications of the ACM, 62 (3), 54–60, https://doi.org/10.1145/3241036.

Pearl, J., M. Glymour, and N. P. Jewell, 2016: Causal inference in statistics: A primer.
John Wiley & Sons.

Pearl, J., and D. Mackenzie, 2018: The book of why: the new science of cause and
effect. Basic books.

154



Pellet, J. P., and A. Elisseeff, 2008: Using Markov blankets for causal structure learning.
Journal of Machine Learning Research, 9, 1295–1342.
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(a) OLS on BaseTarget (b) SVR on BaseTarget

(c) OLS on CovTarget (d) SVR on CovTarget

(e) OLS on IntTarget (f) SVR on IntTarget

Figure A.1: Plots of prediction errors on data D2 target datasets for OLS & SVR
models.
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(a) OLS on BaseTarget (b) SVR on BaseTarget

(c) OLS on CovTarget (d) SVR on CovTarget

(e) OLS on IntTarget (f) SVR on IntTarget

Figure A.2: Plots of prediction errors on data D3 target datasets for OLS & SVR
models..
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(a) OLS on BaseTarget (b) SVR on BaseTarget

(c) OLS on CovTarget (d) SVR on CovTarget

(e) OLS on IntTarget (f) SVR on IntTarget

Figure A.3: Plots of prediction errors on data D4 target datasets for OLS & SVR
models.
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(a) OLS on BaseTarget (b) SVR on BaseTarget

(c) OLS on CovTarget (d) SVR on CovTarget

(e) OLS on IntTarget (f) SVR on IntTarget

Figure A.4: Plots of prediction errors on data D5 target datasets for OLS & SVR
models.
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