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Main points of presentation

•  The meiotic cell cycle and the SCF complexes

•  Meiotic defects in ask1-1 and discrete spindle elongation

• Slow diffusion underlies rhythmic microtubule assembly

• Short reaction pauses and a negative feedback loop as sufficient 
conditions for generating sustained long oscillations in biological 
systems



Meiosis vs. mitosis
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• SCFs (Skp1-Cullin-F-box protein) are ubiquitin ligases.

• ASK1 is ARABIDOPSIS SKP1-LIKE1, the major homolog of SKP1. 

P

SCFs control degradation of specific proteins



ask1-1 has multiple defects
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ask1-1 is asynaptic with many electron-dense foci



Processes affected by the ask1-1 mutation



Chromosome spread
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WT ask1-1

Meiocytes at pachytene (WT) or comparable stage (ask1-1)

Processes affected by the ask1-1 mutation



ASK1-GFP signal in meiocytes at different stages 
of male meiosis 



Summary of meiotic defects in ask1-1

• Male meiotic products consist of 2-7 spores.

• Chromosomes entangle, non-disjoin, and are stretched by the 
anaphase-I spindle.

• Chromosomes are asynaptic in prophase I. 

• Anaphase  spindles can be either longer or shorter than those 
of the WT.

• Prophase-I meiocytes likely contain unresolved recombination 
intermediates.



Similar meiotic defects have been found in fission yeast only 
recently by Okamoto et al. (2012), except that the pairing of 
homologous chromosomes have not been explored in yeast.

The similarities between Arabidopsis and fission yeast skp1 
mutants suggest the existence of a conserved pathway involving 
Skp1 in meiosis because Skp1 is not expected to directly 
regulate recombination and chromosome behavior.

But the above investigation took an unexpected turn…   



Spindle elongation in ask1-1 male 
meiosis I



Spindle elongation in ask1-1 male 
meiosis II



Distribution of WT and ask1-1 spindle 
lengths in meiosis I and meiosis II

WT

ask1-1



Spindle length differences in four other organisms

Organism   Length   Length Difference

S. cerevisiae (Winey et al., 1995) L1 0.7 ± 0.1 (n = 4)  L2 - L1 = 0.7
L2 1.4 ± 0.1 (n = 6)

F. capucina (Tippit et al., 1978) L1 1.3 ± 0.1 (n = 2) L2 - L1 = 1.3
L2 2.6 ± 0.1 (n = 25)

Slime mold (Moens, 1976)  L1 2.1 ± 0.1 (n = 3)  L2 - L1 = 2.8
L2 4.9 ± 0.3 (n = 6)

Rat kangaroo (PtK1 cells;  L1 13.2 (n = 5) L2 - L1 = 4.2
Armstrong and Snyder, 1989) L2 17.4 (n = 5)
   
Rat kangaroo (PtK1 cells; L1 12.2 (n = 6) L2 - L1 = 4.2
Snyder et al., 1986)   L2 16.4 (n = 6)
    



Spindles seem to elongate by multiples of 0.7 µm, but why?



Years passed without any progress as to the answer



Discrete lengths of GTP-tubulin 
segments on human microtubules

(Dimitrov et al., Science, 322: 1353-56, 2008)



A model for discrete spindle elongation



Years passed, still no satisfying answer to the question



Kerssemakers et al., Assembly dynamics of microtubules at 
molecular resolution, Nature, 442: 709-712, 2006.

Schek et al., Microtubule assembly dynamics at the nanoscale, 
Current Biology, 17: 1445-1455, 2007.

Until I saw the following papers



(Kerssemakers, et al., 2006)



td = tf + ts

td ≈ x2/2D



Average durations (in second) of tf, ts, and td in in vitro microtubule 
assembly 

Mean tf  ± 
standard error  

Mean ts ± 
standard error

Mean td  Seed for 
microtubule 
assembly 

0.55 ± 0.09
(n = 5)

3.85 ± 0.57
(n = 17)

4.4 Axoneme - 
XMAP215 

0.63 ± 0.11
(n = 6)

2.33 ± 0.37
(n = 11)

2.96 Axoneme + 
XMAP215 

0.44 ± 0.04
(n = 8)

0.54 ± 0.08
(n = 6)

0.98 Microtubule
fragments 



The flux of tubulin during the fast growth period can be 
expressed as the following according to Fick’s First Law

J = -D(∂C/∂X) = -D[(C0 – Cc)/L]  

J-xmap215 = -D[(C0 - Cc-xmap215)/L-xmap215] = [39/(6.022x1023)]/(atf-xamp215)
 
J+xmap215 = -D[(C0 - Cc+xmap215)/L+xmap215] = [78/(6.022x1023)]/(atf+xamp215) 

The calculated td+xmap215/ td-xmap215 = x+xmap2152/x-xmap2152 = 0.5   

For comparison, the experimental td+xmap215/ td-xmap215 =  2.96/4.4 = 0.67 



By the same principle

JSchek = -DSchek(5 - 2)/LSchek = [39/(6.022x1023)]/(atfSchek)

It was then calculated that DSchek ≈ 2.8D-xmap215

According to the descriptions of the two papers, it is clear that 
DSchek > D-xmap215



• The previous calculations support the idea that repetitions of a 
temporary disruption of the tubulin gradient followed by 
reestablishment of the gradient manifest into a rhythmic microtubule 
assembly behavior.

• A hemisphere with a radius R of the length of the average diffusion 
distance during the time of tf and the assembly site as the center is 
deemed a relevant space in which the disruption takes place.

Then, if the tubulin concentration within the hemisphere is reduced to the tubulin 
critical concentration, the number of consumed tubulin dimers, N, is

N = (2/3)πR3[(Cedge - Ccenter)/2](6.022x1023) ≈ (2/3)πR3[(R/x)(C0 - Cc)/2](6.022x1023),

or N ≈ 2.96(6.022x1023)tf2td-1/2D3/2(C0 - Cc) 



Calculated                                                                    Experimental
(assuming D = 0.07 µm2/s in Kerssemakers et al. 
and D = 0.07x2.8 µm2/s in Schek et al.)  

N-xmap215 ≈ 40      N-xmap215 ≈ 39 
  
N+xmap215 ≈ 80      N+xmap215 ≈ 78 

NSchek ≈ 91      NSchek ≈ 39



Conclusions

• This study demonstrates that a small diffusion 
coefficient of a reactant can lead to rhythmic 
behavior of the reaction in a heterogeneous reaction 
system.

• This study also suggests that chemical reactions in 
biological systems in general are discrete. 



How discrete chemical reactions affect 
biological system behavior?

To answer the above question, we examined how periodic 
short pauses (several seconds/pause) affect the behavior 
of a non-linear system with a negative feedback loop 
described by the following ordinary differential equations.
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Equation for reactions with short pauses



The system undergo sustained oscillations 
with periods in hours



Further expansion of the model may 
produce a simple unified model that can 
account for different types of 
oscillations with a range of periods. 
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