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Main points of presentation

•  Discrete spindle elongation in the anaphase of the cell cycle 

•  Slow diffusion of tubulins and rhythmic microtubule assembly

• Short reaction pauses, negative feedback, and long sustained long 
oscillations





Spindle elongation in ask1-1 male meiosis I



Distribution of WT and ask1-1 spindle lengths in 
meiosis I and meiosis II

WT

ask1-1



Spindle length differences in four other organisms

Organism   Length (µm)  Length Difference (µm)

S. cerevisiae (Winey et al., 1995) L1 0.7 ± 0.1 (n = 4)  L2 - L1 = 0.7
L2 1.4 ± 0.1 (n = 6)

F. capucina (Tippit et al., 1978) L1 1.3 ± 0.1 (n = 2) L2 - L1 = 1.3
L2 2.6 ± 0.1 (n = 25)

Slime mold (Moens, 1976) L1 2.1 ± 0.1 (n = 3)  L2 - L1 = 2.8
L2 4.9 ± 0.3 (n = 6)

Rat kangaroo (PtK1 cells; L1 13.2 (n = 5) L2 - L1 = 4.2
Armstrong and Snyder, 1989) L2 17.4 (n = 5)
   
Rat kangaroo (PtK1 cells; L1 12.2 (n = 6) L2 - L1 = 4.2
Snyder et al., 1986)  L2 16.4 (n = 6)   



Spindles seem to elongate by multiples of 0.7 µm, but why?



Discrete lengths of GTP-tubulin segments on human microtubules

(Dimitrov et al., Science, 322: 1353-56, 2008)



A model for discrete spindle elongation



Kerssemakers et al., Assembly dynamics of microtubules at 
molecular resolution, Nature, 442: 709-712, 2006.

Schek et al., Microtubule assembly dynamics at the nanoscale, 
Current Biology, 17: 1445-1455, 2007.



(Kerssemakers, et al., Nature, 442: 709-712, 2006)(Schek et al., Current Biology, 17: 1445-1455, 2007)



td = tf + ts

td ≈ x2/2D



Average durations (in second) of tf, ts, and td in in vitro microtubule 
assembly 

Mean tf  ± 
standard error  

Mean ts ± 
standard error

Mean td  Seed for 
microtubule 
assembly 

0.55 ± 0.09
(n = 5)

3.85 ± 0.57
(n = 17)

4.4 Axoneme - 
XMAP215 

0.63 ± 0.11
(n = 6)

2.33 ± 0.37
(n = 11)

2.96 Axoneme + 
XMAP215 

0.44 ± 0.04
(n = 8)

0.54 ± 0.08
(n = 6)

0.98 Microtubule
fragments 



The flux of tubulin during the fast growth period can be 
expressed as the following according to Fick’s First Law

J = -D(∂C/∂X) = -D[(C0 – Cc)/L]  

J-xmap215 = -D[(C0 - Cc-xmap215)/L-xmap215] = [39/(6.022x1023)]/(atf-xamp215)
 
J+xmap215 = -D[(C0 - Cc+xmap215)/L+xmap215] = [78/(6.022x1023)]/(atf+xamp215) 

The calculated td+xmap215/ td-xmap215 = x+xmap2152/x-xmap2152 = 0.5   

For comparison, the experimental td+xmap215/ td-xmap215 =  2.96/4.4 = 0.67 



By the same principle

JSchek = -DSchek(5 - 2)/LSchek = [39/(6.022x1023)]/(atfSchek)

It was then calculated that DSchek ≈ 2.8D-xmap215

According to the descriptions of the two papers, it is clear that 
DSchek > D-xmap215



• The previous calculations support the idea that repetitions of a 
temporary disruption of the tubulin gradient followed by 
reestablishment of the gradient manifest into a rhythmic microtubule 
assembly behavior.

• A hemisphere with a radius R of the length of the average diffusion 
distance during the time of tf and the assembly site as the center is 
deemed a relevant space in which the disruption takes place.

Then, if the tubulin concentration within the hemisphere is reduced to the tubulin 
critical concentration, the number of consumed tubulin dimers, N, is

N = (2/3)πR3[(Cedge - Ccenter)/2](6.022x1023) ≈ (2/3)πR3[(R/x)(C0 - Cc)/2](6.022x1023),

or N ≈ 2.96(6.022x1023)tf2td-1/2D3/2(C0 - Cc) 



Calculated                                                                    Experimental
(assuming D = 0.07 µm2/s in Kerssemakers et al. 
and D = 0.07x2.8 µm2/s in Schek et al.)  

N-xmap215 ≈ 40      N-xmap215 ≈ 39 
  
N+xmap215 ≈ 80      N+xmap215 ≈ 78 

NSchek ≈ 91      NSchek ≈ 39



Lu et al., Science, 1998, 282: 1877-1882

Single-molecule enzymatic dynamics: cholesterol oxidase catalyzes cholesterol oxidation



Protein conformational dynamics probed by single-molecule electron transfer

Yang et al., Science 302, 262–266 



Conclusions

• A small diffusion coefficient of a reactant can lead to 
rhythmic behavior of the reaction in a heterogeneous 
reaction system.

• This rhythmic behavior caused by slow diffusion of 
reactants is a common phenomenon in chemical 
reactions. 



How discrete chemical reactions affect biological system 
behavior?

To answer the above question, we examined how periodic short 
pauses (several seconds) affect the behavior of a non-linear system 
with a negative feedback loop described by the following ordinary 
differential equations.
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Equation for reactions with short pauses

𝑃 𝑡 =
𝜃	 if 𝑡	mod	𝑡! > 𝑡! − 𝑡/

0
(
	 if	 𝑡	mod	𝑡! = 0	 or	 𝑡	mod	𝑡! = 𝑡! − 𝑡/	

0 otherwise

 



The system undergo sustained oscillations 
with periods in hours
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Relative numerical tolerance = 10-3, and 
absolute numerical tolerance = 10-6

Relative numerical tolerance = 10-5, and 
absolute numerical tolerance = 10-8.

Relative numerical tolerance = 10-10, and 
absolute numerical tolerance = 10-12.

When chemical concentration 
values are expressed in ng/L 
(likely being reasonably large 
absolute numerical values in 
in vivo biochemical reactions), 
the relative numerical 
tolerance value can be 
reasonably set at or around 
10-4 in simulation of 
biochemical reactions, 

410 -. 



Concluding remarks

• A biochemical system of a negative feedback loop with diffusion-based 
seconds-long periodic pauses exhibits sustained hours-long oscillations, 
which resembles actual oscillations such as ultradian rhythms in biological 
systems.

•  Further expansion of the model may produce a unified model that can 
account for different types of oscillations with a range of periods. 

• Rhythms in biochemical reactions are an inherent property of living systems, 
i.e., such rhythms cannot be abolished (although can be altered) as long as 
the organism or cell is living (a negative feedback loop is intact).

• Increasingly slow diffusion in the primordial soup might be a critical factor in 
the origin of life.  
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