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REPRESENTATIONS OF THE p-ADIC GSpin, AND GSping AND THE ADJOINT
L-FUNCTION

MAHDI ASGARI AND KWANGHO CHOIY

ABSTRACT. We prove a conjecture of B. Gross and D. Prasad about determination of generic L-packets
in terms of the analytic properties of the adjoint L-function for p-adic general even spin groups of semi-
simple ranks 2 and 3. We also explicitly write the adjoint L-function for each L-packet in terms of the local
Langlands L-functions for the general linear groups.

1. INTRODUCTION

In this article, we provide further details on the local L-packets for the non-Archimedean split general
spin groups GSpin, and GSping, following our earlier work [AC17]. We then use our explicit description of
these L-packets to prove a conjecture of B. Gross and D. Prasad [Gr22, GP92] determining which of the
L-packets are “generic” (i.e., contain an irreducible representation with a Whittaker model) in terms of the
analytic properties at s = 1 of the adjoint L-function of the packet. We also write the adjoint L-function for
each L-packet in terms of the local Langlands L-functions of the general linear groups. In addition to details
about the representations that our results provide, given that the adjoint L-functions have a significant
role in the Gan-Gross-Prasad conjectures, we expect that our results in this paper would be helpful in that
direction as well. Particularly striking is the generalization of the Gan-Gross-Prasad to the non-tempered
case [GGP20] where the relevant adjoint L-function does have a pole at s = 1.

Let F be a p-adic field of characteristic zero. Denote by W the Weil group of F' and let W, = W xSLy(C)
be the Weil-Deligne group of F'. Let G be a connected, reductive, linear algebraic group over F'. The local
Langlands Conjecture (LLC) predicts a surjective, finite-to-one map £ from the set Irr(G) of equivalence
classes of irreducible, smooth, complex representations of G(F') to the set ®(G) of @-conjugacy classes of
L-parameters of G(F), i.e., admissible homomorphisms ¢ : Wj — LG. Here, “G denotes the L-group of G
with G = LGY its connected component, i.e., the complex dual of G [Bor79]. Among other properties, the
map L is supposed to preserve the local L-, e-, and 7-factors. Moreover, the (finite) fibers Iy, for ¢ € ®(G),
of the map L are called the L-packets of G and their structures are expected to be controlled by certain
finite subgroups of G.

Consider the split general spin groups G = GSpin, and G = GSping, of type Dy = A1 x Ap and D3 = Aj
respectively, whose algebraic structure we review in Section 2.3. We constructed most of the L-packets
for these two groups in [AC17] and proved that they satisfy the expected properties of preservation of the
local factors and their internal structure. We review and complete the construction of these L-packets. In
particular, using the classification of representations of GL,,, we give more explicit descriptions of the L-
packets for GSpin, and GSping in terms of given representations of GLa x GL2 and GL4 x G L1, respectively.
As a byproduct, we are able to give the criteria for determining the size of the L-packets for GSpin, and
GSping (see Sections 4 and 5).

The known cases of the LLC for the p-adic groups include GL,[HT01, Hen00, Sch13|; SL, [GK82];
non-quasi-split F-inner forms of GL,, and SL,, [HS12, ABPS16]; GSp, and Sp, [GT11, GT10]; non-quasi-
split F-inner form GSp, ; of GSp, [GT14]; Sp,,, SOy, and quasi-split SO3,, [Art13]; U, [Rog90, Mok15];
non quasi-split F-inner forms of U, [Rog90, KMSW14]; non-quasi-split F-inner form Sp, ; of Sp, [CholT];
GSpin,, GSping and their inner forms [AC17]; GSp,,, and GOg,, [Xul§].

Going back to the case of general G, assume that p is a finite-dimensional complex representation of “G.
When LLC is known, one can define the local Langlands L-functions

L(s,m,p) = L(s,po ¢)
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for each m € 1I;. Here, the L-factors on the right hand side are the Artin local factors associated to the
given representation of W.

B. Gross and D. Prasad conjectured (in the generality of quasi-split groups) that the local L-packet I14(G)
is generic if and only if the adjoint L-function L(s, Ad o ¢) is regular at s = 1 [GP92, Conj. 2.6]. Here, Ad
denotes the adjoint representation of “G on the dual Lie algebra g of G. (Note that in the body of this
paper we use Ad exclusively for the restriction of the adjoint representation to the derived group of g to
distinguish it from the full adjoint L-function, which would have an extra factor of the L-function for the
trivial character when g has a one-dimensional center.)

We prove the above conjecture for the groups GSpin, and GSping as a consequence of our construction
of the L-packets for these groups. In fact, we prove the conjecture for a larger class of groups G = G}°,,
which are given as subgroups of GL,, x GL,, satisfying a certain determinant equality (2.6). We are able to
work in the slightly larger generality because, as in the construction of the L-packets, we use the approach
of restricting representations from GL,,(F) x GL,(F) to the subgroup G.

Moreover, we also give the adjoint L-function in all cases explicitly in terms of local Langlands L-functions
of the general linear groups. While we are able to prove the Gross-Prasad conjecture already without the
explicit knowledge of the adjoint L-function, the explicit description of the adjoint L-function certainly also
verifies the conjecture and we include it here since it may lead to other number theoretic or representation
theoretic results.

Finally, we take this opportunity to correct a few inaccuracies in [AC17]. They do not affect the main
results in that paper and fix some errors in our description of the L-packets. The details are given in Section

6.
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2. PRELIMINARIES

2.1. Local Langlands Correspondence (LLC). Let p be a prime number and let F' be a p-adic field
of characteristic zero, i.e., a finite extension of Q,. We fix an algebraic closure F' of F. Denote the ring of
integers of F' by Op and its unique maximal ideal by Pr. Moreover, let ¢ denote the cardinality of the
residue field O /Pr and fix a uniformizer w with |w|r = ¢~!. Also, let Wr denote the Weil group of F,
W} the Weil-Deligne group of F', and I' the absolute Galois group Gal(F/F). Throughout the paper, we
will use the notation v(-) = |- |p.

Let G be a connected, reductive, linear algebraic group over F. Fixing I'-invariant splitting data we define
the L-group of G as a semi-direct product *G := G T", where G = LG denotes the connected component
of the L-group of G, i.e., the complex dual of G (see [Bor79, §2]).

LLC (still conjectural in this generality) asserts that there is a surjective, finite-to-one map from the set
Irr(G@) of isomorphism classes of irreducible smooth complex representations of G(F') to the set ®(G) of
é—conjugacy classes of L-parameters, i.e., admissible homomorphisms ¢ : Wj — La.

Given ¢ € ®(G), its fiber II,(G), which is called an L-packet for G, is expected to be controlled by
a certain finite group living in the complex dual group G. Furthermore, for 7 € II,(G) and p a finite
dimensional algebraic representation of “G one defines the local factors

L(s,m,p) = L(s,po¢), (2.1)
(s, mp ) = €(s,pog,),
V(s mp, ) = A(s,po ).
provided that LLC is known for the case in question. Here, the factors on the right are Artin factors.
2.2. The Adjoint L-Function. What we recall in this subsection holds for G quasi-split ([GP92, §2]).

However, for simplicity we will take G to be split over F' since the groups we are working with in this
article are split. When G is split over F, we may replace the L-group “G by its connected component
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G = LG, Take p to be the adjoint action of G on its Lie algebra. Then we obtain the adjoint L-function
L(s,m,Adg) = L(s,Adg o ¢) for all 7 € II,(G). The following is a conjecture of D. Gross and D. Prasad
(see [GP92, Conj. 2.6]).

Conjecture 2.1. I1,(G) contains a generic member if and only if L(s,Adg o ¢) is regular at s = 1.
(Equivalently, 7 is generic if and only if L(s, 7, Adg) is regular at s = 1.)

The conjecture is known in many cases in which the LLC is known. To mention a few, it was verified for
GL,, by B. Gross and D. Prasad [GP92], for GSp, in [GT11] and, for non-supercuspidals, in [AS08], and for
SO and Sp groups, it follows from the work of Arthur on endoscopic classification [Art13]. We will verify
this conjecture for the small rank split groups GSpin, and GSping.

2.3. The Groups GSpin, and GSping. We gave detailed information about the structure of these two
groups (as well as their inner forms) in [AC17, §2.2]. For now we just recall the incidental isomorphisms

GSpin, 2 {(g1,92) € GLa x GLg : det g1 = det g2} (2.4)

GSping {(g1,92) € GL1 x GLy4 : g7 =detga} . (2.5)

While our main interests in this article are the split general spin groups GSpin, and GSping, for the

purposes of Conjecture 2.1 it is no more difficult, and perhaps also more natural, to consider a slightly more

general setup as follows.
Fix integers m,n > 1 and r, s > 1 and assume that ged(r, s) = 1. Define

G =G, = {(g,h) € GLy, x GL, | (det g)" = (det h)*} (2.6)

1%

Proposition 2.2. The group G.:°. is a split, connected, reductive, linear algebraic group over F'.

m,n

Proof. Let X = (Xy;) and Y = (Y;) be m xm and n xn matrices, respectively. It is clear that G7,%,,, being an
almost direct product of SL,, x SL,, and a torus, is reductive. The only issue that requires justification is that
the polynomial f(X,Y) = (det X)" — (det Y')® is irreducible in F[X,;, Y}] if and only if d = ged(r,s) = 1. It
is clear that if d > 1, then f is reducible since it would be divisible by (det X)"/4) — (det Y)(#/4). It remains
to show that if d = 1, then f(X,Y) is irreducible. This assertion should be easy to see via elementary
arguments considering the polynomials in a possible factorization of f. However, we prove it below as a
special case of a more general fact.

Assume that f(z,y) is an (arbitrary) irreducible polynomial in Fz,y]. Let

p(r1,%2,..., ) € Flz1,22,...,24) and  p(y1,y2,---, %) € Fly1,y2,-- -, Y]
be two polynomials such that p — a and ¢ — « are irreducible for all constants «. Then, f(p, q) is irreducible
in Flzy, @, ..., TayY1,Y2s- - Yb)-

Our Proposition would clearly follow from the above assertion since (det —«) is always an irreducible
polynomial and it is well-known that the two-variable polynomial 2" — y*® is irreducible in F[z,y] provided
that d = ged(r, s) = 1.

To prove the assertion above, we proceed as follows. By base extension to an algebraic closure we may
assume, without loss of generality, that F' is algebraically closed.

Let A be the subscheme of Spec F[x1, 22, ..., Tq,Y1,Y2,- -,y defined by f(p,q), and let B be the sub-
scheme of Spec F[z, y] defined by 2" — y*. The latter is irreducible since 2" — y* is an irreducible polynomial
by our assumption that d = 1. There is a natural map A — B which has irreducible (geometric) fibers. The
result now follows from the following claim.

Claim: Let g : A — B be an open morphism of schemes of finite type over an algebraically closed field F’
such that the (geometric) fibers of g are irreducible and B is irreducible. Then A is irreducible.

To see the claim let U be an open in A. We want to show that for any other open V', we have that UNV
is nonempty. Since B is irreducible and g is open, we have that g(U) N g(V) is nonempty so there is a fiber
Fy of g such that Fy N U and Fy NV are nonempty. Hence, by irreducibility of F, they have a nonempty
intersection in Fy. In particular, U NV is nonempty, which gives the claim.

It only remains to check that the map A — B above is open. In fact, it is flat since it is a base extension
of the cartesian product of two flat morphisms p : Spec F[x1, ..., x,] — Spec F[z] and ¢ : Spec Fly1, ..., yp] —
Spec Fly]. (Here, we are using the fact that Spec F[z] is a curve.) This finishes the proof. O
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Of particular interest to us in this paper are the cases

e m=n=2andr=s=1, when G = GSpin,, and
em=1n=4andr=2,s=1, when G = GSping.
The (connected) L-group of G is

Lgrsd — G = (GLyu(C) x GL,(C))/{(2 "I, 2°L,) : 2 € C*} (2.7)

and we have the exact sequence

T8

1~ {(z "L, 2°L,) : 2 € C*} 2 CX —3 QL (C) x GL,(C) 2™ G, —5 1. (2.8)

2.4. Computation of the Adjoint L-Function for G. Let 7 be an irreducible admissible representation
of G(F). There exist irreducible admissible representations m,, and m, of GL,,(F') and GL,,(F'), respectively,

such that

GLon (F)XGL, (F
T ResG(F)( )X GLn(F) (Tm ® ) . (2.9)

Let Adgz denote the adjoint action of G on its Lie algebra
a={(X,Y) € gl,,(C) x gl,,(C) | rtr(X) = str(Y)}. (2.10)
In what follows, let us write
Adg = trivAd (2.11)
and for 7 € {m, n} we similarly write Ad; = Adgg = triv@®Ad, where Ad here denotes the action of GL;(C)
on the space of traceless i x i complex matrices sl;(C).
Let ¢ : Wg x SLa(C) — G be the L-parameter of 7w and let ¢; : Wp x SLa(C) — GL;(C), i = m,n, be
the L-parameter of ;. Recall by (2.8) that we have a natural map
pr = prit, : GLy(C) x GL, (C) — G. (2.12)

Then we have

Gx =pro ((bm ®¢n) (213)
Since the subgroup {(z~ "I, 2°I,) : z € C*} is central in GL,,(C)x GL,,(C) the following diagram commutes.

GLy (C) x GL,(C) 2922 o Aute (gl (C) x gl, (C))

Pm@Pn

WF X SL2 ((C) pr

G Ade Aute ()

Note that the adjoint action Ad,, of GL,,(C) on gl,,(C) preserves the trace, and similarly for n, so we
obtain a right downward arrow by simply restricting any automorphism to the set of those pairs satisfying
the trace equality in (2.10). We have

L(s,1px)L(s,m,Ad) - L(s,1px) = L(s,m,Adg) - L(s,1px)
= L(s,Adgo ¢r) - L(s,1px)
= L(s,(Adwm ® Ady) © (¢ ® 01))
L(s, Ady, 0 ) L(s, Ady, 0 ¢
L(s,mm, Ady)L(s, T, Ady,)
L(s,1px)?L(s, T, Ad)L(s, T, Ad). (2.14)
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Therefore, we obtain the more convenient equality
L(s,m,Ad) = L(s, T, Ad)L(s, mp, Ad), (2.15)

which holds thanks to our choice of the notation Ad. In Section 3.2 this relation helps verify Conjecture 2.1
for the groups of interest to us.

3. GENERICITY AND THE CONJECTURE OF B. GROSS AND D. PRASAD

3.1. Restriction of Generic Representations. Let us write (7 for the group Hom([J, C*) of all contin-

uous characters on a topological group . Dente by (ge, the derived group of [J. Let G and G be connected,
reductive, linear, algebraic groups over F satisfying the property that

Gdcr = édcr C G C é (31)
For any connected, reductive, linear, algebraic group O over F, we write Irre.(0) and Irresq(0J) for the set of
equivalence classes of supercuspidal and essentially square- integrable representations of O(F' ) respectlvely
Assume G and G to be F -split. Let B be a Borel subgroup of G with Levi decomposition B =TU. Then
B = BNG is a Borel subgroup of G with B = TU. Note that T = TNGand U = U. Let 1) be a generic
character of U(F). From [Tad92, Proposition 2.8] we know that given a t-generic irreducible representation
& of G(F) we have a unique 1-generic o of G(F) such that

o < Res§(3).
The generic character associated with ¢ is not unique though.
Proposition 3.1. Each generic character associated with o is determined up to the action of T(F)/T(F).

Proof. We let & € Irr(G) be v-generic. Then there is a unique t)-generic oy € IIz(G). On the other hand,
for each o € II5(G) there exists t € T(F)/T(F) = G/G(F) such that o = oy, where ‘oy(g) = o(t~!gt).
This implies that o is ‘i-generic. Here ‘1) is defined as ‘op(u) = (¢t~ tut). O

Remark 3.2. We say o € Irr(G), resp. ¢ € Irr(é), is generic if it is ¥-generic with respect to some generic
character . With this notation, o € Irr(G) is generic if and only if is o € Irr(G).

3.2. Criterion for Genericity. In this section we verify Conjecture 2.1 for the small rank general spin
groups we are considering in this article.

Theorem 3.3. Let G = G;°,, be the group defined in (2.6). Let 7 be an irreducible admissible representation
of G(F). Then 7 is generic if and only if L(s,m, Ad) is reqular at s = 1.

Proof. Given 7 there exist irreducible admissible representations 7y, of GL,,(F) and m, of GL,(F) such
that 7 is a subrepresentation of the restriction to G(F') of 7, ® m, as in (2.9). Now, 7 is generic if and only
if both 7, and m, are generic. By the truth of Conjecture 2.1 for the general linear groups, the latter is
equivalent to both L(s, m,,, Ad) and L(s, m,, Ad) being regular at s = 1. Hence, by (2.15) and the fact that
neither of the L-functions can have a zero at s = 1, we have that 7 is generic if and only if L(s, 7, Ad) is
regular at s = 1. This proves the theorem. O

As we observed in Section 2.3, the split groups GSpin, and GSping are special cases of G7,°,,. Therefore,
we have the following.

Corollary 3.4. Conjecture 2.1 holds for the groups GSpin, and GSping.

4. REPRESENTATIONS OF GSpin,

In this section we list all the irreducible representations of GSpin, (F') and then calculate their associated
adjoint L-function explicitly. To this end, we give the nilpotent matrix associated to their parameter in each
case.

4.1. The Reprsentations.
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4.1.1. Classification of representations of GSpin,. Following [AC17], we have

1 — GSpin, (F) — GL2(F) x GLy(F) — F* — 1. (4.1)
Recall that
GSpiny (F) = {(g1,92) € GL2(F) x GL2(F) : det g1 = det g2}, (4.2)
LGSpin, = GSpin, = GSO04(C) = (GLy(C) x GLy(C))/{(z 1, 2) : z € C*}, (4.3)
and
1 — C* — GLy(C) x GLy(C) 2% GSpin, — 1. (4.4)

When convenient, we view GSO4 as the group similitude orthogonal 4 x 4 matrices with respect to the
anti-diagonal matrix

J=J= (4.5)

— o O o
o= O O
o O = O
S O O =

The Lie algebra of this group is also defined with respect to J and an element X in this Lie algebra satisfies
IXJ+JX =0.

4.1.2. Construction of the L-packets of GSpiny (recalled from [AC17]). Given o € Irr(GSpin,) we have a lift
o € Irr(GLg x GLg) such that
o Resgégﬁflﬂ (@).

It follows form the LLC for GL,, [HT01, Hen00, Sch13] that there is a unique ¢z € ®(GL2 x GL3) corre-
sponding to the representation o. We now have a surjective, finite-to-one map

L4 : Irr(GSpiny) —  @(GSpiny) (4.6)

g F—— prygo &'57

which does not depend on the choice of the lifting . Then, for each ¢ € ®(GSpin,), all inequivalent
irreducible constituents of o constitutes the L-packet

1, (GSpin,) := I5 (GSpin,) = {a \ o < ResSlzxGle (5)} / > (4.7)

Here, ¢ is the member in the singleton II5(GLa x GL2) and ¢ € ®(GLa x GL2) is such that pryo g = . We
note that the construction does not depends on the choice of @, due to the LLC for GL2, [GK82, Lemma
2.4], [Tad92, Corollary 2.5], and [HS12, Lemma 2.2]. Further details can be found in [AC17, Section 5.1].

4.1.3. The L-parameters of GLa. We recall the generic representations of GLa(F') in this paragraph. We
refer to [Wed08, Kud94, GR10] for details. Let x : F’* — C* denote a continuous quasi-character of F*.
By Zelevinski ([Zel80, Theorem 9.7] or [Kud94, Theorem 2.3.1]) we know that the generic representations
of GLg are: the supercuspidals, St ® (x o det) where St denotes the Steinberg representation, and normally
induced representations igIﬂfoLl (x1 ® x2) with x1 # x2v*!. The only non-generic representation is x o det .

4.2. Generic Representations of GSpin,. Following [AC17, Section 5.3], given ¢ € ®(GSpin,), fix the
lift

@ g &1 [ @2 S (I)(GLQ X GLQ)
with @; € ®(GLy) such that ¢ = pryo @. Let

o= 51 X 52 S H@(GLQ X GLQ)

be the unique member such that {o;} = I, (GL2).
Recall the notation

1650m1(3) = { € (GLa(F) x GLa(F)/GSpin,(F))” ‘ FoxZ5).

Then we have
I, (GSpin,) 4= 165Pin(5), (4.8)
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and we recall that, by [AC17, Proposition 5.7], we have

) SLo [~ e~~~ ~ x\D.
7GSpin, ) = { °2(ay), if o9 = 517 for some 77 € (F*)~; (4.9)

- ISL2(51)HISL2(52), if o9 iﬁlﬁfor anyﬁe (FX)D.
4.2.1. Irreducible Parameters. Let ¢ € ®(GSpiny) be irreducible. Then @, @1, and @y are all irreducible.
By Section 3.1, we have the following.

Proposition 4.1. Let ¢ € ®(GSpiny) be irreducible. Then every member in IL,(GSpin,) is supercuspidal
and generic.

To study the internal structure of IT,(GSpin,), by (4.8), we need to know the structure of 1¢5P4(5), as
we now recall from [AC17].
gnt-(a) When Go = 547 for some 7 € (F*)P | we have
' {1}, if ¢1 (and hence also @3) is primitive or non-trivial on SLy(C);
J95Pina 5y = 8 7,/27, if ¢1 (and hence also @3) is dihedral w.r.t. one quadratic extension;
(Z/27Z)?, if @1 (and hence also @2) is dihedral w.r.t. three quadratic extensions.
gne-(b) When 6o 2% 517 for any 77 € (F*)P, then by (4.9) we have
T95PIng(5) = {1} or Z/2Z.
Since 7o % 717 for any 77 € (F*)P | the case of both $; and @ being diredral w.r.t. three quadratic
extensions is excluded. Thus, we have the following list:
e If at least one of @; is primitive, then IG5Pina(5) = {1}.
e If both are dihedral, then 9Pt (5) = 7,/27.
From [AC17, Proposition 2.1], we recall the identification
Av:{ﬁlv:fl*l_fl*zaﬁ%/:f51_f§2}a (4.10)
using the notation f;; and f;, 1 <4, j < 2, for the usual Z-basis of characters and cocharacters of GLa X GLg
and B1, B2 denote the simple roots of GSpin,. We can use this identification to relate the nilpotent matrices

associated to the parameters of GLy x GLy and GSpin,, respectively.
For both (a) and (b) above, we have

0 0] |0 0O\ @w
NGL2((C)><GL2((C) = ([0 0:| , [O O]) — NGSO4((C) = 04x4.

Remark 4.2. We note that case (b) above was mentioned, less precisely, in [AC17, Remark 5.10].

4.2.2. Reducible Parameters. If ¢ € ®(GSpin,) is reducible, then at least one @; must be reducible. Since
the number of irreducible constituents in Resgﬁf (7;) is at most 2, we have I52(5;) = {1}, or Z/27Z. This
implies that
T9SPiny(5) = {1}, or Z/27Z.
If ¢; is reducible and generic, then o; is either the Steinberg representation twisted by a character or
an irreducibly induced representation from the Borel subgroup of GLs. We make case-by-case arguments as
follows.

gne-(i) Note that the Steinberg representation of GLa X GLg is of the form Stgr,, X Star,,. We have
Resgé‘;éfb (StGLz X StGLz) = StGrSpin4 (411)
and
Resg§§i§§L2 (StGLz ® X1 X StGLQ ® XQ) = StGSpin4 QX

for some y. We have IG5Pina(5) = {1} as I9(Stg) = {1}. Thus, by (4.9), the L-packet remains a
singleton and the restriction is irreducible.
e To determine y, we use the required properties of x1, x2. Using

(iR

we have x1(ab) = x2(ed) < x1 = x2. Denote x1 = x2 by x.

ab = cd} : (4.12)
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For (4.11), we have

01 1 0
0 1 0 1]\ @ 00 0 -1
NaL,(©)xaLa(c) = <[O 0] ; [O 0]) = Neso.© = |g o 0 -1
00 0 O
gne-(ii) Next we consider
Resgz ™ (612 car, 1 @ x2) B Star, © X) (4.13)

By (4.9), the fact that G5 % 517 for any 77 € (F*)P, and since I¢(Stg) = {1}, it follows that
TSP () =~ 11,

Thus, the L-packet remains a singleton and the restriction (4.13) is irreducible.
e To describe the restriction (4.13), we proceed similarly as above. We have

x1(a)x2(b) = x(ed) = x(ab) & x1x"'(a) = x3 'x(b)
Specializing to a = b and ¢ = d in the center, we have
Xixex 2 =1
For (4.13) , we have

001 0

0 0] [o 1]\ ww 000 —1
NGLQ(C)XGL2(C):<|:O 0}7[0 oD = Nesou© = |g 9 o o
000 0

gne-(iii) We consider
GL2 xGL -GL -GL .GSpi —
ResEians™ (i an, (0 @ x2) BilH car, (s @ x0)) = i7°7™ (31 @ X2, X3 © x1xaXG ) -

Here, x1 # xov™' and x3 # yxav™'. Note that by (4.9) this induced representation may be irre-
ducible or consist of two irreducible inequivalent constituents. We have

00 0 O
Nar,(©)xaLs(c) = ([8 8} ; [8 8]) = Naso, ) = 8 8 8 8
0 0 0 O
gne-(iv) Given a supercuspidal o € Irr(GL2), we consider
Resgg2n ™ (6 B Star, ® X) - (4.14)
Since I¢(Stg) = {1}, due to (4.9), the restriction (4.14) is irreducible. We then have
0 01 O
Nowomaro = ([5 0.0 3]) &2 Mesouar =[5 5 § 3
00 0 O

gne-(v) Given supercuspidal o € Irr(GL3), we next consider
Resggz il (5 Rigr? o, (1 ® XQ)) :
Note from (4.9) that this may be irreducible or consist of two irreducible inequivalent constituents.
We have
0 0] (0 0|\ @1
NGLg(C)XGLg(C) = (|:0 0:| y |:0 0]) — NGSO4((C) = Ogx4.
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4.3. Non-Generic Representations of GSpin,. If o € Irr(GSpin,) is non-generic, then o is of the form
ResGgzie ™ ((x o det) ®5), (4.15)

with & € Irr(GL3). Note this restriction is irreducible due to (4.9), and that as y o det is non-generic, so is
the restriction o for any ¢ € Irr(GLz2).
For o = St € Irr(GL2), we have

0 01 O

0 0] [0 1] @w 000 -1
NGLQ(C)XGLZ(C)_<|:O 0}7[0 0]) = Nasou(c) = 00 0 0]’

0 00 O

and otherwise we have
0 0] |0 Of) 1
NGLg(C)XGLg(C) = ([O 0:| , [0 0]) — NGSO4((C) = O4x4.
We summarize the above information about the representations of GSpin, in Table 1.

4.4. Computation of the Adjoint L-function for GSpin,. We now give explicit expressions for the
adjoint L-function for each of the representations of GSpin,(F). We start by recalling that the adjoint
L-functions of the representations o € Irr(GL3) are as follows.

L(s)2L(s, x1xz ) L(s, X1 'x2),  if 0 =g qr, O B x2) with xixg ' # vF;

L(s,5, Ads) L(s)L(s+ 1), if ¢ = StgrL, ® X;
707 = ~ — ~
? L(s)L(s, &, Sym? Rw b, if 7 is supercuspidal;
L(s)?L(s —1)L(s + 1), if 0 = yodet.

Here, L(s) = L(s,1px). Recall our choice of notation
L(s,0,Ads) = L(s)L(s,7,Ad).
Combining with (2.14), Sections 4.2.1 and 4.2.2, we have the following.
gne-(a)&(b) Given a supercuspidal o € Irr(GSpiny), we recall that
o C Resgigzin (51 K )
for some supercuspidal 1 K 79 € Irr(GL2 x GL3). By (2.15) we have
L(s,0,Ad) = L(s, 5, Sym? ®wg11)L(s, &2, Sym? ®wg21).
gne-(i) Given
0 = Staspin, ® x € Irr(GSpiny),
by (2.15) we have
L(s,0,Ad) = L(s +1)2.
gne-(ii) Given o € Irr(GSpin,) such that
0= Resgéééfh (igIIﬁxGLl(Xl ® x2) ¥ Star, ® X) ;
by (2.15) we have
L(s,0,Ad) = L(s)L(s, x1x3 ") L(s, X1 *x2) L(s + 1).
gne-(iii) Given o € Irr(GSpin,) such that

GL3xCLs (:GL aL
o C Resggpin, (l(}foc;L1 (x1 ®x2) Wigr? qr, (X3 ® X4))

by (2.15) we have
L(s,0,Ad) = L(s)*L(s, x1x5 ) L(s, x7 " x2)L(s, xax1 )L (s, x5 "x1)-
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gne-(iv) Given o € Irr(GSpin,) such that
o = Resggiin ™ (6 W Star, ® x)
by (2.15) we have
L(s,0,Ad) = L(s, &y, Sym? ®wg21)L(s +1).
gne-(v) Given o € Irr(GSpin, ) such that

GL2 XGL2 ~ ~GL2
o C Resggpin, (0 Xidr? van, (a ® X2)>

by (2.15) we have
L(s,0,Ad) = L(s)L(s, o2, Sym? ®wg21)L(s, xlxgl)L(s, Xflxg).
nongne Given a non-generic o € Irr(GSpin, ), from (4.15), we recall that
o= Resgéggi}l‘z (x o det X o)
and by (2.15) we have
L(s,0,Ad) = L(s)L(s — 1)L(s + 1)L(s, 7, Ad).
We summarize the explicit computations above in Table 2.

5. REPRESENTATIONS OF GSping

We now list all the representations of GSping(F') and then calculate their associated adjoint L-function
explicitly. Again, we do this explicit calculation by finding the 6 x 6 nilpotent matrix in the complex dual
group GSO¢(C) in each case that is associated with the parameter of the representation.

5.1. The Represenations.
5.1.1. Classification of representations of GSping. Again, following [AC17], we have

1 — GSping(F) — GL1(F) x GL4(F) — F* — 1. (5.1)
Recall that
GSping(F) 2 {(g1,92) € GL1(F) x GL4(F) : g7 = detga}, (5.2)
LGSping = GSping = GSOg(C) 2 (GL1(C) x GL4(C))/{(72,2) : z € C*}, (5.3)
and
1 — C* — GLy(C) x GL4(C) 2% GSping — 1. (5.4)

Just as the rank two case, here too we view GSOg as the group similitude orthogonal 6 x 6 matrices with
respect to the analogous 6 x 6, anti-diagonal, matrix J = Jg as in (4.5), and similarly define its Lie algebra
with respect to J.

5.1.2. Construction of the L-packets of GSping (recalled from [AC17]). Given o € Irr(GSping) we have a lift
o € Irr(GL; x GL4) such that
o= ResgIS“;QSL“ (@).

It follows from the LLC for GL,, [HT01, Hen00, Sch13] that there is a unique ¢z € ®(GL; x GL4) corre-
sponding to the representation . We now have a surjective, finite-to-one map

L : Irr(GSping) —  ®(GSping) (5.5)

o pre° gz,

which does not depend on the choice of the lifting . Then, for each ¢ € ®(GSping), all inequivalent
irreducible constituents of o constitutes the L-packet

1, (GSping) := IT5 (GSping) = {a 7 <> ResGh1 X Ol (’&)} / ) (5.6)

where ¢ is the unique member of I15(GL; x GL4) and ¢ € ®(GL; x GLy) is such that prg o @ = ¢. We note
that the construction does not depends on the choice of @. Further details can be found in [AC17, Section
6.1].
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Following [AC17, Section 6.3], given ¢ € ®(GSping), fix the lift
P=7® @o € D(GL; x GLy)
with @p € ®(GL4) such that ¢ = prg o @. Let
o =nXoy € z(GL; x GLy)

be the unique member such that {og} = II5,(GL4).
Recall that

1656 (5 = { Y€ (GLl(F) x GL4(F)/ GSpina(F))D 10®

=<1

1

Sk
—

Then we have

I, (GSping) ¢— IG5 (5), (5.7)
and by [AC17, Lemma 6.5 and Proposition 6.6] we have
TOSPine () = (¥ € I (Gg) 1 X2 = 1px } (5.8)

and any Y € 195 () is of the form
Y= @) 8y,
for some Y’ € (F*)P.

5.2. Generic Representations of GSping. Thanks to the group structure (5.2) and the relation of generic
representations in Section 3.1, in order to classify the generic representations of GSping, it suffices to classify
the generic representations of GLj,.
Here are two key facts from the GL theory.
e Recall from [Zel80, Theorem 9.7] and [Kud94, Theorem 2.3.1] that a generic representation of GLy
is of the form

iS4 (o)
where M, runs through any F-Levi subgroup of GL4 (including GLy4 itself) and o, is any essentially
square-integrable representation of M,.

e For their L-parameters, we note from [Kud94, §5.2] that the generic representations of GL4 have
Langlands parameters (i.e., 4-dimensional Weil-Deligne representations (p, N)) of the form

(p1 @ sp(r1)) © .. @ (pr @ sp(rt))
with t < 4, where p;’s are irreducible and no two segments are linked.

5.2.1. Irreducible Parameters. Let ¢ € ®(GSping) be irreducible. Then ¢ and @g are also irreducible. By
Section 3.1, we have the following.

Proposition 5.1. Let ¢ € ®(GSping) be irreducible. Every member in I1,(GSping) is supercuspidal and
generic.

To see the internal structure of IT,,(GSping), we need, by (5.7), to know the detailed structure of 75Pins ()
as follows.

gne-(a) Given o € Irrsc(GSping), we have

o= 50 X 77 S II‘I‘SC(GL4 X GLl) (59)
From [AC17, Proposition 2.1], we recall the identification:
A ={B) =f5 — 13,8 = fi — f5.8 = fi = fi}- (5.10)

using the notation f;; and f5, 1 <4,j <4, for the usual Z-basis of characters and cocharacters of
GLy. Also, {f1, 82, B3} are the simple roots of GSping.
We have

(2.19)
N, c)xar ©) = (0ax4,0) = Nasog(c) = Osxe-
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5.2.2. Reducible Parameters. When (g is not irreducible, we have proper parabolic inductions. An exhaus-
tive list of F-Levi subgroups M of GSping (up to isomorphism) is as follows.

e M = GL; x GL; x GL; x GL; = M N GSping, where M = (GL; x GL; x GL; x GL1) x GL1.

e M2~ GLy x GL; x GL; = M N GSping, where M = (GLy x GL; x GL1) x GL;.

e M = GL3 x GL; = M N GSping, where M = (GL3 x GL;) x GL;. (Note: The factor GL; of M is
GSpin, by convention.)

e M = GL; x GSpin, = M N GSping, where M = (GLj x GL3) x GL1.

e M = GSping = MnN GSping, where M = GL4 x GL;.

(Note that M 2 GL2 x GL2 does not occur on this list.) We now consider each case and, by abuse of
notation, conflate algebraic groups and their F-points.

gne-(I) M 2 GLy x GL1 x GL; x GLy and M = (GL; x GL; x GL1 x GL;) x GL;.
Given x; € (F*)P we consider
’%Spinﬁ (x1 X x2 B x3 X xq). (5.11)
Write X1 &XQ &Xg |Z|X4 g (%1 g;{Q gig |Z|%4 &7”7”1\/[ with iivﬁe (FX)D so that
X1X2X3X4 =17
Then we have the following relations
X1=X1, X2 = X2, X3 = X3, X4 =1 (X2X3X4) " (5.12)
By Section 3.1, we know that the representation (5.11) is generic if and only if its lift
@%LMGLI()E X X2 X x3 X x4 X 7)) (5.13)
is generic if and only if

GL IO
TG % GLy xGL, xGL, (X1 X X2 B X3 B X4) (5.14)

is generic. By the classification of the generic representations of GL,, ([Zel80, Theorem 9.7] and
[Kud94, Theorem 2.3.1]), this amounts to (5.14) being irreducible. By [Kud94, Theorem 2.1.1]
and [BZ77, Zel80], the necessary and sufficient condition for this to occur is that there is no pair
1,7 with ¢ # j such that
%i = V%j.
We have

(5.10)
N, (©)xaL, (€) = (0ax4,0) <= Nasog(c) = O6x6

gne-(I1) M 2 GLy x GL; x GL; and M = (GLy x GL; x GL1) x GL;.
Given 0g € Irresq(GL2) and x1, x2 € (FX)P, we consider
iy " (00 B x1 K X2). (5.15)

Write [ol) X X1 X X2 = (f&og ;1 X %2 X ’I’ﬂ|M with &0 S II‘I‘CSq(GLz), %Z,?]/ S (FX)D.
Given (g, h1, ho, hg) € M with det(ghlhg) = hg,
o if we set (g, h1,h3) € M, we have
G0(9)X1(h1)Xa(ha)ii(hs) = Go(g)X1(h1)Xa(det g~ hy 'h3)7j(hs)
(Box™ o det)(g) (%2 X3 ) () () ()
o(g)x1(h1)x2(hs).

Then we have

09 = 00%27 )21 = Xl;{?u 77: X2%52'
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o If we set (g, he, hg) € M, we have
50(9)X1(h1)X2(ha)ii(hs) = o(9)X1(det g~ hy 'h3)Xa(ha)Ti(hs)
= (Gox; ' odet)(g)(Xaxy 1)(h2)(X37) (h3)
= o(g)x1(h2)x2(hs).
Then we have
G0 = 00X1, X2 = X2X1, 7= X1X1 -
As before, the representation (5.15) is generic if and only if its lift

iSXER (G KX ) X2 B7)

is generic if and only if
GL o o~ o~
iGLa xGL, xGL, (00 K X1 X X2)

13

(5.16)

(5.17)

(5.18)

is generic. Again by the classification of the generic representations of GL,, this amounts to (5.18)

being irreducible. Hence, we must have
X1 7 v Xe.
In other words, given (g, h1, ha, hs) € M with det(ghy hy) = h2,
o if we set (g, h1,h3) € M, then

x1 # v
o if we set (g, ho, h3) € M, then
X2 7& Vil.

We have the following two cases. If o is supercuspidal, then

(5.10)
N, ©)xaL, (©) = (0ax4,0) &= Nagsog(c) = Osxe-

If ¢ is non-supercuspidal, then

0O 00 0 O

01 0 O 0O 01 0 O

00 00 (5.10) 0000 O

Noroxai© = [ g 9 o ol 'Y & Nesos© = 1|5 0 0 0 -1
0 0 0 O 0O 0 0 0 O

0O 00 0 O

gne-(I11) M = GL3 x GL; and M = (GL3 x GL1) x GL;.
Given g € Irtesq(GL3) and x € (F*)P, we consider

iSSP (g0 K y ).

Write o¢ X X = (30 X )A{& ﬁ)lM with 30 S Il”I’esq(GL3), 52777 S (FX)D.

OO O O OO

Given (g, h1, hs) € M with det(ghy) = h2, if we set (g, ha) € M, then we have

Go(g)X(h)i(he) = Go(g)X(det g~ h3)n(hs)
(Gox " o det)(g)(X*7) (h2)
= a(g)x(he).

Then, we have
50 = 0’0; and ﬁ = X2%72.
As before, (5.19) is generic if and only if its lift
(S G (G K Y R7)
is generic if and only if

.GL ~ ~
IGLax Gl (o0 X X)

(5.19)

(5.20)

(5.21)

(5.22)
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is generic. This amounts to (5.22) being irreducible as before, which is always true since gy is
an essentially square integrable representation of GL3. Note that by the classification of essen-
tially square-integrable representations of GL3 ([Kud94, Proposition 1.1.2]), oo must be either

supercuspidal or the unique subrepresentation of

.GL: -1
LGy xGLy xGL,y (’/X Kx XNy X)

with any y € (F*)P.

We have the following two cases. If o is supercuspidal, then

(5.10)
N, ©)xar, ©) = (0ax4,0) &= Ngsog(c) = Osxe-

If ¢ is the non-supercuspidal, unique, subrepresentation of (5.23),

0

01 00 0

0 010 (5.10) 0

NgL,(c)xaLy () = 000 0 ,0 | = Nagsos(c) = 0
0 0 0 O 0

0

gne-(IV) M 2 GL; x GSpin, and M = (GLj x GL3) x GL;.
Given oy € Irresq(GSping) and x € (F*)P we consider

iSSP0 (VK o).

O OO O o

Write x K oo C (51 K o2 ¥ 7)|a with 6; € Irtesq(GL2), 7 € (F*)P.

As before, (5.24) is generic if and only if its lift
iSO (G R 5y K 7)
is generic if and only if

.GL ~ ~
iGL, xGL, (01 K 02)

is generic. This amounts to (5.26) being irreducible. Thus, we must have

51 75 I/ilag.

We have several cases to consider. If o is supercuspidal (so are o1 and &3), then

(5.10)
Nar,©)xcr, ©) = (04x40) <= Nasog(c) = Osxe-

If o is non-supercuspidal, then for supercuspidal o; and non-supercuspidal o2 we have

0

0 0 0 O 0

00 0 0 (5.10) 0

NgL,(©)xaL, () = 000 1 0 | == Nasos(c) = 0
0 0 0 O 0

0

for non-supercuspidal o; and supercuspidal o2 we have

E

NgL,(©)xaLy () = Nasos(c) =

o O OO
S oo
o O O O
o O OO

OO OO oo

0

OO o OO

OO OO OO

0

o oo oo

eleoBoBol "

0

S o oo

OO OO OO

o O O

o O

o oo oo

OO OO OO

0

(5.23)

(5.24)

(5.25)

(5.26)
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and for non-supercuspidal g1 and &5 we have

0 000 0 O

01 0 0 0 01 1 0 O

0 0 0 O (5.10) 0 000 -1 0

NeL,(©)xGLi () 000 1'% = Nesos@=1|g 0 0 0 -1 0
0 0 0O 0 000 0 O

0 000 0 O

M = GSping and M = GL, x GL;.
Given o € Irresq(GSping) \ Irreo (GSping), we consider
o C (3 X ?]) |]u

with & € ItTesq(GL4) \ Irree (GLy4 ), 77 € (F*)P. Here, we note that ¢ € ®(GSping) is not irreducible
and neither o nor o is supercuspidal. It is clear that o is generic as ¢ X 77 is. By the classification
of essentially square-integrable representations of GL, ([Kud94, Proposition 1.1.2]), & must be the
unique subrepresentation of either

(G X GLy xGLy XGLs (V3/2Y T PR V_3/2Y) (5.27)

with any ¥ € (F*)P (i.e., & = StgL, ® X), or of

R =
with any 7 € Irrg.(GL2).
Now, for (5.27) we have
01 0 0 O 0
01 0 0 001 1 0 0
0 010 (5.10) 00 00 -1 O
Newy@xc© = | g g o 1[0 = Nesos@ =g g 0 0 -1 0]
0 0 0O 0000 0 -1
0 00 0 O 0
and for (5.28) we have
0 01 1 0 O
0 01 0 0 00 0 0 O
0 0 01 (5.10) 0 000 0 -1
NaLy(©)xGL (©) 000 oY T Nsow@=19g 900 0 -1
0 0 0O 0 00O 0 O
0 00O 0 O
(We note, cf. [Tat79, (4.1.5)], that Ngr,,(c) is of the form Ozxo ® Inxo + {8 (1)} ® Izx2.)

5.3. Non-Generic Representaions of GSping. Using the transitivity of the parabolic induction and the
classification of generic representations of GLy, ([Zel80, Theorem 9.7] and [Kud94, Theorem 2.3.1]), the
non-generic representations of GSping are as follows.

nongne-(A) M 2 GL; x GLy x GLy x GL; and M = (GL; x GL; x GL; x GL;) x GL;.

Given y; € (F*)P, by Section 3.1 and using (5.12), the representation (5.11) contains a
non-generic constituent if and only if the same is true for

GG (%) B Ro B Ya B Y4 B 7) (5.29)
if and only if

GL e~ o~ o~
(L, xGLy xGLy xGL, (X1 B X2 B X3 B Xa) (5.30)
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contains a non-generic constituent. This amounts to (5.30) being reducible. As before, the
necessary and sufficient condition for this to occur is that there is some pair 4, j with ¢ # j such
that )A& = V)Zj.

By the Langlands classification and the description of constituents of the parabolic induction
(see [Zel80, Theorem 7.1], [Rod82, Theorem 7.1], and [Kud94, Theorems 2.1.1 §5.1.1]), each
constituent can be described as a Langlands quotient, denoted by Q(...), as follows.

The first case is when there is only one pair, say x1 = v'/2Y and X2 = v~ /2% for some
X € (F*)P while x5 # v*ly; for j # 3 and X4 # vEX; for j # 4. Then we have the non-generic
constituent

Q (/2% /%0, %), [%) (5.31)
which is the Langlands quotient of

G ~17,— ~ o Nel ~ ~
GLaxGLy xGL (Q ([V1/2X]v v 1/292]) X X5 X X4) = a1t ar xar, (X o det) B X3 R Xa) .
We have
(5.10)
N, c)xar, (©) = (0ax4,0) &= Nasos(c) = Oexe-
Note that the other constituent of this induced representation, which is generic, is

Q (2% PR Wl [jal) = i caraxar, (@ (7125 v/ BT WX
= igﬁﬁxGleGLl ((St®x) B X3 X X4) -

The next case is when there are two pairs, say X1 = X, x2 = X, and x3 = v~ ¥ for some
X € (F*)P and x4 # v*'x; for i = 1,2,3. Then we have the following three non-generic
constituents:

Q (vx) [X]: 'R [Xa)) = 6L e, (X o det) B X R Xa); (5.32)
Q ([%7 V)A(J]v [V_lig]v [%4]) ) (5'33)
Q ([Vﬂv [557 V_lsg]v [%4]) . (5'34)

For (5.32) we have

(5.10)
N, ©)xaL, (©) = (0ax4,0) <= Nagsog(c) = Osxe,

for (5.33) we have

0000 0 O
01 00 001 0 0 O
0 0 0O (5.1Q) 0000 0 O
New@xeu@ = | |9 o o of Y| = Nesos@ =19 0 0 0 -1 o|"
0 0 0O 0000 0 O
00 0 0 0 O]
and for (5.34) we have
(0 1. 0 0 0 0]
0 0 0O 000 O0O0 O
0 010 (5.1Q) 000 O0O0 O
Nevyopxan© = | |g o o o] 0] = Nesos@ =19 0 0 0 0 o
0 0 0O 00000 —1
0 000 0 0]
Finally, in the case where we have three pairs we are in the situation of (5.27). Then we have

the following seven non-generic constituents:

Q (I3, /20, /2%, [ 2R) = Ko dets (5.35)

Q (2%, v 2%0, /2%, v/ ) 5 (5.36)
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Q (2%, 25,27, /5]

Q (230, /230, =25, v=1/23])
Q (/2% v*/23, /2%, /23]
Q (2%, /2%, v*2%), v /%))
Q (W20, v ™*/2%, v 1/2%, v1/2Y))

For (5.35) we have

(5.10)
N, ©)xar, ©) = (0ax4,0) &= Nagsog(c) = Osxe,

for (5.36) we have

(00 0 0 0
0100 0010 0
0000 (3.10) 0000 O
NerioxeL© = [ g o o o 0] = Nesow@=1{g 0 0 0 -1
000 0 0000 O
0000 0
for (5.37) we have
[0 1.0 0 0
0000 00000
0010 (5.10) 00000
NGL4(C)><GL1(C)_ 0 0 0 0 ;0 <:>NG506((C): 0O 0 0 0 O
000 0 00000
00 000
for (5.38) we have
(00 0 0 0
0000 0001 0
0000 (5.10) 0000 —1
NaL,(©)xGL, (©) 00 0 1 ;01 == Nasos(c) = 0000 0O
000 0 0000 O
0000 0
for (5.39) we have
[0 0 0 0 0
0100 0011 0
0000 (5.10) 0000 —1
Nevy@xe@ = | g g o 1|'0] = Nesos@ =15 ¢ o 0 -1
000 0 0000 O
0000 0
for (5.40) we have
0100 0
0100 0010 0
0010 (5.10) 0000 0
NGL,(©)xGL (©) 000 o = Nasosw =1y g 0 0 —1
000 0 0000 O
0000 O
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01 0 0 O 0
0 0 0O 0 00 1 O 0
0 01 0 (8.10) 0000 -1 0
NGL4(C)XGL1(C) - 0 0 0 1 50 — NGSO(;((C) = 0 0 0 0 0 0
0 0 0 O 0000 0 -1
00 0 0 O 0
M = GLy x GL; x GL; and M = (GLy x GLy x GL1) x GL;.
Given oy € Irr(GLs) and x1, x2 € (F*)P, we consider
iS5 P (00 ® x1 ® x2). (5.42)

Write
oo W x1 W x2 = (g0 X X1 W X2 W 7)|as

with ¢ € Irr(GL2) and X;,7 € (F*)P. By (5.16), it follows that (5.42) contains a non-generic
constituent if and only if its lift

iGLaxGL1 5 v Ko X 5.43

Y3 (00 X X1 X X2 X 77) (5.43)
contains a non-generic constituent if and only if

.GL ~ ~ ~

ZGLngleGLl(UO X X1 X X2) (5.44)
does. Recalling nongne-(A), it is sufficient to consider the case of 7y € Irr(GL3), X1 = v'/2¥,
and Xo = v~1/2x for Y € (F*)P, where the segment Az, of 5o does not precede either Y; or
X2- We then have the following sole non-generic constituent:

QUAG, ] [V'/2X], v /*X)).- (5.45)
We have
Nav,(©)xaL, (©) = (04x4,0) k= Nasos(c) = Osxe-
M = GL3 x GL; and M = (GL3 x GL;) x GL1.
Given a non-generic g € Irr(GL3) and any x € (F*)P, we consider
iSSP (g0 K y ). (5.46)
Write
o0 M x = (00 B X X 7)|m
with non-generic 5o € Irr(GL3) and X,7 € (F*)P. As in (5.20) we have
Go=00X, and = x2X .
As before, (5.46) contains a non-generic constituent if and only if its lift
i (G, R X R7) (5.47)
also contains one if and only if
iG i, Fo B X) (5.48)

does. To have a non-generic oy of GL3(F), the irreducible representation o, must be some
constituent in a reducible induction. This case has been covered in nongne-(A) and (B) above.

M = GL; x GSpin, and M = (GL; x GL3) x GL;.
Given a non-generic oy € Irr(GSpin, ), by Section 4.3, we know that it must be of the form

Rescgain, ((x o det) K 5)
for 7 € Irr(GL2). For n € (F*)P, the induced representation
i3P6 (o det) K & K1) (5.49)
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contains a non-generic constituent if and only if so does

iSrt o, (x o det) K G),

which is always the case. Therefore, if 7 is supercuspidal, then

(2.19)
N, ©)xar ©) = (0ax4,0) &= Ngsog(c) = Osxe-

If & is non-supercuspidal, then it suffices to consider the case ¢ = Stgr, ® n with n € (F*)P
since the other case has been covered in nongne-(A). Thus, we have

0000 O O

0 0 0O 0001 0 O

0 0 0 O (5.10) 0000 -10

NGL4(C)><GL1(C) 00 0 1 70 — NGSOG((C) = 00 0 0 0 0

0 0 0O 0000 O O

0000 O O

nongne-(E) M 2 GSping and M = GLy x GL.
Given a non-generic o € Irr(GSping), it must be of the form
ResGimo ™ (X o det B7j) = x o det, (5.50)

for some ¥, 7 € (F*)P. This is the case Q([*/2x], [v'/?X], [v~/?X], [v~?/2X]) in nongne-(A).

5.4. Computation of the Adjoint L-function for GSping. We now give explicit expressions for the
adjoint L-function of each of the representations of GSping(F'). Recall that if we have a parameter (¢, N)
with N a nilpotent matrix on the vector space V, then its adjoint L-function is

L(s, ¢, Ad) = det (1 — g Ad(¢)|[ViH) ",

where Viy = ker(N), V! the vectors fixed by the inertia group, and Vi = VI N Vy. Below for the cases
where N is non-zero, we write ker(Ad(/N)) and we use L, to denote the root group associated with the root
a.

We now consider each case. Using (2.14) and Sections 5.2, and 5.3, we have the following.

gne-(a) Given o € Irrs.(GSping), we have o = 59 K 7 € Irrec(GLy x GL1). Then
L(s,1px)L(s,0,Ad) = L(s,00, Adgz,)
or
L(s,0,Ad) = L(s, 09, Ad).
gne-(I) Given M 2 GL; X GL; x GL; x GL; and M = (GLy x GL; x GL; x GL1) x GL4, we recall

GL ~ o~ o~ o~
IGL % GLy x GL, xGL, (X1 X X2 B X3 B X4)
must be irreducible. Thus, given o € Irr(GSping) such that

.GSping

o=iy (X1 XXx2 M x3 X Xy),
we have
L(s,0,Ad) = L(s)* [ L(s, Xix; )-
i#]
gne-(IT) Given M = GLy x GL; x GL; and M = (GL2 x GL; x GL1) x GLy, for g9 € Irresq(GL2) and
X1, X2 € (FX)P, we have an irreducible induced representation

iGSpinG(

— _ GL4xGL4
o=l = Res

oo M x1 X x2) GSping (igﬁjxc}m xGLl(&O XX KXz X m) )

for some G € IrTesq(GL2), and X;,7 € (F*)P. For supercuspidal &, we have
L(s,0,Ad) = L(s)*L(s,50,Ad)L(s,50 x X1 ) L(s,0y X X1)

L(s,50 x X3 ")L(s,0¢ x X2)L(s,X1X5 ") L(5,X2X1 )
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ker

gne-(III)

gne-(IV)
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For non-supercuspidal & € Irr(GLg), i.e., 09 = Stgr, ® X for some ¥ € (F*)P, we have

01 0 0 a 0 0 O
00 0 O 0O a 0 O
ad 00 0 0 :< 00 b 0 7Lfl_f27Lf1_f37Lf1_f47LfS—.f27LfS_f47Lf4—f27Lf4_f3>'
00 0 O 0 0 0 ¢
(5.51)
It follows that
L(s,0,Ad) = L(s)*L(s+ 1)L(s + 1,Xx1 )L(s + 1,Xx3 ")

L(s, X~ 'X1)L(s, X" X2)L(s, X1Xa ) L(5, X2X7 ).

Given M = GL3 x GL; and M = (GL3 x GL1) x GLy, for og € Irresq(GL3) and x € (F*)P, we have
an irreducible induced representation

o = iy P (0 B x) = Res@hx O (1GE0EE r, G0 BT ER))
for 5o € Irtesq(GL3) and X, 7 € (F*)P. If ¢ € Irresq(GL3) is supercuspidal, then we have
L(s,0,Ad) = L(s)L(s,00,Ad)L(s,50 x X ")L(s,55 X X).

For non-supercuspidal 6 € Irresq(GL3), i.e., 0o = StaL, ® Xo for some Xo € (F*)P, we have

01 0 0 a c 0 0
0 010 0 a c O

ker [ ad 00 0 0 :< 00 a O 7Lf1_f37Lfl—f47Lf4_f3>' (5'52)
0 0 0O 0 0 0 b

It follows that
L(s,0,Ad) = L(s)L(s + 1)L(s + 2)L(s + 1, XXy )L(s + 1, X 'Xo)-
Given M = GL; x GSpin, and M = (GL2 x GL3) x GL;, we have the representation (5.24)

_ .GSping
o=1iy °(

X&O’Q)

with o9 € Irtesq(GSpiny), and x € (F*)P. We have the irreducible igfngLz (o1 M a3) as in (5.26),
where Y Koo C (61 X ae X 7))y with 0; € Irresq(GL2), 77 € (FX)P. Thus, if og is supercuspidal (and
hence so are o1 and 02) we have

L(s,0,Ad) = L(s)L(s,01,Ad)L(s,02,Ad)L(s,01 x 05 )L(s,5, x 71).

If o is non-supercuspidal, with &y supercuspidal and &5 non-supercuspidal, i.e., o2 = Stgr, ® X
for some X € (F*)P, we have

0 0 0O a 0 0 O
0 0 0 O 0 b 0 O

ad 0 0 0 1 _< 00 ¢ O 7Lf1f2va1f47Lf2flefzfAva3f15Lf3f27Lf3f4>v
0 0 0O 0 0 0 ¢

(5.53)
and it then follows that

L(s,0,Ad) = L(s)L(s+ 1)L(s,o1,Ad)L(s + %, oy x X)L(s + %, o1 X X ).

If o is non-supercuspidal, with o7 non-supercuspidal and o2 supercuspidal, i.e., o1 = Stgr, ® X
for some X € (F*)P, then ker(ad(N)) is as in (5.51) and we have

L(s,0,Ad) = L(s)L(s+ 1)L(s,02,Ad)L(s + %, oy x X)L(s+ %, g2 X X V).
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If both &; and Go are non-supercuspidal, i.e., 5; = Star, ® X; with X1,X2 € (F*)P satisfying
X1 # X2vt!, we have

01 00 a 0 ¢ O
0 0 0O 0 a 0 ¢

ker a‘d 0 0 0 1 = < d 0 b 0 7Lf1f25Lf1f47Lf%f25Lf'§f4> ? (554)
0 0 0O 0 d 0 b

and it follows that
L(s,0,Ad) = L(s)L(s + 1)*L(s + 1, X1X5 ) L(s + 1, X1 "X2)L(s, X1 'X2) L(s, X1X3 1)-

gne-(V) Given M = GL; x GSpin, and M = (GL2 x GL2) x GL1, we consider 0 € Irresq(GSping) and
0 € Irtesq(GLy) and 7 € (F*)P such that o C (¢ ®7)|5s. Then, & must be either (5.27) or (5.28).
For (5.27) (i.e., ¢ = Star, ® X), we have

01 0 0 a b ¢ 0
0 01 0 0 a b ¢

ker | ad 00 0 1 —< 0 0 a b aLf1f4>7 (555)
0 00 O 0 0 0 «a

and it follows that
L(s,0,Ad) = L(s+3)L(s+2)L(s+1).
For (5.28) (i.e., T € Irrsc(GL2)), we have

0 010 a c 0 0
0 0 01 d b 0 0

ker a‘d 0 0 0 0 = < 0 0 a c 7Lf1f’HLflf47Lf2f’HLf2f4> ? (556)
0 0 0O 0 0 d b

and it follows that
L(s,0,Ad) = L(s,7,Ad)L(s,7 x 7”).
nongnt—(A) For Q([V1/2§aa [Vﬁl/Qi\da [;3]5 [;4]) (fl.;ﬂ.), we have

L(s,0,Ad) = L(s)*L(s+1)L(s — 1)L(s,X3Xs ) L(s,X5 "X4)
1 1 1 1 .
I1 (L(S + 50 XX (s = 5, X R)L(s = 5, X% DE(s + 50X 1Xi))
i=3,4

For @ (75 [¥), -0, [%4]) (8.32), we have
L(s,0,Ad) = L(s)’L(s + 1)’ L(s = 1)’L(s + 2)L(s —2) [] (L(s+tXx: " )L(s +t.X 'Xa)),
#=0,1,—1
For Q([x, vX], [v"'X], [X4]) (5.33), we have ker(ad(N)) as in (5.51) and

L(s,0,Ad) = L(s)°L(s — 1)°L(s = 2) [ L(s+t.xx:") J[ Ls+6X"X).
t=—1,0 t==+1

For Q ([ijla [;a Vﬁl%]v [%4]) (5-'3-4)7 since

0 0 0 O a 0 0 O
0 01 0 0O b 0 0
ker | ad 00 0 0 —< 00 b 0 7Lf1f3aLf1f47Lf2f1aLf2fvaf2f4aLf4f17Lf4f3>v
0 0 0O 0 0 0 ¢
(5.57)
we have

L(s,0,Ad) = L(s)’L(s + 2)L(s = DL(s + 1) [ Ls +t.x% ") [ L(s +X 'Xa)-
t=0,1 t=+1
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For Q([v*/X], [v'/2X], [v""/?X], [v~*/?X]) (5.35), we have
L(s,0,Ad) = L(s)®L(s +1)3L(s — 1)3L(s + 2)>L(s — 2)?L(s + 3)L(s — 3).

For @ ([v/?x,v3/%x], [v='/2X], [v=%/2X]) (5.36), we have ker(ad(IN)) is as in (5.51) and
L(s, 0,Ad) = L(s)®L(s — 1)?L(s + 1)®L(s — 2)L(s + 2)L(s — 3).

For Q([v*/2x], [v='/2X,v'/?%], [v~3/%%]) (5.31), we have ker(ad(N)) is as in (
L(s, o, Ad) = L(s)*L(s + 1)*L(s + 2)L(s — 1)*L(s — 3)L(s — 2).

For Q([v*/2x], [v*/?X], [v=3/2X, v~ 1/%X]) (5.38), we have ker(ad(N)) is as in (5.53) and
L(s, o, Ad) = L(s)?L(s + 1)*L(s — 1)®L(s — 2)L(s + 2)L(s — 3).

For Q([v'/2x,v3/2%], [v=3/2%, v~1/2%]) (5.39), we have ker(ad(NV)) is as in (5.54) and
L(s,0,Ad) = L(s)L(s — 1)®L(s + 1)L(s + 2)L(s — 2) L(s — 3).

For Q([v=Y/2x,v'/2x,v3/2%], [v=3/2%]) (5.40), we have ker(ad(NV)) is as in (5.52) and

L(s,0,Ad) = L(s)L(s — 1)L(s — 2)L(s + 1)L(s — 3).
Finally, for Q ([v%/2x], [v=%/2X, v~ Y/2x,vY/2x]) (5.41), since

ker | ad

O = OO

a 0 0 O
0 b ¢ O

:< 00 b ¢ ’Lfl_f4’Lf2—f17Lf2—f4>7 (5.58)
000 b

o O oo
o o oo
o o = O

we have
L(s,0,Ad) = L(s)L(s+ 1)L(s — 1)L(s — 2)L(s — 3).
nongne-(B) For Q([Az,], [V"/2X], [v~/°X]) (5.45), with say [Az,] = iGr2 cqr, (I Bk), M7y ' # v+ we have

L(s,0,Ad) = L(s)*L(s+ 1)L(s — 1)L(s, 75 ") L(s, 7, "72)
1 . 1 1 1 -
II (L(s — 57X YL(s + 2,771 “HL(s + 2,771 T'X)L(s — 250 1X)> :
i=1,2

nongne-(C) As mentioned before, all the possibilities in this case were covered in (A) and (B) above.
nongne-(D) For (5.49) with & supercuspidal, we have

L(s,0,Ad) = L(s)>L(s+1)L(s — 1)L(s,0,Ad)

1 1 1 1
L(s— Pt x x 1) L(s + 30 x x L(s — 5,0\/ x x)L(s + 5,0\/ X X),
For (5.49) with non-supercuspidal & = Stgr, ® 1, 7 € (F*)P we have ker(ad(N)) as in (5.53) and
L(s,0,Ad) = L(s)’L(s +1)*L(s — 1)L(s, xn~ ") L(s + 1, xn~ ") L(s + 1,x " 'n)L(s, x " 'n).

Recall that the remaining possibilities in this case were already covered in (A) above.
nongne-(E) Finally, as mentioned before, all the possibilities in this case we also covered in (A).

6. CORRECTION TO [AC1T]

We take this opportunity to correct the following errors in our earlier work [AC17]. They do not affect
the main results in that paper.
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6.1. Proposition 5.5 and 6.4.
e Change “1,2,4,8,if p =27 to “1,2,4,8,..., 2lF@1+2 if p — 27 We have 217 @42 que to the fact that
}FX/(FX)2| _ 2[F:Q2]+2.
e For Proposition 5.5, using [GP92, Corollary 7.7], it follows that the case of p = 2 is bounded by
(Z,/2Z)*~1| = 8. Here 4 is coming from GSpin, = GSO(4, C).
e For Proposition 6.4, using [GP92, Corollary 7.7], it follows that the case of p = 2 is bounded by
|(Z/27)5~ | = 32. Here 6 is coming from Gﬁﬁ = GSO(6,C).

6.2. Remark 5.11.
e The formula (5.13) should read as follows:

IT, (GSpiny)

= }Hw(GSpini’l)’ —4, }H@ (GSpini’l)’ ~1. (5.13)

Also, in the following sentence change “in which case the multiplicity is 2” to “in which case the
multiplicity 2 could also occur”. We thank Hengfei Lu [Lu20] for bringing this error to our attention.
e In addition, it is more accurate that we use ‘not irreducible’ rather than ‘reducible’ in this Remark
since one may have indecomposable parameters. Alternatively, we may write @;|w, is reducible.
Thus, at the beginning the Remark, change “When ¢; is reducible,” to “When @; is not irreducible,”.

[Art13]
[AC17]
[AS08]
[ABPS16]
[BZ77]
[Bor79]
[Chol7]
[GGP20]
[GT10]

[GT11]
[GT14)

[GK82]

[Gr22]
[GP92]

[GR10]
[HTO01]
[Hen00]

[HS12]
[KMSW14]

[Kud94]

[Lab85]
[Lu20]

REFERENCES

J. Arthur. The endoscopic classification of representations. Orthogonal and symplectic groups. American Mathe-
matical Society Colloquium Publications, 61. American Mathematical Society, Providence, RI, 2013.

M. Asgari and K. Choiy. The local Langlands conjecture for p-adic GSping, GSping, and their inner forms. Forum
Maith., 29(6):1261-1290, 2017.

M. Asgari and R. Schmidt. On the adjoint L-function of the p-adic GSp(4). J. Number Theory, 128 (8):2340-2358,
2008.

A.-M. Aubert, P. Baum, R. Plymen, and M. Solleveld. The local Langlands correspondence for inner forms of SLj.
Res. Math. Sci., 3:Paper No. 32, 34, 2016.

I. N. Bernstein and A. V. Zelevinsky. Induced representations of reductive p-adic groups. I. Ann. Sci. Ecole Norm.
Sup. (4), 10(4):441-472, 1977.

A. Borel. Automorphic L-functions. Automorphic forms, representations and L-functions. Proc. Sympos. Pure
Math., XXXIII, Part 2, 27-61, Amer. Math. Soc., Providence, R.I., 1979.

K. Choiy. The local Langlands conjecture for the p-adic inner form of Sp(4). Int. Math. Res. Not. IMRN,
2017(6):1830, 2017.

W. T. Gan, B.H. Gross and D. Prasad. Branching laws for classical groups: the non-tempered case. Compositio
Math., 156 (11), 2298-2367, 2020..

W. T. Gan and S. Takeda. The local Langlands conjecture for Sp(4). Int. Math. Res. Not. IMRN, (15):2987-3038,
2010.

W. T. Gan and S. Takeda. The local Langlands conjecture for GSp(4). Ann. of Math. (2), 173(3):1841-1882, 2011.
W. T. Gan and W. Tantono. The local Langlands conjecture for GSp(4), II: the case of inner forms. Amer. J.
Maith., 136(3):761-805, 2014.

S. S. Gelbart and A. W. Knapp. L-indistinguishability and R groups for the special linear group. Adv. in Math.,
43(2):101-121, 1982.

B. Gross. The road to GGP. Pure Appl. Math. Q., 18 (5): 2131-2157, 2022.

B. Gross and D. Prasad. On the decomposition of a representation of SO, when restricted to SO,_1. Canad. J.
Math., 44(5):974-1002, 1992.

B. Gross and M. Reeder. Arithmetic invariants of discrete Langlands parameters. Duke Math. J., 154(3):431-508,
2010.

M. Harris and R. Taylor. The geometry and cohomology of some simple Shimura varieties. With an appendix by
Vladimir G. Berkovich. Annals of Mathematics Studies, 151. Princeton University Press, Princeton, NJ, 2001.

G. Henniart. Une preuve simple des conjectures de Langlands pour GL(n) sur un corps p-adique. Invent. Math.,
139(2):439-455, 2000.

K. Hiraga and H. Saito. On L-packets for inner forms of SLy,. Mem. Amer. Math. Soc., 215 (1013), 2012.

T. Kaletha, A. Minguez, S. W. Shin, and P.-J. White. Endoscopic classification of representations: Inner forms of
unitary groups. Available at arXiv:1409.3731v2 [math.NT], 2014.

S. Kudla. The local Langlands correspondence: the non-Archimedean case. Motives (Seattle, WA, 1991), 365-391,
Proc. Sympos. Pure Math., 55, Part 2, Amer. Math. Soc., Providence, RI, 1994.

J.-P. Labesse. Cohomologie, L-groupes et fonctorialité. Compositio Math., 55(2):163-184, 1985.

H. Lu. Some applications of theta correspondence to branching laws. Math. Res. Lett., 27(1):243-263, 2020.



24

[Mok15]
[Rod82]
[Rog90]
[Sch13]
[Tad92]
[Tat79)]

[Wed08]

[Xu1g]
[Zel80]

MAHDI ASGARI AND KWANGHO CHOIY

C. P. Mok. Endoscopic classification of representations of quasi-split unitary groups. Mem. Amer. Math. Soc., 235
(1108), 2015.

F. Rodier. Représentations de GL(n, k) ou k est un corps p-adique. Bourbaki Seminar, Vol. 1981/1982, pp. 201—
218, Astérisque, 92-93. Soc. Math. France, Paris, 1982.

J. Rogawski. Automorphic representations of unitary groups in three variables. Annals of Mathematics Studies,
123. Princeton University Press, Princeton, NJ, 1990.

P. Scholze. The local Langlands correspondence for GLy over p-adic fields. Invent. Math., 192(3):663-715, 2013.
M. Tadi¢. Notes on representations of non-Archimedean SL(n). Pacific J. Math., 152(2):375-396, 1992.

J. Tate. Number theoretic background. Automorphic forms, representations and L-functions. Proc. Sympos. Pure
Math., XXXIII, Part 2, 3-26, Amer. Math. Soc., Providence, R.I1., 1979.

T. Wedhorn. The local Langlands correspondence for GL(n) over p-adic fields. School on Automorphic Forms on
GL(n), 237-320, ICTP Lect. Notes, 21. Abdus Salam Int. Cent. Theoret. Phys., Trieste, 2008.

B. Xu. L-packets of quasisplit GSp(2n) and GO(2n). Math. Ann., 370(1-2):71-189, 2018.

A. V. Zelevinsky. Induced representations of reductive p-adic groups. II. On irreducible representations of GL(n).
Anm. Sci. Ecole Norm. Sup. (4), 13(2):165-210, 1980.

MAHDI ASGARI, DEPARTMENT OF MATHEMATICS, OKLAHOMA STATE UNIVERSITY, STILLWATER, OK 74078-1058, U.S.A.
Email address: asgari@math.okstate.edu

KwANGHO CHOIY, SCHOOL OF MATHEMATICAL AND STATISTICAL SCIENCES, SOUTHERN ILLINOIS UNIVERSITY, CARBONDALE,
1L 62901-4408, U.S.A.
Email address: kchoiy@siu.edu



REPRESENTATIONS AND ADJOINT L-FUNCTION FOR GSping AND GSping 25

TABLE 1. Representations of GSpin,(F)

‘ Resgégfnfh of ‘ L-packet Structure ‘ generic ‘
(a) (61X a9), 022 017,0; € Irre(GL2) {1},Z2/27,(Z)27)? o
(b) (01 K oa), 022 017,0; € Irrgc(GL2) {1},Z2/2Z .
(i) (Star, MW StaL,) = Staspin,  (irreducible) {1} .
(ii) (Zgﬁf % GLa (XGL1 wan, (X1 ® x2) ¥ Star, ® x)  (irreducible) {1} o
(i) | (iGr? wan, (1 ® X2) Bigr? qr, (Xs ® xa)), x1 # vEX2 xs £ vElxy | {1},Z2/2Z .
(iv) | (6X®Star, ® x), 0 € Irrge(GL2) (irreducible) {1} .
(v) (c X zGleGLl (x1 ®x2));, 0 € Irree(GL2) {1},Z2/2Z °
nongne | (y odetXo), & € Irr(GLz) (irreducible) {1}

TABLE 2. The adjoint L-function L(s, o, Ad) for GSpin,

‘ ‘ L(s,0,Ad) ‘ ords—1
(a)&(b) | L(s, 1, Sym? ®W~11)L(S, 2, Sym? ®w§21) 0
(i) L(s+1)? 0
(i) | L(s)L(s+1)L(s, xax3 ') L(s, X7 'x2) 0
(il)) | L(s)*L(s, xaxa )L(s,x1 x2)L(s,x3xq )L(s, x5 Xa) 0
(iv) | L(s+1)L(s, 02, Sym” @uw=") 0
(v) | L(s)L(s, x1x3 ") L(s, X7 'x2) (s, 52, Sym® @w ') 0
nongne | L(s — 1)L(s)L(s + 1)L(s, 0, Ad) 1+ ords=1 L(s,0,Ad)

TABLE 3. Representations of GSping(F)

ResgéélxrlGLl of generic

(a) | (GoX®7), oo € Irrse(GLy) °
(D Z?éﬁlxxGGLﬂl XGL1 X GL1)xGLy (X1 B X2 M X3 BXa ®7),  Xi # VX °
(1) | it et vy war, (G0 X1 B X2 B7), G € Irresq(GLa), X1 # vE' X .
(111) i?c;LﬁgxxGGLﬁl)xGLl (Go XX 7), 00 € Irtesq(GL3) b
(IV) | iGisS oot wan, (01 ®G2 R 7)), i € Itesq(GLo), 51 # v*150 .
(V) | (0®7), 0 € ItTesq(GL4) \ Irrge (GLy4) o
(A) iE}GLﬁlXXGGLﬁI «GL1 xGLyyxaL, X1 B2 BXs WXy W7), X =vX;

(B) | itar st wan e, (G0 R X1 R X2 ®7), o & Iresq (GLa), or X1 = vE' X,

(C) iE}GLﬁ:XGGLﬁl)XGLl (0o MY X17), non-generic o € Irr(GL3)

(D) | it xan, (o det) KGR 7), & € Irr(GLy)

(E) | (xodetl®n), & € Irresq(GLa) \ Irrec(GL4)
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TABLE 4. The adjoint L-function L(s, o, Ad) for GSping

| o € Irr(GSping(F)) determined by | L(s,0,Ad)

(fL9_) 50 € Irrge (GL4) L(S, &0, Ad)
(5.14) x1 W X2 K x3 K x4 W7 L(5)* TTiz; L(s, XiX; )
_ L(s)2L(s,50,Ad)L(s,5o x X1 )L(s,5y x X1)
(5.18) % € Irrae(GL2) L5, % X )L(s. 5 % X2)L(5: 1%z ) L(ss ot )
. _ L(s)?L(s+1)L(s+ 1,xx; ) L(s + 1L,XX5 ")
(8.18) 20 = Ster, © X L(s, X" 'X0) L(s, X' X2) L(8, XaXa )L(S XaXi ')
(5.22) op € Irrgo(GL3) L(s)L(s,00,Ad)L(s,00 x X ") L(s,04 X X)
(5.22) 59 = StaL, ® Xo L(s)L(s + 1)L(s + 2)L(s + 1 ,XXo )L(s +1,X Xo)
(5.26) 5; € Irree(GLy) ﬁg?ﬁfi"gﬁ&f%"; &f?)
~ - _ L(s)L(s +1)L(s,01,Ad)
(8.26) 71 € Irrgo(GL2), 02 = Star, ® X L(s+1,5) x )?)IL(IS L lE x Y
B T e I 1 P
~ o~ _ < L(s)L(s + 1) L(s, X1 'X2)L(s,X1X2 ')
(5.26) 01 = StgL, ® X102 = StaL, ® X2 Ls+1,51%; )L(;(—i— iCJN(l_l)?z))C X
(5.27) 0 = Stgr, ® X L(s+1)L(s +2)L(s +3)
(5.28) 5 = A2, 7127 € Irree (GLo) L(s,7,Ad)L(s, T xT")
L(s—1)L(s )3L(S+ 1) (s, X3X4 DL(s, X5 'Xa)
(5.31)Q ([Vl/Qﬂa [V_l/Qﬂa [%3]’ [§4]) ( L(s + 2 XXz )L(S - 5 X Xl) )
izaa \ L(s — 5, X¢ DL(s + 5, X 'Xi)
- (5= %)L~ DPLGL(s + 1205 +2)
(2.32) Q ([vx1, [X], [v~'X], [Xa]) t_HO ) (L(s+t,XXs )L(s +t, X 'X4))
B . B L(s —2)L(s —1)2L(s)?
(8.33) Q ([X, vxl, v~ 'X], [Xal) t:ljl OL(S G t:ljl 1 L(s+t,X %)
L(s — DL(s)°L(s + )L(s + 2)
(8.34) Q ([vx], [X, v~ 'X], [Xal) t]_o[lL(s—f—t G :1:[11L(s+t,52*1>?4)
e |
(5.36) Q ([*/2x, v 5& v 72X, [v 3/2 ) L(s —3)L(s = 2)L(s — 1)*L(s)*L(s + 1)*L(s +2)
(5.37)Q ([V3 X, v vt 2)“(} [v™ ]) L(s—3)L(s —2)L(s —1)?L(s)?L(s + 1)*L(s + 2)
(8.38) Q ([v**x], [v'/2X], [V *WX]) L(s —=3)L(s — 2)L(s — 1)>L(s)°L(s + 1)°L(s +2)
(5.39) Q ([*/*x,v*/*x], [v 3 x v=1/2%]) L(s—3)L(s —2)L(s—1)2L(s)L(s+ 1)L(s + 2)
(5.40) Q (v '°x, v'2x,° 25@ N L(s —3)L(s —2)L(s — 1)L(s)L(s + 1)
(2.41) Q ([v*/*X], v 72 X, v X v PX]) L(s —3)L(s —32)L(S — DL(s)L (S +1)
gy @ (057G B [0, (/7). | Ll = DEGVLG )Ll T LG, 7 fe)

_ [T (L(s+t,mx 1) s+tm Y
77177217£Vi1 t=+4 1 ( )

) (covered in (A) and (B))

L(s—1)L(s)?>L(s + 1)L(s,0,Ad)

5.45

5.45) (others covered in (A))

5.48

5.49) with & € Trrs.(GLz2) [T (L(s+t,oxx HL(s+t,0" xx))
=+

1)L(s)?L(s+ 1)?

o I(s —
5.49) with o = St ® 7 _ _ _
(8.49) with 5 = Ster, ® 1 L(s,xn )L(s+1,xn~HL(s + L x 'n)L(s,x 'n)

(5.49) (others covered in (A))

(5.50) (covered in (A))
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