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Abstract 

Self-integration requires a system to be self-aware and self-protecting of its functionality and 

communication processes to mitigate interference in accomplishing its goals. Incorporating 

self-protection into a framework for reasoning about compliance with critical requirements is a 

major challenge when the system’s operational environment may have uncertainties resulting in 

runtime changes. The reasoning should be over a range of impacts and tradeoffs in order for the 

system to immediately address an issue, even if only partially or imperfectly. Assuming that 

critical requirements can be formally specified and embedded as part of system self-awareness, 

runtime verification often involves extensive on-board resources and state explosion, with 

minimal explanation of results. Model-checking partially mitigates runtime verification issues 

by abstracting the system operations and architecture. However, validating the consistency of a 

model given a runtime change is generally performed external to the system and translated back 

to the operational environment, which can be inefficient. 

This paper focuses on codifying and embedding verification awareness into a system. 

Verification awareness is a type of self-awareness related to reasoning about compliance with 

critical properties at runtime when a system adaptation is needed. The premise is that an 

adaptation that interferes with a design-time proof process for requirement compliance 

increases the risk that the original proof process cannot be reused. The greater the risk to 

limiting proof process reuse, the higher the probability that the requirement would be violated 

by the adaptation. The application of Rice’s 1953 theorem to this domain indicates that 

determining whether a given adaptation inherently inhibits proof reuse is undecidable, 

suggesting the heuristic, comparative approach based on proof meta-data that is part of our 

approach. To demonstrate our deployment of verification awareness, we predefine four 

adaptations that are all available to three distinct wearable simulations (stress, insulin delivery, 

and hearables). We capture meta-data from applying automated theorem proving to wearable 

requirements and assess the risk among the four adaptations for limiting the proof process reuse 

for each of their requirements. The results show that the adaptations affect proof process reuse 

differently on each wearable. We evaluate our reasoning framework by embedding checkpoints 

on requirement compliance within the wearable code and log the execution trace of each 

adaptation. The logs confirm that the adaptation selected by each wearable with the lowest risk 

of inhibiting proof process reuse for its requirements also causes the least number of 

requirement failures in execution. 
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1. Introduction 

Self-improving system integration (SISSY) has become a prominent approach for 

effective self-adaptation where heterogeneous systems are interconnected [1]. Self-integration 

considers mutual influences among the actions, trustworthiness, performance, and 

collaboration of the interconnected subsystems. Integration often changes the system 

structure, affecting each subsystem’s operational goals and exposing potential security 

vulnerabilities [2, 3]. To self-integrate systems with adequate results, each individual 

integrated system must be self-aware. The self-awareness we advocate is verification 

awareness. This form of awareness focuses system monitoring of and reaction to its own 

requirements compliance processes if it must adapt to integrate with another system or 

improve interaction with a new environment. With verification awareness, systems can 

manage their requirements compliance locally, rather than rely on global controls to manage 

them across an integrated system. Such higher-level controls have been shown to become 

unstable as a distributed system grows more complex, which limits the scalability of the 

integrated system [4]. 

When a system prepares for self-integration, it may incorporate one of many forms of self-

awareness [5].  By doing so, it can adapt its functionality and communication processes while 

still protecting itself. For these actions, the system must be able to house and access 

embedded information regarding its processes, architecture, and critical requirements. It must 

allow for reasoning about uncertainty in its environment and enable technology that can 

assess the risk of an adaptation against presented alternatives prior to performing a runtime 

change. The need for these base capabilities leads to the recognition that maintaining the 

formal verification of a system’s compliance with critical requirements is challenging. The 

system’s operational environment may have uncertainties resulting in runtime changes that 

could violate requirements. Runtime verification (RV) can provide an effective solution when 

a system cannot be assured by conventional means. RV involves a process of formalizing a 

system as a set of specifications with observable inputs that support traceability of the system 

state [6].  However, runtime verification suffers when the verification framework is not fault-

tolerant, the system has constrained computational resources, or state explosion occurs. 

Model-checking partially mitigates runtime verification challenges by representing the 

system abstractly, but performs external, not embedded, validation of the model consistency 

given an adaptation [7]. 

Runtime and design time verification can be supported by compositional analysis, which 

employs various techniques, such as decomposition [8, 9], process algebras [10], labeled 

transition systems, reachability analysis [11], and refactoring [12, 13], to address state space 

concerns and the scalability of formal methods [14]. The essential strategy of compositional 

analysis is to model the target system as a hierarchy of system specifications, where each 

specification can be verified by some composition of verified specifications that exist lower 

in the hierarchy. The lowest level of the hierarchy is comprised of system specifications that 

can feasibly be verified using formal methods. In this way, compositional analysis can 

address state space concerns by identifying the program states associated with specifications 

that have already been verified when applied to specifications that exist higher in the 

hierarchy. In practice, compositional analysis must often be applied to formal models of 

system behavior since source code does not neatly fit into such a hierarchy. 

Runtime adaptation requires reasoning over a range of impacts and tradeoffs in order for 

the system to immediately address an issue. It is a significant research challenge to 

investigate how a model can be updated to remain effective at runtime as adaptations take 



 

place [15]. Self-reflection [16] includes self-modeling, analysis, and decision processes that 

incorporate system integration status. One of the research challenges associated with self-

reflection is the consistency and results validation of the current model. As integration into a 

larger system changes a local system’s structure and/or functionality, reusing the prior model 

may no longer be valid. Other approaches that support runtime verification for self-

integration do not have a framework that includes protocols, formats, and interfaces to 

provide strong guarantees that the required parts of a system model are maintained [17, 18, 

19]. 

Verification awareness is a type of self-awareness directly related to system knowledge 

regarding its requirements compliance. The assumption is that adaptive systems have critical 

properties that have been formally proven at design time [20]. A runtime adaptation can alter 

one or more state variables at a point in the system code that could affect its scope or 

allowable value range. Doing so can interfere with the process and structure of the code 

analysis that was performed during the proof of a critical requirement. The interference 

constitutes an increased risk that the original, design time, verification (proof) process cannot 

be reused. The greater the risk of inhibiting proof process reuse, the higher the probability 

that a new proof process would be needed for the adaptive system to prove its compliance 

with a requirement. Needing an alternate proof process or strategy increases the risk that the 

requirement would be violated by the adaptation. Thus, a change to a particular state variable 

constitutes a verification concern that should be part of the systems’ verification awareness 

across its critical requirements. The impact of that change should be measurable for the 

system to reason over an adaptation’s viability at runtime. 

In this paper, we extend our adaptation assessment framework [21] to embed verification 

awareness into a target self-adaptive system (SAS). We express critical safety and liveness 

properties in Linear Temporal Logic (LTL) [22] and prove them against their code using the 

KIV theorem prover [23]. We apply compositional analysis using a combination of 

decomposition and refactoring techniques to address state space concerns within the proof 

process. In addition, we demonstrate how decomposition can be applied to systems with LTL 

properties through the introduction of temporal contract propositions (TCPs) and split 

temporal contract propositions (STCPs). We devise heuristic rules to capture the meta-data 

that defines the structure of the proof process, such as state variables and state transitions that 

directly impact the requirement verification. This meta-data and system architecture are 

codified into an embedded Colored Petri Net (CPN) [24]. When runtime changes are needed, 

the CPN is executed by the system to calculate the number of impacted places in the proof 

process and the density of that impact by the adaptation. Risk assessment is performed on the 

CPN output among potential adaptations across all critical requirements to determine which 

among them provides the best opportunity for proof reuse. The application of Rice’s theorem 

[25] to this domain indicates that determining whether a given adaptation inherently inhibits 

proof reuse is undecidable, suggesting a heuristic, comparative approach based on proof 

process meta-data is a viable solution. 

We target an experimental testbed of heterogeneous, communicating wearable simulations 

(stress, insulin delivery, and hearables) on Raspberry Pi 3’s within a personal fog [26], in 

which runtime verification and model checking would be too resource intensive. We 

predefine four adaptations. We apply a KIV proof to each wearable requirement and deploy 

the CPNs within each wearable to assess the risk among the potential adaptations. The results 

show that adaptations affect proof process reuse for wearable requirements differently. We 

separately evaluate the results by embedding requirement validation checkpoints into the 

wearable code and logging the execution trace of each adaptation. The logs confirm that the 

adaptation selected by each wearable during the risk assessment process also causes the least 



 

number of requirement failures, which validates our approach to making the wearable 

verification aware. 

The paper is structured as follows. Section 2 outlines the research on self-adaptation, self-

awareness, runtime verification, and model checking. Section 3 discusses the wearable 

testbed that we use to employ verification awareness. Section 4 details the KIV proof 

strategies that allow for extracting proof process meta-data. These strategies include the 

compositional analysis techniques that use the introduced contract propositions to address 

state space concerns and the heuristic rules to direct the meta-data extraction. The 

methodology is applied to the testbed. Section 5 overviews the adaptation risk assessment 

process. Section 6 demonstrates how our proof process methodology can be applied to other 

theorem provers, evaluates the execution of adaptations within the testbed against the results 

of the risk assessment process, and provides a comparison of our adaptation assessment 

framework to the Rainbow framework. Section 7 provides discussion and concludes the 

paper. 

 

2. Background and related work 

A self-adaptive system operates in a dynamic environment and is expected to adapt its 

behavior automatically in response to situational changes to improve system reliability [27]. 

The reliability of a self-adaptive system refers to the system’s resiliency to maintain 

compliance with requirements within a dynamic environment [28, 29]. This dynamism 

demands increased attention when considering SISSY initiatives with respect to the 

adaptation of self-integrating systems [1]. For effective system integration, incorporating self-

awareness is necessary to assess integration status from the perspective of a system’s relation 

to other systems and their social standing [2, 16]. Incorporating a form of self-awareness 

within the system is necessary to recognize the operational context for the change and 

reasoning needed regarding the choice of adaptation direction [17, 30]. Key issues associated 

with incorporating self-awareness into a system to allow for dynamic adaptation include 1) 

understanding the minimal amount of information that is required, 2) efficiently analyzing the 

information to produce actionable outcomes, and 3) enabling appropriate adaptation 

mechanisms to change the system’s functionality, including runtime changes [16, 31]. 

Changes to a system’s functionality can cause the system to no longer comply with certain 

requirements. This compliance interference may be necessary and acceptable in certain 

contexts. However, as part of the system’s self-awareness, it should know the extent of its 

ability to maintain compliance, including where and how an adaptation impacts that 

compliance. Runtime verification is one approach to assess requirements compliance. System 

requirements are expressed using unambiguous specification languages, such as LTL or 

Computational Tree Logic (CTL) [22, 32]. These formal specifications are verified against 

runtime changes. Performing runtime verification for distributed systems in an interactive 

environment is challenging since each subsystem has local and global requirements [33]. 

Deriving specifications from requirements, precisely formalizing properties, and observing 

the behaviors that have changes are one of the RV’s principal engineering challenges [6]. 

Moreover, a change can have a different impact on each system due to their dynamic 

characteristics and asynchronous computations. Network latency, non-deterministic 

behaviors, and independent failures are also involved in distributed systems’ life cycle. 

Traditional RV assumes centralized computation, making it difficult to address a wide range 

of adaptation scenarios. 

To address state space concerns, such as state space explosion, with traditional RV and 

design-time verification methods, authors can employ compositional analysis [14]. Clarke et 



 

al. [8] apply decomposition to systems composed of many parallel threads to verify temporal 

properties in CTL. More recently, Cho et al. [9] implement BLITZ, which employs bounded 

model checking for decomposition to detect bugs in systems with over 100,000 lines of code. 

Yeh et al. [10] demonstrate how process algebras can be used to overcome state space 

explosion for processes and structures that can be simplified using a congruence relation. The 

most significant efforts in reachability analysis have been made by Cheung et al. [11], who 

show how context constraints can be automatically deduced from pre-specified system 

conditions. In most cases, system engineering results in systems that are not easy to verify 

using traditional forms of decomposition. In such cases, Cheng et al. [12] provide refactoring 

techniques to produce adequate models of complex systems that can be verified using 

traditional decomposition. Their work has been incorporated into ARCATS [13], a tool that 

procedurally refactors models in Promela (a modeling language) and reduces state space 

using branching bisimulation minimization. 

Tamura et al. [34] define “viability zones” to separate out the concerns for verifying a 

requirement that can be impacted by changes and the set of viable states to be maintained so 

that system operation is not compromised. They examine those states at runtime to determine 

if a viability zone may be compromised by an adaptation. To formally verify a requirement at 

runtime, appropriate formalisms expressing system properties and their interactions within a 

dynamic environment are needed to assess system correctness. This process is very 

challenging for a self-adaptive system [6, 35, 18]. Filieri et al. [36] apply an offline 

verification process before the deployment of an adaptive system and verify adaptation 

changes at runtime by reusing the knowledge from that verification process. However, their 

approach requires having full adaptation knowledge prior to deployment, which may not be 

possible during a self-integration discovery and assertion process where adaptations can be 

configured and negotiated at runtime. We take a different approach by expressing how a 

requirement was proven and embedding that knowledge to determine the risk of inhibiting 

the original proof process. Thus, the adaptations can be configured and assessed at runtime. 

Model checking is another prominent approach for validating and monitoring runtime 

behavior that may mitigate some of the runtime verification challenges. Blair et al. [7] 

proposed a concept models@run.time that extends model-driven engineering (MDE) 

approaches to support runtime verification. A model is an abstraction of the system using a 

description of a transition system that reflects the system’s behavior and knowledge about its 

environment. Models are considered first-class entities for self-reflection and are employed as 

external entities in order to investigate the system’s status with respect to its requirements [7]. 

Challenges with the integration of models@run.time for SISSY initiatives have been 

investigated [17]. One such challenge is supporting distributed self-reflection so that 

attempted improvements to the integrated system do not result in performance degradation 

[37] or even expose security vulnerabilities [38]. Model-checking introduces some additional 

challenges that include issues with model capture from code, appropriate abstraction of the 

model for effective checking, and providing efficient verification algorithms for verifications 

[18, 19]. Code should be structured in such a way that model extraction and verification 

becomes easier to automate and reduces human overhead [18]. 

There are a variety of system models that have been used for runtime model checking. 

Probabilistic model checking is currently very popular since it can employ stochastic models 

to incorporate uncertainty. These models are used to predict the reliability of the adaptation 

changes and improve the planning phase by updating the impact vector used as decision 

criteria for adaptive plan selection. Filieri et al. [36] develop a mathematical framework for 

runtime probabilistic model checking. The framework focuses on reliability requirements and 

models as a form of Discrete Time Markov Chain (DTMC), which describes a system’s 



 

interaction profile and failure probabilities. The framework is effective for systems with a 

limited number of variability points but struggles with state explosion problem. PRISM [39], 

a model checking tool to construct and analyze probabilistic models, is applied for different 

types of probabilistic models but has limitations with handling large-scale and dynamic 

systems. 

Multiple researchers have proposed architectural-based model checking to provide general 

and reusable infrastructures with well-defined customization capabilities for self-adaptive 

systems in an effort to improve runtime verification [40, 41, 42, 45]. Garlan et al. [40] 

developed Rainbow, an architectural-based self-adaptation framework that uses a high-level 

architectural abstraction of the system as a model. The model manager accumulates system 

state information, updates the model, and assesses the system’s properties and constraints 

against the updated model. When a violation is detected, the model manager activates an 

adaptation manager to get to an appropriate model that satisfies the changes based on static, 

pre-defined strategic rules. However, the system abstraction for modeling and defining rules 

for model evolution are based on system-specific knowledge acquired during design time. 

For an interactive, dynamic environment, pre-defined rules are not workable. Thus, 

incorporating runtime changes into the model to perform model checking continues to be a 

challenge. 

Other researchers have pre-specified formal models of adaptive component expectations 

[43, 44]. Iftikhar et al. [43] implemented ActiveFORMS, a formal modeling approach for 

engineering self-adaptive systems. Formally expressed models and adaptation goals are pre-

defined and assessed against changes using model checking tool, Uppaal [43], to determine 

an optimal valid model for guaranteeing the behavior correctness. Adaptation options are 

chosen based on model verification results. These options are verified against the model 

offline, so the outcomes must be translated and transformed back into the system. In addition, 

it is possible that adaptations configured at runtime may not be aligned at all with the 

adaptive component expectations because their potential behavior was not accounted for. 

In prior work [38], we created a model for a risk-based assessment approach, which starts 

by formally expressing requirements and verifying them against the code by following the 

approach in [22]. To validate our proofs, we examined the outcomes of both manually 

proving properties and employing the KIV automated theorem prover [23]. Our prior work 

identified issues with automated theorem proving in the adaptive systems domain and 

extended our risk assessment process to security requirements [20]. Another method of 

runtime verification is to embed invariant checkpoints into code and perform runtime analysis 

on their performance to debug any errors that occur [45, 46]. We use this process as a way to 

validate our approach. However, it is not scalable for use in a deployed adaptive system. 

While ubiquitous, wearables continue to face challenges with battery life, 

reconfigurability, mobility, security, and analytics [47], security vulnerabilities have been in 

the news because of data sharing, GPS tracking, and issues with Bluetooth communication. 

The NIST guide to Bluetooth [48] lists 27 known Bluetooth vulnerabilities and 8 Bluetooth 

threats. Multiple researchers [49, 50, 51, 52] have analyzed security on wearables and have 

shown that personal information can be exposed. To experiment with mitigating these 

challenges, the concept of a personal fog and associated application has been introduced, in 

which the wearables exhibit the future of edge computing capabilities [53, 54]. The personal 

fog architecture allows for improved situational awareness for wearables by aggregating data 

for analytics, increasing wearable security through a learned suspicious behavior, and 

allowing for communication to devices external to their personal fog. 



 

 
Figure 1: A single instance of the personal fog architecture  

containing two wearable nodes and a base station. 

Figure 1 illustrates a personal fog architecture. A personal fog is defined as containing 

multiple, computationally powerful wearables at the edge with sensors and processing 

capabilities that connect to a base station owned by the wearable user [55]. The wearables 

and base station both act as personal fog nodes. The wearables in the personal fog can make 

local decisions based on their collected data. The base station is capable of analyzing the 

aggregated data of all connected wearables and communicating with the cloud to deliver 

information and analysis, as well as capture historical trends in the data. The personal fog 

also allows for intercommunication within the same fog [26]. This intercommunication 

allows edge nodes to form a personal distributed computing system and to provide 

additional computing power to each wearable. If needed, information can be shared between 

personal fogs, creating a large distribution of constantly moving compute nodes. 

 

3. Wearable testbeds 

To illustrate and evaluate our adaptation assessment framework for assessing adaptation 

risk, we use an experimental wearable testbed comprised of multiple personal fogs [26] that 

house the same application, allowing them to exchange security alerts. The testbed uses 

Raspberry Pi 3’s to emulate both base stations and three distinct wearables: hearables, heart-

rate variability monitors (HRVM), and insulin pumps [55].  The hearables simulation focuses 

on the expected capabilities of smart audio-streaming devices, such as the Here One [56], the 

Bragi Dash [57], and the Jabra Elite Sport [58] with requirements for streaming music and 

providing accelerometer data from a small earpiece. The HRVM simulation focuses on the 

stress monitoring capabilities of fitness-devices, such as the Garmin® fitness watches [59] 

that provide stress alerts as a requirement. The simulation of the insulin pump focuses on 

measuring a user’s blood-sugar level and administering insulin as specified. The requirements 

for each simulation are not meant to be comprehensive. Rather, they are used to illustrate 

different wearable behaviors that can affect adaptation. 



 

Each simulated wearable shares data and security status with its base station via a 

Bluetooth Low Energy (LE) connection. Figure 2 shows the architecture of the testbed. The 

Raspberry Pi 3’s in the center simulate the functionality of the base stations. The Raspberry 

Pi 3’s at the bottom, containing an additional screen for showing security status, simulate the 

wearables. A branch with a base station and its wearables forms a personal fog because, 

within the testbed, the simulated wearables have increased computational power for complex 

edge computing and, therefore, decision making. In addition, the base stations and their 

wearables all run the same security application that allows them to alert other personal fogs 

about potentially insecure environments. 

The dotted lines in the figure represent the potential communication connections between 

fogs based on the security application usage [26].  The testbed components are programmed 

in Python. The base stations wait for a connection request from a wearable to establish a 

connection and collect and log data. The wearables attempt to connect to their base station. 

For each wearable device, Bluetooth functionality, e.g., establishing connections and 

monitoring connections status, and the wearable’s primary functionality, e.g., operating as a 

hearable, are executed on parallel threads. This configuration provides a foundation for 

security experimentation and evaluation. 

 

Figure 2: Wearable security experimentation testbed shows two base stations, each with four 

wearables. Dotted lines represent possible communication between fogs. 

3.1. Targeting key wearable functionality 

The pseudocode algorithms for the hearables, HRVM, and insulin pump are shown in 

Algorithm 1, Algorithm 2, and Algorithm 3, respectively. Each algorithm is provided in the 

dynamic language required by the KIV theorem prover. Variable names have been 

shortened to format each algorithm for print. The three wearable algorithms as well as the 

checkpoints that we use to monitor system behavior are all implemented in Java. The base 

station code is implemented in Python. BuffChng is a local variable that indicates if the 

buffer has been altered while the wearable is connected to an authorized user. The potential 

alterations include sending data in the buffer, overwriting the buffer, and increasing the 

buffer’s capacity. This variable is later used during evaluation to determine if buffer 

integrity is being maintained in each iteration of the while loop. MaxCap is a variable that 

indicates the maximum physical capacity of a buffer and must be specified by the system 

implementer. 

Then, an infinite loop simulates the lifecycle of a wearable device operating on a stream of 



 

packets coming from its sensor(s). Each iteration of the loop represents one packet from the 

wearable’s stream(s). Each packet contains raw sensor data and a timestamp. In the case of 

the hearables, there are two sensors, one for accelerometer packets and one for music packets. 

Accelerometer data is generated by the hearable while music data is received over a 

Bluetooth connection. We assume that both sensors input data at the same rate, so each 

iteration includes one packet of accelerometer data and one packet of music data. Each packet 

is considered nullable, where a null value indicates an empty packet, i.e., no raw data or 

timestamp. If the input data is assigned to a Boolean variable, then null values are treated as 

being equivalent to inputs of false. 

 
Algorithm 1: Pseudocode algorithm for hearables. 

The core of the algorithm is divided into five statements that compose the body of the 

infinite loop. In the first statement, S1, an index variable I is incremented by 1, accelerometer 

def-program: 

program(; I, Len, Cap, MaxCap, MusicIn, MusicOut, Buff, AccIn, AccOut, Conn, AuthConn, BuffChng) { 

I := 0; 

Len := length(Buff); 

Cap := Len; 

BuffChng := true; 

while true do { 

I := I + 1;       ;; S1 

if AccIn ≠ null-opt then { 

Buff := Buff ++ AccIn.get-opt; 

AccIn := null-opt; 

}; 

BuffChng := false; 

if Conn then {       ;; S2 

if MusicIn ≠ null-opt then { 

MusicOut := MusicOut ++ MusicIn.get-opt; 

MusicIn := null-opt; 

}; 

}; 

if I ≤ Cap ∧ ¬ BuffChng then { 

if Conn ∧ AuthConn ∧ I < Cap then {    ;; S3 

if Buff ≠ ∅ then { 

AccOut := AccOut ∪ Buff; 

Buff := ∅; 
}; 

I := 0; 

Cap := Len; 

BuffChng := true; 

} 

else if Conn ∧ I = Cap ∧ I < MaxCap then {   ;; S4 

Cap := MaxCap; 

BuffChng := true; 

} 

else if I = Cap then {      ;; S5 

I := 0; 

Cap := Len; 

BuffChng := true; 

}; 

}; 

}; 

}; 



 

data is input from the hearable’s sensor and is stored in a buffer, and the variable BuffChng is 

set to false. The buffer is assumed to be 1-indexed so I is incremented at the beginning of 

each iteration rather than being incremented at the end. In statement S2, if the hearable is 

currently connected, it streams music data from the connected device. In S3, the hearable 

sends accelerometer data to the connected device. Accelerometer data can be both streamed 

and synced, where syncing is the sharing of data that has been buffered. In addition, 

accelerometer data is only shared with authorized devices. The environmental variables Conn 

and AuthConn are related to Bluetooth connection status. Environmental variables are 

variables that are mutated outside the scope of the program. In this case, both variables are 

managed by the thread that is governing the hearables Bluetooth functionality. In statement 

S4, if the hearable is currently connected but to a non-authorized device, it increases the 

capacity of its buffer to store additional accelerometer data so that the data can be synced if 

the connected device becomes authorized. However, in S5, if the hearable is not connected or 

if the buffer capacity has already been increased to its physical limit, as indicated by 

MaxCap, the index variable I is set to 0 and BuffChng is set to true, which indicates that the 

buffer can be overwritten. 

Algorithm 2 presents the pseudocode algorithm used to simulate the heart-rate variability 

monitors (HRVMs). The hearables algorithm and the HRVM algorithm have the same initial 

conditions. In statement S1, the index variable I is incremented by 1, heart-rate data is input 

from the HRVM’s sensor and stored in a buffer, a sync request is input from the Bluetooth 

sensor, the user’s stress level is computed from their heart-rate data, and the local variable 

BuffChng is set to false. The HRVMs only sync data upon request from the base station, 

which is represented by the local variable Sync or the environmental variable Stream. Unlike 

Sync, which represents a request sent by the wearable base station, Stream represents a 

connection state and can be mutated by the thread managing the Bluetooth functionality. Both 

Stream and Sync are environmental variables. In addition, if a device is currently connected, 

heart-rate data is always shared once the buffer becomes full. The local variable, Stress, 

determines whether a user’s heart rate indicates that they are currently in a stressed state. The 

value of Stress is calculated by the procedure computeStressLevel, which we assume can be 

tailored to individual devices and/or users. In statement S2, the heart-rate data is synced with 

the connected device if the device has requested to sync or if the buffer is full. Statement S3 

sets the index variable I to 0 and sets BuffChng to true, which allows the buffer to be 

overwritten unless the user is stressed. If the user is determined to be stressed and the buffer 

has not reached its physical limit, then the capacity of the buffer is increased instead in 

statement S4. 

The pseudocode algorithm, presented in Algorithm 3, for the insulin pump includes an 

additional initial condition D, which is the maximum blood sugar that the user is allowed and 

is used to determine when the user should be administered insulin. This value is set by the 

user. The insulin pump has five statements. In statement S1, the index variable I is 

incremented by 1, blood sugar data is input from the insulin pump’s sensor and then stored in 

a buffer, an administer insulin request is input from the Bluetooth sensor, and the local 

variable BuffChng is set to false. The variable AdminIns is a Boolean variable that is set to 

true if the user requests insulin. Blood sugar data is shared with a connected device if the 

device is authorized in statement S2. Similar to the hearables, both Conn and AuthConn are 

environmental variables related to Bluetooth connection status. If no authorized device is 

connected and a user does not need insulin, then I is set to 0 and BuffChng is set to true in 

statement S3, which allows the buffer to be overwritten. However, if the user’s blood sugar 

level is too high, as determined by the variable D, and the buffer has not reached its physical 

limit, then the buffer’s capacity is increased instead in statement S4. Lastly, if the user has 



 

requested insulin or if their blood sugar level is too high, then the insulin pump administers 

insulin in statement S5. 

 

 

 

Algorithm 2: Pseudocode algorithm for HRVM. 

def-program: 

program(; I, Len, Cap, MaxCap, In, Buff, Out, Conn, AuthConn, In2, Sync, Stream, Stress, BuffChng) { 

I := 0; 

Len := length(Buff); 

Cap := Len; 

BuffChng := true; 

while true do { 

I := I + 1;      ;; S1 

if In ≠ null-opt then { 

Buff := Buff ++ In.get-opt; 

In := null-opt; 

}; 

if In2 ≠ null-opt then { 

Sync := In2; 

In2 := null-opt; 

}; 

Stress := computeStressLevel(Buff); 

BuffChng := false; 

if Conn ∧ AuthConn ∧ ¬ BuffChng then {   ;; S2 

if Sync ∨ I = Cap ∨ Stream { 

if Buff ≠ ∅ then { 

Out := Out ∪ Buff; 

Buff := ∅; 
}; 

I := 0; 

Cap := Len; 

BuffChng := true; 

}; 

} 

else if I = Cap ∧ ¬ BuffChng then { 

if ¬ Stress ∨ I = MaxCap then {   ;; S3 

I := 0; 

Cap := Len; 

BuffChng := true; 

} else {      ;; S4 

Cap := MaxCap; 

BuffChng := true; 

}; 

}; 

}; 

}; 



 

 
Algorithm 3: Pseudocode algorithm for insulin pumps. 

 

3.2. Fostering as a security alert 

By experimenting with simulated wearables, we can use their programmability to explore 

communication options that wearables could, but currently do not, include. For example, 

simulated wearables can act as Bluetooth beacons that advertise the existence of Bluetooth 

servers and share data with other Bluetooth devices regarding the perceived security state of 

their mutual environment. We use the term fostering for this particular communication ability 

[26], which is especially important for devices that are constantly changing their location. As 

indicated by the dotted lines between portions of the different personal fog components in 

def-program: 

program(; I, Len, Cap, MaxCap, In, Buff, Out, Conn, AuthConn, In2, AdminIns, InsAdmin, D, BuffChng) 

{ 

I := 0; 

Len := length(Buff); 

Cap := Len; 

BuffChng := true; 

while true do { 

I := I + 1;       ;; S1 

if In ≠ null-opt then { 

Buff := Buff ++ computeBloodSugar(In.get-opt); 

In := null-opt; 

}; 

if In2 ≠ null-opt then { 

AdminIns := In2; 

In2 := null-opt; 

}; 

BuffChng := false; 

if I ≤ Cap ∧ ¬ BuffChng then { 

if Conn ∧ AuthConn then {     ;; S2 

if Buff ≠ ∅ then { 

Out := Out ∪ Buff; 

Buff := ∅; 
}; 

I := 0; 

Cap := Len; 

BuffChng := true; 

} 

else I = Cap ∧ bloodSugarLevel(Buff) ≤ D ∨ I = MaxCap { ;; S3 

I := 0; 

Cap := Len; 

BuffChng := true; 

} 

else I = Cap {      ;; S4 

Cap := MaxCap; 

BuffChng := true; 

}; 

}; 

if D ≤ bloodSugarLevel(Buff) ∨ AdminIns then {   ;; S5 

InsAdmin := true; 

}; 

}; 

}; 



 

Figure 2, fostering is designed to allow either the base station or wearable to connect 

temporarily to a service advertised by a Bluetooth beacon. This service is a separate server 

that can run on both wearables and base stations but is not always active. When a device 

connects to a fostering server, a single message is sent between devices before the connection 

is terminated. This allows for an exchange of information from other devices in the area, 

which introduces the opportunity for a rapid understanding of application-specific 

information that may not be known to devices entering the area. While fostering is designed 

to only send data between two devices, when it is implemented within a personal fog 

architecture, fostering essentially creates a temporary mesh network. This allows information 

to be passed between fogs through only a single temporary connection. 

Fostering requires the devices to employ a separate application as part of their security 

protocol and has been evaluated against security threats in [55].  Fostering was employed to 

protect co-located personal fogs from Bluetooth eavesdropping, Man-in-the-Middle attacks, 

and Denial of Service attacks. When detected, either by a human recognizing the threat or 

unexpected data being received by the base station, the security state is sent through 

fostering. This resulted in the wearables adapting their communication to not send the 

requested data, successfully preventing eavesdropping and Man-in-the-Middle attacks. It 

does not prevent Denial-of-Service attacks, though it also does not provide the data to other 

users. Fostering was effective within a range of up to 8 meters, though it can, in theory, work 

up to the maximum Bluetooth range of 100 meters in open space. 

Within the wearable testbed architecture used for the experimentation presented in this 

paper, the server is designed such that, when connected, it will send only the devices’ current 

security state (either secure or insecure). Thus, devices entering a new environment can 

receive alerts regarding potential security threats from devices already in the area or devices 

that have recently adapted to become insecure based on threat knowledge. There is a risk to 

the device employing a fostering server by virtue of opening an additional connection point 

with no additional pairing or connection requirements. It is possible for an attacker to provide 

false information on a fostering server, though the fostering application only responds to an 

insecure state alert, not a secure state alert. It is also possible that, when examining fostering 

in a broader context, data that needs to be private or protected can be shared through 

fostering. 

As a preview to the experimentation and evaluation performed in this paper, additional 

consideration is needed when fostering is part of an adaptation, since it may require 

modification to methods associated with the sending of data between connected devices. In 

the wearable testbed, adding fostering to the wearables requires modification of their code by 

integrating it with the fostering server application. For example, if an adaptation containing 

fostering is chosen, a new send command must be inserted to send the security state to 

external devices attempting to foster that are not authorized. Alternatively, the send command 

can be reused if the security state is added to the buffer and the wearable is permitted to send 

collected data to an unknown, potentially insecure device. 

 

4. Proving functional requirements 

Each wearable in the testbed has a set of functional requirements that it must satisfy. We 
present a sample of the requirements for each wearable to illustrate the approach. The 
requirements are partitioned across safety (invariant) and progress (liveness) properties. In 
this paper, all statements of functional requirements are followed by an expression stated in 
LTL [22] that extends first-order predicate logic to include temporal operators, such as 
always (□), eventually ( � ), and next (◯). 



 

The simulated hearable has two safety properties and two progress properties that govern 

the handling of its music and accelerometer data. They are as follows. 

 

HR.1: Music is streamed from any connection. 

□ �Conn → � �MusicIn ≠ null-opt → �MusicIn.get-opt ∈ MusicOut$%& 

 

HR.2: Buffer is only sent on an authorized connection. □�send�Buff$ → AuthConn$, where send�Buff$ = �Buff ⋂ Out ≠ ∅$. 

 

HR.3: Accelerometer data that is collected is stored. □��AccIn ≠ null-opt$ → � �AccIn.get-opt ∈ Buff$% 

 

HR.4: The buffer does not overflow. □�I ≤ Cap$ 
 

HR.1 is a progress property that translates from LTL to “it is always the case that if the 

device is connected, then eventually it will have streamed music.” Thus, if the hearable is 

connected to a device, then it must reach a state where it is streaming music from the 

connected device infinitely often. It should be noted that if the connection ends abruptly, then 

HR.1 is still satisfied. If there is no connected device to send music data to the hearable, MusicIn becomes a null-opt. HR.2 is a safety property that states that “it is always the case 

that if the hearable shares accelerometer data, then it is on an authorized connection.” HR.3 is 

a progress property that can be translated as “it is always the case that all captured 

accelerometer data will have eventually been stored in the buffer.” HR.4 is a safety property 

that states “it is always the case that the buffer has not overflowed (i.e., the index variable, I, 
is never greater than buffer’s capacity, Cap).” 

The simulated HRVM has one safety property and one progress property, which ensure 

that heart-rate data is not lost. They are as follows. 

 

HRVM.1: The buffer does not overflow. □�I ≤ Cap$ 

 

HRVM.2: Heart rate is stored when the user is stressed. □��Stress ⋀ In ≠ null-opt$ → � �In.get-opt ∈ Buff$% 

 

HRVM.3: Buffer is only sent on an authorized connection. □�send�Buff$ → AuthConn$ 
 

HRVM.1 is the same safety property as HR.4. HRVM.2 is a progress property that can be 

translated as “it is always the case that if heart-rate data has been input while the user is 

stressed, then eventually the HRVM will have stored the heart-rate data in the buffer.” 

HRVM.3 is the same safety property as HR.2. 

The simulated insulin pump has two safety properties and one progress property that 

ensure buffer integrity, that connections are authorized, and that insulin is administered when 

necessary. 

 

INS.1: The buffer does not overflow. 



 

□�I ≤ Cap$ 

 

INS.2: Buffer is only sent on an authorized connection. □�1end�Buff$ → AuthConn$ 

 

INS.3: Insulin is administered when needed. □��D ≤ bloodSugarLevel�Buff$ ∨ AdminIns$ → �  InsAdmin% 

 

INS.1 is the same safety property as HR.4, and INS.2 is the same safety property as HR.2. 

INS.3 is a progress property that states “it is always the case that if the user’s blood sugar 

level is too high or if the user has requested insulin, then insulin will have been administered 

in the next state.” 

 

4.1. Employing the KIV theorem prover 

To show that each wearable device complies with its functional requirements, we employ 

the use of the KIV theorem prover against the pseudocode algorithms provided in Algorithm 

1, Algorithm 2, and Algorithm 3 that represent the implemented functionality for each 

wearable emulator. KIV allows for LTL expressions and can be used to prove both safety and 

progress properties. Our adaptation assessment framework requires the extraction of meta-

data from the proof process or structure that will allow for adequate reasoning over 

dynamically configured adaptations prior to their runtime deployment. This section defines 

the approach to identify and capture the meta-data as it is strictly tied to the use of KIV and 

its features. 

The first step in the process is to create a taxonomy of specifications for each wearable 

device. Each specification is a data type associated with axioms that KIV can use to construct 

proofs concerning variables of that type. Figure 3 presents the taxonomy for the insulin 

pump. The blood-sugar specification is an opaque data type, i.e., an object with unknown 

properties that is treated as a set, for blood-sugar level, and blood-sugar-info is a tuple type of  

blood-sugar and a timestamp, which is the nat type, or non-negative integers. Most of the 

specifications also include axioms that KIV needs to construct proofs, such as the nat 

specifications’ axiom n > i + 1 → n > i, which is used to prove HRVM.1 and INS.1. 

The three taxonomies for the wearables use the same construction, with set specifications 

and nat specifications imported from KIV’s core library. The set specifications are used to 

represent the buffer and an out-queue, which is employed to prove requirements where the 

device must output data, such as INS.2. The nat specifications are used for timestamps, the 

index variable I, and buffer capacity Cap to prove requirements that restrict buffer overflow, 

such as INS.1. Also included in the taxonomies are opaque types, tuple types, optional types, 

and set types. The opaque types are used to represent input data, such as blood-sugar data. 

These are enriched, designated by an incoming arrow, by a tuple type that joins the opaque 

data type with a timestamp. For example, blood-sugar-info enriches blood-sugar to represent 

a packet of raw blood sugar data and a timestamp. The optional specification is used to 

introduce nullable values. The blood-sugar-info specification is enriched with an optional-

blood-sugar-info specification that allows the tuple type to be nullable. In addition, both the 

blood-sugar and the blood-sugar-info specifications are enriched with a set type. The set-

blood-sugar-info specification, which enriches blood-sugar-info, represents the input streams, 

which stores  

blood-sugar-info tuples. Since blood-sugar tuples are nullable, only non-null values are 



 

stored in the buffer. The set-blood-sugar specification represents an out-queue that is used to 

prove INS.2. That is, if the out-queue contains the blood-sugar data that was stored in the 

buffer, then the requirement holds. 

 

 

Figure 3: Insulin pump requirement specifications (top), program specifications (middle), 

type specifications (bottom), and dependencies as specified in KIV. 

On top of the set and optional types rests the program specification. In this specification, 

we declare the pseudocode algorithm and all program variables using KIV’s dynamic 

language. Each pseudocode algorithm from Section 3 is accurately represented, including its 

local, global, and environmental variables. 

When constructing a proof, the KIV theorem prover will explore all possible states of the 

program. Each additional variable significantly increases the number of possible states, e.g., a 

Boolean variable will double the number of possible states, and each program statement can 

both increase the number of consecutive states and create branches within the proof. To 

reduce the program specification and proof complexity, we refactor program variables and 

program statements depending on the requirement that is being proven. Each time such a 

removal occurs, we ensure that the removed variable or statement has no impact on the target 

requirement. For example, to prove INS.1 and INS.2, we can remove program variables and 

program statements related to administering insulin as they would have no impact on those 

requirements. We could not however, remove those same program variables and statements 

when proving INS.3 as they are necessary to prove that the insulin pump can correctly 

administer insulin. In most cases, program variables will relate to some but not all 

requirements. As such, one reduction is performed per requirement, which results in one 



 

reduced specification per requirement. Extra care must be taken during this process to 

incorporate hardware concerns. For example, the buffer’s capacity (Cap) can never be 

ignored when considering storing data in a buffer, since every buffer has a physical limit to 

how much data it can store before it overflows. Reducing the number of program variables 

and statements also aids in the identification and capture of meta-data for verification 

awareness, which will be further discussed in Section 4.4. 

KIV employs its own heuristic rules to prune branches that can be shown by an invariant 

to have no impact on the target requirement. For example, KIV can simplify conditional 

branching where each branch can be shown to satisfy the same desired properties. While we 

rely on refactoring and KIV simplification rules at this stage, designers can incorporate their 

own techniques by writing custom lemmas. Once defined, designers can apply their custom 

lemmas during the proof process to perform compositional analysis using such techniques as 

decomposition, as we demonstrate in Section 4.2 and Section 4.3. Alternatively, designers 

can employ their own techniques and invariants to simplify the proof process for their 

specific system implementation. 

For the insulin pump, this process of reduction results in three specifications, which are 

program-req-1, program-req-2, and program-req-3 shown at the top of Figure 3. Each 

reduced program specification is enriched by a corresponding requirement specification, e.g.,  

program-req-1 is enriched by insulin-pump-req-1. These final specifications are different 

than the others in two ways. First, they do not describe data types. Instead, they describe a 

requirement that needs to be proven against a program and program conditions that are 

necessary or helpful for constructing the proof. Lastly, they contain a lemma, stated as a 

sequent in sequent calculus [60], which is the requirement that needs to be proven. The KIV 

theorem prover uses the description provided in each requirement specification to prove its 

sequent against the enriched program for a single requirement. 

 

4.2. Proving invariants with TCPs 

When implementing a requirement specification, we can restate each program statement as 

a temporal contract proposition (TCP) [20] first defined as a way to tailor KIV’s proof 

structure for meta-data capture. We show how its use can be newly explored as part of our 

adaptation assessment framework for the wearable experimentation testbed. A TCP is a tuple 

of the form 

 :;<�=>?, ABC?, DEC, =B1:$, 

 

which asserts that when Code, a program or program statement, is executed in a state that 

satisfies property Pre, then Code will terminate in a state that satisfies property Post and 

every state prior to termination will satisfy property Mid. By doing so, we can redefine a 

program statement with the following sequent 

 Pre, [: VJK, VJKLMN | Code�VJK, VJKLMN$; [RestProg]] ⊢ Mid STUVW �Post ∧ RestProg$, 

 

where XYZ and XYZ[\] are a collection of program variables and RestProg is the remainder of 

the program that executes after Code terminates. If there are no remaining instructions after 

Code terminates, then RestProg is set to true. 

If the requirement that is being proven is an invariant, such as □�^ ≤ A_<$, then it must be 

the case that, to prove the invariant, Pre, Mid, and Post must all imply ^ ≤ A_<. For example, 



 

after reducing the program specification to program-req-1 (Figure 3) for the insulin pump, 

only program statements S1-S4 remain and statement S5 is removed. To prove requirement 

INS.1, we redefine statements S1 through S4 using the following TCPs. Note that the pre-

condition of each TCP should mirror the if condition of each statement. The pre-conditions 

have been reduced for brevity. However, it should be clear from the statements that each pre-, 

mid-, and post-condition implies ^ ≤ A_<, which is the invariant to be proven in INS.1. 

 

INS.Code.S1: tcp�I < Cap, S1, I ≤ Cap, I ≤ Cap$ 

INS.Code.S2: tcp�I ≤ Cap, S2, I ≤ Cap, I = Cap$ 

INS.Code.S3: tcp�I = Cap, S3, I ≤ Cap, I = Cap$ 

INS.Code.S4: tcp�I = Cap, S4, I ≤ Cap, I < Cap$ 

 

Then, for each statement, XYZ would include a collection of program variables that are needed 

for, but not modified by, program statements S1-S4, such as Conn, AuthConn, D, and 

bloodSugarLevel, while XYZ[\] would include a collection of program variables that are both 

needed for and modified by program statements S1-S4, such as I, Cap, and BuffChng. By 

convention, XYZ and XYZ[\] are the same across all statements. Lastly, RestProg would include 

all subsequent statements with the current statement appended to the end. For example, for 

statement S1, RestProg would be equal to [S2, S3, S4, S1]. The current statement must be 

appended to the end since all statements are executed within an infinite loop. 

In KIV, proofs are often constructed by contradiction. Therefore, to prove a property p, 

KIV will attempt to construct a proof for its contradiction, which can be stated as “there does 

not exist a natural number D that increases by one for each time step until p is false” and is 

expressed as 

 ¬ �M = Mdd + 1 STUVW ¬ p$, 

 

where D is a natural number variable introduced by KIV for proof purposes. KIV performs 

the proof of contradiction by first assuming the hypothesis D = Ddd + 1 efghi ¬ < and then 

applying a proof by induction using a well-founded induction over M. KIV will execute a full 

iteration of the main loop of the program, consider all program branches, and prove < at each 

step. If KIV can then reach a subgoal with a smaller value for M where p holds, then the 

inductive hypothesis can be applied to complete the proof by contradiction. It should be noted 

that, after assuming the statement D = Ddd + 1 efghi ¬ <, KIV asserts that there exists a 

value D = j, such that after step m is executed, the property ¬ < holds. Therefore, after each 

step where the property p holds, KIV asserts that it must have been that D < j, since it has 

been assumed that D = Ddd + 1 efghi ¬ <. 

To perform a proof by induction for INS.1, KIV begins with the following proof goal. 

 M = m, Pre, [: VJK, VJKLMN | klVWm true no S1, S2, S3, S4], ¬ �M = Mdd + 1 STUVW ¬ �I ≤ Cap$% ⊢  
 

Since we are attempting to prove a requirement that uses temporal operators, KIV requires 

that we specify environmental constraints as part of the initial conditions. Each program 

variable p has a corresponding variable pd and pdd, where pd is the value of p at the end of 

the current state and pdd is the value of p at the beginning of the next state. If pdd is not equal 



 

to pd, then that means that p is being mutated in the environment outside the current 

program. For local variables, such as I and Cap in our example, or global variables that are 

locked, such as Buff, we use the constraint p’’ = p’, so that these variables can only be 

mutated within the program. However, for program variables, such as Conn and AuthConn, 

that can be mutated outside the program, we use the constraint pd → �pdd = pd$. This 

constraint is necessary for statements where connection status is checked prior to sending 

data since KIV does not know that a send instruction would not be able to succeed if the 

device is not connected when the send instruction is called. Otherwise, KIV will create a 

branch representing the possibility that a connection is lost after the status is checked but 

before the send instruction is executed. In this branch, KIV cannot finish the proof as the 

branch will contain conditions not connected and send, which is a logical impossibility. 

The most significant benefit provided by the introduction of TCPs is that, given KIV’s 

approach to constructing a proof, we can use TCPs to skip large portions of proof steps that 

would otherwise be required to be performed manually. To do so, we derive a new proof goal 

and apply the following lemma-invariant. 

 M = m, □�Afterr ∧ InvProp ∧ M ≤ m → ¬ �M = Mdd + 1 STUVW ¬ InvProp$$, □�Midr → InvProp$, Midr until �InvProp ∧ Afterr$ ⊢ ¬ �M = Mdd + 1 STUVW ¬ InvProp$ 

 

To apply the lemma-invariant to INS.1, we make the following substitutions:  st:?>u = =B1: ∧ v?1:=>Bw, DECu = DEC, and ^xy=>B< = ^ ≤ A_<. It is the case that, since =B1: implies ^xy=>B<, DEC efghi �=B1: ∧ v?1:=>Bw$, which can be derived from the TCP, 

implies DECu efghi �^xy=>B< ∧ st:?>u$. KIV can determine that both  DECu efghi �^xy=>B< ∧ st:?>u$ and D = j hold when the lemma-invariant is applied. 

Consequently, two new proof goals emerge that match the second and third formulae of the 

lemma-invariant. Using KIV’s execute always rule, we reach the following new proof goals. 

KIV can automatically close the proof goal DECu → ^xy=>B< using its simplifier. 

 Afterr ∧ InvProp ∧ M ≤ m → ¬ �M = Mdd + 1 STUVW ¬ InvProp$ Midr → InvProp 

 

To satisfy the remaining proof goal, we manually apply each TCP and follow each TCP 

with an application of lemma-invariant. Afterwards, we reach a proof goal where the 

program formula is: 

 [: VJK, VJKLMN | klVWm true no S1, S2, S3, S4] 
 

This is the same program formula that we started with. We can use KIV’s induction rule to 

close the proof by induction. KIV can deduce that the natural number variable M has 

decreased without a violation of the invariant. Given that the proof has reached a state where 

the properties are the same as they were for a larger value of M and the invariant has not been 

violated, KIV determines that M can increase indefinitely without violation of the invariant. 

This is sufficient to complete the proof by contradiction. 



 

4.3. Proving progress properties with TCPs and STCPs 

Just as we used TCPs to prove safety properties, we can similarly use them to prove 

progress properties. When using TCPs to prove progress properties, we must partition the 

code into q-preserving code and non q-preserving code. Given a progress property □�z →{<$, q-preserving code is code where the property q is satisfied before, during, and after 

execution. For example, if we are trying to prove INS.3, then program statement S4, which 

increases the capacity of the buffer, is q-preserving code since it does not affect the pre-

condition of INS.3, which is �| ≤ }~BBC��w_>�?y?~���tt$ ∨ sCjEx^x1$. As such, we can 

restate S4 as  :;<�z, �4, z, z$, where z = �| ≤ }~BBC��w_>�?y?~���tt$ ∨ sCjEx^x1$, without loss of 

validity. 

To prove a requirement with q-preserving code, we first apply the TCP, and then we apply 

the following lemma-progress. 

 M =  m, □�After� ∧ M ≤ m → ¬ �M = M′′ + 1 STUVW �PreProgress ∧ ¬ {PostProgress$$$, □�After� ∧ PreProgress → {PostProgress$, □�Mid� ∧ PreProgress → ⦁PreProgress$, Mid� STUVW After� ⊢ ¬ �M = M′′ + 1 STUVW �PreProgress ∧ ¬ {PostProgress$$, 

 

where ⦁ is the operator ‘weak next’ indicating that PreProgress holds in the next state if there 

is a next state. This lemma is applied using the following substitutions:  st:?>� = z ∧ v?1:=>Bw, DEC� = z, =>?=>Bw>?11 = z, and =B1:=>Bw>?11 = <, where  < = ^x1sCjEx for INS.3. By applying lemma-progress, KIV can essentially skip all 

instructions executed in the q-preserving code, which is a significant reduction in proof steps. 

This has no negative impact on the validity of the proof since, by definition, q-preserving 

code does not alter the pre-condition of the progress property. After applying lemma-

progress, we can apply KIV’s execute always rule to produce the following new proof goals. 

 q ∧ RestProg ∧ M ≤ m → ¬ �M = M′′ + 1 until �q ∧ ¬ {p$$ q ∧ RestProg ∧ M ≤ m ∧ q → {p q ∧ q → ⦁q 
 

On the other hand, code can be non-q-preserving. Such code may either (a) not change q 

from true to false once p has been satisfied or (b) preserve some other condition, r, that 

ensures {<. To handle non-q-preserving code, we use split temporal contract propositions 

(STCPs) [20] which are defined as 

 1:;<�=>?, ABC?, DEC, =B1:�, =B1:�$ 

 

where ABC? is a program, or program statement, that is executed in a state that satisfies 

property Pre and either (a) eventually terminates with condition =B1:� and all intermediate 

states satisfying condition Mid or (b) eventually terminates with condition =B1:�. Code 

represents the non-q-preserving code and =B1:� represents the intermediate condition, r, that 

ensures {<. We represent STCPs in KIV using the following template. 



 

 Pre, [: VJK, VJKLMN | Code�VJK, VJKLMN$; [RestProg]] ⊢ �Mid STUVW �Post� ∧ RestProg$$ ∨ {�Post� ∧ RestProg$ 

  



 

 

When proving a requirement that requires that use of a STCP, we first apply the STCP, 

then apply lemma-progress, and then apply the following lemma-progress-split. 

 M =  m, □�After�� ∧ M ≤ m → ¬ �M = M′′ + 1 STUVW �PreProgress ∧ ¬ � PostProgress$$$, □�After�� → � PostProgress$, � After�� ⊢ ¬�M = M′′ + 1 STUVW �PreProgress ∧ ¬ � PostProgress$$, 

 

lemma-progress-split is applied with the following substitutions:  st:?>�� = =B1:� ∧ v?1:=>Bw, =>?=>Bw>?11 = z, and =B1:=>Bw>?11 = z. To prove 

INS.3, we use =B1:� = =B1:� = z. Application of lemma-progress-split results in the 

following open proof goals. 

 q ∧ RestProg ∧ M ≤ m → ¬ �M = M′′ + 1 until �q ∧ ¬ � p$$ q ∧ RestProg → � p 
 

By combining TCPs, STCPs, lemma-progress, and lemma-progress-split, we can skip to the 

end of the program’s main loop. Once there, just as we did with the invariant proof, we can 

apply KIV’s induction rule with respect to M to close the proof. This, along with KIV’s 

simplifier, is sufficient to complete each proof goal introduced by lemma-progress or lemma-

progress-split. 

Together, lemma-invariant, lemma-progress, and lemma-progress-split can be employed 

by system designers to verify more complex system specifications using TCPs and STCPs. 

Applying these lemmas can address state space explosion by simplifying program variables 

and branches out of the proof process. We recommend that system designers apply the same 

methodology that we have presented in this paper by following these steps. 

1. Create a model of the target system’s behavior using the dynamic language 

provided by KIV. 

2. Partition the instructions of the model into a sequence of Statements, where each 

Statement can contain one or more instructions. All instructions in the same 

Statement should have the same pre-condition, so that either (a) all of the 

instructions are executed sequentially or (b) none of the instructions are executed. 

3. Refactor the model, where needed, for each requirement to reduce the number of 

Statements that are considered when proving the target requirement. System 

designers can use the heuristic rules provided in Section 4.4 to assist in identifying 

which program variables relate to each requirement and each Statement. 

4. Decompose each refactored model depending on its target requirement. If the 

target requirement is an invariant, decompose the model by translating each 

Statement into a TCP. If the target requirement is a progress property, decompose 

the model by translating q-preserving Statements into TCPs and non-q-preserving 

Statements into STCPs. System designers can use heuristic rules provided in 

Section 4.4 to assist in identifying program variables that relate to each 

requirement to minimize the number of program variables that are included in the 



 

pre-, mid-, and post- conditions of each TCP and STCP. 

5. Complete the proof process for each requirement using the provided lemma-

invariant, when proving invariants, and the provided lemma-progress and lemma-

progress-split, when proving progress properties. 

Our approach does not restrict system designers from using their own compositional 

analysis techniques to address state space concerns through custom lemmas, given those 

techniques are compatible with the heuristic rules defined in Section 4.4 for meta-data 

extraction. Furthermore, TCPs and STCPs can assist system designers in extending their own 

formal techniques to systems with temporal properties. In practice, systems may not be fully 

modular, which can make it more difficult to decompose the system into a neat set of TCPs 

and STCPs. In such cases, we recommend that system designers combine steps 1-3 to create a 

modular representation of their system’s behavior in KIV’s dynamic language for each 

requirement. 
 

4.4. Capturing meta-data from proof process 

Given the proof process described in Sections 4.1–4.3, we inspect each process and 

capture the verification concerns (VCs) in the form of program variables. To capture VCs, we 

inspect the various branches of the proof process and apply a series of heuristic rules as 

presented below. 

 

Rule 1: When a requirement, stated as an invariant, specifies an independent property, p, 

that includes program variables, the program variables are captured as VCs. 

 

For example, INS.1 uses the invariant ^ ≤ A_<, which includes program variables I and 

Cap. As such, we capture I and Cap as VCs for INS.1. 

 

Rule 2: When a requirement, stated as an invariant, specifies a dependent property, z → <, 

that includes program variables, the program variables are captured as VCs. 

 

For example, INS.2 uses the invariant □�1?xC���tt$ → s�:ℎABxx$. From this invariant, 

we capture send, Buff, and AuthConn as VCs for INS.2. 

 

 

Rule 3: When a requirement is stated as a progress property, □�z → � <$, that includes 

program variables, the program variables are captured as VCs. 

 

For example, INS.3 uses the progress property 

           □��| ≤ }~BBC��w_>�?y?~���tt$ ∨ sCjEx^x1$ → �  ^x1sCjEx%. 

 

 

From this progress property, we would normally capture D, bloodSugarLevel, Buff, 

AdminIns, and InsAdmin as VCs. A program variable can be removed if it represents a 

procedure or parameter that is not subject to adaptation. Since this is the case with the 

procedure InsAdmin, it is removed from consideration as a VC. Rule 3 can be generalized to 

all progress properties that use the ‘eventually’, ‘next’, or ‘weak next’ operator. 



 

 

Rule 4: For every symbolic execution step that applies KIV’s if positive or if negative rule, 

the program variables in the condition are captured as VCs. 

 

For example, when considering the proof for INS.2, data is output in S2, which uses the if 

condition ABxx ∧ s�:ℎABxx ∧ ^ ≤ A_< ∧ ¬ BuffChng. The first time that this statement is 

encountered by KIV, the theorem prover will apply the if left rule, which results in two 

branches. The first branch represents the scenario where the if condition cannot be met, and 

the second branch represents the scenario where the if condition can be met. In the first 

branch where the if condition cannot be met, KIV can deduce that INS.2 is satisfied when 

either Conn or AuthConn is false. If Conn is false, AuthConn must be false by definition. This 

closes the first branch. In the second branch where the if condition is met, KIV returns to the 

statement during the second iteration of the main loop and applies the if positive rule. As 

such, we can capture the program variables in the if condition as VCs. A simpler approach, 

which is the approach that we take, is to capture the pre-condition of the corresponding TCP 

as a VC. 

When applying Rule 4, we consider the pseudocode algorithm and the other requirements 

to determine if any VCs that could be captured can be reduced or removed. Doing so goes 

hand-in-hand with our earlier efforts to the reduce program variables and statements as any 

captured VCs that can be removed correspond to program variables that could have been 

removed before the proof was constructed. For example, when we apply Rule 4 to INS.2, we 

capture VCs Conn, AuthConn, I, Cap, and BuffChng. The VCs I and Cap can be removed 

since the invariant INS.1 requires that condition be satisfied. In addition, the VC BuffChng 

can also be removed since it is always set to false in statement S1 of the insulin pump. It is 

always the case that ¬BuffChng is satisfied. As such, after applying Rule 4 to INS.2, we only 

capture VCs Conn and AuthConn. 

 

Rule 5: For every symbolic execution step that applies KIV’s call left rule, the procedure 

and the program variables used for the XYZ and XYZ[\] of the procedure that is called can be 

captured as VCs. 

 

For example, INS.3 relies on the procedure bloodSugarLevel(Buff). The procedure 

bloodSugarLevel computes the user’s blood-sugar levels from the blood-sugar data stored in 

buffer. This leads to the capture of bloodSugarLevel and Buff as VCs. 

When we apply Rule 5, we consider the procedures that are called and their parameters to 

determine if the procedure or its parameters can be reduced or removed. Similar to the 

example in Rule 3, computeBloodSugar is a procedure that is undefined within the scope of 

the algorithm and is not subject to adaptation. This determination is based on the allowable 

range of adaptations to the system, so the procedure can be removed from the set of captured 

VCs. Parameters can be reduced if the parameter acts as a temporary variable. For example, 

the variable Buff in the insulin pump is effectively an array of values assigned to the local 

variable In. As such, Buff can be reduced to the variable In when captured as a VC. As such, 

when  

Rule 5 is applied to INS.3, we only capture VCs bloodSugarLevel and In. This is because 

InsAdmin is removed, since it is not subject to adaptation, and Buff is reduced to In. 

For those designers that use a theorem prover other than KIV, to be compatible with the 

heuristic rules that we have provided, the target theorem prover should be able to support 

sequents in both Hoare logic and temporal logic. Otherwise, there is no guarantee that the 



 

proof conditions targeted by our heuristic rules will have an equivalent analog in another 

proof process. In such cases, extracted verification conditions may not be logically sound for 

use in the risk assessment process presented in Section 5. When using custom lemmas to 

support alternative techniques for performing the proof process in KIV, simplification steps 

must not eliminate applications of the if positive, if negative, and call left rules to be 

compatible with our heuristic rules. 

After VCs have been captured, we begin to articulate various circumstances under which 

the condition specified in the VC would be violated. Each circumstance, or change, is then 

rated as ‘devastating’, ‘worrisome’, or ‘unconcerned’. Each condition has a corresponding 

impact multiplier value, D�� , of 0.2, 0.5, and 0.9, respectively. These impact multipliers are 

used as a heuristic when performing a risk assessment. A change that is rated as devastating 

violates the target requirement. If the change may, but does not assuredly, violate the target 

requirement, then it is rated as worrisome. Otherwise, the change is rated as unconcerned. In 

certain circumstances, a change may be rated as worrisome because it would violate an axiom 

that KIV used in the proof process even though it might not violate the requirement. For 

example, if a change were to set the variable Conn to false but leave the variable AuthConn 

set to true, then requirement INS.2 would not be directly violated. However, to prove INS.2, 

KIV employs an axiom that states that AuthConn must be false when Conn is false. As such, 

this change has the potential to violate proof reuse in such a way that it is unclear if KIV 

could still construct a proof since it would not be able to use the aforementioned axiom. 

Table 1 presents the VCs, potential value changes, and ratings for INS.1, INS.2, and 

INS.3. For INS.1, we capture VCs related to program variables I, Cap, and Conn. VCs related 

to I and Cap are captured by the application of Rule 1. Devastating changes to I would 

include any change that directly violates INS.1, such as setting ^ > A_<, or any change that 

would directly lead to a violation of INS.1, such as removing ^ ∶= 0. Worrisome changes 

would include incrementing I twice in a single state, which can take place if additional data 

needs to be stored in the buffer to facilitate fostering. Doing so does not guarantee that INS.1 

would be violated but using a larger step size than 1 can allow I to become larger than Cap if  ^ = A_< − 1. This would negate the pre-conditions of S3 and S4, which could have either set 

I to 0 or increased Cap, and result in a violation of INS.1. Devastating changes to Cap would 

include reducing the value of Cap when I is not set to 0 since that could directly cause a 

violation of INS.1 while unconcerned changes would include increasing the value of Cap. 

Lastly, we chose to capture Conn by Rule 4 since, when considering a physical system, the 

buffer has a maximum capacity to which it can be increased. Therefore, the program must 

connect to a device at some point or the buffer will be overwritten before data can be shared. 

Thus, devastating changes to Conn would include inhibiting all connections. AuthConn was 

not captured since INS.2 ensures that all connections must be authorized. 

 

  



 

 

Table 1: Verification concerns and impact multipliers across insulin pump wearable. 

REQUIREMENT INS.1 FOR INSULIN PUMP WEARABLE 

Verification  

Concerns (VCs) 
Devastating (0.2) Worrisome (0.5) Unconcerned (0.9) 

I 
• Remove I := 0 

• Set I > Cap 

• Increment I twice in a 

single state change 

 

Cap 

• Reduce Cap 

• Reset Cap to Len where is 

it not currently performed 

 • Increase Cap to Len 

where is it not 

currently performed 

Conn • Inhibit connection   

REQUIREMENT INS.2 FOR INSULIN PUMP WEARABLE 
Verification  

Concerns (VCs) 
Devastating (0.2) Worrisome (0.5) Unconcerned (0.9) 

Conn • Set to true when connected 

to a non-authorized device 

• Set to false when 

connected to an 

authorized device 

• Set to true when 

connected to an 

authorized device 

AuthConn • Set to true when connected 

to a non-authorized device 

• Set to false when 

connected to 

authorized device 

• Set to true when 

connected to an 

authorized device 

send • Inhibit send while 

connected 

 • Send null data 

REQUIREMENT INS.3 FOR INSULIN PUMP WEARABLE 

Verification  

Concerns (VCs) 
Devastating (0.2) Worrisome (0.5) Unconcerned (0.9) 

In • Inhibit read   

AdminIns • Set to false when 

instructed to administer 

• Set to true when not 

told to administer 
 

bloodSugarLevel • Prevent processing   

D • Increase D • Reduce D  

 

For INS.2, we captured VCs related to Conn, AuthConn, and send. Conn is captured by the 

application of Rule 4. AuthConn and send are captured by the application of Rule 2. 

Devastating changes would include setting either to true when the device currently connected 

is not authorized since doing so would be a violation of INS.2. Worrisome changes would 

include setting either to false when the currently connected device is authorized since that 

would contradict an axiom that KIV employs to prove INS.2. Inhibiting send while connected 

is considered devastating as that would directly violate the requirement as stated in KIV, 

while sending null data would be unconcerned. 

Lastly, for INS.3, we capture VCs related to In, AdminIns, bloodSugarLevel, and D. In is 

captured by the application of Rule 5. Devastating changes to In would include inhibiting the 

read so that blood-sugar data and administer insulin requests can’t be processed by the insulin 

pump. This would directly violate requirement INS.3. AdminIns, bloodSugarLevel, and D are 

captured by application of Rule 3. Devastating changes would include altering their values 

when insulin should be administered which would violate INS.3. Worrisome changes would 

include altering their values when insulin does not need to be administered, which does not 

violate INS.3, but could violate proof re-use and affect the user’s health. 

 



 

5. Risk assessment 

For our experimentation, we specify four adaptations that the wearables in the testbed can 

employ if they enter an insecure state. These adaptations are as follows. 

A1: Stay connected to base station; send empty packets (so there is no value in sniffing); 

do not participate in fostering 

A2: Stay connected to base station; send empty packets; participate in fostering 

A3: Disconnect from base station (sending no packets but collecting data locally); do not 

participate in fostering 

A4: Disconnect from base station; participate in fostering 

Each adaptation has a set of affected VCs and conditions in Table 1 that must be identified 

by the system designer. Adaptation A1 allows the wearable to stay connected without any 

fostering, which affects the AuthConn and Conn VCs. The condition for both AuthConn and 

Conn in A1 is “Set to true when connected to an authorized device”. Since this statement 

expresses the default behavior of each wearable, the changes provide have an unconcerned 

impact (column 4 in Table 1). A1 also affects the send VC by changing its condition to “Send 

null data”. This change has an unconcerned impact according to the insulin pump’s 

requirements. Adaptation A2 allows the wearable to remain connected but allows fostering. 

The change condition for Conn is the same as A1 but fostering may set AuthConn to true 

when there is an unauthorized connection. This setting is considered is a devastating 

condition (column 2 in Table 1) for AuthConn. A2 also sends null data, where the impact is 

unconcerned. Adaptation A3 disconnects the device but does not permit fostering. The 

change condition for Conn is “Set to false when connected to an authorized device” but the 

conditions for send and AuthConn are same as in A1. Adaptation A4 disconnects the device 

and allows fostering, so the condition for AuthConn is “Set to true when connected to a non-

authorized device” and connected is “Set to false when connected to an authorized device.” 

Both conditions have a devasting impact on AuthConn and Conn.  

The notation XA� refers to the VCs affected by adaptation A, where A is A1, A2, A3, or 

A4, e.g., XA�� = �ABxx, s�:ℎABxx, 1?xC�. The notation ;BxCE:EBx1��y;$ refers to the 

change conditions of the verification concern vc with respect to adaptation A, e.g., ;BxCE:EBx1���ABxx$ = �"�?: :B :>�? �ℎ?x ;Bxx?;:?C :B _x _�:ℎB>E�?C C?yE;?"�. When 

assessing how an adaptation affects a particular requirement, VCs in Table 1 that are not 

associated with that requirement are ignored. For example, though VC send is part of 

adaptation A1, send is ignored when assessing INS.1, since it is not associated with INS.1. 

As wearables operate in a dynamic environment, a security solution requires some 

knowledge of their situation, which provides the capability to prevent security threats. The 

situational knowledge may be obtained from historical scenarios in which the security of the 

device was vulnerable. Using this knowledge, designers assign a change impact value p̂, 

which is a heuristic that quantifies the planner's belief that the adaptation will result in a 

successful outcome. We assign p̂ for each adaptation based on situational knowledge for the 

insulin pump as shown in Table 2.  

 

Table 2: Change impact for adaptations A1-A4 on insulin pump. 



 

<̂(A1) <̂(A2) <̂(A3) <̂(A4) 

0.55 0.65 0.60 0.75 

Using the captured meta-data (Table 1), impact multipliers (Table 1), and change impacts 

(Table 2), we employ our adaptation assessment framework based on the meta-data, code 

architecture, and developer input to evaluate the risk that an adaptation inhibits the re-use of 

the proof process [38]. This risk assessment approach provides the system with an 

opportunity to select the most appropriate, or least risky, adaptation from the set of potential 

adaptations. From each requirement and proof process, we embed a verification workflow 

(VFlow) based on a Colored Petri Net (CPN) [24] that models the software architecture of the 

system and the proof process to output the risk alerts for each adaptation. 

A CPN is a bipartite, directed graph that includes a collection of places and transitions as 

vertices. In general, colored tokens, representing different data types, traverse the CPN places 

according to a set of pre-defined transition rules. Places, transitions, tokens, and transition 

rules are defined for the VFlow CPN. The VFlow design restricts each place to allow only 

tokens of a single color. Transitions in the VFlow design allow for all colored tokens.  

Figure 4 depicts the VFlow for the insulin pump with its three architectural components as 

described in Algorithm 3. These components are Initialize, Adjust, and Administer. Initialize 

represents the initialization instructions (as specified in S1). Adjust represents the changes to 

the buffer (as specified in S2, S3, and S4). Administer represents the blood sugar level 

assessment and the insulin administration (as specified in S5).  

Each component in Figure 4 is specified using two places and a transition. Initialize 

includes the places Initialize and Initialize Pink, with Initialize Transition. Adjust includes the 

places Adjust and Adjust Pink, with Adjust Transition. Administer includes the places 

Administer and Administer Pink, with Administer Transition. Designers assign a place impact 

multiplier, D��, to each component to quantify the significance of the component in the 

requirement proof process. For simplicity, we assign 0.5 to each component of the insulin 

pump algorithm for each requirement as shown in Table 3. 

 

Figure 4: VFlow CPN for insulin pump’s INS.2 for adaptation A1. 

 



 

Table 3: Place impact multiplier for the insulin pump’s VFlow. 

 Initialize Adjust Administer 

INS. 1 0.5 0.5 0.5 

INS. 2 0.5 0.5 0.5 

INS. 3 0.5 0.5 0.5 

 

There are two additional places, Start and End, that must also be included in the VFlow, 

also shown in Figure 4. The Start place is the starting point of VFlow execution and 

expresses the initial state of the verification process. The End place accumulates tokens that 

express risk alerts when conflicts are present because of adaptation changes to the VCs 

extracted from the requirement proof process. Each of the eight places presented in Figure 4 

acts as a container for specific colored tokens. The places Initialize Pink, Adjust Pink, and 

Administer Pink are containers for pink tokens. The places Start, Initialize, Adjust, and 

Administer are containers for blue tokens. End is a container for red tokens. Each of the three 

transitions are used to perform complex processing based on embedded verification 

knowledge, and to allow token instantiation and traversal through the VFlow. Colored tokens 

may only traverse their respective places through transitions. 

Pink tokens represent the qualities of the adaptation as input. There is one pink token for 

each adaptation. For the VFlow, the pink token =� for an adaptation A is defined as 

=� = ��y;, ;BxCE:EBx, <̂�s$% | ∀ y; ∈ XA�, ∀;BxCE:EBx ∈ ;BxCE:EBx1��y;$�, 

where 

• ��� are the VCs affected by adaptation A, 

•  ¡f¢hgh¡f£��¤ $ are the conditions of the change to a vc due to adaptation A, and 

• p̂ is the change impact value associated with adaptation A (Table 2). 

When the VFlow is instantiated, pink tokens are constructed and assigned to their 

corresponding places, which are Initialize Pink, Adjust Pink, and Administer Pink in Figure 4. 

As shown in Figure 4, empty pink tokens are assigned to the Initialize Pink and Administer 

Pink places since these architectural components are not affected by adaptations A1-A4. 

Table 4 provides the pink token specification for adaptations A1-A4 for the insulin pump. All 

four adaptations affect AuthConn, Conn, and send VCs and the Adjust Component. As such, 

the specifications provided in Table 4 are used to construct the pink token that is assigned to 

the Adjust Pink place. Each pink token, including empty pink tokens, traverses between the 

place to which it was assigned and its adjacent transition. 

  



 

 

Table 4: Pink Token specification for adaptation A1-A4 for insulin pump. 

PA1 {(AuthConn, Set to true when connected to an authorized device, 0.55), 

  (Conn, Set to true when connected to an authorized device, 0.55), 

  (send, Send null data,0.55)} 

PA2 {(AuthConn, Set to true when connected to a non-authorized device, 0.65), 

  (Conn, Set to true when connected to an authorized device, 0.65), 

        (send, Send null data,0.65)} 

PA3 {(AuthConn, Set to true when connected to an authorized device, 0.60), 

  (Conn, Set to false when connected to an authorized device, 0.60), 

        (send, Send null data,0.6)} 

PA4 {(AuthConn, Set to true when connected to a non-authorized device, 0.75), 

  (Conn, Set to false when connected to an authorized device, 0.75), 

        (send, Send null data,0.75)} 

 

A single blue token (initially empty) traverses through the VFlow to determine conflicts 

with VCs at transitions. The blue token collects and carries information related to how VCs 

are affected. For the VFlow, the blue token �� for an adaptation A is defined as 

 �� = �yE1E:?C, y;ABxt~E;:1, y;Aℎ_xw?1, j_¥^C¥) 

 

where, 

• visited is a set of traversed places within the VFlow, 

• vcConflicts is a set of identified conflicts that are each of the form  
 ¡f¦ih g = �h¢§ ¡f¦ih g, �¤ ,  ¡f¢hgh¡f, ¤ ¨©ª« g$,  ¡f¦ih g¬i« , ª®��$&, 

where 

• h¢§ ¡f¦ih g is the unique index number assigned to the conflict, which is 

incremented for each identified conflict, 

• vc is the affected VC, 

• condition is the change condition of vc, 

• vcImpact is the impact associated with the vc and condition (the ¯�� value from 

Table 1 that corresponds to affected VC and condition), 

• conflictPlace is the name of the place in the VFlow where the conflict was 

detected, and 

• ª® is the change impact value associated adaptation A (Table 2), 

• vcChanges is a set of tuples that are each of the form  

 °«f± = �h¢§ °«f±, ¤ , ª̂��$&, where 

• h¢§ °«f± is the unique index number assigned to the change, which is 

incremented for each identified change, 

• vc is the affected VC, and 

• ª® is the change impact value associated with adaptation A (Table 2), and 

• maxIdx is the largest idx among conflicts in vcConflicts. 

When the VFlow is instantiated, an empty blue token is assigned to the Start place. This 

blue token traverses places (not including Initialize Pink, Adjust Pink, Administer Pink, and 

End) and transitions within the VFlow. The attributes of the blue token are updated according 

to transition rules, which will be discussed later. Since the blue token that is assigned to the 



 

Start place is initially empty, we use a flag trigger, which is initially set to 1, to indicate that 

the blue token is ready for traversal. Once the blue token begins traversal, trigger is set to 0. 

Traversal terminates when the blue token is empty and trigger is set to 0. 

The blue token shown in Figure 4 is the state of the blue token after it completes its 

traversal from the Start place to Administer and accumulates conflict information in the 

Adjust Transition. There is no conflict information in the Initialize Transition or the 

Administer Transition, since both are associated with empty pink tokens. The state of the blue 

token is provided below. 

 

BA1 = ({Initialize, Adjust, Administer},  

           {(1,(AuthConn, Set to true when connected to an authorized device, 0.9), Adjust, 0.55),   

             (2, (Conn, Set to true when connected to an authorized device, 0.9), Adjust, 0.55),  

             (3, (send, Send null data, 0.9), Adjust, 0.55)},  

           {(1, AuthConn, 0.55), (2, Conn, 0.55), (3, send, 0.55)}, 3) 

 

The visited set in the blue token holds the traversed place names, e.g., {Initialize, Adjust, 

Administer}. Three conflicts arise in Adjust which are associated with the AuthConn, Conn, 

and send VCs. Each conflict is added to vcConflicts in the blue token. Each conflict includes 

the affected VC, its condition, and the impact multiplier of the VC and condition as 

determined by Table 1. In addition, each conflict also has a change impact value of 0.55, 

which is the change impact value associated with adaptation A1. Three changes are added to 

vcChanges in the blue token, which hold the conflict information and are updated over the 

traversal process. This information includes the affected VCs and the change impact value, 

which is 0.55. Since three conflicts arise, the maxIdx into the blue token is updated to 3. 

Red tokens hold the attributes that are needed for the risk assessment and represent alerts 

regarding the impacts on VCs based on the adaptation qualities. For the VFlow, a red token v� for an adaptation A is defined as 

      v� =  � EC¥][²³Z, y;^j<_;:^xtB, <�̂s$, ;Bxt~E;:=~_;?, ;Bxt~E;:=~_;?=>?CBjEx_x;?) 

 

where 

• h¢§g¡´f  is the unique index number assigned to the red token, which is taken from 

the maxIdx of the blue token at the time the red token is generated, 

• ¤ ¨©ª« g¨f¦¡ holds the collection of information in the form  hf¦¡ = �¤ ,  ¡f¢hgh¡f, ¤ ¨©ª« g$, which contains the affected verification 

concern, the change condition of vc, and the impact multiplier of vc and condition 

(Table 1), 

• ª® is the change impact value associated with adaptation A (Table 2) 

•  ¡f¦ih g¬i«  is the name of the place in the VFlow where the conflict was 

detected, and 

•  ¡f¦ih g¬i« ¬µ¢¡©hf«f  is the place impact multiplier assigned to the 

affected architectural component (Table 3). 

Red tokens are only generated when conflicts are detected and are output by transitions to 

the End place. The red tokens shown in Figure 4 indicate the alerts that are generated for each 

conflict. They hold the impact multipliers values associated with adaptation A1. The three red 

tokens are provided below. 

 



 

 

 

RA1,1 = (1, (AuthConn, Set to true when connected to an authorized device, 0.9),  

             0.55, Adjust, 0.5) 

RA1,2 = (2, (Conn, Set to true when connected to an authorized device, 0.9),  

            0.55, Adjust, 0.5) 

RA1,3 = (3, (send, Send null data, 0.9), 0.55, Adjust, 0.5) 

 

The three affected VCs, AuthConn, Conn, and send, along with their conditions and impact 

values (Table 1) are included within vcImpactInfo of the red tokens. Each red token has a 

change impact value of 0.55, which is the change impact value associated with adaptation A1 

(Table 2). All conflicts were identified in the Adjust component, so each red token has a 

conflictPlace of Adjust and a conflictPlacePredominance of 0.5, which is the value from 

Table 3 associated with Adjust. 

To embed verification knowledge, we define a structure for the transitions in the VFlow. 

A transition T is defined as 

 · = �<~_;?¸_j?, <~_;?=>?CBjEx_x;?, y;^xtB$, 

where 

• placeName is the associated architectural component name, 

• ªi« ¬µ¢¡©hf«f  is the place impact multiplier assigned to the associated 

architectural component (Table 3), and 

• ¤ ¨f¦¡ is a set of tuples of the form hf¦¡ = �¤ ,  ¡f¢hgh¡f, ¤ ¨©ª« g$, where vc is the verification concern, condition is potential change, and ¤ ¨©ª« g is the impact 

multiplier that is associated with the vc and condition (Table 1). 

The transitions shown in Figure 4 are for the Initialize, Adjust and Administer components, 

which hold the verification concerns, their change conditions and impact multipliers for 

associated components. The Initialize Transition has a placeName of Initialize and a 

placePredominance of 0.5 (Table 3). vcInfo is empty. The VCs extracted for INS.2, which 

are AuthConn, Conn, and send, are not associated with S1 (Algorithm 3). The Adjust 

Transition has a placename of Adjust and a placePredominance of 0.5 (Table 3). It has a 

vcInfo that includes VCs AuthConn, Conn, and send and their associated conditions with the 

corresponding impact multiplier values as shown in Table 1. The Administer Transition has a 

placeName of Administer and a placePredominance of 0.5 (Table 3). It has a vcInfo that is 

empty as the extracted VCs (AuthConn, Conn, and send) are not associated with S5. 

 



 

 

Figure 5: Sample transition rule for CPN. 

A transition becomes enabled when blue and pink tokens are received from their 

respective input places. We define transition rules to process the tokens and output alerts. In 

Figure 5, one sample transition rule is shown. This rule applies when the blue token has not 

visited the place (check B.visited), does not have a conflict with a VC from a processed pink 

token with matching transition VCs (compares VCs into B.vcConflicts and T.vcInfo), but 

does have a conflict with a pink token VC and transition VCs (compares VCs from P.vc and 

T,vcInfo). After executing the transition rule, B.visited includes the place name and updated 

B.vcConflicts and B.vcChanges using the pink token and the transition’s embedded 

verification knowledge. We have this transition rule and the other 8 transition rules that are 

used for the wearable simulations in Appendix A. To assess the risk of each adaptation, we reuse a utility function from prior work [34] that 

calculates the expected utility of an adaptation from the risk factors accumulated by red 

tokens. The utility function is shown below, where R is the set of requirements and w(r) is the 

utility weight needed to maintain system compliance with a requirement, r. 

 

E[U�a$] = ¼ ½w�r$ ¿ P�S�t$ = 1$
N∈À�Á,Â$

Ã
Á∈Ä

 

 

In Table 5, stakeholder-supplied utility weights of the requirements for the insulin pump 

are provided. =���:$$ is the probability of risk associated with each alert (red) token, t, and 

estimated by multiplying the three impact multipliers together. 

 p�t$ = MÅÆ�t$ M�Ç�t$pÈ �t$ 

 

The adaptation with the greatest expected utility is considered to be the least risky and 

most appropriate for reusing the original proof of the verification process. 

 

 

Transition Conditions: 

    T.placeName is NOT in B.visited  

    VC in T.vcInfo appear in a tuple in B.vcChanges 

    A VC in a tuple in P conflicts with a VC in T.vcInfo 

 

Transition Actions: 

    

FORALL VC in T.vcInfo that appear in  a tuple in P  

                    Increase B’.maxIdx for the unique ID of red token  
    Create a red token, R, with proper idx_token and other    

                                 information held by P and T  

                    Update B’.vcConflicts by increasing idx_conflict and the  

                                       appropriate information held by T for all matching VCs 

                        Update B’.vcChanges by increasing idx_change and the appropriate  

                             change information from P      

   Add T.placeName to B’.visited 

   Send B’ to next place 

   Send P to its place 

   Send all red tokens to End place 



 

Table 5: Utility weights of the requirement. 

Insulin Pump 

INS. 1 INS. 2 INS. 3 

0.75 0.75 0.5 

 

We calculate the expected utility for each of the adaptations for all three wearables. The 

expected utility for adaptations A1-A4 with respect to the insulin pump are shown below. 

 E[U�A1$] =  

0 + (0.75*0.55*0.9*0.5) (0.75*0.55*0.9*0.5) (0.75*0.55*0.9*0.5) + 0   = 0. 00639601391 E[U�A2$] =  

0 +(0.75*0.65*0.2*0.5) (0.75*0.65*0.2*0.5) (0.75*0.65*0.9*0.5) +0 = 0. 00052135839 E[U�A3$] =  

0 + (0.75*0.6*0.5*0.5) (0.75*0.6*0.5*0.5) (0.75*0.6*0.9*0.5) +0 = 0. 00256289062 E[U�A4$] =  

0+ (0.75*0.75*0.5*0.5) (0.75*0.75*0.2*0.5) (0.75*0.75*0.9*0.5) +0 = 0. 0020022583 

 

According to the risk assessment perspective, adaptation A1, which allows the device to 

remain connected without fostering while sending empty packets has the best utility for the 

insulin pump. Allowing fostering may potentially cause devastating results for requirement 

INS.2, which says that the insulin pump is only allowed to connect with authorized base 

stations. Thus, adaptation A2, A3 and A4 have lower risk assessment values. For the insulin 

pump, the adaptations would be ranked in order as A1, A3, A4, A2. 

Similarly, we calculate the expected utility for each adaptation across the hearables and 

the HVRM, which are shown in Table 6. From the risk assessment, adaptation A3 is the best 

for hearables and adaptation A1 is the best for the HVRM. 

 

Table 6: Expected utility calculation from risk assessment. 

 A1 A2 A3 A4 

Hearables  0.00843557904 0.00466998096 0.01160804925 0.00845593725 

Heart Rate Variability Monitor 0.00806354516 0.00181526464 0.00300389062 0.0026913208 

Insulin Pump 0.00639601391 0.00052135839 0.00256289062 0.0020022583 

 

For the hearables, adaptation A3 is the best choice as the device gets disconnected and 

sends null data, which has an unconcerned impact on HR.1. It also does not allow fostering, 

so there is no unauthorized buffer change, which has an unconcerned impact on HR.2. 

Adaptation A4 is the second-best choice as the device gets disconnected, which has an 

unconcerned impact on HR.1, but it allows fostering. Fostering sometimes allows 

unauthorized connections, but as A4 disconnects hearables from available connections, 

fostering only has a worrisome impact. Adaptation A1 allows the device to remain connected 

while sending null data, which prevents music from being streamed and has a devastating 

impact on requirement HR.1. Similarly, A2 also has a devastating impact on HR.1, and, due 

to allowing fostering, has devastating impact on HR.2. The adaptations for the hearables can 

be ranked in order as A3, A4, A1, A2. 

The chosen adaptation for the HVRM is Adaptation A1, which allows the device to remain 

connected with an authorized connection while sending empty packets. Both changes have an 

unconcerned impact since they do not affect HRVM.1 or HRVM.2. The adaptation A2, 

which allows fostering, is the second-best choice because fostering has the potential risk of 



 

not being authorized. Adaptations A3 and A4 cause devastating impacts for requirement 

HRVM.2 as the device is disconnected and eventually data is lost. The adaptations for the 

HRVM can be ranked in order as A1, A2, A4, A3. 

 

6. Evaluation 

6.1. Repeatability of the formal approach using Lean 

To evaluate the repeatability of our proof process in Section 4.3 and the heuristic rules in 

Section 4.4, we examine the methodology used within the Lean automated theorem prover 

[61]. Lean is an open-source, interactive theorem prover in active development at Microsoft 

Research [62]. While Lean does not contain built-in support for Hoare logic or temporal 

logic, these logics can be added to the theorem prover through custom packages. In the 

subsequent paragraphs, we highlight how the methodology used with KIV translates to Lean 

resulting in a proof-of-concept [63] that demonstrates the potential for our proof process.  

Include the semantics of Hoare logic in Lean. Along with the semantics, definitions, 

lemmas, and sequents must also be included. Baanen et al. demonstrate how Hoare logic can 

be implemented in Lean [63, 64]. Their libraries, that include definitions and lemmas, can be 

imported into Lean. Their lemmas are definitionally equal to the rules that KIV uses to 

perform proof steps as both use the same underlying sequents. As long as the same sequents, 

with similar definitions and lemmas, are implemented in Lean, an equivalent proof process 

can be constructed. 

Include an abstraction of the semantics of the target program. Lean currently has no 

abstract representation of programming language semantics. Efforts are underway to provide 

such support in the next version of Lean [65]. We implement an abstraction to represent the 

semantics necessary to define Algorithms 1, 2, and 3 (see our GitHub reference [66]). 

Specifications from Algorithm 3 are written using this abstraction and then symbolically 

translated to a Hoare triple. The initial conditions of the program are specified as the pre-

condition of the triple while the post-condition represents the desired requirement being 

proven. 

Include a definition of a lexical scope, or program state, including lemmas. To 

determine the pre- and post-condition of any Hoare triple defined over a program’s 

semantics, it is necessary to implement the definition of a lexical scope. Lemmas must also 

be defined to update the current scope and apply it to a specific program variable within the 

proof process. Propositions over program variables are defined as a conjunction of terms 

where each term includes a sequence of scope updates and one scope application. A scope 

update is denoted as 1�"^" ↦ 1 "^" + 1�, which states that the value of variable I in the 

current scope s is to be updated to the increment of its previous value. A scope application is 

denoted 1_2  "^", where 1_2 = 1�"^" ↦ 1 "^" + 1�, and it is equivalent to the actual value of I. 

Lean’s built-in command simp can be used to simplify each term in the proposition to its 

actual value. Examples can be found in Section 9.4 of the Hitchhiker’s Guide to Logical 

Verification [63] of a scope (called state) defined for program variables with the natural 

number type. We found it necessary to implement our own scope definitions and lemmas to 

support all program data types [66]. 

Define new lemmas for the sequents for KIV’s if positive, if negative, and call left 
rules. Since there is no equivalent of KIV’s if positive or if negative rule in Lean or its 

libraries, we define new lemmas ite_true_intro and ite_false_intro [66]. When these lemmas 

are applied, they impose a goal that represents the expected condition of the if statement. 



 

Rule 4 can be applied to this goal to extract verification conditions. We also define a new 

lemma call_intro in Lean [66] to represent KIV’s call left rule. Applying the call_intro 

lemma in Lean imposes a goal to show that the arguments for XYZ and XYZ[\] exist in the 

current program state. Rule 5 can be applied to this goal to extract verification conditions. 

Include support for temporal logic, along with definitions and lemmas. Based on 

previous work [67] and our efforts [66], we are confident that temporal logic can be 

implemented in Lean. Hoare semantics can be defined using an operator that sequentially 

applies instructions, as has been demonstrated [63, 66]. Sequentially executed instructions 

can be assigned a step number that is incremented with each instruction. By doing so, 

temporal logic and Hoare logic can be combined in Lean by structuring each temporal 

proposition as an assertion about an instruction that is executed with a specific step number. 

Alternatively, temporal properties can be proven by inserting the property into the post-

condition of a Hoare triple and verifying that Hoare triple across all applicable execution 

traces. 

Once temporal logic has been implemented in Lean, TCPs and STCPs can be defined in 

Lean to condense the proof steps needed to walk through each program specification. A 

program can be verified using a backward proof or a proof by contradiction. A backward 

proof is simpler than a proof by contradiction but is limited to deterministic programs. A 

proof by contradiction uses the natural number M (Section 4.2). Our lemmas, lemma-

invariant, lemma-progress, and lemma-progress-split can be defined in Lean and applied to 

close resulting goals in a proof by contradiction. Having such support would be extremely 

valuable when verifying requirements of non-terminating or non-deterministic programs in 

Lean. 

 

6.2. Validation of the adaptation assessment framework 

One of the important research aspects to incorporate self-awareness within a SISSY 

system is to consider the impact of integration changes that will influence the behavior of the 

entire system [68].  This paper proposes adaptation assessment framework [21] to incorporate 

verification awareness within the system, which models the verification workflow by 

extracting meta-data from proof process for each critical requirement. Given that the nature 

of the requirement requires formal verification (e.g. automated theorem proving), we analyze 

the proof process to construct well-defined, heuristic rules to extract meta-data from the proof 

process workflow across architectural components to construct the model. Using the model, 

our approach identifies conflicts between the adaptation’s changes and the requirement’s 

original verification process. 

To validate the approach’s effectiveness, we check the alignment of the adaptive system 

behavior with the risk assessment introduced in Section 5, we simulate adaptations A1-A4 for 

all three wearables. We embed checkpoints within the wearables’ source code and log the 

execution trace for simulated adaptations. We collect the log of checkpoint execution traces 

and accumulate the score of checkpoints that passed. Adaptations are ranked based on their 

cumulative scores. The adaptation with the highest score, i.e., most checkpoints passed, is 

considered to be the best choice. Figure 6 shows how the checkpoints are placed within the 

insulin pump’s code to determine if (i) buffer does not overflow (CP1), (ii) data is generated 

(CP2), (iii) data is sent (CP3), (iv) connection is authorized (CP5), (v) connection has been 

established (CP5), (vi) data is read (CP6), (vii) data has been stored (CP7), (viii) buffer 

change has been authorized (CP8), and (ix) insulin is administered when blood sugar level is 

more than the defined value (CP9). 



 

 
Figure 6: Checkpoints embedded into insulin pump code  

for validation of adaptation risk assessment. 

We execute each simulation for the insulin pump 100 times. The results are shown in 

Table 7. With respect to the insulin pump, adaptations A1 and A3 have an impact of 

unconcerned as these adaptations do not allow fostering. CP4, which checks if the connection 

is authorized, passes all 100 runs. Adaptations A2 and A4 allow fostering and fostering 

sometimes allows unauthorized connections by forcefully setting the auth_connection flag to 

true. This results in the reduced scores of 51 and 52 for A2 and A4, respectively. Buffer 

change is allowed when auth_connection flag is true and connected to an authorized device. 

Adaptation A2 allows fostering and staying connected, which may cause a failure at 

checkpoint CP8. Thus, the checkpoint for authorized buffer change fails for adaptation A2. 

From the checkpoint log, we find that authorized buffer changes only occur in 51 trials. 

Checkpoint CP3 checks that data that has been sent is never passed and the score for this 

checkpoint is 0 for all adaptations, since all adaptations allow the sending of null data. In a 

similar manner, we accumulate the score for all checkpoints. The scores reflect the risk 

assessment results calculated by each wearable following the adaptation assessment 

framework described in Section 5. 

Table 7: Checkpoint simulation result for the insulin pump. 

 A1 A2 A3 A4 

CP1 100 100 100 100 

CP2 100 100 100 100 

CP3 0 0 0 0 

CP4 100 51 100 52 

CP5 100 49 0 0 

CP6 0 0 0 0 

CP7 0 0 0 0 

CP8 100 51 100 100 

CP9 100 100 100 100 

Score & Ranking 600 (rank 1) 451 (rank 4) 500 (rank 2) 452 (rank 3) 

 

For the HRVM, checkpoints CP1 to CP7 from Figure 6 are included within its code. We 

run the adaptive system simulations for HRVM for 100 trials. From the simulation results 

shown in Table 8, the best adaptation remains adaptation A1, which allows the HRVM to 

connect with an authorized connection and send empty packets. The checkpoint for 

authorized connection, CP5, is passed in all 100 trials. Since empty packets are sent, CP3 for 

send data and CP6 for data is read always fail with score of 0. Adaptation A2 is the second-

best choice, which allows fostering but fostering raises the risk of the connection not being 

authorized. This is gauged by CP5. The score for CP5 is less for adaptation A2 than it is for 



 

A1. Adaptations A3 and A4 cause devastating impacts for the HRVM as they allow it to be 

disconnected and eventually the data gets lost as determined by the log of checkpoint CP7, 

which has score 0 for both A3 and A4. 

Table 8: Checkpoint simulation result for HRVM. 

 A1 A2 A3 A4 
CP1 100 100 100 100 
CP2 100 100 100 100 
CP3 0 0 0 0 

CP4 100 47 100 53 
CP5 100 47 0 0 
CP6 0 0 0 0 

CP7 100 100 0 0 
Score & ranking 500 (rank 1) 384 (rank 2) 300 (rank 4) 253 (rank 3) 

 

Referring back to Figure 6, the hearables also have checkpoints CP1-CP7. However, 

checkpoint CP8 is changed to check (viii) if music is streamed for any connection, and CP9 is 

changed to check (ix) buffer has changed for authorized connection. We also add CP10, 

which is (x) accelerometer data that is collected is stored. We run the adaptive system 

simulations for the hearables 100 times and the results are shown in Table 9. CP3 fails for 

each of the adaptations due to sending null data, which results in a score of 0. CP4 is reduced 

for adaptations A2 and A4 because fostering is allowed. CP5 fails each run for adaptations 

A3 and A4 due to the device being disconnected and is reduced for adaptation A2 due to the 

device permitting fostering. CP6 and CP7 fail every run, regardless of adaptation, since each 

adaptation uses null data. Due to sending null data music can’t be streamed, so CP8 fails each 

run for adaptions A1 and A2, where the device is connected. Adaptations A3 and A4 

disconnect the device, which results in CP5 failing every run. However, A3 remains the best 

choice for the hearable, again aligning with the results of our adaptation assessment 

framework. 

Table 9: Checkpoint simulation result for hearables. 

 A1 A2 A3 A4 
CP1 100 100 100 100 
CP2 100 100 100 100 
CP3 0 0 0 0 

CP4 100 51 100 51 
CP5 100 51 0 0 
CP6 0 0 0 0 

CP7 0 0 0 0 
CP8 0 0 100 100 
CP9 100 51 100 100 

CP10 0 0 100 100 
Score & ranking 500 (rank 3) 353 (rank 4) 600 (rank 1) 551 (rank 2) 

 

 

6.3. Comparison of the adaptation assessment framework to Rainbow 

To provide perspective on our approach, we refer to the taxonomy proposed by Krupitzer 

et al. [69] that includes a set of qualitative dimensions to compare approaches that design and 



 

implement SASs. We reuse 9 of their dimensions, their questions used to capture qualitative 

information, and their input on Rainbow in Table 10, where we (1) expand on their qualities 

related to Rainbow [40, 41, 42, 71, 72] for particular dimensions, (2) add questions to capture 

qualitative information, and (3) add the qualities of our approach for each dimension. 

 

Table 10: Reuse of the dimensions in Krupitzer, et al. [69]. 

Dimensions from 

[69] 

Captured Information 

(italics – [69], regular font 

– new) 

Rainbow 

(italics – [69], regular font – 

new) 

Adaptation Assessment 

Framework 
(italics – [69], regular font – new) 

Type of support What kind of support does 

it provide? What elements 

does the approach include? 

Framework, Tools, 

Methodologies 

Framework, Tools, Methodologies  

Reusability Is reusability considered? 

How is it achieved? 

Reusable adaptation 

infrastructure consisting of 

system, Architecture and 

translation layers 

Reusable adaptation infrastructure 

consisting of architecture, proof-

process meta-data, and risk 

assessment mechanisms 

Use of tools How do the tools support 

the development? When are 

they applied? 

Stitch script editor, Rainbow 

development toolkit, Acme 

architectural design toolset 

[40, 71], SWIM to simulate 

target web applications [70]  

 

Applied throughout design 

and implementation [40, 71]] 

KIV theorem prover for proof 

meta-data extraction, Colored Petri 

Net construct for adaptation impact 

assessment, utility function for 

adaptation risk assessment 

 

Applied throughout design and 

implementation 

Support of 

adaptation 

mechanisms 

How does the approach 

handle the system‘s 

adaptation? What 

mechanisms does it utilize? 

 

How is the adaptation plan 

configured? 

Not specified 

 

Tailors adaptation strategies 

and tactics at design-time to 

support runtime adaptation 

mechanisms [40, 71] 

 

Chooses adaptation plans 

from pre-defined strategies 

based on pre-defined utility 

preferences [40, 71] 

Heuristic rules extract theorem 

prover meta-data as verification 

concerns 

 

Risk assessment supports runtime 

choice of adaptation  

 

Chooses adaptation plan from pre-

defined strategies and externally 

configured plans 

Type of adaptation What is the granularity of 

the adaptation 

Compositional Compositional and parameter 

expressed within change set  

Special demands 

on developer 

What requirements does the 

developer have to fulfill? 

What type of and how much 

knowledge is demanded in 

order to use the approach? 

Mathematical knowledge  

 
Application of probabilities to 

define strategies and utility 

preferences [41, 42, 72] 

Mathematical knowledge  

 

Formal methods knowledge to 

perform proof process, Application 

of probabilities for risk assessment 

Development 

phase 

In which step(s) of the 

software development 

process can it be applied? 

Implementation Design and implementation 

 

 

Applicability Which systems can the 

approach be applied on? 

 

Does the approach support 

legacy and/or blackbox 

systems? 

Self-Adaptive Systems 

 

 

Yes, from an integration 

perspective [40, 71] 

Self-Adaptive Systems 

 

 

Yes, when source code is available 

Language 

specificity 

Does the approach require 

a specific programming or 

modeling language? 

Java, XML Language independent, except for 

the theorem prover language 

requirements 

 

The comparison presented by Krupitzer, et al. [69] pinpoints Rainbow’s approach along 

with other existing adaptation frameworks but does not provide further elaboration in each 

dimension. From literature on Rainbow [40, 41, 42, 71, 72], we include additional insights in 

Table 10 to provide a clearer understanding of how Rainbow compares with our adaptation 



 

assessment framework. Specifically, the Use of tools dimension denotes specific tools the 

approach uses for development. Rainbow mentions tools that are associated with specific 

tasks and when they are applied to support development. The Support of adaptation 

mechanisms dimension highlights significant distinctions across both approaches between the 

elements/processes that are required to implement adaptation mechanisms and how they 

support adaptation. Rainbow requires that system specific adaptations be defined at design-

time in the form of strategies (adaptation conditions) and tactics (adaptation changes) that 

comprise decision trees [71, 72]. Rainbow also requires pre-defined utility preferences that 

map tactics to expected utility values [40, 71]. Pre-defined strategies and tactics are used to 

select an adaptation plan at runtime based on pre-defined utility preferences [40, 71]. In our 

own approach, we extract meta-data from the proof process at design-time and use the 

extracted meta-data within a model that includes the system architecture. The model provides 

inputs to our risk assessment procedure. Adaptation plans are then assessed and selected at 

runtime based on the risk assessment results. In the Special demands on developer dimension, 

we elaborate over the expertise that each approach requires. The Applicability dimension is 

further extended to include whether the approach can support legacy and/or blackbox 

systems. While these are not system domains per se, lack of support for legacy and blackbox 

systems can limit applicability within a system domain.  

We extend the dimensions in Table 11 to include (i) Intensity of human effort to identify 

elements of the approach that require human implementation or interaction at one time or 

consistently throughout the development process, (ii) Implementation of adaptation layer 

to describe how the adaptation layer is incorporated into the system, and (iii) Support of 

model/requirement modifications at runtime to state how the adaptation layer can be 

updated after initial deployment. Information is captured using questions from the second 

column that we crafted. These dimensions have been included to further highlight points of 

comparison between Rainbow’s approach and our own. Captured information for Rainbow is 

taken from prior literature [40, 41, 42, 71, 72]. The Intensity of human effort details human-

oriented processes that, in turn, highlights areas of the approach that must be repeated when 

the system architecture or its requirements change. The Implementation of Adaptation 

Layer dimension provides insight into limitations of the adaptation layer. The performance 

of external adaptation layers, as used in Rainbow, can suffer from poor network conditions. 

Using internal adaptation layers, such as in our own approach, typically have stricter 

limitations with respect to applicability. Lastly, the Support of model/requirement 

modifications at runtime dimension provides insight as to what should be updated and/or 

redeployed if the system architecture and/or requirements change. Having the ability to 

update a system’s decision making with respect to adaptations while it is deployed is 

desirable for many SASs. 

 

Table 11: Extending the dimensions in Krupitzer, et al. [69]. 

Extended Dimensions Captured Information Rainbow Adaptation Assessment 

Framework 

Intensity of Human 

Effort 

Which elements require 

human implementation 

and/or interaction? 

Defining adaptation strategies & 

tactics, utility preferences, and 

the configuration of the 

adaptation infrastructure [40, 41, 

42, 71, 72] 

Performing requirement proof 

process, meta-data extraction, 

and defining and classifying 

impact multipliers 

Implementation of 

Adaptation Layer 

How is the adaptation 

layer incorporated into 

the system? 

External adaptation layer that is 

incorporated over a network 

connection [40, 4, 712] 

Internal adaptation layer that 

is embedded within the 

system  

Support of 

model/requirement 

How to update 

adaptation layer if 

not specified Update architectural model 

and impact multipliers to 



 

modifications at 

runtime 

system requirement 

and/or model need to be 

changed after initial 

deployment? 

redeploy 

7. Discussion and conclusion 

This paper describes and evaluates an adaptation assessment framework to embed 

verification awareness on a wearable testbed that comparatively evaluates the risk of potential 

adaptations inhibiting the proof processes of previously verified requirements. We investigate 

our approach on three simulated wearables that have different verified requirements. We 

outline a strategy to use the KIV automated theorem prover to verify the wearable 

requirements. Heuristic rules are defined to capture the meta-data from the KIV proof process 

and embed verification awareness within the target wearables. We show that given the same 

four adaptations available to each wearable, the wearable independently determines the 

adaptation least risky to inhibiting the proof processes of its verified requirements. 

Incorporating verification awareness within the system is an effective approach to reason 

about system compliance with requirements when runtime adaptation is needed, including 

when adaptations are configured at runtime. 

One potential shortcoming of this approach is that system requirements have to be initially 

specified by hand. This activity needs expert knowledge and is open to problems of 

interpretation as human experts translate statements of natural language to formal 

specifications and vice versa [60]. The challenge is that system requirements cannot be 

procedurally generated with a high degree of reliability. Attempting to have a generalized 

machine procedurally generate requirements only translates the problem of interpretation 

from a human to a machine that is far less equipped to navigate the problem domain [60]. A 

domain-specific model could be developed that would have the necessary expertise to 

generate system requirements. However, developing the domain-specific model would still 

require expert knowledge to procedurally identify and extract requirements [73]. One 

direction is to use structured natural language for a domain of requirements, such as our 

approach with the use of the NIST SP800-53 security controls [74] that can be more easily 

expressed as a formal specification [20].  

Rice’s theorem states that any non-trivial, semantic property of a program is undecidable 

[24]. Given a property P of a program, P is trivial if-and-only-if there are only programs that 

satisfy P or there only programs that do not. For example, if P is the invariant □�p → Ë$, then 

we could demonstrate that P is non-trivial by showing that there is at least one program that 

satisfies P and at least one program that does not. Once it has been determined that P is non-

trivial, we could attempt to construct an algorithm that accepts all programs and adaptations 

where P is satisfied, or rejects them otherwise. This, in essence, defines a decision problem 

where functional requirements are treated as non-trivial properties. As such, by virtue of 

Rice’s theorem, we can determine that the decision problem to accept a program or 

adaptation due its ability to satisfy a functional requirement, such as P, is undecidable. It 

follows from that conclusion that determining whether a given program or adaptation satisfies 

P is undecidable. Thus, we employ a heuristic approach to assess the risk of an adaptation 

potentially violating a requirement by examining the meta-data captured from a proof 

process, strategy, or structure. 

The KIV automated theorem prover does place certain limitations on our work. Each set of 

specifications for each program and all related requirements must be constructed by hand. In 

addition, each proof of each requirement must also be performed manually. KIV does employ 

a very helpful set of heuristics that can automate the vast majority of the proof steps. Lastly, 

capturing meta-data from the proof process currently requires expert intervention. However, 



 

capturing meta-data is a straightforward endeavor since the programs must already be 

reduced to the bare minimum number of program variables and program states to support 

proof construction. Thus, reliance on a formal proof process may limit the risk assessment 

approach from being widely accepted until the automated technology becomes more 

powerful. Current efforts to implement new, more expressive theorem provers, such as Lean 

[61], provide us with confidence that greater and more customizable automation will be 

available in the future. That said, the proof process does ensure the system’s correctness with 

respect to certain requirements and the proof process only needs to be performed once to 

capture meta-data information. The presented risk assessment approach expects a structured 

format to specify adaptation changes that we currently construct manually. We assume that 

an adaptation planner would have the capability to specify the change set. 

State space explosion remains a significant research challenge for the self-adaptive system 

community [27]. In general, modeling the runtime behavior of a system using a theorem 

prover, such as KIV, is subject to limitations posed by state space explosion [6]. Any single 

requirement can be specified over any number of program variables, resulting in a state space 

that is exponential with respect to the number of program variables. In such cases, axioms of 

prepositional logic must be used to subdivide complex requirements into many simpler 

requirements that can each be individually proven. There is, however, no efficient means by 

which to reduce a requirement specified in disjunctive normal form, if it is assumed that all 

requirements should be satisfied.  

Developers can employ compositional analysis techniques, such as refactoring and 

decomposition, to address state space concerns for their target system. Both KIV and Lean 

support custom lemmas which can be applied to the proof process to simplify the proof 

process, where possible. For complex systems that cannot be easily refactored, the approach 

presented relies on a model of system behavior as defined by our adaptation assessment 

methodology. In practice, such models can be more easily refactored and verified than 

original source code [12]. 

Such techniques continue to demonstrate merit in industry applications. Microsoft has 

been employing proofs using F*, a proof assistant programming language, and other modern 

proof assistants, such as Lean [61], to improve the security of HTTPS. Project Everest covers 

600,000 lines of code and proofs that are integrated hundreds of times per day [75]. Ancillary 

to Project Everest, Microsoft released EverCrypt, a cryptographic library that has fully 

verified C and assembly code using F* [76]. Zelkova [77], another proof assistant, has been 

used by Amazon to encode the semantics of AWS service policies into satisfiability modulo 

theories (SMT). Policy properties are then verified using SMT solvers. With a significant 

understanding of their domain, researchers at both of these companies have been able to 

employ theorem provers to provide hundreds to millions of proofs every day [75, 77]. 

The most significant issues with scalability are those related to constructing an appropriate 

model of the system architecture that can be used for adaptation assessment. Large scale 

systems often have many interdependencies between components that would each have to be 

evaluated to gauge the full impact of an adaptation [4]. This evaluation can create timing 

issues that undermine the integrity of the system’s assessment process. These timing issues 

are further exacerbated if the system must perform runtime adaptation assessments within a 

restrained window of time. The work presented in this paper addresses these issues by 

extracting proof process meta-data to institute heuristics that can be employed by runtime 

adaptation assessments. Employing such heuristics in a self-aware system can avoid timing 

issues that would otherwise limit scalability. 

With respect to IoT and cloud computing, relying on an external adaptation layer to 

perform adaptations can introduce additional latency due to network lag time that can be 



 

exacerbated by poor network conditions. IoT devices usually have low computational power 

and may operate in low bandwidth situations [52, 54]. External adaptation layers have been 

examined with IoT devices and cloud services to address their need to modify their 

requirements during deployment [78], but response time can be affected. Once meta-data has 

been extracted, our approach employs a lightweight and embedded risk assessment process. 

Thus, embedded verification awareness allows risk assessment to be performed on an 

adaptation without added latency introduced by a connected, external adaptation layer. In 

addition, with our approach, we can perform a proof process on modified requirements, 

develop a modified model as an external action, and then redeploy the modified model within 

a running system as an embedded adaptation layer. Thus, the approach may benefit SAS in 

IoT and cloud computing domains. 

To cope with uncertain situations, cyber-physical systems (CPS) should maintain evidence 

that the system maintains a certain degree of requirement compliance confidence [3, 79]. 

Architecting trustworthiness within a CPS involves development-time modeling, verification, 

and synthesis of assurance evidence [80], which are all supported by our adaptation 

assessment framework. Our risk assessment estimates the probability of a potential 

requirement violation due to adaptation, which can be used as an evidence of trustworthiness. 

Some of the most significant difficulties in scaling our approach exists where human 

intervention is currently required. After proofs have been constructed, experts must evaluate 

the proofs and apply the extraction rules to extract verification concerns from the proofs. 

These verification concerns are then associated with impact values, which are currently 

determined by human expertise. There is potential for automation by simulation or a design-

time adaptation risk assessment. Impact values can then be used to evaluate adaptations once 

the adaptation has been translated to a changeset by an expert. Automating the translation 

requires a specification language for the adaptation that aligns with changeset expectations. 

The risk assessment process employs a CPN that also must be constructed by hand. It is our 

intent to further investigate these areas so that the need for human intervention will be 

reduced. 
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Appendix A: Colored Petri Net Transition Rules 

P refers to a pink token. B refers to a blue token. R refers to a red token. T refers to a transition. B’ 

refers to the state of the blue token after it is output by a transition. 

Rule Description Condition Action 

1 Blue token has 

cycled completely 
• Ì. ¤h£hg¢ VÍ mÎÏUÐ and gµh±±µ = Ñ  

Remove Blue and Pink tokens from 

CPN 

2 Blue token has 

visited the place and 

had a previous 

conflict but does not 

have a conflict with 

a VC from a 

processed pink 

token with a 

matching transition 

VC 

• T.placeName is in 

B.visited  

• T.placeName is in one of 

the tuples of 

B.vcConflicts 

• NO VC in T.vcInfo 

appear in a tuple in 

B.vcChanges that are not 

already in tuples in 

B.vcConflicts associated 

with T.placeName 

 

 

• Remove T.placeName from 

B’.visited 

• Send B’ to next place 

• Send P to its place 

 

3 Blue token has 

visited the place and 

had a previous 

conflict, and does 

have a conflict with 

a VC from a 

processed pink 

token with a 

matching transition 

VC 

• T.placeName is in 

B.visited  

• T.placeName is in one of 

the tuples of 

B.vcConflicts 

• VC in T.vcInfo appear in 

a tuple in B.vcChanges 

that are not already in 

tuples in B.vcConflicts 

associated with 

T.placeName 

 

• FORALL VC in T.vcInfo that 

are also in tuples in 

B’.vcChanges 

� Increase B’.maxIdx for 

the unique ID of red 

token  
� Create a red token, R, 

with the proper idxtoken 

and other information 

held by B and T 

� Update B’. vcConflicts 

by increasing idxconflict 

and the appropriate 

information held by T 

for all matching VCs 

• Remove T.placeName from 

B’.visited 

• Send B’ to next place  

• Send P to its place 

• Send all red tokens to End 

place 

4 Blue token has 

visited the place, but 

has not had a 

previous conflict 

match at this place 

and does have a 

conflict with a VC 

from a processed 

pink token with a 

matching transition 

• T.placeName is in 

B.visited  

• T.placeName is NOT 

in one of the tuples of 

B.vcConflicts 

• VC in T.vcInfo that’s 

also in a tuple in 

B.vcChanges 

 

• FORALL VC in T.vcInfo that 

are also in tuples in 

B’.vcChanges, 

� Increase B’. maxIdx for 

the unique ID of red 

token 

� Create a red token, R, 

with the proper idxtoken 

and other information 



 

VC held by B and T 

� Update B’.vcConflicts 

by increasing idxconflict 

and the appropriate 

information held by T 

for all matching VCs 

• Remove T.placeName from 

B’.visited 

• Send B’ to next place  

• Send P to its place 

• Send all red tokens to End 

place 

 

5 Blue token has 

visited the place, has 

not had a previous 

conflict match at this 

place, and does not 

have a conflict with 

a VC from a 

processed pink 

token with a 

matching transition 

VC 

• T.placeName is in 

B.visited  

• T.placeName is NOT 

in one of the tuples of 

B.vcConflicts 

• NO VC in T.vcInfo 

appear in a tuple in 

B.vcChanges that are 

not already in tuples in 

B.vcConflicts 

associated with 

T.placeName 

 

• Remove T.placeName from 

B’.visited 

• Send B’ to next place  

• Send P to its place 

 

6 Blue token has not 

visited the place, 

does not have a 

conflict with a VC 

from a processed 

pink token with a 

matching transition 

VC, and there is no 

conflict with any 

pink token VC and 

transition VC 

• T.placeName is NOT 

in B.visited  

• T.VC is NOT in one of 

the tuples of 

B.vcChanges 

• NO VC in P.VC is has 

conflicts a VC in 

T.vcInfo 

 

• Add T.place_name to 

B’.visited 

• Send B’ to next place 

• Send P to its place 

 

7 Blue token has not 

visited the place and 

does have a conflict 

with a VC from a 

processed pink 

token with a 

matching transition 

VC, but there is no 

conflict with any 

pink token VC and 

transition VC 

• T.placeName is NOT 

in B.visited 

• VC in T.vcInfo that’s 

also in a tuple in 

B.vcChanges  

• NO VC in a tuple in P 

conflicts with a VC in 

T.vcInfo 

 

• FORALL VC in tuples of in 

T.vcInfo that are also in tuples 

in B’.vcChanges, 

� Increase B’.maxIdx for 

the unique ID of red 

token  

� Create a red token, R, 

with the proper idxtoken 

and other information 

held by B and T  

� Update B’.vcConflicts 

by increasing idxconflict 

and the appropriate 

information held by T 



 

for all matching VCs 

• Add T.placeName to B’.visited 

• Send B’ to next place 

• Send P to its place 

• Send all red tokens to End 

place 

 

 

8 Blue token has not 

visited the place, 

does not have a 

conflict with a VC 

from a processed 

pink token with a 

matching transition 

VC, but does have a 

conflict with a pink 

token VC and 

transition VC 

• T.placeName is NOT 

in B.visited  

• VC in T.vcInfo appear 

in a tuple in 

B.vcChanges 

• A VC in a tuple in P 

conflicts with a VC in 

T.vcInfo 

 

• FORALL VC in T.vcInfo that 

appear in a tuple in P 

� Increase B’.maxIdx for 

the unique ID of red 

token  

� Create a red token, R, 

with proper idxtoken and 

other information held 

by P and T  

� Update B’.vcConflicts 

by increasing idxconflict 

and the appropriate 

information held by T 

for all matching VCs 

� Update B’.vcChanges 

by increasing idxchange 

and the appropriate 

change information 

from P  

• Add T.placeName to 

B’.visited 

• Send B’ to next place 

• Send P to its place 

• Send all red tokens to End 

place 

 

9 Blue token has not 

visited the place, 

does have a conflict 

with a VC from a 

processed pink 

token with a 

matching transition 

VC, but does have a 

conflict with a pink 

token VC and 

transition VC 

• T.placeName is NOT 

in B.visited 

• VC in T.vcInfo that’s 

also in a tuple in 

B.vcChanges 

• A VC in a tuple in P 

conflicts with a VC in 

T.vcInfo 

 

 

• FORALL VC in T.vcInfo that 

are also in tuples in 

B’.vcChanges, 

� Increase B’.maxIdx, for 

the unique ID of red 

token  

� Create a red token, R, 

with the proper idxtoken 

and other information 

held by B and T 

� Update B’.vcConflicts 

by increasing idxconflict 

and the appropriate 

information held by T 

for all matching VCs 



 

• FORALL VC in T.vcInfo that 

appear in a tuple in P  

� Increase B’.maxIdx for 

the unique ID of red 

token  

� Create a red token, R, 

with proper idxtoken and 

other information held 

by P and T  

� Update B’.vcConflicts 

by increasing idxconflict 

and the appropriate 

information held by T 

for all matching VCs 

� Update B’.vcChanges 

by increasing idxchange 

and the appropriate 

change information 

from P  

• Add T.placeName to 

B’.visited 

• Send B’ to next place 

• Send P to its place 

• Send all red tokens to End 

place 

 

 

 




