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Abstract

Federated learning is a groundbreaking distributed machine learning paradigm that

allows for the collaborative training of models across various entities without directly

sharing sensitive data, ensuring privacy and robustness. This Ph.D. dissertation delves

into the intricacies of federated learning, investigating the algorithmic and data-driven

challenges of deep learning models in the presence of additive noise in this framework.

The main objective is to provide strategies to measure the generalization, stability,

and privacy-preserving capabilities of these models and further improve them. To

this end, five noise infusion mechanisms at varying noise levels within centralized and

federated learning settings are explored. As model complexity is a key component of

the generalization and stability of deep learning models during training and evaluation,

a comparative analysis of three Convolutional Neural Network (CNN) architectures is

provided. A key contribution of this study is introducing specific metrics for training

with noise. Signal-to-Noise Ratio (SNR) is introduced as a quantitative measure of

the trade-off between privacy and training accuracy of noise-infused models, aiming to

find the noise level that yields optimal privacy and accuracy. Moreover, the Price of

Stability and Price of Anarchy are defined in the context of privacy-preserving deep

learning, contributing to the systematic investigation of the noise infusion mechanisms

to enhance privacy without compromising performance. This research sheds light on

the delicate balance between these critical factors, fostering a deeper understanding

of the implications of noise-based regularization in machine learning. The present

study also explores a real-world application of federated learning in weather prediction

applications that suffer from the issue of imbalanced datasets. Utilizing data from

multiple sources combined with advanced data augmentation techniques improves the

accuracy and generalization of weather prediction models, even when dealing with

imbalanced datasets. Overall, federated learning is pivotal in harnessing decentralized

datasets for real-world applications while safeguarding privacy. By leveraging noise

as a tool for regularization and privacy enhancement, this research study aims to

contribute to the development of robust, privacy-aware algorithms, ensuring that AI-

driven solutions prioritize both utility and privacy.

xiii



Chapter 1

Introduction & Research Objectives

1.1 Federated Learning

In the modern world, where governments and private companies frequently use data

for strategic planning, decision-making, policies, and even services, privacy is a seri-

ous concern. Privacy is the individual’s autonomy in collecting, storing, sharing, and

analysis of personal data. Privacy violations can have serious personal and social im-

plications for vulnerable populations, causing discrimination, surveillance, and other

potential harms. Emerging technologies in data generation, storage, and analysis raise

new concerns about individuals’ right to privacy in the machine learning domain. Mo-

tivated by the Fundamental Law on Information Reconstruction, the researchers in

Microsoft Research Lab focused on designing a holistic approach to preserving privacy

in the statistical learning of individuals’ data. However, without a structured defini-

tion of privacy, evaluating the privacy-preserving methods was subject to failure. An

intuitive definition of privacy is the one by Gavison [1].

Definition 1. Privacy is the protection from being brought to the attention of others.

As governments and organizations strive to harness the potential knowledge and

value in the data, reliable and trustworthy algorithms become crucial. Researchers

encourage policymakers to incorporate privacy as a human right in the processes and

establish privacy protection mechanisms that ensure individuals’ safety in the age of ar-

tificial intelligence [2, 3]. The most recent update of the National Artificial Intelligence
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R&D Strategic Plan released by the White House in 2023 highlights the importance of

federated learning approaches amid growing concerns around data privacy and secu-

rity. 1 The report outlines the long-term investment plans in responsible AI research,

magnifying the need for advances in privacy-preserving data sharing and addressing

the existing challenges in federated learning.

The term federated learning was introduced in the paper published based on the

results of a research project carried out at Google in 2016 for text input prediction on

mobile devices [4]. The authors propose a deep learning model for federated learning

and conduct an empirical study on the model using different model structures on

benchmark datasets for image classification and language processing applications. The

learning process is designed for a group of devices referred to as clients, coordinated

by a central server, also known as a service provider [5]. Federated learning allows

multiple entities to work collectively without sharing sensitive data.

Keeping the data decentralized reduces the risk of leakage and data breach [6].

Distributed machine learning algorithms create an environment where data storage and

training happen on the group of distributed machines. What differentiates federated

learning from other learning algorithms is its ability to maintain privacy [7, 8, 9].

By avoiding the need to store data in a single location, we can harness multiple data

sources, safeguard individual privacy, and reduce data storage expenses while achieving

high accuracy levels [10].

The ideas behind federated learning have been around for decades, but thanks to

the abundant data that is available to us and advances in computation power, we are

able to efficiently train machine learning models on a network of decentralized data

sources. Advances in the field of machine learning, especially deep learning, allow us

1National Artificial Intelligence Research and Development Strategic Plan
https://www.nitrd.gov/national-artificial-intelligence-research-and-development-strategic-plan-2023-
update/
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to build powerful models that can accurately analyze different data types and provide

valuable insights.

Federated learning is the process of training data locally and improving the global

model. In the federated learning framework, as shown in Figure 1.1, the data is stored

in local data centers, and limited information required for the learning task is privately

communicated with the central server.

Global Server

Global Model is Updated 

Using Aggregated Parameters

Data Center 1

Local Data Centers are Used For Storage, Encryption, and Training the Local Data

Data Center 3Data Center 2

Local 
model 
update 

Local 
model 
update 

Local 
model 
update 

Figure 1.1: The Federated Learning Framework

This architecture is called a client-server design. If the data centers are both re-

sponsible for the task of storage and aggregation, the architecture is called peer-to-peer.

Suppose n is the total number of sample points. In that case, K is the total number of

clients, nk is the total number of sample points on client k, and η is the learning rate.

The goal of federated learning is to minimize the objective function f , also known as

3



the loss function, where fk(δ) is the loss function, and δ is the evaluation value for the

kth client:

f(δ) :=
K∑
k=1

nk

n
fk(δ) (1.1.1)

In this equation, δ is updated after each iteration until we reach the optimal solution

or the number of iterations set as the stopping criterion is satisfied. This optimization

problem is solved using a federated Stochastic Gradient Descent (SGD) method, which

is described in algorithm 1. This algorithm shows that the gradient steps are taken by

each client, and the model parameters are calculated as δt+1 ← δt − ηgk.

Algorithm 1 Federated Stochastic Gradient Descent

Require: δt,∇f(δt), n, nk, η
Ensure: C < 1
▷ a subset of clients is selected at each round
δt:= the current state of the evaluation value
while f(δt) ̸= optimal do

gk = ∇fk(δt)
▷ gk := the gradient of client k

δt+l ← δt − η∇f(δt) = δt −
∑K

k=1
nk

n
gk

▷ Aggregation of client gradients to create a new model at the central server
end while

1.2 Applications

Federated learning has been applied to various fields when the data is sensitive and

scattered across multiple servers or devices. In particular, federated learning is a

compelling approach in healthcare, Internet of Things (IoT), and crisis management,

where information limitation is an issue.
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1.2.1 IoT

Industry 4.0 is the era of interconnected physical and digital technologies. Through the

fourth industrial revolution, smart operations evolved, and the demand for informed

and data-driven solutions increased. In the digital world, data is constantly generated

in texts, images, and measurements from thousands of sensors and devices, which

require powerful systems to perform extensive computations for data processing. Smart

cities, cloud-based technologies, edge computing, and IoT need reliable, secure, real-

time analysis tools. This has increased the demand for systems that can address

scalability, interoperability, resource limitations, and privacy issues [11, 12].

Nguyen et al. [13] surveyed the application of federated learning to leverage the

data on IoT devices for smart cities and industries, leading to advances in healthcare,

transportation, and Unmanned Aerial Vehicles. Khan et al. [14] surveyed different

aspects of federated learning for IoT applications. The authors compared and evaluated

the methods from robustness, quantization, sparsification, scalability, security, and

privacy perspectives. Varlamis et al. [15] used federated learning to find energy-saving

solutions based on sensor data. Federated learning offers several benefits when applied

to IoT applications such as:

• Privacy preservation: This is the primary advantage of federated learning. IoT

devices often collect sensitive personal information, such as health data or home

automation preferences, and federated learning allows these devices to train ma-

chine learning models without exposing individuals to possible harm and misuse

of data.

• Reduced data transfer: IoT devices are often resource-constrained, making it

inefficient and costly to transmit large volumes of data to a central server. By

5



keeping data on the edge, federated learning reduces the need for extensive data

transfer and lowers communication overhead.

• Edge computing: Federated learning fits well with edge computing, where data

processing occurs closer to the source (IoT devices) rather than in a data center.

Therefore, minimizing latency and improving real-time decision-making which is

crucial for applications like autonomous vehicles and industrial automation.

Some of the challenges and limitations of federated learning in this domain are:

• Heterogeneity: IoT devices come in various shapes, sizes, and capabilities, making

them challenging to harmonize for federated learning. Ensuring that models can

be trained effectively across diverse IoT ecosystems is a significant challenge. In

federated learning, some devices may also have more data or contribute more

frequently to model updates than others. Managing the data across IoT devices

can affect the fairness and accuracy of the learned models.

• Communication overhead: Aggregating model updates from numerous IoT de-

vices can be challenging, especially when dealing with intermittent connectivity,

device failures, or adversarial behavior. Robust aggregation methods are needed

to handle these scenarios.

• Computational overhead: Federated learning can be computationally intensive,

which may be problematic for resource-constrained IoT devices. Balancing model

training with energy efficiency and processing power is a limitation that needs to

be addressed.

• Scalability: As the number of IoT devices increases, managing federated learning

across the network becomes more challenging.
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Federated learning holds great promise for IoT applications. However, addressing chal-

lenges and overcoming limitations is essential to fully harness the potential of federated

learning in the rapidly expanding IoT ecosystem.

1.2.2 Healthcare

Federated learning is a promising approach for learning from healthcare data, which

is highly regulated and cannot be openly shared with the public. Therefore, if privacy

is ensured, it can significantly benefit from utilizing artificial intelligence and machine

learning to move towards personalized healthcare and computer-aided diagnosis. Fed-

erated learning creates a global model of decentralized data, such as the data from

hospitals, labs, and clinical trials without direct access to the data [16]. For instance,

Feki et al. [17] utilized a federated learning approach to build a powerful model to

classify COVID-19 X-rays based on data collected from multiple institutes. Rieke et

al. [18] explored the existing literature on federated learning for healthcare with the

challenges and open problems in digital healthcare. Some of the benefits of federated

learning in healthcare applications are:

• Privacy preservation: Healthcare data is highly sensitive and subject to strict

privacy regulations. Federated learning enables healthcare institutions to collab-

orate on model training without sharing raw patient data, preserving privacy and

compliance with regulations like HIPAA.

• Large-scale data utilization: Without privacy concerns, healthcare organizations

can tap into a vast pool of data from various sources, including hospitals, clinics,

wearable devices, and electronic health records, to advance machine learning and

computer-aided diagnosis.
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• Personalized medicine: by leveraging patient-specific data, personalized treat-

ment plans become more viable, leading to more effective and tailored healthcare

interventions.

However, some of the challenges and limitations are:

• Heterogeneity: Health data comes from various hospitals, clinics, personal health

monitoring devices, and more. Differences in data formats, quality, completeness,

and availability pose challenges for integrating the data and achieving accurate

and reliable results.

• Regulatory compliance: Healthcare is heavily regulated, with different regions

and countries having their own sets of rules and standards. Navigating regulatory

compliance while implementing federated learning can be complex and time-

consuming.

• Bias and fairness: Federated learning may inherit biases present in the data from

participating institutions, potentially leading to biased or unfair model outcomes.

• Model quality control: Ensuring the quality and consistency of models across

different institutions can be challenging. Mechanisms for model monitoring, val-

idation, and quality control are essential to maintain high standards of care.

Federated learning is a promising approach for healthcare applications, and addressing

the challenges can have significant impacts on healthcare operations.

1.2.3 Crisis management:

There is a growing interest in machine learning algorithms for weather applications and

natural disasters. Leveraging large data sets from multiple resources facilitates collab-

orative learning from data collected at different geographic regions, allowing for more

8



powerful and precise models. Bypassing the risks of data sharing encourages meteoro-

logical institutions across the countries to harness the power of machine learning while

ensuring privacy and efficient utilization of resources, resulting in more accurate and

timely predictions. On a larger scale, when dealing with natural disasters and emergen-

cies, federated learning allows government agencies, international organizations, local

support groups, and communities to collaborate effectively without privacy restrictions

caused by traditional centralized learning. Federated learning provides the framework

for secure communication of knowledge, resulting in early detection, risk assessment,

and effective emergency response strategies using more accurate and robust models.

The benefits of federated learning in crisis management are:

• Privacy Preservation: In crisis management scenarios, sensitive and critical data

may be involved, such as location data, medical records, or disaster response

plans. Federated learning enables multiple entities to collaborate on model train-

ing without sharing raw data, preserving privacy and security.

• Real-time updates: Crisis management requires quick decision-making based on

the latest information. Federated learning enables real-time model updates as

new data becomes available, ensuring that decision support systems remain cur-

rent and effective during rapidly evolving situations.

• Resource efficiency: Crisis response often involves distributed teams and re-

sources. Federated learning leverages the computing power of edge devices and

distributed data sources, minimizing the need for centralized data storage and

processing resources.

• Customization for local conditions: Different regions may have unique charac-

teristics and needs during a crisis. Federated learning allows for localized model
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customization, ensuring that solutions are tailored to specific conditions and re-

quirements.

Despite its benefits, the challenges and limitations of this approach are:

• Data availability: Federated learning relies on the availability of data. During a

crisis when data may be sparse, incomplete, or unreliable due to infrastructure

damage or connectivity issues, training reliable models becomes challenging.

• Heterogeneity: In addition to data availability, collecting data from multiple

sources such as governmental and private organization databases, social media,

and on-site observations results in inconsistencies in data formats that need spe-

cial attention during model training and interpretation of results.

• Model drift: In dynamic crisis situations, data distributions can change rapidly,

causing model drift which requires the model to be continuously updated and

retrained.

• Communication overhead: Connectivity issues and limitations on bandwidth are

possible issues during a crisis. Allocating adequate resources and careful planning

prior to emergency scenarios prevents disruptions in critical operations due to

disconnections in the network.

Overall, federated learning offers significant potential for enhancing crisis management

applications and improving the effectiveness of disaster mitigation and recovery efforts.

Figure 1.2 shows some of the applications of federated learning in the industry based

on the papers reviewed in this work.
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Figure 1.2: Applications of Federated Learning in Industry

1.3 Research Questions and Contributions

Federated learning is at the interface of several research areas, such as optimization,

distributed learning, cryptography, and communication theory. The objective of this

Ph.D. dissertation is to address some of the existing algorithmic and data-driven chal-

lenges from a data science perspective. Accordingly, considering the research gaps in

the field that have been discussed in the next chapters, five research questions (RQ)

have been proposed that addressing them makes significant contributions and generates

new knowledge.

➤ Objective 1: Literature review

RQ 1: How does the choice of machine learning model influence the training process,

computation complexity, and efficiency of the outcome?

Approach: A comprehensive literature survey on federated learning from a machine

learning perspective is conducted. This survey includes an overview of the components

11



of federated learning and a systematic review of the literature on privacy-preserving

machine learning in the last few years based on the Preferred Reporting Items for Sys-

tematic Reviews and Meta-Analyses (PRISMA) guidelines.

Contribution: An overview of recent progress and developments in supervised/unsu-

pervised machine learning algorithms, ensemble methods, meta-heuristic approaches,

blockchain technology, and reinforcement learning in the framework of federated learn-

ing is presented.

➤ Objective 2: Understanding generalization, stability, and privacy of noise-

infusion mechanisms in centralized and federated learning settings and quan-

tifying the relationship between model performance and noise levels to balance

privacy and accuracy.

RQ 2: How does the incorporation of noise in different locations within the model

structure or the data affect training outcomes?

Approach: In a data-centric era, concerns regarding privacy and ethical data handling

grow as machine learning relies more on personal information. Perturbation methods

such as differential privacy ensure that individuals are not exposed to potential misuse

of personal data and harm. Despite their numerous benefits, adding noise to the data

can negatively impact the accuracy of results. Obtaining the balance between privacy

protection guarantees and model performance is one of the challenges in this domain.

Accordingly, this dissertation investigates integrating noise into deep learning models

to provide insights into this objective and improve the generalization, stability, and

privacy-preserving capabilities of the models.

Contributions:

1. Comparison of three CNN architectures to assess the impact of model capacity

on generalization and stability during training and evaluation in noisy conditions.
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2. Comparison of training models with Gaussian noise hidden layers against other

noise infusion mechanisms.

3. Comparative analysis of training CNN models with Gaussian noise hidden layers

under various noise levels in centralized and federated learning.

4. Understanding the benefits of using noise to improve generalization, stability,

and privacy through experimental analysis.

RQ 3: How can we estimate the level of additive noise prior to detecting a significant

model performance decrease?

Approach: As federated learning provides a unique approach, the capacity of deep

learning models to generalize beyond the training data while maintaining privacy and

stability in the face of perturbations becomes more critical in real-world applications.

Appropriate metrics are required to assess the implications of training with noise for

stability, generalization, and privacy of convolutional neural networks.

Contributions:

1. Introducing the Signal-to-Noise ratio to quantify the trade-off between increasing

the noise level and training accuracy and to find the optimal balance between

privacy and accuracy.

2. Introducing the Price of Stability and Price of Anarchy to gain a measurable

perspective on the trade-offs between model performance and privacy due to

increasing noise levels.

➤ Objective 3: Addressing Data Imbalance in Precipitation Prediction Models

through Federated Learning and Generative Adversarial Networks (GANs)

RQ 4: What is the best way to address the challenges caused by the significant dif-

ference in the number of instances between classes, indicating imbalanced data that
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affect the performance of a classifier’s predictions?

Approach: The classification of weather data involves categorizing meteorological

phenomena into classes where certain weather events (e.g., storms or extreme tem-

peratures) might be underrepresented. The significant difference between the number

of instances in the classes indicates that the data is imbalanced. Imbalanced data

negatively impacts the classifier’s performance, resulting in biased predictions. This

dissertation explores data augmentation techniques, such as the Synthetic Minority

Over-sampling Technique or GANs, to improve the model’s accuracy in classifying

rare but critical weather events.

Contributions:

1. Conducting an empirical study on the applicability and efficacy of advanced

GANs variants (CGANs, Minority GANs, SMOTE GANs, and WGANs-GP)

compared to the Synthetic Minority Over-sampling Technique, a well-known re-

sampling method for tabular data over 9 weather stations across Australia.

2. Employing data augmentation techniques improves the model’s accuracy in clas-

sifying rare but critical weather events.

RQ 5: What is the best way to address the challenges caused by insufficient data in

some local centers, which impact the accuracy of predictions and the model’s ability

to generalize to new and unseen data?

Approach: With advancements in federated learning, machine learning models can be

trained across decentralized databases, ensuring privacy and data integrity while miti-

gating the need for centralized data storage and processing. Thus, the classification of

weather data stands as a critical bridge, linking raw meteorological data to actionable
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insights, enhancing our capacity to anticipate and prepare for diverse weather condi-

tions.

Contributions:

1. Practical implications of federated learning in meteorology and climate studies,

advocating for the potential of combining data augmentation techniques with

federated learning to address imbalanced datasets.

2. Advancement in understanding the trade-offs and potential pitfalls of GANs vari-

ants, offering insights into the need for intricate network design and hyperparam-

eter tuning.

This dissertation presents a multidimensional exploration of the challenges and open

problems in federated learning, noise-infusion mechanisms, and data imbalance in the

context of machine learning.

The systematic literature review offers a consolidated knowledge base for researchers.

The empirical study on noise-infusion mechanisms bridges theoretical concepts with

practical applications and contributes to developing stable and differentially private

algorithms, allowing them to generalize effectively and support federated learning.

Furthermore, the strategies proposed for addressing data imbalance present actionable

insights for real-world applications, especially in the realm of weather prediction.

1.4 Dissertation Structure

The current Ph.D. dissertation consists of an additional three chapters that correspond

to the three research objectives mentioned earlier. Chapter 2 corresponds to the com-

ponents of federated learning and a survey of privacy-preserving machine learning in

recent literature. Chapter 3 explores the background and material on generalization,
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stability, and differential privacy. We also delve into the description of the Signal-

to-Noise ratio, Price of Stability, and Price of Anarchy and their applications. The

outcome of the numerical experimentation with a discussion of the results is also pro-

vided. The numerical analysis consists of four experiments in centralized and federated

settings and multiple noise infusion mechanisms. Chapter 4 of the dissertation aligns

directly with the research questions mentioned in the third research objective.

Each of these chapters concludes with a summary section that highlights the sig-

nificant points and insights derived from the obtained results. Finally, in Chapter 5,

all the pertinent findings are consolidated, and the main conclusions of the work and

the direction of future research in the field are presented.
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Chapter 2

Background & Literature Review

2.1 Components of Federated Learning

Federated learning affects the modeling step of the Cross-Industry Standard Process

for Data Mining (CRISP-DM), which starts from local data storage in data centers

to communicate with the central server to iteratively aggregate the model parameters

and update the global model to achieve the desired learning accuracy in data centers.

Business 
Understanding

Data 
Understanding

Data 
Preparation

Modeling

Evaluation

Deployment

Figure 2.1: Data Mining Process in Federated Learning Based on CRISP-DM Model

Figure 2.1 shows the Federated learning life cycle embedded in CRISP-DM. There

is a rich body of research on different aspects of federated learning, such as data
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processing, learning models, aggregation methods, specifications of data centers and

the central server, communication security, and efficiency among the elements [19] and

the multiple software and libraries used for implementing federated learning [20]. In

this chapter, we survey the existing research on federated learning. What distinguishes

this work from other surveys is the focus on the model selection aspect of the federated

learning process, complementing other recent surveys [21, 22, 23, 24, 25, 26]. We explore

the different machine learning models used in federated learning to tackle problems in

different domains. In this survey, we have investigated the papers published between

2016-2022 in accredited peer-reviewed journals and conferences and classified them

based on the machine learning methods used for learning. We limited the search

to the keywords federated learning, privacy-preserving machine learning, distributed

learning, supervised/unsupervised learning, and artificial intelligence. The PRISMA

diagram presented in Figure 2.2 demonstrates the searching strategy in this survey.

• Records identified through Google Scholar on the key words federated learning 
and privacy preserving machine learning published between 2016-2022 (n = 
1300)

Identification

• Records screened (n = 460) 

Records removed from screening are duplicate records, unpublished records such 
as arxiv.org and researchgate.net, thesis and dissertations (n = 840)

Screening

• Full text articles assessed for eligibility are records published in peer reviewed 
journals, or conference proceedings that demonstrate a novel approach in 
development or application of Federated Learning using Machine Learning (n = 
200)

Eligibility

•  Studies included in the survey (n = 140) 

Included

Figure 2.2: PRISMA Flow Diagram Summarizing the Search Strategy
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Federated learning is a broad term that includes different aspects of data collection,

storage, analysis, and communication in a decentralized information system where data

centers can not disclose data for learning purposes.

This chapter reviews the literature on the components of federated learning and its

applications in the last few years. The main purpose of this survey is to provide young

researchers and practitioners with a comprehensive overview of federated learning from

the machine learning point of view.

In the following sections, we will provide a detailed explanation of the federated

learning framework’s components: storage, privacy, communication, federated aggre-

gation, and privacy-preserving machine learning, respectively. We dive into a detailed

discussion of different machine learning models used for training decentralized data,

their use cases and applications, and some technical details useful for implementation.

2.2 Storage

Federated learning is a cross-organizational framework. Therefore, the features and

observations may vary between different data centers. Depending on the architecture

of the data centers and how the data are partitioned, three scenarios of horizontal

partitioning, vertical partitioning, and transfer learning have been discussed.

2.2.1 Horizontal partitioning

Horizontal federated learning, also known as sample-based federated learning, is the

scenario in which the data centers have the same features but different sample spaces

that require modifications to the training model [27]. For example, a network of local

banks that individually collect a certain list of information from their clients. In this

example, the clients are different. Therefore, the sample space varies between the
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banks. Horizontal federated learning allows entities to build a generalized global model

based on a larger data pool without compromising privacy.

2.2.2 Vertical partitioning

Vertical federated learning, also known as feature-based federated learning, is when

local datasets have the same sample space but differ in their features. Numerous re-

searchers have explored training models specified for vertically partitioned data. For

example, a local bank and an insurance company share the same clients but collect

different types of information. If the two entities were to build a local model col-

laboratively, the two datasets would have common sample space but very different

features. The common aggregating methods aren’t effective in vertically partitioned

data. Therefore, the difference between the feature spaces causes different challenges

and creates opportunities for further research to address the issue of fault diagnosis.

2.2.3 Transfer Learning

Transfer Learning is the learning structure in which the local datasets differ both in the

sample and feature space. Thus, knowledge is derived from various sources to achieve

a global model. Despite all the challenges, transfer learning has been applied to a wide

variety of problems in different domains [28], and it has great potential for further

improvement.

2.3 Federated Aggregation

Secure aggregation is the function that receives model parameters from local data cen-

ters and outputs the aggregated model parameters to update the training model. Nu-

merous studies explore aggregation methods to improve learning accuracy in encrypted

20



data. Lia and Togan [29] implemented federated learning with secure aggregation in

Python. The authors ensure privacy by using SMC.

Federated Averaging(FedAvg) is the baseline aggregating method in federated learn-

ing. In this scheme, an initial global model is used to locally train the datasets located

on a network of distributed data centers. The encrypted model parameters are up-

loaded to the central server, and the average updates of local models are used to

update and improve the global model. The model parameters provided by the clients

are aggregated at the central server using Equation 2.3.1

δt+1 ←
K∑
k=1

nk

n
δkt+1 (2.3.1)

Then, the new model is sent back to the clients. This iterative process continues until

the model parameters converge to a specific performance level or the task is completed.

FedAvg is a practical approach since it does not require data centers to disclose their

data; thus, the models can be trained locally. However, the communication cost can be

high. To address this issue, Li et al. [30] explored an adaptive communication frequency

aggregation method that helps the algorithm converge faster and have a smaller loss.

They also used a gradient sparse approach to reduce communication costs by decreasing

the parameters that need to be updated. Another variation of FedAvg is a weighted

FedAvg method, which has been proposed and has shown promising performance in

experiments on fault diagnosis [31]. Also, Hong et al. [32] used weighted FedAvg for

non-IID imbalanced data and evaluated the model on CIFAR-10 and SVHN benchmark

datasets.

Co-operative aggregation is another aggregation method (CO-OP) in which the lo-

cal models are merged into the global model by using a weighted scheme based on the

local models’ age to anticipate the time difference between them and how they have
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improved at each iteration. Chen et al. [33] utilized a discrepancy-based weighted

federated averaging method to address the inconsistencies in the contributions of data

centers in the global model for federated averaging. The experiments show the effec-

tiveness of federated transfer learning with the proposed averaging method for fault

diagnosis.

2.4 Communication

Communication between local data centers and the central server requires sufficient

connectivity and bandwidth to ensure secure and private communication between the

entities and the entire system. While communication efficiency is highly dependent

on the existing infrastructure, reducing the number of interactions between the data

centers and the central server can improve the efficiency of the federated learning model.

For example, Shen et al. [34] built a blockchain-based model for secure data sharing

and training using privacy-preserving Support Vector Machines. Their proposed model

requires only two interactions in each iteration, which provides higher performance

accuracy and data privacy with less computation cost. In addition, the issue of fairness

between the data centers and the central server arises with the federated learning

framework. The limitations posed by communication efficiency and security are an

ongoing challenge in implementing Federated learning at scale [35].

2.5 Privacy

Preserving privacy is an essential constraint when learning from sensitive data that

requires protection against data leakage and adversarial attacks. In cybersecurity,

the adversary is defined as a person or a group that performs malicious actions to
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disrupt or corrupt a cyber system. Mothukuri et al. [36] identified the different types

of adversaries in the federated learning framework and highlighted the solutions to

improve systems vulnerability. Table 2.1 describes the two types of adversaries caused

by adversaries.

Table 2.1: Types of Adversaries in Cybersecurity

Adversaries Action Aim Protocol

Semi-
honest

Passive Learning about the system ✓

Malicious Active Manipulation, corruption,
control the system

✗

To address the problem of adversaries, Secure Multiparty Computation(SMC) is

developed. SMC is a framework that enables multiple parties to securely process data

while ensuring that no valuable information is leaked. This scheme allows machine

learning models to train sensitive data when most of the parties involved are honest.

The components are input parties, computation parties, and result parties. For exam-

ple, SMC is used as a privacy-preserving method in studies on genome data [37], where

the biobanks act as the input parties that hold gene data and medical diagnoses infor-

mation. The neural hosts and other biobanks are chosen as computation parties, and

designated recipients are selected as result parties. This method allows us to combine

datasets from genome data collected from different individuals without compromising

their privacy. There are different protocols for implementing an SMC that differ in

size and number of supported input parties. In highly regulated industries such as

healthcare, more advanced privacy-preserving methods are needed to facilitate the use

of effective machine learning models in the Federated learning framework [38]. The

privacy-preserving methods are categorized into the two following approaches [39]:
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2.5.1 Perturbation Approach

This is a privacy-preserving approach based on adding noise to the data [40] such

as Differential Privacy, which is a perturbation mechanism that involves adding noise

to the data to obscure sensitive data and ensuring security in the federated learning

framework. Perturbation methods are effective in securing the data, yet decrease the

learning accuracy [41]. Differential privacy is based on the concept of semantic security,

which means the encryption systems prevent enclosing any amount of information

through the learning process. In Differential Privacy, the outcome is assumed to be the

same regardless of the data if the model is implemented on two neighboring databases.

Two datasets of S and S ′ are considered neighboring if they differ at most in one random

variable, and they are written as S ∽ S ′. This ensures that the algorithm’s output

does not reveal any information about data sharing and analysis. This feature is also

known as ϵ-DP . To satisfy Differential Privacy, the Laplace or Gaussian mechanism

is used for data with integer or real-valued outputs, and noise is sampled from a

Laplace or Gaussian distribution to ensure ϵ-DP for noisy data. The exponential

mechanism is used for categorical data, in which each output is associated with a non-

zero value for the probability of being selected based on a utility function [42]. First,

we compute the sensitivity of the utility function and then compute the quality score of

each output in the database. The output is selected probabilistically. Tuning ϵ in the

Differentially Private mechanisms to ensure semantic privacy is one of the challenges of

using Differential Privacy for data privacy. Wei et al. [43] demonstrated the trade-off

between model convergence and privacy level. They use a client scheduling strategy

to improve model convergence while maintaining privacy. Accumulation of noise can

jeopardize the accuracy of results if it exceeds a threshold on several operations, and

the threshold is on the depth of the operations rather than the number of operations

performed to infuse noise to encrypt the data. The depth of the operations is the
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maximum degree of the evaluated polynomial. The operation depth is determined by

the privacy protection scheme as well as the level of speed and security.

2.5.2 Cryptography Approach

This approach preserves data privacy using cryptographic primitives and includes ho-

momorphic encryption, garbled circuits, secure processors, and order-preserving en-

cryption.

In this section, we will look closely at Homomorphic Encryption, which preserves

privacy and accuracy for the cost of higher running time. The components of Homomor-

phic Encryption are key generation, encryption, decryption, and evaluation algorithm

[44]. Homomorphic Encryption is a cryptosystem that involves ciphering data using a

public or private key and sharing the key among peers to decipher the ciphertext. Data

is ciphered by mathematically transforming the data using addition and multiplication

operators [45]. Variations of Homomorphic Encryption ensure data security among

data centers and the central server. Qin et al. [46] used Homomorphic Encryption for

cloud-based privacy-preserving image processing, including feature detection, digital

watermarking, and content-based image search.

Limitations of Homomorphic Encryption are that the target space is limited to 0,1

binary values, which is not a feasible representative in practice. There are solutions to

address this issue that expand the message space to integers. However, in statistical

learning, the values are not limited to binary and integer values. Also, The encrypted

ciphertext increases drastically in size, sometimes by several orders of magnitude. This

requires additional storage and computation power since the learning procedure is

more computationally complex. Current Homomorphic Encryption schemes use only

addition and multiplication operators. Therefore, comparison tasks are not supported.
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Improving encryption schemes to support subtraction and comparison operations, such

as inequalities, is an open research question in Homomorphic Encryption.

2.6 Privacy-preserving Machine Learning

In federated learning, a learning model is built and tuned collaboratively between

the central server and data centers [47]. Chandiramani et al. [48] compared the

efficiency of numerous machine learning models in the federated learning framework on

the benchmark fashion-MNIST data. Learning from distributed data poses different

issues and challenges. Therefore, different machine learning models have been explored

to compare the performance and efficiency of the learning models. For example, to

increase the security in Android devices, Galvez et al. [49] built a federated learning

malware classification model using K-Nearest Neighbor, Logistic Regression, Random

Forest, and Support Vector Machines as machine learning models.

Figure 2.3 provides a quick overview of machine learning models used in federated

learning literature. In this section, we have provided a detailed survey of the traditional

machine learning algorithms and more recent learning schemes in this domain.

2.6.1 Regression Models

Regression is a predictive modeling approach for identifying the linear and nonlinear

relationships between independent variables and the target. Logistic regression has

been used in the framework of federated learning for different applications. Yang et

al. [50] explored a logistic regression model on clients’ credit card and healthcare

data. Guo et al. [51] used a logistic regression model to classify illness/health in

the cloud environment named POMP. A preprocessing technique and a Bloom filter
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Figure 2.3: Federated Machine Learning Algorithms

are also used to reduce the computational complexity in the pre-diagnosis process.

The model is implemented using Java and the JPBC library. Dunner et al. [52]

implemented a ridge regression model on five benchmark datasets to compare the

performance of Spark and Open MPI, two distributed machine learning frameworks,

and suggest recommendations on improving the models implemented in Spark. The

results from this paper show that fine-tuning the parameters in a distributed machine

learning model to adapt the system’s specifications and offloading the Spark language-

dependent overheads using C++ can improve computation efficiency. The model is

trained for when at least one of the data centers is honest or honest but curious using

SPINDLE, an operational system for generalized linear models in distributed learning.

Regression models offer numerous benefits, such as privacy preservation, continuous

learning for real-time data analysis, and resource efficiency. However, they deal with

the challenges related to heterogeneous data, model aggregation, and privacy concerns,

common in many machine learning problems.
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2.6.2 Support Vector Machines

Support Vector Machines are widely used in medical diagnosis, spam detection, facial

recognition, and analyzing financial data [53]. Bost et al. [54] use Support Vector

Machines to build efficient privacy-preserving algorithms and evaluate the results on

breast cancer diagnosis, credit card approval, audiology, and nursery data. Xu et al.

[55] implemented linear and nonlinear Support Vector Machines on horizontally par-

titioned data using the MapReduce framework to preserve privacy. Park et al. [56]

proposed a Homomorphic Encryption-friendly least-squares Support Vector Machines

to train toy and real-world datasets that outperformed the logistic regression model.

Senekane [57] proposed a privacy-preserving Support Vector Machines framework for

image classification. Liang et al. [58] focus on an outsourcing scheme for Support

Vector Machines classification with an efficient cryptographic primitive named order-

preserving encryption. Chanyaswad et al. [59] proposed a multi-kernel method using

the lossy-encoding scheme to protect the privacy of the data. The training models

are Support Vector Machines with an RBF kernel with multiple gamma values and

a Signal-to-Noise Ratio-based Support Vector Machines, which is a Signal-to-Noise

Ratio for kernel weight design that uses different kernels. The kernel functions are

linear, polynomial, Radial Basic Function(RBF), Laplacian, and sigmoid. In terms

of privacy, compressing single kernels to form a multi-kernel provides effective results

and maximizes utility. The method based on the Signal-to-Noise Ratio method im-

proves the performance compared to uniform and alignment-based methods. Hsu et

al. [60] designed a privacy-preserving system for malware software detection using

SGD-based Support Vector Machines and SMC techniques. The paper by Zhang et al.

[61] proposed a solution for the problem of human motion recognition in multimedia

interaction scenarios in a virtual reality environment using Support Vector Machines.

Chen et al. [62] focused on the issue of computation efficiency and low latency of
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edge computing for augmented reality applications. Hartmann et al. [63] proposed a

Support Vector Machines model in a privacy-preserving setting, called secret Support

Vector Machines, for predicting user gender from tweets based on the online and offline

evaluation. Lu et al. [64] propose a privacy-preserving feature selection using a multi-

class Support Vector Machines named PPM2C, which is evaluated with PAN-SVM and

LIB-SVM. The results from this study show that multi-class Support Vector Machines

(PPM2C) reduce the chances of overfitting compared to regular Support Vector Ma-

chines. Despite being an effective learning method, implementing privacy-preserving

Support Vector Machines on data with missing values poses numerous challenges that

must be addressed. Omer et al. [65] built a distributed Support Vector Machines

model with multiple imputations by chained equations on vertically partitioned data.

In this work, the privacy of the data is ensured with the Paillier cryptosystem. The

evaluation of the proposed scheme shows higher accuracy and lower computation time

compared to the centralized model on imputed data. Medical diagnosis systems can

significantly benefit from advances in federated learning. Machine learning methods

were used to design a secure framework to prevent severe health conditions by diagnos-

ing patients based on their symptoms and the data collected from wearable monitoring

devices that monitor heart rate, temperature, oxygen saturation, and other vital signs,

and voice-controlled devices such as Google Assistant, Amazon Echo, and Apple Siri

[66]. Privacy-preserving Support Vector Machines models have been particularly suc-

cessful in healthcare applications. Wang et al. [67] focus on outsourced Support Vector

Machines and EPoSVM (Efficient and Privacy-preserving Outsourced Support Vector

Machines) for data classification in the Internet of Medical Things, which results in an

improvement in learning accuracy and security compared to Support Vector Machines.

Zhu et al. [68] explored an efficient and privacy-preserving online medical pre-diagnosis

framework (eDiag) using nonlinear kernel Support Vector Machines. Ahmed et al.
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[69] developed ”mLung”, a cloud-based privacy-preserving service to detect chronic

pulmonary issues from lung sounds such as cough. The analysis is performed on a

personal mobile phone to ensure privacy. Medical components of the drugs must be

kept private by pharmaceutical companies. Wang et al. [70] explored an encrypted

kernel Support Vector Machines using Homomorphic Encryption. They have built a

sub-image to position different sections of the image so that a face can appear. The

authors trained and tested their model on the BioID Face Database.

One of the key benefits of Support Vector Machines in federated learning is their

ability to generalize well from limited data, making them suitable for scenarios where

each participant has a relatively small dataset. However, some of the challenges and

limitations of Support Vector Machines are:

• Complexity of kernel functions: Support Vector Machines rely on kernel functions

to handle the data in nonlinear space. However, selecting appropriate kernel

functions in a framework with diverse data sources can be challenging, as different

participants may require different kernel types.

• Communication overhead: Support Vector Machines are computationally expen-

sive due to dealing with large datasets and complex kernel functions, making

them unsuitable for edge devices or environments with limited computational

power.

• Hyperparameter tuning: Support Vector Machines have multiple hyperparame-

ters, such as the regularization parameter (C) and the kernel parameters. Hy-

perparameter tuning across multiple participants in a federated setting can be

complex and time-consuming.

While Support Vector Machines can be computationally expensive, they offer strong

generalizations that can lead to robust models even with limited local data.
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2.6.3 Tree Models

Decision Tree and Random Forest are a group of effective and widely used models for

data classification and regression [71]. Khodaparast et al. [72] presented a Decision

Tree algorithm equipped with a federated learning framework for horizontal and verti-

cally partitioned data. Yadav et al. [73] presented a new Decision Tree-based model in

a privacy-preserving manner in which the data are partitioned vertically into multiple

parties, and the parameters are sent to the central server. Badsha et al. [74] pre-

sented a privacy-preserving Decision Tree framework to build and learn the tree-based

model without requiring the parties to disclose private information. The authors use

Homomorphic Encryption to maintain privacy, while the parties are assumed to be

honest but curious. The Gini Index is used to measure the classification capability of

the model. Canillas et al. [75] explored a privacy-preserving Decision Tree framework

for private fraud detection systems at SiS ID, a French business platform. The model

is used to classify transactions into four risk classes. The model’s accuracy depends

on the configuration of the encryption key and the number of nodes for the Decision

Tree. The proposed model utilizes a Decision Tree algorithm that helps improve the

diagnosis pace and accuracy based on the patient’s symptoms without disclosing the

patient’s private data. Xue et al. [76] proposed a consent-based privacy-preserving

Decision Tree model for the evaluation scheme. The additive Homomorphic Encryp-

tion method and a secure comparison model are used. Also, Xue et al. [77] proposed

a privacy-preserving Decision Tree for classification using additive Homomorphic En-

cryption, which provides lower computation and communication overhead. Hou et al.

[78] explored a Random Forest with a Decision Tree for data classification and studied

the impact of tree depths in Decision Tree on privacy and classification. A privacy

budget is allocated for nodes at different depths in the Decision Tree. Guan et al. [79]

explored a budget allocation mechanism for Decision Tree construction for balancing

31



the excessive noise introduced at leaf nodes. The iterative process speeds up the selec-

tive aggregation process. The tree is constructed based on the C4.5 method. Lv et al.

[80] proposed a hybrid Decision Tree algorithm for constructing a Random Forest to

balance privacy and classification accuracy. In the paper by Xin et al. [81], the authors

proposed a new differentially private greedy Decision Tree algorithm called (DPGDF)

which is a combination of greedy trees and parallel combination theory. Zhao et al. [82]

explored a tree-based data mining model for regression and binary classification tasks.

In this work, a privacy-preserving Gradient Boosting Decision Tree (GBDT) model

is aggregated into an ensemble. Random Forest is also used for feature engineering.

Fritchman et al. [83] proposed a tree ensemble approach to learn from the data col-

lected in healthcare institutes securely. Zhang et al. [84] built a secure Parkinson’s

diagnosis framework using non-speech body sounds such as breathing and coughing.

The main advantages of tree-based models, including Decision Trees and Random

Forests, are their interpretability, ensemble learning for robustness, and feature impor-

tance analysis.

2.6.4 Näıve Bayesian Algorithms

Näıve Bayesian algorithms is a supervised learning algorithm centered around the Bayes

theorem, which is based on the assumption that there is conditional independence

among each pair of features if the class is known. In smart environments such as smart

cities, data privacy is crucial. Amma and Dhanaseelan [85] explore a Näıve Bayesian

classification framework for privacy-preserving machine learning on the cloud using

smart city data. The authors validated the results using Viz road traffic, pollution,

and parking data collected from the City Pulse Smart City dataset. Part et al. [86]

introduced a novel federated learning architecture that consists of three layers. In the

edge layer, the data is processed, the machine learning models are trained in the fog
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layer, and the results are aggregated in the centralized cloud layer. Data partitioning

poses specific challenges when learning from the data in a distributed setting. Vaidya

et al. [87] investigate a privacy-preserving Näıve Bayesian classification model and

compare the results on horizontal and vertically partitioned data. Yurochkin et al.

[88] propose a Bayesian non-parametric federated learning framework with neural net-

works. The model is evaluated on two benchmark data sets for image classification.

The paper by Garćıa-Recuero [89] addresses the issue of detecting and discouraging

abusive behavior in online social networking applications such as Twitter by limit-

ing the accessibility to user-sensitive information. This work uses feature engineering

on relative importance calculated from the Random Forest learning algorithm. Li et

al. [10] use Näıve Bayesian and a hyperplane-based decision model for classification.

Furthering this work, Chai et al. [90] propose an outsourced encryption protocol to

improve the security vulnerability of Li’s model. The classification models are trained

using Scikit-learn. Paillier cryptosystems are used in this work due to light opera-

tions. In a paper by Yang et al. [91], the authors propose a communication-efficient

privacy-preserving framework based on the Näıve Bayesian method to predict the dis-

ease risk for e-health applications. Sharkala et al. [92] introduce a privacy-preserving

machine learning algorithm for horizontally and vertically partitioned data based on

a tree augmented Näıve Bayesian classifier. A third party conducts the operations,

and the data is encrypted. Teo et al. [93] propose a privacy-preserving algorithm

using kernel regression and Näıve Bayesian classifier for multiparty computation, and

the Paillier cryptosystem is used for encryption. Medical diagnosis systems are the

main application of privacy-preserving machine learning. Liu et al. [94] build a secure

diagnosis scheme using a Näıve Bayesian classifier. Furthermore, malware detection

systems protect the user’s identity by identifying malware API call fragments. Lin

et al. [95] propose a privacy-preserving Näıve Bayesian model for malware detection.

33



Talbi et al. [96] compare their classification algorithms of Näıve Bayesian, Decision

Tree, and logistic regression on encrypted data.

Naive Bayesian algorithms provide probabilistic predictions and can quantify un-

certainty. In federated settings, this is a significant advantage for risk assessment and

decision-making, particularly in applications such as crisis management and disaster

response scenarios where uncertainty plays a significant role.

2.6.5 Deep Learning

Deep learning has been the dominant learning method from structured and unstruc-

tured data in recent years. Deep learning is the burgeoning powerful technique in

the field of machine learning. Deep architectures are useful for learning complicated

patterns in large-scale data, attracting much attention in academia and industry. Dif-

ferent topologies and architectures with real-world applications exist. These models

have been used in different areas such as Computer Vision, Natural Language Pro-

cessing, and speech recognition [97, 98]. The improvements in implementing a secure

Neural Network model on the cloud create a platform for scalable Neural Networks to

be used as a service [99, 100]. A Recurrent Neural Network is a variation of a forward-

ing propagation Neural Network in which the neurons in the hidden layers receive the

input value with a delay in time and access information from previous iterations in

the current layer. Recurrent Neural Network is useful in Natural Language Processing,

where knowledge about the previous words in a sentence is necessary for predicting

the next word. Text mining and Natural Language Processing, which is the process of

extracting knowledge from text documents, are used for learning from data collected

from highly sensitive resources such as homeland security for crime fight and detecting

terrorism activities. Therefore, building secure federated learning text analysis meth-

ods is necessary to ensure no sensitive information is disclosed. To this end, Costantino
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et al. [101] propose using an out-of-bag classification method to detect terrorist activ-

ities on Twitter. Convolutional Neural Network is a deep learning architecture that

has gained popularity in Computer Vision [102]. This architecture uses one or more

convolutional layers to extract high-level features. Wang et al. [103] investigate a

privacy-preserving Natural Language Model framework to compute word representa-

tions using deep learning. Xia et al. [104] designed a Graph Convolutional Network

model for predicting traffic flow quickly and efficiently. Deep learning methods can

also be combined with other classifiers, such as linear Support Vector Machines, for the

classification of images. Niu et al. [105] explore a deep learning framework for mobile

sensing systems. Lin et al.[106] propose a Recurrent Neural Network framework called

the Predictive Clinical Decision (PCD) scheme, which is used for e-health applications.

Eye-tracking devices are the main technology in virtual reality and augmented reality

that can improve efficiency through gaze-based optimization methods. The eye-wear

and eye-tracking devices used in the auto industry can pose privacy issues for the driver

and bystanders [107]. Therefore, Steil et al. [108] explore a privacy-preserving method

for a first-person video dataset of daily life recordings. The authors propose the Privac-

Eye method that combines Computer Vision with eye movement analysis techniques.

Another privacy concern with Computer Vision technologies in facial recognition sys-

tems such as Google Street View is when personal images of individuals are shared via

different data centers.

Deep learning models have demonstrated great potential for highly accurate and

competitive results when dealing with diverse and large datasets. While increasing

model complexity in neural network architectures helps improve generalization, ex-

cess complexity results in overfitting and computation overhead. Adaptation, opti-

mization, and the integration of privacy-preserving techniques are essential to harness
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the strengths of deep learning while mitigating the specific challenges and limitations

present in federated settings.

2.6.6 Unsupervised Machine Learning

Current Federated learning machine learning-based models are constructed based on

supervised learning. However, in most applications, no or little labeled data exists.

Thus, it is appropriate to use unsupervised learning methods. While there has been

considerable progress on federated transfer learning to cope with data with few labels,

applying unsupervised learning in a federated setting remains a bottleneck for many

applications. Clustering techniques have been employed to deal with the challenges

of unlabeled data. While K-means clustering is widely used for pattern recognition in

gene detection and image segmentation, a modified framework is required when the

data is sensitive. Zhu and Li [109] proposed a secure aggregation and division protocol

based on Homomorphic Encryption to build a secure clustering algorithm. Al-Saeidi et

al. [110] proposed a clustering analysis for improving the communication cost in feder-

ated learning using the human activity recognition dataset. A secure weighted average

protocol and secure number comparison protocol are used for privacy-preserving. Five

different classification algorithms were explored: multi-layer perceptron, K Nearest

Neighbor, Sequential Minimal Optimization, Näıve Bayesian, and J48 (an implemen-

tation of Decision Tree classification in WEKA). Anikin and Gazimov [111] proposed

a clustering algorithm named Density-Based Spatial Clustering of Applications with

NOISE (DBSCAN) for vertically partitioned data. Romsaiyud et al. [112] investigate a

privacy-preserving K Nearest Neighbor model for pattern recognition, with automated

hyperparameter tuning to improve model accuracy and a cryptographic hash function

to ensure data security.

The benefits of unsupervised learning techniques in federated learning are:
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• Privacy-preserving clustering: Clustering algorithms can perform data analysis

without the need for explicit labels or excess information sharing, which is ben-

eficial when dealing with sensitive data.

• Data exploration and anomaly detection: Unsupervised models excel at data

exploration, allowing practitioners to identify the underlying patterns, anomalies,

and outliers within local datasets. This exploratory capability is valuable for

uncovering insights without exposing private data.

• Reduced labeling effort: Limited labeled data is a well-known issue in machine

learning. Unsupervised learning models can reduce the labeling effort by enabling

semi-supervised or self-supervised learning approaches without exposing the data.

With appropriate evaluation strategies, we can effectively leverage the strengths

of unsupervised learning while mitigating the specific challenges and limitations of

federated learning.

2.6.7 Ensemble Learning

Ensemble learning is a general approach that seeks to improve learning performance

by aggregating the results from multiple classifiers. The paper published by Attota et

al. [113] used an ensemble multi-view federated learning model to identify intrusion in

IoT devices to improve model efficiency against different attacks. Ma et al. [114] apply

edge computing methods for medical diagnosis using the XGBoost model. They use a

lightweight, adaptive boosting classification method (AdaBoost) for facial recognition

on FERET, a standard face recognition evaluation database. The data is encrypted

when sent to two servers for distributed learning.

Ensemble learning is an effective approach in the machine learning domain and has

yet to be extensively explored in the federated learning framework. There is a very
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limited number of papers published in peer-reviewed journals using this approach.

However, they demonstrate the potential of ensemble learning in federated learning.

2.6.8 Meta-heuristic Approaches

Apart from the more commonly used machine learning algorithms mentioned above,

meta-heuristic approaches have also been introduced to the federated learning do-

main. Polap and Wozniak [115] used a novel approach based on parallelism to improve

classification models’ efficiency in federated learning. The authors demonstrate the

effectiveness of their approach when the sample size is relatively small. In another pa-

per, [116], they explore using a meta-heuristic federated learning framework for image

classification in the presence of poisoning attacks. With application in IoT and smart

city services, Qolomany et al. [117] investigate using Particle Swarm Optimization

for efficiently tuning the hyperparameters in the machine learning model. Utilizing

meta-heuristic approaches can be further explored as a novel approach to improve the

efficiency of the training model in federated learning.

Metaheuristic algorithms are versatile and adaptable to various problem domains.

They can be customized to suit the specific requirements and constraints of federated

learning scenarios.

2.6.9 Blockchain Technology

Despite improvements in Homomorphic Encryption and Differential Privacy in pre-

serving privacy, there is always a trade-off between learning accuracy and privacy. To

overcome such issues, federated learning can be equipped with blockchain technology

[118, 119]. Utilizing blockchain technology in federated learning is an emerging field in

federated learning and decentralized data storage and processing [120, 121]. Nguyen
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et al. [122] survey the advances and challenges of federated learning with blockchain

technology. In edge computing and learning from IoT data, blockchain federated learn-

ing is a solution to issues in data storage, communication cost, and privacy of sensitive

data. Wang et al. [123, 124] use a blockchain-distributed setting as the groundwork

for federated learning to ensure additional privacy protection from servers and pre-

vent malicious attach on user-sensitive data. Kang et al. [125] proposed a federated

learning framework based on a blockchain mechanism and introduced reputation as a

metric to identify reliable data and propose a reliable framework to learn from the data

on mobile networks. Later, Kang et al. [126] used multiple blockchains to design a

cross-chain framework to improve the scalability and communication efficiency of fed-

erated learning for training the data on IoT devices. An example of other applications

is a classification of COVID-19 cases from multiple resources using blockchain-based

federated learning. Comparing the federated learning framework to centralized models

shows improvement in diagnosing COVID-19 patients [127].

Leveraging blockchain technology within the context of federated learning intro-

duces many benefits, such as:

• Data privacy and security: Blockchain technology has inherent privacy protec-

tion capabilities allowing participants to maintain control over their data while

securely contributing to the global model.

• Transparent and trustworthy transactions: The decentralized nature of blockchain

ensures that all transactions and updates are transparent and traceable. This fea-

ture mitigates concerns of data tampering and adversarial attacks.

• Smart contracts for governance: Smart contracts are programmable scripts exe-

cuted on the blockchain that can be employed for governing federated learning
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agreements and model updates. This automation streamlines the process and en-

forces predefined rules and policies, reducing the risk of malfunction and misuse.

Despite its benefits, implementing a blockchain-based federated learning system is

complex and requires expertise in both blockchain technology and machine learning.

Developing and maintaining such a system is challenging as some blockchain networks

consume a significant amount of energy. This environmental impact may not align

with sustainability goals in federated learning.

2.6.10 Reinforcement Learning

Incorporating other learning approaches into federated learning has shown promising

results in different applications [128]. Liu et al. [129] built a reinforcement learn-

ing framework, which is a learning system through trial-and-error interactions between

agents and environments combined with cloud computing and IoT technology to create

a dynamic system for cancer patient treatment regimes. Wang et al. [130] proposed a

reinforcement learning mechanism to introduce a rewards system that optimizes accu-

racy and communication efficiency. A reinforcement learning approach is also used for

evaluating node contributions and improving the pricing strategy in federated learning

for IoT devices [131]. Krouka et al. [132] investigate different aggregation schemes in a

reinforcement learning-federated learning framework to improve communication costs.

The benefits of combining reinforcement learning and federated learning are :

• Dynamic model adaptation: Reinforcement Learning models can adapt dynam-

ically to changing data distributions and evolving environments. In federated

learning, where data sources may drift or have different characteristics, Rein-

forcement Learning can facilitate model adjustments for improved performance.
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• Sequential decision-making: Reinforcement Learning is well-suited for sequential

decision-making tasks. In federated learning scenarios, this capability can be

valuable for applications that involve sequential interactions or recommendations.

Reinforcement Learning models often require extensive training and exploration of

different policies, which can be computationally expensive and time-consuming. Rein-

forcement Learning must efficiently find the optimal policy by balancing the exploration

of new actions and the exploitation of known policies. Managing the trade-off between

exploration and exploitation is necessary to avoid excessive data sharing or overfitting.

2.7 Chapter Summary

This chapter is an extensive literature review of federated learning from the machine

learning point of view, complementing other recent literature reviews. This review

will be useful for researchers in academia and industry and possibly a useful tool for

graduate students who want to work in this area. Federated learning was proposed as

a solution to the issue of data leakage and loss of privacy in machine learning. With a

large amount of data at hand, there is a burgeoning demand for federated learning as

potentially being the solution to private and environmental-friendly machine learning at

scale. Decentralized learning strategy and privacy protection mechanisms in federated

learning grant us access to otherwise unavailable data. Hence, we can expand machine

learning in domains such as IoT and healthcare and crisis management in natural

and human-caused disasters that require privacy preservation. In recent years, there

has been an increasing number of papers published in this domain, and the goal of

this study is to provide an overview of federated learning and the existing privacy-

preserving machine learning algorithms used in this framework, in addition to their

potential and limitations in various applications. Despite our effort to thoroughly
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search the literature on federated learning, we limited our search to published papers

in peer-reviewed journals in English. Therefore, other novel approaches might be found

in the papers not included in this survey.
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Chapter 3

Noise-Infusion Mechanisms in Deep Learning

3.1 The Paradox of Noise

In a world dominated by data-driven decision-making, artificial intelligence has offered

remarkable capabilities in a wide range of applications, from healthcare to finance,

smart cities, and beyond. Machine learning models, particularly deep neural networks,

are built on abundant personal data, such as health records, financial data, browsing

history, etc., collected by governmental organizations and the private sector. Despite

the growing popularity of deep learning across domains, there are still concerns related

to the algorithms’ ability to generalize, maintain stability, and ensure privacy protection

against adversaries.

As the new applications of artificial intelligence enter different aspects of our lives,

the recognition of privacy as a fundamental human right has increased. This calls

for the development of ethical and responsible learning frameworks. Without proper

mechanisms, individuals are exposed to potential misuse of personal data and harm.

Adhering to privacy protection policies, machine learning practitioners strive to de-

velop tools that enable the use of sensitive data while maintaining privacy. If privacy

concerns are addressed, organizations and practitioners can leverage sensitive data re-

sponsibly to harness the power of machine learning without exposing individuals to

risks. Differential privacy is designed to provide strong privacy guarantees for data
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analysis. By adding noise to the data, the differential privacy guarantee ensures that

an attacker cannot infer sensitive information from the released data.

Despite its promising implications for ensuring data privacy, adding noise to the

data can result in a loss of accuracy. Therefore, more complex models are utilized

to address the decline in performance since they are better at distinguishing helpful

information from the noise in the data. Increasing the number of layers and hidden

units in the network results in more complex models and improved generalization.

However, overly complex models run the risk of overfitting and performing poorly on

unseen data. Moreover, such models are more sensitive to variations in the data and

model, resulting in significant fluctuations in the output.

While excessive noise can be disruptive, introducing controlled perturbations during

training can contribute to improved privacy protection through techniques like differ-

ential privacy, generalization, and stability. The objective of this study is to evaluate

this claim and develop a systematic method of fine-tuning the noise parameters to

achieve the desired privacy protection guarantees without sacrificing the accuracy of

the results. We focus on Convolutional Neural Networks (CNN) for image classification

and delve into the challenges and strategies of noise infusion mechanisms in centralized

and federated settings.

Motivated by the potential benefits of noise, we explore the implications and lim-

itations of training with noise to gain a deeper insight into the impact of noise on

generalization, stability, privacy, and overall model performance. We combine struc-

tural stabilization and noise infusion mechanisms to improve the generalization and

stability in deep neural networks while maintaining privacy. Proper architecture and

regularization scheme balance the generalization power of the training model with its

capacity to memorize the intricate patterns within the data without oversimplifying
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the model and possibly losing information. Enhanced by differential privacy, feder-

ated learning plays a pivotal role in the future of machine learning. As a collaborative

framework, federated learning enables data processing without requiring the data to be

centralized. Given the decentralized nature of data in federated learning, we can not

utilize the sample size as we possibly could with aggregated data. Therefore, achiev-

ing stable models with great generalization is especially beneficial when working on

unseen data distributed over multiple devices. The findings of this study shed light

on the benefits of using noise to improve generalization, stability, and privacy. As

federated learning provides a unique approach, the capacity of deep learning models

to generalize beyond the training data while maintaining privacy and stability in the

face of perturbations becomes more critical in real-world applications. By doing so, we

hope to contribute to developing stable and differentially private algorithms, allowing

them to generalize effectively and support federated learning [133].

3.2 Generalization

Generalization is the model’s ability to make accurate predictions about unseen data

drawn from the same distribution as the training data. Generalization is measured

by generalization error which is the difference between the training error and the test

error. The generalization capability of the algorithms can be improved in three ways:

• Structural stabilization: This approach is based on adjusting the number of free

parameters to control bias in the network. In deep learning tasks, structural

stabilization is done by changing the number of hidden units or pruning the

weights in the architecture.

• Regularization: Controls the variance by applying modifications to the cost func-

tion and adding a penalty term.
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• Random noise injection: Empirical studies have shown that additive noise im-

proves generalization in deep neural networks. Adding random noise behaves as

a form of regularization, which prevents the model from getting too complex and

memorizing the input data.

In deep neural networks, generalization is impacted by the complexity and capacity

of the model.

Rademacher Complexity

Rademacher complexity [134, 135] is a great tool for measuring the complexity of

a learning algorithm. Rademacher complexity is a quantitative way of measuring the

complexity of a hypothesis class based on its ability to learn the random noise within the

data and minimize the gap between the empirical risk and the true risk [136, 137, 138].

Definition 2. Assuming that S is a set of data sampled from the same distribution,

with input xi and label yi, S = ((x1, y1), ...(xm, ym)), then the hypothesis class H is the

set of functions that maps input xi to yi. The empirical Rademacher complexity of H

over S is defined as:

RS(H) = Eγ

[
maxh∈H

1

N

N∑
i=1

γih(xi)

]
(3.2.1)

where,

γi =


1 With probability 0.5

−1 With probability 0.5

(3.2.2)

In this equation, Eγ is the expectation over the Rademacher random variable γ.

Rademacher random variable behaves similarly to a coin flip. Assuming that S′

is a ghost sample from the same distribution as S, the labels are flipped using the
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Rademacher random variable, which acts as introducing random noise into the data.

The goal is to find a function that minimizes the gap between the true and empirical

risks while classifying the new sample S′. Rademacher complexity evaluates the clas-

sifier’s success in minimizing the gap between the empirical and true risks, denoted as

R(H)− R̂(H). The idea behind Rademacher complexity is that maximizing the corre-

lations between the output of the hypothesis and labels is equivalent to minimizing the

training error in the presence of the Rademacher random variable. Empirical studies

show that the correlation is more significant when the hypothesis space is more com-

plex. Rademacher complexity measures the trade-off between the model’s capacity to

learn noise and generalizing to unseen data. Higher Rademacher complexity indicates

that the classifier is better at memorizing the noise and more prone to overfitting. We

can decrease model complexity by controlling the capacity to avoid this issue.

Vapnik-Chervonenkis (VC) Dimension

Model capacity, quantified by the VC dimension (Vapnik-Chervonenkis dimension)

[139], is the network’s ability to capture the underlying patterns and learn the intricate

relationships within the data.

Definition 3. VC dimension of a set of functions is the largest set of finite data points

that can be classified perfectly by the classifier. Hence, the training error of the model

is zero. In other words, it is the maximum number of data points the classifier shatters

in all possible ways.

Classifiers with higher VC dimensions have higher capacity [140, 141]. Focusing

on neural networks as learning algorithms, the model’s capacity is correlated with the

number and depth of fully connected layers and the interplay between the architecture

and the non-linear activation functions [142]. Deep neural networks with multiple

layers and millions of parameters have high capacity and VC dimension [143].
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High model capacity indicates that the model is capable of memorizing details from

the training data and possibly overfitting when facing unseen data. Conversely, low

model capacity results in an oversimplified model failing to fit the data properly. So,

selecting the right architecture with sufficient model capacity is critical in deep learning.

Figure 3.1 summarizes the interconnections between these concepts and how they

influence each other in the context of deep learning and training with noise.

VC dimension measures the model capacity to fit data.

Higher model complexity indicates that the models could 

potentially deviate from its performance on the training data and 

overfit, resulting in higher generalization error. 

Rademacher Complexity is the measure of model complexity.

Training with Noise as a regularization method controls the 

model capacity to prevent fitting random noise and emphasizing 

the learning of essential patterns.

Over-parameterization impacts model capacity by increasing VC 

dimension in deep learning models. 

Model capacity Model complexity

Higher VC dimension implies that the model is better at learning 

the complex patterns in the training data.

Reducing model capacity decreases 

model complexity.  

A model with lower Rademacher complexity, achieved through 

adding noise as a form of regularization, is better suited to 

generalize to new data. Regularization techniques are employed 

in deep learning to prevent overfitting and improve 

generalization performance.

Figure 3.1: The relationships between the VC dimension and Rademacher complexity
allow for a more unified understanding of algorithm behaviors in nondeterministic

circumstances in the presence of noise and the conditions leading to improved
generalization.

3.3 Stability

Stability is an essential property for learning algorithms. An algorithm is stable if the

output of the algorithm doesn’t change much when the training set is altered by one

point, regardless of the sample size [144, 145]
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Definition 4. Let us assume we have two datasets, S and S ′. S is composed of elements

x1, x2, ..., xn while S ′ contains the same elements as S but has an additional point x′.

Now, for learning algorithm denoted as h, the loss function at any specific point x is

represented by Lx(h). A learning algorithm is said to be uniformly stable if, for every

point in the dataset equation 3.3.1 holds.

∀x ∈ S, |Lx(hs)− Lx(hS′)| ≤ β (3.3.1)

This stability coefficient β in this equation is the smallest value that quantifies the

difference in performance of the algorithm on the two datasets at any point. If β is

smaller, it means the algorithm is more stable and consistent in its performance across

datasets that differ by just one point.” .

Stability is closely related to the model’s generalization ability on unseen data. [146]

define the notion of stability for learning algorithms and demonstrate that stability is an

algorithmic way of measuring generalization. Stable models are less prone to overfitting

and have better generalization.

Stability is critical in designing practical learning algorithms, and a sensitivity

analysis is the means to measure stability. This method, also known as perturbation

analysis, is conducted by measuring the changes in the algorithm output in the presence

of noise. Perturbation analysis allows us to utilize noise to design models capable of

learning the underlying systems that produce data rather than the data itself [147].

Sensitivity analysis is an essential component in defining generalization, stability, and

differential privacy.
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3.4 Differential Privacy

One of the most stringent measures of privacy is differential privacy, which ensures

that adding or removing any individual’s data does not change the probability of an

outcome by ”too much”. The definition of differential privacy relies on the concept

of a randomized algorithm, which has been employed in various applications, includ-

ing cryptography and accelerating solutions of algebraic equations. Randomized algo-

rithms are computational procedures that incorporate random choices or probabilistic

decisions to solve problems. Rather than following a deterministic path, these algo-

rithms leverage randomness, either to simplify the process or to achieve a solution with

high probability. For example, a randomized algorithm can use a random event, such

as flipping a coin as part of its description, and make decisions based on the outcome

of the coin flips. Therefore a randomized algorithm maps inputs to probabilities of dif-

ferent outputs rather than deterministically mapping inputs to specific outputs. A key

benefit of differential privacy is providing mathematically rigorous privacy guarantees.

Therefore, any particular algorithm’s privacy protection level is clearly understood.

The mathematical definition of privacy provides a measurable term for evaluating and

maintaining privacy [148, 149, 150, 151].

Definition 5. Let’s assume S and S ′ are two datasets.

Datasets are perceived as a multiset of rows, so the distance between the datasets

can be measured by the Hamming distance; that is, the difference in the number of rows

between S and S ′, denoted as ||S − S′||1.

M is a randomized mechanism with domain N|S|.

Q is the set of outcomes of M ; therefore, Q ∈ Range(M).

Differential privacy is defined on two neighboring datasets. S and S′ are two neighbor-

ing datasets if the two datasets differ by only one sample (row). Hence, for all S and
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S ′, the l1 distance is ||S − S ′||1 ≤ 1. M is ϵ-Differentially Private (ϵ-DP) if equation

5 holds for any two neighboring datasets derived from the dataset:

P [M(S) ∈ Q] ≤ exp(ϵ)P [M(S ′) ∈ Q] (3.4.1)

This definition is the strict definition of ϵ-DP, and it has been studied explicitly

in the book published on differential privacy by Dwork and Roth [152]. Differential

privacy can be adjusted using a parameter that measures the desired privacy levels. In

this definition, ϵ is a very small value known as privacy loss or leakage. ϵ determines the

acceptable change in the output of the mechanism due to the inclusion or removal of

any individual, so information learned about the individual as a result of participating

in the dataset is limited.

A relaxed version of this definition, currently used in most applications of differential

privacy, is (ϵ, δ)-DP provided in Equation 3.4.2.

P [M(S) ∈ Q] ≤ exp(ϵ)P [M(S′) ∈ Q] + δ (3.4.2)

In this definition, δ is the probability of leaking more information than what ϵ

claims. δ is preferably zero or a very small value, typically the inverse polynomial of

the sample size. This implies that a larger sample size reduces the risk of unintentional

disclosure of private information resulting from a query. To achieve (ϵ, δ)-DP, additive

noise is conditioned on the type of noise we are adding, the desired ϵ and δ, the sample

size, the number of queries performed on the database, and the desired accuracy.

In differential privacy, computations involving noise safeguard personal data and

prevent it from being reverse-engineered from the results [153]. However, leaking pri-

vate information due to statistical queries and machine learning models compromises

privacy [154]. Sensitivity is used to monitor this leakage of information.
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Definition 6. Sensitivity is the maximum change in the output of a query as a result

of removing an individual from the database.

Sensitivity is measured based on the distance between the output of mechanism M

on the neighboring datasets S and S ′, where ||S − S ′||1 ≤ 1. Sensitivity is defined as:

Sensitivity = max||M(S)−M(S ′)||1 (3.4.3)

Sensitivity helps characterize the impact of individual data on the output, while ϵ

quantifies the upper bound on the level of privacy protection that the algorithm can

guarantee.

In practice, differentially private algorithms are required to randomize the query

or training model output by adding noise before publicly communicating it with other

users. Under differential privacy, we must carefully choose where to add noise and

select the appropriate type and amount. A common approach is adding noise sampled

from a Gaussian distribution with a mean of µ = 0 and a standard deviation of σ. A

higher noise level provides stronger privacy guarantees. We can design private models

that abide by the definition of differential privacy and are restricted under the desired

privacy guarantees. In recent years, differential privacy has been widely used in the

federated learning framework.

3.5 Highlights

Understanding the intricacies of machine learning models’ ability to generalize is rooted

in several key concepts. The main takeaways of this section for deep learning and

privacy are provided.
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1. Interplay of VC dimension, Rademacher complexity, stability, and generaliza-

tion: The notions of VC dimension, Rademacher complexity, and stability are closely

intertwined and essential to the model’s generalization ability.

• Rademacher complexity and stability encapsulate the algorithm’s behavior to-

wards noise in the data. While stability measures the changes in the model

output in the presence of noise, Rademacher complexity quantifies the model’s

ability to learn the random noise in the data, and it is upper bounded by the VC

dimension.

• Research by Ron and Kearns [155] on the connection between VC dimension

and stability indicates that for algorithms with finite VC dimensions, stability is

bounded by the VC dimensions.

• Studies on the relationship between VC dimension and Rademacher complexity

in deep neural network models by Neyshabour et al. [156] and Karpinski and

Macintyre [141] suggest that VC dimension, Rademacher complexity, and the

number of parameters are equivalent. Hence, the number of model parameters

determines the model capacity.

• Deep learning models are said to be over-parameterized if the number of parame-

ters is significantly larger than the number of available data points in the training

set.

• Over-parameterized models are more prone to overfitting due to increased model

capacity.

• Large, diverse data can mitigate the risk of overfitting caused by over-parameterization.

The abundance of data allows the model to learn the underlying patterns beyond

the noise and perform well on unseen data. In situations with limited data,
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regularization techniques can be employed to prevent overfitting and enhance

the generalization capability of a model. Regularization techniques control the

variance by modifying the cost function and applying a penalty term.

• Bishop [157] demonstrated that the regularization term is written as a Tikhonov

regularizer in a simple neural network architecture with one input and one output.

Tikhonov regularization is often referred to as ridge regression or l2 regularization

in machine learning.

• Bishop [158] also highlights that training with noise is a form of regularization in

neural network models. His findings and the research by others, such as Shalev-

Shwartz and Ben-David [159], suggest that regularization results in stable algo-

rithms.

Careful regularization and architectural choices are essential to finding the balance

between model complexity, stability, and generalization. Research Question 1 aims to

explore this intricate balance further and provide insights on how to improve it.

2. Stability and Differential Privacy:

• Stability is a desirable property in machine learning models, as it ensures that

minor changes in the input do not result in drastic changes in the output predic-

tions.

• The definition of differential privacy inherently aligns with stability. Maximiz-

ing stability in algorithms offers stronger privacy protection guarantees under

differential privacy.
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• A potential drawback of differential privacy is its negative impact on accuracy due

to introducing noise during training. Excessive noise during training can disrupt

the data and cause loss of information, leading to reduced model performance.

Careful tuning of the noise parameters is a critical step in training with noise.

The optimal amount of noise can vary depending on factors such as the problem, the

data, and the desired properties of the training model. Research Question 2 aims to

provide solutions that can help improve the tuning process and enable the selection of

an optimal amount of noise for a given problem and dataset.

3.6 Training with Noise in Deep Neural Networks

Noise infusion has been studied in various domains. This phenomenon, known as

stochastic resonance, employs Gaussian noise to enhance the system’s signal detection

capabilities [160, 161, 162]. The idea of stochastic resonance dates back to the early

1980s when Benzi et al. [163, 164] introduced the phenomena and investigated its

effect on complex systems. Figure 3.2 demonstrates the impact of Gaussian noise on

amplifying the weak signals.

When the noise magnitude is small, additive noise enhances weak signals and im-

proves the system’s ability to identify useful data without negatively impacting the in-

put. It also helps biological systems to adapt and learn from noisy environments [165].

Stochastic resonance has a wide range of applications in science and engineering, from

neuroscience to biological processes, signal processing, and information transmission.

Numerous studies focus on the benefits of additive noise in pattern recognition in the

nervous system and how it applies to computational neural network settings [166, 167].

Adding noise to a dataset alters the output of the queries. Figure 3.3 demonstrates

the impact of input noise on two images taken from the CIFAR-10 dataset. The input
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Original Weak Noise Signal after Stochastic ResonanceNoisy Weak Signal

Figure 3.2: The additive noise impacts the weak signals. The signal becomes more
distinguishable after stochastic resonance.

noise is implemented by adding a random value sampled from the Gaussian distribution

with a standard deviation of σ during training.

It can be observed that the images can absorb different noise magnitudes before

they are completely corrupted. The problem specifications, data, and training models

contribute to determining the appropriate noise level for training.

Deep neural networks can learn the complex relationships in the data, making them

well-suited for tasks such as image and speech recognition, natural language processing,

and many other applications in artificial intelligence and machine learning.

Despite their popularity, they are not a silver bullet that can solve all problems in

artificial intelligence. Deep learning models are notoriously data-hungry and require a

large amount of data to train on. Therefore, their performance relies on the intricacy

of the problem and the data, model architecture, and optimization techniques. Their

sensitivity to changes in the data distribution and complexity of the model architecture
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Figure 3.3: Deep Neural Network Architectures

affects their ability to identify critical information rather than memorize the data.

Failure in learning leads to overfitting the data.

The benefits of adding noise during training are but are not limited to the following:

1. Handle noisy data as a result of measurement errors or corrupted data [168, 169]

2. Handle inadequate training data for training: Noise infusion is an effective data

augmentation method [170, 171]. Noise infusion schemes help diversify the data

collected on edge devices to improve the distributed learning results [172].

3. Reduce overfitting and improve generalization: Empirical studies demonstrate

that additive noise improves generalization in deep neural networks by pre-

venting the model from getting too complex and memorizing the input data.

[173, 174, 175, 176]. Hardt et al. [177] demonstrated that stochastic gradient

descent is uniformly stable and that generalization error is a function of the

number of iterations. Training with noise prevents overfitting, resulting in better
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generalization and fewer epochs needed during training with stochastic gradient

descent. DP-SGD [178] is a modified version of stochastic gradient descent. This

algorithm is useful for federated learning scenarios where direct access to the

data is not feasible. It is (ϵ, δ)-differentially private and has been shown to be

stable and generalize well when the model is sufficiently large. DP-SGD is opti-

mized to train in fewer iterations, making it an efficient and effective choice for

privacy-preserving machine learning.

4. Improve robustness of the neural network model against adversarial noise: [179,

180, 181].

In deep learning, we can introduce noise into the algorithm by perturbing input,

labels, gradients, weights, or the network’s architecture.

Table 3.1 presents some of the studies on noise infusion mechanisms in deep learning.

Table 3.1: Noise infusion mechanisms in deep learning literature

Noise Infusion Mechanisms References

Input [182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192]

Hidden Layers [193, 194]

Model Weights [195, 196, 197, 198]

Gradients [199, 200, 201, 202, 203]

Labels [204, 205, 206, 207]

The choice of the amount of noise and noise infusion mechanism is critical in de-

signing an efficient model with the desired stability and generalization ability.

In this chapter, we explore various noise infusion mechanisms for image classifi-

cation using CNN. CNNs are a class of deep learning models designed primarily for
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processing and analyzing visual data, such as images and videos. They have revolu-

tionized computer vision and have found widespread applications in various fields. In

addition to their success in computer vision, CNNs have also been adapted for natural

language processing tasks like sentiment analysis and text classification, as well as in

medical imaging for disease diagnosis and treatment planning. Variations of CNNs in-

clude architectures like LeNet, AlexNet, VGGNet, and the highly efficient MobileNet.

Transfer learning techniques have further extended the applicability of CNNs by en-

abling the reuse of pre-trained models on new tasks with limited data. CNN uses

convolutional layers to automatically learn hierarchical features from input data, mak-

ing them well-suited for tasks like image classification, object detection, and facial

recognition.

Other than CNNs, other variations of neural networks are designed. Feed-forward

neural networks, with layers of interconnected neurons, are used for tasks such as regres-

sion, classification, and function approximation. Recurrent Neural Networks (RNNs)

introduce loops in the network, making them ideal for sequential data, including nat-

ural language processing, speech recognition, and time series analysis. Long Short-

Term Memory (LSTM) and Gated Recurrent Unit (GRU) architectures have improved

the ability of RNNs to capture long-range dependencies. Generative Adversarial Net-

works (GANs) are designed for generative tasks like image and video generation, while

Transformer-based architectures have revolutionized NLP, enabling models like BERT

and GPT-3 to achieve state-of-the-art results in tasks such as language translation and

text generation. The field of neural network research continues to evolve, pushing the

boundaries of what is possible in machine perception and understanding.
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3.6.1 Signal-to-Noise Ratio

Signal-to-Noise Ratio (SNR) quantifies the clarity of the desired signal in the presence

of noise in the signal processing domain. The idea of SNR is closely related to stochastic

resonance, in which additive noise enhances weak signals [208, 209]. SNR is defined as:

SNR = 10× log10

Signal power

Noise power
(3.6.1)

The definitions of signal power and noise power are as follows:

Definition 7. Signal power refers to the power of the desired signal, which is the

information or data being transmitted or received. Mathematically, it is calculated as

the average or mean squared value of the signal.

In the case of a discrete signal (s[n]), which has values for only discrete points in time,

the signal power Ps is represented as follows: N : The number of samples taken for

computation from a snapshot of the signal over an arbitrary time duration,

Ps = limN→∞
1

2N + 1

N∑
n=−N

|s[n]|2 (3.6.2)

Definition 8. Noise power represents the power of the unwanted signal or interfer-

ence, which corrupts the desired signal. Similar to signal power, noise power is often

calculated as the average or mean squared value of the noise.

Similar to the signal power, for a discrete noise n[n], the noise power is represented

as:

Pn = limN→∞
1

2N + 1

N∑
n=−N

|n[n]|2 (3.6.3)

While signal power measures the ”strength” or ”magnitude” of the signal, signal

variance (denoted as σ2
s) measures how much the signal values deviate from the mean

(µs). It provides an indication of the ”spread” or ”dispersion” of the signal values
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around their average. In the general case, the relationship between the variance and

power for a signal with a non-zero mean is:

σ2
s = Ps − µ2

s (3.6.4)

The signal variance for discrete Signals:

σ2
s =

1

N

N∑
n=1

(s[n]− µs)
2 (3.6.5)

In the case in which the mean of the signal is zero, the power is equivalent to the

signal variance. The same computations can be applied to the noisy signal.

SNR, often expressed in decibels, is sensitive to the scale of the noise and signal in

the system. Higher SNR indicates the signal is of high quality and is easier to identify

from noise. Conversely, when SNR is low, the signal is weak, or the system is too noisy,

and distinguishing the true signal from noise is more challenging. We redefine SNR

using the signal variance and noise variance as:

SNR = 10× log10

Signal variance

Noise variance
(3.6.6)

SNR is used as a metric to evaluate the strength of the signal in the presence of

noise and achieve optimal performance. In this context, using signal variance over

signal power offers certain advantages:

• Variance captures the fluctuations of the signal around its mean. In the case of

CNN models, the variance provides an understanding of the model’s confidence

or consistency in its responses. By focusing on variance, the model’s behavior is

tied directly to the properties of noise. A higher noise variance indicates that the

model is more uncertain and less stable in the presence of noise.
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• Variance is a normalized measure, making it a relative metric. This can be

advantageous when comparing the performance of different models or the same

model under varying noise conditions, as it ensures that the measure is scaled

and comparable.

Computing SNR based on the model output is a quantitative tool for evaluating

the model’s performance in detecting useful information (signal) from unwanted varia-

tions (noise) in the data. SNR allows us to observe the changes in the output and find

the noise level that meets the desired trade-off between accuracy, stability, and gener-

alization. Understanding the impact of noise during training provides a guideline for

determining the privacy budget without concerns about the quality of results. Leverag-

ing noise to improve stability and generalization without sacrificing performance leads

to stronger privacy protection strategies against adversaries.

In the context of CNN, the signal represents the true underlying patterns that the

model is trying to capture, and noise is any internal or external variation, perturbation,

or distortion in the data that affects the model’s ability to detect the signal. The formal

definition of signal and noise is provided:

Definition 9. A signal is the validation accuracy of the base model (model without

noise).

Definition 10. Noise is defined as the difference between the base model’s validation

accuracy and the perturbed model’s validation accuracy. A model is perturbed by in-

troducing a randomly generated value from the Gaussian distribution with a standard

deviation of σ.

Using validation accuracy obtained from the noisy and clean data provides a more

reliable assessment of how well a model handles noise and generalizes to new, challeng-

ing conditions. Training accuracy tends to overstate performance, while test accuracy
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is reserved for final evaluation and should not be influenced by noise during model

development.

Algorithm 2 presents the pseudo-code of computing SNR. The choice of the noise

infusion scenario relies on the problem’s complexity and dataset.

Algorithm 2 Computation of Signal-to-Noise Ratio (SNR)

Require: Validation accuracy of the base model (base model output)
Require: Validation accuracy of the perturbed model (perturbed model output)
Ensure: SNR
procedure COMPUTE SNR (base model output, perturbed model output)
Store the base model output in variable Signal
Calculate the difference between base model output and perturbed model output,
store it in variable Noise
Calculate the variance of Signal, store it in variable Signal variance
Calculate the variance of Noise, store it in variable Noise variance
Calculate SNR as 10× log10(

Signal variance
Noise variance

)
return SNR
end procedure

The choice of the noise infusion scenario relies on the problem’s complexity and

dataset. In classification, higher SNR values indicate that the model is capable of

predicting values that are closer to the true signal and have less noise interference. The

lower SNR values suggest that the noise is more dominant, resulting in less accurate

predictions by the model. The noise level that yields the maximum SNR is preferable

because it identifies the noise level where the model can most extract useful information

from noise, leading to better generalization of unseen data.

3.6.2 Price of Stability & Price of Anarchy

Originally used for the analysis of network and routing games, the Price of Stability

(PoS) and Price of Anarchy (PoA) measure the efficiency of outcomes in decentralized

systems [210, 211]. PoS compares the outcome achieved by self-interested agents to
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the socially optimal solution. PoA compares the worst-case outcome achieved by self-

interested agents to the socially optimal solution. We propose to define the image

classification process as a game where the players are Gaussian noise-infused CNNs

under various noise levels. For N players, and i = 1, ..., n, the standard deviation of

the Gaussian noise of the ith player is σi, where σi ∈ [0, 1]. Suppose the ideal scenario

is training the model without noise (base model denoted as CNNσ0). PoS is defined

as:

Price of Stability (PoSi) =
Test accuracy of CNNσi

Test accuracy of CNNσ0

(3.6.7)

By comparing against the base model, we can assess how training with noise impacts

the prediction results of the test data.

• The PoS of the base model is always 1.

• If PoS = 1, the model’s sensitivity to noise is minimal. The noisy model is per-

forming similarly to the base model. It also suggests that the model is relatively

stable across different noise levels.

• If PoS > 1, the noisy model performs better than the base model. It suggests that

additive noise improves the model’s generalization on unseen data. Therefore,

test accuracy has improved in the presence of noise.

• If PoS < 1, the noisy model performs worse than the base model. Smaller PoS

suggests a lack of stability in the presence of noise. The model has less potential

for privacy-preserving applications.

The PoA is defined as:

Price of Anarchy (PoAi) =
Test loss of CNNσi

Test loss of CNNσ0

(3.6.8)
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• The PoA of the base model is always 1.

• If PoA = 1, the model is able to identify the patterns in the data, even in noisy

conditions.

• If PoA > 1, the model is negatively impacted by the noise, and it loses useful

information, so the noisy model performs worse than the base model.

• If PoA < 1, the model performs better than the base model, and the additive

noise has improved the model’s generalization on unseen data.

The proposed metrics provide insights into the effect of noise on the models’ accu-

racy, loss, and overall stability. The metrics also offer a clear reference point to monitor

the changes in the models’ generalization and efficiency of predictions on test data.

3.7 Computational Results

In this section, we explore the use of noise as a means of improving generalization,

stability, and privacy in deep neural networks. This is particularly important when

data is distributed across multiple devices and access to sufficient data for training

is limited. We aim to design stable and differentially private deep learning models

that can generalize well in centralized and federated learning settings while preserving

privacy. To achieve this goal, we will compare various methods of designing algorithms

that can perform well in the presence of noise and evaluate their effectiveness for

image classification. We will build upon the foundational work of Zhang et al. [212]

and expand their findings through our experimentation.

We start the experiments by selecting the appropriate CNN architecture. As men-

tioned earlier, the VC dimension is the measure of the model’s expressive power and

is often used to analyze the model’s capacity to fit data. Training large CNN models
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with millions of trainable parameters requires significant computation resources and

careful fine-tuning of the hyperparameters.

We use CIFAR-10, a well-known benchmark dataset for image classification, where

40,000 images are used for training, 10,000 images for validation, and 10,000 for testing.

The experiments are designed around three network architectures with different model

capacities determined by the number of parameters in the neural network architecture

provided in Table 3.2.

Table 3.2: The models vary in the number of trainable parameters, a factor of model
capacity that impacts the model’s ability to generalize on unseen data. Model 3 is

over-parameterized

Architecture Trainable Param # Non-trainable Param # Total

Model 1 22,784,938 1,920 22,786,858

Model 2 2,396,330 1,896 2,397,226

Model 3 43,415,850 3,968 43,411,882

The CNN models are modifications of VGG-19 [213], and the key layers are the

2D convolutional, batch normalization, 2D max pooling, dropout, and dense layers.

The architecture details for models 1, 2, and 3 are available in Tables 3.3, 3.4, and

3.5, respectively. The parameters of the CNN are configured as a batch size of 64, a

learning rate of 0.001, and a momentum of 0.9. The local models are trained for 80

epochs. The three models with different numbers of parameters are compared in their

efficiency of prediction, generalization, and stability under different noise levels and

noise infusion mechanisms.
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Table 3.3: Architecture for Mode 1

Layer Type Output Shape Param #

Conv2D (32, 32, 32) 896

BatchNormalization (32, 32, 32) 128

Conv2D (32, 32, 32) 9248

BatchNormalization (32, 32, 32) 128

MaxPooling2D (16, 16, 32) N/A

Dropout (16, 16, 32) N/A

Conv2D (16, 16, 64) 18496

BatchNormalization (16, 16, 64) 256

Conv2D (16, 16, 64) 36928

BatchNormalization (16, 16, 64) 256

MaxPooling2D (8, 8, 64) N/A

Dropout (8, 8, 64) N/A

Conv2D (8, 8, 128) 73856

BatchNormalization (8, 8, 128) 512

Conv2D (8, 8, 128) 147584

67



BatchNormalization (8, 8, 128) 512

MaxPooling2D (4, 4, 128) N/A

Dropout (4, 4, 128) N/A

Conv2D (4, 4, 256) 295168

BatchNormalization (4, 4, 256) 1024

Conv2D (4, 4, 256) 590080

BatchNormalization (4, 4, 256) 1024

Conv2D (4, 4, 256) 590080

MaxPooling2D (2, 2, 256) N/A

Dropout (2, 2, 256) N/A

Flatten (1024,) N/A

Dense (4096,) 4,198,400

Dropout (4096,) N/A

Dense (4096,) 16,781,312

Dense (10,) 40,970
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Table 3.4: Architecture for Mode 2

Layer Type Output Shape Param #

Conv2D (32, 32, 32) 896

BatchNormalization (32, 32, 32) 128

Conv2D (32, 32, 32) 9248

BatchNormalization (32, 32, 32) 128

MaxPooling2D (16, 16, 32) N/A

Conv2D (16, 16, 64) 18496

BatchNormalization (16, 16, 64) 256

Conv2D (16, 16, 64) 36928

BatchNormalization (16, 16, 64) 256

MaxPooling2D (8, 8, 64) N/A

Conv2D (8, 8, 128) 73856

BatchNormalization (8, 8, 128) 512

Conv2D (8, 8, 128) 147584

BatchNormalization (8, 8, 128) 512

MaxPooling2D (4, 4, 128) N/A
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Flatten (2048,) N/A

Dropout (2048,) N/A

Dense (1024,) 2,098,176

Dropout (1024,) N/A

Dense (10,) 10,250

Table 3.5: Architecture for Mode 3

Layer Type Output Shape Param #

Conv2D (32, 32, 32) 896

BatchNormalization (32, 32, 32) 128

Conv2D (32, 32, 32) 9248

BatchNormalization (32, 32, 32) 128

MaxPooling2D (16, 16, 32) N/A

Conv2D (16, 16, 64) 18496

BatchNormalization (16, 16, 64) 256

Conv2D (16, 16, 64) 36928

BatchNormalization (16, 16, 64) 256
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MaxPooling2D (8, 8, 64) N/A

Conv2D (8, 8, 128) 73856

BatchNormalization (8, 8, 128) 512

Conv2D (8, 8, 128) 147584

BatchNormalization (8, 8, 128) 512

MaxPooling2D (4, 4, 128) N/A

Conv2D (4, 4, 256) 295168

BatchNormalization (4, 4, 256) 1024

Conv2D (4, 4, 256) 590080

BatchNormalization (4, 4, 256) 1024

Conv2D (4, 4, 256) 590080

MaxPooling2D (2, 2, 256) N/A

Dropout (2, 2, 256) N/A

Conv2D (2, 2, 512) 1,180,160

BatchNormalization (2, 2, 512) 2048

Conv2D (2, 2, 512) 2,359,808

BatchNormalization (2, 2, 512) 2048
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Conv2D (2, 2, 512) 2,359,808

MaxPooling2D (1, 1, 512) N/A

Dropout (1, 1, 512) N/A

Flatten (512,) N/A

Dense (4096,) 2,101,248

Dropout (4096,) N/A

Dense (8192,) 33,562,624

Dense (10,) 81,930
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3.7.1 CNN with Gaussian noise hidden layers in a Centralized

Setting

Leveraging the properties of training with noise, we design a CNN with Gaussian noise

hidden layers, an innovative approach to enhance the robustness and generalization

capabilities of deep learning models. In this design illustrated in Figure3.4, Gaussian

noise is intentionally added as a form of regularization to hidden layers within the CNN

architecture.

Training with Gaussian noise hidden layers involves inserting uncorrelated layers

of Gaussian noise that will add a randomly generated value within the range of the

specified standard deviation to the activation of the previous layer during training.

Uncorrelated noise sources are statistically independent. Training with Gaussian noise
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Figure 3.4: A simplified illustration of the CNN architecture with Gaussian noise
layer.

hidden layers involves inserting uncorrelated layers of Gaussian noise that will add
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a randomly generated value within the range of the specified standard deviation to

the activation of the previous layer during training. Uncorrelated noise sources are

statistically independent.

In the first set of experiments, we evaluate the performance of three CNN models

with Gaussian noise hidden layers presented in Figure 3.5.

2D Convolutional 

Batch Normalization

Max Pooling

Dense

Dropout

Flatten 

Model 1 Model 2 Model 3

Gaussian Noise 

Figure 3.5: Visual representation of the CNN models with Gaussian noise layers.

For the implementation, we insert the noise layers before the convolutional layers,

followed by a batch normalization layer. Let us assume:

x: The output of the layer before the convolutional layer

z: A randomly generated number from Gaussian distribution with mean, µ = 0 and

standard deviation of σ

x′: The output of the Gaussian noise layer, x′ = x + z.
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x′′: The output of the batch normalization layer obtained after passing the output of

the convolutional layer through a batch normalization layer:

x′′ = (
x′ − µ′

σ′
) ∗ α + α′ (3.7.1)

Where µ′ and σ′ are the mean and standard deviation of the neuron’s output of the

activation function in the convolutional layer, and α and α′ are trainable parameters

used for rescaling and shifting the values from the previous operations. As the training

continues, the data goes through multiple blocks of Gaussian noise, convolutional, and

batch normalization layers. Batch normalization prevents the accumulation of noise

throughout the network.

Figure 3.6 compares accuracy and loss obtained from training the models under dif-

ferent noise levels in a centralized framework. The standard deviation is selected from

Gaussian distribution with 20 levels between {0, 1}. Setting the standard deviation to

zero refers to the base model.

Models 1 and 3 offer similar trends; as noise increases, the accuracy drops, and loss

increases further from the base model. In models 1 and 3, the optimal test accuracy

and loss are achieved when σ are 0.32 and 0.21, respectively. The drop in performance

as a result of increasing the noise suggests that the models have difficulty fitting the

noisy data when σ is high.

Unlike models 1 and 3, model 2 can maintain consistent performance with noisy

data, suggesting that the model is the most stable among the three. In model 2,

the optimal test accuracy and loss are achieved when σ is 0.58, which is significantly

higher than in models 1 and 3. While all three models yield the optimal accuracy of

approximately 0.82, maintaining a high accuracy and loss in the presence of higher noise

levels demonstrates that model 2 is better at generalizing to unseen data. Compared
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Figure 3.6: The optimal test accuracy and loss value are marked with the associated
training accuracy and loss. Stable models that perform well at higher noise levels are

better candidates for federated learning.

to models 1 and 3, model 2 experiences a less rapid performance degradation at higher

noise levels.

Often, better privacy guarantees are achieved at the expense of worse accuracy and

loss, so we strive to find a systematic way to reach a balance between accuracy and

privacy. However, the balance is not possible without fine-tuning the noise level during

training while monitoring its impact on test data. To this end, we explore SNR, PoS,

and PoA to measure the trade-off between performance efficiency and privacy under

noise. Figure 3.7 demonstrates the SNR, PoS, and PoA values for the three models

with Gaussian noise hidden layers (σ between 0 and 1).

Since the range of SNR is problem-dependent, we focus on the fluctuations of SNR

at different noise levels to compare the models.
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Figure 3.7: Increasing the noise levels decreases model utility. However, stable models
suffer less as the noise levels are heightened, offering consistent performance under

higher noise levels.

In models 1 and 3, the value of SNR is initially higher but drops significantly

as we increase the noise. This means at lower noise levels, the model is effective

in distinguishing the signal, but as noise increases, the model becomes overwhelmed

and can not handle noise effectively. However, model 2 stands out as having relatively

consistent SNR values at higher noise levels. This implies the model’s ability to remain

relatively stable, even in the presence of higher noise levels.

Training the models at the noise level that maximizes SNR provides the highest

test accuracy and sets the balance between stability and accuracy in the presence of

noise. Under differential privacy, the maximum SNR guarantees privacy without loss of

accuracy. While finding the balance is ideal, in federated learning, privacy is prioritized

over accuracy when dealing with sensitive data. PoS and PoA measure the impact of

noise on test accuracy and loss compared to the base model. In Model 2, the PoS

and PoA remain consistent despite the increase in the noise level. Model 2 offers a
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trade-off between performance and privacy, where accuracy and loss are stable under

higher noise levels. In model 2, while the optimal SNR identifies the noise level for

the perfect balance between accuracy and privacy at 0.58, we can further increase the

noise, and the accuracy degrades by less than 4%. Model 2 is a potential candidate for

cases where privacy and stability take precedence over achieving the highest accuracy,

such as federated learning applications.

Ultimately, selecting the appropriate model depends on the specifics and require-

ments of the problem, whether it prioritizes accuracy, privacy, or stability. These anal-

yses provide insights into the trade-offs and strengths of each model under different

noise levels.

Overall, a comparison of the performance of the three models under various noise

conditions measured by SNR, PoS, and PoA suggests that in models with higher sta-

bility, PoS and PoA remain relatively consistent. Given the overlap between the defi-

nitions of stability and privacy, we can conclude that models with relatively consistent

PoS and PoA can provide better privacy protection guarantees without drastic degra-

dation of accuracy.

3.7.2 CNN with Multiple Gaussian Noise Layers vs. a Single

Layer

When an image is passed through the convolutional layers, the network learns different

complex features of the image, such as the edges and the texture. The network learns

patterns and objects from the later convolutional layers as training continues. We

use feature visualization to gain insight into the learning procedure of a CNN with

Gaussian noise hidden layers inserted before the convolutional layer, focusing on the
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first layers of model 1. Figure 3.8 is a visual representation of the output of the first

two convolutional layers of model 1, where a single image is fed into the network.
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Figure 3.8: CNN feature maps

The first two convolutional layers have 32 filters. The figure includes three sets of

feature maps from the initial training steps extracted from the model without noise

and the noisy model, where a noise layer is inserted before the second convolutional

layer. The first column represents the feature maps from the input layer of CNN

models. The slight variations in the maps are due to the inherent variations in training

a neural network model. The lower layers of the CNN are responsible for learning the

edges and textures in the image. The bright spots on the feature map indicate that

the region was most activated in its corresponding map in the prior layer.

In training with noise, we utilize the idea of stochastic resonance and use noise to

enhance weak signals. Figure 3.9 is a closer look at the feature map. For a relatively
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similar map in layer 1, the noise-infused maps in the second and third rows have led

to better identification of edges, and more key regions are activated.
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Figure 3.9: The optimal noise level improves generalization by helping the deep
learning model better distinguish the objects during training.

We emphasize that uncorrelated noise sources are critical when designing CNN

models with Gaussian noise hidden layers. If noise layers are correlated, we must

consider different magnitudes and phase variations when combining the additive noise.

We can ensure that the noise layers are uncorrelated by assigning a unique random seed

at each layer. Derived from the signal processing conventions, we can compute the total

additive noise in the system for multiple statistically independent noise sources.

Let us assume that G1 and G2 are two uncorrelated noise layers, with standard

deviations σ1 and σ2, respectively.

V ariance(G1, G2) = V ariance(G1)+V ariance(G2)+2ρ∗CoV ariance(G1, G2) (3.7.2)
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Since the noise layers are uncorrelated, ρ = 0, and,

V ariance(G1 + G2) = σ2
1 + σ2

2. (3.7.3)

In a CNN model with N uncorrelated Gaussian noise hidden layers, the total noise

introduced by multiple noise layers with standard deviation σ is equivalent to a single

noise layer with a standard deviation of:

σTotal =
√
Nσ (3.7.4)

Table 3.6 presents the results from training models with multiple noisy layers vs. a

single noise layer. For comparison, we set σ = 0.1 when training all three models with

multiple noise layers shown in Figure 3.5. The standard deviation of the model with a

single noise layer is computed based on Equation 3.7.2.

The obtained results suggest that the number of layers does not affect the model

performance. In this framework, the controlling parameter is the standard deviation of

the added noise. Training the models with multiple noise layers allows us to fine-tune

the standard deviation of the noise generated at the layers and adjust the model ac-

cording to the problem specifications and data at hand to achieve optimal performance.

3.7.3 Gaussian Noise Hidden Layers in Federated Setting

Extending the experiments to federated learning, we explore the effect of different noise

levels and compare the results with the centralized models. Choosing the Gaussian

noise magnitude is critical because it determines the level of privacy. A lower noise

level will result in a more accurate CNN model but will also provide weaker privacy

guarantees. It is important to note that, in practice, it is possible for an attacker to
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Table 3.6: Training deep learning models with a single Gaussian noise hidden layer
versus multiple layers.

Model 1

Model Type Standard Deviation Train Accuracy Test Accuracy

Base model 0.0 0.93 0.82

Multiple noise layers 0.1 0.92 0.83

Single layer substitute 0.28 0.92 0.83

Model 2

Model Type Standard Deviation Train Accuracy Test Accuracy

Base model 0.0 0.99 0.79

Multiple noise layers 0.1 0.99 0.80

Single layer substitute 0.22 0.99 0.80

Model 3

Model Type Standard Deviation Train Accuracy Test Accuracy

Base model 0.0 0.92 0.82

Multiple noise layers 0.1 0.91 0.83

Single layer substitute 0.33 0.92 0.83

learn sensitive information about the training data by exploiting vulnerabilities in the

model or the training process. Therefore, it is important to take additional steps to

protect the privacy of the training data, such as using secure training environments

and encryption. Using horizontal partitioning, the data is randomly and equally split

between 3 arbitrary clients.

First, the models were trained locally with 20 noise levels between {0, 1}, and SNR

was computed. The noise level that yields the optimal SNR for the clients and the

results from training the federated learning model with optimized noise obtained from

maximizing SNR are presented in Table 3.7. The federated learning models are trained

for 20 communication rounds at different noise levels. Global accuracy and global loss
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are measured for evaluation. It can be observed that despite significant differences in

size, the models vary by a maximum of 3% in global accuracy, while global loss remains

relatively consistent.

Table 3.7: The standard deviation of the additive noise is set based on the optimal
SNR.

Architecture Client 1 Client 2 Client 3 Global Loss Global Accuracy

Model 1 0.21 0.26 0.16 1.60 0.87

Model 2 0.53 0.37 0.16 1.63 0.84

Model 3 0.11 0.16 0.16 1.60 0.86

In the next step, we trained the model at five noise levels, the results of which

are shown in 3.8. Training the models with Gaussian noise hidden layers significantly

improves the model stability.

As seen in Figure 3.7, it is possible to add higher noise levels to improve privacy

guarantees, and the global accuracy and loss remain relatively constant with varying

noise levels.

The analysis suggests that deep learning models are relatively noise-stable in feder-

ated settings. The models can learn the patterns of the data and the added noise while

preserving privacy. The stability of the models in federated learning is beneficial as it

increases the model’s threshold for added noise, ensuring that privacy is maintained.

Increasing the standard deviation of Gaussian noise, which acts as a regularization

method, also improves the overall accuracy of test data.
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Table 3.8: The standard deviation of the additive noise is fixed across all clients.

Global Accuracy

Architecture σ =0.1 σ =0.3 σ =0.5 σ =0.7 σ =0.9

Model 1 0.86 0.86 0.87 0.86 0.86

Model 2 0.78 0.83 0.84 0.84 0.86

Model 3 0.85 0.86 0.87 0.87 0.85

Global Loss

Architecture σ =0.1 σ =0.3 σ =0.5 σ =0.7 σ =0.9

Model 1 1.60 1.61 1.60 1.61 1.62

Model 2 1.68 1.64 1.63 1.63 1.62

Model 3 1.61 1.61 1.61 1.63 1.72

3.7.4 Comparison of Noise Infusion Mechanisms

The choice of noise infusion mechanism plays a crucial role in enhancing deep learning

models’ generalization, stability, and privacy. This section compares the impact of

noise infusion schemes mentioned in Table 3.1.

• Noisy input: The input noise is implemented by adding a random value sampled

from the Gaussian distribution in the predefined standard deviation range to the

input data during training. Input noise behaves as a data augmentation method,

often used to expand the input sample or introduce randomness in the data to

reduce overfitting. However, if the noise level is too high, it can distort the data

and lead to the model learning incorrect patterns.

• Noisy network weights: To introduce noise to model weights, the noise is directly

added to the weights retrieved from the model.

• Noisy gradients: Noise is added to the original gradients. The modified gradients

are then used to update the model weights during training.

84



• Noisy labels: For noisy labels, the random value is added to the labels before

training. We also included noise clipping to ensure the labels were within the

correct range to avoid extreme changes and too much distortion in the labels.

In this section, We explore the effectiveness of different mechanisms and compare

their results with those of Gaussian noise hidden layers. We train the centralized

CNN models using five noise infusion mechanisms where the standard deviation of the

additive noise is consistently set at 0.1. The results are presented in Figure 3.10.
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Figure 3.10: This figure presents a comparison of the training and test accuracy of
three models across six mechanisms. The first set of columns for each figure

represents the base model trained without noise.

The base model serves as a control group without additive noise. Models 1 and

3 are most sensitive to injecting noise into input and weights, significantly dropping

training and test accuracy.

The models with noisy weights also fail to learn effectively and generalize, which

indicates the detrimental impact of noisy weights on training. While there is a slight
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decrease in training and test accuracy, models trained with Gaussian noise hidden

layers, labels, and gradients are less sensitive to noise. Model 2 is the most stable

among the three, and the decrease in the accuracy is less significant. When the added

noise’s standard deviation is 0.1, Gaussian noise hidden layers, noisy gradients, and

noisy labels are the most resilient. Hence, we continue studying these models under

varying noise levels.

The results from training the centralized data with Gaussian noise hidden layers,

noisy gradients, and noisy labels using the three models are presented in Figure 3.11.

The noise levels are σ = {0.1, 0.3, 0.5, 0.7, 0.9}.
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Figure 3.11: Results of training and evaluating models with top 3 noise infusion
methods and varying noise levels.

While all models are somewhat sensitive to additive noise, they exhibit different

performance variations under the noise infusion mechanisms. We can increase the

noise in the models with Gaussian noise hidden layers while preserving test accuracy,

especially in model 2, where the accuracy remains relatively constant compared to the
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base model. It is also interesting to see that increasing noise improves test accuracy,

indicating the regularization effect of noise. In models 1 and 3, we can increase the

noise levels to 0.1, and the test accuracy is 0.83 and 0.82, respectively.

The models exhibit similar performance with noisy gradients. With models 1 and

3, the test accuracy gradually decreases as we increase the noise. However, even with

a high standard deviation, model 2 remains stable against additive noise. Models 1

and 3, trained on data with noisy labels, have better stability, and we can increase the

standard deviation to 0.5 and 0.3, respectively. Model 2 performs equally well when

trained with noisy labels compared to the base model, demonstrating resilience to label

noise.

Noise can negatively impact both training and test accuracy. However, the impact

of noise on model performance varies depending on the noise infusion mechanism and

the standard deviation of the additive noise. While the model’s performance gradually

degrades, noise can be used as a regularization technique. The results indicate that

models with Gaussian noise hidden layers are effective in remaining stable even when

the standard deviation of the noise is high.

3.8 Chapter Summary

The present work is an empirical study on the role of noise in enhancing generalization,

stability, and privacy within CNN for image classification. Through a series of carefully

designed experiments, we observed that the introduction of noise during training helps

prevent overfitting by making the model less reliant on precise features and patterns

in the training data. By encouraging the network to learn more robust representations

of data, CNNs with Gaussian noise hidden layers tend to perform better on unseen or

noisy data, making them particularly useful for tasks where the input data may contain
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variations or uncertainties. This technique can improve CNN’s ability to handle real-

world scenarios and noisy environments, making it a valuable tool in applications such

as image recognition, denoising, and signal processing.

The experimental results demonstrate that when the model is not over-parameterized,

perturbing the parameters associated with the deep learning model by adding Gaussian

noise behaves as an implicit regularization technique. Models trained with noise gener-

alize better, achieve higher accuracy, and are more stable in centralized and federated

settings.

Introducing SNR as a measure of the signal quality (the base model performance)

relative to the noise (noisy model performance) serves as a powerful tool for balancing

accuracy and privacy in privacy-preserving settings. Additionally, PoS and PoA pro-

vide an in-depth understanding of the interplay of utility, stability, and privacy under

different conditions. PoS and PoA can be used as tangible metrics for assessing the

trade-off between privacy and accuracy in privacy-aware machine learning.

Furthermore, we conducted a comparative analysis over CNN-based image classi-

fication noise infusion scenarios to determine the most effective methods of enhancing

generalization, stability, and privacy. This investigation particularly benefits federated

learning, where higher noise levels offer stronger privacy guarantees.

This study has significant implications for practical machine learning applications

that require reliable performance under varying conditions. Noise-infused models can

help achieve models capable of handling diverse and noisy datasets.

In the context of federated learning, understanding the impact of noise leads to

designing computationally efficient private models. The findings of this study demon-

strate the potential of noise as a privacy-enhancing mechanism that can empower

individuals and organizations to make informed decisions regarding data sharing and

model deployment. By incorporating privacy-preserving techniques and acknowledging

88



privacy as a fundamental human right, this research contributes to the responsible and

ethical use of data and machine learning technologies.

89



Chapter 4

Federated Imbalanced Learning

4.1 Beyond Localized Weather Predictions

Employing federated learning for the classification of weather data introduces a new

paradigm, particularly in scenarios where data privacy, decentralized data sources, and

efficient utilization of localized data are critical. Local meteorology stations frequently

collect weather data from measurements and radar observations in tabular and image

formats.

Federated learning enables models to be trained directly on local devices or stations

where the data resides, eliminating the need to transmit sensitive or voluminous data

to a central location. Federated learning also allows private data to be monitored

and protected by local data centers. Each local model learns from its respective data.

Then, only the model updates (not the data) are shared with a global model, ensuring

data privacy and reducing communication costs. The applications of federated learning

have been extended to weather forecasting and air quality control using historical data

and edge devices [214, 215]. This collaborative yet decentralized learning method is

crucial for weather prediction due to the inherently localized nature of weather events

and the potential sensitivity of data. Machine learning has long been used in weather

applications to predict weather conditions such as rain or strong winds [216] to improve

lead time for severe weather warnings, such as tornadoes [217]. Federated learning
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provides the model with a diverse and comprehensive dataset acquired from various

local environments and conditions.

Given Australia’s climatic and geographical diversity, the weather stations record a

broad spectrum of meteorological patterns, providing models with insight into various

scales and types of weather phenomena. Precise and localized weather forecasting

is crucial for various applications, from agriculture to urban planning. To this end,

we conduct an experimental study focusing on predicting rainy versus non-rainy days

through deep learning models. The dichotomy of rainy and non-rainy days establishes

a clear classification problem where the model is trained to discern the atmospheric

variables that result in precipitation. The real-time system collects the data for this

study at the Bureau of Meteorology in Australia. The dataset consists of 140672

observations and 13 features stored in 9 stations. The data contains approximately

ten years of daily observations from 2007 to 2017, recorded twice daily from the eight

mainland regions and Australian offshore islands 1. Figure 4.1 demonstrates the 20-

year average rainfall measured annually in the eight major regions across Australia.

The challenges in the classification problem arise especially in regions where rainy

days are sparse or seasonally confined. Central and southern regions have experienced

less rainfall than northern and eastern coastal areas, resulting in varying ratios of rainy

versus non-rainy days between the regions. With geographical and temporal variations

in weather patterns, especially across a diverse continent like Australia, the issue of

imbalanced learning is more likely to present itself in the significant difference in the

number of observations in each class. Table 4.1 presents the distribution of observations

in both datasets distinguished by the class label.

1Australian Government Bureau of Meteorology
http://www.bom.gov.au/climate/data-services/
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1. Australian Capital Territory

2. Australian Offshore Islands

3. New South Wales

4. Northern Territory

5. Queensland

6. South Australia

7. Tasmania

8. Victoria

9. Western Australia

9

6

7

8

3

5

4

1

Average annual Rainfall

20-year climatology (2001 to 2020)

http://www.bom.gov.au/climate/maps/averages/decadal-rainfall/

Figure 4.1: Multi-decadal rainfall averages map presents the rainfall patterns across
the regions in a 20-year period.

Station Region Rain No Rain Imbalance Ratio

1 Australian Capital Territory 2016 7307 0.22

2 Australia Offshore Islands 919 2045 0.31

3 New South Wales 9305 32027 0.23

4 Northern Territory 1361 6421 0.17

5 Queensland 3513 11600 0.23

6 South Australia 2402 9710 0.20

7 Tasmania 1460 4756 0.23

8 Victoria 7217 23814 0.23

9 Western Australia 3568 11231 0.24

Table 4.1: Distribution of rain and no-rain observations across nine weather stations
in Australia, indicating a data imbalance in the regional data.

The two major challenges drawn from the information presented in Table 4.1 are:
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1. The significant difference between the number of instances in the classes indicates

that the data is imbalanced. Imbalanced data negatively impacts the classifier’s

performance, resulting in biased predictions.

2. Insufficient data in some local centers negatively affects the accuracy of predic-

tions, resulting in models incapable of generalizing to new and unseen data.

Imbalanced data is a well-known issue in many fields, including weather predic-

tion, and it is an ongoing topic in machine learning research[218, 219]. The relative

proportion of classes and the absolute number of available instances in the minority

class are important factors. The problem with imbalanced data is magnified when the

minority class consists of rare events because there is a lack of general information on

the event, leading to biased models. Tornadoes and thunderstorms happen at various

frequencies in locations with different climate conditions. The rarity of such events cre-

ates imbalances in the data, which requires specialized methods to address this issue.

Trafalis et al. [220] proposed a weighted classifier with a random subspace ensemble

method to classify tornadic and non-tornadic observations. Predicting the intensity of

the damages caused by a tornado is also a challenging problem [221].

When the data is imbalanced, machine learning classifiers fail to learn the underly-

ing patterns within the minority class. Without a significant loss in overall accuracy,

the minority class is misclassified. Based on the type of data, the size, and the distribu-

tion of the data between classes, the issue can affect the performance in different ways.

Cost-sensitive methods are a practical approach to addressing the issue of imbalanced

weather data. [222] proposed a novel linear programming Support Vector Machine

that outperforms traditional machine learning algorithms in classifying weather data.

A lack of adequate information about the minority class causes the problem definition

issues [223]. This can cause evaluation metrics such as accuracy and error rate to
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fail in representing the minority class. Evaluation is an essential part of the learning

process, which is used to assess the generalization ability of the learning method on

test data. Appropriate evaluation metrics are necessary for evaluating the quality of

learning [224, 225, 226]. The authors of the paper published by Ferri et al. [227] have

used experimental and theoretical analysis to compare and rank the evaluation metrics

that work best in evaluating the learned model on imbalanced data and analyze the

identifiable clusters and relationships between the metrics. These experiments provide

recommendations on the metrics that would be more appropriate for any specific appli-

cation. Evaluation metrics are categorized into three types in the literature: threshold,

probability, and ranking metrics [228]. The threshold evaluation metrics are computed

based on the confusion matrix. In binary classification, given that samples in the

majority class are labeled negative, and the samples in the minority class are labeled

positive, the confusion matrix is defined based on four values of True Positive(TP),

True Negative(TN), False Positive(FP), and False Negative(FN) calculated based on

the actual and predicted values. Note that the definition of a confusion matrix can be

extended to multi-class classification.

Figure 4.2 provides an overview of the challenges in imbalanced learning and the

approaches that have led to efficacious solutions in this domain.

Accuracy is limited to measuring the overall performance, and it cannot provide

enough information to ensure a reliable learning method when the data is imbalanced

[229]. Sensitivity and Specificity are two classification performance metrics for im-

balanced learning. Sensitivity is TP
TP+FN

and summarizes how well the positive class

was predicted. Specificity is defined as TN
TN+FP

, and it evaluates how well the negative

class was predicted. Geometric mean (G-mean) is an important evaluation metric used

explicitly for imbalanced learning scenarios. G-mean considers the harmonic mean of

94



Imbalanced Learning

Methods

Algorithmic Approach
Data Processing 

Approach

Problem Definition 

Approach

• Imbalanced evaluation metrics • Cost and bias sensitive methods

• Minority class focused algorithms 

• Ensemble learning methods

• Over-sampling

• Under-sampling

• Combination of advanced resampling methods
In this study we measure:

1. Accuracy = 
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
   

2. Geometric mean (G-mean) = 
𝑇𝑃

𝑇𝑃+𝐹𝑁
 ∗

𝑇𝑁

𝑇𝑁+𝐹𝑃
 

3. Area Under the Receiver Operating 

Characteristic Curve (AUC)

False Positive Rate =
𝐹𝑃

𝐹𝑃+𝑇𝑁

T
ru

e 
P

o
si

ti
v
e 

R
at

e 
=

 
𝑇

𝑃

𝑇
𝑃

+
𝐹

𝑁

0 1

0

1

Area Under the Curve

In this study we explore variations of:

1. Synthetic Minority Oversampling 

Technique

2. Generative Adversarial Networks 

Area Under the Curve

Optimal 

point

Figure 4.2: Utilizing the appropriate imbalance learning evaluation metrics is a
standard practice. In this study, accuracy, AUC, and G-mean are the key tools in the

assessment and comparison of the oversampling techniques in both classes.

sensitivity and specificity. A high G-mean indicates that the model performs well in

both classes, so we aim to maximize the metrics. The goal of imbalanced learning is to

find an optimal classifier that is capable of providing a balanced degree of predictive ac-

curacy for the minority class as well as the majority class [230, 231, 232, 233, 234, 235].

As shown in Figure 4.2, the Receiver Operating Characteristic curve visually represents

the classification performance. The Area Under the Curve (AUC) is scale-invariant, so

it is a reliable tool for the ranking and comparison of classifiers[236, 237].

Motivated by these challenges, we empirically analyze data augmentation methods

to balance the data prior to training in federated learning frameworks. Utilizing data

augmentation techniques allows the generation of synthetic data points that mimic the

characteristics of actual rainy days, thereby alleviating data scarcity and imbalance

issues. Federated learning enables us to leverage the data from multiple centers without

accumulating the data in a single facility. Moreover, in the federated learning context,

95



each station can augment its data locally, ensuring that the synthetic data reflects the

local meteorological characteristics and improving the learning of the localized model.

We compare the Synthetic Minority Over-sampling Technique (SMOTE), a widely

used approach, with Generative Adversarial Learning (GANs) variants. When the

local models communicate and contribute to the training of a global model, the model’s

capability to generalize and accurately predict rainy events improves. This is especially

true when the models are trained on the diversified and balanced representation of rainy

days across different Australian climates and territories. Therefore, the meteorological

predictions become more reliable and representative of the vast and varied Australian

landscapes.

In this chapter, We train a deep learning model on a combination of real and

synthetic data generated by various methods. With its ability to model complex, non-

linear relationships and learn hierarchical features from data, deep learning emerges as

a quintessential tool in analyzing meteorological data and uncovering the underlying

patterns that cause rainfall. Variables such as humidity, pressure, temperature gra-

dients, and wind patterns are fed into the neural network. The model continuously

refines its predictive capability through layered architectures and back-propagation,

resulting in a more adaptive and accurate system capable of effectively distinguishing

between rainy and non-rainy days. This predictive paradigm enhances meteorologi-

cal forecasting and provides different sectors with insights to develop strategies and

operate in accordance with impending weather conditions.

Access to a large network of data from sources scattered over multiple data centers

benefits the deep learning models. Class imbalance appears in many centralized and

federated machine learning problems. [238] conducted an experimental study of class

imbalance of global performance. Due to the variability of local data distribution

among all devices and lack of control over client selection, a class imbalance issue

96



arises. This results in a slow convergence rate of the global model. To address this

issue, [239] proposed an estimation algorithm that can reveal the class distribution

without the need to access the distributed data.

Federated learning has been examined for tackling the issue of imbalanced data

in multiple settings. Numerous studies have explored federated learning for problems

regarding meteorology and agriculture. Manoj [240] applied federated learning to pre-

dict agriculture production using weather data, soil data, and crop management data

collected from numerous data silos. Their model improves scalability and ensures pri-

vacy, which is essential for users of farming devices. Farooq et al. [241] proposed a

federated learning model using Long Short-term Memory (LSTM) neural networks to

predict flood, outperforming traditional LSTM models.

In this work, we propose using a deep imbalanced learning model to classify weather

data stored in 9 weather stations across Australia. We examine the outcome of train-

ing the data centralized and federated. In a centralized learning approach, the stations

collect and store their data individually, upon which the model is trained. While this

conventional method has its merits, particularly in data consistency and straightfor-

ward implementation, it neglects potential issues related to smaller sample sizes and

lack of adequate information, especially in imbalanced data. Federated learning is a

potent alternative, especially in contexts where data privacy, minimized data trans-

fer, and localized learning are essential. Our experiments compare the two approaches

and provide insights into their effectiveness in addressing the challenges posed by data

privacy, transfer costs, and geographical variations in weather patterns [242].
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4.2 Deep Imbalanced Learning

Deep learning is a network of fully or partially connected neurons organized in layers.

The neurons receive the information, and activation functions determine the output

of the layers and the network. Deep learning architecture varies according to the spe-

cific problem, data structure, the network’s depth and size, the layers’ functionality,

and the optimizer. Schmidhuber [243] conducted a comprehensive historical survey of

deep learning and its evolution. Johnson and Khoshgoftaar [244] reviewed the existing

methods for the issue of imbalanced data in deep learning. Deep learning is a powerful

solution to various real-world problems, and when enhanced by other heuristic feature

selection and resampling approaches, it can be very effective for imbalanced learning

[245]. Bao et al. [246] introduced a deep learning framework to balance the data in a

deeply transformed latent space. In this model, feature learning, balancing, and dis-

criminative learning are conducted simultaneously, which has performed effectively on

multi-classification problems. Deep imbalanced learning models are capable of learning

imbalanced data in the presence of noise and outliers.

Deep learning has remarkable benefits and has been successful in many classification

tasks. The advances in artificial intelligence, particularly deep learning, allow us to

create robust models for analyzing diverse data types and provide valuable insights.

Therefore, it is selected as the classification model in this study. The architecture of the

neural network is problem-specific. We used a sequence of dense layers of various sizes.

In federated learning, a layer of Gaussian noise is inserted in between as a hidden layer.

The added noise guarantees privacy protection under differential privacy and increases

generalization. The standard deviation of the Gaussian noise must be tuned along with

other parameters. We removed the noise layer in the architecture to classify the data
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in a centralized setting. The code snippet for implementing the deep learning model

in federated learning is presented in Listing 1.

Listing 1 Classifier
# Imports

from keras.layers import GaussianNoise

# Define the model architecture

model = Sequential([

layers.Dense(256, activation='relu', input_shape=(13,)),

layers.GaussianNoise(stddev),

layers.Dense(128, activation='relu'),

layers.Dense(64, activation='relu'),

layers.Dense(32, activation='relu'),

layers.Dense(1, activation='sigmoid')])

The batch size is 64, the learning rate is 0.001, and the momentum is 0.9. The

standard deviation of the Gaussian noise layer in federated learning architecture is set to

0.01. The model is trained using a Stochastic Gradient Descent optimizer for 30 epochs,

and the binary cross-entropy loss function is used. In a federated learning framework,

the training is performed in multiple communication rounds, where each round involves

the clients sending their model weights to the central server for aggregation. Our

experiments suggest that increasing the communication rounds doesn’t significantly

affect the performance; therefore, the global model is updated for ten communication

rounds. In addition to loss and accuracy, the imbalanced learning metrics AUC and

G-mean are measured to evaluate the local and global performance. The classification

model is implemented using TensorFlow and Keras API in Python. The models are

executed in Google Colab Pro with a high-RAM run-time setting.

99



4.3 Data Augmentation

Unlike traditional resampling methods that remove or replicate the existing data points

to balance the data, data augmentation is a data processing approach that artificially

increases the amount of data by generating synthetic data points from existing data.

Resampling methods follow two strategies: removing instances from the majority class

(random under-sampling) [247, 248] and adding new instances to the minority class

(random over-sampling) [249].

Data augmentation is a set of advanced resampling techniques that focus on gener-

ating new instances rather than replicating or removing the original data. Controlling

the number of generated samples improves the imbalance ratio and promotes diver-

sity in the data. Since the samples are generated in the feature space, creating a new

sample in a nonlinear space improves the results after resampling the minority class.

The performance and effectiveness of the data generation techniques are extensively

studied by [250], and the limitations of such methods are investigated by [251]. Data

augmentation methods have been effectively utilized for fraud detection [252], malware

and bug report [253], healthcare and medical diagnosis [254, 255], and fault detection

in manufacturing and machinery [256].

This research study investigates data augmentation for balancing tabular data us-

ing variations of GANs models and the SMOTE, two well-known data augmentation

approaches. Figure 4.3 presents a high-level description of the algorithms.

Expanding the input data by introducing the samples that represent the original

data, combined with the appropriate learning algorithms, strengthens the classification

process to attain accurate results for both classes.
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Figure 4.3: SMOTE and variants of GANs expand the sample size by generating new
instances of both classes or balancing the data when only generating instances of the

minority class.

4.3.1 Synthetic Minority Over-sampling Technique

Over-sampling methods are widely used in imbalanced learning to adjust the data dis-

tribution before classification [257, 258]. SMOTE and its variations are among the most

popular oversampling methods for tabular data. Chawla et al. [259] combined SMOTE

and AdaBoost to enhance training performance by focusing on the most misclassified

examples. Borderline-SMOTE starts by identifying the decision boundary between the

two classes and then generating samples along the borderline [260]. DeepSMOTE is

a novel approach that uses a deep neural network to select the features suitable for

generating data with the modified SMOTE algorithm.

In SMOTE, the number of instances in the minority class is increased by syntac-

tically creating new instances instead of replicating the existing instances. As shown

in Figure 4.3-A, the new instances are generated based on their nearest neighbors in
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the feature space. The new examples are added near the line segment that joins the

nearest neighbors of the samples in the minority class [261]. Deep imbalanced learning

with SMOTE effectively improves G-mean and AUC [262]. Imb-learn Python library

[263] is a practical tool for implementing SMOTE.

4.3.2 Generative Adversarial Networks

Introduced by Goodfellow et al. [264], GANs is an artificial intelligence scheme de-

signed for learning the underlying patterns in the data in unsupervised learning tasks.

Generative models utilize the statistical properties of the data and generate new data

points by understanding the data distributions through adversarial learning. Adver-

sarial learning is a machine learning mechanism where two networks with competing

objectives are trained simultaneously. Figure 4.3-B presents the high-level architecture

diagram of GANs models. The term adversarial networks refers to the two competing

neural network architectures in GANs known as Generator and Discriminator. The

two networks are trained independently.

First, the generator takes a vector of random values with Gaussian distribution

(random noise vector) and creates a set of new samples. Then, the discriminator takes

a sample of original and newly generated data as input and attempts to successfully

distinguish between fake and original data in a binary classification problem. The

iterative game between the two networks continues until the generator can trick the

discriminator into failing to identify the fake data from the original data. The generator

and discriminator are trying to optimize their loss function in this setting.
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Let G be the generator, D be the discriminator, and z′ be the vector of Gaussian

noise fed into the generator. The generator loss function defined in Equation 4.3.1 mea-

sures the binary cross entropy between the output of the discriminator for classifying

real and generated data labeled as real.

−log(D(G(z′))) (4.3.1)

The generator tries to create samples as close as possible to real data. The discriminator

loss function defined in Equation 4.3.2 measures the binary cross entropy for outputs

of the discriminator labeled both as real and fake for the generated and real data.

−log(D(x))− log(1−D(G(z′))) (4.3.2)

The discriminator tries to classify real and fake data points correctly.

In this two-player game, the two-objective optimization problem is defined as a

minimax game with the loss function presented in equation 4.3.3. The iterative learning

process helps us reach the Nash equilibrium between the two networks of D and G.

minGmaxDV (D,G) = Ex[log(D(x))] + Ez′ [log(1−D(G(z′)))] (4.3.3)

The competition between the two components guides the generator to create artificial

points close to the original data that can not be distinguished from the original dataset.

The algorithm follows ten steps:

1. Prepare the dataset, including data cleaning, feature engineering, and normal-

ization of input variables.

2. Define the architecture of the generator and discriminator models.
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3. Generate the noise vector and synthesize a sample of fake data.

4. Train the discriminator model on a subset of real and fake samples.

5. Clip the discriminator weights to improve stability

6. Freeze the discriminator weights

7. Train the generator using the output from the discriminator as feedback and

generating synthetic data.

8. Iteratively train the GANs model by combining the generator and the discrimi-

nator in an adversarial process.

9. Evaluate the GANs model on the validation set.

10. Save the trained generator model and generate synthetic samples to balance the

minority class.

Choosing the appropriate architectures and tuning the parameters is one of the

main challenges of GANs. The code snippets provided in Listings 2 and 3 are the

network architectures used in this study. The batch size is 64, the latent dimension is

13, and the models are trained for 100 epochs. We used Adam optimizer and binary

cross-entropy for the loss function.

Listing 2 Generator
# Define the model architecture

model = Sequential([

layers.Dense(512, activation='relu', input_shape=input),

layers.Dense(256, activation='relu'),

layers.Dense(128, activation='relu'),

layers.Dense(1, activation='sigmoid')])
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Listing 3 Discriminator
# Define the model architecture

model = Sequential([

layers.Dense(128, activation='relu', input_shape=input),

layers.BatchNormalization())

layers.Dense(64, activation='relu'),

layers.Dense(1, activation='sigmoid')])

Weight clipping is also used for the discriminator network as a regularization tech-

nique. This ensures that the magnitude of the weights is within a predefined range.

This technique prevents oscillations and improves the algorithm’s stability during train-

ing.

Numerous studies have explored the use of generative models for handling imbal-

anced data. GANs have demonstrated outstanding potential in generating data and

expanding the sample size with high-quality data close to the original distribution for

imbalanced learning problems [265, 266, 267, 268, 269, 270]. Divovic et al. [271] im-

proved the quality of generated samples by providing class label context to the network,

and Cho and Kim [272] proposed a genetic algorithm approach to find the optimal com-

bination of imbalanced ratios for implementing GANs and SMOTE. Data augmentation

using capsule adversarial networks is also a novel approach that constructs a 2-stage

model to generate data and then evaluate the balanced dataset by training a classifier.

This ensures that the generated data is of good quality [273, 274]. [275] developed a

collaborative framework between the generator and classifier to expand the minority

sample size and balance the data gradually. GANs data augmentation algorithms have

examined a variety of data such as image [276, 277], and tabular datasets for fraud

detection, cancer diagnosis, or weather prediction,[278, 279].
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In weather applications, GANs generate weather images using a two-step approach

where the data is generated and then classified using an ensemble model [280]. Com-

bining GANs with different learning frameworks and preprocessing methods, such as

SMOTE, offers promising potential for real-world applications [281].

4.3.2.1 Conditional GANs

Conditional GANs (CGANs) are an extension of GANs models that are most effective

when the generated data is meant to be tailored to the labels or other class condi-

tioning of the input [282]. In conditional GANs, the conditioning variable (label) is

fed as an additional parameter into the generator along with the noise vector. The

extra information leads the network to produce data corresponding to the label [283].

Conditional GANs are effective in generating detailed and highly accurate images for

supervised and semi-supervised learning problems [284, 285, 286].

4.3.2.2 Wasserstein GANs

One of the limitations of traditional GANs is their instability during training, which can

lead to mode collapse and generate low-quality samples. Getting stuck with a limited

range of samples and lacking diversity negatively affects the dataset. Regularization

methods and modifications of GANs have been investigated to mitigate this issue [287].

Wasserstein GANs is a variation of GANs trained with a loss function defined based

on the Wasserstein distance. Modifying the loss function improves the stability of

the model and the quality of the generated samples [288]. Wasserstein distance is

measured by the amount of work required to move mass from one distribution to

another. Equation 4.3.4 presents the Wasserstein distance where Pr and Pg are the
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real and generated distributions, respectively.
∏

(Pr, Pg) is the set of all couplings of

Pr and Pg, and θ is the joint probability distribution.

W (Pr, Pg) = infθ∈
∏

(Pr,Pg)E(x,y)∼θ[||x− y||] (4.3.4)

The generator aims to minimize the distance between the distribution of real and gener-

ated data, while the discriminator (often referred to as the critic) tries to maximize the

distance. Overall, Wasserstein GANs is a promising approach to address the challenges

of generating new images, image-to-image translation, and audio synthesis problems.

In this study, we implement the improved Wasserstein GANs with gradient penalty

(WGAN-GP) introduced by Gulrajani et al. [289]. The WGAN-GP uses a gradi-

ent penalty to ensure the discriminator’s gradients are constrained, ensuring Lipschitz

continuity and improving algorithm stability during training. This is the main compo-

nent that differentiates WGAN-GP from the basic WGANs. The architecture of the

WGANs-GP discriminator network is presented in Listing 4.

Listing 4 Wasserstein Discriminator (Critic)
# Define the model architecture

model = Sequential([

layers.Dense(128, activation='relu', input_shape=latent_dim),

layers.BatchNormalization())

layers.Dense(64, activation='relu'),

layers.Dense(1, activation='Linear')])

In WGANs-GP, the activation function of the final dense layer is linear. The param-

eter λ is the regularization coefficient, which is often 10, and it is a hyperparameter that

determines the weight/importance of the gradient penalty in the overall loss (Wasser-

stein loss). Assuming that DFake is the average discriminator output of the generated
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samples and DReal is the average discriminator output of the real samples, the overall

loss function is defined as:

LossDiscriminator = DFake −DReal + λ ∗Gradient penalty (4.3.5)

In this model, critic iterations are 5, which is the number of times the discriminator is

trained per single generator training. This is a typical WGAN practice to ensure that

the critic is well-trained. The clipping value is 0.01, and the learning rate is 0.0001.

The models are trained using the RMSprop optimizer implemented with Keras API.

4.3.2.3 Minority GANs

The training process of Minority GANs is similar to the traditional GANs, except the

generator is only trained on the minority class data to generate 50% of the synthetic

data required to balance the data. The generated samples expand the minority class

and balance the data, resulting in an unbiased training model with better classification

capabilities.

4.3.2.4 SMOTE GANs

SMOTE GANs is another extension of GANs with an extra preprocessing step. SMOTE

GANs is a hybrid two-phase approach to improve the quality of SMOTE outcomes

[290]. First, SMOTE is applied to the minority class data. Then, the generator takes

in a sample of original data and samples created using SMOTE. The discriminator is

trained to learn the underlying patterns in the feature space to distinguish between

real and generated samples. Incorporating GANs and SMOTE to create new samples

introduces diversity into the generated model to create accurate, realistic samples.
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4.4 Computation Results

Meteorological stations produce vast amounts of data to classify and predict weather

patterns, requiring significant computation and storage resources to build machine-

learning models and analyze the data. Federated learning is a potential solution for

the scalability of weather data analysis and designing a robust model that can generalize

well in the presence of noise and synthetic data. The problem being addressed in this

experimental study is summarized in Figure 4.4.
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Figure 4.4: Overview of the federated imbalanced learning problem. We address the
issue of imbalanced learning in a federated setting by generating samples of the
minority class using 5 data augmentation methods. The local stations train the
balanced data, and the encrypted model weights are sent to the global server for
aggregation. The results of balanced data training are compared with those of

imbalanced data in the federated learning framework.
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4.4.1 Data Augmentation Strategies in Centralized Setting

Initially, each local model is trained on its own imbalanced dataset, recognizing that

some weather stations might record rainy days (minority class) less frequently than non-

rainy days (majority class). The imbalanced model is used as a baseline to evaluate the

data augmentation techniques. We implemented data augmentation strategies, such

as SMOTE and various GANs models, to synthesize new instances of the minority

class, thereby mitigating the imbalance at each local node. The selected GANs models

are CGANs, Minority GANs, SMOTE GANs, and WGANs-GP. The data obtained

from the data augmentation methods have equal instances of both classes. This locally

balanced data is then utilized for training individual models at each station. The

results of training the models in the centralized setting are presented in Figure 4.5.
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Figure 4.5: Classification Results of training the models locally on balanced data are
compared with the imbalanced data.
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To compare the effectiveness of the models, we analyze the performance metrics of

each model. Loss is used to measure the error, and lower loss is desired. Accuracy,

G-mean, and AUC range from 0 to 1, where higher values are preferred. AUC and

G-mean are the most important metrics since they evaluate the models with respect to

both classes. Given the results, a summary and analysis based on each augmentation

method is provided:

1. Imbalanced: This model provides relatively high accuracy and AUC but some-

what lacks in balancing sensitivity and specificity, as evidenced by the lower

G-mean, which is expected for imbalanced data.

2. CGANs: CGANs outperform the base model in all stations except 2, where the

loss is higher. The overall lower loss in other stations indicates that CGANs

have effectively reduced model error. The accuracy and AUC have improved

across all stations compared to the imbalanced dataset, highlighting the efficacy

of CGANs in distinguishing between classes. The G-mean has also shown sig-

nificant improvement, showcasing the CGANs’ ability to balance sensitivity and

specificity.

3. SMOTE: The loss, accuracy, and AUC vary across stations. The accuracy and

AUC are similar or slightly higher compared to the imbalanced dataset. However,

it has some of the highest G-MAN values, suggesting a decent balance between

sensitivity and specificity.

4. Minority GANs: Minority GANs have the lowest loss among the models in almost

all stations. The loss is lower than the imbalanced dataset across all stations.

The accuracy is close to the imbalanced datasets. However, the AUC and G-mean

scores are generally very high, which shows a decent balance between sensitivity
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and specificity. The Minority GANs performed better than CGANs in station 2

while comparable in the remaining stations.

5. SMOTE GANs: Overall, SMOTE GANs perform better than the imbalanced

model, with consistently good results across stations. The AUC values suggest

good discrimination ability, and the G-mean values indicate a balance between

sensitivity and specificity.

6. WGANs-GP: Compared to the imbalanced dataset, WGANs-GP consistently

offers competitive or better results across stations. However, the G-mean score

is not the highest compared to SMOTE and SMOTE GANs in most stations.

In conclusion, GANs-based augmentation techniques (CGANs, Minority GANs,

SMOTE GANs, WGANs-GP) generally outperform the imbalanced datasets regarding

all metrics. This suggests that these techniques effectively create synthetic data that

aids in better training the models. While a popular method, SMOTE is sometimes

surpassed by GANs-based methods, especially in terms of AUC and Accuracy. If one

has to rank based on the overall accuracy and AUC across stations, CGANs followed

by Minority GANs and WGANs-GP would likely be at the top, and if ranked based

on G-mean, SMOTE, and SMOTE GANs would be preferred in most stations.

4.4.2 Training Localized Augmented Data in Federated Setting

While the data augmentation techniques prove to be effective in addressing the imbal-

ance ratio between classes, the small sample size impacts the models. Mainly because

deep learning models are data-hungry and prefer larger datasets. Federated learning

allows us to leverage the power of distributed data while maintaining privacy and se-

curity. In the next step, we utilized the balanced data available in the stations to train

the federated learning model. The data is horizontally partitioned in the federated
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learning setup, and the stations collect similar features from the weather observations.

The results from evaluating the global model on the test data are presented in Table

4.2

Model Accuracy Loss AUC G-mean

Imbalanced 0.841 0.71 0.859 0.695

CGANs 0.897 0.57 0.956 0.894

SMOTE 0.770 0.64 0.865 0.764

Minority GANs 0.888 0.60 0.947 0.877

SMOTE GANs 0.828 0.61 0.907 0.828

WGANs-GP 0.896 0.57 0.956 0.844

Table 4.2: Classification results of testing the global model trained on the balanced
data obtained from the various data augmentation methods, compared with

imbalanced data.

A brief analysis of the results based on federated learning and data augmentation

techniques using the provided metrics is provided.

The imbalanced data is used as the base model for comparison. CGANs and

WGANs-GP emerge as the superior techniques among the listed, excelling in all met-

rics. CGANs offer the best G-mean score. This highlights that the conditional gener-

ation of synthetic samples can significantly enhance model learning and performance

in federated settings. CGANs and WGANs-GP provide reliable and robust synthetic

sample generation, thus aiding federated learning models to perform well. Minority

GANs also yield very commendable results, with high accuracy, AUC, and G-mean

values, though slightly falling short compared to CGANs. Interestingly, SMOTE has

reduced accuracy compared to the imbalanced model but shows improvement in loss

and a slightly higher AUC and G-mean, indicating an improved balance between sensi-

tivity and specificity but worse overall performance compared to GANs-based models.
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SMOTE GANs provide improvements in AUC and G-mean compared to the imbal-

anced model and SMOTE; however, they can not match the performance of other

GANs-based models.

In addition to the results presented in Table 4.2, Figure 4.6 confirms the stability

of the global model over ten communication rounds.
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Figure 4.6: Federated learning process over ten communication rounds, evaluated on
global test data.

Overall, it appears that the federated learning approach was effective in training

a deep-learning model for rainfall prediction. The use of data augmentation methods

to balance the dataset improved the accuracy, loss, AUC, and G-mean of the model,

highlighting the importance of addressing imbalanced datasets in machine learning.

In summary, CGANs and WGANs-GP stand out as particularly effective, achieving

the highest performance across all metrics. Minority GANs and SMOTE GANs also

enhance performance compared to the baseline (imbalanced) and traditional SMOTE.
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The purely oversampling-based technique (SMOTE) does not outperform the base-

line in terms of accuracy but does improve balance and discrimination between classes

(higher G-mean and AUC). Given their very similar performance, the choice between

CGANs and WGANs-GP might come down to computational efficiency, storage re-

sources, ease of implementation, and specific use-case requirements. Both methods

showcase the potential of GANs-based data augmentation in improving federated learn-

ing model outcomes.

Analyzing the validation results from local stations allows us to evaluate how effec-

tively the global models generalize and perform on unseen data locally. We’ll discuss

the results with respect to four metrics: validation loss, validation accuracy, validation

AUC, and validation G-mean presented in Figure 4.7.
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Figure 4.7: Classification results of federated learning on local validation sets

In all stations, GANs-based models, particularly CGANs, Minority GANs, and

WGANs-GP, exhibit lower loss compared to the imbalanced and SMOTE models.
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Across stations, CGANs and WGANs-GP consistently outperform or match the highest

accuracy among the models. They tend to perform very strongly, often achieving

AUC above 0.90 and securing top positions in G-mean, suggesting better balance in

classifying the majority and the minority classes. Imbalanced models show varied

performance across stations and metrics but tend to fall short, especially in AUC and

G-mean. Generally, SMOTE does not deliver strong results in loss and accuracy. Its

AUC and G-mean are varied, sometimes surpassing imbalanced models but lower than

GANs-based models. CGANs, Minority GANs, and WGANs consistently show strong

performance in the global metrics and across local stations. They deliver low loss, high

accuracy, AUC, and G-mean, which indicates reliable and balanced predictive power

for both majority and minority classes.

There’s visible variability in the performance of SMOTE and imbalanced mod-

els globally and locally. They sometimes yield lower accuracy, AUC, and G-mean,

indicating difficulty in reliably predicting both classes, particularly in imbalanced sce-

narios. GANs variants indicate strong global robustness, given their top-tier results

in global metrics. Their consistent performance across different local stations (despite

local data variability) indicates that GANs-based models (especially CGANs, Minority

GANs, and WGANs) are not just fitting to the global model but are quite effective

locally.

4.5 Chapter Summary

This study presents empirical evidence supporting the effectiveness of Generative Ad-

versarial Networks (GANs) models, specifically CGANs, Minority GANs, and WGANs-

GP, in navigating the intricacies of federated learning, optimizing the utility of global

training and delivering potent performances across local stations.
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CGANs, Minority GANs, and WGANs-GP are advanced data augmentation tech-

niques that uniquely contribute to addressing data generation in imbalanced learning

scenarios. However, they might potentially degrade model robustness by inadvertently

amplifying noise or outliers in the minority class. Implementing GANs variants requires

a more intricate design of network architectures in the generator and discriminator and

hyperparameter tuning to optimize their capability. Despite offering improved stabi-

lization during training, WGANs-GP can also be computationally demanding due to

the implementation of the gradient penalty.

Overall, each of these GANs variants has proven to be theoretically appealing and

practically impactful, achieving consistent, robust results in aggregated global metrics

and decentralized local validation sets. This experimental study demonstrates the

potential of federated learning in meteorology and other climate studies, where data

is stored in local stations, and gathering the data in one place is not advised. While

imbalanced datasets are a recurring challenge in machine learning, our results suggest

that combining data augmentation techniques with federated learning can be a viable

approach for developing robust and accurate models for predicting weather events.
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Chapter 5

Conclusion

5.1 Conclusion

This dissertation presents a multidimensional exploration of the challenges and lim-

itations of federated learning, noise-infusion mechanisms, and data imbalance in the

context of machine learning.

In the rapidly evolving domain of federated learning, conducting a literature survey

provides researchers and practitioners with multiple advantages. The literature survey

conducted in this dissertation offers a consolidated repository of existing research on

machine learning algorithms applied in federated learning. This enables benchmarking

the new algorithms and comparing them with existing methods for efficiency. Through

the systematic review, areas that are under-researched or have the potential for further

exploration become evident, which helps guide future research toward more impactful

directions. This literature survey also provides a holistic view of the state-of-the-art

algorithms and their efficacy in various contexts, which helps industry professionals

make informed choices for their federated learning implementations. Understanding

past achievements and existing challenges can lead to collaborative efforts to address

them.

This dissertation delves into experimental studies of noise infusion mechanisms in

federated learning, highlighting the role of noise in fostering generalization, stability,

and privacy in deep learning. Introducing the Signal-to-Noise ratio (SNR), the Price of
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Stability (PoS), and the Price of Anarchy (PoA) provides an in-depth understanding

of the trade-offs between privacy and model performance. SNR quantifies the trade-

off between the clarity of the signal (i.e., the true data patterns) and the noise level

introduced to the model. The experimental study highlighted the significance of main-

taining an optimal SNR for effective model training without compromising privacy.

PoS captures the best-case scenario of stability when training with noise, while PoA

represents the worst-case impact. Monitoring these metrics over various noise levels

enables achieving the desired privacy guarantees while still retaining model efficacy.

In addition, while excessive use of noise can degrade the model’s performance, the

appropriate noise level can improve generalization and stability. The finding of the

experimental analysis suggests that by utilizing noise, less complex models can per-

form comparably to significantly larger models. It was also found that, under certain

conditions, noise can act as a regularizer, preventing overfitting and thereby improving

model generalization. This results in less computationally demanding algorithms with

improved generalization and stability. Maintaining stability has a great impact on the

model’s sensitivity to noise and the potential privacy guarantees that is essential in fed-

erated learning. By extensive experiments on different noise infusion mechanisms and

introducing and leveraging innovative metrics, This research lays the foundation for

more robust and private federated learning models, ensuring efficiency in decentralized

machine learning.

Moreover, this dissertation utilizes variants of Generative Adversarial Networks

(GANs) to address the recurrent challenge of data imbalance, particularly in domains

like meteorology. While each variant of GANs exhibits unique strengths and challenges,

their combined potential in federated learning landscapes is undeniable. This research

demonstrates the power of federated learning in ensuring data privacy while leveraging
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advanced machine learning techniques for optimal outcomes even when the data is

inadequate or imbalanced.

In summary, federated learning stands as a field where innovation and collaboration

are essential. This dissertation aims to offer solutions to the research questions pre-

sented in the outline. The findings of the experimental analysis in federated learning

contribute to addressing some of the algorithmic and data-driven issues in this domain.

5.1.1 Recommendations for Future Work

Federated learning is at the interface of several research areas, such as optimization,

distributed learning, cryptography, and communication theory. In the last few years,

many algorithmic developments have been accomplished with a focus on theory and

applications. However, there are still several challenges and open problems in federated

learning. Some of the challenges that need to be overcome are:

• Fairness: The issue of fairness in federated learning occurs at different levels, such

as fairness in communication capacities, machine learning models, and aggrega-

tion results. To this end, fairness metrics must be defined to evaluate the model

from privacy, accuracy, and fairness perspectives [291]. Also, Lyu et al. [292]

propose the concept of collaborative federated learning, which ensures fairness in

how the clients impact the global model in the aggregation process. Despite the

improvements, there is a lack of an integrated approach that ensures fairness in

different aspects of federated learning.

• Scalability: To implement a federated learning protocol at scale, it must avoid

the curse of dimensionality when data is large. To tackle the challenge of dimen-

sionality, Principal Component Analysis has been employed in unsupervised set-

tings such as the work by Al-Rubaie [293], which developed a privacy-preserving
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Principal Component Analysis to reduce the dimensionality of the horizontally

partitioned data. In addition, other methods, such as Discriminant Component

Analysis, can be explored for efficient feature engineering and dimensionality

reduction to improve accuracy and computation cost and uphold privacy.

• Unlabeled data: The lack of annotated data with good quality is one of the

limitations in this setting. When the data is unlabeled, and labeling the data is

either impossible or too cost-inefficient, it is important to modify the machine

learning algorithms to be able to learn from partially annotated data efficiently.

• Non-Independent and Identically Distributed (Non-IID) Data: Non-IID data in

federated learning refer to differences in the distribution of the available data over

the data centers. It is also possible that the data become locally non-IID over

time, which requires modifying existing algorithms or developing new ones. To

address this issue, Sattler et al. [294] proposed a compression network to improve

the communication efficiency and robustness of Federated learning on non-IID

data. Ma et al. [295] and Zhu et al. [296] investigated the recent advances in

solving non-IID data in federated learning and the future trends in research on

this issue. They also compared different model architectures of deep learning

used in the literature on federated learning.

Possible future research directions are:

• Game theory: Recent connections between game theory and control can provide

new insights into federated learning and new algorithmic developments. An at-

tempt along these lines is the paper of Mehrjou[297], which connects federated

learning with mean field games by presenting federated learning as a differential

game and discussing the properties of the equilibrium of this game.
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• Quantum optimization: Another future research area is quantum optimization

applied to federated learning. Distributed learning across several quantum com-

puters could significantly improve the training time and potentially improve data

privacy [298]. Connections with multi-objective optimization, such as [299], can

benefit algorithmic developments.

• Multiple Kernel Learning: Exploring the connections between federated learn-

ing and multiple kernel learning also holds potential for advancing algorithmic

solutions.

Furthermore, federated learning must navigate complex challenges, including exploring

more advanced ways of combining local networks, using different machine learning and

ensemble models in addition to preprocessing techniques, performing experiments on

larger datasets and further enhancement efficiency, and designing accurate and reliable

machine learning models suitable for GPU implementation.

By collectively addressing these challenges and pursuing interdisciplinary connec-

tions, the research community can integrate federated learning into a future where it

serves as a cornerstone for secure, efficient, and privacy-conscious machine learning

applications.
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Bennis, Arjun Nitin Bhagoji, Kallista Bonawitz, Zachary Charles, Graham Cor-
mode, Rachel Cummings, et al. Advances and open problems in federated learn-
ing. Foundations and Trends® in Machine Learning, 14(1–2):1–210, 2021.

[6] Keith Bonawitz, Hubert Eichner, Wolfgang Grieskamp, Dzmitry Huba, Alex In-
german, Vladimir Ivanov, Chloe Kiddon, Jakub Konečnỳ, Stefano Mazzocchi,
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