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Abstract 

 

The COVID-19 outbreak spread swiftly and infected many individuals resulting in 

overwhelmed and overfilled hospitals causing an immense loss of life globally. Identifying the 

number of infected individuals preemptively provides critical time for governmental and health 

officials to implement a strategy to respond to the pandemic such as requiring masking, reducing 

public gatherings, closing restaurants, as well as additional time to prepare hospitals and medical 

staff for surges in infections. The work explores implementing convolutional neural network 

models (CNN), long short-term network models (LSTM), gated recurrent unit models (GRU), 

the combination of encoding CNN layers and decoding LSTM and/or GRU layers in a hybrid 

model, and Auto-Regressive Integrated Moving Average (ARIMA) models to predict COVID-19 

case count in the United States and Peru for 7, 15 or 30 days in the future using 30 days of case 

counts. The study evaluates predictions from January 23, 2020 through March 9, 2023 for the 

United States and March 6, 2020 through April 2, 2023 for Peru. For each model, the forecasting 

results are displayed visually and presented statistically using RMSE and MAPE. The hybrid 

model performed as well as or better than any other model when predicting 7 days, 15 days, or 

30 days into the future. These results demonstrate models that potentially assist healthcare 

providers and policymakers’ response to the spread of COVID-19.  
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Chapter 1: Introduction 

 

The COVID-19 disease was first recorded in late December 2019 in Wuhan China before 

spreading around the globe. The respiratory illness is caused by the SARS-CoV-2 virus and has 

brought widespread healthcare challenges to much of the world. The disease is mild to moderate 

in many of those infected, but for some it is serious and can be deadly. Those at higher risk are 

the elderly, those with cardiovascular disease, diabetes, respiratory diseases, or cancer [1]. The 

disease is particularly challenging as it is highly infectious and easily transmitted through human 

interaction. The virus spreads from an infected person’s mouth or nose through liquid from the 

size of aerosols to droplets [1]. The high rate of infection has resulted in an unprecedented 

demand on the healthcare system resulting in overwhelmed staff, space issues, and lack of 

supplies in many cases.  

As of March 10 2023, in the United States there have been 103 million confirmed cases 

and 1.1 million deaths and in Peru there have been 4.4 million confirmed cases and 219,000 

deaths [2]. Therefore, the deaths per confirmed case in Peru are more than 4.5 times than that of 

the United States. Overall, Peru had the highest mortality rate of any country in the world due to 

the virus[3]. Both countries had an immense loss of life with hospitals quickly being overcome 

as the disease progressed shockingly quickly. Peru’s healthcare system was impacted particularly 

hard as it was already near its limits before the COVID-19 pandemic occurred [4]. Additionally, 

there was lower investment in healthcare in the country resulting in less new facilities being built 

in the years before the pandemic which resulted in greater impact to areas of higher population 
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growth disproportionately [4]. As cases increased, both governments implemented social 

distancing mandates, travel bans, and other interventions in an effort to minimize the spread of 

the disease resulting in variability of the rate of transmission of the disease. Additionally, the 

behavior of the disease changed as new variants appeared throughout both countries and some 

individuals achieved natural immunity for some time after infection. These variables affected the 

rate of spread of the disease resulting in dynamic behavior over the course of the pandemic in 

both countries.  

The spread of a disease exhibits specific patterns that can be identified and predicted 

using time series modeling. Modeling and forecasting the spread of the pandemic can help 

provide critical time for governments and health officials to strategize and implement a response 

to the disease. Implementing predictive analysis results in additional response time allowing for 

governmental interventions to slow the spread of the disease and additional time for medical 

professionals to prepare for surges in hospitalizations. If a large enough daily case count is 

predicted, hospitals can adjust staffing and equipment accordingly or request additional 

assistance from other areas. Additionally, an emergency response can occur such as requiring 

masking, reducing public gatherings, closing restaurants, and other restrictions that reduce the 

rate of spread of the disease [5]. 

The goal of the research is to explore models that can accurately forecast the daily case 

counts of COVID-19 in the United States and Peru. Prediction of the pandemic is challenging 

due to the dynamic behavior of the disease and varying accuracy of the recorded case counts in 

each country. The study leverages time series modeling with the deep learning feature 

identification of convolutional neural network models (CNN), deep temporal learning of long 

short-term network models (LSTM) and gated recurrent unit models (GRU), the combination of 
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encoding CNN layers and decoding LSTM and/or GRU layers in a hybrid model, and the 

statistical predictive capabilities of the Auto-Regressive Integrated Moving Average (ARIMA) 

model. The CNN, LSTM, GRU, hybrid, and ARIMA models are evaluated to gauge their 

performance at predicting the daily case counts 7, 15, and 30 days in the future utilizing 30 day 

input sequences for both the United States and Peru pandemic. For each model, the forecasting 

results are visualized, and the statistical results are presented for the performance of the models. 

The following sections are organized such that Chapter 2 provides descriptions of the 

different modeling approaches. Chapter 3 reviews other work related to forecasting the 

pandemic. Chapter 4 explores the behavior of the data as well as limitations in data collection 

accuracy. It also contains the methodology behind each model’s setup and application. Chapter 5 

presents the empirical results and analysis. The conclusion occurs in Chapter 6 with a discussion 

of the findings and opportunities for additional work. 
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Chapter 2: Background 

 

The techniques utilized in this work to model the spread of the COVID-19 pandemic 

require the use of time series data. The number of positive COVID-19 tests were recorded daily 

throughout the pandemic. The daily case count is related to the previous days case counts as 

individuals spread the disease to others in their vicinity with an incubation period of two to 

fourteen days [6]. Time series data differs from cross sectional data because it focuses on how 

data moves over time instead of variables at a specific point in time. Because of this difference, 

time series data can have additional characteristics such as trend, seasonality, cyclical variability, 

and other irregularities. These characteristics introduce challenges in forecasting time series data. 

CNN models specialize in identifying pattern features in data. The convolutional layers 

accomplish pattern recognition using kernels. In one dimensional CNNs, the kernel is slid across 

the time series data, and the result of the convolution is the product of the kernel and the signal. 

Additionally, each convolutional layer has filters that control the number of outputs that occur 

after convolution. The output of the convolutional layer is the intermediate results added together 

with the learned bias. A nonlinear activation function such as the rectified linear unit (ReLU) 

function can be applied to the results if it improves the pattern recognition. ReLU functions 

convert any negative values to 0 and return positive or zero values only such as in Equation 1.  

 

𝑅𝑒𝐿𝑢(𝑥) = max(0, 𝑥)                                                             (1) 
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Pooling layers are generally applied after convolution to decrease the dimensions of the 

matrix. These layers speed up the computation process for subsequent layers. For max pooling 

layers, a pool size is determined such that for each pool, only the largest value is kept as the 

output value.  Next, a flattening layer is applied to force the output into a one-dimensional 

matrix. After flattening, dense networks can be utilized to connect all layers of the feature map. 

These dense networks can have an activation function such as the ReLU function to add 

nonlinearity to the result of the model. The final dense network’s output is the predicted 

sequence. Figure 1 presents a possible structure for a convolutional neural network model.  

 

 

Figure 1: Example of a Convolutional Neural Network 

 

LSTM networks are a type of recurrent neural network that are good at analyzing time 

series data due to the fact that they incorporate feedback connections as well as feedforward 

connections. Each unit has three incoming vectors which are the memory, input, and the hidden 

state vectors. The information from the three incoming vectors is selected based on the three 

gates internal to an LSTM unit. The structure of an LSTM unit contains a forget gate, input gate, 

and output gate as shown in Figure 2. LSTM networks utilize these units to learn long term 

dependencies within the data.  
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Figure 2: Structure of a LSTM cell 

 

LSTM cells pass data from one timestamp to the next depending on its significance. The 

mechanism that determines if the data is passed in is the forget gate. The value of the forget gate 

𝑓𝑡 is determined based on the input at time t 𝑥𝑡 and the previous output hidden vector 𝐻𝑡−1 being 

fed into the gate and then multiplied with weight matrices 𝑊𝑓 and 𝑈𝑓 for the gate with an added 

bias factor 𝐵𝑓. A sigmoid activation function (see Equation 2) is applied to the results (see Equation 

3). The sigmoid function is a nonlinear function that transforms the inputs into values between 0 

and 1, where the larger inputs are assigned values closer to 1 and smaller valued inputs are assigned 

values near 0 as in Figure 3. 

 

𝜎(𝑥) =
1

1 + 𝑒−𝑥
                                                                    (2) 

𝑓𝑡 = 𝜎(𝑊𝑓𝑥𝑡 + 𝑈𝑓𝐻𝑡−1 + 𝐵𝑓)                                                    (3 ) 
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Figure 3: Sigmoid Function [7] 

 

Next, new information is added to the network by an input gate 𝑖𝑡. The input vector is 

calculated as the input at time t 𝑥𝑡 and the previous hidden output 𝐻𝑡−1 being fed into the gate and 

then multiplied with weight matrices 𝑊𝑡 and 𝑈𝑡 with an added bias factor 𝐵𝑖 which is then passed 

through a sigmoid function as in Equation 4. A memory cell candidate vector Ĉ𝑡 is created by 

applying the hyperbolic tangent (tanh) function to the input at time t 𝑥𝑡 multiplied with weight 

matrices 𝑊𝑐 and the previous output 𝐻𝑡−1 times the weight matrix 𝑈𝑐 plus a bias factor 𝐵𝑐 as in 

Equation 5. The tanh function maps data as a hyperbolic tangent between -1 and 1 such as in 

Equation 6. An application of the function is displayed in Figure 4.  

 

𝑖𝑡 = 𝜎(𝑊𝑖𝑥𝑡 + 𝑈𝑖𝐻𝑡−1 + 𝐵𝑖)                                                       (4) 

Ĉ𝑡 = 𝑡𝑎𝑛ℎ(𝑊𝑐𝑥𝑡 + 𝑈𝑐𝐻𝑡−1 + 𝐵𝑐)                                                (5) 

tanh(𝑥) =   
𝑒𝑥 − 𝑒−𝑥

𝑒𝑥 + 𝑒−𝑥
                                                             (6) 
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Figure 4: Hyperbolic Tangent Function [7] 

 

The final gate is the output gate 𝑜𝑡  which determines the hidden state vector and the final 

output if it is the last unit in the network. A selector vector is created using a sigmoid function on 

the input of time t 𝑥𝑡 multiplied with the weight matrix 𝑊𝑜  and the previous hidden output 𝐻𝑡−1 

fed into the gate times the weight matrix 𝑈𝑜 with an added bias 𝐵𝑜 as in Equation 7. The memory 

cell internal state vector 𝐶𝑡 is calculated by multiplying the input gate result 𝑖𝑡 with the candidate 

vector Ĉ𝑡 plus the forget gate result 𝑓𝑡 multiplied with the candidate vector previous memory cell 

state vector  𝐶𝑡−1 as in Equation 8. The final hidden state vector is the result of the tanh function 

applied to the memory vector 𝐶𝑡 multiplied with the output gate result 𝑜𝑡 as shown in Equation 9.  

The final output is the hidden vector 𝐻𝑡. 

 

𝑜𝑡 = 𝜎(𝑊𝑜𝑥𝑡 + 𝑈𝑜𝐻𝑡−1 + 𝐵𝑜)                                                  (7) 

𝐶𝑡 = (𝑖𝑡 ∘ Ĉ𝑡 + 𝑓𝑡 ∘ 𝐶𝑡−1)                                                        (8) 

𝐻𝑡 = tanh(𝐶𝑡) ∘ 𝑜𝑡                                                             (9) 
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An LSTM network will have a sequence fed in by an input layer. Next, some number of 

LSTM layers will occur. Each LSTM layer can have multiple LSTM cells in it. A nonlinear 

activation function such as the ReLU, Tanh, or Sigmoid function can be used on the output of these 

layers. Afterwards, a dropout layer can occur to prevent overtraining of the network. Finally, there 

is a dense output layer that produces the sequence at the end of the network. An example of one 

such network is in Figure 5.   

 

 

Figure 5: Example of a LSTM Neural Network 

 

GRU networks are a type of neural network that are similar to LSTM networks. Both 

networks use gating to update the flow of information, but GRU networks are simpler. GRU 

networks do not have a separate memory vector and have two gates instead of three. They utilize 

the hidden layer only without needing a memory vector. The structure of a GRU unit contains a 

reset gate and update gate as shown in Figure 6. GRU networks are faster to use and less prone to 

overfitting than LSTM networks but can be less accurate.  
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Figure 6: Structure of a GRU cell 

 

GRU cells regulate how much information is passed from the previous cell using the reset 

gate. The value of the reset gate 𝑟𝑡 is calculated using the value at time t 𝑥𝑡 and the previous 

output hidden vector 𝐻𝑡−1 which is fed into the gate and then multiplied with weight matrices 𝑊𝑟 

and 𝑈𝑟 for the gate with an added bias factor 𝐵𝑟. The reset gate utilizes a sigmoid function to 

scale the output as shown in Equation 10. The reset gate controls the short-term memory of the 

network. 

 

𝑟𝑡 = 𝜎(𝑊𝑟𝑥𝑡 + 𝑈𝑟𝐻𝑡−1 + 𝐵𝑟)                                                      (10) 

 

The update gate controls the long-term memory of the network. This gate allows the cell 

to determine how much of the previous information is utilized and how much is updated. The 

value of the update gate 𝑧𝑡 utilizes the value at time t 𝑥𝑡 and the previous output hidden vector 

𝐻𝑡−1 that was fed into the gate and then multiplied by weight matrices 𝑊𝑧 and 𝑈𝑧 for the gate 
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with an added bias factor 𝐵𝑧. The reset gate utilizes a sigmoid function to scale the data between 

0 and 1 as shown in Equation 11. 

 

𝑧𝑡 = 𝜎(𝑊𝑧𝑥𝑡 + 𝑈𝑧𝐻𝑡−1 + 𝐵𝑧)                                                      (11) 

 

The candidate hidden state vector is the result of the tanh function applied to the quantity 

of the time at value t 𝑥𝑡 times the weight parameter 𝑊𝑥 plus the elementwise multiplication of 

the reset gate output 𝑟𝑡 and the previous hidden state 𝐻𝑡−1 times a weight parameter 𝑈𝑧 plus a 

bias factor 𝐵ℎ as in Equation 12. The final hidden state vector is the update gate result 𝑢𝑡 

multiplied with the previous hidden state vector 𝐻𝑡−1 plus one minus the update gate result 𝑢𝑡 

times the candidate hidden vector ĥ𝒕 as shown in Equation 13. 

 

ĥ𝒕 = 𝑡𝑎𝑛ℎ(𝑊𝑥𝑥𝑡 + 𝑈𝑧(𝑟
𝑡

∘ 𝐻𝑡−1) + 𝐵𝑧)                                      (12) 

𝐻𝑡 = 𝑢𝑡 ∘ 𝐻𝑡−1 + (1 − 𝑢𝑡) ∘ ĥ𝒕                                              (13) 

 

 The GRU network is setup in a similar manner to the LSTM model. There is an input 

layer followed by some number of GRU layers. For the GRU layers, there will be a number of 

GRU cells. After the GRU layers, an activation function may appear such as ReLU, Tanh, or 

Sigmoid functions. A dropout layer may occur to prevent overtraining. Lastly, there is a dense 

output layer that creates the prediction sequence at the end of the network. An example of a GRU 

network is in Figure 7.    
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Figure 7: Example of a GRU Neural Network 

 

Arima models are another common way to forecast time series data using previous time 

steps. The model is created using three regression type expressions. The first expression 

incorporates autoregression with a lag order parameter p. The autoregressive portion of the 

model incorporates the previous values with a linear function. An autoregressive model for p lag 

terms is given in Equation 14 with noise ε𝑡 and a parameter φ that is multiplied with the lagged 

variable 𝑦𝑡−𝑝. In the moving average model, the time series is regressed with an order of past 

observations denoted as parameter q. The model utilizes a regression with previous errors ε𝑡−𝑞 

multiplied with a parameter θ plus a noise parameter ε𝑡 as in Equation 15.  

 

𝑦𝑡 = ε𝑡 + φ1𝑦𝑡−1 + φ2𝑦𝑡−2 + … + φ𝑝𝑦𝑡−𝑝                                     (14) 

𝑦𝑡 = ε𝑡 + θ1ε𝑡−1 + θ2ε𝑡−2 + ⋯ + θ𝑝ε𝑡−𝑞                                        (15) 
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Finally, differencing is incorporated into the model using parameter d which stabilizes the 

model by differencing the consecutive time series data if necessary.  A general ARIMA model 

incorporates autocorrelation, differencing, and moving average as in Equation 16. The general 

ARIMA equation can be simplified utilizing a backshift operator. The backshift operator 

indicates the shifting of the time series back by some number of days as in Equation 17 with 

differencing of 𝑦𝑡 indicated as 𝑦𝑡
′. The simplified ARIMA model utilizes the backshift as in 

Equation 18.   

 

𝑦𝑡
′ = ε𝑡 + φ𝑦𝑡−1

′ + … + φ𝑝𝑦𝑡−𝑝′ + θ1ε𝑡−1 + ⋯ + θ𝑞ε𝑡−𝑞                              (16) 

B𝑦𝑡 = 𝑦𝑡−1                                                                 (17) 

(1 − φ1𝐵 − ⋯ − φ𝑝 𝐵𝑝  )(1 − 𝐵)𝑑𝑦𝑡 = (1 + θ1𝐵 + ⋯ + θ𝑞𝐵𝑞)ε𝑡                 (18) 

 

Arima models can be extended to model seasonal datasets as well.  The models utilize the 

original ARIMA parameters as well as additional seasonal parameters. Seasonal specific 

variables are for autocorrelation 𝑃 with parameter ϕ, differencing 𝐷, moving average 𝑄with 

parameter Θ, and a length of seasonality (𝑚). The seasonal portion of the model is made 

similarly to the nonseasonal model, but it incorporates back shifting based on the set seasonal 

period. The generalized Seasonal ARIMA model is presented in Equation 19. 

 

(1 − φ1𝐵 − ⋯ − φ𝑝 𝐵𝑝  )(1 − ϕ1𝐵𝑚 − ⋯ − ϕ𝑃 𝐵𝑃∗𝑚  )(1 − 𝐵𝑚)𝐷(1 − 𝐵)𝑑𝑦𝑡                       

 = (1 + θ1𝐵 + ⋯ + θ𝑞𝐵𝑞)(1 + Θ1𝐵𝑚 + ⋯ + Θ𝑄𝐵𝑄∗𝑚)ε𝑡                            (19)   
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Chapter 3: Related Work 

 

Due to the devastating effects and global impact of the pandemic, extensive research has 

occurred around COVID-19 worldwide. The research spans a variety of areas such as diagnosis 

with radiology imaging, disease tracking, predicting patient health outcomes, computational 

biology, prediction of protein structures, drug discovery, and internet social control [8]. This 

section will concentrate on research with the goal of forecasting the COVID-19 spread in the 

United States and Peru.  Disease forecasting research has spanned over a variety of techniques 

such as compartmental, statistical, and deep learning modeling.  

Compartmental modeling is a common approach in epidemiology that separates the entire 

population into distinct compartments. The simplest model uses the compartments of susceptible 

(the subset of the population that is not currently infected, but is not immune to the disease), 

infected (the subset of the population that is currently infected), and recovered (the subset of the 

population that has recovered from the infection and is now immune from reinfection. This 

model paradigm is commonly referred to as a SIR model. Compartmental models are often 

expanded to include additional compartments, e.g., the SEIR model includes an exposed 

compartment for individuals who have been exposed to the disease, but who have not yet 

become infected. Other models may include a death compartment which includes individuals 

who do not recover from the infection, e.g. a SIRD model reflects the possibility that an 

individual recover from infection (I → R) or the disease is fatal (I → D).  Additional complexity 

can be introduced by allowing the population to move from the recovered compartment back to 
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the susceptible compartment (e.g., SIRS models) to model the potential of temporary immunity 

after infection.   

Compartmental models have been used successfully for a variety of diseases such as 

measles, dengue fever, influenza, HIV, SARS, H1N1, and Ebola [9]. The equations involved in 

compartmental models are relatively simple – they relate to the rate at which members of the 

population move from one compartment to the next. The equations require parameter values to 

reflect these various rates. That said, one important limitation is that compartmental models do 

not include other potentially informative parameters relating to individual characteristics or 

social influence. While they are explainable model that incorporate biological realism in their 

parameters, they become less practical when modeling disease spread impacted by extremely 

dynamic social and public health responses such as those that occurred during the COVID-19 

pandemic. 

SIR models focus on the number of susceptible individuals, infected individuals, and 

recovered individuals with transmission rate and rate of removal variables. Vega et al. [10] 

incorporate machine learning to dynamically set the parameters of a SIR model to forecast the 

new COVID-19 infections in the US and Canada. The parameters were varied over time to 

capture the changes in trend due to public health responses. The study utilized data from January 

1, 2020 to July 25, 2020 to predict up to 4 weeks into the future. Kreck and Scholz [11] use a 

SIR model and data from March 7, 2020 through September 12, 2020 in Peru to predict recovery 

of individuals 52 weeks into the future through September 11, 2021. They found that 88.5 people 

will recover out of every 100 and that the peaks take on average 12 weeks. Jiménez and Merma 

[12] utilize a modified SIR model with the addition of a quarantined population and isolated 

population variable to simulate the effects of vaccinations and quarantine in Peru. They found 
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that a variable isolation and quarantine rate could reduce the deaths from 280 thousand deaths to 

200 thousand deaths compared to relaxed restrictions.  

SEIR models are based on the number of susceptible individuals, asymptomatic 

individuals, infected individuals, and recovered individuals with an infection rate, protection 

rate, the inverse of average latent time, the inverse of average quarantine time, coefficients for 

cure rate, and coefficients for time dependent mortality rate. Al-Raeei et al. [13] apply the 

Runge-Kutta method with a SEIR model to forecast new cases of the disease with data available 

up to December 29, 2020. The study spans the United States, Russia, the United Kingdom, 

France, Brazil, and India. They predicted the infection peak to occur in March or April 2021 in 

the United States. Reiner and Barber [14] incorporate both the case and mortality data from 

February 1, 2020 to July 21, 2020 to determine the disease trajectory and the effects of non-

pharmaceutical intervention. They determine that 95% mask usage would ameliorate the worst 

effects of the epidemic in the United States. Unterbrink et al. [15] utilized SEIR models in Peru 

to predict data from August 2002 to January 2023 with good results when predicted case counts 

changed slowly, but over estimation after spikes in data.  

SIRD modeling utilizes the number of susceptible individuals, infected individuals, and 

removed individuals. Removed individuals are those that have recovered or passed away. The 

model incorporates additional parameters such as coefficient of transmission, rate of recovery 

and rate of deaths. Al-Raeei [16] applied the SIRD model using COVID-19 data up to March 30, 

2020 in China, the United States, Russia, and the Syrian Arab Republic to forecast the number of 

infected cases, recovered cases, and deceased cased. They found the coefficient of infection, 

recovery, and mortality for each of the countries in the studied and applied the coefficient to the 

Syrian Arab Republic to forecast the variables for all of 2020. Mishra et al. [17] developed a SIR 



17 

 

model to evaluate the significance of key parameters to the COVID-19 model. These parameters 

were political action, socioeconomic risk factors, and health factors where the study parameters 

related to prevention were the most important.  

Overall, the compartmental models were predominantly used to determine 

generalizations about infection peak, proportion recovered, isolation impact, quarantine impact, 

and the effect of non-pharmaceutical intervention rather than prediction of infections on specific 

dates. The studies that did forecast case count some number of weeks into the future did so 

utilizing smaller ranges of data that would have limited the social and public health interventions 

that occurred during the larger time span incorporated into this study. The compartmental 

forecasting models tended to respond slowly to quick changes in the data which resulted in 

inaccuracies when spikes in cases occurred.  

Statistical modeling such as ARIMA and SARIMA models was explored by some 

researchers. ARIMA based models have been utilized to forecast diseases in the past such as 

hepatitis B [18], measles [19], dengue fever [20], hemorrhagic fever [21], and hand, foot, and 

mouth disease [22]. One such study focused on Peru and utilized an ARIMA model with data 

from March 6, 2020 to June 11, 2020 to predict the next 30 days of data with the MAPE of the 

forecast being 7.8% [23]. They found that while the ARIMA model did not exactly forecast the 

observed case count, all of the observed cases were within the 95% confidence interval of the 

forecast. Singh et al. [24] predicted confirmed cases, deaths, and recoveries for the top 15 

affected countries around the globe utilizing ARIMA models. The study used data up through 

April 24, 2020 and predicted the variables from April 25, 2020 to July 7, 2020. They found a fast 

spread of the disease in the United States, the United Kingdom, Turkey, China, and Russia; 

however, the ARIMA model results suffered as it struggled to incorporate volatility or turning 
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points in the predictions. Abolmaali and Shirzaei [25] compared ARIMA and SARIMA models 

for four states (Alabama, Washington, California, and Massachusetts) to forecast the number of 

COVID-19 cases over 90 days. The ARIMA models outperformed the SARIMA models in all 

cases, but both models performed less well than the Holt-Winters Double Exponential 

Smoothing Additive model. The research is limited by the span of dates in the dataset as it only 

covers 16 months, and the performance of the ARIMA and SARIMA models are heavily 

influenced by the manual selection of parameters incorporated into the models.  

The ARIMA and SARIMA studies for both the United States and Peru suffered from 

limited data with a maximum of 16 months of data in a study. Each of the model’s parameters 

were selected by manual iteration and comparison to AIC resulting in variation in selected 

parameters from one study to another. The selected parameters to create the optimum model 

depend highly upon the behavior of the data in the dataset, so it is unlikely that the models built 

on data from 2020 would have the same behavior as the data spanning 2020-2023 due to the 

dynamic nature of the pandemic.  

Deep learning techniques incorporating LSTM, GRU, and CNN models encompass a 

number of studies. These models have been applied for time series modeling of other diseases 

such as hepatitis [26] and influenza [27]. Xia et al. [28] explore LSTM to model the pandemic in 

Russia, Peru, and Iran. The study uses data from January 22, 2020 to July 7, 2020 under the 

assumption that the COVID-19 policy did not change in that period. They predict Peru’s case 

count for July 8-11 with -2.57%, 5.48%, -12.81%, and -2.5% error. The study assumes that 

people cooperated with the public measures in place. ArunKumar et al. [29] compare GRU and 

LSTM models to predict cumulative and recovered cases in the United States, Brazil, India, 

Russia, South Africa, Mexico, Peru, Chile, the United Kingdom, and Iran. They forecasted 60 
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days into the future with training dates up to October 1, 2020. The LSTM outperformed the GRU 

model for both Peru and the United States. ArunKumar et al. [30] utilize GRU, LSTM, ARIMA, 

and SARIMA models to forecast COVID-19 in the USA, Brazil, India, Russia, South Africa, 

Mexico, Peru, Chile, the United Kingdom, and Iran. When predicting confirmed cases, the 

SARIMA model performed best for Peru, and the GRU model performed best for the United 

States. Aguilar and Ibáñez-Reluz [31] utilize 10 features for a multivariate CNN model over data 

from March 6, 2020 through February 21, 2021. The model predicted the next 15 days of cases 

with an average Root Mean Squared Log Error (RMSLE) of 0.471 for the Peruvian coast.  

The limitations in the deep learning studies were based around the minimal data 

incorporated into each model. Deep learning techniques like GRU, LSTM, and CNN require a 

lot of data to accurately select model architectures, determine hyperparameters, and train the 

models. In addition to lacking in data to train and select model parameters, the model’s datasets 

did not have the range of social and public health interventions that occurred during the larger 

time span incorporated into this study.  

The novelties of the study will be to apply and compare the ARIMA, LSTM, GRU, CNN, 

and a hybrid model to a much wider range of pandemic data. The range will incorporate multiple 

variants, social interventions, public health interventions, and medical interventions to allow for 

an understanding and comparison of the models’ performance over the dynamic conditions of the 

pandemic. Additionally, a novel hybrid model is constructed with the capabilities of a CNN 

encoding layer and LSTM and/or GRU decoding layers.   
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Chapter 4: Methodology 

 

4.1 The Data 

Data regarding the spread of COVID-19 in the United States is available from John 

Hopkins University [32]. The data contains information on positive COVID-19 cases by region 

every day from January 23, 2020 to the present. At the time of the present study, the data was 

extracted through March 9, 2023 and is comprised of 3,616,714 observations. The data utilized 

in the modeling is limited to the entire United States and not any data related to specific states. A 

misreported negative confirmed case count in the dataset is replaced with 0. The Peru dataset 

comes from the official MINSA website and contains 1,124 rows of data [33]. The data from 

MINSA for Peru is similar to that extracted from John Hopkins University for the US. It consists 

of daily positive case count.  Additionally, the data from MINSA also includes the number of 

COVID-19 related deaths reported per day. The data used for the present study for the Peru 

analysis comprises the dates from March 6, 2020 through April 2, 2023. For both Peru and the 

US, variables of interest are the dates and the daily positive COVID-19 case counts summarized 

at the country level. 

Data quality is essential for accurate forecasting of the disease spread. Data for the 

COVID-19 pandemic faces issues such as inaccuracies in recorded data from missing data, lack 

of accurate testing, and asymptomatic cases. In the United States, the capacity for COVID-19 

testing varied throughout the pandemic with less than 1,000 specimens tested daily until March 
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4, 2020 [34]. Home tests were issued an emergency use authorization by the U.S. Food and Drug 

Administration on November 17, 2020 in the US with variable availability during the pandemic. 

COVID-19 testing is not perfect, and there is a disparity in accuracy between the two major 

types of testing: molecular tests, such as polymerase chain reaction (PCR) and rapid antigen tests 

used for at-home testing. The PCR tests are more accurate but take more time to process and 

require lab technicians and specialized equipment. One study estimated that the PCR test has 

sensitivities of 80% and specificity of 98 to 99% in clinical settings [35]. This implies that about 

20% of patients with the disease will have test results that incorrectly report a negative result. 

The rapid antigen tests, while maintaining a high specificity (99.9%), have a noticeably lower 

sensitivity around 65% [36]. This is exacerbated when considering asymptomatic patients. The 

sensitivity falls for rapid antigen testing of asymptomatic individuals is only 41.2% [37]. 

Therefore, many false negatives can occur, especially with at home testing, which may result in 

the spread of the disease without that case being officially counted. Additionally, home test 

results may not be reported for data collection. Another challenge is that those with 

asymptomatic cases may never be tested and accounted for but could account for 32% of overall 

cases [38]. 

A study found the daily case count consistently had lesser new cases reported on 

Saturdays and Sundays [39]. This is consistent with the data extracted for both the US and Peru 

in the present study. The 7-day seasonality is likely due to less testing being completed or 

reported on the weekend rather than a facet of the disease transmission.  

Peru faced additional challenges in its ability to record accurate daily case counts. Due to 

Peru’s inadequate laboratory capacity, there was limited molecular testing in the country for the 

pandemic. They instead used serological tests resulting in lesser test sensitivity [4]. Serological 
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tests are antibody tests that indicate if a person has been infected at some point in time, but not 

necessarily that they are currently sick with the disease [39]. Despite the government’s goal to 

expand PCR testing, before January 9, 2021, the tests were only 23.5% of the total [40]. The 

country also suffered a shortage of home tests [41]. These issues likely resulted in a number of 

positive cases going untested and unrecorded. 

Another difficulty is that Peru’s healthcare infrastructure is decentralized with public and 

private entities which limits a comprehensive response to the pandemic. Healthcare is 

administered through five organizations which are The Ministry of Health (MINSA), Armed 

Forced (FFFA), National Police (PNP), EsSAlud, and the private sector [42]. Data sharing was a 

challenge for Peru as each sector kept separate records of cases with some doing so manually 

adding to likely inaccuracies in the total number of positive cases. Additionally, Peru’s healthcare 

workers suffered with a lack of appropriate personal protective equipment, resulting in the 

country having the largest portion of infected healthcare workers [40]. The sick healthcare staff 

likely factored into data-entry backlogs at the hospitals [41]. Due to these issues, the case count 

recorded does not necessarily match the actual count of positive cases each day for either the 

United States or Peru. The reported COVID-19 daily case count data for the United States and 

Peru is presented in Figures 8 and 9. 
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Figure 8. Confirmed Case Count in the United States 

 

 

Figure 9: Confirmed Case Count in Peru 
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Figure 10 displays the case counts per capita for the United States and Peru. The United 

States tends to have more cases per capita when compared to Peru. There are 5 segments in the 

United States data with much higher case counts per capita occurring December 2020 through 

January 2021, August through September 2021, January through February 2022, May through 

September 2022, and December through January 2023. The segments of Peru data with large 

case counts per capita correspond to those in the United States on January 2022, July 2022, and 

December 2022. However, the patterns in case count before January 2022 are not mirrored 

between the two countries.  

 

 

Figure 10: Case Counts per Capita in the United States and Peru 

 

Evaluating the properties of the time series datasets is vital when determining how and 

which models are applied for forecasting. ARIMA models require that datasets are stationary or 

can be converted to a stationary dataset. For accurate forecasting, there should be no substantial 

cyclical variability or other irregularity such that it affects the trend or variance over the time-
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period studied. Data is considered to trend if the mean is continuously increasing or decreasing. 

Seasonality can occur if periodic occurrences result in peaks or valleys in the trend. One example 

of this could be an uptick in COVID-19 cases after large gatherings on holidays over multiple 

years. Cyclical events are like seasonal variability but occur without a fixed period. One such 

example could be changing mandates around social distancing or inconsistent rate of spread as 

different variants become dominant. Lastly, other irregularities can cause data to be erratic such 

as short-term noise. 

Quantifying the stationarity of data is often done using the Kwiatkowski–Phillips–

Schmidt–Shin (KPSS) test which is a type of unit root test. The test evaluates if the data is 

stationary by utilizing linear regression with a deterministic trend component, random walk 

component, and stationary error. The KPSS test is performed on the United States and Peru 

datasets with the result that both are stationary with 95% confidence.  

Manual evaluation of the consistency of the mean and variance over the dataset is also 

performed. The 7-day rolling mean and variance for the United States and Peru are presented in 

Figures 11 and 12. Markedly, there are many segments that appear cyclical in nature with the 

case count rising to a peak then falling with variable period lengths. These segments have visual 

differences in mean and variance from other portions of the dataset with a segment between 

January 2022 and March 2022 being the most unlike the rest of the data in both countries. 
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Figure 11: 7 day rolling average and variance of United States Case Count 
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Figure 12: 7 day rolling average and variance of Peru Case Count 

 

To quantify how the data changes over time, the data is segmented into three equal 

sections. The mean and variance of the sections are presented in Table 1 and 2. The three 

segments are substantial containing 380 days in each section of the US dataset and 375 days in 

each section of the Peru dataset. Between the first and second section, the mean of the United 

States case count increases by 90% and the variance decreases by 32%. Conversely, between the 

second and third segment the mean decreases by 47% and the variance decreases by 14%. 

Between the first and second section of the Peru dataset, the mean increases by 68% and the 

variance increases by 1360%. On the other hand, between the second and third segment the mean 

decreases by 59% and the variance decreases by 88%.  
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Date Range Mean Variance 

January 23, 2020- February 6, 

2021 

69,724 5,094,875,22

5 

February 7, 2021-February 22, 

2022 

132,185 3,448,970,41

3 

February 21, 2022- March 9, 

2023 

62,987 2,951,420,56

6 

Table 1: Mean and Variance over United States data 

Date Range Mean Variance 

March 1, 2020-March 11, 2022 3,550 6,050,983 

March 12, 2021-March 22, 2022 5,237 88,398,591 

March 23, 2022-April 2, 2023 2,157 10,361,703 

Table 2: Mean and Variance over Peru data 

 

Histograms for the United States and Peru segments depict the frequency of the 

distribution of the daily case count in each data segment. Figures 13 and 14 show overlayed 

histograms of the first, second, and third segments for the datasets. For both countries, all 3 

segments have skewed distributions. This result is expected as many days of the pandemic had 

lower case counts with the highest frequency bins at the lower numbers of cases per day. The 

first and third segments in the datasets had a similar range of bins. The second segments in both 

datasets had a much larger range of bins with discernable frequency in the high case ranges due 

to the case spikes withing the second segments of the datasets. The extremely right skew of the 

second segments of both datasets is a product of much of the time period in the segment having 

lower more consistent case count before the large spike in cases between January 2022 and 

March 2022. 
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Figure 13: Histogram of United States segmented case counts 

   

 
Figure 14: Histogram of Peru segmented case counts 

 

Autocorrelation is utilized to quantify if significant seasonality is occurring. In these 

plots, the correlation of a signal is compared with a lagged signal after it. There is a high 
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correlation in very low lag days as one day’s case count depends on the days or weeks of cases 

before it. This is due to the spread of the disease being based on interactions with those that were 

already sick in the area. Additionally, there is a lag in displaying symptoms, taking a COVID-19 

test, and receiving a positive test after initial exposure from an infected individual which can 

allow for the spread of the disease over multiple days. Figure 15 highlights the seasonal 7-day 

pattern in the lower lag days in the United States and displays the higher lag days with spikes 

around 140 days and the year mark. Figure 16 illustrates the seasonal 7-day pattern in the lower 

lag days for the Peru dataset and demonstrates the seasonality at approximately 190 days, 320 

days, and 520 days. These spikes imply seasonality in both datasets.   

 

 

Figure 15: Autocorrelation of United States Case Counts 
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Figure 16: Autocorrelation of Peru Case Counts 

 

To minimize the noise in the data, the COVID-19 case count is smoothed using a 7-day 

moving average before the models are trained and forecasting is performed. The case counts are 

Min-Max scaled as in Equation 17 where the new value 𝑥′ is calculated using the current value 

𝑥, minimum value of the dataset 𝑥𝑚𝑖𝑛, and maximum value of the dataset 𝑥𝑚𝑎𝑥.  

 

𝑥′ =
(𝑥 − 𝑥𝑚𝑖𝑛)

(𝑥𝑚𝑎𝑥 − 𝑥𝑚𝑖𝑛)
                                                                 (17) 
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The final step to prepare the data to be modeled is to create the input and output 

sequences. The time series data is segregated using rolling windows to create 30-day input 

sequences with 7, 15, or 30-day output sequences. To demonstrate how the window rolls over the 

dataset, three consecutive 30-day input sequences in yellow and 30-day output sequences in 

orange are shown in Figure 17. Other options to sequence data are splitting the data at a fixed 

time point or utilizing an expanding window. These methods are not optimal for the dataset due 

to its dynamic nature. Both options would train on a larger range of dates that would likely 

contain segments of time that have different behavior which would reduce the prediction 

accuracy of the output series. 

 

 

Figure 17: Input and Output rolling window sequences 
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4.2 Modeling Setup 

Each model is run three times to forecast 7, 15, and 30 day output sequences. The range 

in output sequences allows for an exploration of how the model’s performance varies over 

different prediction lengths. The longer sequences of 30 days would be optimal to allow for the 

most time to make actionable interventions. Each model forecasts all rolling window output 

sequences using dates from January 23, 2020 to February 7, 2023 for the United States data and 

March 6, 2020 to March 3, 2023 for the Peru dataset. The average results of the predictions are 

presented as a metric for model performance over the full dataset in the results section. 

Additionally, each model will be utilized to predict a 7, 15, and 30 day output sequence after 

February 7, 2023 for the United States and March 3, 2023 for the Peru Dataset.   

To create models useful for predicting the daily case count, the CNN, LSTM, GRU, 

hybrid, and ARIMA model’s architecture and/or hyperparameters first are determined. 

Hyperband tuning is utilized over data from January 23, 2020 to February 7, 2023 for the United 

States data and March 6, 2020 to March 3, 2023 for the Peru dataset to optimize the model 

parameters and determine the architecture for the CNN, LSTM, GRU, and hybrid models. 

Hyperband tuning uses explore and exploit theory to converge on an accurate solution with faster 

processing time [43]. Each of these models use the ADAM optimizer to minimize the mean 

squared error loss function. The learning rate of the optimizer was varies between 0.01, 0.001, 

and 0.0001. Each model is allowed 2000 max epochs for training and fit with 2000 epochs with a 

patience of 50 epochs.  
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4.2.1 CNN Modeling Setup 

All CNN architectures are required to have at least one convolutional layer but could 

have up to 5 layers. Each convolutional layer has a filter size and kernel size that vary as in Table 

3 and can have ReLU activation or no activation. After each convolutional layer, a pooling layer 

can occur with max pooling of pool size 2, 3 or 4. Next, a flatten layer occurs. There can be up to 

5 dense layers with varying neuron size as shown in Table 3 each of which could have ReLU 

activation or no activation. After the dense layers, a dropout layer can be selected with a dropout 

rate of 0.1, 0.3, or 0.5. Finally, there is a dense output layer that is the size of the prediction 

sequence.  

 

Layer Parameters 

Input Layer - 

1 to 5 Convolutional Layers Filter size: 2, 4, 8, 16, 32, 64, 128, or 256 

Kernels size: 1, 3, 5, 7, 9, 11, 13, or 15 

ReLU activation or no activation 

Up to 1 Max pooling layer per CNN Layer Pool size: 2,3,4 

Flatten Layer - 

Up to 5 Dense Layers Neurons: 25, 50, 75, or 100 

ReLU activation or no activation 

Up to 1 Dropout Layer Dropout rate: 0.1, 0.3, or 0.5 

Dense Output Layer - 

Table 3: CNN Architecture 

 

 4.2.2 LSTM Modeling Setup 

The LSTM model’s architecture is required to have at least one LSTM layer but could 

have up to 3 layers. Each LSTM layer has some unit size as in Table 4 and can have ReLU, tanh, 

sigmoid, or no activation. After the LSTM layers, a dropout layer can be selected with a dropout 

rate of 0.1, 0.3, or 0.5. Finally, there is a dense output layer the size of the prediction sequence.  
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Layer Parameters 

Input Layer - 

1 to 3 LSTM Layers Units: 2, 4, 8, 16, 32, 64, 128, or 256 

ReLU, tanh, sigmoid, or no activation 

Up to 1 Dropout Layer Dropout rate: 0.1, 0.3, or 0.5 

Dense Output Layer - 

Table 4: LSTM Architecture 

 

4.2.3 GRU Modeling Setup 

The GRU model’s architecture is required to have at least one GRU layer but could have 

up to 3 layers. Each GRU layer has some unit size as in Table 5 and can have ReLU, tanh, 

sigmoid, or no activation. After the GRU layers, a dropout layer can be selected with a dropout 

rate of 0.1, 0.3, or 0.5. Finally, there is a dense output layer the size of the prediction sequence.  

 

Layer Parameters 

Input Layer - 

1 to 3 GRU Layers Units: 2, 4, 8, 16, 32, 64, 128, or 256 

ReLU, tanh, sigmoid, or no activation 

Up to 1 Dropout Layer Dropout rate: 0.1, 0.3, or 0.5 

Dense Output Layer - 

Table 5: GRU Architecture 

 

4.2.4 Hybrid Modeling Setup 

Lastly, the hybrid model utilizes the CNN architecture options from the input layer 

through the flatten layer. The CNN architecture is the encoder to learn patterns from the dataset 

and pass it on to the LSTM and/or GRU layers. Then the LSTM and GRU architecture options 

are allowed to the optimizer. The LSTM and/or GRU architecture works to decode and model the 
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temporal associations. Next, up to 5 dense layers and a dropout layer may occur with parameters 

as in Table 6. Finally, a dense output layer the size of the prediction sequence is implemented. 

 

Layer Parameters 

Input Layer - 

1 to 5 Convolutional Layers Filter size: 2, 4, 8, 16, 32, 64, 128, or 256 

Kernels size: 1, 3, 5, 7, 9, 11, 13, or 15 

ReLU activation or no activation 

Up to 1 Max pooling layer 

per CNN Layer 

Pool size: 2,3,4 

Flatten Layer - 

Up to 3 LSTM Layers Units: 2, 4, 8, 16, 32, 64, 128, or 256 

ReLU, tanh, sigmoid, or no activation 

Up to 3 GRU Layers Units: 2, 4, 8, 16, 32, 64, 128, or 256 

ReLU, tanh, sigmoid, or no activation 

Up to 5 Dense Layers Neurons: 25, 50, 75, or 100 

ReLU activation or no activation 

Up to 1 Dropout Layer Dropout rate: 0.1, 0.3, or 0.5 

Dense Output Layer - 

Table 6: Hybrid Architecture 

 

4.2.5 ARIMA Modeling Setup 

Seasonal ARIMA modeling requires a prespecified seasonal length. Both datasets have 

multiple seasonal peaks as can be seen in the autocorrelation plots of the preprocessed datasets in 

Figures 18 and 19. The short-term seasonality occurring every 7 days in both datasets is 

smoothed due to the 7-day moving average preprocessing step. The red dashed line indicates the 

peak occurring at lag 135 and the green dashed line marks the peak at 372 for the United States 

data in Figure 18. In Figure 19 the red dashed line indicates the peak at 185, the green dashed 

line at peak 316, and the purple line at lag 521 in the Peru dataset. Incorporating such large 

seasonalities result in failure because the application runs out of memory due to the high number 

of parameters to be estimated, so a nonseasonal ARIMA model will be utilized for these datasets.  
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Figure 18. Autocorrelation plots of the United States Preprocessed Data 

 

 
Figure 19. Autocorrelation plots of the Peru Preprocessed Data 
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The KPSS test previously determined that differencing is not necessary for the datasets, 

therefore the estimated ARIMA modeling parameter 𝑑 is set to 0 for no differencing. The 

ARIMA modelling parameters for autocorrelation (𝑝) and moving average (𝑞) can be estimated 

utilizing the autocorrelation and partial autocorrelation plots if the data follows ARIMA(𝑝,𝑑,0) 

or ARIMA(0,𝑑,𝑞) [44]. If both p and q are nonzero, then the plots do not allow for the parameter 

estimation. The partial autocorrelation plot allows conclusions to be drawn about the 

autoregressive portion of the ARIMA model. The parameter 𝑝 estimation is the number of lags 

outside of the shaded significance region in the partial autocorrelation plots for the United States 

in Figure 21 and Peru in Figure 23. Both plots have more than 10 consecutive and 

nonconsecutive lags outside of the significance region making estimation of the parameter 

impossible. The autocorrelative parameter 𝑞 can sometimes be estimated using the 

autocorrelation plots. When evaluating the autocorrelation plots with no differencing in Figure 

20 for the United States and Figure 22 for Peru, both datasets have many consecutive high 

positive values in the autocorrelation of the dataset with no obvious changes in trend making the 

estimation impossible. The difficulty in assigning 𝑝 and 𝑞 values from the plots make it likely 

that the ARIMA model is not ARIMA(p, d, 0) or ARIMA (0, d, q). 
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Figure 20:  US Autocorrelation with no differencing 

 

 
Figure 22:  Peru Autocorrelation with no differencing 

 
Figure 21:  US Partial Autocorrelation with no differencing 

 

 
Figure 23: Peru Partial Autocorrelation with no differencing

 

Due to the issues in finding the autoregressive and moving average term by hand, these 

estimations will be performed using the auto_arima function from pmdarima in Python [45]. The 

function fits models using a range of 𝑝, 𝑑, and 𝑞 values. The best parameters are returned that 

minimize the Akaike information criterion (AIC). The AIC is an estimation of the model’s 

ability to fit the dataset calculated using the maximum likelihood estimate and number of 

parameters in the model. The auto_arima function can find local minimum instead of global 

minimum, so the parameters will be varied manually and then fit to the dataset to confirm the 

model parameters that return the lowest AIC value. 
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4.3 Metrics 

Performance of the models are presented using root mean squared error (RMSE) and 

mean absolute percentage error (MAPE). The metrics are calculated in Equations 15 and 16 

where 𝑛 is the number of observations in the dataset, 𝑦𝑖 is the true value, and 𝑦̂𝑖 is the value 

predicted by the model.  

𝑅𝑀𝑆𝐸 = √
∑ (𝑦𝑖 − 𝑦̂𝑖)2𝑛

𝑖=1

𝑛
                                                          (15) 

𝑀𝐴𝑃𝐸 =   
1

𝑛
∑

|𝑦𝑖 − 𝑦̂𝑖|

𝑦𝑖

𝑛

𝑖=1

∗ 100%                                                 (16) 
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Chapter 5: Results and Analysis 

 

5.1 Modeling Results  

 

5.1.1 CNN Model Results 

Table 7 presents the optimal architecture and modeling parameters found during 

hyperparameter tuning of the CNN models for the 7 day, 15 day, and 30 day prediction 

sequences for the United States and Peru. The optimal architecture for 7 day predictions of both 

datasets have the least layers with two convolutional layers each. The United States models 

utilize two additional dense layers, whereas the Peru dataset includes a max pooling layer after 

the first convolution. The 15 day and 30 day optimal architectures are deeper containing 

additional layers compared to the models for the 7 day predictions. The architecture for 15 day 

prediction sequences in the United States has 3 convolutional layers, a max pooling layer, and 3 

additional dense layers. The Peru architecture for 15 day predictions has 5 convolutional layers, a 

max pooling layer, and 3 additional dense layers. For the 30 day predictions, the United States 

model utilizes 4 convolutional layers, a max pooling layer, and 4 additional dense layers. The 

Peru architecture for 30 day predictions contains 3 convolutional layers, a max pooling layer, and 

an additional dense layer.  
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Dataset 7 Day Prediction Model 15 Day Prediction Model 30 Day Prediction Model 

United 

States 

Learning rate 0.0001 Learning rate 0.001 Learning rate 0.001 

Input  Input  Input  

Convolutional layer with filter size 32 

and kernel size 11 with ReLU activation 

Convolutional layer with filter size 32 

and kernel size 1 

Convolutional layer with filter size 8 and 

kernel size 7 with ReLU activation 

Convolutional layer with filter size 256 

and kernel size 7 with ReLU activation 

Convolutional layer with filter size 256 

and kernel size 7 

Convolutional layer with filter size 8 and 

kernel size 7 

Flatten Max pooling layer with pool size of 3 Convolutional layer with filter size 2 and 

kernel size 15 

Dense Layer with 75 units Convolutional layer with filter size 64 

and kernel size 1 with ReLU activation 

Max pooling layer with pool size of 2 

Dense Layer with 25 units Convolutional layer with filter size 16 

and kernel size 5 

Convolutional layer with filter size 64 

and kernel size 1 with ReLU activation 

Dense Output Layer 

 

Convolutional layer with filter size 32 

and kernel size 3 

Flatten 

Flatten Dense Layer with 50 units with ReLU 

activation 

Dense Layer with 100 units with ReLU 

activation 

Dense Layer with 75 units 

Dense Layer with 25 units Dense Layer with 75 units with ReLU 

activation 

Dense Layer with 25 units Dense Layer with 50 units with ReLU 

activation 

Dense Output Layer Dense Output Layer 

Peru Learning rate 0.001 Learning rate 0.001 Learning rate 0.001 

Input  Input  Input  

Convolutional layer with filter size 256 

and kernel size 7 with ReLU activation 

Convolutional layer with filter size 32 

and kernel size 5 with ReLU activation 

Convolutional layer with filter size 4 and 

kernel size 11 with ReLU activation 

Max pooling layer with pool size of 2 Convolutional layer with filter size 8 and 
kernel size 11 

Max pooling layer with pool size of 2 

Convolutional layer with filter size 128 

and kernel size 3 with ReLU activation 

Max pooling layer with pool size of 4 Convolutional layer with filter size 64 

and kernel size 5 with ReLU activation 

Flatten Convolutional layer with filter size 32 
and kernel size 9 with ReLU activation 

Convolutional layer with filter size 128 
and kernel size 5 

Dense Output Layer Flatten Flatten 

Dense Layer with 25 units Dense Layer with 50 units 

Dense Layer with 75 units Dense Output Layer 

Dense Layer with 100 units with ReLU 
activation 

Dense Output Layer 

Table 7: CNN Optimal Hyperparameters 

 

The CNN model’s prediction performance is presented in Table 8 for both the United 

States and Peru data. Each CNN model predicts the daily case counts with low error for all 

prediction lengths. The lowest RMSE prediction for both datasets occur when predicting 7 day 

case counts, and the highest results occur when predicting the 30 day case counts. The RMSE for 

the United States prediction sequences are lower than those for Peru with average values of 
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0.018 versus 0.025. The MAPE for the United States prediction sequences are higher than those 

for Peru with an average MAPE of 170% versus 30%. 

 

Dataset 

Prediction 

Length 

(Days) 

RMSE MAPE 

United 

States 

7 0.007 183% 

15 0.015 213% 

30 0.033 106% 

Peru 

7 0.014 17% 

15 0.025 37% 

30 0.035 29% 

Table 8: CNN Results 

 

The 7 day, 15 day, and 30 day forecasted values for the United States and Peru datasets 

are depicted graphically in Figure 24 and Figure 25. For each day, the average of the forecast 

value for each prediction sequence is plotted versus the actual daily case count. Overall, the 

predictions fit closely to the actual case counts for both data sets except for a few date ranges. In 

the United States dataset, the 30 day prediction model struggles to forecast the data accurately 

with predictions consistently lower than the actual case count up to 60 days into the dataset. 

Additionally, the 30 day prediction overestimates the actual case count between 870-960 days in 

the dataset. The 15 day and 30 day forecast values underestimate the actual case counts for the 

first 60 and 140 days of the dataset respectively. The 30 day prediction struggles to accurately 

predict the plateau after the last two peaks in the dataset with underestimation of the actual case 

counts from 900-940 days into the dataset and after 995 days of the dataset.  
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Figure 24: United States CNN prediction sequences 

 

 
Figure 25: Peru CNN prediction sequences 
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5.1.2 LSTM Model Results 

The optimal architecture and modeling parameters found using hyperparameter tuning for 

the 7 day, 15 day, and 30 day predictions are presented in Table 9 for the LSTM models. All 

models utilize between 2 and 3 LSTM layers. The architecture for the 7 day prediction of the 

United States dataset contains the largest learning rate of 0.01 versus the learning rate of 0.001 

that is found to be optimal for all other LSTM predictions. The predictions for the 7 day and 15 

day sequences utilize models containing 2 LSTM layers for the United States data and 3 LSTM 

layers for the Peru dataset. For the 30 day predictions, the United States model incorporates 3 

LSTM layers, but the Peru model integrates 2 LSTM layers. Each model integrates between 1 

and 3 activation functions.  

 

Dataset 7 Day Prediction Model 15 Day Prediction Model 30 Day Prediction Model 

United 

States 

Learning rate 0.01 Learning rate 0.001 Learning rate 0.001 

Input  Input  Input  

LSTM Layer with 32 units LSTM Layer with 4 units with tanh 

activation 

LSTM Layer with 256 units  

LSTM Layer with 256 units with ReLU 

activation 

LSTM Layer with 256 units with tanh 

activation 

LSTM Layer with 2 units with ReLU 

activation 

Dense Output Layer Dense Output Layer LSTM Layer with 256 units with tanh 

activation 

Dense Output Layer 

Peru Learning rate 0.001 Learning rate 0.001 Learning rate 0.001 

Input  Input  Input  

LSTM Layer with 128 units with ReLU 

activation 

LSTM Layer with 64 units with ReLU 

activation 

LSTM Layer with 128 units with ReLU 

activation 

LSTM Layer with 128 units with ReLU 

activation 

LSTM Layer with 256 units with ReLU 

activation 

LSTM Layer with 256 units with ReLU 

activation 

LSTM Layer with 256 units with tanh 

activation 

LSTM Layer with 128 units with 

sigmoid activation 

Dense Output Layer 

Dense Output Layer Dense Output Layer 

Table 9: LSTM Optimal Hyperparameters 
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Table 10 reflects the LSTM model’s performance using the metrics RMSE and MAPE. 

For both datasets, the forecast of the 7 day sequences result in the lowest RMSE, and the 30 day 

prediction lengths result in the highest RMSE. The United States predictions have lower RMSE 

overall with an average value of 0.018 versus the 0.022 average value of the Peru dataset. The 

United States MAPE was higher than in the Peru dataset with average MAPEs of 221% versus 

39%. 

 

Dataset 

Prediction 

Length 

(Days) 

RMSE MAPE 

United 

States 

7 0.007 204% 

15 0.014 260% 

30 0.034 200% 

Peru 

7 0.011 15% 

15 0.025 20% 

30 0.030 52% 

Table 10: LSTM Results 

 

Figure 26 and Figure 27 visualize the prediction results for 7 day, 15 day, and 30 day 

forecasting sequences in the United States and Peru. Each plot contains the actual daily case 

count and the average forecast value on each day for each prediction sequence. The United States 

predictions closely follow the actual value, but those for the Peru dataset deviate often for the 15 

day and 30 day prediction lengths. The United States 30 day predictions underestimate the actual 

value until 60 days into the dataset and overestimate it into a false peak between 875 and 915 

days. The 15 day predictions in Peru underestimate the actual value the first 30 days of the 

dataset and overestimate the spike occurring between 970 and 985 days into the dataset. The 
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Peru 30 day prediction sequence has multiple overestimations and underestimation of the data 

with the worst occurring at the largest peak in the Peru dataset between 635 and 680 days. 

 

 

Figure 26: United States LSTM prediction sequences 
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Figure 27: Peru LSTM prediction sequences 

 

5.1.3 GRU Model Results 

The results of the GRU architecture and hyperparameter tuning for the 7 day, 15 day, and 

30 day prediction sequences are available in Table 11 for both the United States and Peru. Each 

model uses at least 2 GRU layers and between 1 and 2 activation functions. The United States 

models contain 2 GRU layers for 7 day predictions, 3 GRU layers for 15 day predictions, and 2 

GRU layers for 2 day predictions. The Peru models incorporates 3 GRU layers for all prediction 

lengths. Only the Peru model forecasting 7 day case counts features a dropout layer.  
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Dataset 7 Day Prediction Model 15 Day Prediction Model 30 Day Prediction Model 

United 
States 

Learning rate 0.001 Learning rate 0.001 Learning rate 0.001 

Input  Input  Input  

GRU Layer with 32 units with ReLU 

activation 

GRU Layer with 128 units with ReLU 

activation 

GRU Layer with 128 units  

GRU Layer with 256 units with sigmoid 
activation 

GRU Layer with 8 units GRU Layer with 256 units with ReLU 
activation 

Dense Output Layer GRU Layer with 128 units with tanh 

activation 

Dense Output Layer 

Dense Output Layer 

Peru Learning rate 0.001 Learning rate 0.01 Learning rate 0.001 

Input  Input  Input  

GRU Layer with 8 units GRU Layer with 8 units GRU Layer with 256 units 

GRU Layer with 64 units with tanh 

activation 

GRU Layer with 32 units with ReLU 

activation 

GRU Layer with 64 units with ReLU 

activation 

GRU Layer with 128 units with ReLU 
activation 

GRU Layer with 128 units with tanh 
activation 

GRU Layer with 32 units with ReLU 
activation 

Dropout block with a dropout rate of 0.1 Dense Output Layer Dense Output Layer 

Dense Output Layer 

Table 11: GRU Optimal Hyperparameters 

 

The RMSE and MAPE for the 7 day, 15 day, and 30 day predictions are available in 

Table 12 for the GRU models. The RMSE of the United States data was less than half of that for 

the Peru data for each prediction length. The Peru RMSE is the largest for the 15 day and 30 day 

prediction sequences with values of 0.042 and 0.054 respectively. The 7 day predictions for both 

datasets were better with RMSEs of 0.007 for the United States and 0.014 for Peru. The MAPE 

for the 7 day prediction sequence in the United States was the highest at 157%. The Peru 15 day 

sequences have the highest MAPE of 113%.  

 

Dataset 

Prediction 

Length 

(Days) 

RMSE MAPE 

United 

States 

7 0.007 157% 

15 0.013 26% 

30 0.036 38% 

Peru 

7 0.014 14% 

15 0.042 113% 

30  0.054  34% 

Table 12: GRU Results 
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Figure 28 displays the results for the GRU model’s predictions in the United States, and 

Figure 29 presents the same for Peru. A majority of both sets of data predict accurately regardless 

of prediction length. Inaccuracies occur for the United States 30 day prediction sequence over 

the first 60 days. The United States 15 day prediction overestimates the data from 880 to 890 

days in the dataset. The 15 day prediction in the Peru dataset underestimates the data before day 

30, and the 30 day prediction underestimates the data before day 60. All of the prediction 

sequences overestimate the final peak in the Peru data occurring between 950 and 1000 days into 

the dataset.  

 

 

Figure 28: United States GRU prediction sequences 
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Figure 29: Peru GRU prediction sequences 

 

5.1.4 Hybrid Model Results 

Table 13 contains the hybrid model’s optimal architecture and hyperparameters for the 7 

day, 15 day, and 30 day prediction sequences for the United States and Peru. The optimal models 

vary between 1 to 3 convolutional layers, 1 to 2 LSTM layers, 0 to 3 GRU layers, and 0 to 3 

additional dense layers. The models for the 7 day prediction sequences in the United States 

contain 2 convolutional layers, 2 LSTM layers, 2 GRU layers, and 3 additional dense layers. The 

Peru 7 day prediction model contain a convolutional layer, a max pooling layer, and 2 LSTM 

layers. The model for 15 day predictions in the United States contain 2 convolutional layers, a 

max pooling layer, 2 LSTM layers, a GRU layer, and 3 dense layers. The model for 15 day 

predictions in Peru incorporate a convolutional layer, a max pooling layer, 2 LSTM layers, a 

GRU layer, and 3 additional dense layers. The 30 day prediction models were the deepest for 



52 

 

both sets of data. The United States model incorporates 3 convolutional layers, 2 LSTM layers, 3 

GRU layers, and 4 additional dense layers. The Peru model contains 1 convolutional layer, 1 

LSTM layer, 2 GRU layers, and 3 additional dense layers. 

 

Dataset 7 Day Prediction Model 15 Day Prediction Model 30 Day Prediction Model 

United 

States 

Input  Input  Input  

Learning rate 0.0001 Learning rate 0.001 Learning rate 0.001 
Convolutional layer with filter size 256 

and kernel size 1 
Convolutional layer with filter size 64 

and kernel size 15 
Convolutional layer with filter size 32 

and kernel size 7 
Convolutional layer with filter size 2 

and kernel size 1 
Convolutional layer with filter size 8 

and kernel size 7 with ReLU activation 
Convolutional layer with filter size 8 

and kernel size 11 with ReLU activation 
Flatten Max pooling layer with pool size of 4 Convolutional layer with filter size 8 

and kernel size 15 
LSTM Layer with 256 units Flatten Flatten 

LSTM Layer with 128 units with 

sigmoid activation 
LSTM Layer with 256 units with ReLU 

activation 
LSTM Layer with 128 units with ReLU 

activation 
GRU Layer with 4 units LSTM Layer with 8 units LSTM Layer with 4 units with tanh 

activation 
GRU Layer with 256 units with sigmoid 

activation 
GRU Layer with 24 units with ReLU 

activation 
GRU Layer with 128 units with sigmoid 

activation 
Dense Layer with 25 units with ReLU 

activation 
Dense Layer with 100 units GRU Layer with 4 4units with ReLU 

activation 
Dense Layer with 75 units Dense Layer with 50 units with ReLU 

activation 
GRU Layer with 256 units 

Dense Layer with 100 units Dense Layer with 50 units with ReLU 

activation 
Dense Layer with 75 units with ReLU 

activation 
Dense Output Layer Dense Output Layer Dense Layer with 50 units 

Dense Layer with 75 units 
Dense Layer with 100 units 

Dense Output Layer 

Peru Input  Input  Input  

Learning rate 0.0001 Learning rate 0.001 Learning rate 0.001 
Convolutional layer with filter size 256 

and kernel size 5 with tanh activation 
Convolutional layer with filter size 8 

and kernel size 5 
Convolutional layer with filter size 4 

and kernel size 1 
Max pooling layer with pool size of 2 Flatten Flatten 

Flatten LSTM Layer with 256 units with ReLU 

activation 
LSTM Layer with 8 units with ReLU 

activation 
LSTM Layer with 128 units with tanh 

activation 
Dense Layer with 100 units with ReLU 

activation 
GRU Layer with 128 units with ReLU 

activation 
Dense Output Layer 

LSTM Layer with 64 units with ReLU 

activation 
Dense Layer with 50 units GRU Layer with 128 units with ReLU 

activation 
Dense Output Layer Dense Layer with 25 units Dense Layer with 25 units with ReLU 

activation 
Dense Output Layer Dense Layer with 50 units 

Dense Layer with 25 units 

Dense Output Layer 
 

Table 13: Hybrid Optimal Hyperparameters 
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The hybrid models predict 7 day, 15 day, and 30 days of case counts well for both the 

United States and Peru data sets as shown in Table 14. The 7 day sequences have the lowest 

RMSE, and the 30 day sequences have the highest RMSE for both datasets. The average RMSEs 

of both datasets is very low with United States having an average value of 0.016 and Peru having 

an average value of 0.018. The average MAPE of the datasets are 83% and 21% for the United 

States and Peru respectively.  

 

Dataset 

Prediction 

Length 

(Days) 

RMSE MAPE 

United 

States 

7 0.008 93% 

15 0.010 43% 

30 0.029 114% 

Peru 

7 0.013 21% 

15  0.018  15% 

30 0.024 28% 

Table 14: Hybrid Results 

 

The predictions for daily case count in the United States and Peru are displayed in Figure 

30 and Figure 31. The 30 day prediction for the United States and Peru dataset underestimate the 

actual value for the first 60 days, and the 15 day prediction for the Peru dataset underestimates 

the first 30 days. The 30 day prediction overestimates the actual value between 875 and 970 

days, and the 15 day prediction overestimates the actual value between 910 and 960 days for the 

United States. The 7 day, 15 day, and 30 day predictions did not accurately predict the peak 

between 950 and 1000 days in the Peru dataset.  
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Figure 30: United States Hybrid prediction sequences 

 

 
Figure 31: Peru Hybrid prediction sequences 
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5.1.5 ARIMA Model Results 

The auto_arima function from the pmdarima package produces optimal parameters of 

ARIMA(5, 1, 5) for the United States data and ARIMA(2, 0, 1) for the Peru data. These values 

are varied manually to evaluate if the results are a local minimum or a global minimum. The 

evaluation occurs by running an ARIMA model of the data for the parameters found using the 

auto_arima function. Next the parameters shift up or down one parameter at a time until a 

minimum AIC is found such that manually varying the parameters does not produce a lower 

value. The ARIMA parameters and resulting AIC are displayed in Table 15 for the United States 

and Table 16 for Peru. The lowest AIC occurs at ARIMA (6, 0, 9) for the United States data and 

ARIMA (4, 0, 6) for the Peru data, so all forecasting is performed with these values.  

 

Model AIC 

ARIMA(5, 1, 5) -7789.132 

ARIMA(5, 1, 6) -7851.372 

ARIMA(5, 1, 7) -7878.372 

ARIMA(5, 1, 8) -7888.707 

ARIMA(5, 1, 9) -7883.789 

ARIMA(5, 1, 4) -7791.027 

ARIMA(5, 1, 3) -7393.292 

ARIMA(5, 0, 8) -7899.735 

ARIMA(5, 2, 8) -7847.870 

ARIMA(5, 0, 9) -7910.680 

ARIMA(5, 0, 10) -7910.616 

ARIMA(5, 0, 11) -7905.726 

ARIMA(4, 0, 9) -7912.015 

ARIMA(3, 0, 9) -7791.565 

ARIMA(6, 0, 9) -7912.118 

ARIMA(7, 0, 9) -7908.369 

ARIMA(6, 1, 9) -7893.571 

ARIMA(6, 0, 10) -7910.435 

ARIMA(6, 0, 8) -7897.609 

Table 15: United States ARIMA Parameter Exploration 

 

Model AIC 

ARIMA(2,0,1) -8805.452 

ARIMA(2,0,0) -8725.217 

ARIMA(2,0,2) -8805.764 

ARIMA(2,0,3) -8808.278 

ARIMA(2,0,4) -8855.458 

ARIMA(2,0,5) -8881.491 

ARIMA(2,0,6) -8879.170 

ARIMA(2,0,7) -8883.979 

ARIMA(2,0,8) -8889.841 

ARIMA(2,0,9) -8902.577 

ARIMA(2,0,10) -8896.884 

ARIMA(2,0,11) -8897.219 

ARIMA(2,1,9) -8858.349 

ARIMA(2,2,9) -8783.037 

ARIMA(1,0,9) -8798.359 

ARIMA(3,0,9) -8890.566 

ARIMA(4,0,9) -8890.566 

ARIMA(5,0,9) -8890.824 

ARIMA(2,0,11) -8897.219 

ARIMA(2,0,12) -8896.242 

ARIMA(4,0,6) -8905.130 

ARIMA(4,0,7) -8891.121 

Table 16: Peru ARIMA Parameter Exploration 
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The results of the 7 day, 15 day, and 30 day predictions using ARIMA models on the United 

States and Peru dataset are displayed in Table 17. The RMSE for both datasets are the lowest for 

7 day predictions and the highest for the 30 day predictions. The average RMSE’s for the dataset 

are 0.068 for the United States and 0.081 for Peru. The overall MAPEs were low with an average 

of 21% for the United States and 36% for Peru. 

 

Dataset 

Prediction 

Length 

(Days) 

RMSE MAPE 

United 

States 

7 0.028 12% 

15 0.058 18% 

30 0.119 34% 

Peru 

7 0.031 14% 

15 0.073 27% 

30 0.138 66% 

Table 17: ARIMA Results 

 

Figure 32 and Figure 33 display the forecasted and actual case count for the United States 

and Peru datasets. For both figures, the predicted data for any sequence length is very close to 

the actual value when the data is stationary. All three sequences predict poorly when data spikes 

or drops swiftly resulting in higher error. The model underestimates and lags behind the actual 

value when the data changes swiftly. The 30 day prediction models for both datasets 

underestimate the first 60 days of data. The 15 day prediction model for Peru underestimates the 

first 30 days of data.  
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Figure 32: United States ARIMA prediction sequences 

 

 
Figure 33: Peru ARIMA prediction sequences 
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5.1.6 Model Comparisons 

Figure 34 and Figure 35 display the RMSE of the predictions for all sequences of models 

over the United States and Peru data. The CNN, LSTM, and GRU models predict the daily case 

count well but are indistinguishable for 7 day, 15 day, or 30 day sequences in the United States 

data. The hybrid United States model performs similarly to the CNN, LSTM, and GRU models 

for the 7 day prediction sequence, but showcases a lowering in RMSE of between 0.0026 and 

0.005 for the15 day sequence and between 0.004 and 0.007 for the 30 day prediction sequence. 

The ARIMA model’s predictions are the least accurate with larger RMSE values for all 

prediction sequences.  

The CNN, LSTM, GRU, and hybrid models forecast the daily case count well for the 7 

day prediction sequence, but not for the 15 day and 30 day sequences for the Peru data. The 

ARIMA model performs worse when predicting 7 day sequences of case count with an increase 

in RMSE of 0.019 in comparison to the other models. For the 15 day prediction sequence, the 

GRU model results in an increase of 0.003 RMSE, but the hybrid model performs better with a 

decrease of 0.007 in RMSE in comparison to the CNN and LSTM models. The Arima model 

forecasts worse than the other models when predicting 15 day sequences with an increase in 

RMSE of 0.055 in comparison to the GRU model. The 30 day predicting hybrid model forecasts 

the best with a RMSE of 0.024 in comparison to the LSTM model with a RMSE of 0.03, the 

CNN model with a RMSE of 0.035, the GRU model with a RMSE of 0.054, and the ARIMA 

model with a RMSE of 0.138.  
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       Figure 34: United States Model RMSE 

 
  Figure 35: Peru Model RMSE 

 

 

5.2 Future Application  

The 7 days, 15 days, and 30 days immediately following February 7, 2023 for the United 

States and March 3, 2023 for the Peru data are predicted using each model to confirm their 

viability in data that was not included in the training set. 

 

5.2.1 7 Day Forecast 

Table 18 contains the results of the 7 day prediction from February 8, 2023 through 

February 14, 2023 for the United States data and from March 4, 2023 to March 10, 2023 for the 

Peru data. The results are presented graphically along with the actual daily case count in Figure 

36 for the United States prediction and Figure 37 for the Peru predictions. All models predict the 

7 days sequence well with low error when in comparison to the actual case count in the United 

States data set. The ARIMA and GRU models tend to overestimate the actual case count, but the 
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CNN, LSTM, and hybrid models result in better predictions with limited underestimation. The 

ARIMA and GRU models have the highest error at a RMSE of 0.007, whereas the hybrid model 

predict the data with an RMSE of 0.004. In contrast, the ARIMA and GRU models have the 

lowest RMSE of 0.001 for the Peru dataset and MAPEs of 12% and 15%. The hybrid model 

predictions have the highest error with a RMSE of 0.007 and MAPE of 9%. The CNN, LSTM, 

hybrid, and GRU models overestimate the actual case count of the Peru dataset whereas the 

ARIMA model underestimate the value.  

 

Dataset Model RMSE MAPE 

United States 

CNN 0.006 12% 

LSTM 0.006 11% 

GRU 0.007 15% 

Hybrid 0.004 9% 

ARIMA 0.007 17% 

Peru 

CNN 0.003 39% 

LSTM 0.004 68% 

GRU 0.001 15% 

Hybrid 0.007 90% 

ARIMA 0.001 12% 

Table 18: 7-Day Forecasting Results 
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Figure 36: United States 7-Day Forecasting Predictions 

 

 
Figure 37: Peru 7-Day Forecasting Predictions 
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5.2.2 15 Day Forecast 

The results of the 15 day prediction immediately following the data utilized in training is 

displayed in Table 19 where the United States results span February 8, 2023 to February 22, 

2023 and the Peru results span March 4, 2023 through March 18, 2023. Figure 38 contains a 

visualization of the predicted daily case counts and actual case count for the United States. 

Figure 39 contains the same for Peru.  

The CNN and LSTM models result in the worst predictions with overestimation of the 

daily case count for the 15 day sequence in the United States with RMSE of 0.010 and MAPE of 

27%. The GRU and Arima model perform similarly well with RMSEs of 0.009 and 0.007 

respectively and MAPEs of 19%. The hybrid model results in the best prediction with a RMSE 

of 0.003 and MAPE of 7%. Alternatively, the ARIMA model forecasts a case count the closest to 

the actual case count for the Peru dataset with a RMSE of 0.001 and MAPE of 25%. The hybrid 

model works well with an RMSE of 0.002 and MAPE of 31%. However, the GRU, LSTM, and 

CNN models execute less well with RMSEs between 0.004 and 0.008. The LSTM overestimates 

the actual value, the GRU underestimates the actual value, and the CNN model starts with an 

overestimation and drops to an underestimation. 
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Dataset Model RMSE MAPE 

United States 

 CNN 0.010 27% 

 LSTM 0.010 27% 

 GRU 0.009 19% 

Hybrid 0.003 7% 

ARIMA 0.007 19% 

Peru 

 CNN 0.008 120% 

 LSTM 0.004 64% 

 GRU 0.004 79% 

Hybrid 0.002 31% 

ARIMA 0.001 25% 

Table 19: 15-Day Forecasting Results 

 

 

Figure 38: United States 15-Day Forecasting Predictions 
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Figure 39: Peru 15-Day Forecasting Predictions 

 

5.2.3 30 Day Forecast 

Table 20 presents the results of the 30 day predictions. The United States prediction spans 

February 8, 2023 through March 9, 2023, and the Peru prediction spans March 4, 2023 to April 

2, 2023. Visualizations are created for the United States’ and Peru’s 30 day predictions and actual 

case count in Figure 40 and Figure 41 respectively. 

The GRU, CNN, and LSTM models produce the poorest results with RMSEs of 0.020, 

0.017, and 0.014 with MAPEs of 24%, 24%, and 33%. The ARIMA model performs well with a 

RMSE of 0.008 and MAPE of 16%. The hybrid model predicted the 30 day sequence with the 

lowest error with a RMSE of 0.005 and MAPE of 8%. The GRU, CNN, and ARIMA models 

tend to overestimate the dataset. The LSTM model overestimates the data after 12 prediction 

days.  
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In comparison, the ARIMA model predicts the 30 day Peru sequence the best with a 

RMSE of 0.002 and MAPE of 35%. The CNN, LSTM, GRU, and hybrid models behave 

similarly with RMSEs ranging from 0.006 to 0.012 and MAPEs ranging from171% to 619%. 

The LSTM and hybrid model predict an increase in case count resulting in an overestimation of 

the daily case count.  

 

Dataset Model RMSE MAPE 

United States 

 CNN 0.017 33% 

 LSTM 0.014 24% 

 GRU 0.020 24% 

Hybrid 0.005 8% 

ARIMA 0.008 16% 

Peru 

 CNN 0.006 171% 

 LSTM 0.010 619% 

 GRU 0.008 202% 

Hybrid 0.012 249% 

ARIMA 0.002 35% 

Table 20: 30-Day Forecasting Results 
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Figure 40: United States 30- Day Forecasting Predictions 

 

 
Figure 41: Peru 30- Day Forecasting Predictions 
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5.2 Discussion 

The United States data is modeled accurately over a majority of the dataset, but there are two 

areas where predictions struggle. All 30-day predictions underestimate the first 60 days of case 

counts in the United States. The models predicted a flatter case count instead of the increase in 

cases that was seen. The poor prediction may be the result of poor data quality as there was a 

lack of testing early in the pandemic so positive cases may have been occurring in the area but 

were not officially counted. Additionally, the peak in the United States data occurring between 

May and September 2022 is overestimated by the 30 day CNN, 15 day LSTM, 30 day LSTM, 15 

day GRU, and 30 day hybrid predictions. The cause of the overestimation is not obvious, but 

deeper study into additional variables such as social distancing, vaccinations, and the dominant 

variant’s transmission rate may result in a cause for the smaller and flatter peak in case counts.  

Similarly, to the United States results, there were two areas that increased the error of the 

predictions in the Peru dataset. All of the 15 day models underestimate the first 30 days of data 

and the 30 day models struggle to predict the first 60 days of data. These underestimations may 

have a similar cause as discussed for the United States dataset such as lack of accurate testing. 

The 15 day CNN, 30 day CNN, 15 day LSTM, 30 day LSTM, 15 day GRU, and 30 day GRU 

models struggled to accurately predict the peaks and plateaus of the data from July 2022 to 

January 2023. The models either overestimate the peaks or underestimate the plateau value. 

There may be an underlying change in the behavior of the virus’s transmission rate. More 

exploration needs to occur to find a root cause of the poor model performance in the date range. 

For both sets of data, the ARIMA models predicts stationary data well but fails to provide the 

same performance as the other models on the full range of dates studied. 
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Creating a hybrid model results in improvements in predicting 15 day, and 30 day sequences 

compared to traditional CNN, LSTM, GRU, or ARIMA models. The hybrid models utilizes 

CNN as an encoding layer to identify one dimensional patterns in the data. Incorporating LSTM 

and/or GRU layers allow for temporal learning to be integrated using feedback and feedforward 

connections. GRU layers are faster than LSTM layers and are less prone to overfitting the data; 

however, the LSTM layers can be more accurate with longer data sequences. Four of the six 

hybrid architectures utilized CNN, LSTM, and GRU Layers, whereas the other two hybrid 

architectures did not utilize GRU layers at all.  
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Chapter 6: Conclusion 

The work explores CNN, LSTM, GRU, hybrid, and ARIMA models to predict COVID-

19 case count in the United States and Peru. The models are evaluated for 7 day, 15 day, and 30 

day predictions utilizing 30 day case count input sequences. For each model, the forecasting 

results are displayed visually and presented statistically using RMSE and MAPE. The hybrid 

models performed equally well or better when forecasting 7, 15, and 30 day case counts for both 

the United States and Peru. The approach was evaluated on the dataset over which the 

architecture and hyperparameters were determined and the models were trained over, as well as 

the 7 days, 15 days, and 30 days that immediately follow.  

Even though the recorded case count was imperfect due to limited testing, some manual 

recording, and variations in the disease spread due to social, health, and governmental 

interventions, the study demonstrates the ability to predict the case count of the pandemic over 

the span of January 23, 2020 to March 9, 2023 for the United States and March 6, 2020 to April 

2, 2023 for Peru. The ability to accurately model and forecast up to 30 days in the future, 

provides critical time for governmental and health officials to implement a strategy to respond to 

the disease by allowing for the implementation of interventions such as requiring masking, 

reducing public gatherings, closing restaurants, and other restrictions to slow the spread of the 

disease and providing additional time to prepare hospitals and medical staff for surges in 

infections.   

The forecasting results could be further improved by incorporating additional variables 

related to the spread of COVID-19 such as social distancing mandates, travel bans, masking, 

public gathering reduction, and businesses closing. The prediction length can be increased to 
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explore how accurately the models can forecast longer time periods that would allow for 

additional response time. The parameters for the models can be expanded as the LSTM and GRU 

models reached the maximum number of layers allowed in their architecture optimization.  

 

  



71 

 

References 

 

[1] “Coronavirus disease (covid-19),” World Health Organization, https://www.who.int/news-

room/fact-sheets/detail/coronavirus-disease-(covid-19) (accessed Sep. 1, 2023).  

[2] “Covid-19 map,” Johns Hopkins Coronavirus Resource Center, 

https://coronavirus.jhu.edu/map.html (accessed Oct. 13, 2023).   

[3] O. Dyer, “Covid-19: Peru’s official death toll triples to become world’s highest,” BMJ, 2021. 

doi:10.1136/bmj.n1442  

[4] A. Schwalb and C. Seas, “The covid-19 pandemic in Peru: What went wrong?,” The 

American Journal of Tropical Medicine and Hygiene, vol. 104, no. 4, pp. 1176–1178, 2021. 

doi:10.4269/ajtmh.20-1323  

[5] D. Pradhan, P. Biswasroy, P. Kumar Naik, G. Ghosh, and G. Rath, “A review of current 

interventions for COVID-19 prevention,” Archives of Medical Research, vol. 51, no. 5, pp. 

363–374, 2020. doi:10.1016/j.arcmed.2020.04.020  

[6] “Transmission of covid-19,” European Centre for Disease Prevention and Control, 

https://www.ecdc.europa.eu/en/infectious-disease-topics/z-disease-list/covid-

19/facts/transmission-covid-

19#:~:text=Transmissibility%2C%20incubation%20period%2C%20and%20infectivity,six

%20days%20for%20earlier%20strains (accessed Sep. 15, 2023). 

[7] J. Feng, X. He, Q. Teng, C. Ren, H. Chen, and Y. Li, “Reconstruction of porousmedia from 

extremely limited information using conditional generative adversarialnetworks,” Physical 

Review E, vol. 100, no. 3, p. 033308, 2019. 

[8] A. Kumar, P. K. Gupta, and A. Srivastava, “A review of modern technologies for tackling 

COVID-19 pandemic,” Diabetes &amp; Metabolic Syndrome: Clinical Research &amp; 

Reviews, vol. 14, no. 4, pp. 569–573, 2020. doi:10.1016/j.dsx.2020.05.008  

[9] V. Iranzo and S. Pérez-González, “Epidemiological models and COVID-19: A comparative 

view,” History and Philosophy of the Life Sciences, vol. 43, no. 3, 2021. 

doi:10.1007/s40656-021-00457-9  

[10] R. Vega, L. Flores, and R. Greiner, “SIMLR: Machine learning inside the SIR model for 

covid-19 forecasting,” Forecasting, vol. 4, no. 1, pp. 72–94, 2022. 

doi:10.3390/forecast4010005  



72 

 

[11] M. Kreck and E. Scholz, “Back to the roots: A discrete Kermack–McKendrick model 

adapted to covid-19,” Bulletin of Mathematical Biology, vol. 84, no. 4, 2022. 

doi:10.1007/s11538-022-00994-9  

[12] C. Jiménez and M. Merma, “Numerical modelling of coronavirus pandemic in Peru,” 

Epidemiologic Methods, vol. 11, no. s1, 2022. doi:10.1515/em-2020-0026  

[13] M. Al-Raeei, M. S. El-Daher, and O. Solieva, “Applying Seir model without vaccination for 

covid-19 in case of the United States, Russia, the United Kingdom, Brazil, France, and 

India,” Epidemiologic Methods, vol. 10, no. s1, 2021. doi:10.1515/em-2020-0036  

[14] R. C. Reiner and R. M. Barber, “Modeling covid-19 scenarios for the United States,” Nature 

Medicine, vol. 27, no. 1, pp. 94–105, 2020. doi:10.1038/s41591-020-1132-9  

[15] J. Unterbrink, C. Nicholson, T. Razzaghi, A. Gonzalez, and B. Huamani, “IISE Annual 

Conference & Expo 2023,” in Proceedings of the IISE Annual Conference & Expo 2023  

[16] M. Al-Raeei, “The forecasting of covid-19 with mortality using SIRD epidemic model for 

the United States, Russia, China, and the Syrian Arab Republic,” AIP Advances, vol. 10, 

no. 6, 2020. doi:10.1063/5.0014275  

[17] B. K. Mishra et al., “Mathematical model, forecast and analysis on the spread of covid-19,” 

Chaos, Solitons &amp; Fractals, vol. 147, p. 110995, 2021. 

doi:10.1016/j.chaos.2021.110995  

[18] D. Benvenuto, M. Giovanetti, L. Vassallo, S. Angeletti, and M. Ciccozzi, “Application of 

the Arima model on the COVID-2019 Epidemic Dataset,” Data in Brief, vol. 29, p. 

105340, 2020. doi:10.1016/j.dib.2020.105340  

[19] Z. H. Peng, “The applied research of the time series analysis in the forecasting and early 

warning of infectious diseases,” Chinese Journal of Health Statistics, vol. 27, pp. 459–463.  

[20] M. S. D. P. Nayak and K. Narayan, “Forecasting Dengue Fever Incidence Using 

ARIMA  Analysis,” International Journal of Collaborative Research on Internal Medicine 

& Public Health, vol. 11, no. 3, pp. 924–932, 2019.  

[21] Q. Liu, X. Liu, B. Jiang, and W. Yang, “Forecasting incidence of hemorrhagic fever with 

renal syndrome in China using Arima model,” BMC Infectious Diseases, vol. 11, no. 1, 

2011. doi:10.1186/1471-2334-11-218  

[22] L. LIU, R. S. LUAN, F. YIN, X. P. ZHU, and Q. LÜ, “Predicting the incidence of hand, foot 

and mouth disease in Sichuan province, China using the ARIMA model,” Epidemiology & 

Infection, vol. 144, no. 1, pp. 144–151, 2016. 

[23] D. A. Cordova Sotomayor and F. B. Santa Maria Carlos, “Application of the integrated 

autoregressive method of moving averages for the analysis of series of cases of covid-19 in 



73 

 

Peru,” Revista de la Facultad de Medicina Humana, vol. 21, no. 1, pp. 65–74, 2021. 

doi:10.25176/rfmh.v21i1.3307  

[24] R. K. Singh et al., “Prediction of the COVID-19 pandemic for the top 15 affected countries: 

Advanced Autoregressive Integrated moving average (ARIMA) model,” JMIR Public 

Health and Surveillance, vol. 6, no. 2, 2020. doi:10.2196/19115  

[25] S. Abolmaali and S. Shirzaei, Forecasting covid-19 number of cases by implementing Arima 

and Sarima with grid search in United States, 2021. doi:10.1101/2021.05.29.21258041  

[26] Z. Xia, L. Qin, Z. Ning, and X. Zhang, “Deep learning time series prediction models in 

surveillance data of hepatitis incidence in China,” PLOS ONE, vol. 17, no. 4, 2022. 

doi:10.1371/journal.pone.0265660  

[27] Y. Wu, Y. Yang, H. Nishiura, and M. Saitoh, “Deep learning for epidemiological 

predictions,” The 41st International ACM SIGIR Conference on Research &amp; 

Development in Information Retrieval, 2018. doi:10.1145/3209978.3210077  

[28] P. Wang, X. Zheng, G. Ai, D. Liu, and B. Zhu, “Time series prediction for the epidemic 

trends of covid-19 using the improved LSTM Deep Learning Method: Case studies in 

Russia, Peru and Iran,” Chaos, Solitons &amp; Fractals, vol. 140, p. 110214, 2020. 

doi:10.1016/j.chaos.2020.110214  

[29] K. E. ArunKumar, D. V. Kalaga, Ch. M. Kumar, M. Kawaji, and T. M. Brenza, 

“Forecasting of COVID-19 using deep layer recurrent neural networks (RNNS) with gated 

recurrent units (grus) and long short-term memory (LSTM) cells,” Chaos, Solitons &amp; 

Fractals, vol. 146, p. 110861, 2021. doi:10.1016/j.chaos.2021.110861  

[30] K. E. ArunKumar, D. V. Kalaga, Ch. Mohan Sai Kumar, M. Kawaji, and T. M. Brenza, 

“Comparative analysis of gated recurrent units (GRU), long short-term memory (LSTM) 

cells, autoregressive integrated moving average (ARIMA), Seasonal Autoregressive 

Integrated moving average (SARIMA) for forecasting COVID-19 trends,” Alexandria 

Engineering Journal, vol. 61, no. 10, pp. 7585–7603, 2022. doi:10.1016/j.aej.2022.01.011  

[31] L. Aguilar I., M. Ibáñez-Reluz, J. C. Z. Aguilar, E. W. Zavaleta-Aguilar, and L. A. Aguilar, 

“Forecasting sars-COV-2 in the Peruvian regions: A deep learning approach using 

temporal convolutional neural networks,” Selecciones Matemáticas, vol. 8, no. 1, pp. 12–

26, 2021. doi:10.17268/sel.mat.2021.01.02  

[32] “Coronavirus disease (covid-19),” World Health Organization, https://www.who.int/news-

room/fact-sheets/detail/coronavirus-disease-(covid-19) (accessed Sep. 1, 2023). 

[33] Covid 19 en el perú - ministerio del salud, https://covid19.minsa.gob.pe/sala_situacional.asp 

(accessed Sep. 1, 2023). 



74 

 

[34] Z. Yu, P. Keskinocak, L. N. Steimle, and I. Yildirim, “The impact of testing capacity and 

compliance with isolation on covid-19: A mathematical modeling study,” AJPM Focus, 

vol. 1, no. 1, p. 100006, 2022. doi:10.1016/j.focus.2022.100006 

[35] He JL, Luo L, Luo ZD, et al. Diagnostic performance between CT and initial real-time RT-

PCR for clinically suspected 2019 coronavirus disease (COVID-19) patients outside 

Wuhan, China. Respir Med. 2020;168:105980. doi:10.1016/j.rmed.2020.105980 

[36] Jegerlehner S, Suter-Riniker F, Jent P, Bittel P, Nagler M. Diagnostic accuracy of a SARS-

CoV-2 rapid antigen test in real-life clinical settings. Int J Infect Dis. 2021 Aug;109:118-

122. doi: 10.1016/j.ijid.2021.07.010. Epub 2021 Jul 7. PMID: 34242764; PMCID: 

PMC8260496. 

[37] Pray IW, Ford L, Cole D, et al. Performance of an Antigen-Based Test for Asymptomatic 

and Symptomatic SARS-CoV-2 Testing at Two University Campuses — Wisconsin, 

September–October 2020. MMWR Morb Mortal Wkly Rep 2021;69:1642–1647. DOI: 

http://dx.doi.org/10.15585/mmwr.mm695152a3 

[38] B. Fraser, “Covid-19 strains remote regions of Peru,” The Lancet, vol. 395, no. 10238, p. 

1684, 2020. doi:10.1016/s0140-6736(20)31236-8  

[39] Shang, W., Kang, L., Cao, G., Wang, Y., Gao, P., Liu, J., & Liu, M. (2022). Percentage of 

asymptomatic infections among SARS-COV-2 omicron variant-positive individuals: A 

systematic review and meta-analysis. Vaccines, 10(7), 1049. 

https://doi.org/10.3390/vaccines10071049 

[40] P. Herrera‐Añazco et al., “Some lessons that Peru did not learn before the second wave of 

Covid‐19,” The International Journal of Health Planning and Management, vol. 36, no. 3, 

pp. 995–998, 2021. doi:10.1002/hpm.3135 

[41] B. Fraser, “Covid-19 strains remote regions of Peru,” The Lancet, vol. 395, no. 10238, p. 

1684, 2020. doi:10.1016/s0140-6736(20)31236-8 

[42] K. Thelwell, “6 facts about Peru’s healthcare system,” The Borgen Project, 

https://borgenproject.org/6-facts-about-perus-healthcare-system/ (accessed Nov. 12, 2023).  

[43] Li, L., Jamieson, K., DeSalvo, G., Rostamizadeh, A., & Talwalkar, A. (2017). Hyperband: A 

novel bandit-based approach to hyperparameter optimization. The journal of machine 

learning research, 18(1), 6765-6816. 

[44] Hyndman, R.J., & Athanasopoulos, G. (2018) Forecasting: principles and practice, 2nd 

edition, OTexts: Melbourne, Australia. OTexts.com/fpp2. Accessed on Sep. 8, 2023 

[45] “PMDARIMA,” PyPI, https://pypi.org/project/pmdarima/ (accessed Oct. 19, 2023). 

 

http://dx.doi.org/10.15585/mmwr.mm695152a3
https://doi.org/10.3390/vaccines10071049

