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REPRESENTATIONS OF THE p-ADIC GSpin4 AND GSpin6 AND THE ADJOINT

L-FUNCTION

MAHDI ASGARI AND KWANGHO CHOIY

Abstract. We prove a conjecture of B. Gross and D. Prasad about determination of generic L-packets
in terms of the analytic properties of the adjoint L-function for p-adic general even spin groups of semi-
simple ranks 2 and 3. We also explicitly write the adjoint L-function for each L-packet in terms of the local
Langlands L-functions for the general linear groups.

1. Introduction

In this article, we provide further details on the local L-packets for the non-Archimedean split general
spin groups GSpin4 and GSpin6, following our earlier work [AC17]. We then use our explicit description of
these L-packets to prove a conjecture of B. Gross and D. Prasad [Gr22, GP92] determining which of the
L-packets are “generic” (i.e., contain an irreducible representation with a Whittaker model) in terms of the
analytic properties at s = 1 of the adjoint L-function of the packet. We also write the adjoint L-function for
each L-packet in terms of the local Langlands L-functions of the general linear groups. In addition to details
about the representations that our results provide, given that the adjoint L-functions have a significant
role in the Gan-Gross-Prasad conjectures, we expect that our results in this paper would be helpful in that
direction as well. Particularly striking is the generalization of the Gan-Gross-Prasad to the non-tempered
case [GGP20] where the relevant adjoint L-function does have a pole at s = 1.

Let F be a p-adic field of characteristic zero. Denote byWF the Weil group of F and letW ′
F =WF×SL2(C)

be the Weil-Deligne group of F . Let G be a connected, reductive, linear algebraic group over F . The local
Langlands Conjecture (LLC) predicts a surjective, finite-to-one map L from the set Irr(G) of equivalence

classes of irreducible, smooth, complex representations of G(F ) to the set Φ(G) of Ĝ-conjugacy classes of
L-parameters of G(F ), i.e., admissible homomorphisms φ :W ′

F −→
LG. Here, LG denotes the L-group of G

with Ĝ = LG0 its connected component, i.e., the complex dual of G [Bor79]. Among other properties, the
map L is supposed to preserve the local L-, ǫ-, and γ-factors. Moreover, the (finite) fibers Πφ, for φ ∈ Φ(G),
of the map L are called the L-packets of G and their structures are expected to be controlled by certain

finite subgroups of Ĝ.
Consider the split general spin groups G = GSpin4 and G = GSpin6, of type D2 = A1 ×A2 and D3 = A3

respectively, whose algebraic structure we review in Section 2.3. We constructed most of the L-packets
for these two groups in [AC17] and proved that they satisfy the expected properties of preservation of the
local factors and their internal structure. We review and complete the construction of these L-packets. In
particular, using the classification of representations of GLn, we give more explicit descriptions of the L-
packets for GSpin4 and GSpin6 in terms of given representations of GL2×GL2 and GL4×GL1, respectively.
As a byproduct, we are able to give the criteria for determining the size of the L-packets for GSpin4 and
GSpin6 (see Sections 4 and 5).

The known cases of the LLC for the p-adic groups include GLn[HT01, Hen00, Sch13]; SLn [GK82];
non-quasi-split F -inner forms of GLn and SLn [HS12, ABPS16]; GSp4 and Sp4 [GT11, GT10]; non-quasi-
split F -inner form GSp1,1 of GSp4 [GT14]; Sp2n, SOn, and quasi-split SO∗

2n [Art13]; Un [Rog90, Mok15];
non quasi-split F -inner forms of Un [Rog90, KMSW14]; non-quasi-split F -inner form Sp1,1 of Sp4 [Cho17];
GSpin4,GSpin6 and their inner forms [AC17]; GSp2n and GO2n [Xu18].

Going back to the case of general G, assume that ρ is a finite-dimensional complex representation of LG.
When LLC is known, one can define the local Langlands L-functions

L(s, π, ρ) = L(s, ρ ◦ φ)
1
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for each π ∈ Πφ. Here, the L-factors on the right hand side are the Artin local factors associated to the
given representation of W ′

F .
B. Gross and D. Prasad conjectured (in the generality of quasi-split groups) that the local L-packet Πφ(G)

is generic if and only if the adjoint L-function L(s,Ad ◦ φ) is regular at s = 1 [GP92, Conj. 2.6]. Here, Ad

denotes the adjoint representation of LG on the dual Lie algebra ĝ of Ĝ. (Note that in the body of this
paper we use Ad exclusively for the restriction of the adjoint representation to the derived group of ĝ to
distinguish it from the full adjoint L-function, which would have an extra factor of the L-function for the
trivial character when ĝ has a one-dimensional center.)

We prove the above conjecture for the groups GSpin4 and GSpin6 as a consequence of our construction
of the L-packets for these groups. In fact, we prove the conjecture for a larger class of groups G = Gr,sm,n,
which are given as subgroups of GLm ×GLn satisfying a certain determinant equality (2.6). We are able to
work in the slightly larger generality because, as in the construction of the L-packets, we use the approach
of restricting representations from GLm(F )×GLn(F ) to the subgroup G.

Moreover, we also give the adjoint L-function in all cases explicitly in terms of local Langlands L-functions
of the general linear groups. While we are able to prove the Gross-Prasad conjecture already without the
explicit knowledge of the adjoint L-function, the explicit description of the adjoint L-function certainly also
verifies the conjecture and we include it here since it may lead to other number theoretic or representation
theoretic results.

Finally, we take this opportunity to correct a few inaccuracies in [AC17]. They do not affect the main
results in that paper and fix some errors in our description of the L-packets. The details are given in Section
6.

Acknowledgements. We are grateful to Behrang Noohi and Ralf Schmidt for helpful discussions. We also
thank B. Gross for his interest in this paper and clarifying the history of his conjecture and the context in
which it was made.

K. Choiy was supported by a gift from the Simons Foundation (#840755).

2. Preliminaries

2.1. Local Langlands Correspondence (LLC). Let p be a prime number and let F be a p-adic field
of characteristic zero, i.e., a finite extension of Qp. We fix an algebraic closure F̄ of F. Denote the ring of
integers of F by OF and its unique maximal ideal by PF . Moreover, let q denote the cardinality of the
residue field OF /PF and fix a uniformizer ̟ with |̟|F = q−1. Also, let WF denote the Weil group of F ,
W ′
F the Weil-Deligne group of F , and Γ the absolute Galois group Gal(F̄ /F ). Throughout the paper, we

will use the notation ν(·) = | · |F .
Let G be a connected, reductive, linear algebraic group over F . Fixing Γ-invariant splitting data we define

the L-group of G as a semi-direct product LG := Ĝ⋊ Γ, where Ĝ = LG0 denotes the connected component
of the L-group of G, i.e., the complex dual of G (see [Bor79, §2]).

LLC (still conjectural in this generality) asserts that there is a surjective, finite-to-one map from the set
Irr(G) of isomorphism classes of irreducible smooth complex representations of G(F ) to the set Φ(G) of

Ĝ-conjugacy classes of L-parameters, i.e., admissible homomorphisms ϕ :W ′
F −→

LG.
Given ϕ ∈ Φ(G), its fiber Πϕ(G), which is called an L-packet for G, is expected to be controlled by

a certain finite group living in the complex dual group Ĝ. Furthermore, for π ∈ Πϕ(G) and ρ a finite
dimensional algebraic representation of LG one defines the local factors

L(s, π, ρ) = L(s, ρ ◦ φ), (2.1)

ǫ(s, π, ρ, ψ) = ǫ(s, ρ ◦ φ, ψ), (2.2)

γ(s, π, ρ, ψ) = γ(s, ρ ◦ φ, ψ). (2.3)

provided that LLC is known for the case in question. Here, the factors on the right are Artin factors.

2.2. The Adjoint L-Function. What we recall in this subsection holds for G quasi-split ([GP92, §2]).
However, for simplicity we will take G to be split over F since the groups we are working with in this
article are split. When G is split over F , we may replace the L-group LG by its connected component
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Ĝ = LG0. Take ρ to be the adjoint action of Ĝ on its Lie algebra. Then we obtain the adjoint L-function
L(s, π,AdĜ) = L(s,AdĜ ◦ φ) for all π ∈ Πϕ(G). The following is a conjecture of D. Gross and D. Prasad
(see [GP92, Conj. 2.6]).

Conjecture 2.1. Πϕ(G) contains a generic member if and only if L(s,AdĜ ◦ φ) is regular at s = 1.
(Equivalently, π is generic if and only if L(s, π,AdĜ) is regular at s = 1.)

The conjecture is known in many cases in which the LLC is known. To mention a few, it was verified for
GLn by B. Gross and D. Prasad [GP92], for GSp4 in [GT11] and, for non-supercuspidals, in [AS08], and for
SO and Sp groups, it follows from the work of Arthur on endoscopic classification [Art13]. We will verify
this conjecture for the small rank split groups GSpin4 and GSpin6.

2.3. The Groups GSpin4 and GSpin6. We gave detailed information about the structure of these two
groups (as well as their inner forms) in [AC17, §2.2]. For now we just recall the incidental isomorphisms

GSpin4
∼= {(g1, g2) ∈ GL2 ×GL2 : det g1 = det g2} (2.4)

GSpin6
∼=

{
(g1, g2) ∈ GL1 ×GL4 : g21 = det g2

}
. (2.5)

While our main interests in this article are the split general spin groups GSpin4 and GSpin6, for the
purposes of Conjecture 2.1 it is no more difficult, and perhaps also more natural, to consider a slightly more
general setup as follows.

Fix integers m,n ≥ 1 and r, s ≥ 1 and assume that gcd(r, s) = 1. Define

G = Gr,sm,n := {(g, h) ∈ GLm ×GLn | (det g)
r = (deth)s} (2.6)

Proposition 2.2. The group Gr,sm,n is a split, connected, reductive, linear algebraic group over F .

Proof. LetX = (Xij) and Y = (Ykl) bem×m and n×nmatrices, respectively. It is clear that Gr,sm,n, being an
almost direct product of SLm×SLn and a torus, is reductive. The only issue that requires justification is that
the polynomial f(X,Y ) = (detX)r − (det Y )s is irreducible in F [Xij , Ykl] if and only if d = gcd(r, s) = 1. It

is clear that if d > 1, then f is reducible since it would be divisible by (detX)(r/d)− (detY )(s/d). It remains
to show that if d = 1, then f(X,Y ) is irreducible. This assertion should be easy to see via elementary
arguments considering the polynomials in a possible factorization of f . However, we prove it below as a
special case of a more general fact.

Assume that f(x, y) is an (arbitrary) irreducible polynomial in F [x, y]. Let

p(x1, x2, . . . , xa) ∈ F [x1, x2, . . . , xa] and p(y1, y2, . . . , yb) ∈ F [y1, y2, . . . , yb]

be two polynomials such that p−α and q−α are irreducible for all constants α. Then, f(p, q) is irreducible
in F [x1, x2, . . . , xa, y1, y2, . . . , yb].

Our Proposition would clearly follow from the above assertion since (det−α) is always an irreducible
polynomial and it is well-known that the two-variable polynomial xr − ys is irreducible in F [x, y] provided
that d = gcd(r, s) = 1.

To prove the assertion above, we proceed as follows. By base extension to an algebraic closure we may
assume, without loss of generality, that F is algebraically closed.

Let A be the subscheme of SpecF [x1, x2, . . . , xa, y1, y2, . . . , yb] defined by f(p, q), and let B be the sub-
scheme of SpecF [x, y] defined by xr − ys. The latter is irreducible since xr − ys is an irreducible polynomial
by our assumption that d = 1. There is a natural map A→ B which has irreducible (geometric) fibers. The
result now follows from the following claim.

Claim: Let g : A→ B be an open morphism of schemes of finite type over an algebraically closed field F
such that the (geometric) fibers of g are irreducible and B is irreducible. Then A is irreducible.

To see the claim let U be an open in A. We want to show that for any other open V , we have that U ∩ V
is nonempty. Since B is irreducible and g is open, we have that g(U) ∩ g(V ) is nonempty so there is a fiber
F0 of g such that F0 ∩ U and F0 ∩ V are nonempty. Hence, by irreducibility of F0, they have a nonempty
intersection in F0. In particular, U ∩ V is nonempty, which gives the claim.

It only remains to check that the map A→ B above is open. In fact, it is flat since it is a base extension
of the cartesian product of two flat morphisms p : SpecF [x1, ..., xa]→ SpecF [x] and q : SpecF [y1, ..., yb]→
SpecF [y]. (Here, we are using the fact that SpecF [x] is a curve.) This finishes the proof. �
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Of particular interest to us in this paper are the cases

• m = n = 2 and r = s = 1, when G = GSpin4, and
• m = 1, n = 4 and r = 2, s = 1, when G = GSpin6.

The (connected) L-group of G is

LGr,s 0m,n = Ĝ ∼= (GLm(C)×GLn(C))/{(z
−rIm, z

sIn) : z ∈ C×} (2.7)

and we have the exact sequence

1 −→ {(z−rIm, z
sIn) : z ∈ C×} ∼= C× −→ GLm(C)×GLn(C)

prr,sm,n
−−−−→ Ĝr,sm,n −→ 1. (2.8)

2.4. Computation of the Adjoint L-Function for G. Let π be an irreducible admissible representation
of G(F ). There exist irreducible admissible representations πm and πn of GLm(F ) and GLn(F ), respectively,
such that

π →֒ Res
GLm(F )×GLn(F )
G(F ) (πm ⊗ πn) . (2.9)

Let AdĜ denote the adjoint action of Ĝ on its Lie algebra

ĝ = {(X,Y ) ∈ glm(C)× gln(C) | r tr(X) = s tr(Y )} . (2.10)

In what follows, let us write

AdĜ = triv⊕Ad (2.11)

and for i ∈ {m,n} we similarly write Adi = Ad
ĜLi

= triv⊕Ad, where Ad here denotes the action of GLi(C)

on the space of traceless i× i complex matrices sli(C).

Let φπ : WF × SL2(C) → Ĝ be the L-parameter of π and let φi : WF × SL2(C) → GLi(C), i = m,n, be
the L-parameter of πi. Recall by (2.8) that we have a natural map

pr = prr,sm,n : GLm(C)×GLn(C) −→ Ĝ. (2.12)

Then we have

φπ = pr ◦ (φm ⊗ φn). (2.13)

Since the subgroup {(z−rIm, z
sIn) : z ∈ C×} is central in GLm(C)×GLn(C) the following diagram commutes.

GLm(C)×GLn(C) AutC (glm(C)× gln(C))

WF × SL2(C)

Ĝ AutC (ĝ)

Adm⊗Adn

pr

φm⊗φn

φπ

Ad
Ĝ

Note that the adjoint action Adm of GLm(C) on glm(C) preserves the trace, and similarly for n, so we
obtain a right downward arrow by simply restricting any automorphism to the set of those pairs satisfying
the trace equality in (2.10). We have

L(s, 1F×)L(s, π,Ad) · L(s, 1F×) = L(s, π,AdĜ) · L(s, 1F×)

= L(s,AdĜ ◦ φπ) · L(s, 1F×)

= L (s, (Adm ⊗Adn) ◦ (φm ⊗ φn))

= L(s,Adm ◦ φm)L(s,Adn ◦ φn)

= L(s, πm,Adm)L(s, πn,Adn)

= L(s, 1F×)2L(s, πm,Ad)L(s, πn,Ad). (2.14)
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Therefore, we obtain the more convenient equality

L(s, π,Ad) = L(s, πm,Ad)L(s, πn,Ad), (2.15)

which holds thanks to our choice of the notation Ad. In Section 3.2 this relation helps verify Conjecture 2.1
for the groups of interest to us.

3. Genericity and The Conjecture of B. Gross and D. Prasad

3.1. Restriction of Generic Representations. Let us write �D for the group Hom(�,C×) of all contin-

uous characters on a topological group �. Dente by �der the derived group of �. Let G and G̃ be connected,
reductive, linear, algebraic groups over F satisfying the property that

Gder = G̃der ⊆ G ⊆ G̃. (3.1)

For any connected, reductive, linear, algebraic group � over F, we write Irrsc(�) and Irresq(�) for the set of
equivalence classes of supercuspidal and essentially square-integrable representations of �(F ), respectively.

Assume G̃ and G to be F -split. Let B̃ be a Borel subgroup of G̃ with Levi decomposition B̃ = T̃ Ũ . Then

B = B̃ ∩ G is a Borel subgroup of G with B = TU . Note that T = T̃ ∩ G and Ũ = U. Let ψ be a generic
character of U(F ). From [Tad92, Proposition 2.8] we know that given a ψ-generic irreducible representation

σ̃ of G̃(F ) we have a unique ψ-generic σ of G(F ) such that

σ →֒ ResG̃G(σ̃).

The generic character associated with σ is not unique though.

Proposition 3.1. Each generic character associated with σ is determined up to the action of T̃ (F )/T (F ).

Proof. We let σ̃ ∈ Irr(G̃) be ψ-generic. Then there is a unique ψ-generic σψ ∈ Πσ̃(G). On the other hand,

for each σ ∈ Πσ̃(G) there exists t ∈ T̃ (F )/T (F ) ∼= G̃/G(F ) such that σ = tσψ , where
tσψ(g) = σ(t−1gt).

This implies that σ is tψ-generic. Here tψ is defined as tψ(u) = ψ(t−1ut). �

Remark 3.2. We say σ ∈ Irr(G), resp. σ̃ ∈ Irr(G̃), is generic if it is ψ-generic with respect to some generic

character ψ. With this notation, σ ∈ Irr(G) is generic if and only if is σ̃ ∈ Irr(G̃).

3.2. Criterion for Genericity. In this section we verify Conjecture 2.1 for the small rank general spin
groups we are considering in this article.

Theorem 3.3. Let G = Gr,sm,n be the group defined in (2.6). Let π be an irreducible admissible representation
of G(F ). Then π is generic if and only if L(s, π,Ad) is regular at s = 1.

Proof. Given π there exist irreducible admissible representations πm of GLm(F ) and πn of GLn(F ) such
that π is a subrepresentation of the restriction to G(F ) of πm ⊗ πn as in (2.9). Now, π is generic if and only
if both πm and πn are generic. By the truth of Conjecture 2.1 for the general linear groups, the latter is
equivalent to both L(s, πm,Ad) and L(s, πn,Ad) being regular at s = 1. Hence, by (2.15) and the fact that
neither of the L-functions can have a zero at s = 1, we have that π is generic if and only if L(s, π,Ad) is
regular at s = 1. This proves the theorem. �

As we observed in Section 2.3, the split groups GSpin4 and GSpin6 are special cases of Gr,sm,n. Therefore,
we have the following.

Corollary 3.4. Conjecture 2.1 holds for the groups GSpin4 and GSpin6.

4. Representations of GSpin4

In this section we list all the irreducible representations of GSpin4(F ) and then calculate their associated
adjoint L-function explicitly. To this end, we give the nilpotent matrix associated to their parameter in each
case.

4.1. The Reprsentations.
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4.1.1. Classification of representations of GSpin4. Following [AC17], we have

1 −→ GSpin4(F ) −→ GL2(F )×GL2(F ) −→ F× −→ 1. (4.1)

Recall that

GSpin4(F )
∼= {(g1, g2) ∈ GL2(F )×GL2(F ) : det g1 = det g2}, (4.2)

LGSpin4 = ĜSpin4 = GSO4(C) ∼= (GL2(C)×GL2(C))/{(z
−1, z) : z ∈ C×}, (4.3)

and

1 −→ C× −→ GL2(C)×GL2(C)
pr4
−→ ĜSpin4 −→ 1. (4.4)

When convenient, we view GSO4 as the group similitude orthogonal 4 × 4 matrices with respect to the
anti-diagonal matrix

J = J4 =




0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0


 . (4.5)

The Lie algebra of this group is also defined with respect to J and an element X in this Lie algebra satisfies

tXJ + JX = 0.

4.1.2. Construction of the L-packets of GSpin4 (recalled from [AC17]). Given σ ∈ Irr(GSpin4) we have a lift
σ̃ ∈ Irr(GL2 ×GL2) such that

σ →֒ ResGL2×GL2

GSpin
4

(σ̃).

It follows form the LLC for GLn [HT01, Hen00, Sch13] that there is a unique ϕ̃σ̃ ∈ Φ(GL2 × GL2) corre-
sponding to the representation σ̃. We now have a surjective, finite-to-one map

L4 : Irr(GSpin4) −→ Φ(GSpin4) (4.6)

σ 7−→ pr4 ◦ ϕ̃σ̃,

which does not depend on the choice of the lifting σ̃. Then, for each ϕ ∈ Φ(GSpin4), all inequivalent
irreducible constituents of σ̃ constitutes the L-packet

Πϕ(GSpin4) := Πσ̃(GSpin4) =
{
σ
∣∣∣σ →֒ ResGL2×GL2

GSpin
4

(σ̃)
}/
∼= . (4.7)

Here, σ̃ is the member in the singleton Πϕ̃(GL2×GL2) and ϕ̃ ∈ Φ(GL2×GL2) is such that pr4 ◦ ϕ̃ = ϕ. We
note that the construction does not depends on the choice of ϕ̃, due to the LLC for GL2, [GK82, Lemma
2.4], [Tad92, Corollary 2.5], and [HS12, Lemma 2.2]. Further details can be found in [AC17, Section 5.1].

4.1.3. The L-parameters of GL2. We recall the generic representations of GL2(F ) in this paragraph. We
refer to [Wed08, Kud94, GR10] for details. Let χ : F× → C× denote a continuous quasi-character of F×.
By Zelevinski ([Zel80, Theorem 9.7] or [Kud94, Theorem 2.3.1]) we know that the generic representations
of GL2 are: the supercuspidals, St⊗ (χ ◦ det) where St denotes the Steinberg representation, and normally

induced representations iGL2

GL1×GL1
(χ1⊗χ2) with χ1 6= χ2ν

±1. The only non-generic representation is χ◦det .

4.2. Generic Representations of GSpin4. Following [AC17, Section 5.3], given ϕ ∈ Φ(GSpin4), fix the
lift

ϕ̃ = ϕ̃1 ⊗ ϕ̃2 ∈ Φ(GL2 ×GL2)

with ϕ̃i ∈ Φ(GL2) such that ϕ = pr4 ◦ ϕ̃. Let

σ̃ = σ̃1 ⊠ σ̃2 ∈ Πϕ̃(GL2 ×GL2)

be the unique member such that {σ̃i} = Πϕ̃i
(GL2).

Recall the notation

IGSpin
4(σ̃) :=

{
χ ∈ (GL2(F )×GL2(F )/GSpin4(F ))

D
∣∣∣ σ̃ ⊗ χ ∼= σ̃

}
.

Then we have

Πϕ(GSpin4)
1−1
←→ IGSpin

4(σ̃), (4.8)
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and we recall that, by [AC17, Proposition 5.7], we have

IGSpin
4(σ̃) =

{
ISL2(σ̃1), if σ̃2 ∼= σ̃1η̃ for some η̃ ∈ (F×)D;
ISL2(σ̃1) ∩ I

SL2(σ̃2), if σ̃2 6∼= σ̃1η̃ for any η̃ ∈ (F×)D.
(4.9)

4.2.1. Irreducible Parameters. Let ϕ ∈ Φ(GSpin4) be irreducible. Then ϕ̃, ϕ̃1, and ϕ̃2 are all irreducible.
By Section 3.1, we have the following.

Proposition 4.1. Let ϕ ∈ Φ(GSpin4) be irreducible. Then every member in Πϕ(GSpin4) is supercuspidal
and generic.

To study the internal structure of Πϕ(GSpin4), by (4.8), we need to know the structure of IGSpin
4(σ̃), as

we now recall from [AC17].

gnr-(a) When σ̃2 ∼= σ̃1η̃ for some η̃ ∈ (F×)D, we have

IGSpin
4(σ̃) ∼=




{1}, if ϕ̃1 (and hence also ϕ̃2) is primitive or non-trivial on SL2(C);
Z/2Z, if ϕ̃1 (and hence also ϕ̃2) is dihedral w.r.t. one quadratic extension;
(Z/2Z)2, if ϕ̃1 (and hence also ϕ̃2) is dihedral w.r.t. three quadratic extensions.

gnr-(b) When σ̃2 6∼= σ̃1η̃ for any η̃ ∈ (F×)D, then by (4.9) we have

IGSpin
4(σ̃) ∼= {1} or Z/2Z.

Since σ̃2 6∼= σ̃1η̃ for any η̃ ∈ (F×)D, the case of both ϕ̃1 and ϕ̃2 being diredral w.r.t. three quadratic
extensions is excluded. Thus, we have the following list:
• If at least one of ϕ̃i is primitive, then IGSpin

4(σ̃) ∼= {1}.
• If both are dihedral, then IGSpin

4(σ̃) ∼= Z/2Z.

From [AC17, Proposition 2.1], we recall the identification

∆∨ = {β∨
1 = f∗

11 − f
∗
12, β

∨
2 = f∗

21 − f
∗
22} , (4.10)

using the notation fij and f
∗
ij , 1 ≤ i, j ≤ 2, for the usual Z-basis of characters and cocharacters of GL2×GL2

and β1, β2 denote the simple roots of GSpin4. We can use this identification to relate the nilpotent matrices
associated to the parameters of GL2 ×GL2 and GSpin4, respectively.

For both (a) and (b) above, we have

NGL2(C)×GL2(C) =

([
0 0
0 0

]
,

[
0 0
0 0

])
(4.10)
⇐⇒ NGSO4(C) = 04×4.

Remark 4.2. We note that case (b) above was mentioned, less precisely, in [AC17, Remark 5.10].

4.2.2. Reducible Parameters. If ϕ ∈ Φ(GSpin4) is reducible, then at least one ϕ̃i must be reducible. Since

the number of irreducible constituents in ResGL2

SL2
(σ̃i) is at most 2, we have ISL2(σ̃i) ∼= {1}, or Z/2Z. This

implies that
IGSpin

4(σ̃) ∼= {1}, or Z/2Z.

If ϕ̃i is reducible and generic, then σ̃i is either the Steinberg representation twisted by a character or
an irreducibly induced representation from the Borel subgroup of GL2. We make case-by-case arguments as
follows.

gnr-(i) Note that the Steinberg representation of GL2 ×GL2 is of the form StGL2
⊠ StGL2

. We have

ResGL2×GL2

GSpin
4

(StGL2
⊠ StGL2

) = StGSpin
4

(4.11)

and
ResGL2×GL2

GSpin
4

(StGL2
⊗ χ1 ⊠ StGL2

⊗ χ2) = StGSpin
4
⊗ χ

for some χ. We have IGSpin
4(σ̃) ∼= {1} as IG(StG) ∼= {1}. Thus, by (4.9), the L-packet remains a

singleton and the restriction is irreducible.
• To determine χ, we use the required properties of χ1, χ2. Using

T =

{([
a 0
0 b

]
,

[
c 0
0 d

]) ∣∣∣∣ ab = cd

}
, (4.12)

we have χ1(ab) = χ2(cd) ⇔ χ1 = χ2. Denote χ1 = χ2 by χ.
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For (4.11), we have

NGL2(C)×GL2(C) =

([
0 1
0 0

]
,

[
0 1
0 0

])
(4.10)
⇐⇒ NGSO4(C) =




0 1 1 0
0 0 0 −1
0 0 0 −1
0 0 0 0




gnr-(ii) Next we consider

ResGL2×GL2

GSpin
4

(
iGL2

GL1×GL1
(χ1 ⊗ χ2)⊠ StGL2

⊗ χ
)
. (4.13)

By (4.9), the fact that σ̃2 6∼= σ̃1η̃ for any η̃ ∈ (F×)D, and since IG(StG) ∼= {1}, it follows that

IGSpin
4(σ̃) ∼= {1}.

Thus, the L-packet remains a singleton and the restriction (4.13) is irreducible.
• To describe the restriction (4.13), we proceed similarly as above. We have

χ1(a)χ2(b) = χ(cd) = χ(ab) ⇔ χ1χ
−1(a) = χ−1

2 χ(b)

Specializing to a = b and c = d in the center, we have

χ1χ2χ
−2 = 1

For (4.13) , we have

NGL2(C)×GL2(C) =

([
0 0
0 0

]
,

[
0 1
0 0

])
(4.10)
⇐⇒ NGSO4(C) =




0 0 1 0
0 0 0 −1
0 0 0 0
0 0 0 0


 .

gnr-(iii) We consider

ResGL2×GL2

GSpin
4

(
iGL2

GL1×GL1
(χ1 ⊗ χ2)⊠ iGL2

GL1×GL1
(χ3 ⊗ χ4)

)
= i

GSpin
4

T

(
χ1 ⊗ χ2, χ3 ⊗ χ1χ2χ

−1
3

)
.

Here, χ1 6= χ2ν
±1 and χ3 6= χ4ν

±1. Note that by (4.9) this induced representation may be irre-
ducible or consist of two irreducible inequivalent constituents. We have

NGL2(C)×GL2(C) =

([
0 0
0 0

]
,

[
0 0
0 0

])
(4.10)
⇐⇒ NGSO4(C) =




0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0


 .

gnr-(iv) Given a supercuspidal σ̃ ∈ Irr(GL2), we consider

ResGL2×GL2

GSpin
4

(σ̃ ⊠ StGL2
⊗ χ) . (4.14)

Since IG(StG) ∼= {1}, due to (4.9), the restriction (4.14) is irreducible. We then have

NGL2(C)×GL2(C) =

([
0 0
0 0

]
,

[
0 1
0 0

])
(4.10)
⇐⇒ NGSO4(C) =




0 0 1 0
0 0 0 −1
0 0 0 0
0 0 0 0


 .

gnr-(v) Given supercuspidal σ̃ ∈ Irr(GL2), we next consider

ResGL2×GL2

GSpin
4

(
σ̃ ⊠ iGL2

GL1×GL1
(χ1 ⊗ χ2)

)
.

Note from (4.9) that this may be irreducible or consist of two irreducible inequivalent constituents.
We have

NGL2(C)×GL2(C) =

([
0 0
0 0

]
,

[
0 0
0 0

])
(4.10)
⇐⇒ NGSO4(C) = 04×4.
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4.3. Non-Generic Representations of GSpin4. If σ ∈ Irr(GSpin4) is non-generic, then σ is of the form

ResGL2×GL2

GSpin
4

((χ ◦ det)⊠ σ̃) , (4.15)

with σ̃ ∈ Irr(GL2). Note this restriction is irreducible due to (4.9), and that as χ ◦ det is non-generic, so is
the restriction σ for any σ̃ ∈ Irr(GL2).

For σ̃ = St ∈ Irr(GL2), we have

NGL2(C)×GL2(C) =

([
0 0
0 0

]
,

[
0 1
0 0

])
(4.10)
⇐⇒ NGSO4(C) =




0 0 1 0
0 0 0 −1
0 0 0 0
0 0 0 0


 ,

and otherwise we have

NGL2(C)×GL2(C) =

([
0 0
0 0

]
,

[
0 0
0 0

])
(4.10)
⇐⇒ NGSO4(C) = 04×4.

We summarize the above information about the representations of GSpin4 in Table 1.

4.4. Computation of the Adjoint L-function for GSpin4. We now give explicit expressions for the
adjoint L-function for each of the representations of GSpin4(F ). We start by recalling that the adjoint
L-functions of the representations σ̃ ∈ Irr(GL2) are as follows.

L(s, σ̃,Ad2) =





L(s)2L(s, χ1χ
−1
2 )L(s, χ−1

1 χ2), if σ̃ = iGL2

GL1×GL1
(χ1 ⊠ χ2) with χ1χ

−1
2 6= ν±1;

L(s)L(s+ 1), if σ̃ = StGL2
⊗ χ;

L(s)L(s, σ̃, Sym2⊗ω−1
σ̃ ), if σ̃ is supercuspidal;

L(s)2L(s− 1)L(s+ 1), if σ̃ = χ ◦ det .

Here, L(s) = L(s, 1F×). Recall our choice of notation

L(s, σ̃,Ad2) = L(s)L(s, σ̃,Ad).

Combining with (2.14), Sections 4.2.1 and 4.2.2, we have the following.

gnr-(a)&(b) Given a supercuspidal σ ∈ Irr(GSpin4), we recall that

σ ⊂ ResGL2×GL2

GSpin
4

(σ̃1 ⊠ σ̃2)

for some supercuspidal σ̃1 ⊠ σ̃2 ∈ Irr(GL2 ×GL2). By (2.15) we have

L(s, σ,Ad) = L(s, σ̃1, Sym
2⊗ω−1

σ̃1
)L(s, σ̃2, Sym

2⊗ω−1
σ̃2

).

gnr-(i) Given

σ = StGSpin
4
⊗ χ ∈ Irr(GSpin4),

by (2.15) we have

L(s, σ,Ad) = L(s+ 1)2.

gnr-(ii) Given σ ∈ Irr(GSpin4) such that

σ = ResGL2×GL2

GSpin
4

(
iGL2

GL1×GL1
(χ1 ⊗ χ2)⊠ StGL2

⊗ χ
)
,

by (2.15) we have

L(s, σ,Ad) = L(s)L(s, χ1χ
−1
2 )L(s, χ−1

1 χ2)L(s+ 1).

gnr-(iii) Given σ ∈ Irr(GSpin4) such that

σ ⊂ ResGL2×GL2

GSpin
4

(
iGL2

GL1×GL1
(χ1 ⊗ χ2)⊠ iGL2

GL1×GL1
(χ3 ⊗ χ4)

)

by (2.15) we have

L(s, σ,Ad) = L(s)2L(s, χ1χ
−1
2 )L(s, χ−1

1 χ2)L(s, χ3χ
−1
4 )L(s, χ−1

3 χ4).
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gnr-(iv) Given σ ∈ Irr(GSpin4) such that

σ = ResGL2×GL2

GSpin
4

(σ̃ ⊠ StGL2
⊗ χ)

by (2.15) we have

L(s, σ,Ad) = L(s, σ̃2, Sym
2⊗ω−1

σ̃2
)L(s+ 1).

gnr-(v) Given σ ∈ Irr(GSpin4) such that

σ ⊂ ResGL2×GL2

GSpin
4

(
σ̃ ⊠ iGL2

GL1×GL1
(χ1 ⊗ χ2)

)

by (2.15) we have

L(s, σ,Ad) = L(s)L(s, σ̃2, Sym
2⊗ω−1

σ̃2
)L(s, χ1χ

−1
2 )L(s, χ−1

1 χ2).

nongnr Given a non-generic σ ∈ Irr(GSpin4), from (4.15), we recall that

σ = ResGL2×GL2

GSpin
4

(χ ◦ det ⊠ σ̃)

and by (2.15) we have

L(s, σ,Ad) = L(s)L(s− 1)L(s+ 1)L(s, σ̃,Ad).

We summarize the explicit computations above in Table 2.

5. Representations of GSpin6

We now list all the representations of GSpin6(F ) and then calculate their associated adjoint L-function
explicitly. Again, we do this explicit calculation by finding the 6 × 6 nilpotent matrix in the complex dual
group GSO6(C) in each case that is associated with the parameter of the representation.

5.1. The Represenations.

5.1.1. Classification of representations of GSpin6. Again, following [AC17], we have

1 −→ GSpin6(F ) −→ GL1(F )×GL4(F ) −→ F× −→ 1. (5.1)

Recall that
GSpin6(F )

∼=
{
(g1, g2) ∈ GL1(F )×GL4(F ) : g

2
1 = det g2

}
, (5.2)

LGSpin6 = ĜSpin6 = GSO6(C) ∼= (GL1(C)×GL4(C))/{(z
−2, z) : z ∈ C×}, (5.3)

and
1 −→ C× −→ GL1(C)×GL4(C)

pr6
−→ ĜSpin6 −→ 1. (5.4)

Just as the rank two case, here too we view GSO6 as the group similitude orthogonal 6 × 6 matrices with
respect to the analogous 6× 6, anti-diagonal, matrix J = J6 as in (4.5), and similarly define its Lie algebra
with respect to J .

5.1.2. Construction of the L-packets of GSpin6 (recalled from [AC17]). Given σ ∈ Irr(GSpin6) we have a lift
σ̃ ∈ Irr(GL1 ×GL4) such that

σ →֒ ResGL1×GL4

GSpin
6

(σ̃).

It follows from the LLC for GLn [HT01, Hen00, Sch13] that there is a unique ϕ̃σ̃ ∈ Φ(GL1 × GL4) corre-
sponding to the representation σ̃. We now have a surjective, finite-to-one map

L6 : Irr(GSpin6) −→ Φ(GSpin6) (5.5)

σ 7−→ pr6 ◦ ϕ̃σ̃,

which does not depend on the choice of the lifting σ̃. Then, for each ϕ ∈ Φ(GSpin6), all inequivalent
irreducible constituents of σ̃ constitutes the L-packet

Πϕ(GSpin6) := Πσ̃(GSpin6) =
{
σ : σ →֒ ResGL1×GL4

GSpin
6

(σ̃)
}/
∼=, (5.6)

where σ̃ is the unique member of Πϕ̃(GL1 ×GL4) and ϕ̃ ∈ Φ(GL1 ×GL4) is such that pr6 ◦ ϕ̃ = ϕ. We note
that the construction does not depends on the choice of ϕ̃. Further details can be found in [AC17, Section
6.1].
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Following [AC17, Section 6.3], given ϕ ∈ Φ(GSpin6), fix the lift

ϕ̃ = η̃ ⊗ ϕ̃0 ∈ Φ(GL1 ×GL4)

with ϕ̃0 ∈ Φ(GL4) such that ϕ = pr6 ◦ ϕ̃. Let

σ̃ = η̃ ⊠ σ̃0 ∈ Πϕ̃(GL1 ×GL4)

be the unique member such that {σ̃0} = Πϕ̃0
(GL4).

Recall that

IGSpin
6(σ̃) :=

{
χ̃ ∈

(
GL1(F )×GL4(F )/GSpin6(F )

)D
: σ̃ ⊗ χ̃ ∼= σ̃

}
.

Then we have

Πϕ(GSpin6)
1−1
←→ IGSpin

6(σ̃), (5.7)

and by [AC17, Lemma 6.5 and Proposition 6.6] we have

IGSpin
6(σ̃) ∼= {χ̃ ∈ ISL4(σ̃0) : χ̃

2 = 1F×} (5.8)

and any χ̃ ∈ IGSpin
6(σ̃) is of the form

χ̃ = (χ̃′)−2
⊠ χ̃′,

for some χ̃′ ∈ (F×)D.

5.2. Generic Representations of GSpin6. Thanks to the group structure (5.2) and the relation of generic
representations in Section 3.1, in order to classify the generic representations of GSpin6, it suffices to classify
the generic representations of GL4.

Here are two key facts from the GL theory.

• Recall from [Zel80, Theorem 9.7] and [Kud94, Theorem 2.3.1] that a generic representation of GL4

is of the form

iGL4

M♭
(σ♭)

where M♭ runs through any F -Levi subgroup of GL4 (including GL4 itself) and σ♭ is any essentially
square-integrable representation of M♭.
• For their L-parameters, we note from [Kud94, §5.2] that the generic representations of GL4 have
Langlands parameters (i.e., 4-dimensional Weil-Deligne representations (ρ,N)) of the form

(ρ1 ⊗ sp(r1))⊗ ..⊗ (ρt ⊗ sp(rt))

with t ≤ 4, where ρi’s are irreducible and no two segments are linked.

5.2.1. Irreducible Parameters. Let ϕ ∈ Φ(GSpin6) be irreducible. Then ϕ̃ and ϕ̃0 are also irreducible. By
Section 3.1, we have the following.

Proposition 5.1. Let ϕ ∈ Φ(GSpin6) be irreducible. Every member in Πϕ(GSpin6) is supercuspidal and
generic.

To see the internal structure of Πϕ(GSpin6), we need, by (5.7), to know the detailed structure of IGSpin
6(σ̃)

as follows.

gnr-(a) Given σ ∈ Irrsc(GSpin6), we have

σ̃ = σ̃0 ⊠ η̃ ∈ Irrsc(GL4 ×GL1). (5.9)

From [AC17, Proposition 2.1], we recall the identification:

∆∨ = {β∨
1 = f∗

2 − f
∗
3 , β

∨
2 = f∗

1 − f
∗
2 , β

∨
3 = f∗

3 − f
∗
4 } . (5.10)

using the notation fij and f∗
ij , 1 ≤ i, j ≤ 4, for the usual Z-basis of characters and cocharacters of

GL4. Also, {β1, β2, β3} are the simple roots of GSpin6.
We have

NGL4(C)×GL1(C) = (04×4, 0)
(5.10)
⇐⇒ NGSO6(C) = 06×6.
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5.2.2. Reducible Parameters. When ϕ̃0 is not irreducible, we have proper parabolic inductions. An exhaus-
tive list of F -Levi subgroups M of GSpin6 (up to isomorphism) is as follows.

• M ∼= GL1 ×GL1 ×GL1 ×GL1 = M̃ ∩GSpin6, where M̃ = (GL1 ×GL1 ×GL1 ×GL1)×GL1.

• M ∼= GL2 ×GL1 ×GL1 = M̃ ∩GSpin6, where M̃ = (GL2 ×GL1 ×GL1)×GL1.

• M ∼= GL3 ×GL1 = M̃ ∩ GSpin6, where M̃ = (GL3 ×GL1)× GL1. (Note: The factor GL1 of M is
GSpin0 by convention.)

• M ∼= GL1 ×GSpin4 = M̃ ∩GSpin6, where M̃ = (GL2 ×GL2)×GL1.

• M ∼= GSpin6 = M̃ ∩GSpin6, where M̃ = GL4 ×GL1.

(Note that M ∼= GL2 × GL2 does not occur on this list.) We now consider each case and, by abuse of
notation, conflate algebraic groups and their F -points.

gnr-(I) M ∼= GL1 ×GL1 ×GL1 ×GL1 and M̃ = (GL1 ×GL1 ×GL1 ×GL1)×GL1.
Given χi ∈ (F×)D we consider

i
GSpin

6

M (χ1 ⊠ χ2 ⊠ χ3 ⊠ χ4). (5.11)

Write χ1 ⊠ χ2 ⊠ χ3 ⊠ χ4 = (χ̃1 ⊠ χ̃2 ⊠ χ̃3 ⊠ χ̃4 ⊠ η̃)|M with χ̃i, η̃ ∈ (F×)D so that

χ̃1χ̃2χ̃3χ̃4 = η̃2.

Then we have the following relations

χ1 = χ̃1, χ2 = χ̃2, χ3 = χ̃3, χ4 = η̃2(χ̃2χ̃3χ̃4)
−1. (5.12)

By Section 3.1, we know that the representation (5.11) is generic if and only if its lift

iGL4×GL1

M̃
(χ̃1 ⊠ χ̃2 ⊠ χ̃3 ⊠ χ̃4 ⊠ η̃) (5.13)

is generic if and only if

iGL4

GL1×GL1×GL1×GL1
(χ̃1 ⊠ χ̃2 ⊠ χ̃3 ⊠ χ̃4) (5.14)

is generic. By the classification of the generic representations of GLn ([Zel80, Theorem 9.7] and
[Kud94, Theorem 2.3.1]), this amounts to (5.14) being irreducible. By [Kud94, Theorem 2.1.1]
and [BZ77, Zel80], the necessary and sufficient condition for this to occur is that there is no pair
i, j with i 6= j such that

χ̃i = νχ̃j .

We have

NGL4(C)×GL1(C) = (04×4, 0)
(5.10)
⇐⇒ NGSO6(C) = 06×6

gnr-(II) M ∼= GL2 ×GL1 ×GL1 and M̃ = (GL2 ×GL1 ×GL1)×GL1.
Given σ0 ∈ Irresq(GL2) and χ1, χ2 ∈ (F×)D, we consider

i
GSpin

6

M (σ0 ⊠ χ1 ⊠ χ2). (5.15)

Write σ0 ⊠ χ1 ⊠ χ2 = (σ̃0 ⊠ χ̃1 ⊠ χ̃2 ⊠ η̃)|M with σ̃0 ∈ Irresq(GL2), χ̃i, η̃ ∈ (F×)D.

Given (g, h1, h2, h3) ∈ M̃ with det(gh1h2) = h23,
• if we set (g, h1, h3) ∈M , we have

σ̃0(g)χ̃1(h1)χ̃2(h2)η̃(h3) = σ̃0(g)χ̃1(h1)χ̃2(det g
−1h−1

1 h23)η̃(h3)

= (σ̃0χ̃
−1
2 ◦ det)(g)(χ̃1χ̃

−1
2 )(h1)(χ̃

2
2η̃)(h3)

= σ(g)χ1(h1)χ2(h3).

Then we have

σ̃0 = σ0χ̃2, χ̃1 = χ1χ̃2, η̃ = χ2χ̃
−2
2 .
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• If we set (g, h2, h3) ∈M , we have

σ̃0(g)χ̃1(h1)χ̃2(h2)η̃(h3) = σ̃0(g)χ̃1(det g
−1h−1

2 h23)χ̃2(h2)η̃(h3)

= (σ̃0χ̃
−1
1 ◦ det)(g)(χ̃2χ̃

−1
1 )(h2)(χ̃

2
1η̃)(h3)

= σ(g)χ1(h2)χ2(h3).

Then we have

σ̃0 = σ0χ̃1, χ̃2 = χ2χ̃1, η̃ = χ1χ̃
−2
1 . (5.16)

As before, the representation (5.15) is generic if and only if its lift

iGL4×GL1

M̃
(σ̃0 ⊠ χ̃1 ⊠ χ̃2 ⊠ η̃) (5.17)

is generic if and only if

iGL4

GL2×GL1×GL1
(σ̃0 ⊠ χ̃1 ⊠ χ̃2) (5.18)

is generic. Again by the classification of the generic representations of GLn this amounts to (5.18)
being irreducible. Hence, we must have

χ̃1 6= ν±1χ̃2.

In other words, given (g, h1, h2, h3) ∈ M̃ with det(gh1h2) = h23,
• if we set (g, h1, h3) ∈M, then

χ1 6= ν±1;

• if we set (g, h2, h3) ∈M, then

χ2 6= ν±1.

We have the following two cases. If σ0 is supercuspidal, then

NGL4(C)×GL1(C) = (04×4, 0)
(5.10)
⇐⇒ NGSO6(C) = 06×6.

If σ0 is non-supercuspidal, then

NGL4(C)×GL1(C) =







0 1 0 0
0 0 0 0
0 0 0 0
0 0 0 0


 , 0




(5.10)
⇐⇒ NGSO6(C) =




0 0 0 0 0 0
0 0 1 0 0 0
0 0 0 0 0 0
0 0 0 0 −1 0
0 0 0 0 0 0
0 0 0 0 0 0



.

gnr-(III) M ∼= GL3 ×GL1 and M̃ = (GL3 ×GL1)×GL1.
Given σ0 ∈ Irresq(GL3) and χ ∈ (F×)D, we consider

i
GSpin

6

M (σ0 ⊠ χ). (5.19)

Write σ0 ⊠ χ = (σ̃0 ⊠ χ̃⊠ η̃)|M with σ̃0 ∈ Irresq(GL3), χ̃, η̃ ∈ (F×)D.

Given (g, h1, h2) ∈ M̃ with det(gh1) = h22, if we set (g, h2) ∈M , then we have

σ̃0(g)χ̃(h1)η̃(h2) = σ̃0(g)χ̃(det g
−1h22)η̃(h2) (5.20)

= (σ̃0χ̃
−1 ◦ det)(g)(χ̃2η̃)(h2)

= σ(g)χ(h2).

Then, we have

σ̃0 = σ0χ̃ and η̃ = χ2χ̃
−2.

As before, (5.19) is generic if and only if its lift

iGL4×GL1

M̃
(σ̃0 ⊠ χ̃⊠ η̃) (5.21)

is generic if and only if

iGL4

GL3×GL1
(σ̃0 ⊠ χ̃) (5.22)
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is generic. This amounts to (5.22) being irreducible as before, which is always true since σ̃0 is
an essentially square integrable representation of GL3. Note that by the classification of essen-
tially square-integrable representations of GL3 ([Kud94, Proposition 1.1.2]), σ̃0 must be either
supercuspidal or the unique subrepresentation of

iGL3

GL1×GL1×GL1

(
νχ⊠ χ⊠ ν−1χ

)
(5.23)

with any χ ∈ (F×)D.
We have the following two cases. If σ0 is supercuspidal, then

NGL4(C)×GL1(C) = (04×4, 0)
(5.10)
⇐⇒ NGSO6(C) = 06×6.

If σ0 is the non-supercuspidal, unique, subrepresentation of (5.23), then

NGL4(C)×GL1(C) =







0 1 0 0
0 0 1 0
0 0 0 0
0 0 0 0


 , 0




(5.10)
⇐⇒ NGSO6(C) =




0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 0 0 0
0 0 0 0 −1 0
0 0 0 0 0 −1
0 0 0 0 0 0



.

gnr-(IV) M ∼= GL1 ×GSpin4 and M̃ = (GL2 ×GL2)×GL1.
Given σ0 ∈ Irresq(GSpin4) and χ ∈ (F×)D we consider

i
GSpin

6

M (χ⊠ σ0). (5.24)

Write χ⊠ σ0 ⊂ (σ̃1 ⊠ σ̃2 ⊠ η̃)|M with σ̃i ∈ Irresq(GL2), η̃ ∈ (F×)D.
As before, (5.24) is generic if and only if its lift

iGL4×GL1

M̃
(σ̃1 ⊠ σ̃2 ⊠ η̃) (5.25)

is generic if and only if

iGL4

GL2×GL2
(σ̃1 ⊠ σ̃2) (5.26)

is generic. This amounts to (5.26) being irreducible. Thus, we must have

σ̃1 6= ν±1σ̃2.

We have several cases to consider. If σ0 is supercuspidal (so are σ̃1 and σ̃2), then

NGL4(C)×GL1(C) = (04×40)
(5.10)
⇐⇒ NGSO6(C) = 06×6.

If σ0 is non-supercuspidal, then for supercuspidal σ̃1 and non-supercuspidal σ̃2 we have

NGL4(C)×GL1(C) =







0 0 0 0
0 0 0 0
0 0 0 1
0 0 0 0


 , 0




(5.10)
⇐⇒ NGSO6(C) =




0 0 0 0 0 0
0 0 0 1 0 0
0 0 0 0 −1 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0



;

for non-supercuspidal σ̃1 and supercuspidal σ̃2 we have

NGL4(C)×GL1(C) =







0 1 0 0
0 0 0 0
0 0 0 0
0 0 0 0


 , 0




(5.10)
⇐⇒ NGSO6(C) =




0 0 0 0 0 0
0 0 1 0 0 0
0 0 0 0 0 0
0 0 0 0 −1 0
0 0 0 0 0 0
0 0 0 0 0 0



;
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and for non-supercuspidal σ̃1 and σ̃2 we have

NGL4(C)×GL1(C) =







0 1 0 0
0 0 0 0
0 0 0 1
0 0 0 0


 , 0




(5.10)
⇐⇒ NGSO6(C) =




0 0 0 0 0 0
0 0 1 1 0 0
0 0 0 0 −1 0
0 0 0 0 −1 0
0 0 0 0 0 0
0 0 0 0 0 0



.

gnr-(V) M ∼= GSpin6 and M̃ = GL4 ×GL1.
Given σ ∈ Irresq(GSpin6) \ Irrsc(GSpin6), we consider

σ ⊂ (σ̃ ⊠ η̃)|M

with σ̃ ∈ Irresq(GL4)\ Irrsc(GL4), η̃ ∈ (F×)D. Here, we note that ϕ ∈ Φ(GSpin6) is not irreducible
and neither σ̃ nor σ is supercuspidal. It is clear that σ is generic as σ̃⊠ η̃ is. By the classification
of essentially square-integrable representations of GL4 ([Kud94, Proposition 1.1.2]), σ̃ must be the
unique subrepresentation of either

iGL4

GL1×GL1×GL1×GL1

(
ν3/2χ̃⊠ ν1/2χ̃⊠ ν−1/2χ̃⊠ ν−3/2χ̃

)
(5.27)

with any χ̃ ∈ (F×)D (i.e., σ̃ = StGL4
⊗ χ̃), or of

iGL4

GL2×GL2

(
ν1/2τ̃ ⊠ ν−1/2τ̃

)
(5.28)

with any τ̃ ∈ Irrsc(GL2).
Now, for (5.27) we have

NGL4(C)×GL1(C) =







0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 0


 , 0




(5.10)
⇐⇒ NGSO6(C) =




0 1 0 0 0 0
0 0 1 1 0 0
0 0 0 0 −1 0
0 0 0 0 −1 0
0 0 0 0 0 −1
0 0 0 0 0 0



;

and for (5.28) we have

NGL4(C)×GL1(C) =







0 0 1 0
0 0 0 1
0 0 0 0
0 0 0 0


 , 0




(5.10)
⇐⇒ NGSO6(C) =




0 0 1 1 0 0
0 0 0 0 0 0
0 0 0 0 0 −1
0 0 0 0 0 −1
0 0 0 0 0 0
0 0 0 0 0 0



.

(We note, cf. [Tat79, (4.1.5)], that NGL4(C) is of the form O2×2 ⊗ I2×2 +

[
0 1
0 0

]
⊗ I2×2.)

5.3. Non-Generic Representaions of GSpin6. Using the transitivity of the parabolic induction and the
classification of generic representations of GLn, ([Zel80, Theorem 9.7] and [Kud94, Theorem 2.3.1]), the
non-generic representations of GSpin6 are as follows.

nongnr-(A) M ∼= GL1 ×GL1 ×GL1 ×GL1 and M̃ = (GL1 ×GL1 ×GL1 ×GL1)×GL1.
Given χi ∈ (F×)D, by Section 3.1 and using (5.12), the representation (5.11) contains a

non-generic constituent if and only if the same is true for

iGL4×GL1

M̃
(χ̃1 ⊠ χ̃2 ⊠ χ̃3 ⊠ χ̃4 ⊠ η̃) (5.29)

if and only if

iGL4

GL1×GL1×GL1×GL1
(χ̃1 ⊠ χ̃2 ⊠ χ̃3 ⊠ χ̃4) (5.30)
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contains a non-generic constituent. This amounts to (5.30) being reducible. As before, the
necessary and sufficient condition for this to occur is that there is some pair i, j with i 6= j such
that χ̃i = νχ̃j .

By the Langlands classification and the description of constituents of the parabolic induction
(see [Zel80, Theorem 7.1], [Rod82, Theorem 7.1], and [Kud94, Theorems 2.1.1 §5.1.1]), each
constituent can be described as a Langlands quotient, denoted by Q(...), as follows.

The first case is when there is only one pair, say χ̃1 = ν1/2χ̃ and χ̃2 = ν−1/2χ̃ for some
χ̃ ∈ (F×)D while χ̃3 6= ν±1χ̃j for j 6= 3 and χ̃4 6= ν±1χ̃j for j 6= 4. Then we have the non-generic
constituent

Q
(
[ν1/2χ̃], [ν−1/2χ̃], [χ̃3], [χ̃4]

)
, (5.31)

which is the Langlands quotient of

iGL4

GL2×GL1×GL1

(
Q
(
[ν1/2χ̃], [ν−1/2χ̃]

)
⊠ χ̃3 ⊠ χ̃4

)
= iGL4

GL2×GL1×GL1
((χ̃ ◦ det)⊠ χ̃3 ⊠ χ̃4) .

We have

NGL4(C)×GL1(C) = (04×4, 0)
(5.10)
⇐⇒ NGSO6(C) = 06×6.

Note that the other constituent of this induced representation, which is generic, is

Q
(
[ν−1/2χ̃, ν1/2χ̃], [χ̃3], [χ̃4]

)
= iGL4

GL2×GL1×GL1

(
Q
(
[ν−1/2χ̃, ν1/2χ̃]

)
⊠ χ̃3 ⊠ χ̃4

)

= iGL4

GL2×GL1×GL1
((St⊗ χ̃)⊠ χ̃3 ⊠ χ̃4) .

The next case is when there are two pairs, say χ̃1 = νχ̃, χ̃2 = χ̃, and χ̃3 = ν−1χ̃ for some
χ̃ ∈ (F×)D and χ̃4 6= ν±1χ̃i for i = 1, 2, 3. Then we have the following three non-generic
constituents:

Q
(
[νχ̃], [χ̃], [ν−1χ̃], [χ̃4]

)
= iGL4

GL3×GL1
((χ̃ ◦ det)⊠ χ̃3 ⊠ χ̃4); (5.32)

Q
(
[χ̃, νχ̃], [ν−1χ̃], [χ̃4]

)
; (5.33)

Q
(
[νχ̃], [χ̃, ν−1χ̃], [χ̃4]

)
. (5.34)

For (5.32) we have

NGL4(C)×GL1(C) = (04×4, 0)
(5.10)
⇐⇒ NGSO6(C) = 06×6,

for (5.33) we have

NGL4(C)×GL1(C) =







0 1 0 0
0 0 0 0
0 0 0 0
0 0 0 0


 , 0




(5.10)
⇐⇒ NGSO6(C) =




0 0 0 0 0 0
0 0 1 0 0 0
0 0 0 0 0 0
0 0 0 0 −1 0
0 0 0 0 0 0
0 0 0 0 0 0



,

and for (5.34) we have

NGL4(C)×GL1(C) =







0 0 0 0
0 0 1 0
0 0 0 0
0 0 0 0


 , 0




(5.10)
⇐⇒ NGSO6(C) =




0 1 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 −1
0 0 0 0 0 0



.

Finally, in the case where we have three pairs we are in the situation of (5.27). Then we have
the following seven non-generic constituents:

Q
(
[ν3/2χ̃], [ν1/2χ̃], [ν−1/2χ̃], [ν−3/2χ̃]

)
= χ̃ ◦ det; (5.35)

Q
(
[ν1/2χ̃, ν3/2χ̃], [ν−1/2χ̃], [ν−3/2χ̃]

)
; (5.36)
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Q
(
[ν3/2χ̃], [ν−1/2χ̃, ν1/2χ̃], [ν−3/2χ̃]

)
; (5.37)

Q
(
[ν3/2χ̃], [ν1/2χ̃], [ν−3/2χ̃, ν−1/2χ̃]

)
; (5.38)

Q
(
[ν1/2χ̃, ν3/2χ̃], [ν−3/2χ̃, ν−1/2χ̃]

)
; (5.39)

Q
(
[ν−1/2χ̃, ν1/2χ̃, ν3/2χ̃], [ν−3/2χ̃]

)
; (5.40)

Q
(
[ν3/2χ̃], [ν−3/2χ̃, ν−1/2χ̃, ν1/2χ̃]

)
. (5.41)

For (5.35) we have

NGL4(C)×GL1(C) = (04×4, 0)
(5.10)
⇐⇒ NGSO6(C) = 06×6,

for (5.36) we have

NGL4(C)×GL1(C) =







0 1 0 0
0 0 0 0
0 0 0 0
0 0 0 0


 , 0




(5.10)
⇐⇒ NGSO6(C) =




0 0 0 0 0 0
0 0 1 0 0 0
0 0 0 0 0 0
0 0 0 0 −1 0
0 0 0 0 0 0
0 0 0 0 0 0



,

for (5.37) we have

NGL4(C)×GL1(C) =







0 0 0 0
0 0 1 0
0 0 0 0
0 0 0 0


 , 0




(5.10)
⇐⇒ NGSO6(C) =




0 1 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 −1
0 0 0 0 0 0



,

for (5.38) we have

NGL4(C)×GL1(C) =







0 0 0 0
0 0 0 0
0 0 0 1
0 0 0 0


 , 0




(5.10)
⇐⇒ NGSO6(C) =




0 0 0 0 0 0
0 0 0 1 0 0
0 0 0 0 −1 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0



,

for (5.39) we have

NGL4(C)×GL1(C) =







0 1 0 0
0 0 0 0
0 0 0 1
0 0 0 0


 , 0




(5.10)
⇐⇒ NGSO6(C) =




0 0 0 0 0 0
0 0 1 1 0 0
0 0 0 0 −1 0
0 0 0 0 −1 0
0 0 0 0 0 0
0 0 0 0 0 0



,

for (5.40) we have

NGL4(C)×GL1(C) =







0 1 0 0
0 0 1 0
0 0 0 0
0 0 0 0


 , 0




(5.10)
⇐⇒ NGSO6(C) =




0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 0 0 0
0 0 0 0 −1 0
0 0 0 0 0 −1
0 0 0 0 0 0



,
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and for (5.41) we have

NGL4(C)×GL1(C) =







0 0 0 0
0 0 1 0
0 0 0 1
0 0 0 0


 , 0




(5.10)
⇐⇒ NGSO6(C) =




0 1 0 0 0 0
0 0 0 1 0 0
0 0 0 0 −1 0
0 0 0 0 0 0
0 0 0 0 0 −1
0 0 0 0 0 0



.

nongnr-(B) M ∼= GL2 ×GL1 ×GL1 and M̃ = (GL2 ×GL1 ×GL1)×GL1.
Given σ0 ∈ Irr(GL2) and χ1, χ2 ∈ (F×)D, we consider

i
GSpin

6

M (σ0 ⊠ χ1 ⊠ χ2). (5.42)

Write

σ0 ⊠ χ1 ⊠ χ2 = (σ̃0 ⊠ χ̃1 ⊠ χ̃2 ⊠ η̃)|M

with σ̃0 ∈ Irr(GL2) and χ̃i, η̃ ∈ (F×)D. By (5.16), it follows that (5.42) contains a non-generic
constituent if and only if its lift

iGL4×GL1

M̃
(σ̃0 ⊠ χ̃1 ⊠ χ̃2 ⊠ η̃) (5.43)

contains a non-generic constituent if and only if

iGL4

GL2×GL1×GL1
(σ̃0 ⊠ χ̃1 ⊠ χ̃2) (5.44)

does. Recalling nongnr-(A), it is sufficient to consider the case of σ̃0 ∈ Irr(GL2), χ̃1 = ν1/2χ̃,
and χ̃2 = ν−1/2χ̃ for χ̃ ∈ (F×)D, where the segment ∆σ̃0

of σ̃0 does not precede either χ̃1 or
χ̃2. We then have the following sole non-generic constituent:

Q([∆σ̃0
], [ν1/2χ̃], [ν−1/2χ̃]). (5.45)

We have

NGL4(C)×GL1(C) = (04×4, 0)
(5.10)
⇐⇒ NGSO6(C) = 06×6.

nongnr-(C) M ∼= GL3 ×GL1 and M̃ = (GL3 ×GL1)×GL1.
Given a non-generic σ0 ∈ Irr(GL3) and any χ ∈ (F×)D, we consider

i
GSpin

6

M (σ0 ⊠ χ). (5.46)

Write

σ0 ⊠ χ = (σ̃0 ⊠ χ̃⊠ η̃)|M

with non-generic σ̃0 ∈ Irr(GL3) and χ̃, η̃ ∈ (F×)D. As in (5.20) we have

σ̃0 = σ0χ̃, and η̃ = χ2χ̃
−2.

As before, (5.46) contains a non-generic constituent if and only if its lift

iGL4×GL1

M̃
(σ̃0 ⊠ χ̃⊠ η̃) (5.47)

also contains one if and only if

iGL4

GL3×GL1
(σ̃0 ⊠ χ̃) (5.48)

does. To have a non-generic σ̃0 of GL3(F ), the irreducible representation σ̃0 must be some
constituent in a reducible induction. This case has been covered in nongnr-(A) and (B) above.

nongnr-(D) M ∼= GL1 ×GSpin4 and M̃ = (GL2 ×GL2)×GL1.
Given a non-generic σ0 ∈ Irr(GSpin4), by Section 4.3, we know that it must be of the form

ResGL2×GL2

GSpin
4

((χ ◦ det)⊠ σ̃)

for σ̃ ∈ Irr(GL2). For η ∈ (F×)D, the induced representation

i
GSpin

6

M ((χ ◦ det)⊠ σ̃ ⊠ η) (5.49)
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contains a non-generic constituent if and only if so does

iGL4

GL2×GL2
((χ ◦ det)⊠ σ̃),

which is always the case. Therefore, if σ̃ is supercuspidal, then

NGL4(C)×GL1(C) = (04×4, 0)
(5.10)
⇐⇒ NGSO6(C) = 06×6.

If σ̃ is non-supercuspidal, then it suffices to consider the case σ̃ = StGL2
⊗ η with η ∈ (F×)D

since the other case has been covered in nongnr-(A). Thus, we have

NGL4(C)×GL1(C) =







0 0 0 0
0 0 0 0
0 0 0 1
0 0 0 0


 , 0




(5.10)
⇐⇒ NGSO6(C) =




0 0 0 0 0 0
0 0 0 1 0 0
0 0 0 0 −1 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0



.

nongnr-(E) M ∼= GSpin6 and M̃ = GL4 ×GL1.
Given a non-generic σ ∈ Irr(GSpin6), it must be of the form

ResGL4×GL1

GSpin
6

(χ̃ ◦ det⊠η̃) = χ ◦ det, (5.50)

for some χ̃, η̃ ∈ (F×)D. This is the case Q([ν3/2χ̃], [ν1/2χ̃], [ν−1/2χ̃], [ν−3/2χ̃]) in nongnr-(A).

5.4. Computation of the Adjoint L-function for GSpin6. We now give explicit expressions for the
adjoint L-function of each of the representations of GSpin6(F ). Recall that if we have a parameter (φ,N)
with N a nilpotent matrix on the vector space V , then its adjoint L-function is

L(s, φ,Ad) = det
(
1− q−sAd(φ)|V IN

)−1
,

where VN = ker(N), V I the vectors fixed by the inertia group, and V IN = V I ∩ VN . Below for the cases
where N is non-zero, we write ker(Ad(N)) and we use Lα to denote the root group associated with the root
α.

We now consider each case. Using (2.14) and Sections 5.2, and 5.3, we have the following.

gnr-(a) Given σ ∈ Irrsc(GSpin6), we have σ̃ = σ̃0 ⊠ η̃ ∈ Irrsc(GL4 ×GL1). Then

L(s, 1F×)L(s, σ,Ad) = L(s, σ̃0,AdĜL4

)

or

L(s, σ,Ad) = L(s, σ̃0,Ad).

gnr-(I) Given M ∼= GL1 ×GL1 ×GL1 ×GL1 and M̃ = (GL1 ×GL1 ×GL1 ×GL1)×GL1, we recall

iGL4

GL1×GL1×GL1×GL1
(χ̃1 ⊠ χ̃2 ⊠ χ̃3 ⊠ χ̃4)

must be irreducible. Thus, given σ ∈ Irr(GSpin6) such that

σ = i
GSpin

6

M (χ̃1 ⊠ χ̃2 ⊠ χ̃3 ⊠ χ̃4),

we have

L(s, σ,Ad) = L(s)3
∏

i6=j

L(s, χ̃iχ̃
−1
j ).

gnr-(II) Given M ∼= GL2 × GL1 × GL1 and M̃ = (GL2 × GL1 × GL1) × GL1, for σ0 ∈ Irresq(GL2) and
χ1, χ2 ∈ (F×)D, we have an irreducible induced representation

σ = i
GSpin

6

M (σ0 ⊠ χ1 ⊠ χ2) = ResGL4×GL1

GSpin
6

(
iGL4

GL2×GL1×GL1
(σ̃0 ⊠ χ̃1 ⊠ χ̃2 ⊠ η̃)

)
,

for some σ̃0 ∈ Irresq(GL2), and χ̃i, η̃ ∈ (F×)D. For supercuspidal σ̃0 we have

L(s, σ,Ad) = L(s)2L(s, σ̃0,Ad)L(s, σ̃0 × χ̃
−1
1 )L(s, σ̃∨

0 × χ̃1)

L(s, σ̃0 × χ̃
−1
2 )L(s, σ̃∨

0 × χ̃2)L(s, χ̃1χ̃
−1
2 )L(s, χ̃2χ̃

−1
1 ).
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For non-supercuspidal σ̃0 ∈ Irr(GL2), i.e., σ0 = StGL2
⊗ χ̃ for some χ̃ ∈ (F×)D, we have

ker


ad




0 1 0 0
0 0 0 0
0 0 0 0
0 0 0 0





 =

〈



a 0 0 0
0 a 0 0
0 0 b 0
0 0 0 c


 , Lf1−f2 , Lf1−f3 , Lf1−f4 , Lf3−f2 , Lf3−f4 , Lf4−f2 , Lf4−f3

〉
.

(5.51)
It follows that

L(s, σ,Ad) = L(s)2L(s+ 1)L(s+ 1, χ̃χ̃−1
1 )L(s+ 1, χ̃χ̃−1

2 )

·L(s, χ̃−1χ̃1)L(s, χ̃
−1χ̃2)L(s, χ̃1χ̃

−1
2 )L(s, χ̃2χ̃

−1
1 ).

gnr-(III) Given M ∼= GL3×GL1 and M̃ = (GL3×GL1)×GL1, for σ0 ∈ Irresq(GL3) and χ ∈ (F×)D, we have
an irreducible induced representation

σ = i
GSpin

6

M (σ0 ⊠ χ) = ResGL4×GL1

GSpin
6

(
iGL4×GL1

GL3×GL1×GL1
(σ̃0 ⊠ χ̃⊠ η̃)

)
,

for σ̃0 ∈ Irresq(GL3) and χ̃, η̃ ∈ (F×)D. If σ̃0 ∈ Irresq(GL3) is supercuspidal, then we have

L(s, σ,Ad) = L(s)L(s, σ̃0,Ad)L(s, σ̃0 × χ̃
−1)L(s, σ̃∨

0 × χ̃).

For non-supercuspidal σ̃0 ∈ Irresq(GL3), i.e., σ0 = StGL3
⊗ χ̃0 for some χ̃0 ∈ (F×)D, we have

ker


ad




0 1 0 0
0 0 1 0
0 0 0 0
0 0 0 0





 =

〈



a c 0 0
0 a c 0
0 0 a 0
0 0 0 b


 , Lf1−f3 , Lf1−f4 , Lf4−f3

〉
. (5.52)

It follows that

L(s, σ,Ad) = L(s)L(s+ 1)L(s+ 2)L(s+ 1, χ̃χ̃−1
0 )L(s+ 1, χ̃−1χ̃0).

gnr-(IV) Given M ∼= GL1 ×GSpin4 and M̃ = (GL2 ×GL2)×GL1, we have the representation (5.24)

σ = i
GSpin

6

M (χ⊠ σ0)

with σ0 ∈ Irresq(GSpin4), and χ ∈ (F×)D. We have the irreducible iGL4

GL2×GL2
(σ̃1 ⊠ σ̃2) as in (5.26),

where χ⊠ σ0 ⊂ (σ̃1 ⊠ σ̃2 ⊠ η̃)|M with σ̃i ∈ Irresq(GL2), η̃ ∈ (F×)D. Thus, if σ0 is supercuspidal (and
hence so are σ̃1 and σ̃2) we have

L(s, σ,Ad) = L(s)L(s, σ̃1,Ad)L(s, σ̃2,Ad)L(s, σ̃1 × σ̃
∨
2 )L(s, σ̃

∨
1 × σ̃1).

If σ0 is non-supercuspidal, with σ̃1 supercuspidal and σ̃2 non-supercuspidal, i.e., σ̃2 = StGL2
⊗ χ̃

for some χ̃ ∈ (F×)D, we have

ker


ad




0 0 0 0
0 0 0 0
0 0 0 1
0 0 0 0





 =

〈



a 0 0 0
0 b 0 0
0 0 c 0
0 0 0 c


 , Lf1−f2 , Lf1−f4 , Lf2−f1 , Lf2−f4 , Lf3−f1 , Lf3−f2 , Lf3−f4

〉
,

(5.53)
and it then follows that

L(s, σ,Ad) = L(s)L(s+ 1)L(s, σ̃1,Ad)L(s+
1

2
, σ̃∨

1 × χ̃)L(s+
1

2
, σ̃1 × χ̃

−1).

If σ0 is non-supercuspidal, with σ̃1 non-supercuspidal and σ̃2 supercuspidal, i.e., σ̃1 = StGL2
⊗ χ̃

for some χ̃ ∈ (F×)D, then ker(ad(N)) is as in (5.51) and we have

L(s, σ,Ad) = L(s)L(s+ 1)L(s, σ̃2,Ad)L(s+
1

2
, σ̃∨

2 × χ̃)L(s+
1

2
, σ̃2 × χ̃

−1).
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If both σ̃1 and σ̃2 are non-supercuspidal, i.e., σ̃i = StGL2
⊗ χ̃i with χ̃1, χ̃2 ∈ (F×)D satisfying

χ̃1 6= χ̃2ν
±1, we have

ker


ad




0 1 0 0
0 0 0 0
0 0 0 1
0 0 0 0





 =

〈



a 0 c 0
0 a 0 c
d 0 b 0
0 d 0 b


 , Lf1−f2 , Lf1−f4 , Lf3−f2 , Lf3−f4

〉
, (5.54)

and it follows that

L(s, σ,Ad) = L(s)L(s+ 1)2L(s+ 1, χ̃1χ̃
−1
2 )L(s+ 1, χ̃−1

1 χ̃2)L(s, χ̃
−1
1 χ̃2)L(s, χ̃1χ̃

−1
2 ).

gnr-(V) Given M ∼= GL1 × GSpin4 and M̃ = (GL2 × GL2) × GL1, we consider σ ∈ Irresq(GSpin6) and
σ̃ ∈ Irresq(GL4) and η̃ ∈ (F×)D such that σ ⊂ (σ̃ ⊠ η̃)|M . Then, σ̃ must be either (5.27) or (5.28).

For (5.27) (i.e., σ̃ = StGL4
⊗ χ̃), we have

ker


ad




0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 0





 =

〈



a b c 0
0 a b c
0 0 a b
0 0 0 a


 , Lf1−f4

〉
, (5.55)

and it follows that

L(s, σ,Ad) = L(s+ 3)L(s+ 2)L(s+ 1).

For (5.28) (i.e., τ̃ ∈ Irrsc(GL2)), we have

ker


ad




0 0 1 0
0 0 0 1
0 0 0 0
0 0 0 0





 =

〈



a c 0 0
d b 0 0
0 0 a c
0 0 d b


 , Lf1−f3 , Lf1−f4 , Lf2−f3 , Lf2−f4

〉
, (5.56)

and it follows that

L(s, σ,Ad) = L(s, τ̃ ,Ad)L(s, τ̃ × τ̃∨).

nongnr-(A) For Q([ν1/2χ̃], [ν−1/2χ̃], [χ̃3], [χ̃4]) (5.31), we have

L(s, σ,Ad) = L(s)3L(s+ 1)L(s− 1)L(s, χ̃3χ̃
−1
4 )L(s, χ̃−1

3 χ̃4)
∏

i=3,4

(
L(s+

1

2
, χ̃χ̃−1

i )L(s−
1

2
, χ̃−1χ̃i)L(s−

1

2
, χ̃χ̃−1

i )L(s+
1

2
, χ̃−1χ̃i)

)

For Q
(
[νχ̃], [χ̃], [ν−1χ̃], [χ̃4]

)
(5.32), we have

L(s, σ,Ad) = L(s)3L(s+ 1)2L(s− 1)2L(s+ 2)L(s− 2)
∏

t=0,1,−1

(
L(s+ t, χ̃χ̃−1

4 )L(s+ t, χ̃−1χ̃4)
)
,

For Q([χ̃, νχ̃], [ν−1χ̃], [χ̃4]) (5.33), we have ker(ad(N)) as in (5.51) and

L(s, σ,Ad) = L(s)2L(s− 1)2L(s− 2)
∏

t=−1,0

L(s+ t, χ̃χ̃−1
4 )

∏

t=±1

L(s+ t, χ̃−1χ̃4).

For Q
(
[νχ̃], [χ̃, ν−1χ̃], [χ̃4]

)
(5.34), since

ker


ad




0 0 0 0
0 0 1 0
0 0 0 0
0 0 0 0





 =

〈



a 0 0 0
0 b 0 0
0 0 b 0
0 0 0 c


 , Lf1−f3 , Lf1−f4 , Lf2−f1 , Lf2−f3 , Lf2−f4 , Lf4−f1 , Lf4−f3

〉
,

(5.57)
we have

L(s, σ,Ad) = L(s)2L(s+ 2)L(s− 1)L(s+ 1)
∏

t=0,1

L(s+ t, χ̃χ̃−1
4 )

∏

t=±1

L(s+ t, χ̃−1χ̃4).
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For Q([ν3/2χ̃], [ν1/2χ̃], [ν−1/2χ̃], [ν−3/2χ̃]) (5.35), we have

L(s, σ,Ad) = L(s)3L(s+ 1)3L(s− 1)3L(s+ 2)2L(s− 2)2L(s+ 3)L(s− 3).

For Q
(
[ν1/2χ̃, ν3/2χ̃], [ν−1/2χ̃], [ν−3/2χ̃]

)
(5.36), we have ker(ad(N)) is as in (5.51) and

L(s, σ,Ad) = L(s)2L(s− 1)2L(s+ 1)2L(s− 2)L(s+ 2)L(s− 3).

For Q([ν3/2χ̃], [ν−1/2χ̃, ν1/2χ̃], [ν−3/2χ̃]) (5.37), we have ker(ad(N)) is as in (5.57) and

L(s, σ,Ad) = L(s)2L(s+ 1)2L(s+ 2)L(s− 1)2L(s− 3)L(s− 2).

For Q([ν3/2χ̃], [ν1/2χ̃], [ν−3/2χ̃, ν−1/2χ̃]) (5.38), we have ker(ad(N)) is as in (5.53) and

L(s, σ,Ad) = L(s)2L(s+ 1)2L(s− 1)2L(s− 2)L(s+ 2)L(s− 3).

For Q([ν1/2χ̃, ν3/2χ̃], [ν−3/2χ̃, ν−1/2χ̃]) (5.39), we have ker(ad(N)) is as in (5.54) and

L(s, σ,Ad) = L(s)L(s− 1)2L(s+ 1)L(s+ 2)L(s− 2)L(s− 3).

For Q([ν−1/2χ̃, ν1/2χ̃, ν3/2χ̃], [ν−3/2χ̃]) (5.40), we have ker(ad(N)) is as in (5.52) and

L(s, σ,Ad) = L(s)L(s− 1)L(s− 2)L(s+ 1)L(s− 3).

Finally, for Q
(
[ν3/2χ̃], [ν−3/2χ̃, ν−1/2χ̃, ν1/2χ̃]

)
(5.41), since

ker


ad




0 0 0 0
0 0 1 0
0 0 0 1
0 0 0 0





 =

〈



a 0 0 0
0 b c 0
0 0 b c
0 0 0 b


 , Lf1−f4 , Lf2−f1 , Lf2−f4

〉
, (5.58)

we have

L(s, σ,Ad) = L(s)L(s+ 1)L(s− 1)L(s− 2)L(s− 3).

nongnr-(B) For Q([∆σ̃0
], [ν1/2χ̃], [ν−1/2χ̃]) (5.45), with say [∆σ̃0

] = iGL2

GL1×GL1
(η̃1 ⊠ η̃2), η̃1η̃

−1
2 6= ν±1 we have

L(s, σ,Ad) = L(s)3L(s+ 1)L(s− 1)L(s, η̃1η̃
−1
2 )L(s, η̃−1

1 η̃2)
∏

i=1,2

(
L(s−

1

2
, η̃iχ̃

−1)L(s+
1

2
, η̃iχ̃

−1)L(s+
1

2
, η̃−1
i χ̃)L(s−

1

2
, η̃−1
i χ̃)

)
.

nongnr-(C) As mentioned before, all the possibilities in this case were covered in (A) and (B) above.
nongnr-(D) For (5.49) with σ̃ supercuspidal, we have

L(s, σ,Ad) = L(s)2L(s+ 1)L(s− 1)L(s, σ,Ad)

L(s−
1

2
, σ × χ−1)L(s+

1

2
, σ × χ−1)L(s−

1

2
, σ∨ × χ)L(s+

1

2
, σ∨ × χ),

For (5.49) with non-supercuspidal σ̃ = StGL2
⊗ η, η ∈ (F×)D we have ker(ad(N)) as in (5.53) and

L(s, σ,Ad) = L(s)2L(s+ 1)2L(s− 1)L(s, χη−1)L(s+ 1, χη−1)L(s+ 1, χ−1η)L(s, χ−1η).

Recall that the remaining possibilities in this case were already covered in (A) above.
nongnr-(E) Finally, as mentioned before, all the possibilities in this case we also covered in (A).

6. Correction to [AC17]

We take this opportunity to correct the following errors in our earlier work [AC17]. They do not affect
the main results in that paper.
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6.1. Proposition 5.5 and 6.4.

• Change “1,2,4,8, if p = 2” to “1,2,4,8,..., 2[F :Q2]+2, if p = 2.” We have 2[F :Qp]+2 due to the fact that∣∣F×/(F×)2
∣∣ = 2[F :Q2]+2.

• For Proposition 5.5, using [GP92, Corollary 7.7], it follows that the case of p = 2 is bounded by

|(Z/2Z)4−1| = 8. Here 4 is coming from ĜSpin4 = GSO(4,C).
• For Proposition 6.4, using [GP92, Corollary 7.7], it follows that the case of p = 2 is bounded by

|(Z/2Z)6−1| = 32. Here 6 is coming from ĜSpin6 = GSO(6,C).

6.2. Remark 5.11.

• The formula (5.13) should read as follows:
∣∣∣Πϕ (GSpin4)

∣∣∣ =
∣∣∣Πϕ(GSpin1,1

4 )
∣∣∣ = 4,

∣∣∣Πϕ
(
GSpin2,14

)∣∣∣ = 1. (5.13)

Also, in the following sentence change “in which case the multiplicity is 2” to “in which case the
multiplicity 2 could also occur”. We thank Hengfei Lu [Lu20] for bringing this error to our attention.
• In addition, it is more accurate that we use ‘not irreducible’ rather than ‘reducible’ in this Remark
since one may have indecomposable parameters. Alternatively, we may write ϕ̃i|WF

is reducible.
Thus, at the beginning the Remark, change “When ϕ̃i is reducible,” to “When ϕ̃i is not irreducible,”.
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Table 1. Representations of GSpin4(F )

ResGL2×GL2

GSpin
4

of L-packet Structure generic

(a) (σ̃1 ⊠ σ̃2), σ̃2 ∼= σ̃1η̃, σ̃i ∈ Irrsc(GL2) {1},Z/2Z, (Z/2Z)2 •

(b) (σ̃1 ⊠ σ̃2), σ̃2 6∼= σ̃1η̃, σ̃i ∈ Irrsc(GL2) {1},Z/2Z •

(i) (StGL2
⊠ StGL2

) = StGSpin
4

(irreducible) {1} •

(ii) (iGL2

GL1×GL1
(χGL2

GL1×GL1
(χ1 ⊗ χ2)⊠ StGL2

⊗ χ) (irreducible) {1} •

(iii) (iGL2

GL1×GL1
(χ1 ⊗ χ2)⊠ iGL2

GL1×GL1
(χ3 ⊗ χ4)), χ1 6= ν±1χ2 , χ3 6= ν±1χ4 {1},Z/2Z •

(iv) (σ̃ ⊠ StGL2
⊗ χ), σ̃ ∈ Irrsc(GL2) (irreducible) {1} •

(v) (σ̃ ⊠ iGL2

GL1×GL1
(χ1 ⊗ χ2)), σ̃ ∈ Irrsc(GL2) {1},Z/2Z •

nongnr (χ ◦ det⊠σ̃), σ̃ ∈ Irr(GL2) (irreducible) {1}

Table 2. The adjoint L-function L(s, σ,Ad) for GSpin4

L(s, σ,Ad) ords=1

(a)&(b) L(s, σ̃1, Sym
2⊗ω−1

σ̃1
)L(s, σ̃2, Sym

2⊗ω−1
σ̃2

) 0

(i) L(s+ 1)2 0

(ii) L(s)L(s+ 1)L(s, χ1χ
−1
2 )L(s, χ−1

1 χ2) 0

(iii) L(s)2L(s, χ1χ
−1
2 )L(s, χ−1

1 χ2)L(s, χ3χ
−1
4 )L(s, χ−1

3 χ4) 0

(iv) L(s+ 1)L(s, σ̃2, Sym
2⊗ω−1

σ̃2
) 0

(v) L(s)L(s, χ1χ
−1
2 )L(s, χ−1

1 χ2)L(s, σ̃2, Sym
2⊗ω−1

σ̃2
) 0

nongnr L(s− 1)L(s)L(s+ 1)L(s, σ̃,Ad) 1 + ords=1 L(s, σ̃,Ad)

Table 3. Representations of GSpin6(F )

ResGL4×GL1

GSpin
6

of generic

(a) (σ̃0 ⊠ η̃), σ̃0 ∈ Irrsc(GL4) •

(I) iGL4×GL1

(GL1×GL1×GL1×GL1)×GL1
(χ̃1 ⊠ χ̃2 ⊠ χ̃3 ⊠ χ̃4 ⊠ η̃), χ̃i 6= νχ̃j •

(II) iGL4×GL1

(GL2×GL1×GL1)×GL1

(σ̃0 ⊠ χ̃1 ⊠ χ̃2 ⊠ η̃), σ̃0 ∈ Irresq(GL2), χ̃1 6= ν±1χ̃2 •

(III) iGL4×GL1

(GL3×GL1)×GL1
(σ̃0 ⊠ χ̃⊠ η̃), σ̃0 ∈ Irresq(GL3) •

(IV) iGL4×GL1

(GL2×GL2)×GL1
(σ̃1 ⊠ σ̃2 ⊠ η̃), σ̃i ∈ Irresq(GL2), σ̃1 6= ν±1σ̃2 •

(V) (σ̃ ⊠ η̃), σ̃ ∈ Irresq(GL4) \ Irrsc(GL4) •

(A) iGL4×GL1

(GL1×GL1×GL1×GL1)×GL1

(χ̃1 ⊠ χ̃2 ⊠ χ̃3 ⊠ χ̃4 ⊠ η̃), χ̃i = νχ̃j

(B) iGL4×GL1

(GL2×GL1×GL1)×GL1
(σ̃0 ⊠ χ̃1 ⊠ χ̃2 ⊠ η̃), σ̃0 6∈ Irresq(GL2), or χ̃1 = ν±1χ̃2

(C) iGL4×GL1

(GL3×GL1)×GL1
(σ̃0 ⊠ χ̃⊠ η̃), non-generic σ̃0 ∈ Irr(GL3)

(D) iGL4×GL1

(GL2×GL2)×GL1
((χ ◦ det)⊠ σ̃ ⊠ η̃), σ̃ ∈ Irr(GL2)

(E) (χ̃ ◦ det⊠η̃), σ̃ ∈ Irresq(GL4) \ Irrsc(GL4)
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Table 4. The adjoint L-function L(s, σ,Ad) for GSpin6

σ ∈ Irr(GSpin6(F )) determined by L(s, σ,Ad) ords=1

(a) (5.9) σ̃0 ∈ Irrsc(GL4) L(s, σ̃0,Ad) 0

(I) (5.14) χ̃1 ⊠ χ̃2 ⊠ χ̃3 ⊠ χ̃4 ⊠ η̃ L(s)3
∏
i6=j L(s, χ̃iχ̃

−1
j ) 0

(II) (5.18) σ̃0 ∈ Irrsc(GL2)
L(s)2L(s, σ̃0,Ad)L(s, σ̃0 × χ̃

−1
1 )L(s, σ̃∨

0 × χ̃1)
L(s, σ̃0 × χ̃

−1
2 )L(s, σ̃∨

0 × χ̃2)L(s, χ̃1χ̃
−1
2 )L(s, χ̃2χ̃

−1
1 )

0

(II) (5.18) σ̃0 = StGL2
⊗ χ̃

L(s)2L(s+ 1)L(s+ 1, χ̃χ̃−1
1 )L(s+ 1, χ̃χ̃−1

2 )
L(s, χ̃−1χ̃1)L(s, χ̃

−1χ̃2)L(s, χ̃1χ̃
−1
2 )L(s, χ̃2χ̃

−1
1 )

0

(III) (5.22) σ̃0 ∈ Irrsc(GL3) L(s)L(s, σ̃0,Ad)L(s, σ̃0 × χ̃
−1)L(s, σ̃∨

0 × χ̃) 0

(III) (5.22) σ̃0 = StGL3
⊗ χ̃0 L(s)L(s+ 1)L(s+ 2)L(s+ 1, χ̃χ̃−1

0 )L(s+ 1, χ̃−1χ̃0) 0

(IV) (5.26) σ̃i ∈ Irrsc(GL2)
L(s)L(s, σ̃1,Ad)L(s, σ̃2,Ad)
L(s, σ̃1 × σ̃

∨
2 )L(s, σ̃

∨
1 × σ̃1)

0

(IV) (5.26) σ̃1 ∈ Irrsc(GL2), σ̃2 = StGL2
⊗ χ̃

L(s)L(s+ 1)L(s, σ̃1,Ad)
L(s+ 1

2 , σ̃
∨
1 × χ̃)L(s+

1
2 , σ̃1 × χ̃

−1)
0

(IV) (5.26) σ̃2 ∈ Irrsc(GL2), σ̃1 = StGL2
⊗ χ̃

L(s)L(s+ 1)L(s, σ̃2,Ad)
L(s+ 1

2 , σ̃
∨
2 × χ̃)L(s+

1
2 , σ̃2 × χ̃

−1)
0

(IV) (5.26) σ̃1 = StGL2
⊗ χ̃1σ̃2 = StGL2

⊗ χ̃2
L(s)L(s+ 1)2L(s, χ̃−1

1 χ̃2)L(s, χ̃1χ̃
−1
2 )

L(s+ 1, χ̃1χ̃
−1
2 )L(s+ 1, χ̃−1

1 χ̃2)
0

(V) (5.27) σ̃ = StGL4
⊗ χ̃ L(s+ 1)L(s+ 2)L(s+ 3) 0

(V) (5.28) σ̃ = ∆[ν1/2, ν−1/2], τ̃ ∈ Irrsc(GL2) L(s, τ̃ ,Ad)L(s, τ̃ × τ̃∨) 0

(A) (5.31)Q
(
[ν1/2χ̃], [ν−1/2χ̃], [χ̃3], [χ̃4]

) L(s− 1)L(s)3L(s+ 1)L(s, χ̃3χ̃
−1
4 )L(s, χ̃−1

3 χ̃4)
∏
i=3,4

(
L(s+ 1

2 , χ̃χ̃
−1
i )L(s− 1

2 , χ̃
−1χ̃i)

L(s− 1
2 , χ̃χ̃

−1
i )L(s+ 1

2 , χ̃
−1χ̃i)

)
≥ 1

(A) (5.32)Q
(
[νχ̃], [χ̃], [ν−1χ̃], [χ̃4]

) L(s− 2)L(s− 1)2L(s)3L(s+ 1)2L(s+ 2)∏
t=−1,0,1

(
L(s+ t, χ̃χ̃−1

4 )L(s+ t, χ̃−1χ̃4)
)

≥ 2

(A) (5.33)Q
(
[χ̃, νχ̃], [ν−1χ̃], [χ̃4]

) L(s− 2)L(s− 1)2L(s)2∏
t=−1,0

L(s+ t, χ̃χ̃−1
4 )

∏
t=−1,1

L(s+ t, χ̃−1χ̃4) ≥ 2

(A) (5.34)Q
(
[νχ̃], [χ̃, ν−1χ̃], [χ̃4]

) L(s− 1)L(s)2L(s+ 1)L(s+ 2)∏
t=0,1

L(s+ t, χ̃χ̃−1
4 )

∏
t=−1,1

L(s+ t, χ̃−1χ̃4) ≥ 1

(A) (5.35)Q
(
[ν3/2χ̃], [ν1/2χ̃], [ν−1/2χ̃], [ν−3/2χ̃]

) L(s− 3)L(s− 2)2L(s− 1)3L(s)3

L(s+ 1)3L(s+ 2)2L(s+ 3)
3

(A) (5.36)Q
(
[ν1/2χ̃, ν3/2χ̃], [ν−1/2χ̃], [ν−3/2χ̃]

)
L(s− 3)L(s− 2)L(s− 1)2L(s)2L(s+ 1)2L(s+ 2) 2

(A) (5.37)Q
(
[ν3/2χ̃], [ν−1/2χ̃, ν1/2χ̃], [ν−3/2χ̃]

)
L(s− 3)L(s− 2)L(s− 1)2L(s)2L(s+ 1)2L(s+ 2) 2

(A) (5.38)Q
(
[ν3/2χ̃], [ν1/2χ̃], [ν−3/2χ̃, ν−1/2χ̃]

)
L(s− 3)L(s− 2)L(s− 1)2L(s)2L(s+ 1)2L(s+ 2) 2

(A) (5.39)Q
(
[ν1/2χ̃, ν3/2χ̃], [ν−3/2χ̃, ν−1/2χ̃]

)
L(s− 3)L(s− 2)L(s− 1)2L(s)L(s+ 1)L(s+ 2) 2

(A) (5.40)Q
(
[ν−1/2χ̃, ν1/2χ̃, ν3/2χ̃], [ν−3/2χ̃]

)
L(s− 3)L(s− 2)L(s− 1)L(s)L(s+ 1) 1

(A) (5.41)Q
(
[ν3/2χ̃], [ν−3/2χ̃, ν−1/2χ̃, ν1/2χ̃]

)
L(s− 3)L(s− 2)L(s− 1)L(s)L(s+ 1) 1

(B) (5.45)
Q
(
[iGL2

B (η̃1 ⊠ η̃2)], [χ̃ν
1/2], [χ̃ν−1/2]

)
,

η̃1η̃
−1
2 6= ν±1

L(s− 1)L(s)3L(s+ 1)L(s, η̃1η̃
−1
2 )L(s, η̃−1

1 η̃2)∏
t=± 1

2

∏
i=1,2

(
L(s+ t, η̃iχ̃

−1)L(s+ t, η̃−1
i χ̃)

)
≥ 1

(B) (5.45) (others covered in (A))
(C) (5.48) (covered in (A) and (B))

(D) (5.49) with σ̃ ∈ Irrsc(GL2)
L(s− 1)L(s)2L(s+ 1)L(s, σ,Ad)∏
t=± 1

2

(
L(s+ t, σ × χ−1)L(s+ t, σ∨ × χ)

)
1

(D) (5.49) with σ̃ = StGL2
⊗ η

L(s− 1)L(s)2L(s+ 1)2

L(s, χη−1)L(s+ 1, χη−1)L(s+ 1, χ−1η)L(s, χ−1η)
≥ 1

(D) (5.49) (others covered in (A))
(E) (5.50) (covered in (A))
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