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ABSTRACT 

Throughout the world, coastal communities both human and natural face the existential 

threat of rapidly rising seawater levels resulting from global climate change. Since 2012, my 

collaborators and I have been monitoring a community of sparrows that overwinter within the 

extensive salt marshes of Kiawah Island in South Carolina, USA. The three species that comprise 

this community of “marsh sparrows” are Seaside Sparrow (Ammospiza maritima), Saltmarsh 

Sparrow (Ammospiza caudacuta), and Nelson’s Sparrow (Ammospiza nelsoni), and they can all 

be readily captured during above-average high-tides during which they are forced to occupy a 

few salt marsh patches that remain above water. This dissertation documents long-term banding 

efforts, field experiments, and GIS analyses to assess the current status of the Kiawah Island 

marsh sparrows, their capacity to cope with environmental changes, and ultimately their 

prospects for survival over the next 75 years. The three chapters of this dissertation take on each 

of these subjects in turn. 

In Chapter One, I compiled eight years of bird-banding data and used open-population 

capture-recapture models to estimate annual survival and wintering abundance of the three 

“marsh sparrow” populations. I employed three different population modeling approaches that 

included both classical mark-recapture analyses as well as a relatively new spatial modeling 

approach. To determine which model was best, I simulated bird populations on Kiawah Island as 

well as the sampling regime (i.e., banding efforts) to see which modeling approach yielded 

results that best reflected the input parameters for the simulation. Annual survival for all three 

species generally ranged from 0.5 to 0.8 across all years of the study. Density/abundance 

estimates indicated that as many as 1,848 marsh sparrows occupy the ~1,650 hectares of salt 

marsh surrounding Kiawah Island. Although the capture and banding efforts did not fully 
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conform to the expectations of a mark-recapture analysis, my simulation efforts indicated that a 

classical Cormack-Jolly-Seber model provided the most accurate estimates of annual survival.  

 In Chapter Two, we used radio surveillance methods and translocation experiments to 

study the movement abilities and site fidelity of Nelson’s, Saltmarsh, and Seaside Sparrows. The 

vast majority of translocated birds returned successfully to their initial capture sites (presumed 

winter home range area), and they generally did so within a few days, regardless of whether they 

were displaced across fragmented or continuous marsh landscapes. We found no clear evidence 

that return success differed among species or between landscape treatment (continuous marsh vs. 

fragmented marsh). Return times did not appear to be significantly influenced by species, 

landscape treatment, or translocation distance. The high rate and speed of returns following 

displacement indicates a strong fidelity in marsh sparrows to wintering home ranges and 

associated high-tide roost sites.  

 In Chapter Three, we evaluated losses of wintering habitat for marsh sparrows at Kiawah 

Island under future sea-level rise (SLR) scenarios. We specified four different SLR scenarios in 

our local models and found that even the most moderate predictions for SLR entailed dramatic 

losses of salt marsh habitat on Kiawah Island. For the more severe SLR scenarios, our models 

predicted that Kiawah would not likely sustain overwintering marsh sparrows by the year 2075. 
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CHAPTER ONE 

 

Annual survival rates and abundances of wintering songbirds in a South Carolina tidal marsh 

 

Keywords: 

animal survival; mark-recapture; demography; density; saltmarsh; winter; passerine 

 

 

Abstract 

Studying free-living birds in marsh habitats entails logistic challenges that can limit the 

application of standard mark-recapture methods for estimating parameters like survival rates and 

density. We captured and banded three species of marsh sparrows (Seaside Sparrow [Ammospiza 

maritima], Saltmarsh Sparrow [Ammospiza caudacuta], and Nelson’s Sparrow [Ammospiza 

nelsoni]) over eight consecutive winters in the marsh surrounding Kiawah Island in South 

Carolina. To capture substantial numbers of birds, our capture efforts coincided with extreme 

high-tide events, wherein the birds would congregate on a few patches of marsh that remained 

above water. We applied a traditional mark-recapture analysis to our data, but because of 

inconsistency in capture effort across the various high tide refugia, we had to subset our data to 

include only 5 of our 18 capture locations. To make use of the full data set we also applied a 

newly developed spatially explicit population modeling approach, that allowed for inconsistency 

in capture effort. Annual survival for all three species generally ranged from 0.5 to 0.8 across all 

years of the study, and the estimates from the spatially explicit model were mostly higher than 
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those from the traditional model. Density/abundance estimates indicated that as many as 1848 

marsh sparrows occupy the ~1,650 hectares of marsh surrounding Kiawah Island, and this 

estimate from the spatially explicit model was about twice as high as that of the traditional 

model. Our study of marsh sparrows is just one of many that is problematic due to conflicts 

among population-model assumptions and the realities of data collection, and we recommend 

further development of modeling techniques that can accommodate unusual data-collection 

scenarios. 

 

Introduction 

Research on birds and many other taxa has historically been biased toward the breeding 

phase of the life cycle while studies of other life history phases (e.g. post-breeding, wintering, 

migration) have lagged behind (Faaborg et al. 2010). For many species, this bias makes it 

difficult to assess populations and/or render effective management strategies because factors like 

non-breeding survival and the potential for carryover effects across seasons are unknown. Calls 

to investigate full-life histories (Marra et al. 2015) have challenged biologists to shift their 

research priorities and resources to address knowledge gaps due to biased research foci (e.g., 

Faaborg et al. 2010, Sherry and Holmes 1995, Marra et al. 1998). To meet this challenge, it is not 

only necessary to collect data during non-breeding phases of a species’ annual cycle, but we 

must also develop new approaches, both methodological and analytical, to allow us to effectively 

survey and analyze populations that have shifted from breeding to non-breeding activities.  

Estimation of the long-term survival and abundance of bird populations is often 

accomplished via capture-mark-recapture studies, wherein birds are regularly caught and marked 

across several seasons, and the rates at which marked birds are recaptured serves as an indication 



 3 

of detection probability. With detection probabilities established, it is possible to use capture 

information to estimate basic population parameters such as density and survival. For traditional 

mark-recapture methods, a robust analysis demands that field data be collected according to a 

rigorous schedule with regular capture episodes that are equivalent in terms of effort across time 

intervals. Unfortunately, for many species it is impossible to establish a regimented schedule of 

capture effort. To address this issue, Efford and Schofield (2020) have derived a spatially explicit 

population modeling approach that relaxes some of the requirements of traditional mark 

recapture analysis. This method was initially developed for studies of rodents that involved 

repeated live-trapping efforts. In this study we attempt, for the first time, to apply this general 

framework to birds captured on their wintering grounds with mist nets. 

 In 2012, we initiated a mark–recapture study of three species of sparrows (collectively 

referred to as “marsh sparrows”) that spend the winter (i.e., non-breeding) season in the tidal 

marsh that surrounds Kiawah Island in coastal South Carolina. We had discovered that these 

species could readily be captured during the above-average high tides (aka “spring tides” or 

“King Tides”) that occur twice each lunar month, wherein the entire population congregated at a 

limited number of refugia, which were unflooded habitat patches within the high marsh zone 

(i.e., roost sites). These dense aggregations (aka “roosts”) allowed us, over the course of a few 

hours, to capture all or almost all of the birds at a given refugium. However, as the seasons 

passed it proved impossible to maintain a regular schedule of capture effort at Kiawah Island. 

We were, in fact, only able to sample 6 sites every season, whereas there were 18 sites that were 

sampled at least once. Hence, we could only employ traditional mark–recapture methods on a 

subset of < 50% of the data collected. This situation led us to compare traditional mark-recapture 
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methods and a more recent spatially explicit method that would allow us to include all of our 

capture data to estimate survival and abundance.  

 Our study of marsh sparrows was motivated by the need to monitor annual survival rates 

of marsh sparrows in light of rising seawater levels and ongoing development on Kiawah Island. 

Both of these activities have the potential to reduce the availability of coastal salt marsh habitat, 

and the residents of Kiawah Island have a commitment to conservation that includes ensuring the 

survival of marsh sparrows (Selinger 2021). In addition to examining trends in survival and 

abundance across winter seasons, the study sought to reveal connections among environmental 

variables (e.g., severe weather and freezing temperatures) and the survival of each species. We 

also wanted to better understand the wintering behavior of marsh sparrows including their 

propensity for high site fidelity across years and how this attachment to specific sites affects 

survival. Ultimately, we sought information to help us forecast how these species may respond to 

future changes in their wintering landscape.  

The marsh sparrow species we studied were the Seaside Sparrow (Ammospiza maritima), 

the Saltmarsh Sparrow (Ammospiza caudacuta), and Nelson’s Sparrow (Ammospiza nelsoni). 

They are closely related species (Klicka et al. 2014) that overwinter in salt marshes almost 

exclusively along the U.S. Atlantic and Gulf Coasts (Greenlaw and Woolfenden 2007, Watts and 

Smith 2015). Where their wintering ranges overlap, all three sparrows often occur together in 

loose mixed flocks while foraging throughout the low marsh and while seeking refuge during 

high tides that flood the low marsh twice a day. Seaside and Saltmarsh Sparrows are habitat 

specialists restricted to tidal marshes throughout their annual cycle (Greenberg et al. 2006); the 

former breeds from Texas to southern Maine and includes migratory and non-migratory 

subspecies (Woltmann et al. 2014, Roeder et al. 2021, Greenlaw et al. 2022). The Saltmarsh 
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Sparrow is a short- to medium-distance migrant that breeds from northeastern Virginia to 

southern Maine (Greenlaw et al. 2020). Nelson’s sparrow is a medium-distance migrant that 

breeds in three geographically distinct regions spanning from the northern Great Plains of central 

Canada to the Maritime Provinces of Canada and northeastern coast of the U.S. (Shriver et al. 

2020). Across its breeding range, Nelson’s Sparrow uses a variety of wet and dry habitats, 

including freshwater marshes, wet meadows, coastal salt marshes, and even mesic hayfields 

(Dechant et al. 2002, Nocera et al. 2007, Shriver et al. 2010). As foraging habitat within the low 

marsh zone becomes flooded with the regular influx of high tides, all three species move to 

elevated areas of high marsh until the tide recedes and low marsh is uncovered. The relative 

abundance and diversity of marsh sparrows encountered at roost sites varies at the regional or 

local scale (Shaw 2012, Trinkle 2013). Individual marsh sparrows show strong fidelity to roost 

sites across years and are rarely observed using other roost sites even within a winter season 

(Michaelis 2009, Winder et al. 2012, Shaw 2012, Trinkle 2013).  

To our knowledge, our analyses are the first to apply Efford and Schofield’s (2020) 

spatially explicit capture-recapture model to birds. In so doing, we explore a situation that 

pertains to a large number of capture-recapture studies (e.g., Doherty Jr. and Grubb Jr. 2002, 

Johnston et al. 2016, Ruiz-Gutierrez et al. 2016), which is the tradeoff between omitting data to 

meet the assumptions of a traditional capture-recapture model vs. using a model that allows for 

more data inclusion at the cost of increased sophistication and less generalizable conclusions 

(i.e., conclusions are more site-specific). Moreover, our results provide much needed estimates 

of survival and abundance for species that are challenged by a human-altered environment that is 

experiencing reduction and fragmentation of their natural wintering habitat.  
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Methods 

Study area and capture methods 

The project took place within the tidal salt marsh habitat surrounding Kiawah Island 

(32°36’43.64” N, 80°4'27.51"W) (Fig. 1). Kiawah Island is a ~4,047 ha developed barrier island 

located approximately 24 miles south of Charleston, South Carolina, USA. The island stretches 

16 km in a southwest to northeast orientation, with a width of ~ 2.4 km at its widest point. As a 

private residential community and luxury beach resort destination, Kiawah Island supports a 

human population that ranges from ~1,4000 people in the winter to upwards of 10,000 people 

per day in the summer. Much of the island’s artificial habitat, including golf courses, hotels, 

roads, and residences, is concentrated within its relatively flat upland areas and interior. Kiawah 

also contains some 15 different natural habitat types across its terrestrial and aquatic 

environments, including ocean beach, maritime forest, salt shrub thicket, tidal mudflats, 

hammock islands, and tidal saltmarsh.  

We actively captured marsh sparrows within Kiawah Island’s tidal saltmarsh during eight 

consecutive non-breeding winters from January 2013 through March 2020. Although we 

sampled in October, November, December, April, and May of some years, the core of our 

sampling effort took place from January through March. Sampling occasions took place during 

daylight hours between sunrise and mid-afternoon (local time) and were scheduled to coincide 

with above-average high-tides produced by “spring tides” which occur twice a month and 

coincide with full or new moons when the Moon is closest to Earth. Sampling during these high-

water periods allowed us to exploit the fact that the birds are forced to congregate for several 

hours in relatively small patches of high marsh that are not inundated. Outside the time windows 

of these spring tides, marsh sparrows are extremely difficult to capture because they can disperse 
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throughout vast areas of low marsh that are difficult for us to access and maneuver in. Although 

the frequency and duration of suitable spring tides greatly limited the number of capture 

opportunities each winter, our capture method maximized catchability and optimized efficiency. 

Once the low marsh was flooded and birds were settled in their high tide roosting sites, we 

actively funneled birds toward one to three mist nets placed strategically at one end of the roost 

site. For larger roost sites (i.e.,  > 0.2 ha), we used a rope-dragging method to slowly corral and 

flush birds toward the nets. This process was generally repeated until it was apparent that we had 

captured all or almost all of the birds at a given roosting location. Once captured, all individual 

marsh sparrows were identified to species and banded with a uniquely numbered USGS 

aluminum leg band. For each banded bird, we collected standard morphometric data, including 

mass, wing chord, and bill length. Whenever possible, birds were aged by plumage or “skulling” 

and identified to subspecies level based on culmen length and plumage (Pyle 1997, Smith 2011). 

Across the entire study period we captured birds at 18 unique roost sites. However, due to a 

number of logistical factors, including site accessibility, availability of personnel, weather, and 

the timing of spring tides, the sampling effort at each roost varied within and across winter 

seasons. Hence, the number of roosts sampled within a given winter ranged from 11 to 17, and 

only 6 of the 18 sites were sampled every winter of the study. Individual roost sites were 

sampled up to 4 times in a single winter. The number of visits to each site was limited both by 

logistical constraints as described above and by the need to minimize our impact on the 

vegetation structure and microhabitats in each roost site. 
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Methods for estimating survival 

Because of inconsistency in the capture sites sampled across years, we could not meet the 

assumptions of traditional capture-recapture models (e.g., Cormack-Jolly-Seber Models) without 

omitting large quantities of data from sites that were not sampled in the same manner across 

years. Newer methods for estimating population parameters allow for inconsistent sampling by 

employing spatial data to integrate the potential for animal movement into estimates of survival. 

Their application has been limited to studies of mammals, and there is no precedent for applying 

them to animals that undergo periodic congregations similar to what we see with marsh 

sparrows. Therefore, we decided to apply three open-population mark-recapture methods (Table 

1) that encompass both traditional and more advanced approaches (i.e., omitting data to meet 

assumptions and including data in untested analytical methods). All three analyses shared the 

goal of estimating apparent annual survival probabilities of each marsh sparrow species. 

Methods 1 and 2 both employed Cormack-Jolly-Seber (hereafter “CJS”) models, and method 3 is 

a spatial analog of the Pradel-Link-Barker model developed by Efford and Schofield (2020). For 

each method, we used capture histories composed of eight primary capture-mark-recapture 

periods (“primary sampling occasions”). 

For method 1, we defined the primary sampling occasion as a three-month period from 

January through March, and for methods 2 and 3, the primary sampling occasion was composed 

of a five-month period (November – March) spanning two calendar years. For methods 1 and 2, 

we pooled banding data from roost locations that were sampled at least once in each of the eight 

primary sampling occasions. This filtering left us with sufficient data to include only five sites 

using method 1 and six sites using method 2. 
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We established four environmental covariates that we reasoned may be related to marsh 

sparrow survival in a given year (Table 2). These covariates were 1) winter precipitation (total 

rainfall for November to March; 2) number of freezing days (average temperature of 0° C or 

less) from November to March; 3) occurrence of one or more winter storms that produced ice or 

snow (coded as a binary); and 4) occurrence of a flood (coded as a binary). These covariates 

were chosen based on past research demonstrating the effects of temperature and severe weather 

on migratory songbirds (e.g., Dugger et al. 2004, Salewski et al. 2013, Wellicome et al. 2014, 

Rockwell et al. 2017, Woodworth et al. 2017, Hill et al. 2019). We specified constant 

detectability across all models because sampling effort was consistent across all years. Our 

sampling method entailed capturing all or nearly all birds at each roost site in each capture 

session; hence, we had no reason to suspect that detectability varied across years. 

Methods 1 and 2 – We compiled data from 2012 – 2020 to generate capture histories 

from every individual. Each capture history was encoded as a sequence of 1s and 0s that 

corresponded to whether an individual was captured in each sampling period (season) or not. 

Repeated captures of an individual in the same season were disregarded. For method 1, we 

generated capture histories from banding data collected only during the months of January, 

February, and March for each winter from 2013 to 2020 at five different capture sites. For 

method 2, we expanded the scope of our analyses to include individuals captured during a five 

month period from November – March that spanned two calendar years, and there were six 

capture sites included in the analysis. 

We fitted Cormack-Jolly-Seber (CJS) models within Program MARK (White and 

Burnham 1999) via the RMark package (Laake 2013) in program R 4.2.0 (R Core Team 2022) to 

estimate annual survival probabilities for Nelson’s, Saltmarsh, and Seaside Sparrows. We ran six 
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models for both method 1 and method 2 wherein survival was allowed to vary with one of the 

five covariates described above and listed in Table 2. In all analyses, we fit a CJS model to the 

data sets using the sine-link function. Survival estimates from each model were derived. The R 

code used for these analyses is posted on the Open Science Framework at 

https://doi.org/10.17605/OSF.IO/2T94F. 

We assessed goodness-of-fit and overdispersion using the Fletcher c-hat parameter 

calculated by Program MARK for the most parameterized model in each species’ model set. 

When Fletcher c-hat  < 1.2, we used AICc to rank models from best to worst. When Fletcher c-

hat  > 1.2 (indicating overdispersion), we corrected for overdispersion on the basis of an adjusted 

c-hat, and for model comparison we used the quasi-likelihood modified Akaike’s information 

criterion corrected for small sample sizes (QAICc). Finally, we retained all models for which 

ΔAICc (or ΔQAICc) was < 2 and used them to estimate population parameters via model 

averaging.  

Method 3 – We employed spatial Pradel-Link-Barker open-population capture-recapture 

models (hereafter “open SCR”) (Efford & Schofield 2020) using the full data set, including all 

capture efforts as well as repeated captures of individuals within a winter, to estimate annual 

survival for each species. This analysis allowed us to incorporate 18 capture sites into the 

analysis as opposed to five or six, and we were able to include 100–120% more individuals 

(Table 1). Each species’ capture-recapture dataset consisted of data collected during 119 

secondary trapping sessions across 8 primary trapping sessions. Secondary sessions 

corresponded to unique sampling dates between 1 November and 31 March within each of the 8 

winter periods (primary sessions). In contrast to methods 1 and 2, capture histories constructed 

for method 3 included multiple recaptures of the same individual within a winter. Locations 
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(longitude and latitude) and sampling effort (i.e., number of secondary trapping sessions) for 

each capture site (roost) were encoded separately into a ‘detector layout’ file which was 

combined with the species-specific capture data file to create the final input file. Finally, we 

incorporated a binary habitat mask that specified whether land cover within the study area was 

salt marsh or not. The habitat mask was generated from land cover data produced by NOAA 

Coastal Change Analysis Program (C-CAP). We downloaded the most recent (i.e., 2016) C-CAP 

data available for our study region (https://coast.noaa.gov/digitalcoast/) and reclassified the land 

cover types of the raster into two land cover categories representing salt marsh and non-salt 

marsh habitat. This raster layer was then converted to spatial polygons, from which we isolated 

salt marsh habitat within the larger geographic area of the study site. We verified the accuracy of 

data from the newly reclassified land cover map using recent high resolution aerial photographs 

of the study area captured in 2018 for the Town of Kiawah Island and satellite imagery of 

Google Earth Pro. All geospatial analysis was performed with Quantum GIS (QGIS) version 

3.16.15 (QGIS Development Team, 2022), and R code and associated files are available at 

https://doi.org/10.17605/OSF.IO/2T94F. 

As with methods 1 and 2, we fitted five separate models with differing predictors of 

survival corresponding to the variables in Table 2, plus one constant survival model. For all six 

open SCR models, we specified that the detection function intercept (lambda0, λ0), detection 

function scale (sigma, σ), and population growth rate (lambda, λ) should be kept constant across 

models. Hence, only the survival parameter was allowed to vary, whether randomly by year or as 

function of one of the four environmental covariates. We again used Akaike’s Information 

Criterion corrected for small sample sizes (AICc; Burnham & Anderson, 2002) to rank the six 

models, and we discarded any models with more than one unidentifiable parameter. We retained 

https://coast.noaa.gov/digitalcoast/
https://doi.org/10.17605/OSF.IO/2T94F
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all models for which ΔAICc was < 2 and used these models to estimate parameters via model 

averaging. Model fitting and selection of open SCR models was performed in R using the 

‘openCR’ package (Efford 2022).  

 

Estimating abundance 

In addition to estimating survival, we sought estimates of each species’ wintering abundance at 

Kiawah Island. To estimate abundance, we used the spatially explicit JSSAsecrD model in the 

openCR package for R (Efford 2022) because we wanted direct estimates of time-specific 

population density (animals per hectare), and this spatial modeling approach allows for open 

populations as well as multiple recaptures within and across primary sessions (i.e., winter 

seasons). The alternative, closed-population, approach was not workable because captures that 

occur across sessions would violate assumptions of independence (Efford and Schofield 2020). 

We constructed capture data and detector layout data files for each species following the same 

formatting described above in method 3. We also used the same habitat mask created for fitting 

the spatial models in method 3. 

For each species, we fit two simple JSSAsecrD models: 1) A null model with constant 

values for the four parameters (φ, λ0, σ, and D) across all primary sessions (t), and 2) a model 

that allowed D to vary among the primary sessions while keeping phi, lambda0, and sigma 

constant across primary sessions. Models were checked for maximization errors and non-

identifiability and then ranked according to AICc. We rejected any models with more than one 

unidentifiable parameter. For each species, the model with the lowest AICc and without possible 

maximization errors was selected as the ‘best’ model. We present estimates of density from the 

best-fit model for each species. We also report estimates of species’ winter abundance, which we 
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calculated by multiplying the best model’s estimates of density and confidence intervals by the 

area of available saltmarsh habitat at Kiawah Island (1,648 ha). 

 

Agent-based validation model 

To help evaluate the accuracy of survival estimates from the different populations models, we 

generated a simulation wherein populations of virtual birds were generated and sustained with 

pre-determined densities and survival rates. These populations were then sampled in a manner 

that corresponded to the real-world bird-banding effort that gave rise to our dataset. The birds in 

the virtual populations were distributed among several “zones,” that corresponded to the areas 

surrounding each of our 18 real-world capture sites. For each zone we stipulated a catchment 

area that corresponded to our best estimate of the extent of the marsh used by the birds linked to 

a particular high-tide refuge (capture site). The catchment area of each zone was estimated in 

hectares which ultimately translated into a proportion of a total of 1650 ha of habitat. Each zone 

also had spatial coordinates that matched the latitude and longitude of each corresponding 

capture site. For each simulation, an initial population of birds was generated based on a given 

density value (0.4, 0.8, or 1.2 birds per hectare) and 1650 ha of marsh habitat. The three different 

density values were chosen to represent the approximate average species’ densities estimated for 

Nelson’s, Saltmarsh, and Seaside Sparrows based on the results of our spatially explicit 

JSSAsecrD models (see above). Each of the virtual birds within the simulated population was 

apportioned to one of the 18 zones (i.e., capture sites) or was regarded as outside any of the 

zones according to the size of each catchment area and the remainder of the marsh that was not 

contained within a zone. This initial population was then projected forward in time with a 

number of randomly chosen individuals removed each year as determined by a yearly survival 
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rate. We set survival rates for the first 7 years to 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, and 0.8. Because the 

survival rate for year 7 represents the last time interval for which survival can be estimated, we 

decided to keep the survival rate for year 8 equal to 0.8. Virtual birds were also rearranged 

among zones (and the area outside the zones) each year as determined by random draws from 

survivors and a user-defined, year-to-year probability of movement rate, which we set equal to 

0.02. For birds selected for movement, their destination was determined by the probability of 

movement value (0.2), the catchment area of the zone (which was set to 20 ha for each of the 18 

zones), and the proximity of other zones.  

 After simulating a population over the course of 8 years, we simulated banding efforts 

that corresponded to the dates and locations of the real banding efforts. Each banding effort 

sampled birds in the zone that corresponded to the capture site, and the number of birds sampled 

was determined by multiplying the number of birds in the zone by a user-defined capture-

probably value based on our estimation of real capture success. For each virtual bird that was 

sampled, we assigned it a band number and projected that band number forward in time 

throughout the population data frame, so that “recaptures” could be recognized. Over the course 

of each banding season, birds could move among zones (and outside zones) according to a daily 

movement rate; hence the simulation mimicked real instances in which the same bird was 

captured at different sites in the same year. The result of each simulation was a full record of a 

simulated population, with known densities and survival rates, as well as virtual bird-banding 

data from a sampling regime that emulated our real-world banding as precisely as possible. From 

the virtual bird-banding datasets, we created capture history files for analysis by our three 

capture-recapture methods. Capture histories for each analytical method were formatted 

following the same steps as described above in the methods for estimating survival (e.g., capture 
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histories for Method 1 were generated from banding data collected at five different capture sites 

during January, February, and March of each winter from 2013 to 2020). In total, we created 9 

capture history files from our simulated population datasets (Table 3). 

 To compare model performance, we applied the CJS and open SCR model approaches 

used in Methods 1, 2, and 3 on our virtual bird banding data and compared the resulting 

population parameters with the known parameters that governed our virtual bird populations. For 

CJS and open SCR methods, we only fitted one model that allowed survival to vary randomly by 

year (i.e., Phi ~ t) and kept all other model parameters constant across years. We fitted a total of 

9 models, one for each of the 9 capture histories generated from the simulated data. Simulations, 

data formatting, and models were executed in the R programming environment, the relevant R 

code and associated files are available at https://doi.org/10.17605/OSF.IO/2T94F.  

 

Results  

Across all years 8 seasons we processed a total of 2,965 capture events across 18 captures sites, 

which comprised capture histories for 414 Nelson’s, 285 Saltmarsh, and 1,149 Seaside Sparrows. 

All of these data were used for Method 3 analyses. For method 1, we used capture histories for 

187 Nelson’s, 126 Saltmarsh, and 421 Seaside Sparrows associated with 5 capture sites; and for 

method 2, we used capture histories for 210 Nelson’s, 156 Saltmarsh, and 522 Seaside Sparrows 

from 6 capture sites.   

 

Annual survival estimates 

Nelson’s Sparrow – Method 1, when applied to Nelson’s Sparrow, resulted in four models for 

which ΔAICc ≤ 2. These comprised the null model, and the models that included winter 

https://doi.org/10.17605/OSF.IO/2T94F
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precipitation, flood, and winter storm as covariates, respectively. The model-averaged estimates 

(± SE) of annual survival ranged from a low of 0.47 ± 0.086 (between seasons 4 and 5) to 0.56 ± 

0.18 (between seasons 7 and 8). The degree of AICc weight allocated to models with severe 

weather covariates (0.538) suggests that survival of Nelson’s Sparrows is linked to local weather 

conditions. However, within their respective models, effect sizes (β ± 95% CI) of winter 

precipitation (-0.027 ± 0.043), flood (1.18 ± 2.62), and winter storm (0.41 ±  1.40) all had 95% 

confidence intervals that included zero. 

Method 2 applied to Nelson’s Sparrow resulted in five models that were well supported 

by the data (ΔQAICc  < 2), all of which provided similar survival estimates. These five models 

included the null model as well as models that included annual survival as a function of freezing 

days, flood, winter precipitation, or winter storm. We used model averaging to obtain estimates 

of annual survival, which ranged from 0.48 ± 0.109 between seasons 6 and 7 to 0.53 ± 0.126 

between seasons 7 and 8. As with method 1, annual survival appeared to be greatest between the 

last two winters (2018/19 - 2019/20). Also, with method 2 there was no clear evidence that the 

environmental covariates influenced survival as the 95% confidence intervals of their effect sizes 

overlapped zero: Freezing days (β = -0.09 ± 0.21 95% CI), flood (β = 0.56 ± 1.94 95% CI), 

winter precipitation (β = -0.01 ± 0.04 95% CI ), and winter storm (β = -0.27  ± 1.23 95% CI). 

The Nelson’s Sparrow data analyzed with method 3 yielded higher survival estimates 

than did the analyses using methods 1 and 2 but was similar, indicating potential effects of 

winter weather. The best model included winter precipitation as a covariate, and three other 

models (winter storm, null, and freezing days) were among those with ΔQAICc ≤ 2. The model-

averaged estimates (±SE) of annual survival ranged from 0.54 ± 0.09 between seasons 4 and 5 to 

0.78 ± 0.15 between seasons 6 and 7. Hence, not only were the survival estimates from the 
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spatial modeling approach higher than those from the CJS models, they also did not vary across 

seasons in correspondence with CJS estimates (Fig 2). Effect sizes (β ± 95% CI) for winter 

precipitation, winter storm, and freezing days were -0.04 ± 0.05, 1.53 ± 2.49, and 0.15 ± 0.23, in 

their respective models. 

Saltmarsh Sparrow – The Saltmarsh Sparrow capture histories, when analyzed via 

method 1, resulted in four models with values of ΔAICc ≤ 2.0. The best model was the one that 

included winter precipitation as a covariate, and it was followed in AICc weight by the null 

model, the winter storm model, and the freezing days model. Model-averaged survival estimates 

(± SE) ranged from 0.51 ± 0.11 between seasons 4 and 5 to 0.73 ± 0.15 between seasons 6 and 7 

(Fig. 3). As with Nelson’s Sparrow, the summed AICc weights from models with weather 

covariates (0.704) suggested an influence of winter weather on Saltmarsh Sparrow survival. 

Freezing days (β = 0.163 ± 0.14 SE) and winter storm (β = 1.29 ± 1.28 SE) were positively 

related while winter precipitation (β = -0.04 ± 0.03 SE) was negatively related to annual survival 

probabilities, but their 95% confidence intervals overlapped zero (freezing days 95% CI: -0.12, 

0.44; winter storm 95% CI: -1.22, 3.79; winter precipitation 95% CI: -0.10, 0.01). 

Using Method 2, we found five models were well supported by the Saltmarsh Sparrow 

data (ΔAICc ≤ 2), with the null model receiving the most support (AICc weight = 0.358). The 

other four models (cumulative AICc weight = 0.632) had nearly equivalent support in the data 

and included an effect of one environmental covariate (winter storm, flood, freezing days, or 

winter precipitation) on annual survival probability. Although the cumulative weight of the 

models with environmental covariates was high, we did not find strong evidence for a 

relationship between annual survival and any of the environmental covariates (βwinter storm = 0.54, 

95% CI = -0.84, 1.92; βflood = 0.50, 95% CI = -1.22, 2.22; βfreezing days = 0.06, 95% CI = -0.14, 
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0.27; βwinter precipitation = -0.01, 95% CI = -0.05, 0.03). Model-averaged estimates of annual survival 

rates (±SE) were consistent across years, ranging from 0.56 ± 0.069 between the fourth and fifth 

winter seasons (2015/16 – 2016/17) to 0.61 ± 0.101 between the sixth and seventh winter 

seasons (2017/18 – 2018/19) (Fig. 3). 

The best-supported model for the Saltmarsh Sparrow data set analyzed using Method 3 

was the null model (AICc weight = 0.58). The second and third ranked models each included an 

environmental covariate and both models received an equal amount of support (AICc weight of  

= 0.21). The second ranked model included an effect of freezing days on annual survival 

probability, while the next best model included an effect of winter storm on annual survival 

probability. Model-averaged estimates of annual survival probability calculated from the top 

three ranked models were, overall, slightly higher and less variable across years compared to the 

estimates from Methods 1 and 2, with survival (± SE) ranging from 0.68 ± 0.07 to 0.71 ± 0.05 

(Fig. 3). We did not find strong evidence of a relationship between survival and either of the 

environmental covariates, as their 95% confidence intervals overlapped zero (βfreezing days = –0.04, 

95% CI = –0.22, 0.14; βwinter storm = –0.24, 95% CI = –1.4, 0.92). 

Seaside Sparrow – Method 1 applied to Seaside Sparrow resulted in only one model 

being retained (ΔAICc ≤ 2) for survival. This top-ranked model, which included the temporal 

effect of flood on annual survival, had more than four times the AICc weight (0.66) as the 

second-ranked model (0.15), which allowed survival to vary by winter. Annual survival 

estimated from the top-ranked model suggested a positive effect of winter flooding (βflood = 1.48 

± 0.93 SE, 95% CI = -0.35, 3.30). This means that survivability was higher in the year following 

a winter with a flood event (0.84 ± 0.13 SE) compared to the years which followed a winter 

without any flooding event (0.54 ± 0.03) (Fig. 4).  



 19 

Using Method 2, we found that only two of our six candidate models received strong 

support when fitted to the Seaside Sparrow data. The top model (AICc weight = 0.46) included 

the temporal effect of flood on annual survival and had only marginally better support than that 

of the second-best model, which was the null model (AICc weight = 0.35). Because two models 

were well-supported by the data, we used model averaging to generate estimates of annual 

survival (Fig. 3). Model-averaged estimates (± SE) of annual survival ranged from 0.46 ± 0.10 to 

0.58 ± 0.07 during the first six years (2012/13 – 2018/19) and increased to 0.76 ± 0.12 for yearly 

interval following the second to last winter (2018/19 – 2019/20) (Fig. 4). Like the results of 

Method 1, we found some evidence of a positive relationship between winter flooding and 

Seaside Sparrow survival in the subsequent year (β = 1.00 ± 0.57 SE, 95% CI = -0.11, 2.11). 

There was also evidence of a negative relationship between the third winter period (2014/2015) 

and survival in the subsequent year (β𝝓3 = -1.10 ± 0.42 SE, 95% CI = -1.92, -0.28), but we did 

not find strong support for an effect of any other winter period on survival as their 95% 

confidence intervals broadly overlapped zero. 

Using Method 3 to analyze the expanded Seaside Sparrow data (n = 1,149), our top 

ranked model (AICc weight = 0.40) included the temporal effect of winter storm on annual 

survival and had only marginally better support than that of the second best model, which was 

the null model (AICc weight = 0.34). There was some evidence that winter storm was positively 

related to survival in the subsequent year (β = 0.4 ± 0.28 SE, 95% CI = -0.14, 0.95), with model-

averaged estimates (± SE) of survival from the top two models (ΔAICc ≤ 2) slightly higher in 

post-winter storm years (0.66 ± 0.05) compared to years following winter periods during which 

there were no snow or ice storms in the study area compared (0.61 ± 0.03) (Fig. 4). 
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Density and abundance estimates 

Analysis of density using capture histories for each species showed that the model with density 

varying with winter period received overwhelming support (AICc weight = 1.0) compared the 

null model for all three species. Nelson’s Sparrow densities (birds per hectare ± SE) ranged 

broadly across seasons from 0.11 ± 0.03 in the second winter (2013/14) to 0.79 ± 0.61 in the last 

winter (2019/20). These density estimates translate to total winter abundances ranging from 

181.28 (95% CI = 115.36 – 313.12) to 1,301.92 (95% CI = 1,005.28 – 1,697.44). Overall, the 

wintering population of Nelson’s Sparrow increased steadily in abundance over the study period, 

with the only declines in abundance occurring between the first and second winter periods 

(2012/13 – 2013/14) and between the sixth and seventh winter periods (2017/18 – 2018/19) (Fig. 

5). The largest change in winter abundance happened between the second and third winters, 

when Nelson’s Sparrow experienced a nearly 264% increase in numbers, from 181.28 (95% CI = 

115.36 – 313.12) to 659.2 (95% CI = 477.92 – 906.40) individuals (Fig. 5). 

Overall, density estimates were higher for Saltmarsh Sparrow compared to Nelson’s 

Sparrow, with a minimum density (± SE) of 0.52 ± 0.14 in the first winter (2012/13) and a 

maximum density of 1.46 ± 0.32 in the penultimate winter (2018/19). The wintering population 

of Saltmarsh Sparrow at Kiawah Island showed a similar trend to that of Nelson’s Sparrow, with 

increasing abundance over the study period. However, Saltmarsh Sparrows evinced a large 

(~70%) increase in total abundance between the winters of 2017/18 and 2018/19, with a peak 

abundance estimate of 2,406.08 (95% CI = 1,565.6 – 3,708.0) (Fig. 5). 

Seaside Sparrows had the highest density estimates which ranged across seasons from 

0.85 ± 0.07 SE in the winter of 2014/15 to 1.68 ± 0.14 SE in the winter of 2018/19. Of our three 

marsh sparrow species, Seaside Sparrow had the largest estimated winter population sizes at 
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Kiawah Island. Abundance estimates across seasons ranged from 1,400.08 to 2,768.64. The trend 

toward increasing abundance across seasons was not as apparent in Seaside Sparrows as it was in 

the other species, with a lower population estimate in the final season (1,796.32; 95% CI = 

1,549.12 – 2,092.96) than in the first season (2,241; 95% CI =1,895.2 – 2,653.28) (Fig. 5). 

Interestingly, our results suggest that both Seaside and Saltmarsh Sparrows experienced 

relatively large surges in their estimated winter population sizes at Kiawah from 2016/17 to 

2018/19 (55% and 72% increase, respectively) before undergoing sharp declines in their winter 

population sizes (28% and 35% decrease) between the last two years of the study, from 2018/19 

- 2019/20 (Fig. 5). 

 

Population data simulation and model performance 

Overall, our three capture-recapture analysis methods performed similarly, producing annual 

survival values lower than the true values for data sets simulated at three different density levels 

(Figs. 6, 7, and 8). Although all methods tended to underestimated survival, method 2 generally 

outperformed the other two methods, but this tendency was not always consistent. For example, 

for the low population density simulation, method 2 provided accurate estimates for some years 

(2012/13, 2014/15, 2016/17, 2018/19) but not others (2013/14, 2015/16, 2017/18; Fig. 6). 

Nevertheless, across all simulations method 2 was the most accurate in 11 of the possible 21 

survival estimates, which surpasses both method 1 and 3.  

 

Discussion 

Traditional capture-mark-recapture (CMR) analyses for open populations (e.g., Cormack-Jolly-

Seber model) are generally conceived for data sets that result from rigorous adherence to a set 
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schedule of capture episodes wherein capture effort is constant across capture efforts. Such a 

schedule is the ideal for estimating population parameters like apparent survival, but logistical 

concerns and the unique behavior of the organisms being studied can often make regular 

sampling impossible. In our long-term study of marsh sparrows, several factors prevented us 

from adhering to some of the recommended data collection protocols associated with a CMR 

analytical framework. In particular, the timing and height of spring high tides dictated the timing 

of our capture efforts, and as a corollary we could not always muster the personnel required for 

sampling as the availability of volunteer field assistants varied independently of the tides. 

Finally, weather conditions and the physical condition and/or accessibility of roost sites also 

reduced our ability to maintain consistency in our banding efforts.  

To meet the assumptions of CJS models, we had to omit more that 50% of the data we 

collected and consider capture histories only from the 5 or 6 sites that we were able to sample 

every season. Data from 12 or 13 other sites that were not regularly sampled did not contribute to 

analyses via method 1 or method 2. Our use of a spatially explicit capture-recapture modeling 

approach (Efford and Schofield 2020) allowed us to incorporate our entire data set into 

estimating survival and abundance. It is important to note that our study was not inherently 

designed for spatially explicit capture-recapture analysis. Nevertheless, our data, like that 

collected in many capture-mark-recapture studies, are inherently spatial. We sampled at multiple 

spatially distinct roosting locations (patches of high marsh habitat) distributed throughout a 

geographically closed study area. The spatial open population capture-recapture modeling 

approach developed by Efford and Schofield (2020:398) “relaxes some assumptions of non‐

spatial open‐population and spatial closed‐ population models,” allowing us to bring to the 
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analysis more segments of the overall population of marsh sparrows, leading to more realistic 

estimates of population parameters.  

Survival estimates from methods 1 and 2 were similar, and there was general 

correspondence between the yearly survival estimates from methods 1 and 2 within each species 

(Figs 2, 3, and 4). Neither method 1 nor 2 yielded consistently higher estimates than the other. 

These observations suggest the data from an additional roost site used in method 2 had a 

negligible effect with regard to survival estimates using CJS models. However, analyses of our 

simulated populations suggest that method 2 was superior to method 1. The survival estimates 

from method 3 were higher than those of methods 1 and 2 in all three species and across almost 

every season. Given that inclusion of all banding data essentially casts a broader net for 

recapturing individuals, higher survival estimates for method 3 could be regarded as an expected 

result. The differences between method 3 (spatial PLB model) and the CJS model results beg the 

question as to which provides a better estimate of survival. We think that the spatial PLB model 

is preferred because it conditions on the number of individuals observed during the study (n) 

rather than times of the first detection. There were no evident trends in survival across seasons, 

although methods 1 and 2 registered an unusually high survival rate for the last season of data 

collection (Figs 2, 3, and 4).  

Although the results from method 3 yielded reasonable results, there are several factors 

that call for caution in accepting our estimates. Foremost, is that our data are not ideally suited to 

the spatially explicit model because recaptures of individuals across different roost sites were 

relatively rare. The model requires detections of individuals moving across capture sites to 

estimate the detection function scale (i.e., s) which describes how the detection probability 

decreases with distance from an original capture site (Smith et al. 2020). We captured > 150 
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individuals at more than one site, but they represented a small proportion (< 1%) of the number 

of individuals captured overall. Secondly, when looking at the results of our data simulation 

analyses, both model types (spatial PLB and non-spatial CJS) generally underestimated survival 

rates for the simulated data sets, suggesting that our real-world survival estimates for Nelson’s, 

Saltmarsh, and Seaside Sparrows might also be low.  

Models with environmental covariates (e.g., flood, winter storms, etc.) were frequently 

included among the best models generated by all three of our analytic methods, yet there was no 

clear evidence that survival was meaningfully affected by these factors. Generally speaking, beta 

values for environmental variables in models with covariates were trivial (i.e., their 95% 

confidence intervals overlapped zero). Given that survival across years was minimal, there is not 

much variation that could be attributed to any of the covariates. 

Abundance estimates indicate a clear stratification among the three species wherein 

Nelson’s Sparrows are the least common and Seaside Sparrows are the most common. This 

conclusion is supported by general observations of the marsh sparrows in the area (WFO and 

AMG, pers. obs.). Over the course of the study there appears to be a trend toward increased 

density and abundance in Nelson’s Sparrows and Saltmarsh Sparrows. There may be a similar 

trend among Seaside Sparrows, but a somewhat high estimate of density in the first season of the 

study and a relatively low density estimate in the last season obscure this result. 

One thing that may have resulted from the low number of recaptures across sites is a 

discrepancy between total captures and the density and abundance estimates for Saltmarsh 

Sparrows and Nelson’s Sparrows. The abundance estimate for Saltmarsh Sparrows was 

consistently higher than that of Nelson’s Sparrows (Fig 5); although we captured considerably 

more Nelson’s Sparrows (414) than Saltmarsh Sparrows (285). The total number of recaptures 
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for the two species were similar (Nelson’s Sparrow: 109; Saltmarsh Sparrow: 105) indicating a 

higher proportion of recaptures for Saltmarsh Sparrow. However, 10.8% of Saltmarsh Sparrows 

were captured at more than one site, whereas only 5.3% of Nelson’s Sparrows were captured at 2 

sites (no birds of either species were captured at 3 or more sites). These interspecific differences 

likely affected the detection function scale (Sigma) in the model. Estimates of sigma are 

compromised when there are few or no detections in different locations. Captures across sites 

were rare for both species, but they were especially rare for Saltmarsh Sparrows. 

Marsh sparrows on Kiawah Island and similar coastal areas in the region face a dual 

threat of rapid sea-level rise and established human developments. Whereas gradual shifts in sea-

level within an undeveloped landscape would likely have sustained marsh habitats with some 

upslope or downslope shifts in the marsh boundaries, sea-level rise in a developed landscape 

does not allow for marsh habitat to spread inland. Hence, loss of habitat and habitat 

fragmentation are major concerns with regard to the sustainability of marsh sparrows in coastal 

South Carolina and the surrounding region.  

Given these ongoing threats to marsh sparrow populations, there is a need to improve 

monitoring methods. Our work has focused on capturing relatively large numbers of birds at tidal 

refugia during high tide events.  Although it is possible to capture marsh sparrows at low tide 

when they are dispersed across the salt marsh, these capture efforts generally require large teams 

of field workers and yield many fewer birds than high-tide efforts. Nevertheless, capturing birds 

at low tide may allow for a better assessment of how birds move throughout the marsh. Perhaps a 

combination of low-tide and high-tide capture effort could provide a full perspective on the 

population, wherein high-tide work generates a robust sample of the population, and low-tide 

work reveals potential biases in data that come from a limited number of refugia.  
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Tables 

Table 1. The types of capture-recapture survival models, months, number of winters, and number 

of roost sites used in methods 1 – 3 of the present study. (NESP = Nelson’s Sparrow; SALS = 

Saltmarsh Sparrow; SESP = Seaside Sparrow) 

     Number of individuals 

Method Model type Months Number 
of 
winters  

Number 
of roosts 

NESP SALS SESP 

1 CJS Jan - Mar 8 5 187 126 421 

2 CJS Nov - Mar 8 6 210 156 522 

3 Spatial PLB Nov - Mar 8 18 414 285 1,149 
a CJS = Cormack-Jolly-Seber model (Cormack 1964, Jolly 1965, Seber 1965). b Spatial PLB = spatial 

analog of the Pradel-Link-Barker model (Efford and Schofield, 2020) 

 

 

 

 

https://doi.org/10.1371/journal.pone.0112739
https://doi.org/10.1038/ncomms14812
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Table 2. Definitions of each covariate used to model the annual survival for Nelson’s, Saltmarsh, 

and Seaside Sparrows.  

Variable Definition 

t Time or winter period; ‘primary session’ in spatial openCR model 

Flood Binary environmental variable representing whether there was a coastal 
flooding event that winter at Kiawah Island, SC 

Winter storm Binary environmental variable representing whether there was a snow and/or 
ice storm that winter at Kiawah Island, SC 

Winter precipitation Environmental covariate representing the total precipitation (cm) during that 
winter (1 Nov – 31 Mar) in Charleston, SC 

Freezing days Environmental covariate representing the number of days in Charleston, SC 
that winter (1 Nov – 31 Mar) with a mean temperature < 0°C 

 

 

Table 3. The number of simulated individuals produced under three different population 

densities that were used in our three different methods of capture-recapture analysis.  

Simulated population density Method 1 Method 2 Method 3 

Low  
 213 268 549 

Medium 
 405 513 1030 

High 599 785 1544 
 

 

Figure legends 

Figure 1. Map of the 18 primary high-tide roost sites where wintering marsh sparrows were 

sampled during the 8-year study period (2012/13 – 2019/2020) at Kiawah Island, South Carolina. 

Green areas denote intertidal saltmarsh, blue is open water, and all other habitat/landcover is 

brown. 
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Figure 2. Estimates (± SE) of annual survival for Nelson’s Sparrow from three methods of open 

population capture-recapture analysis. Methods 1 (n = 187) and 2 (n = 210) used a standard 

Cormack-Jolly-Seber (CJS) modelling approach, while method 3 (n = 414) applied a spatially 

explicit modeling approach. 

Figure 3. Estimates (± SE) of annual survival for the Saltmarsh Sparrow from three methods of 

open population capture-recapture analysis. Methods 1 (n = 126) and 2 (n = 156) used a standard 

Cormack-Jolly-Seber (CJS) modelling approach, while method 3 (n = 285) applied a spatially 

explicit modeling approach. 

Figure 4. Estimates (± SE) of annual survival for the Seaside Sparrow from three methods of 

open population capture-recapture analysis. Methods 1 (n = 421) and 2 (n = 522) used a standard 

Cormack-Jolly-Seber (CJS) modelling approach, while method 3 (n = 1,149) applied a spatially 

explicit modeling approach. The first 6 winters were "flood-free", while the 7th winter had at 

least one flooding event.  

Figure 5. Estimates of abundance (± 95% CI) of marsh sparrow species each winter season 

(November – March) at Kiawah Island, SC from 2012/13 to 2019/20.  Abundance estimates were 

calculated by multiplying density estimates (individuals per hectare of saltmarsh) by the total 

available area of saltmarsh within the study area (~1648 ha). Density estimates were generated 

by the best-fit JSSAsecrD model for each species. (NESP = Nelson's Sparrow; SALS = 

Saltmarsh Sparrow; SESP = Seaside Sparrow). 

Figure 6. Annual survival probability (95% CIs) estimated by fitting non-spatial CJS (Methods 1 

and 2) and spatial PLB (Method 3) models to simulated data from a population simulated at “low 

density” (0.4 animals/ha). Dark red diamond symbols denote the true survival values. 
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Figure 7. Annual survival probability (95% CIs) estimated by fitting non-spatial CJS (Methods 1 

and 2) and spatial PLB (Method 3) models to simulated data from a population simulated at 

“medium density” (0.8 animals/ha). Dark red diamond symbols denote the true survival values. 

Figure 8. Annual survival probability (95% CIs) estimated by fitting non-spatial CJS (Methods 1 

and 2) and spatial PLB (Method 3) models to simulated data from a population simulated at 

“high density” (1.2 animals/ha). Dark red diamond symbols denote the true survival values. 
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CHAPTER TWO 

 

Functional connectivity of a coastal landscape for three tidal marsh songbirds:  

a translocation experiment 

 

Keywords:  

animal movement, translocations, ornithology, salt marsh, habitat fragmentation 

 

 

 

Abstract 

Predicting species’ responses to environmental changes requires assessments of site fidelity as 

well as an understanding of how individuals move through habitats that may become 

heterogenous and/or fragmented. We used translocation experiments to evaluate the functional 

connectivity of a heterogenous saltmarsh landscape for three coastal marsh songbird species 

during the non-breeding winter season. We tested whether species differed in their movement 

abilities and if landcover type and translocation distance had any influence on movement. Over 

two consecutive winter seasons, we radio-tagged and experimentally translocated Seaside 

Sparrows (Ammospiza maritima; n = 42), Nelson’s Sparrows (A. nelsoni; n = 10), and Saltmarsh 
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Sparrows (A. caudacuta; n = 6) 0.26 – 2.3 km across two different landscape types (i.e., 

continuous marsh vs. fragmented marsh) and monitored their return success and times. Overall 

return success was high (72% of 57), but we found no clear evidence that return success differed 

among species or between continuous and fragmented marsh. Return times did not appear to be 

significantly influenced by species, landscape treatment, or translocation distance. Our findings 

indicate a strong fidelity in all three species of marsh sparrow to wintering home ranges and 

associated high-tide roost sites. This strong homing instinct may have led to the surprising result 

that wintering marsh sparrow movements are not significantly impacted by habitat 

fragmentation.  

 

Introduction 

Salt marshes support a wide variety of animal species adapted to the tidal dynamics of these 

ecologically productive and economically valuable coastal wetlands (Barbier et al. 2011; 

Costanza et al. 2008; Greenberg et al. 2006; Taylor et al. 2018). Over the past several centuries, 

the impacts of human settlement and land use practices within coastal zones have greatly reduced 

the quality and extent of saltmarshes around the world (Gedan et al. 2009; Lotze et al. 2006). 

Consequently, populations of vertebrates restricted to these intertidal habitats have declined, 

resulting in a disproportionate number of endangered, threatened, or conservation-priority 

species and subspecies (Greenberg et al. 2006). Accelerated rise in sea level associated with 

climate change is predicted to reduce the extent of saltmarsh habitat in some regions (Hunter et 

al. 2017; Rosencranz et al. 2018; Kirwan et al., 2016; Schuerch et al. 2018), which will 

compound the observed and predicted impacts of increased human settlement in many coastal 

areas (Carter et al. 2014; Dame et al. 2000; Powell et al. 2017). The combined impacts of human 
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activities and sea-level rise undoubtedly will transform what are now isolated areas of 

contiguous saltmarsh into fragmented landscapes of saltmarsh and matrix (non-saltmarsh) 

habitats. It remains to be seen how saltmarsh species will cope with contraction and 

fragmentation of their habitat, although we might expect to see reductions in survival, gene flow, 

population persistence, and dispersal. 

 Little is known about how tidal marsh songbird species move and settle within their 

winter landscape. Studies on forest and grassland birds have shown that fragmentation and loss 

of preferred habitat can create behavioral barriers that influence movement abilities and site 

fidelity across the landscape (Bélisle and Desrochers 2002, Harris and Reed 2002; Knowlton et 

al. 2017; Krištín and Kaňuch 2017; Volpe et al. 2016). Such barriers are significant because 

movement and site fidelity influence habitat selection, and, ultimately, a species’ spatial 

distribution, genetic structure, and population persistence.   

 Translocation (displacement) experiments give us a powerful and logistically efficient 

way to study how birds and other animals move across landscapes and how the composition and 

configuration of different landscape features influence those movements (Betts et al. 2015). 

Translocation studies typically involve: (1) capturing site-faithful/territorial individuals, (2) 

uniquely marking them so they can be monitored and detected later, (3) releasing them at new 

sites at across gradients of habitat loss and/or fragmentation, and (4) tracking them back to their 

capture site or attempting to detect them later at their capture site. Return time (homing time) and 

the probability of return (return success) are used as indirect measurements of landscape 

connectivity, with long return times and low probabilities of return typically associated with 

landscapes of low connectivity (permeability). Some features such as habitat corridors may 
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facilitate a species’ movement across the landscape, whereas other features such as habitat 

matrix, rivers, and roads may restrict a species’ movement. 

 We used translocation experiments to investigate connectivity of a heterogenous coastal 

landscape for three bird species, henceforth collectively referred to as marsh sparrows: the 

Seaside Sparrow (Ammospiza maritima), Saltmarsh Sparrow (A. caudacuta), and Nelson’s 

Sparrow (A. nelsoni). Individuals were captured and moved different distances across two 

landscape treatments: 1) landscapes comprising continuous salt marsh (“continuous marsh”) 

between capture and release site, and 2) landscapes composed of a mosaic of salt marsh 

fragmented by human-modified habitats. We then released the birds and used radio telemetry to 

monitor if and when birds returned to their point of capture.  

 Using this translocation paradigm, we tested several predictions about return success and 

return time in relation to displacement distance, landscape treatment, and species. First, we 

predicted that marsh sparrows would show lower probabilities of return and slower return times 

as translocation distance increased. In addition, we predicted that individuals would return more 

quickly and successfully through the continuous marsh landscape relative to the fragmented 

marsh landscape. We reasoned that birds displaced across the fragmented treatment landscape 

would be unwilling to cross unsuitable habitats (Harris and Reed, 2002), such as roads and open 

water, forcing them to carry out lengthy and complex movement paths to return to their capture 

sites (Gillies and St. Clair, 2008; Knowlton et al. 2017; Tremblay and St. Clair, 2011) or to find 

and establish a new home range for the remainder of the winter. Alternatively, individuals 

returning across fragmented marsh may have shorter return times because taking shortcuts 

through unfamiliar habitat, where they move more directionally (and thus more quickly).  
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 All three of our target species are restricted to tidal marshes during the non-breeding 

season, but only Nelson’s Sparrow has variable breeding habitat associated with tidal marshes, 

with some breeding in inland marshes and others in coastal systems (Dechant et al. 2002; Nocera 

et al. 2007). Nelson’s Sparrow also migrates farther than Saltmarsh and Seaside Sparrows, with 

some populations undergoing inland migrations from the Gulf Coast of the United States to 

breeding locations around James Bay and Hudson Bay in Canada and throughout the Great 

Plains of northcentral United States and western Canada (Shriver et al. 2020). These life-history 

traits led us to predict that Nelson’s Sparrow will more readily navigate back to its winter home 

range following displacement. We predicted that Saltmarsh and Seaside Sparrows would not 

differ in return success or time across either landscape treatment.  

 

Methods 

Study area  

Our study took place within an approximately 39 km2 area encompassing Kiawah Island, South 

Carolina (Fig. 1; 32°36’43.64” N, 80° 4'27.51"W), a developed barrier island located on the 

Atlantic Coast of the Southeastern United States. Kiawah Island (hereafter “Kiawah”) contains 

some 15 different habitat types, including intertidal beach, maritime grassland, maritime shrub 

thicket, maritime forest, salt shrub thicket, and intertidal salt marsh. Maritime forest dominates 

the upland and interior areas of the island. However, over the last several centuries, much of the 

Kiawah’s upland dry land has been transformed by human activities, including agriculture and 

real estate development. The most significant changes have happened over the past 50 years with 

the establishment and growth of a private beach resort community which now extends across 

much of the island and even into the island’s salt marsh. Kiawah is immediately surrounded by 
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~8.3 km2 of intertidal salt marsh that is flooded and exposed twice daily by the tide. Most of that 

salt marsh covers the island’s protected landward side where many of our translocations took 

place. The salt marsh community at Kiawah can be roughly divided into three zones based on 

elevation (height above mean sea level), salinity, and tidal height: (1) low marsh, (2) high marsh, 

and (3) upland border. The twice-daily flooded low marsh is the dominant zone within the salt 

marsh system at Kiawah, and it is dominated by smooth cordgrass (Sporobolus alterniflorus or 

Spartina alterniflora). The high marsh zone typically receives less than two hours of high-tide 

flooding each day, but it will get completely flooded during storm surges and by above-average 

high tides produced from twice-monthly “spring tides”. Plant diversity increases in the high 

marsh zone and includes a mixture of Virginia glasswort (Salicornia depressa), saltgrass 

(Distichlis spicata), black needlerush (Juncus roemerianus), lavender thrift (Limonium 

carolinianum), turtleweed (Batis maritime), saltmeadow cordgrass (Spartina patens), and sea 

oxeye daisy (Borrichia frutescens). The upland marsh border zone lies between the high marsh 

zone and upland habitats (e.g., maritime forest, scrub/shrub thicket), where inundation from salt 

water rarely occurs. The two main plants in this zone are marsh elder (Iva frutescens) and sea 

oxeye daisy (Borrichia frutescens). While some areas of the island’s interior and surrounding salt 

marsh are protected under conservation easements, much of the barrier island’s landscape is 

susceptible to the impacts of ongoing human-related activities, including residential and 

commercial development. 

 

Study species  

Seaside, Saltmarsh, and Nelson’s Sparrows are closely related species (Klicka and Spellman, 

2007) that winter in salt marshes almost exclusively along the U.S. Atlantic and Gulf Coasts 



 48 

(Greenlaw and Woolfenden, 2007; Watts and Smith, 2015). Seaside and Saltmarsh Sparrows are 

habitat specialists restricted to tidal marshes throughout their annual cycle (Greenberg et al. 

2006); the former breeds from Texas to southern Maine and includes migratory and non-

migratory subspecies (Post and Greenlaw, 2020; Woltmann et al. 2014), the latter is a short- to 

medium-distance migrant that breeds from northeastern Virginia to southern Maine (Greenlaw et 

al. 2020). Nelson’s sparrow is a long-distance migrant that breeds in three geographically distinct 

regions spanning from the northern Great Plains of central Canada to the Maritime Provinces of 

Canada and northeastern coast of the U.S. (Shriver et al. 2020). Across its breeding range, 

Nelson’s Sparrow uses a variety of wet and dry habitats, including freshwater marshes, wet 

meadows, coastal salt marshes, and even hayfields (Dechant et al. 2002; Nocera et al. 2007; 

Shriver et al. 2010).  

  Analyses of mark-recapture data collected over eight consecutive winters at Kiawah 

suggest that marsh sparrows are largely settled in our area from 1 November until the end of 

March. Our findings are similar to those made in North Carolina by Winder et al. (2012), who 

collected and analyzed multiple years of wintering marsh sparrow mark-recapture data. The 

species co-occur within the low and high marsh zones (Watts and Smith, 2015; Winder et al. 

2012). During spring tides and storm surges, all three species move to elevated patches of high 

marsh and remain there until water recedes. The relative abundance and diversity of marsh 

sparrows encountered at roost sites varies at the regional or local scale (Shaw, 2012; Trinkle 

2013). Individual marsh sparrows show strong fidelity to roost sites across years (Michaelis, 

2009; Shaw, 2012; Trinkle, 2013; Winder et al. 2012), and they are rarely observed using other 

roost sites even within a winter season.  
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Translocation experiments  

We performed translocation experiments during two successive winters. The first season ran 

from 28 November 2018 to 14 March 2019 (median capture date: 26 December), and the second 

season ran from 10 January to 10 March 2020 (median capture date: 14 January). The dates 

spanning each field season correspond to the period (1 November – 31 March) when 

nonbreeding populations of marsh sparrows in the region have settled for the winter (Winder et 

al., 2012), and we presumed that individual birds had established stable winter home ranges by 

no later than 1 November. Climatic conditions in our study area were similar across both 

nonbreeding winter periods. For example, the average minimum daily temperature for each 

season was nearly identical (mean + 1 SD: Season 1: 46.1 + 9.5 F; Season 2: 46.7 + 10.4 F), and 

the average daily precipitation total (inches) was also similar between seasons (mean + 1 SD: 

Season 1: 0.12 + 0.34 inches; Season 2: 0.13 + 0.37 inches). 

 Birds were captured at 14 different roost sites between 0730 and 1330 h during spring 

tides when larger than average high tides forced birds to concentrate for 2-4 hours in their roost 

areas. Once the low marsh was completely flooded, we actively funneled birds toward one to 

three mist nets placed strategically at one end of the roost site. For larger roost sites (i.e.  > 0.2 

ha), we used a rope dragging method to slowly corral and flush birds toward the nets. The 

frequency and duration of these suitable high tides greatly limited the number of capture 

opportunities. However, without these larger than average tides, marsh sparrows are extremely 

difficult to capture because they can otherwise spread and move about in areas of low marsh that 

are difficult for us to access and maneuver in. We banded each marsh sparrow with a unique U.S. 

Geological Survey aluminum band and recorded the bird’s age (when possible), wing chord, fat 

score, and body weight. Individuals selected for translocation experiments were fitted with a 
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radio transmitter using a figure-eight leg-loop harness system, as described by Streby et al. 

(2015). Harnesses were made from a very thin (0.5mm) elastic sewing thread (Gütermann) and 

super glued directly to the transmitter body. The combined weight of the harness and radio 

transmitter did not exceed 3% of a bird’s body weight. Each radio-tagged bird was also banded 

with one plastic colored leg band to facilitate identification if it was recaptured, particularly if the 

bird’s transmitter fell off prematurely. To maintain statistical independence, all individuals (with 

one exception) were translocated only once. The exception was one Seaside Sparrow that was 

translocated twice in one season, and we used only data from its first translocation for our 

analyses. Birds selected for translocation were placed separately into cloth bags and transported 

by car to distances between 265 m and 2,331 m (mean + 1 SD: 1,056.21 + 481.7 m) from their 

capture site across continuous or fragmented marsh landscapes to pre-designated release areas 

within the high marsh (Fig. 2).  We chose release sites far enough away from presumed winter 

home ranges in order to reduce the potential influence of release-site familiarity on return time 

and success (Betts et al. 2015). Potential release areas were selected before the start of each 

season based on site visits and satellite imagery. To avoid non-independent returns within the 

same field season, we released individuals at least 50 m from each other. During both seasons, 

we observed each translocated bird during its release for up to 5 minutes to ensure that it 

exhibited normal flight capability. During the second field season, we observed each radio-

tagged bird inside a large, wired bird cage prior to its translocation and release. This method 

allowed us to more easily observe and address any issues related to harness fit before releasing 

the bird back into the marsh. To standardize the motivation to return, we released all translocated 

birds in salt marsh patches that were as similar as possible to each other in their vegetation 

characteristics and proximity to non-salt marsh habitats.  
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 We identified successfully homed marsh sparrows by detection of radio tag signals within 

capture site areas. Radio surveys began 5-7 hours upon release, and if individuals were not 

detected as same-day returns, then we carried out radio surveys at the relevant capture sites based 

on the following schedule: daily for the first two weeks following release (Season 1) or daily for 

the first 7 days, followed by day 9, day 11, and day 14 after release (Season 2). When birds had 

not homed within 7 days of translocation, we also surveyed their release site areas at least once 

up to 13 days post-translocation. If a bird did not return within 14 days, we continued to monitor 

their capture and release sites weekly until the bird returned, the transmitter failed, or until the 

study period ended. As constraints permitted, we searched for any individuals suspected of 

having settled outside their capture and release areas. All surveys took place between 0630 and 

2230 on days when the weather permitted (i.e. no heavy rain). Each capture site was surveyed 

within a radius of approximately 25 - 330 m by a single observer equipped with a hand-held 

receiver and directional antenna. The observer thoroughly patrolled the search area, stopping 

occasionally to listen for tag(s) of any potentially returned bird(s). Once a signal was detected, 

the observer would home in on the tag until the bird’s presence or absence within the specific 

capture site area could be recorded with confidence. We searched for translocated birds for a 

minimum of 10 mins, but the search period was extended in situations where there were multiple 

target birds at one site, during low tides when more potential habitat was exposed around the site, 

and also based on general capture site patch size. Return time was calculated as the number of 

days between release and first detection at the capture site. Two birds that returned on the same 

day were given a return time of 0.5 days. Return success was determined by radio-based 

presence/absence surveys for all birds except one. This one exception, which we included in our 
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analyses, was a Nelson’s Sparrow that had not been detected as a same-day return but was 

recaptured in a mist net the following morning at its original site.  

 In addition to the birds that were translocated, we radio-tagged two individuals each field 

season that were released at their capture site. We used these birds primarily as “controls” to 

evaluate the efficacy of detecting birds using radio telemetry, but we also monitored these 

“control” birds to better understand the wintering home range sizes and natural movements of 

our species. We followed the same search protocols with these birds as we did for translocated 

individuals, and we used the resulting re-location rate to evaluate bird detectability. Three of the 

control birds were Seaside Sparrows and were detected 100% of the time (two birds: 10 

detections in 10 attempts; 1 bird: 15 detections in 15 attempts). The fourth control bird was a 

Nelson’s Sparrow, and we detected it ~87% of the time (13 detections in 15 attempts). Our 

overall detection rate for control birds was 96% (48 detections in 50 attempts). 

 

Statistical analyses  

As environmental conditions in our study area were similar across years (see Translocation 

Experiments), we combined translocation data from both field seasons in all analyses. To test for 

differences in return success among species and between landscape treatments, we used log-

likelihood ratio (G-test) tests of independence with Williams’ correction for 2x2 and 2x3 

contingency tables. As an additional strategy for dealing with our small sample size and as a way 

to validate the results of our G-tests, we used a Bayesian framework to draw inference about 

whether return success differed by species or landscape treatment. More specifically, we built 

Bayesian analogs for G-tests of independence and used the Bayesian 95% density credible 

intervals (HDI) for estimates of proportions of successful returns to determine whether return 



 53 

success differed among species or between treatment groups tested. For example, if credible 

intervals broadly overlapped among our three species, we could comfortably say that return 

success did not differ among the species. Lastly, we tested whether return success was related to 

translocation distance based on a univariate logistic regression model with distance as the only 

covariate and return success as the binary response variable (0 = did not return, 1 = returned). 

The fit of our logistic regression model was evaluated by comparing it to the null model using a 

likelihood ratio test. 

 We applied two different time-to-event analyses to identify which of our predictor 

variables, if any, significantly influenced the return time of translocated birds. In the first 

analysis, we applied a non-parametric method (Kaplan-Meier survival curves and log-rank tests) 

to visualize and test for differences in return time between and among groups of our categorical 

variables. For this analysis, we focused on testing two null hypotheses: (1) all three species 

survival curves are equal, and (2) both landscape treatment survival curves are equal (all species 

data combined). We used log-rank tests to compare survival curves (Harrington and Fleming, 

1982; Kleinbaum and Klein, 2012). For our second analysis, we used the semi-parametric Cox 

proportional hazards (PH) regression approach to determine whether return time was influenced 

only by translocation distance. For the univariate Cox PH model, the response variable was the 

number of days between translocation and first detection of marked individuals at their capture 

site area within the same winter season. The time-to-event analysis techniques are commonly 

used in animal translocation studies and homing experiments to test for differences in ‘survival 

time’ (i.e., return/homing time) between certain groups or treatments (Bélisle et al. 2001; Capaldi 

and Dyer, 1999; Sheller et al. 2006; Smith et al. 2011). In our study, a terminal event occurred 

when an individual returned to its original capture site before the end of the winter field season. 
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Those individuals that were not detected to return to their capture sites within the same winter 

season that they were translocated (i.e., non-successful return) were treated as Type I, right-

censored data.  

 All statistical analyses were performed in R v. 3.6.3 (R Core Team 2020). We used the 

stats package to fit and evaluate logistic regression models. The GTest function in DescTools 

package (Signorell et al. 2021) was used to analyze contingency tables, while all Bayesian 

models used to analyze contingency tables were built in JAGS (Plummer 2003) and run via R 

using rjags package (Plummer 2016). We used the survival package (Therneau 2020) to analyze 

time-to-event (return time) data with Kaplan-Meier and Cox PH modeling approaches, with 

additional plotting and graphical diagnostics performed with the survminer package (Kassambara 

et al. 2021). For our Cox PH modeling, ties in return time were handled using Efron’s 

approximation, and we used statistical and graphical approaches based on scaled Schoenfeld 

residuals to verify the assumption of proportional hazards (Kleinbaum and Klein, 2012).  

 

Results 

Return success 

Combining data from both seasons, most of the marsh sparrows (72% of 57) returned to their 

capture site. Return success was similar across both seasons, with 70% (21 of 30) and 74% (20 

of 27) of birds returning in seasons one and two, respectively. However, we found no evidence 

that return success of individuals differed among species (G = 1.03, df = 2, p = 0.60; Fig. 3b). 

The lack of difference in return success among species was supported by the results of our 

Bayesian analysis which showed broadly overlapping credible intervals for estimates of 

proportion of successful returns (Fig. 4). The proportion of individuals returning to their home 



 55 

site was high for each species, with 73% of 41 Seaside Sparrows returning, compared to 60% of 

10 Nelson’s Sparrows and 83% of 6 Saltmarsh Sparrows (Fig. 3b). Return success did not appear 

to be associated with landscape treatment, with 78% of the 23 translocated sparrows returning 

from the continuous marsh treatment and 68% of 34 sparrows returning from the fragmented 

landscape treatment (G = 0.75, df =1, p = 0.39, Fig. 3a). The lack of association between return 

success and landscape treatment was also supported by our Bayesian analysis, which showed 

broadly overlapping credible intervals for estimates of proportion of successful returns for both 

landscape treatments (Fig. 4). As for the effect of translocation distance, there was a general 

trend of decreasing return rates with increasing distance, but the probability of return was not 

significantly associated with translocation distance, regardless of species or landscape treatment 

type, (2(1) = 3.3, p = 0.067). 

 

Return time  

Overall, birds that successfully returned did so rather quickly, regardless of landscape treatment. 

When data for all three species was combined, we found that 61% of the 41 birds detected back 

at their capture sites returned within four days of being displaced (𝑥  + 1 SD = 5.7 + 7.5 days; 

median = 3.0 days). The return times for all successfully homed birds (N = 41) ranged from half 

a day to 42 days. In our Cox proportional hazards regression analysis, translocation distance (m) 

was not significantly related to overall return time for marsh sparrows (p = 0.51). We did not 

find differences in comparing Kaplan-Meier survival curves for species (χ2 = 1.5, df = 2, p = 0.5) 

or for landscape treatment (χ2 = 3.1, df = 1, p = 0.08), indicating that return time was not 

influenced by the species or landscape treatment type. On average, Seaside Sparrows took more 

than twice as long to return to their capture sites (𝑥 + 1 SD: 6.9 ± 8.4 days) compared to Nelson’s 
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and Saltmarsh Sparrows (Table 1), which had mean return times of 2.0 ± 0.63 days and 2.9 ± 2.0 

days, respectively, and this difference was apparently driven by a strong response by Seaside 

Sparrows to fragmented marsh. When displaced across fragmented habitat Seaside Sparrows 

took approximately three times as long to return (𝑥 + 1 SD: 9.5 ± 9.9 days) than the other species 

(Nelson’s: 2.0 ± 0.0 days; Saltmarsh: 3.8 ± 3.6 days). When translocated across continuous 

marsh, return times for Seaside Sparrows were similar to those of the other species. Although not 

a significant difference, birds translocated across continuous marsh landscapes returned almost 

three times as fast as birds exposed to fragmented marsh treatment (Table 1, χ2 = 3.1, df = 1, p = 

0.08).  

 

Discussion 

The marsh sparrows we studied had a robust response to translocation. The vast majority of 

translocated birds returned successfully, and they generally did so within a few days. Our 

predictions were mostly unsupported by the observed responses to translocation. First, we did 

not see any effect of translocation distance. Both return rates and return times were not 

influenced by variation in displacement distance. Similarly, there was limited evidence that birds 

were affected by displacement across fragmented marsh as opposed to continuous marsh. Return 

rates did not differ between these two treatments, and return times differed for only one species. 

Finally, our prediction that Nelson’s Sparrow, the long-distance migrant and habitat generalist, 

would be more adept at homing behavior was not supported (Fig. 3).  

 The high rate and speed of returns following displacement indicates a strong fidelity in 

marsh sparrows to wintering home ranges and associated high-tide roost sites. We speculate that 

this strong tendency to maintain a limited wintering home range has been the overwhelming 
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driver of the results we observed. Even our most extreme displacements of ~2.5 km were, in 

many cases, quickly countered by the homing instincts of the birds. Displacing the birds even 

farther was a possibility, but we did not have any precedent for doing so before the study began, 

and it would have been logistically challenging given the difficulty of accessing more distant 

release sites in the saltmarsh/tidal-creek system within our study area. We are confident our 

translocation distances were sufficient to reduce the potential confounding effect of release-site 

familiarity on return time and success (Betts et al. 2015). Studies of landscape connectivity 

involving translocation experiments with forest songbirds used displacement distances similar to 

those used in our study (Geoffroy et al. 2019; Gillies and St. Clair, 2008; Gobeil and Villard, 

2002; Jones et al. 2017; Kennedy and Marra, 2010; Tremblay and St. Clair, 2011). We are 

unaware of any similar translocation experiments with songbirds in salt marshes or other 

intertidal wetlands. 

 Of the 57 birds that were translocated, 16 were not detected back at their capture site 

during the season in which they were moved.  There are several potential explanations for these 

missing birds. First, it is possible that some birds emigrated from the study area, although it is 

unlikely. Multi-year banding studies at our study location and at similar locations within the 

region (i.e., the Carolinas) indicate that non-breeding marsh sparrows remain closely tied to their 

wintering grounds by November and remain through April (Winder et al. 2012). It is also 

possible that transmitter loss or failure contributed to the number of unsuccessful returns. One 

transmitter was not functioning when we recovered it from a translocated bird; this individual 

was excluded from all analyses. Moreover, transmitter signals were strongly attenuated when 

they were in contact with water, which was probably common in our marsh habitat.  Our 

continued radio detections of “control” birds (i.e., tagged birds that were not displaced) suggests 
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that our use of radio telemetry was a robust relocation method. Some of the displaced birds may 

have died before they could return to their wintering sites, but there is a general lack of 

information on within-season mortality for the marsh sparrows we studied. We suspect that these 

species face few direct threats to their survival during the winter, and the list of potential 

predators is short, with Northern Harrier (Circus hudsonius) likely at the top of the list, followed 

by American mink (Neovison vison) and Raccoon (Procyon lotor). We have no reason to suspect 

that within-season mortality rates would differ significantly among locations across the species’ 

wintering range because marsh sparrows wintering in our study area regularly occupied sites that 

bordered roads, forest, and even residential houses. 

 The robust homing abilities and site fidelity of Nelson’s, Saltmarsh, and Seaside 

Sparrows are potentially both beneficial and detrimental to conservation strategies for marsh 

sparrows. That they recover quickly from displacement implies that they can cope with short-

term disturbance. Even so, the small and specific winter home ranges maintained by these 

species may create conflicts with ongoing human activities that would leave the species 

vulnerable to rising sea water levels. Marsh sparrows show relatively high year-to-year site 

fidelity to winter sites in our study area and within the region (A. Given, unpublished; Shaw, 

2012; Trinkle, 2013; Winder et al., 2012). It remains unknown how these species will respond if 

they find their wintering home range has been developed or inundated.  

The stationary non-breeding (wintering) phase of avian life histories is understudied 

compared with the breeding phase (Marra et al. 2015), even though conditions and events during 

the wintering period are known to have important impacts on individuals and populations during 

subsequent periods of the annual cycle (Cooper et al. 2015; Norris et al. 2004; Paxton and 

Moore, 2015; Reudink et al. 2009; Rockwell et al. 2015; Studds et al. 2007). Further research 
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into the wintering behavior of birds in tidal marshes is warranted not only for the sake of 

understanding but to develop management strategies that can ensure the survival of coastal 

populations under the dual threat of sea-level rise and encroaching human development. One 

potential management recommendation, for example, would be to maintain or create wide 

buffered upland edges along the saltmarsh to allow the saltmarsh to naturally migrate inland as 

sea levels rise. This strategy, however, poses a problem on Kiawah Island and in other coastal 

communities where most of the saltmarsh is bordered by private residences and/or land parcels 

awaiting development. Under the threat of accelerated sea level rise, homeowners and real estate 

developers may install hard structures such as revetments and bulkheads adjacent to the 

saltmarsh to protect their property. This shoreline hardening approach is commonly used along 

sheltered coastlines to fight the impacts of sea level rise, storm surges, and erosion (Dugan et al. 

2011; Gittman et al. 2015), but it eliminates the potential for the marsh to migrate inland as sea 

levels rise (Titus et al. 2009) and will also reduce the extent of high marsh habitat that would be 

available for marsh sparrows to use when their preferred habitat is inundated. As a result, the 

prospects for many local populations are not good, unless alternative shoreline stabilization 

strategies (e.g., living shorelines; Currin 2019) are used in place of the traditional hard structures. 

Conservation of undeveloped land adjacent to the saltmarsh’s upland border will still a premium, 

and we recommend land managers and conservation groups work to identify and protect inland 

migration routes for marshes in their areas, and where possible, restore lost and degraded marsh 

habitat. 
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Tables 

Table 1. Mean number of days + 1 SD since translocation when birds were detected back at their 

original capture site. 

Variable Category Return time n 

Species Nelson’s Sparrow 2.0 + 0.6 6 

 Saltmarsh Sparrow 2.9 + 2.9 5 

 Seaside Sparrow 6.9 + 8.4 30 

    

Landscape treatment Continuous marsh 2.8 + 2.1  18 

 Fragmented marsh 8.0 + 9.3 23 
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Figure legends 

Figure 1. Map of the study area (Kiawah Island, South Carolina; 32°36’43.64” N, 80° 4’27.51” 

W) showing where experimental translocations took place during two consecutive winter seasons 

(2018/2019 – 2019/2020) and its approximate location on the Atlantic Coast of South Carolina, 

USA. 

Figure 2. Examples of translocation trials conducted within continuous salt marsh habitat (solid 

lines) and across salt marsh landscapes fragmented by a range of human-dominated and natural 

land cover types (dashed lines). 

Figure 3. Plots of cumulative percent of birds detected back at their capture site and their return 

time following experimental translocation based on the following conditions: A. landscape 

treatment, and B. species (Nelson’s Sparrows (NESP), Saltmarsh Sparrow (SALS), and Seaside 

Sparrow (SESP)). 

Figure 4. Results of a Bayesian comparison of return success among species and between 

landscape treatments. Each line segment represents the estimated proportion of successfully 

returned individuals (black square) and 95% Bayesian highest density credible intervals (HDI) 

for a given species or treatment. Credible intervals overlap broadly among species and between 

marsh landscapes, indicating that return success did not differ among marsh sparrows or between 

landscape treatment. 
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CHAPTER THREE 

 

An Uncertain Future for Overwintering Populations of Tidal Marsh Songbirds  

in Coastal South Carolina 

 

Keywords: 

habitat loss, marsh birds, salt marsh, sea level rise, climate change, SLAMM, coastal wetlands 

 

Abstract 

Rising sea-levels are a major threat to salt-marsh habitats, and coastal areas in the Eastern United 

States are expected to experience some of the most dramatic changes in sea levels in the world. 

The consequences of sea-level rise to wildlife that depend on salt marshes could be devastating. 

In 2012, we initiated a study of three species of “marsh sparrow” that overwinter on Kiawah 

Island in South Carolina. Eight years of monitoring data indicated stable populations of all 

species, but this monitoring did not take into account potential losses of salt marsh habitat in 

response to sea-level rise. Here we used a Sea Level Affecting Marshes Model (SLAMM) to 

evaluate losses of wintering habitat for marsh sparrows. In addition, we evaluated the effects of 

sea-level rise on high-water refugia (i.e., specific patches of elevated high marsh habitat) used by 

the birds during above-average high tides. We specified four different sea-level rise scenarios in 

our models and found that even the most moderate predictions for sea-level rise entailed 

dramatic losses of salt-marsh habitat on Kiawah Island. For the more severe sea-level rise 
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scenarios, our models predicted that Kiawah would not likely sustain overwintering marsh 

sparrows by the year 2075. Fortunately, there are conservation measures that can mitigate these 

effects, and the human residents of Kiawah Island are actively engaged in long term measures to 

preserve salt marsh habitats. 

 

Introduction 

Tidal salt marshes are unique and dynamic ecosystems that support a substantial amount 

of biodiversity on almost every continent. They are also one of the most vulnerable land cover 

types to increases in sea level. This vulnerability is particularly pronounced when coupled with 

human development of coastal areas. Salt marshes typically respond to changes in sea level rise 

by shifting inland as previously dry areas are inundated, but dikes and other landscaping 

fortifications generally prevent this introgression. The resulting loss of marsh habitat warrants 

careful consideration of the risks posed to plants and wildlife that rely on coastal salt marshes. 

When we can appreciate these risks we can more wisely devise conservation strategies and 

allocate resources to both hold off extirpation/extinctions and promote coexistence among 

human and natural communities.  

Salt marshes in the eastern United States are of great concern to conservationists both 

because of the biodiversity they support and because of the density of the human population in 

the region. Among the many species that depend on these east-coast salt marshes are three 

species of sparrow: Seaside Sparrow (Ammospiza maritima), Saltmarsh Sparrow (Ammospiza 

caudacuta), and Nelson’s Sparrow (Ammospiza nelsoni). Each of these species appears to be 

dependent on salt marshes for wintering habitat as they are rarely found in any other landcover 

type. On Kiawah Island in South Carolina, these three species have been the subject of long-term 
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population monitoring, which has yielded estimates of survival rates and population density 

(Chapter 1). Additional studies on the same population have revealed a high degree of site 

fidelity in all three species (Chapter 2), which suggests that individuals have limited ability to 

disperse to other locations in response to habitat loss. These studies set the stage for a marsh-

sparrow risk assessment that is centered around sea-level rise projections and the associated loss 

of marsh habitat Kiawah Island. Although Kiawah Island is a relatively small part of the east 

coast, it is arguably representative of much of the surrounding region both in terms of natural 

land cover and human development. 

This study employs a Sea Level Affecting Marshes Model (henceforth SLAMM) to 

forecast losses of marsh habitat around Kiawah Island at different time points and under four 

sea-level rise (SLR) scenarios. We then combine these habitat losses with density estimates for 

each marsh sparrow species to evaluate the prospects for future populations. In addition, we use 

sea-level data from NOAA’s models of mean high tide data to assess the fates of specific high-

water refugia (i.e., patches of marsh that remain above water at high tide). These refugia are 

important for the marsh sparrows because they congregate to these areas when the remainder of 

their habitat is inundated. This study seeks to motivate conservation initiatives that can mitigate 

losses of tidal marshes and/or make new areas available for marsh dependent species. 

 

Methods 

Study system 

Kiawah Island (32°36’43.64” N, 80°4'27.51"W) is a ~4,047 ha barrier island that stretches 16 km 

in a southwest to northeast orientation and is about 2.4 km across at its widest point. It is located 

approximately 24 miles south of Charleston, South Carolina, USA, and hosts a private residential 
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community and a luxury beach-resort industry. The human population on Kiawah Island ranges 

from ~1,400 people in the winter to upwards of 10,000 people in the summer. The flat upland 

areas in the interior of the island are dominated by artificial habitat (e.g., golf courses, hotels, and 

residences) and maritime forest. Outside these upland areas, Kiawah contains some 15 different 

terrestrial and aquatic habitat types including intertidal beach, maritime grassland, salt shrub 

thicket, intertidal mud/salt flats, and salt marsh.   

Habitat used by all three marsh sparrows is almost exclusively limited to salt marsh. The 

salt marsh system can be divided into two zones based on variation in flooding and elevation: the 

high marsh zone, which abuts the upland border (aka transitional marsh) and is flooded with salt 

water for only one to two hours each day, and the low marsh zone, which spans the lower 

elevation areas from tidal creek bank to high marsh and is covered with salt water for half of the 

day. The birds move between these two zones in response to the twice-daily ebb and flow of 

tides, foraging primarily within the low marsh when it is exposed at low tides and then retreating 

to high marsh areas when the incoming tide floods the low marsh. At extreme high tides (i.e., 

spring tides), marsh sparrows congregate in high densities on the few patches of marsh habitat 

that remain above water. These refugia are likely a critical landscape feature for marsh sparrows, 

as it is unclear how they would cope with spring tides if these refugia were not available.  

Marsh sparrow populations on Kiawah Island were monitored for eight years (the winters 

of 2012/13 to 2019/20), by capturing and banding birds at their high-tide roost sites during spring 

tides (Chapter 1). This work indicated that the local population was stable, with no evidence of 

dramatic changes in density for any of the three species. However, densities for Nelson’s 

Sparrows were low in some years, with population estimates as low as 181 individuals within the 

~16,500 ha of salt marsh habitat currently associated with the island. The population monitoring 
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occurred at 18 patches of high marsh habitat (aka roost sites or high-tide refugia), which likely 

hosted most of the marsh sparrow population during spring tides. However, there were other 

known and suspected refugia that were not used as banding sites, mainly because they were too 

difficult to access and/or difficult to sample using our capture methods. The eight years of 

population monitoring indicated high rates of within-winter fidelity to roost sites among all three 

marsh sparrow species, and low rates of movement among roost sites between winters. Of the 

706 birds that were captured two or more times, 77% were recaptured at their original roost site 

(Chapter 1), and a translocation study involving these same species documented individual birds 

rapidly returning to their preferred high tide refugia following displacements of up to 2 km (see 

Chapter 2).  

Forecasting marsh habitat loss using SLAMM – To predict the impacts of SLR on 

wintering marsh sparrow habitat at Kiawah Island, we use SLAMM (version 6.7 beta; 

https://warrenpinnacle.com/) in conjunction with ArcGIS Pro 3.1.2 (ESRI 2023). SLAMM 

interpolates the impact of changes in sea level on marsh habitats by combining a digital elevation 

model (DEM) with a map of land surface types and then simulating a persistent decrease in land 

surface elevation (rather than increasing sea level). The resulting product is a map of land surface 

types derived from the original map but altered to account for relatively higher water levels. 

SLAMM is widely used as a predictive tool for evaluating the potential environmental and 

economic effects of SLR within coastal areas (e.g., Craft et al. 2009, Fernandez-Nunez et al. 

2019, Hunter et al. 2017, Woodland et al. 2017).  

For this study, we used the most recent 2017 LIDAR DEM data available for our study 

area (OCM Partners, 2023: 2017 SC DNR Lidar DEM: Coastal Counties (Berkeley, Charleston 

and Williamsburg Counties), https://www.fisheries.noaa.gov/inport/item/57112), which was 
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downloaded from NOAA’s Digital Coast website (https://coast.noaa.gov/digitalcoast/data/). This 

high-resolution (i.e., 1-m spatial resolution, and 0.06-m vertical accuracy) DEM data was 

originally produced for the NOAA Office for Coastal Management's Sea Level Rise and Coastal 

Flooding Impacts Viewer (https://coast.noaa.gov/digitalcoast/tools/slr.html). The original data 

used the world geodetic coordinate system and had a cell size of 2.69 x 10-5 degrees. Using 

ArcGIS Pro 3.1.2 (ESRI, Redlands, California, USA), we reprojected and resampled the DEM 

data to generate a new DEM with a 2.68-m spatial resolution, which was subsequently clipped to 

a 1-km boundary area centered around Kiawah Island. In addition to the DEM, SLAMM requires 

a corresponding grid of slope values, which we generated using the Slope tool in the Spatial 

Analyst toolbox in ArcGIS Pro. We downloaded 2017 National Wetland Inventory wetland 

distribution data from the National Wetlands Inventory, which is made available by the United 

States Fish and Wildlife Service (USFWS 2017). These data were originally rendered as a shape 

file, and we used ArcGIS Pro to convert it to gridded data that matched the extent and resolution 

of the DEM and slope raster. The three raster maps were converted from raster format to the 

required ASCII text format for SLAMM using the Raster to ASCII conversion tool in ArcGIS 

Pro. 

For our SLAMM simulation, we ran four different SLR scenarios with a fixed rise of 

0.72, 1.18, 1.62, and 2.11 meters by the year 2100, and we refer to these scenarios as 

‘Intermediate Low,’ ‘Intermediate,’ ‘Intermediate High,’ and ‘High,’ respectively. For each of 

these scenarios, our SLAMM simulations generated maps of spatial distribution of relevant 

coastal wetland habitats for the years 2050, 2075, and 2100 (Table 1). We selected these four 

SLR scenarios based on the most recent projections of relative SLR from NOAA (Sweet et al., 

2022) for the nearest available location (i.e., Charleston, SC).  

https://coast.noaa.gov/digitalcoast/data/
https://coast.noaa.gov/digitalcoast/tools/slr.html
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We used tidal datums and SLR trend data from a tide station in nearby Charleston, SC 

(station ID# 8665530) to assign values for several site parameters within SLAMM. These data 

include historic trend of SLR, Great Diurnal Tide Range (GT), and elevation correction based on 

the mean tide level. The historic trend of SLR in the study area is based on monthly mean sea 

level data for the period of 1901–2022 from the tide station in nearby Charleston, SC (station 

ID# 8665530; https://tidesandcurrents.noaa.gov/). This SLR estimation was 3.44 mm/yr. We 

used a mean vertical accretion rate for salt marshes which we calculated from estimates reported 

for South Carolina (Crotty et al. 2020). These estimates ranged from -3.97 to 9.62 mm/yr. 

Finally, we used a Great Diurnal Tide Range (GT) value of 1.757 m, which we obtained from the 

tide station in nearby Charleston, SC. 

In addition to quantifying changes to landcover distributions with SLAMM, we evaluated 

how rising water levels would affect the availability of high-water refugia which marsh sparrows 

seem depend on during spring tides. We used aerial photos in conjunction with field observations 

to identify high-water refugia currently available to marsh sparrows at Kiawah Island, and we 

manually generated a polygon around each refuge in ArcGIS Pro. We then obtained SLR data 

produced by NOAA’s Office for Coastal Management (OCM) for their Sea Level Rise Viewer 

web mapping tool (https://coast.noaa.gov/digitalcoast/tools/slr.html). This data is used to display 

the extent of inundation due to SLR from 0-10 feet above mean higher high water (MHHW), 

which is defined as the average of the higher high water height of each tidal day observed over 

the National Tidal Datum Epoch (~19 years). Data were available in 1-foot increments from 0-10 

feet above MHHW for Charleston, SC, and we generated inundation maps (i.e. sets of polygons 

representing the extent of surface water) for eight SLR scenarios from 1 to 7 feet. Because these 

maps show inundation relative to MHHW, we could use them to determine both the total area of 
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high tide refugia that would persist under the different SLR scenarios as well as which specific 

refugia would become inundated and thus no longer be available to marsh sparrows.  

 To analyze refuge persistence, we imported the polygons generated for each refuge into R 

along with the sea-level-rise data from NOAA, and we cropped the sea-level-rise polygons to a 

1000m buffer around Kiawah Island. For each potential refuge, we cropped the sea-level-rise 

polygons again to the area surrounding the refuge and converted the cropped polygons to a 1x1 

meter raster. We then set the raster values to 1 for land and 0 for water and used the extract 

function in the R package raster (citation) to count the number of land pixels in each refuge 

polygon. We used the zero sea-level-rise inundation map as a baseline to calculate the current 

number of refugia and their collective area. From this baseline we calculated losses of refugia 

and refuge area across the other sea-level-rise scenarios. 

 

Results 

SLAMM analysis for all sea level rise scenarios predicted dramatic losses of salt marsh habitat, 

ranging from losses of 55% to nearly 100% by the year 2100 (see Table 2). We note that for all 

scenarios except ‘Intermediate Low’ over 90% of the Kiawah salt marsh will be lost by 2100 

according to SLAMM.  In the absence of mitigation efforts or behavioral adaptations in the bird 

species, it is likely that wintering marsh sparrow populations on Kiawah Island will cease to exist 

under all but the least severe water-rise scenario. The only question is, “When will it happen?” 

Even the ‘Intermediate Low’ water-rise scenario will entail loss of more than 50% of the salt 

marsh by 2100, which calls into question the viability of the marsh sparrow population. SLAMM 

results for ‘Brackish Marsh’ similarly showed dramatic declines in surface area, with more than 

90% lost by 2100 under the “Intermediate,’ ‘Intermediate High,’ and ‘High’ scenarios. 
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For the analysis of high-water refugia persistence at Kiawah Island, we identified 85 

potential refugia, ranging in area from 53 m2 to 32,437 m2 (Fig 4). According to the NOAA sea-

level rise data, an increase in sea level of just 1 foot would inundate over 40% of the area 

currently available as high water refugia, although only two refugia would be lost entirely (Table 

3). The effects of a three-foot increase in seal level include the loss of 58 individual refugia (68% 

of the current 85) with the total area reduced by about 95%. Under the 6 and 7-foot scenarios, 

only 3 and 2 refugia would remain above water at high tide respectively, and they would amount 

to less than 1% of the total area now available. 

 

Discussion 

Results from the SLAMM analysis and the analysis of high-water refugia persistence forecast 

major habitat losses for overwintering marsh sparrows at Kiawah Island. Even the mildest 

projections for sea-level rise are associated with losses of more than 50% of Kiawah Island’s 

marsh habitat and high-water refugia by the year 2100. Under the more severe sea-level rise 

scenarios extirpation of the marsh sparrow populations is likely barring any conservation efforts 

to preserve or expand salt marsh. Although the scope of our analysis is limited to Kiawah Island, 

it is reasonable to assume similar effects of sea level rise on salt marshes throughout the region. 

Kiawah Island is representative of many coastal communities where the pressures of 

development and human activity … Infrastructure, such as revetments and bulkheads, meant to 

stabilize shores and protect human interests (e.g., homes, roads) from storm surges and coastal 

flooding will likely reduce the extent of future marsh sparrow habitat by limiting the ability of 

the salt marsh to migrate back (landward) as sea level rises (Titus et al. 2009). If we extrapolate 
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the situation from Kiawah Island to the larger coastline, it becomes clear that the risk to marsh 

sparrows is substantial.  

Quantifying reduction in marsh sparrow populations in response to losses of marsh 

habitat requires several assumptions regarding how the birds respond to fragmentation and the 

amount of continuous marsh required by the marsh sparrow species for successful foraging. 

Also, it is important to account for the birds’ need for high water refugia. In short, it is important 

not just to consider the amount of suitable habitat that is available, but also how much of the 

habitat actually meets the needs of the birds. While home range and territory sizes for marsh 

sparrows during the breeding season are relatively well known (Shriver et al. 2010; Greenlaw et 

al. 2022), is not clear how much tidal marsh habitat is required for a single marsh sparrow during 

the non-breeding wintering period (i.e., November – March). An examination of unpublished 

GPS tracking data from four individual Seaside Sparrows indicated that wintering home ranges 

for this species in our study area ranged from nearly 1 ha to a little more than 5 ha, and that these 

birds demonstrated very little movement across the larger landscape during the winter (Appendix 

C). Similarly, multi-year mark-recapture efforts (see Chapter 1) and a translocation study (see 

Chapter 2) indicated high levels of site fidelity to specific locations within the salt marsh system 

for all three marsh sparrow species within and between winter seasons, and little propensity for 

individuals to explore or exploit the larger tidal marsh landscape. Hence the prospect of marsh 

sparrows moving among small, isolated patches of habitat seems unlikely, and large expanses of 

contiguous salt marsh will be critical for sustaining marsh sparrow populations. Unfortunately, 

large patches of marsh will become increasingly rare as the sea level rises (Fig 3). Therefore, we 

are led to suggest that declines in marsh sparrow populations will outpace losses of marsh 
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habitat, and that Kiawah Island may become unable to support wintering marsh sparrows within 

the next 50 years in the absence of conservation/restoration efforts.  

Loss of habitat will be gradual, which may afford time for the birds to develop behavioral 

responses to habitat loss. These responses could include inland shifts in wintering areas and use 

of forests or other non-marsh habitat. It remains to be seen whether the response to marsh habitat 

loss will be dominated by selection (i.e., decreases survival of birds that persist in current habitat 

preferences) or behavioral adaptation (i.e., birds adjusting to habitat change by broadening the 

types of habitats used). Continued monitoring of Kiawah’s marsh sparrow populations is needed 

to establish whether behavioral adaptations and/or selection for reduced site fidelity are 

occurring.  

An important limitation to long term predictions about marsh habitat loss is uncertainty 

about the degree of sea level rise that will occur. Sea level rise projections for coastal South 

Carolina differ among studies. Strauss et al (2014) predict an increase of 1.22 m by the year 

2100, which is an average of model estimates that range from 0.55 m to 1.98 m of increase by 

2100. Morris and Renkin (2020) predict a more moderate sea level increase 0.65 m by 2100. A 

full range of models is presented by Sweet et al (2022) with sea level increases of 0.6 m to 2.2 m 

by 2100. These scenarios are linked to projections for global temperature increases, which 

remain labile and dependent on the success of international cooperation on climate change 

mitigation strategies. Unfortunately, even the most optimistic scenarios with regard to sea-level 

rise will have dramatic effects on the salt marsh habitats of Kiawah Island.  

 The residents and local leadership of Kiawah Island are well aware of the threats posed 

by sea-level rise. In response to those threats, the Town of Kiawah Island (TOKI) Planning 

Department has initiated a Comprehensive Marsh Management Plan “as an effort to consolidate 
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existing marsh-related needs and recommendations across the Kiawah entities to guide future 

marsh management on the island” (Town of Kiawah Island, 2022).  

There are potential management actions that can counter some of the habitat loss 

affecting marsh sparrows. As water levels rise, problems with flooding and infrastructure 

maintenance could devalue some of the developed areas on Kiawah Island, which may present 

an opportunity for marsh restoration. In addition, maintenance of high-water refugia could be a 

relatively simple yet valuable measure for sustaining marsh sparrows. Currently, these areas 

remain above water during spring tides and provide the only marsh patches available. To counter 

rises in sea level that threaten to inundate these refugia,  ____. The refugia are generally not very 

large, so the cost of maintaining them would not be overwhelming.  
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Tables 

Table 1. Data inputs, site parameters, and SLR scenario options for Sea Level Affecting Marshes 

Model (SLAMM) simulation. 

Model simulation inputs  

NWI photo date (year) 2017 

DEM date (year) 2017 

Direction offshore of DEM South 

Slope date (year) 2017 

Spatial resolution (m) 5 

SLR by 2100 (m) 0.72, 1.18, 1.62, 2.11 

Projected time periods (years) 2050, 2075, 2100 

Great diurnal tide range (m) 1.757 

Historic trend (mm/yr) 3.44 

MTL - NAVD88 (m); the elevation correction 
based on the mean tide level 

-1.05 

Salt marsh accretion (mm/yr) 2.41 
 

https://doi.org/10.1002/jwmg.21633
https://doi.org/10.1002/jwmg.21633
https://doi.org/10.1002/jwmg.21633
https://doi.org/10.1007/s12237-017-0209-2
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Table 2. Areas (hectares) of coastal wetland habitats at Kiawah Island, SC under four different 

sea level rise scenarios for four different time periods. 

Scenario Year Salt 
marsh 

Brackish 
marsh 

Intertidal 
shore 

Mud 
flat 

Open 
water 

Scrub-
shrub 

Percent 
loss in 
salt 
marsh 

Current 
Condition 

2017 79.9 7.5 8.1 0.2 52.7 1.7 NA 

 2050 70.2 7.2 6.3 9.2 55.7 1.5 12.2 
Intermediate 
Low 

2075 62.7 4.9 5.3 18.1 58.4 0.8 21.6 

 2100 35.8 1.4 4.6 45.1 62.8 0.2 55.2 
 2050 66.8 6.7 5.9 12.8 56.6 1.2 16.5 
Intermediate 2075 34.0 1.9 4.7 47.1 62.0 0.3 57.4 
 2100 5.4 0.1 4.3 68.8 71.4 0.1 93.3 
 2050 61.4 5.5 5.5 19.0 57.8 0.9 23.2 
Intermediate 
High 

2075 12.5 0.3 4.4 67.1 65.6 0.1 84.4 

 2100 0.7 0.0 3.7 41.8 103.8 0.0 99.1 
 2050 47.4 3.8 5.1 33.8 59.3 0.6 40.7 
High 2075 5.0 0.1 4.3 65.5 75.1 0.1 93.8 
 2100 0.1 0.0 1.0 6.2 142.7 0.0 NA 

 

Table 3. Effects of sea-level rise on high-tide refugia required by marsh sparrows during coastal 

floodings. Percentage columns refer to remaining refugia and cumulative area compared to the 

present situation (year 2017). Water levels are measured in meters above mean higher high water 

(MHHW). 

 Number of high-tide refugia Cumulative Area 

Water level 
(m) 

Count Percentage hectares Percentage 

0 85 100 40.55 100 
0.30 83 97.65 24.10 59.41 
0.61 54 63.53 6.74 16.63 
0.91 27 31.76 1.89 4.66 
1.22 15 17.65 0.49 1.2 
1.52 8 9.41 0.10 0.25 
1.83 3 3.53 0.026 0.06 
2.13 2 2.35 0.0059 0.01 
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Figure Legends 

Figure 1. Study area (Kiawah Island, South Carolina; 32°36’43.64” N, 80° 4’27.51” W) with 

main coastal wetland habitats at under current conditions (i.e., year 2017). 

 

Figure 2. Percent losses in salt marsh area at Kiawah Island predicted under four sea-level rise 

scenarios (Intermediate Low: 0.72m; Intermediate: 1.18m; Intermediate High: 1.62m; High: 

2.11m). Percent losses at each time period were calculated relative to the year 2017, defined 

above as “Current Condition”. 

 

Figure 3. Simulated maps of spatial distribution of coastal wetland habitats within a 1-km buffer 

of Kiawah Island, SC under four different relative SLR scenarios at three time periods (2050, 

2075, 2100).  

 

Figure 4. Locations of established and potential high tide refugia for Nelson’s, Saltmarsh, and 

Seaside Sparrows overwintering at Kiawah Island. (Established refugia are represented by white 

polygons; potential refugia are represented by yellow polygons). 
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Figure 4. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


