Yixing Wang and Ming Yang (ming.yang@okstate.edu)

Predicting maternal auxin-signaling networks for seed dormancy regulation in Arabidopsis Department of Plant Biology, Ecology, and Evolution, Oklahoma State University, Stillwater, OK, USA

ABSTRACT

Auxin, like ABA, promotes seed dormancy, but how auxin promotes seed dormancy is not well understood. In studying seed dormancy regulation, we found that AUXIN SIGNALING F-BOX PROTEIN 1 (AFB1) and 5 maternally promoted seed dormancy and AFB1 had a stronger effect than AFB5. AFB1 and 5 were expressed in the funiculus and the chalazal seed coat at the mature embryo stage, and AFB1, not AFB5, was also transiently expressed in a small chalazal seed coat region surrounding the remnant funiculus during seed imbibition. Analysis of publically available datasets for genes expressed in the funiculus and seed coat at the mature embryo stage allowed the assignment of the six AFBs into two groups: TIR1, AFB1 and 4 as the first group with higher expression levels in the funiculus than in the chalazal seed coat, and AFB2, 3 and 5 as the second group with higher expression levels in the chalazal seed coat than in the funiculus. It was then assumed that auxin-upregulated and -downregulated genes associated with the first AFB group should be expressed at higher and lower levels in the funiculus than in the chalazal seed coat, respectively, and the reverse is assumed for those associated with the second AFB group. Three potential auxin-signaling networks including 30 genes were identified based on these assumptions and high linear correlation in expression within each group. These networks do not overlap in components and two-thirds of the genes are known or predicted to function in seed germination either positively or negatively. The presence of both positive and negative regulators in each of the networks is consistent with the plant's ability to either remain dormant or go into germination in response to environmental conditions. The identified components of the networks also suggest interactions of auxin with other hormones in seed dormancy regulation.

Introduction

Maintaining or breaking seed dormancy in appropriate environmental conditions is crucial to survival of plants. The molecular mechanism governing seed dormancy regulation is very complex as many proteins of diverse functions and multiple hormones have been reported to affect seed dormancy. In particular, the plant hormones abscisic acid (ABA) and auxin are well documented to play positive roles in seed dormancy regulation whereas gibberellins are known for inducing seed germination. In addition, a classical function of phytochrome photoreceptors is to promote seed germination. However, current understanding of seed dormancy regulation has not been established at the systems level. A systems-level understanding is especially relevant to seed dormancy regulation as seed dormancy and germination can be viewed as emergent properties of a complex system when responding to environmental conditions.

Results

Maternal AFB1 and AFB5 positively regulate seed dormancy

Table 1. T₂ Seed germination phenotypes and seedling sensitivity to IAA^{*}

	ζ σ π			
	Transgenic line	Seed germination	Sensitivity to IAA	
	2-2	Defective	More sensitive	
	2-3	Normal	Less sensitive	
	3-1	Defective	More sensitive	
	3-3	Defective	More sensitive	
	3-4	Normal	Normal	
	3-5	Defective	More sensitive	
	4-2	Defective	More sensitive	
	5-1	Defective	More sensitive	
	5-6	Normal	Normal	
	5-7	Normal	Less sensitive	
	6-1	Defective	More sensitive	
	6-2	Defective	More sensitive	
	6-3	Defective	More sensitive	
	6-4	Defective	More sensitive	
AFB5:AFB5	1-4	Normal	Less sensitive	
	1-5	Defective	More sensitive	
	2-7	Normal	Normal	
	3-3	Defective	More sensitive	
	4-5	Defective	More sensitive	

 *T_2 and Col-0 (control) seeds were planted on agar medium with 0.01 μ M IAA to assess their sensitivity to IAA. The sensitivity levels were based on the comparison of root lengths between the T₂ plants and the Col-O plants. Parallel experiments on agar medium without IAA were used to assess seed germination.

0 Col-0 afb1-3 afb1-5 afb5-5 afb5-6

Fig. 1. Seed germination phenotypes. A) T₂ and wild-type (Col-0) seeds. Three independent T₂ lines are shown for AFB1:AFB1 and AFB5:AFB5, respectively. B) F_1 and Col-0 seeds. The complete non-germination phenotype in some of the T_2 AFB1:AFB1 seeds indicated that the AFB1 transgene caused the seed dormancy phenotype in the maternal tissues. Reciprocal crosses in Fig. 1B also indicated that the AFB5 transgene promoted seed dormancy in the maternal tissues.

Fig. 2. Seed germination rates. A) Col-0 seeds after 72 hours on moist filter paper, showing the germination assay used in the investigation of seed germination rate. B) Germination rates of Col-0 and *afb1* and 5 mutants. Seeds of all mutant alleles germinated significantly faster than Col-0 seeds $(\geq 150 \text{ seeds were counted for each sample, n = 10, t-test, p < 0.05)}$

References

Belmonte MF et al. Comprehensive developmental profiles of gene activity in regions and subregions of the Arabidopsis seed. Proc Natl Acad Sci USA, 2013, 110:E435–E444. Khan D et al. Transcriptome atlas of the Arabidopsis funiculus--a study of maternal seed subregions. Plant J, 2015, 82:41-53. Goda H et al. Comprehensive comparison of auxin-regulated and brassinosteroid-regulated genes in Arabidopsis. Plant Physiol, 2004, 134:1555-73.

Fig. 3. GUS staining patterns in dehisced siliques and postharvest seeds in AFB1:GUS and AFB5:GUS lines. (A-F) AFB1:GUS. (G-J) AFB5:GUS. A) T₁ silique at dehiscence. B) An abscised T2 seed in A), showing GUS signal in the outer part of the hilum (arrow). C) Postharvest dry T₂ seeds directly placed in the GUS staining solution. D) A seed in C), showing the GUS signal in the seed coat region surrounding the hilum (thick arrow). The remaining funiculus was GUS-signal-free (thin arrow). E) T2 seed that was imbibed on an MS agar medium for six hours before GUS staining. F) T2 seed that was imbibed on an MS agar medium for 10 hours before GUS staining solution. G) and H) GUS signals in a dehisced T₁ silique and a T₂ seed from the silique, respectively. I) and J) Postharvest dry seeds were subjected to the same treatment as in C) and D). In summary, AFB1 and AFB5 were expressed in the vasculature and other cells in the fruit wall, the funiculus, and the hilum continuous with the funiculus. AFB1, not AFB5, was also transiently expressed in the chalazal seed coat surrounding the hilum in the early phase of imbibition. Scale bar in (I) for (A), (C), (G) and (I) = 400 μ m, and scale bar in (J) for the remaining images = 50 μ m.

- (Goda et al., 2004)
- should exhibit opposite trends
- trends

Predicting three auxin signaling networks in seed dormancy regulation

Following the above strategy, in silico searches uncovered that AFB1, 4, and TIR1 are expressed in a downward trend whereas AFB2, 3, and 5 in an upward trend from FUN to CZSC. 118 genes, either down- or upregulated by auxin, were also identified, and were assigned into four groups based on the downward or upward expression trend from FUN to CZSC. Among the four groups, one with the downward expression trend and another with the upward expression trend were kept for subsequent analysis because they contained genes with well-known functions in seed dormancy or germination processes. To conduct linear correlation analysis of transcript values between gene pairs, a third data point, mRNA values in the distal half of the seed coat (SC) were first normalized (reduced) by a factor of 26.8 (the ratio of volume of SC to volume of CZSC, and assuming volume of CZSC ≈ volume of FUN). Linear correlation analysis using the three data points of FUN, CZSC, and SC further identified three sets of genes with high correlation coefficient values ($R^2 \ge 0.92$) that each is enriched for seed dormancy- or germination-related genes (Table 2). The two AFB groups also had high linear correlation coefficients between the members of the same group ($R^2 \ge 0.92$).

AFB1-network A, downregulated by auxin, upward trend from FUN to CZSC			AFB5-network, upregulated by auxin, upward t		
Gene ID	Function		Gene ID	Function	
At2G28470 ¹	BGAL8, β-galactosidase		At5g57560 ⁴	ATXTH22, xyloglucan endotransglu	
At4g26320 ¹	AGP13, arabinogalactan protein		At5g64100 ²	PRX69, Class III peroxidase	
At4g33720 ⁴	ATCAPE3, cysteine-rich secretory proteins		At1g51170 ⁴	Protein kinase, interacts with the t	
At2g40330 ²	PYL6, regulatory component of ABA receptor ATFUT5, fucosyltransferase		At4g30080 ²	ARF16, AUXIN RESPONSE FACTOR	
At2g15370 ⁴			At1g19050 ¹	ARR7, regulator in response to cyte	
At5g42180 ³	PRX64, peroxidase		At4g37900 ²	ATGRDP2, contains DUF1399 doma	
At1g09090 ²	ATRBOHB, respiratory burst oxidase homolog		At3g13380 ⁴	BRL3, brassinosteroid receptor	
AFB1-network B, downregulated by auxin, upward trend from FUN to CZSC			At2g34080 ¹	Cysteine proteinase	
Gene ID	Function		At4g03140 ²	NAD(P)-binding Rossmann-fold sup	
At4g20460 ²	NAD(P)-binding Rossmann-fold superfamily protein		At2g28350 ²	ARF10, AUXIN RESPONSE FACTOR	
At4g35060 ⁴	ATHMP39, heavy metal transport/detoxification		At2g22420 ³	PRX17, cell wall-localized class III p	
At4g40010 ²	SNRK2-7, kinase activated by salt and mannitol osmotic stress.		At1g23060 ⁴	MDP40, MICROTUBULE DESTABILIZ	
At4g17340 ¹	TIP2;2, aquaporin		At1g22880 ¹	CELLULASE 5	
At1g15380 ³	GLYI4, ABA and JA crosstalk		At2g23060 ⁴ Acyl-CoA N-acyltransferase		
At2g44790 ²	UCC2, suppressor of seed germination via PIF1-miR408 Caffeoyl-coenzyme A O-methyltransferase		¹ Known or predicted to promote seed germinat or predicted to promote seed dormancy accord		
At4g26220 ⁴					
At1g05260 ³	PER3, cold-inducible cationic peroxidase	-inducible cationic peroxidase		either positively or negatively affect seed dorm	
At1g78090 ⁴	homologous to trehalose-6-phosphate phosphatases		affect seed dormancy in this investigation.		

Expression patterns of AFB1 and 5 in mature fruit and seeds

Strategy for identifying auxin signaling networks in seed dormancy regulation • Transcriptomic data used: 1) Genes expressed in the funiculus (FUN), chalazal seed coat (CZSC), and the distal half of the seed coat (SC) at the mature seed stage (Belmonte et al., 2013; Khan et al., 2015). 2) Auxin-up- and –downregulate genes

• Identifying auxin-regulated genes in FUN and CZSC using the above transcriptomic data

• Comparing expression trends of AFBs from FUN to CZSC with those identified above: Auxin-upregulated genes and their associated AFBs should follow the same expression trends while auxin-downregulated genes and their associated AFBs

• Assigning identified genes into groups based on their associated AFBs, up- or downregulation by auxin, and expression

Table 2. Three predicted auxin signaling networks for seed dormancy regulation

Conclusions

• Experimental evidence supports or suggests two-thirds of the genes in the networks function in seed dormancy/germination • The remaining one-third of the genes may also function in seed dormancy/germination The networks are inherently flexible as each of them consists of both positive and negative factors for seed germination

trend from FUN to CZSC cosylase/hydrolase ranscription factor ATS okinin ain and RNA binding motif perfamily peroxidase ZING PROTEIN 40

tion according to others' work. ²Known cording to others' work. ³Predicted to nancy according to others. ⁴Predicted to