

Evaluating Verification Awareness as a

Method for Assessing Adaptation Risk

Ian Riley1, Sharmin Jahan1, Allen Marshall1, Charles Walter2, Rose F. Gamble1

1. Tandy School of Computer Science, University of Tulsa, Tulsa, Oklahoma, 74104, USA

2. Department of Computer and Information Science, University of Mississippi, University, MS, 38677, USA

Corresponding author(s)

Rose F. Gamble (gamble@utulsa.edu)

Abstract

Self-integration requires a system to be self-aware and self-protecting of its functionality and

communication processes to mitigate interference in accomplishing its goals. Incorporating

self-protection into a framework for reasoning about compliance with critical requirements is a

major challenge when the system’s operational environment may have uncertainties resulting in

runtime changes. The reasoning should be over a range of impacts and tradeoffs in order for the

system to immediately address an issue, even if only partially or imperfectly. Assuming that

critical requirements can be formally specified and embedded as part of system self-awareness,

runtime verification often involves extensive on-board resources and state explosion, with

minimal explanation of results. Model-checking partially mitigates runtime verification issues

by abstracting the system operations and architecture. However, validating the consistency of a

model given a runtime change is generally performed external to the system and translated back

to the operational environment, which can be inefficient.

This paper focuses on codifying and embedding verification awareness into a system.

Verification awareness is a type of self-awareness related to reasoning about compliance with

critical properties at runtime when a system adaptation is needed. The premise is that an

adaptation that interferes with a design-time proof process for requirement compliance

increases the risk that the original proof process cannot be reused. The greater the risk to

limiting proof process reuse, the higher the probability that the requirement would be violated

by the adaptation. The application of Rice’s 1953 theorem to this domain indicates that

determining whether a given adaptation inherently inhibits proof reuse is undecidable,

suggesting the heuristic, comparative approach based on proof meta-data that is part of our

approach. To demonstrate our deployment of verification awareness, we predefine four

adaptations that are all available to three distinct wearable simulations (stress, insulin delivery,

and hearables). We capture meta-data from applying automated theorem proving to wearable

requirements and assess the risk among the four adaptations for limiting the proof process reuse

for each of their requirements. The results show that the adaptations affect proof process reuse

differently on each wearable. We evaluate our reasoning framework by embedding checkpoints

on requirement compliance within the wearable code and log the execution trace of each

adaptation. The logs confirm that the adaptation selected by each wearable with the lowest risk

of inhibiting proof process reuse for its requirements also causes the least number of

requirement failures in execution.

Keywords: Self-awareness, verification awareness, adaptation, risk assessment

© 2021 published by Elsevier. This manuscript is made available under the Elsevier user license
https://www.elsevier.com/open-access/userlicense/1.0/

Version of Record: https://www.sciencedirect.com/science/article/pii/S0167739X21000443
Manuscript_40f33e4f2dc449318f774fc44b589a61

https://www.elsevier.com/open-access/userlicense/1.0/
https://www.sciencedirect.com/science/article/pii/S0167739X21000443

1. Introduction

Self-improving system integration (SISSY) has become a prominent approach for

effective self-adaptation where heterogeneous systems are interconnected [1]. Self-integration

considers mutual influences among the actions, trustworthiness, performance, and

collaboration of the interconnected subsystems. Integration often changes the system

structure, affecting each subsystem’s operational goals and exposing potential security

vulnerabilities [2, 3]. To self-integrate systems with adequate results, each individual

integrated system must be self-aware. The self-awareness we advocate is verification

awareness. This form of awareness focuses system monitoring of and reaction to its own

requirements compliance processes if it must adapt to integrate with another system or

improve interaction with a new environment. With verification awareness, systems can

manage their requirements compliance locally, rather than rely on global controls to manage

them across an integrated system. Such higher-level controls have been shown to become

unstable as a distributed system grows more complex, which limits the scalability of the

integrated system [4].

When a system prepares for self-integration, it may incorporate one of many forms of self-

awareness [5]. By doing so, it can adapt its functionality and communication processes while

still protecting itself. For these actions, the system must be able to house and access

embedded information regarding its processes, architecture, and critical requirements. It must

allow for reasoning about uncertainty in its environment and enable technology that can

assess the risk of an adaptation against presented alternatives prior to performing a runtime

change. The need for these base capabilities leads to the recognition that maintaining the

formal verification of a system’s compliance with critical requirements is challenging. The

system’s operational environment may have uncertainties resulting in runtime changes that

could violate requirements. Runtime verification (RV) can provide an effective solution when

a system cannot be assured by conventional means. RV involves a process of formalizing a

system as a set of specifications with observable inputs that support traceability of the system

state [6]. However, runtime verification suffers when the verification framework is not fault-

tolerant, the system has constrained computational resources, or state explosion occurs.

Model-checking partially mitigates runtime verification challenges by representing the

system abstractly, but performs external, not embedded, validation of the model consistency

given an adaptation [7].

Runtime and design time verification can be supported by compositional analysis, which

employs various techniques, such as decomposition [8, 9], process algebras [10], labeled

transition systems, reachability analysis [11], and refactoring [12, 13], to address state space

concerns and the scalability of formal methods [14]. The essential strategy of compositional

analysis is to model the target system as a hierarchy of system specifications, where each

specification can be verified by some composition of verified specifications that exist lower

in the hierarchy. The lowest level of the hierarchy is comprised of system specifications that

can feasibly be verified using formal methods. In this way, compositional analysis can

address state space concerns by identifying the program states associated with specifications

that have already been verified when applied to specifications that exist higher in the

hierarchy. In practice, compositional analysis must often be applied to formal models of

system behavior since source code does not neatly fit into such a hierarchy.

Runtime adaptation requires reasoning over a range of impacts and tradeoffs in order for

the system to immediately address an issue. It is a significant research challenge to

investigate how a model can be updated to remain effective at runtime as adaptations take

place [15]. Self-reflection [16] includes self-modeling, analysis, and decision processes that

incorporate system integration status. One of the research challenges associated with self-

reflection is the consistency and results validation of the current model. As integration into a

larger system changes a local system’s structure and/or functionality, reusing the prior model

may no longer be valid. Other approaches that support runtime verification for self-

integration do not have a framework that includes protocols, formats, and interfaces to

provide strong guarantees that the required parts of a system model are maintained [17, 18,

19].

Verification awareness is a type of self-awareness directly related to system knowledge

regarding its requirements compliance. The assumption is that adaptive systems have critical

properties that have been formally proven at design time [20]. A runtime adaptation can alter

one or more state variables at a point in the system code that could affect its scope or

allowable value range. Doing so can interfere with the process and structure of the code

analysis that was performed during the proof of a critical requirement. The interference

constitutes an increased risk that the original, design time, verification (proof) process cannot

be reused. The greater the risk of inhibiting proof process reuse, the higher the probability

that a new proof process would be needed for the adaptive system to prove its compliance

with a requirement. Needing an alternate proof process or strategy increases the risk that the

requirement would be violated by the adaptation. Thus, a change to a particular state variable

constitutes a verification concern that should be part of the systems’ verification awareness

across its critical requirements. The impact of that change should be measurable for the

system to reason over an adaptation’s viability at runtime.

In this paper, we extend our adaptation assessment framework [21] to embed verification

awareness into a target self-adaptive system (SAS). We express critical safety and liveness

properties in Linear Temporal Logic (LTL) [22] and prove them against their code using the

KIV theorem prover [23]. We apply compositional analysis using a combination of

decomposition and refactoring techniques to address state space concerns within the proof

process. In addition, we demonstrate how decomposition can be applied to systems with LTL

properties through the introduction of temporal contract propositions (TCPs) and split

temporal contract propositions (STCPs). We devise heuristic rules to capture the meta-data

that defines the structure of the proof process, such as state variables and state transitions that

directly impact the requirement verification. This meta-data and system architecture are

codified into an embedded Colored Petri Net (CPN) [24]. When runtime changes are needed,

the CPN is executed by the system to calculate the number of impacted places in the proof

process and the density of that impact by the adaptation. Risk assessment is performed on the

CPN output among potential adaptations across all critical requirements to determine which

among them provides the best opportunity for proof reuse. The application of Rice’s theorem

[25] to this domain indicates that determining whether a given adaptation inherently inhibits

proof reuse is undecidable, suggesting a heuristic, comparative approach based on proof

process meta-data is a viable solution.

We target an experimental testbed of heterogeneous, communicating wearable simulations

(stress, insulin delivery, and hearables) on Raspberry Pi 3’s within a personal fog [26], in

which runtime verification and model checking would be too resource intensive. We

predefine four adaptations. We apply a KIV proof to each wearable requirement and deploy

the CPNs within each wearable to assess the risk among the potential adaptations. The results

show that adaptations affect proof process reuse for wearable requirements differently. We

separately evaluate the results by embedding requirement validation checkpoints into the

wearable code and logging the execution trace of each adaptation. The logs confirm that the

adaptation selected by each wearable during the risk assessment process also causes the least

number of requirement failures, which validates our approach to making the wearable

verification aware.

The paper is structured as follows. Section 2 outlines the research on self-adaptation, self-

awareness, runtime verification, and model checking. Section 3 discusses the wearable

testbed that we use to employ verification awareness. Section 4 details the KIV proof

strategies that allow for extracting proof process meta-data. These strategies include the

compositional analysis techniques that use the introduced contract propositions to address

state space concerns and the heuristic rules to direct the meta-data extraction. The

methodology is applied to the testbed. Section 5 overviews the adaptation risk assessment

process. Section 6 demonstrates how our proof process methodology can be applied to other

theorem provers, evaluates the execution of adaptations within the testbed against the results

of the risk assessment process, and provides a comparison of our adaptation assessment

framework to the Rainbow framework. Section 7 provides discussion and concludes the

paper.

2. Background and related work

A self-adaptive system operates in a dynamic environment and is expected to adapt its

behavior automatically in response to situational changes to improve system reliability [27].

The reliability of a self-adaptive system refers to the system’s resiliency to maintain

compliance with requirements within a dynamic environment [28, 29]. This dynamism

demands increased attention when considering SISSY initiatives with respect to the

adaptation of self-integrating systems [1]. For effective system integration, incorporating self-

awareness is necessary to assess integration status from the perspective of a system’s relation

to other systems and their social standing [2, 16]. Incorporating a form of self-awareness

within the system is necessary to recognize the operational context for the change and

reasoning needed regarding the choice of adaptation direction [17, 30]. Key issues associated

with incorporating self-awareness into a system to allow for dynamic adaptation include 1)

understanding the minimal amount of information that is required, 2) efficiently analyzing the

information to produce actionable outcomes, and 3) enabling appropriate adaptation

mechanisms to change the system’s functionality, including runtime changes [16, 31].

Changes to a system’s functionality can cause the system to no longer comply with certain

requirements. This compliance interference may be necessary and acceptable in certain

contexts. However, as part of the system’s self-awareness, it should know the extent of its

ability to maintain compliance, including where and how an adaptation impacts that

compliance. Runtime verification is one approach to assess requirements compliance. System

requirements are expressed using unambiguous specification languages, such as LTL or

Computational Tree Logic (CTL) [22, 32]. These formal specifications are verified against

runtime changes. Performing runtime verification for distributed systems in an interactive

environment is challenging since each subsystem has local and global requirements [33].

Deriving specifications from requirements, precisely formalizing properties, and observing

the behaviors that have changes are one of the RV’s principal engineering challenges [6].

Moreover, a change can have a different impact on each system due to their dynamic

characteristics and asynchronous computations. Network latency, non-deterministic

behaviors, and independent failures are also involved in distributed systems’ life cycle.

Traditional RV assumes centralized computation, making it difficult to address a wide range

of adaptation scenarios.

To address state space concerns, such as state space explosion, with traditional RV and

design-time verification methods, authors can employ compositional analysis [14]. Clarke et

al. [8] apply decomposition to systems composed of many parallel threads to verify temporal

properties in CTL. More recently, Cho et al. [9] implement BLITZ, which employs bounded

model checking for decomposition to detect bugs in systems with over 100,000 lines of code.

Yeh et al. [10] demonstrate how process algebras can be used to overcome state space

explosion for processes and structures that can be simplified using a congruence relation. The

most significant efforts in reachability analysis have been made by Cheung et al. [11], who

show how context constraints can be automatically deduced from pre-specified system

conditions. In most cases, system engineering results in systems that are not easy to verify

using traditional forms of decomposition. In such cases, Cheng et al. [12] provide refactoring

techniques to produce adequate models of complex systems that can be verified using

traditional decomposition. Their work has been incorporated into ARCATS [13], a tool that

procedurally refactors models in Promela (a modeling language) and reduces state space

using branching bisimulation minimization.

Tamura et al. [34] define “viability zones” to separate out the concerns for verifying a

requirement that can be impacted by changes and the set of viable states to be maintained so

that system operation is not compromised. They examine those states at runtime to determine

if a viability zone may be compromised by an adaptation. To formally verify a requirement at

runtime, appropriate formalisms expressing system properties and their interactions within a

dynamic environment are needed to assess system correctness. This process is very

challenging for a self-adaptive system [6, 35, 18]. Filieri et al. [36] apply an offline

verification process before the deployment of an adaptive system and verify adaptation

changes at runtime by reusing the knowledge from that verification process. However, their

approach requires having full adaptation knowledge prior to deployment, which may not be

possible during a self-integration discovery and assertion process where adaptations can be

configured and negotiated at runtime. We take a different approach by expressing how a

requirement was proven and embedding that knowledge to determine the risk of inhibiting

the original proof process. Thus, the adaptations can be configured and assessed at runtime.

Model checking is another prominent approach for validating and monitoring runtime

behavior that may mitigate some of the runtime verification challenges. Blair et al. [7]

proposed a concept models@run.time that extends model-driven engineering (MDE)

approaches to support runtime verification. A model is an abstraction of the system using a

description of a transition system that reflects the system’s behavior and knowledge about its

environment. Models are considered first-class entities for self-reflection and are employed as

external entities in order to investigate the system’s status with respect to its requirements [7].

Challenges with the integration of models@run.time for SISSY initiatives have been

investigated [17]. One such challenge is supporting distributed self-reflection so that

attempted improvements to the integrated system do not result in performance degradation

[37] or even expose security vulnerabilities [38]. Model-checking introduces some additional

challenges that include issues with model capture from code, appropriate abstraction of the

model for effective checking, and providing efficient verification algorithms for verifications

[18, 19]. Code should be structured in such a way that model extraction and verification

becomes easier to automate and reduces human overhead [18].

There are a variety of system models that have been used for runtime model checking.

Probabilistic model checking is currently very popular since it can employ stochastic models

to incorporate uncertainty. These models are used to predict the reliability of the adaptation

changes and improve the planning phase by updating the impact vector used as decision

criteria for adaptive plan selection. Filieri et al. [36] develop a mathematical framework for

runtime probabilistic model checking. The framework focuses on reliability requirements and

models as a form of Discrete Time Markov Chain (DTMC), which describes a system’s

interaction profile and failure probabilities. The framework is effective for systems with a

limited number of variability points but struggles with state explosion problem. PRISM [39],

a model checking tool to construct and analyze probabilistic models, is applied for different

types of probabilistic models but has limitations with handling large-scale and dynamic

systems.

Multiple researchers have proposed architectural-based model checking to provide general

and reusable infrastructures with well-defined customization capabilities for self-adaptive

systems in an effort to improve runtime verification [40, 41, 42, 45]. Garlan et al. [40]

developed Rainbow, an architectural-based self-adaptation framework that uses a high-level

architectural abstraction of the system as a model. The model manager accumulates system

state information, updates the model, and assesses the system’s properties and constraints

against the updated model. When a violation is detected, the model manager activates an

adaptation manager to get to an appropriate model that satisfies the changes based on static,

pre-defined strategic rules. However, the system abstraction for modeling and defining rules

for model evolution are based on system-specific knowledge acquired during design time.

For an interactive, dynamic environment, pre-defined rules are not workable. Thus,

incorporating runtime changes into the model to perform model checking continues to be a

challenge.

Other researchers have pre-specified formal models of adaptive component expectations

[43, 44]. Iftikhar et al. [43] implemented ActiveFORMS, a formal modeling approach for

engineering self-adaptive systems. Formally expressed models and adaptation goals are pre-

defined and assessed against changes using model checking tool, Uppaal [43], to determine

an optimal valid model for guaranteeing the behavior correctness. Adaptation options are

chosen based on model verification results. These options are verified against the model

offline, so the outcomes must be translated and transformed back into the system. In addition,

it is possible that adaptations configured at runtime may not be aligned at all with the

adaptive component expectations because their potential behavior was not accounted for.

In prior work [38], we created a model for a risk-based assessment approach, which starts

by formally expressing requirements and verifying them against the code by following the

approach in [22]. To validate our proofs, we examined the outcomes of both manually

proving properties and employing the KIV automated theorem prover [23]. Our prior work

identified issues with automated theorem proving in the adaptive systems domain and

extended our risk assessment process to security requirements [20]. Another method of

runtime verification is to embed invariant checkpoints into code and perform runtime analysis

on their performance to debug any errors that occur [45, 46]. We use this process as a way to

validate our approach. However, it is not scalable for use in a deployed adaptive system.

While ubiquitous, wearables continue to face challenges with battery life,

reconfigurability, mobility, security, and analytics [47], security vulnerabilities have been in

the news because of data sharing, GPS tracking, and issues with Bluetooth communication.

The NIST guide to Bluetooth [48] lists 27 known Bluetooth vulnerabilities and 8 Bluetooth

threats. Multiple researchers [49, 50, 51, 52] have analyzed security on wearables and have

shown that personal information can be exposed. To experiment with mitigating these

challenges, the concept of a personal fog and associated application has been introduced, in

which the wearables exhibit the future of edge computing capabilities [53, 54]. The personal

fog architecture allows for improved situational awareness for wearables by aggregating data

for analytics, increasing wearable security through a learned suspicious behavior, and

allowing for communication to devices external to their personal fog.

Figure 1: A single instance of the personal fog architecture

containing two wearable nodes and a base station.

Figure 1 illustrates a personal fog architecture. A personal fog is defined as containing

multiple, computationally powerful wearables at the edge with sensors and processing

capabilities that connect to a base station owned by the wearable user [55]. The wearables

and base station both act as personal fog nodes. The wearables in the personal fog can make

local decisions based on their collected data. The base station is capable of analyzing the

aggregated data of all connected wearables and communicating with the cloud to deliver

information and analysis, as well as capture historical trends in the data. The personal fog

also allows for intercommunication within the same fog [26]. This intercommunication

allows edge nodes to form a personal distributed computing system and to provide

additional computing power to each wearable. If needed, information can be shared between

personal fogs, creating a large distribution of constantly moving compute nodes.

3. Wearable testbeds

To illustrate and evaluate our adaptation assessment framework for assessing adaptation

risk, we use an experimental wearable testbed comprised of multiple personal fogs [26] that

house the same application, allowing them to exchange security alerts. The testbed uses

Raspberry Pi 3’s to emulate both base stations and three distinct wearables: hearables, heart-

rate variability monitors (HRVM), and insulin pumps [55]. The hearables simulation focuses

on the expected capabilities of smart audio-streaming devices, such as the Here One [56], the

Bragi Dash [57], and the Jabra Elite Sport [58] with requirements for streaming music and

providing accelerometer data from a small earpiece. The HRVM simulation focuses on the

stress monitoring capabilities of fitness-devices, such as the Garmin® fitness watches [59]

that provide stress alerts as a requirement. The simulation of the insulin pump focuses on

measuring a user’s blood-sugar level and administering insulin as specified. The requirements

for each simulation are not meant to be comprehensive. Rather, they are used to illustrate

different wearable behaviors that can affect adaptation.

Each simulated wearable shares data and security status with its base station via a

Bluetooth Low Energy (LE) connection. Figure 2 shows the architecture of the testbed. The

Raspberry Pi 3’s in the center simulate the functionality of the base stations. The Raspberry

Pi 3’s at the bottom, containing an additional screen for showing security status, simulate the

wearables. A branch with a base station and its wearables forms a personal fog because,

within the testbed, the simulated wearables have increased computational power for complex

edge computing and, therefore, decision making. In addition, the base stations and their

wearables all run the same security application that allows them to alert other personal fogs

about potentially insecure environments.

The dotted lines in the figure represent the potential communication connections between

fogs based on the security application usage [26]. The testbed components are programmed

in Python. The base stations wait for a connection request from a wearable to establish a

connection and collect and log data. The wearables attempt to connect to their base station.

For each wearable device, Bluetooth functionality, e.g., establishing connections and

monitoring connections status, and the wearable’s primary functionality, e.g., operating as a

hearable, are executed on parallel threads. This configuration provides a foundation for

security experimentation and evaluation.

Figure 2: Wearable security experimentation testbed shows two base stations, each with four

wearables. Dotted lines represent possible communication between fogs.

3.1. Targeting key wearable functionality

The pseudocode algorithms for the hearables, HRVM, and insulin pump are shown in

Algorithm 1, Algorithm 2, and Algorithm 3, respectively. Each algorithm is provided in the

dynamic language required by the KIV theorem prover. Variable names have been

shortened to format each algorithm for print. The three wearable algorithms as well as the

checkpoints that we use to monitor system behavior are all implemented in Java. The base

station code is implemented in Python. BuffChng is a local variable that indicates if the

buffer has been altered while the wearable is connected to an authorized user. The potential

alterations include sending data in the buffer, overwriting the buffer, and increasing the

buffer’s capacity. This variable is later used during evaluation to determine if buffer

integrity is being maintained in each iteration of the while loop. MaxCap is a variable that

indicates the maximum physical capacity of a buffer and must be specified by the system

implementer.

Then, an infinite loop simulates the lifecycle of a wearable device operating on a stream of

packets coming from its sensor(s). Each iteration of the loop represents one packet from the

wearable’s stream(s). Each packet contains raw sensor data and a timestamp. In the case of

the hearables, there are two sensors, one for accelerometer packets and one for music packets.

Accelerometer data is generated by the hearable while music data is received over a

Bluetooth connection. We assume that both sensors input data at the same rate, so each

iteration includes one packet of accelerometer data and one packet of music data. Each packet

is considered nullable, where a null value indicates an empty packet, i.e., no raw data or

timestamp. If the input data is assigned to a Boolean variable, then null values are treated as

being equivalent to inputs of false.

Algorithm 1: Pseudocode algorithm for hearables.

The core of the algorithm is divided into five statements that compose the body of the

infinite loop. In the first statement, S1, an index variable I is incremented by 1, accelerometer

def-program:

program(; I, Len, Cap, MaxCap, MusicIn, MusicOut, Buff, AccIn, AccOut, Conn, AuthConn, BuffChng) {

I := 0;

Len := length(Buff);

Cap := Len;

BuffChng := true;

while true do {

I := I + 1; ;; S1

if AccIn ≠ null-opt then {

Buff := Buff ++ AccIn.get-opt;

AccIn := null-opt;

};

BuffChng := false;

if Conn then { ;; S2

if MusicIn ≠ null-opt then {

MusicOut := MusicOut ++ MusicIn.get-opt;

MusicIn := null-opt;

};

};

if I ≤ Cap ∧ ¬ BuffChng then {

if Conn ∧ AuthConn ∧ I < Cap then { ;; S3

if Buff ≠ ∅ then {

AccOut := AccOut ∪ Buff;

Buff := ∅;
};

I := 0;

Cap := Len;

BuffChng := true;

}

else if Conn ∧ I = Cap ∧ I < MaxCap then { ;; S4

Cap := MaxCap;

BuffChng := true;

}

else if I = Cap then { ;; S5

I := 0;

Cap := Len;

BuffChng := true;

};

};

};

};

data is input from the hearable’s sensor and is stored in a buffer, and the variable BuffChng is

set to false. The buffer is assumed to be 1-indexed so I is incremented at the beginning of

each iteration rather than being incremented at the end. In statement S2, if the hearable is

currently connected, it streams music data from the connected device. In S3, the hearable

sends accelerometer data to the connected device. Accelerometer data can be both streamed

and synced, where syncing is the sharing of data that has been buffered. In addition,

accelerometer data is only shared with authorized devices. The environmental variables Conn

and AuthConn are related to Bluetooth connection status. Environmental variables are

variables that are mutated outside the scope of the program. In this case, both variables are

managed by the thread that is governing the hearables Bluetooth functionality. In statement

S4, if the hearable is currently connected but to a non-authorized device, it increases the

capacity of its buffer to store additional accelerometer data so that the data can be synced if

the connected device becomes authorized. However, in S5, if the hearable is not connected or

if the buffer capacity has already been increased to its physical limit, as indicated by

MaxCap, the index variable I is set to 0 and BuffChng is set to true, which indicates that the

buffer can be overwritten.

Algorithm 2 presents the pseudocode algorithm used to simulate the heart-rate variability

monitors (HRVMs). The hearables algorithm and the HRVM algorithm have the same initial

conditions. In statement S1, the index variable I is incremented by 1, heart-rate data is input

from the HRVM’s sensor and stored in a buffer, a sync request is input from the Bluetooth

sensor, the user’s stress level is computed from their heart-rate data, and the local variable

BuffChng is set to false. The HRVMs only sync data upon request from the base station,

which is represented by the local variable Sync or the environmental variable Stream. Unlike

Sync, which represents a request sent by the wearable base station, Stream represents a

connection state and can be mutated by the thread managing the Bluetooth functionality. Both

Stream and Sync are environmental variables. In addition, if a device is currently connected,

heart-rate data is always shared once the buffer becomes full. The local variable, Stress,

determines whether a user’s heart rate indicates that they are currently in a stressed state. The

value of Stress is calculated by the procedure computeStressLevel, which we assume can be

tailored to individual devices and/or users. In statement S2, the heart-rate data is synced with

the connected device if the device has requested to sync or if the buffer is full. Statement S3

sets the index variable I to 0 and sets BuffChng to true, which allows the buffer to be

overwritten unless the user is stressed. If the user is determined to be stressed and the buffer

has not reached its physical limit, then the capacity of the buffer is increased instead in

statement S4.

The pseudocode algorithm, presented in Algorithm 3, for the insulin pump includes an

additional initial condition D, which is the maximum blood sugar that the user is allowed and

is used to determine when the user should be administered insulin. This value is set by the

user. The insulin pump has five statements. In statement S1, the index variable I is

incremented by 1, blood sugar data is input from the insulin pump’s sensor and then stored in

a buffer, an administer insulin request is input from the Bluetooth sensor, and the local

variable BuffChng is set to false. The variable AdminIns is a Boolean variable that is set to

true if the user requests insulin. Blood sugar data is shared with a connected device if the

device is authorized in statement S2. Similar to the hearables, both Conn and AuthConn are

environmental variables related to Bluetooth connection status. If no authorized device is

connected and a user does not need insulin, then I is set to 0 and BuffChng is set to true in

statement S3, which allows the buffer to be overwritten. However, if the user’s blood sugar

level is too high, as determined by the variable D, and the buffer has not reached its physical

limit, then the buffer’s capacity is increased instead in statement S4. Lastly, if the user has

requested insulin or if their blood sugar level is too high, then the insulin pump administers

insulin in statement S5.

Algorithm 2: Pseudocode algorithm for HRVM.

def-program:

program(; I, Len, Cap, MaxCap, In, Buff, Out, Conn, AuthConn, In2, Sync, Stream, Stress, BuffChng) {

I := 0;

Len := length(Buff);

Cap := Len;

BuffChng := true;

while true do {

I := I + 1; ;; S1

if In ≠ null-opt then {

Buff := Buff ++ In.get-opt;

In := null-opt;

};

if In2 ≠ null-opt then {

Sync := In2;

In2 := null-opt;

};

Stress := computeStressLevel(Buff);

BuffChng := false;

if Conn ∧ AuthConn ∧ ¬ BuffChng then { ;; S2

if Sync ∨ I = Cap ∨ Stream {

if Buff ≠ ∅ then {

Out := Out ∪ Buff;

Buff := ∅;
};

I := 0;

Cap := Len;

BuffChng := true;

};

}

else if I = Cap ∧ ¬ BuffChng then {

if ¬ Stress ∨ I = MaxCap then { ;; S3

I := 0;

Cap := Len;

BuffChng := true;

} else { ;; S4

Cap := MaxCap;

BuffChng := true;

};

};

};

};

Algorithm 3: Pseudocode algorithm for insulin pumps.

3.2. Fostering as a security alert

By experimenting with simulated wearables, we can use their programmability to explore

communication options that wearables could, but currently do not, include. For example,

simulated wearables can act as Bluetooth beacons that advertise the existence of Bluetooth

servers and share data with other Bluetooth devices regarding the perceived security state of

their mutual environment. We use the term fostering for this particular communication ability

[26], which is especially important for devices that are constantly changing their location. As

indicated by the dotted lines between portions of the different personal fog components in

def-program:

program(; I, Len, Cap, MaxCap, In, Buff, Out, Conn, AuthConn, In2, AdminIns, InsAdmin, D, BuffChng)

{

I := 0;

Len := length(Buff);

Cap := Len;

BuffChng := true;

while true do {

I := I + 1; ;; S1

if In ≠ null-opt then {

Buff := Buff ++ computeBloodSugar(In.get-opt);

In := null-opt;

};

if In2 ≠ null-opt then {

AdminIns := In2;

In2 := null-opt;

};

BuffChng := false;

if I ≤ Cap ∧ ¬ BuffChng then {

if Conn ∧ AuthConn then { ;; S2

if Buff ≠ ∅ then {

Out := Out ∪ Buff;

Buff := ∅;
};

I := 0;

Cap := Len;

BuffChng := true;

}

else I = Cap ∧ bloodSugarLevel(Buff) ≤ D ∨ I = MaxCap { ;; S3

I := 0;

Cap := Len;

BuffChng := true;

}

else I = Cap { ;; S4

Cap := MaxCap;

BuffChng := true;

};

};

if D ≤ bloodSugarLevel(Buff) ∨ AdminIns then { ;; S5

InsAdmin := true;

};

};

};

Figure 2, fostering is designed to allow either the base station or wearable to connect

temporarily to a service advertised by a Bluetooth beacon. This service is a separate server

that can run on both wearables and base stations but is not always active. When a device

connects to a fostering server, a single message is sent between devices before the connection

is terminated. This allows for an exchange of information from other devices in the area,

which introduces the opportunity for a rapid understanding of application-specific

information that may not be known to devices entering the area. While fostering is designed

to only send data between two devices, when it is implemented within a personal fog

architecture, fostering essentially creates a temporary mesh network. This allows information

to be passed between fogs through only a single temporary connection.

Fostering requires the devices to employ a separate application as part of their security

protocol and has been evaluated against security threats in [55]. Fostering was employed to

protect co-located personal fogs from Bluetooth eavesdropping, Man-in-the-Middle attacks,

and Denial of Service attacks. When detected, either by a human recognizing the threat or

unexpected data being received by the base station, the security state is sent through

fostering. This resulted in the wearables adapting their communication to not send the

requested data, successfully preventing eavesdropping and Man-in-the-Middle attacks. It

does not prevent Denial-of-Service attacks, though it also does not provide the data to other

users. Fostering was effective within a range of up to 8 meters, though it can, in theory, work

up to the maximum Bluetooth range of 100 meters in open space.

Within the wearable testbed architecture used for the experimentation presented in this

paper, the server is designed such that, when connected, it will send only the devices’ current

security state (either secure or insecure). Thus, devices entering a new environment can

receive alerts regarding potential security threats from devices already in the area or devices

that have recently adapted to become insecure based on threat knowledge. There is a risk to

the device employing a fostering server by virtue of opening an additional connection point

with no additional pairing or connection requirements. It is possible for an attacker to provide

false information on a fostering server, though the fostering application only responds to an

insecure state alert, not a secure state alert. It is also possible that, when examining fostering

in a broader context, data that needs to be private or protected can be shared through

fostering.

As a preview to the experimentation and evaluation performed in this paper, additional

consideration is needed when fostering is part of an adaptation, since it may require

modification to methods associated with the sending of data between connected devices. In

the wearable testbed, adding fostering to the wearables requires modification of their code by

integrating it with the fostering server application. For example, if an adaptation containing

fostering is chosen, a new send command must be inserted to send the security state to

external devices attempting to foster that are not authorized. Alternatively, the send command

can be reused if the security state is added to the buffer and the wearable is permitted to send

collected data to an unknown, potentially insecure device.

4. Proving functional requirements

Each wearable in the testbed has a set of functional requirements that it must satisfy. We
present a sample of the requirements for each wearable to illustrate the approach. The
requirements are partitioned across safety (invariant) and progress (liveness) properties. In
this paper, all statements of functional requirements are followed by an expression stated in
LTL [22] that extends first-order predicate logic to include temporal operators, such as
always (□), eventually (�), and next (◯).

The simulated hearable has two safety properties and two progress properties that govern

the handling of its music and accelerometer data. They are as follows.

HR.1: Music is streamed from any connection.

□ �Conn → � �MusicIn ≠ null-opt → �MusicIn.get-opt ∈ MusicOut$%&

HR.2: Buffer is only sent on an authorized connection. □�send�Buff$ → AuthConn$, where send�Buff$ = �Buff ⋂ Out ≠ ∅$.

HR.3: Accelerometer data that is collected is stored. □��AccIn ≠ null-opt$ → � �AccIn.get-opt ∈ Buff$%

HR.4: The buffer does not overflow. □�I ≤ Cap$

HR.1 is a progress property that translates from LTL to “it is always the case that if the

device is connected, then eventually it will have streamed music.” Thus, if the hearable is

connected to a device, then it must reach a state where it is streaming music from the

connected device infinitely often. It should be noted that if the connection ends abruptly, then

HR.1 is still satisfied. If there is no connected device to send music data to the hearable, MusicIn becomes a null-opt. HR.2 is a safety property that states that “it is always the case

that if the hearable shares accelerometer data, then it is on an authorized connection.” HR.3 is

a progress property that can be translated as “it is always the case that all captured

accelerometer data will have eventually been stored in the buffer.” HR.4 is a safety property

that states “it is always the case that the buffer has not overflowed (i.e., the index variable, I,
is never greater than buffer’s capacity, Cap).”

The simulated HRVM has one safety property and one progress property, which ensure

that heart-rate data is not lost. They are as follows.

HRVM.1: The buffer does not overflow. □�I ≤ Cap$

HRVM.2: Heart rate is stored when the user is stressed. □��Stress ⋀ In ≠ null-opt$ → � �In.get-opt ∈ Buff$%

HRVM.3: Buffer is only sent on an authorized connection. □�send�Buff$ → AuthConn$

HRVM.1 is the same safety property as HR.4. HRVM.2 is a progress property that can be

translated as “it is always the case that if heart-rate data has been input while the user is

stressed, then eventually the HRVM will have stored the heart-rate data in the buffer.”

HRVM.3 is the same safety property as HR.2.

The simulated insulin pump has two safety properties and one progress property that

ensure buffer integrity, that connections are authorized, and that insulin is administered when

necessary.

INS.1: The buffer does not overflow.

□�I ≤ Cap$

INS.2: Buffer is only sent on an authorized connection. □�1end�Buff$ → AuthConn$

INS.3: Insulin is administered when needed. □��D ≤ bloodSugarLevel�Buff$ ∨ AdminIns$ → � InsAdmin%

INS.1 is the same safety property as HR.4, and INS.2 is the same safety property as HR.2.

INS.3 is a progress property that states “it is always the case that if the user’s blood sugar

level is too high or if the user has requested insulin, then insulin will have been administered

in the next state.”

4.1. Employing the KIV theorem prover

To show that each wearable device complies with its functional requirements, we employ

the use of the KIV theorem prover against the pseudocode algorithms provided in Algorithm

1, Algorithm 2, and Algorithm 3 that represent the implemented functionality for each

wearable emulator. KIV allows for LTL expressions and can be used to prove both safety and

progress properties. Our adaptation assessment framework requires the extraction of meta-

data from the proof process or structure that will allow for adequate reasoning over

dynamically configured adaptations prior to their runtime deployment. This section defines

the approach to identify and capture the meta-data as it is strictly tied to the use of KIV and

its features.

The first step in the process is to create a taxonomy of specifications for each wearable

device. Each specification is a data type associated with axioms that KIV can use to construct

proofs concerning variables of that type. Figure 3 presents the taxonomy for the insulin

pump. The blood-sugar specification is an opaque data type, i.e., an object with unknown

properties that is treated as a set, for blood-sugar level, and blood-sugar-info is a tuple type of

blood-sugar and a timestamp, which is the nat type, or non-negative integers. Most of the

specifications also include axioms that KIV needs to construct proofs, such as the nat

specifications’ axiom n > i + 1 → n > i, which is used to prove HRVM.1 and INS.1.

The three taxonomies for the wearables use the same construction, with set specifications

and nat specifications imported from KIV’s core library. The set specifications are used to

represent the buffer and an out-queue, which is employed to prove requirements where the

device must output data, such as INS.2. The nat specifications are used for timestamps, the

index variable I, and buffer capacity Cap to prove requirements that restrict buffer overflow,

such as INS.1. Also included in the taxonomies are opaque types, tuple types, optional types,

and set types. The opaque types are used to represent input data, such as blood-sugar data.

These are enriched, designated by an incoming arrow, by a tuple type that joins the opaque

data type with a timestamp. For example, blood-sugar-info enriches blood-sugar to represent

a packet of raw blood sugar data and a timestamp. The optional specification is used to

introduce nullable values. The blood-sugar-info specification is enriched with an optional-

blood-sugar-info specification that allows the tuple type to be nullable. In addition, both the

blood-sugar and the blood-sugar-info specifications are enriched with a set type. The set-

blood-sugar-info specification, which enriches blood-sugar-info, represents the input streams,

which stores

blood-sugar-info tuples. Since blood-sugar tuples are nullable, only non-null values are

stored in the buffer. The set-blood-sugar specification represents an out-queue that is used to

prove INS.2. That is, if the out-queue contains the blood-sugar data that was stored in the

buffer, then the requirement holds.

Figure 3: Insulin pump requirement specifications (top), program specifications (middle),

type specifications (bottom), and dependencies as specified in KIV.

On top of the set and optional types rests the program specification. In this specification,

we declare the pseudocode algorithm and all program variables using KIV’s dynamic

language. Each pseudocode algorithm from Section 3 is accurately represented, including its

local, global, and environmental variables.

When constructing a proof, the KIV theorem prover will explore all possible states of the

program. Each additional variable significantly increases the number of possible states, e.g., a

Boolean variable will double the number of possible states, and each program statement can

both increase the number of consecutive states and create branches within the proof. To

reduce the program specification and proof complexity, we refactor program variables and

program statements depending on the requirement that is being proven. Each time such a

removal occurs, we ensure that the removed variable or statement has no impact on the target

requirement. For example, to prove INS.1 and INS.2, we can remove program variables and

program statements related to administering insulin as they would have no impact on those

requirements. We could not however, remove those same program variables and statements

when proving INS.3 as they are necessary to prove that the insulin pump can correctly

administer insulin. In most cases, program variables will relate to some but not all

requirements. As such, one reduction is performed per requirement, which results in one

reduced specification per requirement. Extra care must be taken during this process to

incorporate hardware concerns. For example, the buffer’s capacity (Cap) can never be

ignored when considering storing data in a buffer, since every buffer has a physical limit to

how much data it can store before it overflows. Reducing the number of program variables

and statements also aids in the identification and capture of meta-data for verification

awareness, which will be further discussed in Section 4.4.

KIV employs its own heuristic rules to prune branches that can be shown by an invariant

to have no impact on the target requirement. For example, KIV can simplify conditional

branching where each branch can be shown to satisfy the same desired properties. While we

rely on refactoring and KIV simplification rules at this stage, designers can incorporate their

own techniques by writing custom lemmas. Once defined, designers can apply their custom

lemmas during the proof process to perform compositional analysis using such techniques as

decomposition, as we demonstrate in Section 4.2 and Section 4.3. Alternatively, designers

can employ their own techniques and invariants to simplify the proof process for their

specific system implementation.

For the insulin pump, this process of reduction results in three specifications, which are

program-req-1, program-req-2, and program-req-3 shown at the top of Figure 3. Each

reduced program specification is enriched by a corresponding requirement specification, e.g.,

program-req-1 is enriched by insulin-pump-req-1. These final specifications are different

than the others in two ways. First, they do not describe data types. Instead, they describe a

requirement that needs to be proven against a program and program conditions that are

necessary or helpful for constructing the proof. Lastly, they contain a lemma, stated as a

sequent in sequent calculus [60], which is the requirement that needs to be proven. The KIV

theorem prover uses the description provided in each requirement specification to prove its

sequent against the enriched program for a single requirement.

4.2. Proving invariants with TCPs

When implementing a requirement specification, we can restate each program statement as

a temporal contract proposition (TCP) [20] first defined as a way to tailor KIV’s proof

structure for meta-data capture. We show how its use can be newly explored as part of our

adaptation assessment framework for the wearable experimentation testbed. A TCP is a tuple

of the form

 :;<�=>?, ABC?, DEC, =B1:$,

which asserts that when Code, a program or program statement, is executed in a state that

satisfies property Pre, then Code will terminate in a state that satisfies property Post and

every state prior to termination will satisfy property Mid. By doing so, we can redefine a

program statement with the following sequent

 Pre, [: VJK, VJKLMN | Code�VJK, VJKLMN$; [RestProg]] ⊢ Mid STUVW �Post ∧ RestProg$,

where XYZ and XYZ[\] are a collection of program variables and RestProg is the remainder of

the program that executes after Code terminates. If there are no remaining instructions after

Code terminates, then RestProg is set to true.

If the requirement that is being proven is an invariant, such as □�^ ≤ A_<$, then it must be

the case that, to prove the invariant, Pre, Mid, and Post must all imply ^ ≤ A_<. For example,

after reducing the program specification to program-req-1 (Figure 3) for the insulin pump,

only program statements S1-S4 remain and statement S5 is removed. To prove requirement

INS.1, we redefine statements S1 through S4 using the following TCPs. Note that the pre-

condition of each TCP should mirror the if condition of each statement. The pre-conditions

have been reduced for brevity. However, it should be clear from the statements that each pre-,

mid-, and post-condition implies ^ ≤ A_<, which is the invariant to be proven in INS.1.

INS.Code.S1: tcp�I < Cap, S1, I ≤ Cap, I ≤ Cap$

INS.Code.S2: tcp�I ≤ Cap, S2, I ≤ Cap, I = Cap$

INS.Code.S3: tcp�I = Cap, S3, I ≤ Cap, I = Cap$

INS.Code.S4: tcp�I = Cap, S4, I ≤ Cap, I < Cap$

Then, for each statement, XYZ would include a collection of program variables that are needed

for, but not modified by, program statements S1-S4, such as Conn, AuthConn, D, and

bloodSugarLevel, while XYZ[\] would include a collection of program variables that are both

needed for and modified by program statements S1-S4, such as I, Cap, and BuffChng. By

convention, XYZ and XYZ[\] are the same across all statements. Lastly, RestProg would include

all subsequent statements with the current statement appended to the end. For example, for

statement S1, RestProg would be equal to [S2, S3, S4, S1]. The current statement must be

appended to the end since all statements are executed within an infinite loop.

In KIV, proofs are often constructed by contradiction. Therefore, to prove a property p,

KIV will attempt to construct a proof for its contradiction, which can be stated as “there does

not exist a natural number D that increases by one for each time step until p is false” and is

expressed as

 ¬ �M = Mdd + 1 STUVW ¬ p$,

where D is a natural number variable introduced by KIV for proof purposes. KIV performs

the proof of contradiction by first assuming the hypothesis D = Ddd + 1 efghi ¬ < and then

applying a proof by induction using a well-founded induction over M. KIV will execute a full

iteration of the main loop of the program, consider all program branches, and prove < at each

step. If KIV can then reach a subgoal with a smaller value for M where p holds, then the

inductive hypothesis can be applied to complete the proof by contradiction. It should be noted

that, after assuming the statement D = Ddd + 1 efghi ¬ <, KIV asserts that there exists a

value D = j, such that after step m is executed, the property ¬ < holds. Therefore, after each

step where the property p holds, KIV asserts that it must have been that D < j, since it has

been assumed that D = Ddd + 1 efghi ¬ <.

To perform a proof by induction for INS.1, KIV begins with the following proof goal.

 M = m, Pre, [: VJK, VJKLMN | klVWm true no S1, S2, S3, S4], ¬ �M = Mdd + 1 STUVW ¬ �I ≤ Cap$% ⊢

Since we are attempting to prove a requirement that uses temporal operators, KIV requires

that we specify environmental constraints as part of the initial conditions. Each program

variable p has a corresponding variable pd and pdd, where pd is the value of p at the end of

the current state and pdd is the value of p at the beginning of the next state. If pdd is not equal

to pd, then that means that p is being mutated in the environment outside the current

program. For local variables, such as I and Cap in our example, or global variables that are

locked, such as Buff, we use the constraint p’’ = p’, so that these variables can only be

mutated within the program. However, for program variables, such as Conn and AuthConn,

that can be mutated outside the program, we use the constraint pd → �pdd = pd$. This

constraint is necessary for statements where connection status is checked prior to sending

data since KIV does not know that a send instruction would not be able to succeed if the

device is not connected when the send instruction is called. Otherwise, KIV will create a

branch representing the possibility that a connection is lost after the status is checked but

before the send instruction is executed. In this branch, KIV cannot finish the proof as the

branch will contain conditions not connected and send, which is a logical impossibility.

The most significant benefit provided by the introduction of TCPs is that, given KIV’s

approach to constructing a proof, we can use TCPs to skip large portions of proof steps that

would otherwise be required to be performed manually. To do so, we derive a new proof goal

and apply the following lemma-invariant.

 M = m, □�Afterr ∧ InvProp ∧ M ≤ m → ¬ �M = Mdd + 1 STUVW ¬ InvProp$$, □�Midr → InvProp$, Midr until �InvProp ∧ Afterr$ ⊢ ¬ �M = Mdd + 1 STUVW ¬ InvProp$

To apply the lemma-invariant to INS.1, we make the following substitutions: st:?>u = =B1: ∧ v?1:=>Bw, DECu = DEC, and ^xy=>B< = ^ ≤ A_<. It is the case that, since =B1: implies ^xy=>B<, DEC efghi �=B1: ∧ v?1:=>Bw$, which can be derived from the TCP,

implies DECu efghi �^xy=>B< ∧ st:?>u$. KIV can determine that both DECu efghi �^xy=>B< ∧ st:?>u$ and D = j hold when the lemma-invariant is applied.

Consequently, two new proof goals emerge that match the second and third formulae of the

lemma-invariant. Using KIV’s execute always rule, we reach the following new proof goals.

KIV can automatically close the proof goal DECu → ^xy=>B< using its simplifier.

 Afterr ∧ InvProp ∧ M ≤ m → ¬ �M = Mdd + 1 STUVW ¬ InvProp$ Midr → InvProp

To satisfy the remaining proof goal, we manually apply each TCP and follow each TCP

with an application of lemma-invariant. Afterwards, we reach a proof goal where the

program formula is:

 [: VJK, VJKLMN | klVWm true no S1, S2, S3, S4]

This is the same program formula that we started with. We can use KIV’s induction rule to

close the proof by induction. KIV can deduce that the natural number variable M has

decreased without a violation of the invariant. Given that the proof has reached a state where

the properties are the same as they were for a larger value of M and the invariant has not been

violated, KIV determines that M can increase indefinitely without violation of the invariant.

This is sufficient to complete the proof by contradiction.

4.3. Proving progress properties with TCPs and STCPs

Just as we used TCPs to prove safety properties, we can similarly use them to prove

progress properties. When using TCPs to prove progress properties, we must partition the

code into q-preserving code and non q-preserving code. Given a progress property □�z →{<$, q-preserving code is code where the property q is satisfied before, during, and after

execution. For example, if we are trying to prove INS.3, then program statement S4, which

increases the capacity of the buffer, is q-preserving code since it does not affect the pre-

condition of INS.3, which is �| ≤ }~BBC��w_>�?y?~���tt$ ∨ sCjEx^x1$. As such, we can

restate S4 as :;<�z, �4, z, z$, where z = �| ≤ }~BBC��w_>�?y?~���tt$ ∨ sCjEx^x1$, without loss of

validity.

To prove a requirement with q-preserving code, we first apply the TCP, and then we apply

the following lemma-progress.

 M = m, □�After� ∧ M ≤ m → ¬ �M = M′′ + 1 STUVW �PreProgress ∧ ¬ {PostProgress$$$, □�After� ∧ PreProgress → {PostProgress$, □�Mid� ∧ PreProgress → ⦁PreProgress$, Mid� STUVW After� ⊢ ¬ �M = M′′ + 1 STUVW �PreProgress ∧ ¬ {PostProgress$$,

where ⦁ is the operator ‘weak next’ indicating that PreProgress holds in the next state if there

is a next state. This lemma is applied using the following substitutions: st:?>� = z ∧ v?1:=>Bw, DEC� = z, =>?=>Bw>?11 = z, and =B1:=>Bw>?11 = <, where < = ^x1sCjEx for INS.3. By applying lemma-progress, KIV can essentially skip all

instructions executed in the q-preserving code, which is a significant reduction in proof steps.

This has no negative impact on the validity of the proof since, by definition, q-preserving

code does not alter the pre-condition of the progress property. After applying lemma-

progress, we can apply KIV’s execute always rule to produce the following new proof goals.

 q ∧ RestProg ∧ M ≤ m → ¬ �M = M′′ + 1 until �q ∧ ¬ {p$$ q ∧ RestProg ∧ M ≤ m ∧ q → {p q ∧ q → ⦁q

On the other hand, code can be non-q-preserving. Such code may either (a) not change q

from true to false once p has been satisfied or (b) preserve some other condition, r, that

ensures {<. To handle non-q-preserving code, we use split temporal contract propositions

(STCPs) [20] which are defined as

 1:;<�=>?, ABC?, DEC, =B1:�, =B1:�$

where ABC? is a program, or program statement, that is executed in a state that satisfies

property Pre and either (a) eventually terminates with condition =B1:� and all intermediate

states satisfying condition Mid or (b) eventually terminates with condition =B1:�. Code

represents the non-q-preserving code and =B1:� represents the intermediate condition, r, that

ensures {<. We represent STCPs in KIV using the following template.

 Pre, [: VJK, VJKLMN | Code�VJK, VJKLMN$; [RestProg]] ⊢ �Mid STUVW �Post� ∧ RestProg$$ ∨ {�Post� ∧ RestProg$

When proving a requirement that requires that use of a STCP, we first apply the STCP,

then apply lemma-progress, and then apply the following lemma-progress-split.

 M = m, □�After�� ∧ M ≤ m → ¬ �M = M′′ + 1 STUVW �PreProgress ∧ ¬ � PostProgress$$$, □�After�� → � PostProgress$, � After�� ⊢ ¬�M = M′′ + 1 STUVW �PreProgress ∧ ¬ � PostProgress$$,

lemma-progress-split is applied with the following substitutions: st:?>�� = =B1:� ∧ v?1:=>Bw, =>?=>Bw>?11 = z, and =B1:=>Bw>?11 = z. To prove

INS.3, we use =B1:� = =B1:� = z. Application of lemma-progress-split results in the

following open proof goals.

 q ∧ RestProg ∧ M ≤ m → ¬ �M = M′′ + 1 until �q ∧ ¬ � p$$ q ∧ RestProg → � p

By combining TCPs, STCPs, lemma-progress, and lemma-progress-split, we can skip to the

end of the program’s main loop. Once there, just as we did with the invariant proof, we can

apply KIV’s induction rule with respect to M to close the proof. This, along with KIV’s

simplifier, is sufficient to complete each proof goal introduced by lemma-progress or lemma-

progress-split.

Together, lemma-invariant, lemma-progress, and lemma-progress-split can be employed

by system designers to verify more complex system specifications using TCPs and STCPs.

Applying these lemmas can address state space explosion by simplifying program variables

and branches out of the proof process. We recommend that system designers apply the same

methodology that we have presented in this paper by following these steps.

1. Create a model of the target system’s behavior using the dynamic language

provided by KIV.

2. Partition the instructions of the model into a sequence of Statements, where each

Statement can contain one or more instructions. All instructions in the same

Statement should have the same pre-condition, so that either (a) all of the

instructions are executed sequentially or (b) none of the instructions are executed.

3. Refactor the model, where needed, for each requirement to reduce the number of

Statements that are considered when proving the target requirement. System

designers can use the heuristic rules provided in Section 4.4 to assist in identifying

which program variables relate to each requirement and each Statement.

4. Decompose each refactored model depending on its target requirement. If the

target requirement is an invariant, decompose the model by translating each

Statement into a TCP. If the target requirement is a progress property, decompose

the model by translating q-preserving Statements into TCPs and non-q-preserving

Statements into STCPs. System designers can use heuristic rules provided in

Section 4.4 to assist in identifying program variables that relate to each

requirement to minimize the number of program variables that are included in the

pre-, mid-, and post- conditions of each TCP and STCP.

5. Complete the proof process for each requirement using the provided lemma-

invariant, when proving invariants, and the provided lemma-progress and lemma-

progress-split, when proving progress properties.

Our approach does not restrict system designers from using their own compositional

analysis techniques to address state space concerns through custom lemmas, given those

techniques are compatible with the heuristic rules defined in Section 4.4 for meta-data

extraction. Furthermore, TCPs and STCPs can assist system designers in extending their own

formal techniques to systems with temporal properties. In practice, systems may not be fully

modular, which can make it more difficult to decompose the system into a neat set of TCPs

and STCPs. In such cases, we recommend that system designers combine steps 1-3 to create a

modular representation of their system’s behavior in KIV’s dynamic language for each

requirement.

4.4. Capturing meta-data from proof process

Given the proof process described in Sections 4.1–4.3, we inspect each process and

capture the verification concerns (VCs) in the form of program variables. To capture VCs, we

inspect the various branches of the proof process and apply a series of heuristic rules as

presented below.

Rule 1: When a requirement, stated as an invariant, specifies an independent property, p,

that includes program variables, the program variables are captured as VCs.

For example, INS.1 uses the invariant ^ ≤ A_<, which includes program variables I and

Cap. As such, we capture I and Cap as VCs for INS.1.

Rule 2: When a requirement, stated as an invariant, specifies a dependent property, z → <,

that includes program variables, the program variables are captured as VCs.

For example, INS.2 uses the invariant □�1?xC���tt$ → s�:ℎABxx$. From this invariant,

we capture send, Buff, and AuthConn as VCs for INS.2.

Rule 3: When a requirement is stated as a progress property, □�z → � <$, that includes

program variables, the program variables are captured as VCs.

For example, INS.3 uses the progress property

 □��| ≤ }~BBC��w_>�?y?~���tt$ ∨ sCjEx^x1$ → � ^x1sCjEx%.

From this progress property, we would normally capture D, bloodSugarLevel, Buff,

AdminIns, and InsAdmin as VCs. A program variable can be removed if it represents a

procedure or parameter that is not subject to adaptation. Since this is the case with the

procedure InsAdmin, it is removed from consideration as a VC. Rule 3 can be generalized to

all progress properties that use the ‘eventually’, ‘next’, or ‘weak next’ operator.

Rule 4: For every symbolic execution step that applies KIV’s if positive or if negative rule,

the program variables in the condition are captured as VCs.

For example, when considering the proof for INS.2, data is output in S2, which uses the if

condition ABxx ∧ s�:ℎABxx ∧ ^ ≤ A_< ∧ ¬ BuffChng. The first time that this statement is

encountered by KIV, the theorem prover will apply the if left rule, which results in two

branches. The first branch represents the scenario where the if condition cannot be met, and

the second branch represents the scenario where the if condition can be met. In the first

branch where the if condition cannot be met, KIV can deduce that INS.2 is satisfied when

either Conn or AuthConn is false. If Conn is false, AuthConn must be false by definition. This

closes the first branch. In the second branch where the if condition is met, KIV returns to the

statement during the second iteration of the main loop and applies the if positive rule. As

such, we can capture the program variables in the if condition as VCs. A simpler approach,

which is the approach that we take, is to capture the pre-condition of the corresponding TCP

as a VC.

When applying Rule 4, we consider the pseudocode algorithm and the other requirements

to determine if any VCs that could be captured can be reduced or removed. Doing so goes

hand-in-hand with our earlier efforts to the reduce program variables and statements as any

captured VCs that can be removed correspond to program variables that could have been

removed before the proof was constructed. For example, when we apply Rule 4 to INS.2, we

capture VCs Conn, AuthConn, I, Cap, and BuffChng. The VCs I and Cap can be removed

since the invariant INS.1 requires that condition be satisfied. In addition, the VC BuffChng

can also be removed since it is always set to false in statement S1 of the insulin pump. It is

always the case that ¬BuffChng is satisfied. As such, after applying Rule 4 to INS.2, we only

capture VCs Conn and AuthConn.

Rule 5: For every symbolic execution step that applies KIV’s call left rule, the procedure

and the program variables used for the XYZ and XYZ[\] of the procedure that is called can be

captured as VCs.

For example, INS.3 relies on the procedure bloodSugarLevel(Buff). The procedure

bloodSugarLevel computes the user’s blood-sugar levels from the blood-sugar data stored in

buffer. This leads to the capture of bloodSugarLevel and Buff as VCs.

When we apply Rule 5, we consider the procedures that are called and their parameters to

determine if the procedure or its parameters can be reduced or removed. Similar to the

example in Rule 3, computeBloodSugar is a procedure that is undefined within the scope of

the algorithm and is not subject to adaptation. This determination is based on the allowable

range of adaptations to the system, so the procedure can be removed from the set of captured

VCs. Parameters can be reduced if the parameter acts as a temporary variable. For example,

the variable Buff in the insulin pump is effectively an array of values assigned to the local

variable In. As such, Buff can be reduced to the variable In when captured as a VC. As such,

when

Rule 5 is applied to INS.3, we only capture VCs bloodSugarLevel and In. This is because

InsAdmin is removed, since it is not subject to adaptation, and Buff is reduced to In.

For those designers that use a theorem prover other than KIV, to be compatible with the

heuristic rules that we have provided, the target theorem prover should be able to support

sequents in both Hoare logic and temporal logic. Otherwise, there is no guarantee that the

proof conditions targeted by our heuristic rules will have an equivalent analog in another

proof process. In such cases, extracted verification conditions may not be logically sound for

use in the risk assessment process presented in Section 5. When using custom lemmas to

support alternative techniques for performing the proof process in KIV, simplification steps

must not eliminate applications of the if positive, if negative, and call left rules to be

compatible with our heuristic rules.

After VCs have been captured, we begin to articulate various circumstances under which

the condition specified in the VC would be violated. Each circumstance, or change, is then

rated as ‘devastating’, ‘worrisome’, or ‘unconcerned’. Each condition has a corresponding

impact multiplier value, D�� , of 0.2, 0.5, and 0.9, respectively. These impact multipliers are

used as a heuristic when performing a risk assessment. A change that is rated as devastating

violates the target requirement. If the change may, but does not assuredly, violate the target

requirement, then it is rated as worrisome. Otherwise, the change is rated as unconcerned. In

certain circumstances, a change may be rated as worrisome because it would violate an axiom

that KIV used in the proof process even though it might not violate the requirement. For

example, if a change were to set the variable Conn to false but leave the variable AuthConn

set to true, then requirement INS.2 would not be directly violated. However, to prove INS.2,

KIV employs an axiom that states that AuthConn must be false when Conn is false. As such,

this change has the potential to violate proof reuse in such a way that it is unclear if KIV

could still construct a proof since it would not be able to use the aforementioned axiom.

Table 1 presents the VCs, potential value changes, and ratings for INS.1, INS.2, and

INS.3. For INS.1, we capture VCs related to program variables I, Cap, and Conn. VCs related

to I and Cap are captured by the application of Rule 1. Devastating changes to I would

include any change that directly violates INS.1, such as setting ^ > A_<, or any change that

would directly lead to a violation of INS.1, such as removing ^ ∶= 0. Worrisome changes

would include incrementing I twice in a single state, which can take place if additional data

needs to be stored in the buffer to facilitate fostering. Doing so does not guarantee that INS.1

would be violated but using a larger step size than 1 can allow I to become larger than Cap if ^ = A_< − 1. This would negate the pre-conditions of S3 and S4, which could have either set

I to 0 or increased Cap, and result in a violation of INS.1. Devastating changes to Cap would

include reducing the value of Cap when I is not set to 0 since that could directly cause a

violation of INS.1 while unconcerned changes would include increasing the value of Cap.

Lastly, we chose to capture Conn by Rule 4 since, when considering a physical system, the

buffer has a maximum capacity to which it can be increased. Therefore, the program must

connect to a device at some point or the buffer will be overwritten before data can be shared.

Thus, devastating changes to Conn would include inhibiting all connections. AuthConn was

not captured since INS.2 ensures that all connections must be authorized.

Table 1: Verification concerns and impact multipliers across insulin pump wearable.

REQUIREMENT INS.1 FOR INSULIN PUMP WEARABLE

Verification

Concerns (VCs)
Devastating (0.2) Worrisome (0.5) Unconcerned (0.9)

I
• Remove I := 0

• Set I > Cap

• Increment I twice in a

single state change

Cap

• Reduce Cap

• Reset Cap to Len where is

it not currently performed

 • Increase Cap to Len

where is it not

currently performed

Conn • Inhibit connection

REQUIREMENT INS.2 FOR INSULIN PUMP WEARABLE
Verification

Concerns (VCs)
Devastating (0.2) Worrisome (0.5) Unconcerned (0.9)

Conn • Set to true when connected

to a non-authorized device

• Set to false when

connected to an

authorized device

• Set to true when

connected to an

authorized device

AuthConn • Set to true when connected

to a non-authorized device

• Set to false when

connected to

authorized device

• Set to true when

connected to an

authorized device

send • Inhibit send while

connected

 • Send null data

REQUIREMENT INS.3 FOR INSULIN PUMP WEARABLE

Verification

Concerns (VCs)
Devastating (0.2) Worrisome (0.5) Unconcerned (0.9)

In • Inhibit read

AdminIns • Set to false when

instructed to administer

• Set to true when not

told to administer

bloodSugarLevel • Prevent processing

D • Increase D • Reduce D

For INS.2, we captured VCs related to Conn, AuthConn, and send. Conn is captured by the

application of Rule 4. AuthConn and send are captured by the application of Rule 2.

Devastating changes would include setting either to true when the device currently connected

is not authorized since doing so would be a violation of INS.2. Worrisome changes would

include setting either to false when the currently connected device is authorized since that

would contradict an axiom that KIV employs to prove INS.2. Inhibiting send while connected

is considered devastating as that would directly violate the requirement as stated in KIV,

while sending null data would be unconcerned.

Lastly, for INS.3, we capture VCs related to In, AdminIns, bloodSugarLevel, and D. In is

captured by the application of Rule 5. Devastating changes to In would include inhibiting the

read so that blood-sugar data and administer insulin requests can’t be processed by the insulin

pump. This would directly violate requirement INS.3. AdminIns, bloodSugarLevel, and D are

captured by application of Rule 3. Devastating changes would include altering their values

when insulin should be administered which would violate INS.3. Worrisome changes would

include altering their values when insulin does not need to be administered, which does not

violate INS.3, but could violate proof re-use and affect the user’s health.

5. Risk assessment

For our experimentation, we specify four adaptations that the wearables in the testbed can

employ if they enter an insecure state. These adaptations are as follows.

A1: Stay connected to base station; send empty packets (so there is no value in sniffing);

do not participate in fostering

A2: Stay connected to base station; send empty packets; participate in fostering

A3: Disconnect from base station (sending no packets but collecting data locally); do not

participate in fostering

A4: Disconnect from base station; participate in fostering

Each adaptation has a set of affected VCs and conditions in Table 1 that must be identified

by the system designer. Adaptation A1 allows the wearable to stay connected without any

fostering, which affects the AuthConn and Conn VCs. The condition for both AuthConn and

Conn in A1 is “Set to true when connected to an authorized device”. Since this statement

expresses the default behavior of each wearable, the changes provide have an unconcerned

impact (column 4 in Table 1). A1 also affects the send VC by changing its condition to “Send

null data”. This change has an unconcerned impact according to the insulin pump’s

requirements. Adaptation A2 allows the wearable to remain connected but allows fostering.

The change condition for Conn is the same as A1 but fostering may set AuthConn to true

when there is an unauthorized connection. This setting is considered is a devastating

condition (column 2 in Table 1) for AuthConn. A2 also sends null data, where the impact is

unconcerned. Adaptation A3 disconnects the device but does not permit fostering. The

change condition for Conn is “Set to false when connected to an authorized device” but the

conditions for send and AuthConn are same as in A1. Adaptation A4 disconnects the device

and allows fostering, so the condition for AuthConn is “Set to true when connected to a non-

authorized device” and connected is “Set to false when connected to an authorized device.”

Both conditions have a devasting impact on AuthConn and Conn.

The notation XA� refers to the VCs affected by adaptation A, where A is A1, A2, A3, or

A4, e.g., XA�� = �ABxx, s�:ℎABxx, 1?xC�. The notation ;BxCE:EBx1��y;$ refers to the

change conditions of the verification concern vc with respect to adaptation A, e.g., ;BxCE:EBx1���ABxx$ = �"�?: :B :>�? �ℎ?x ;Bxx?;:?C :B _x _�:ℎB>E�?C C?yE;?"�. When

assessing how an adaptation affects a particular requirement, VCs in Table 1 that are not

associated with that requirement are ignored. For example, though VC send is part of

adaptation A1, send is ignored when assessing INS.1, since it is not associated with INS.1.

As wearables operate in a dynamic environment, a security solution requires some

knowledge of their situation, which provides the capability to prevent security threats. The

situational knowledge may be obtained from historical scenarios in which the security of the

device was vulnerable. Using this knowledge, designers assign a change impact value p̂,

which is a heuristic that quantifies the planner's belief that the adaptation will result in a

successful outcome. We assign p̂ for each adaptation based on situational knowledge for the

insulin pump as shown in Table 2.

Table 2: Change impact for adaptations A1-A4 on insulin pump.

<̂(A1) <̂(A2) <̂(A3) <̂(A4)

0.55 0.65 0.60 0.75

Using the captured meta-data (Table 1), impact multipliers (Table 1), and change impacts

(Table 2), we employ our adaptation assessment framework based on the meta-data, code

architecture, and developer input to evaluate the risk that an adaptation inhibits the re-use of

the proof process [38]. This risk assessment approach provides the system with an

opportunity to select the most appropriate, or least risky, adaptation from the set of potential

adaptations. From each requirement and proof process, we embed a verification workflow

(VFlow) based on a Colored Petri Net (CPN) [24] that models the software architecture of the

system and the proof process to output the risk alerts for each adaptation.

A CPN is a bipartite, directed graph that includes a collection of places and transitions as

vertices. In general, colored tokens, representing different data types, traverse the CPN places

according to a set of pre-defined transition rules. Places, transitions, tokens, and transition

rules are defined for the VFlow CPN. The VFlow design restricts each place to allow only

tokens of a single color. Transitions in the VFlow design allow for all colored tokens.

Figure 4 depicts the VFlow for the insulin pump with its three architectural components as

described in Algorithm 3. These components are Initialize, Adjust, and Administer. Initialize

represents the initialization instructions (as specified in S1). Adjust represents the changes to

the buffer (as specified in S2, S3, and S4). Administer represents the blood sugar level

assessment and the insulin administration (as specified in S5).

Each component in Figure 4 is specified using two places and a transition. Initialize

includes the places Initialize and Initialize Pink, with Initialize Transition. Adjust includes the

places Adjust and Adjust Pink, with Adjust Transition. Administer includes the places

Administer and Administer Pink, with Administer Transition. Designers assign a place impact

multiplier, D��, to each component to quantify the significance of the component in the

requirement proof process. For simplicity, we assign 0.5 to each component of the insulin

pump algorithm for each requirement as shown in Table 3.

Figure 4: VFlow CPN for insulin pump’s INS.2 for adaptation A1.

Table 3: Place impact multiplier for the insulin pump’s VFlow.

 Initialize Adjust Administer

INS. 1 0.5 0.5 0.5

INS. 2 0.5 0.5 0.5

INS. 3 0.5 0.5 0.5

There are two additional places, Start and End, that must also be included in the VFlow,

also shown in Figure 4. The Start place is the starting point of VFlow execution and

expresses the initial state of the verification process. The End place accumulates tokens that

express risk alerts when conflicts are present because of adaptation changes to the VCs

extracted from the requirement proof process. Each of the eight places presented in Figure 4

acts as a container for specific colored tokens. The places Initialize Pink, Adjust Pink, and

Administer Pink are containers for pink tokens. The places Start, Initialize, Adjust, and

Administer are containers for blue tokens. End is a container for red tokens. Each of the three

transitions are used to perform complex processing based on embedded verification

knowledge, and to allow token instantiation and traversal through the VFlow. Colored tokens

may only traverse their respective places through transitions.

Pink tokens represent the qualities of the adaptation as input. There is one pink token for

each adaptation. For the VFlow, the pink token =� for an adaptation A is defined as

=� = ��y;, ;BxCE:EBx, <̂�s$% | ∀ y; ∈ XA�, ∀;BxCE:EBx ∈ ;BxCE:EBx1��y;$�,

where

• ��� are the VCs affected by adaptation A,

• ¡f¢hgh¡f£��¤ $ are the conditions of the change to a vc due to adaptation A, and

• p̂ is the change impact value associated with adaptation A (Table 2).

When the VFlow is instantiated, pink tokens are constructed and assigned to their

corresponding places, which are Initialize Pink, Adjust Pink, and Administer Pink in Figure 4.

As shown in Figure 4, empty pink tokens are assigned to the Initialize Pink and Administer

Pink places since these architectural components are not affected by adaptations A1-A4.

Table 4 provides the pink token specification for adaptations A1-A4 for the insulin pump. All

four adaptations affect AuthConn, Conn, and send VCs and the Adjust Component. As such,

the specifications provided in Table 4 are used to construct the pink token that is assigned to

the Adjust Pink place. Each pink token, including empty pink tokens, traverses between the

place to which it was assigned and its adjacent transition.

Table 4: Pink Token specification for adaptation A1-A4 for insulin pump.

PA1 {(AuthConn, Set to true when connected to an authorized device, 0.55),

 (Conn, Set to true when connected to an authorized device, 0.55),

 (send, Send null data,0.55)}

PA2 {(AuthConn, Set to true when connected to a non-authorized device, 0.65),

 (Conn, Set to true when connected to an authorized device, 0.65),

 (send, Send null data,0.65)}

PA3 {(AuthConn, Set to true when connected to an authorized device, 0.60),

 (Conn, Set to false when connected to an authorized device, 0.60),

 (send, Send null data,0.6)}

PA4 {(AuthConn, Set to true when connected to a non-authorized device, 0.75),

 (Conn, Set to false when connected to an authorized device, 0.75),

 (send, Send null data,0.75)}

A single blue token (initially empty) traverses through the VFlow to determine conflicts

with VCs at transitions. The blue token collects and carries information related to how VCs

are affected. For the VFlow, the blue token �� for an adaptation A is defined as

 �� = �yE1E:?C, y;ABxt~E;:1, y;Aℎ_xw?1, j_¥^C¥)

where,

• visited is a set of traversed places within the VFlow,

• vcConflicts is a set of identified conflicts that are each of the form
 ¡f¦ih g = �h¢§ ¡f¦ih g, �¤ , ¡f¢hgh¡f, ¤ ¨©ª« g$, ¡f¦ih g¬i« , ª®��$&,

where

• h¢§ ¡f¦ih g is the unique index number assigned to the conflict, which is

incremented for each identified conflict,

• vc is the affected VC,

• condition is the change condition of vc,

• vcImpact is the impact associated with the vc and condition (the ¯�� value from

Table 1 that corresponds to affected VC and condition),

• conflictPlace is the name of the place in the VFlow where the conflict was

detected, and

• ª® is the change impact value associated adaptation A (Table 2),

• vcChanges is a set of tuples that are each of the form

 °«f± = �h¢§ °«f±, ¤ , ª̂��$&, where

• h¢§ °«f± is the unique index number assigned to the change, which is

incremented for each identified change,

• vc is the affected VC, and

• ª® is the change impact value associated with adaptation A (Table 2), and

• maxIdx is the largest idx among conflicts in vcConflicts.

When the VFlow is instantiated, an empty blue token is assigned to the Start place. This

blue token traverses places (not including Initialize Pink, Adjust Pink, Administer Pink, and

End) and transitions within the VFlow. The attributes of the blue token are updated according

to transition rules, which will be discussed later. Since the blue token that is assigned to the

Start place is initially empty, we use a flag trigger, which is initially set to 1, to indicate that

the blue token is ready for traversal. Once the blue token begins traversal, trigger is set to 0.

Traversal terminates when the blue token is empty and trigger is set to 0.

The blue token shown in Figure 4 is the state of the blue token after it completes its

traversal from the Start place to Administer and accumulates conflict information in the

Adjust Transition. There is no conflict information in the Initialize Transition or the

Administer Transition, since both are associated with empty pink tokens. The state of the blue

token is provided below.

BA1 = ({Initialize, Adjust, Administer},

 {(1,(AuthConn, Set to true when connected to an authorized device, 0.9), Adjust, 0.55),

 (2, (Conn, Set to true when connected to an authorized device, 0.9), Adjust, 0.55),

 (3, (send, Send null data, 0.9), Adjust, 0.55)},

 {(1, AuthConn, 0.55), (2, Conn, 0.55), (3, send, 0.55)}, 3)

The visited set in the blue token holds the traversed place names, e.g., {Initialize, Adjust,

Administer}. Three conflicts arise in Adjust which are associated with the AuthConn, Conn,

and send VCs. Each conflict is added to vcConflicts in the blue token. Each conflict includes

the affected VC, its condition, and the impact multiplier of the VC and condition as

determined by Table 1. In addition, each conflict also has a change impact value of 0.55,

which is the change impact value associated with adaptation A1. Three changes are added to

vcChanges in the blue token, which hold the conflict information and are updated over the

traversal process. This information includes the affected VCs and the change impact value,

which is 0.55. Since three conflicts arise, the maxIdx into the blue token is updated to 3.

Red tokens hold the attributes that are needed for the risk assessment and represent alerts

regarding the impacts on VCs based on the adaptation qualities. For the VFlow, a red token v� for an adaptation A is defined as

 v� = � EC¥][²³Z, y;^j<_;:^xtB, <�̂s$, ;Bxt~E;:=~_;?, ;Bxt~E;:=~_;?=>?CBjEx_x;?)

where

• h¢§g¡´f is the unique index number assigned to the red token, which is taken from

the maxIdx of the blue token at the time the red token is generated,

• ¤ ¨©ª« g¨f¦¡ holds the collection of information in the form hf¦¡ = �¤ , ¡f¢hgh¡f, ¤ ¨©ª« g$, which contains the affected verification

concern, the change condition of vc, and the impact multiplier of vc and condition

(Table 1),

• ª® is the change impact value associated with adaptation A (Table 2)

• ¡f¦ih g¬i« is the name of the place in the VFlow where the conflict was

detected, and

• ¡f¦ih g¬i« ¬µ¢¡©hf«f is the place impact multiplier assigned to the

affected architectural component (Table 3).

Red tokens are only generated when conflicts are detected and are output by transitions to

the End place. The red tokens shown in Figure 4 indicate the alerts that are generated for each

conflict. They hold the impact multipliers values associated with adaptation A1. The three red

tokens are provided below.

RA1,1 = (1, (AuthConn, Set to true when connected to an authorized device, 0.9),

 0.55, Adjust, 0.5)

RA1,2 = (2, (Conn, Set to true when connected to an authorized device, 0.9),

 0.55, Adjust, 0.5)

RA1,3 = (3, (send, Send null data, 0.9), 0.55, Adjust, 0.5)

The three affected VCs, AuthConn, Conn, and send, along with their conditions and impact

values (Table 1) are included within vcImpactInfo of the red tokens. Each red token has a

change impact value of 0.55, which is the change impact value associated with adaptation A1

(Table 2). All conflicts were identified in the Adjust component, so each red token has a

conflictPlace of Adjust and a conflictPlacePredominance of 0.5, which is the value from

Table 3 associated with Adjust.

To embed verification knowledge, we define a structure for the transitions in the VFlow.

A transition T is defined as

 · = �<~_;?¸_j?, <~_;?=>?CBjEx_x;?, y;^xtB$,

where

• placeName is the associated architectural component name,

• ªi« ¬µ¢¡©hf«f is the place impact multiplier assigned to the associated

architectural component (Table 3), and

• ¤ ¨f¦¡ is a set of tuples of the form hf¦¡ = �¤ , ¡f¢hgh¡f, ¤ ¨©ª« g$, where vc is the verification concern, condition is potential change, and ¤ ¨©ª« g is the impact

multiplier that is associated with the vc and condition (Table 1).

The transitions shown in Figure 4 are for the Initialize, Adjust and Administer components,

which hold the verification concerns, their change conditions and impact multipliers for

associated components. The Initialize Transition has a placeName of Initialize and a

placePredominance of 0.5 (Table 3). vcInfo is empty. The VCs extracted for INS.2, which

are AuthConn, Conn, and send, are not associated with S1 (Algorithm 3). The Adjust

Transition has a placename of Adjust and a placePredominance of 0.5 (Table 3). It has a

vcInfo that includes VCs AuthConn, Conn, and send and their associated conditions with the

corresponding impact multiplier values as shown in Table 1. The Administer Transition has a

placeName of Administer and a placePredominance of 0.5 (Table 3). It has a vcInfo that is

empty as the extracted VCs (AuthConn, Conn, and send) are not associated with S5.

Figure 5: Sample transition rule for CPN.

A transition becomes enabled when blue and pink tokens are received from their

respective input places. We define transition rules to process the tokens and output alerts. In

Figure 5, one sample transition rule is shown. This rule applies when the blue token has not

visited the place (check B.visited), does not have a conflict with a VC from a processed pink

token with matching transition VCs (compares VCs into B.vcConflicts and T.vcInfo), but

does have a conflict with a pink token VC and transition VCs (compares VCs from P.vc and

T,vcInfo). After executing the transition rule, B.visited includes the place name and updated

B.vcConflicts and B.vcChanges using the pink token and the transition’s embedded

verification knowledge. We have this transition rule and the other 8 transition rules that are

used for the wearable simulations in Appendix A. To assess the risk of each adaptation, we reuse a utility function from prior work [34] that

calculates the expected utility of an adaptation from the risk factors accumulated by red

tokens. The utility function is shown below, where R is the set of requirements and w(r) is the

utility weight needed to maintain system compliance with a requirement, r.

E[U�a$] = ¼ ½w�r$ ¿ P�S�t$ = 1$
N∈À�Á,Â$

Ã
Á∈Ä

In Table 5, stakeholder-supplied utility weights of the requirements for the insulin pump

are provided. =���:$$ is the probability of risk associated with each alert (red) token, t, and

estimated by multiplying the three impact multipliers together.

 p�t$ = MÅÆ�t$ M�Ç�t$pÈ �t$

The adaptation with the greatest expected utility is considered to be the least risky and

most appropriate for reusing the original proof of the verification process.

Transition Conditions:

 T.placeName is NOT in B.visited

 VC in T.vcInfo appear in a tuple in B.vcChanges

 A VC in a tuple in P conflicts with a VC in T.vcInfo

Transition Actions:

FORALL VC in T.vcInfo that appear in a tuple in P

 Increase B’.maxIdx for the unique ID of red token
 Create a red token, R, with proper idx_token and other

 information held by P and T

 Update B’.vcConflicts by increasing idx_conflict and the

 appropriate information held by T for all matching VCs

 Update B’.vcChanges by increasing idx_change and the appropriate

 change information from P

 Add T.placeName to B’.visited

 Send B’ to next place

 Send P to its place

 Send all red tokens to End place

Table 5: Utility weights of the requirement.

Insulin Pump

INS. 1 INS. 2 INS. 3

0.75 0.75 0.5

We calculate the expected utility for each of the adaptations for all three wearables. The

expected utility for adaptations A1-A4 with respect to the insulin pump are shown below.

 E[U�A1$] =

0 + (0.75*0.55*0.9*0.5) (0.75*0.55*0.9*0.5) (0.75*0.55*0.9*0.5) + 0 = 0. 00639601391 E[U�A2$] =

0 +(0.75*0.65*0.2*0.5) (0.75*0.65*0.2*0.5) (0.75*0.65*0.9*0.5) +0 = 0. 00052135839 E[U�A3$] =

0 + (0.75*0.6*0.5*0.5) (0.75*0.6*0.5*0.5) (0.75*0.6*0.9*0.5) +0 = 0. 00256289062 E[U�A4$] =

0+ (0.75*0.75*0.5*0.5) (0.75*0.75*0.2*0.5) (0.75*0.75*0.9*0.5) +0 = 0. 0020022583

According to the risk assessment perspective, adaptation A1, which allows the device to

remain connected without fostering while sending empty packets has the best utility for the

insulin pump. Allowing fostering may potentially cause devastating results for requirement

INS.2, which says that the insulin pump is only allowed to connect with authorized base

stations. Thus, adaptation A2, A3 and A4 have lower risk assessment values. For the insulin

pump, the adaptations would be ranked in order as A1, A3, A4, A2.

Similarly, we calculate the expected utility for each adaptation across the hearables and

the HVRM, which are shown in Table 6. From the risk assessment, adaptation A3 is the best

for hearables and adaptation A1 is the best for the HVRM.

Table 6: Expected utility calculation from risk assessment.

 A1 A2 A3 A4

Hearables 0.00843557904 0.00466998096 0.01160804925 0.00845593725

Heart Rate Variability Monitor 0.00806354516 0.00181526464 0.00300389062 0.0026913208

Insulin Pump 0.00639601391 0.00052135839 0.00256289062 0.0020022583

For the hearables, adaptation A3 is the best choice as the device gets disconnected and

sends null data, which has an unconcerned impact on HR.1. It also does not allow fostering,

so there is no unauthorized buffer change, which has an unconcerned impact on HR.2.

Adaptation A4 is the second-best choice as the device gets disconnected, which has an

unconcerned impact on HR.1, but it allows fostering. Fostering sometimes allows

unauthorized connections, but as A4 disconnects hearables from available connections,

fostering only has a worrisome impact. Adaptation A1 allows the device to remain connected

while sending null data, which prevents music from being streamed and has a devastating

impact on requirement HR.1. Similarly, A2 also has a devastating impact on HR.1, and, due

to allowing fostering, has devastating impact on HR.2. The adaptations for the hearables can

be ranked in order as A3, A4, A1, A2.

The chosen adaptation for the HVRM is Adaptation A1, which allows the device to remain

connected with an authorized connection while sending empty packets. Both changes have an

unconcerned impact since they do not affect HRVM.1 or HRVM.2. The adaptation A2,

which allows fostering, is the second-best choice because fostering has the potential risk of

not being authorized. Adaptations A3 and A4 cause devastating impacts for requirement

HRVM.2 as the device is disconnected and eventually data is lost. The adaptations for the

HRVM can be ranked in order as A1, A2, A4, A3.

6. Evaluation

6.1. Repeatability of the formal approach using Lean

To evaluate the repeatability of our proof process in Section 4.3 and the heuristic rules in

Section 4.4, we examine the methodology used within the Lean automated theorem prover

[61]. Lean is an open-source, interactive theorem prover in active development at Microsoft

Research [62]. While Lean does not contain built-in support for Hoare logic or temporal

logic, these logics can be added to the theorem prover through custom packages. In the

subsequent paragraphs, we highlight how the methodology used with KIV translates to Lean

resulting in a proof-of-concept [63] that demonstrates the potential for our proof process.

Include the semantics of Hoare logic in Lean. Along with the semantics, definitions,

lemmas, and sequents must also be included. Baanen et al. demonstrate how Hoare logic can

be implemented in Lean [63, 64]. Their libraries, that include definitions and lemmas, can be

imported into Lean. Their lemmas are definitionally equal to the rules that KIV uses to

perform proof steps as both use the same underlying sequents. As long as the same sequents,

with similar definitions and lemmas, are implemented in Lean, an equivalent proof process

can be constructed.

Include an abstraction of the semantics of the target program. Lean currently has no

abstract representation of programming language semantics. Efforts are underway to provide

such support in the next version of Lean [65]. We implement an abstraction to represent the

semantics necessary to define Algorithms 1, 2, and 3 (see our GitHub reference [66]).

Specifications from Algorithm 3 are written using this abstraction and then symbolically

translated to a Hoare triple. The initial conditions of the program are specified as the pre-

condition of the triple while the post-condition represents the desired requirement being

proven.

Include a definition of a lexical scope, or program state, including lemmas. To

determine the pre- and post-condition of any Hoare triple defined over a program’s

semantics, it is necessary to implement the definition of a lexical scope. Lemmas must also

be defined to update the current scope and apply it to a specific program variable within the

proof process. Propositions over program variables are defined as a conjunction of terms

where each term includes a sequence of scope updates and one scope application. A scope

update is denoted as 1�"^" ↦ 1 "^" + 1�, which states that the value of variable I in the

current scope s is to be updated to the increment of its previous value. A scope application is

denoted 1_2 "^", where 1_2 = 1�"^" ↦ 1 "^" + 1�, and it is equivalent to the actual value of I.

Lean’s built-in command simp can be used to simplify each term in the proposition to its

actual value. Examples can be found in Section 9.4 of the Hitchhiker’s Guide to Logical

Verification [63] of a scope (called state) defined for program variables with the natural

number type. We found it necessary to implement our own scope definitions and lemmas to

support all program data types [66].

Define new lemmas for the sequents for KIV’s if positive, if negative, and call left
rules. Since there is no equivalent of KIV’s if positive or if negative rule in Lean or its

libraries, we define new lemmas ite_true_intro and ite_false_intro [66]. When these lemmas

are applied, they impose a goal that represents the expected condition of the if statement.

Rule 4 can be applied to this goal to extract verification conditions. We also define a new

lemma call_intro in Lean [66] to represent KIV’s call left rule. Applying the call_intro

lemma in Lean imposes a goal to show that the arguments for XYZ and XYZ[\] exist in the

current program state. Rule 5 can be applied to this goal to extract verification conditions.

Include support for temporal logic, along with definitions and lemmas. Based on

previous work [67] and our efforts [66], we are confident that temporal logic can be

implemented in Lean. Hoare semantics can be defined using an operator that sequentially

applies instructions, as has been demonstrated [63, 66]. Sequentially executed instructions

can be assigned a step number that is incremented with each instruction. By doing so,

temporal logic and Hoare logic can be combined in Lean by structuring each temporal

proposition as an assertion about an instruction that is executed with a specific step number.

Alternatively, temporal properties can be proven by inserting the property into the post-

condition of a Hoare triple and verifying that Hoare triple across all applicable execution

traces.

Once temporal logic has been implemented in Lean, TCPs and STCPs can be defined in

Lean to condense the proof steps needed to walk through each program specification. A

program can be verified using a backward proof or a proof by contradiction. A backward

proof is simpler than a proof by contradiction but is limited to deterministic programs. A

proof by contradiction uses the natural number M (Section 4.2). Our lemmas, lemma-

invariant, lemma-progress, and lemma-progress-split can be defined in Lean and applied to

close resulting goals in a proof by contradiction. Having such support would be extremely

valuable when verifying requirements of non-terminating or non-deterministic programs in

Lean.

6.2. Validation of the adaptation assessment framework

One of the important research aspects to incorporate self-awareness within a SISSY

system is to consider the impact of integration changes that will influence the behavior of the

entire system [68]. This paper proposes adaptation assessment framework [21] to incorporate

verification awareness within the system, which models the verification workflow by

extracting meta-data from proof process for each critical requirement. Given that the nature

of the requirement requires formal verification (e.g. automated theorem proving), we analyze

the proof process to construct well-defined, heuristic rules to extract meta-data from the proof

process workflow across architectural components to construct the model. Using the model,

our approach identifies conflicts between the adaptation’s changes and the requirement’s

original verification process.

To validate the approach’s effectiveness, we check the alignment of the adaptive system

behavior with the risk assessment introduced in Section 5, we simulate adaptations A1-A4 for

all three wearables. We embed checkpoints within the wearables’ source code and log the

execution trace for simulated adaptations. We collect the log of checkpoint execution traces

and accumulate the score of checkpoints that passed. Adaptations are ranked based on their

cumulative scores. The adaptation with the highest score, i.e., most checkpoints passed, is

considered to be the best choice. Figure 6 shows how the checkpoints are placed within the

insulin pump’s code to determine if (i) buffer does not overflow (CP1), (ii) data is generated

(CP2), (iii) data is sent (CP3), (iv) connection is authorized (CP5), (v) connection has been

established (CP5), (vi) data is read (CP6), (vii) data has been stored (CP7), (viii) buffer

change has been authorized (CP8), and (ix) insulin is administered when blood sugar level is

more than the defined value (CP9).

Figure 6: Checkpoints embedded into insulin pump code

for validation of adaptation risk assessment.

We execute each simulation for the insulin pump 100 times. The results are shown in

Table 7. With respect to the insulin pump, adaptations A1 and A3 have an impact of

unconcerned as these adaptations do not allow fostering. CP4, which checks if the connection

is authorized, passes all 100 runs. Adaptations A2 and A4 allow fostering and fostering

sometimes allows unauthorized connections by forcefully setting the auth_connection flag to

true. This results in the reduced scores of 51 and 52 for A2 and A4, respectively. Buffer

change is allowed when auth_connection flag is true and connected to an authorized device.

Adaptation A2 allows fostering and staying connected, which may cause a failure at

checkpoint CP8. Thus, the checkpoint for authorized buffer change fails for adaptation A2.

From the checkpoint log, we find that authorized buffer changes only occur in 51 trials.

Checkpoint CP3 checks that data that has been sent is never passed and the score for this

checkpoint is 0 for all adaptations, since all adaptations allow the sending of null data. In a

similar manner, we accumulate the score for all checkpoints. The scores reflect the risk

assessment results calculated by each wearable following the adaptation assessment

framework described in Section 5.

Table 7: Checkpoint simulation result for the insulin pump.

 A1 A2 A3 A4

CP1 100 100 100 100

CP2 100 100 100 100

CP3 0 0 0 0

CP4 100 51 100 52

CP5 100 49 0 0

CP6 0 0 0 0

CP7 0 0 0 0

CP8 100 51 100 100

CP9 100 100 100 100

Score & Ranking 600 (rank 1) 451 (rank 4) 500 (rank 2) 452 (rank 3)

For the HRVM, checkpoints CP1 to CP7 from Figure 6 are included within its code. We

run the adaptive system simulations for HRVM for 100 trials. From the simulation results

shown in Table 8, the best adaptation remains adaptation A1, which allows the HRVM to

connect with an authorized connection and send empty packets. The checkpoint for

authorized connection, CP5, is passed in all 100 trials. Since empty packets are sent, CP3 for

send data and CP6 for data is read always fail with score of 0. Adaptation A2 is the second-

best choice, which allows fostering but fostering raises the risk of the connection not being

authorized. This is gauged by CP5. The score for CP5 is less for adaptation A2 than it is for

A1. Adaptations A3 and A4 cause devastating impacts for the HRVM as they allow it to be

disconnected and eventually the data gets lost as determined by the log of checkpoint CP7,

which has score 0 for both A3 and A4.

Table 8: Checkpoint simulation result for HRVM.

 A1 A2 A3 A4
CP1 100 100 100 100
CP2 100 100 100 100
CP3 0 0 0 0

CP4 100 47 100 53
CP5 100 47 0 0
CP6 0 0 0 0

CP7 100 100 0 0
Score & ranking 500 (rank 1) 384 (rank 2) 300 (rank 4) 253 (rank 3)

Referring back to Figure 6, the hearables also have checkpoints CP1-CP7. However,

checkpoint CP8 is changed to check (viii) if music is streamed for any connection, and CP9 is

changed to check (ix) buffer has changed for authorized connection. We also add CP10,

which is (x) accelerometer data that is collected is stored. We run the adaptive system

simulations for the hearables 100 times and the results are shown in Table 9. CP3 fails for

each of the adaptations due to sending null data, which results in a score of 0. CP4 is reduced

for adaptations A2 and A4 because fostering is allowed. CP5 fails each run for adaptations

A3 and A4 due to the device being disconnected and is reduced for adaptation A2 due to the

device permitting fostering. CP6 and CP7 fail every run, regardless of adaptation, since each

adaptation uses null data. Due to sending null data music can’t be streamed, so CP8 fails each

run for adaptions A1 and A2, where the device is connected. Adaptations A3 and A4

disconnect the device, which results in CP5 failing every run. However, A3 remains the best

choice for the hearable, again aligning with the results of our adaptation assessment

framework.

Table 9: Checkpoint simulation result for hearables.

 A1 A2 A3 A4
CP1 100 100 100 100
CP2 100 100 100 100
CP3 0 0 0 0

CP4 100 51 100 51
CP5 100 51 0 0
CP6 0 0 0 0

CP7 0 0 0 0
CP8 0 0 100 100
CP9 100 51 100 100

CP10 0 0 100 100
Score & ranking 500 (rank 3) 353 (rank 4) 600 (rank 1) 551 (rank 2)

6.3. Comparison of the adaptation assessment framework to Rainbow

To provide perspective on our approach, we refer to the taxonomy proposed by Krupitzer

et al. [69] that includes a set of qualitative dimensions to compare approaches that design and

implement SASs. We reuse 9 of their dimensions, their questions used to capture qualitative

information, and their input on Rainbow in Table 10, where we (1) expand on their qualities

related to Rainbow [40, 41, 42, 71, 72] for particular dimensions, (2) add questions to capture

qualitative information, and (3) add the qualities of our approach for each dimension.

Table 10: Reuse of the dimensions in Krupitzer, et al. [69].

Dimensions from

[69]

Captured Information

(italics – [69], regular font

– new)

Rainbow

(italics – [69], regular font –

new)

Adaptation Assessment

Framework
(italics – [69], regular font – new)

Type of support What kind of support does

it provide? What elements

does the approach include?

Framework, Tools,

Methodologies

Framework, Tools, Methodologies

Reusability Is reusability considered?

How is it achieved?

Reusable adaptation

infrastructure consisting of

system, Architecture and

translation layers

Reusable adaptation infrastructure

consisting of architecture, proof-

process meta-data, and risk

assessment mechanisms

Use of tools How do the tools support

the development? When are

they applied?

Stitch script editor, Rainbow

development toolkit, Acme

architectural design toolset

[40, 71], SWIM to simulate

target web applications [70]

Applied throughout design

and implementation [40, 71]]

KIV theorem prover for proof

meta-data extraction, Colored Petri

Net construct for adaptation impact

assessment, utility function for

adaptation risk assessment

Applied throughout design and

implementation

Support of

adaptation

mechanisms

How does the approach

handle the system‘s

adaptation? What

mechanisms does it utilize?

How is the adaptation plan

configured?

Not specified

Tailors adaptation strategies

and tactics at design-time to

support runtime adaptation

mechanisms [40, 71]

Chooses adaptation plans

from pre-defined strategies

based on pre-defined utility

preferences [40, 71]

Heuristic rules extract theorem

prover meta-data as verification

concerns

Risk assessment supports runtime

choice of adaptation

Chooses adaptation plan from pre-

defined strategies and externally

configured plans

Type of adaptation What is the granularity of

the adaptation

Compositional Compositional and parameter

expressed within change set

Special demands

on developer

What requirements does the

developer have to fulfill?

What type of and how much

knowledge is demanded in

order to use the approach?

Mathematical knowledge

Application of probabilities to

define strategies and utility

preferences [41, 42, 72]

Mathematical knowledge

Formal methods knowledge to

perform proof process, Application

of probabilities for risk assessment

Development

phase

In which step(s) of the

software development

process can it be applied?

Implementation Design and implementation

Applicability Which systems can the

approach be applied on?

Does the approach support

legacy and/or blackbox

systems?

Self-Adaptive Systems

Yes, from an integration

perspective [40, 71]

Self-Adaptive Systems

Yes, when source code is available

Language

specificity

Does the approach require

a specific programming or

modeling language?

Java, XML Language independent, except for

the theorem prover language

requirements

The comparison presented by Krupitzer, et al. [69] pinpoints Rainbow’s approach along

with other existing adaptation frameworks but does not provide further elaboration in each

dimension. From literature on Rainbow [40, 41, 42, 71, 72], we include additional insights in

Table 10 to provide a clearer understanding of how Rainbow compares with our adaptation

assessment framework. Specifically, the Use of tools dimension denotes specific tools the

approach uses for development. Rainbow mentions tools that are associated with specific

tasks and when they are applied to support development. The Support of adaptation

mechanisms dimension highlights significant distinctions across both approaches between the

elements/processes that are required to implement adaptation mechanisms and how they

support adaptation. Rainbow requires that system specific adaptations be defined at design-

time in the form of strategies (adaptation conditions) and tactics (adaptation changes) that

comprise decision trees [71, 72]. Rainbow also requires pre-defined utility preferences that

map tactics to expected utility values [40, 71]. Pre-defined strategies and tactics are used to

select an adaptation plan at runtime based on pre-defined utility preferences [40, 71]. In our

own approach, we extract meta-data from the proof process at design-time and use the

extracted meta-data within a model that includes the system architecture. The model provides

inputs to our risk assessment procedure. Adaptation plans are then assessed and selected at

runtime based on the risk assessment results. In the Special demands on developer dimension,

we elaborate over the expertise that each approach requires. The Applicability dimension is

further extended to include whether the approach can support legacy and/or blackbox

systems. While these are not system domains per se, lack of support for legacy and blackbox

systems can limit applicability within a system domain.

We extend the dimensions in Table 11 to include (i) Intensity of human effort to identify

elements of the approach that require human implementation or interaction at one time or

consistently throughout the development process, (ii) Implementation of adaptation layer

to describe how the adaptation layer is incorporated into the system, and (iii) Support of

model/requirement modifications at runtime to state how the adaptation layer can be

updated after initial deployment. Information is captured using questions from the second

column that we crafted. These dimensions have been included to further highlight points of

comparison between Rainbow’s approach and our own. Captured information for Rainbow is

taken from prior literature [40, 41, 42, 71, 72]. The Intensity of human effort details human-

oriented processes that, in turn, highlights areas of the approach that must be repeated when

the system architecture or its requirements change. The Implementation of Adaptation

Layer dimension provides insight into limitations of the adaptation layer. The performance

of external adaptation layers, as used in Rainbow, can suffer from poor network conditions.

Using internal adaptation layers, such as in our own approach, typically have stricter

limitations with respect to applicability. Lastly, the Support of model/requirement

modifications at runtime dimension provides insight as to what should be updated and/or

redeployed if the system architecture and/or requirements change. Having the ability to

update a system’s decision making with respect to adaptations while it is deployed is

desirable for many SASs.

Table 11: Extending the dimensions in Krupitzer, et al. [69].

Extended Dimensions Captured Information Rainbow Adaptation Assessment

Framework

Intensity of Human

Effort

Which elements require

human implementation

and/or interaction?

Defining adaptation strategies &

tactics, utility preferences, and

the configuration of the

adaptation infrastructure [40, 41,

42, 71, 72]

Performing requirement proof

process, meta-data extraction,

and defining and classifying

impact multipliers

Implementation of

Adaptation Layer

How is the adaptation

layer incorporated into

the system?

External adaptation layer that is

incorporated over a network

connection [40, 4, 712]

Internal adaptation layer that

is embedded within the

system

Support of

model/requirement

How to update

adaptation layer if

not specified Update architectural model

and impact multipliers to

modifications at

runtime

system requirement

and/or model need to be

changed after initial

deployment?

redeploy

7. Discussion and conclusion

This paper describes and evaluates an adaptation assessment framework to embed

verification awareness on a wearable testbed that comparatively evaluates the risk of potential

adaptations inhibiting the proof processes of previously verified requirements. We investigate

our approach on three simulated wearables that have different verified requirements. We

outline a strategy to use the KIV automated theorem prover to verify the wearable

requirements. Heuristic rules are defined to capture the meta-data from the KIV proof process

and embed verification awareness within the target wearables. We show that given the same

four adaptations available to each wearable, the wearable independently determines the

adaptation least risky to inhibiting the proof processes of its verified requirements.

Incorporating verification awareness within the system is an effective approach to reason

about system compliance with requirements when runtime adaptation is needed, including

when adaptations are configured at runtime.

One potential shortcoming of this approach is that system requirements have to be initially

specified by hand. This activity needs expert knowledge and is open to problems of

interpretation as human experts translate statements of natural language to formal

specifications and vice versa [60]. The challenge is that system requirements cannot be

procedurally generated with a high degree of reliability. Attempting to have a generalized

machine procedurally generate requirements only translates the problem of interpretation

from a human to a machine that is far less equipped to navigate the problem domain [60]. A

domain-specific model could be developed that would have the necessary expertise to

generate system requirements. However, developing the domain-specific model would still

require expert knowledge to procedurally identify and extract requirements [73]. One

direction is to use structured natural language for a domain of requirements, such as our

approach with the use of the NIST SP800-53 security controls [74] that can be more easily

expressed as a formal specification [20].

Rice’s theorem states that any non-trivial, semantic property of a program is undecidable

[24]. Given a property P of a program, P is trivial if-and-only-if there are only programs that

satisfy P or there only programs that do not. For example, if P is the invariant □�p → Ë$, then

we could demonstrate that P is non-trivial by showing that there is at least one program that

satisfies P and at least one program that does not. Once it has been determined that P is non-

trivial, we could attempt to construct an algorithm that accepts all programs and adaptations

where P is satisfied, or rejects them otherwise. This, in essence, defines a decision problem

where functional requirements are treated as non-trivial properties. As such, by virtue of

Rice’s theorem, we can determine that the decision problem to accept a program or

adaptation due its ability to satisfy a functional requirement, such as P, is undecidable. It

follows from that conclusion that determining whether a given program or adaptation satisfies

P is undecidable. Thus, we employ a heuristic approach to assess the risk of an adaptation

potentially violating a requirement by examining the meta-data captured from a proof

process, strategy, or structure.

The KIV automated theorem prover does place certain limitations on our work. Each set of

specifications for each program and all related requirements must be constructed by hand. In

addition, each proof of each requirement must also be performed manually. KIV does employ

a very helpful set of heuristics that can automate the vast majority of the proof steps. Lastly,

capturing meta-data from the proof process currently requires expert intervention. However,

capturing meta-data is a straightforward endeavor since the programs must already be

reduced to the bare minimum number of program variables and program states to support

proof construction. Thus, reliance on a formal proof process may limit the risk assessment

approach from being widely accepted until the automated technology becomes more

powerful. Current efforts to implement new, more expressive theorem provers, such as Lean

[61], provide us with confidence that greater and more customizable automation will be

available in the future. That said, the proof process does ensure the system’s correctness with

respect to certain requirements and the proof process only needs to be performed once to

capture meta-data information. The presented risk assessment approach expects a structured

format to specify adaptation changes that we currently construct manually. We assume that

an adaptation planner would have the capability to specify the change set.

State space explosion remains a significant research challenge for the self-adaptive system

community [27]. In general, modeling the runtime behavior of a system using a theorem

prover, such as KIV, is subject to limitations posed by state space explosion [6]. Any single

requirement can be specified over any number of program variables, resulting in a state space

that is exponential with respect to the number of program variables. In such cases, axioms of

prepositional logic must be used to subdivide complex requirements into many simpler

requirements that can each be individually proven. There is, however, no efficient means by

which to reduce a requirement specified in disjunctive normal form, if it is assumed that all

requirements should be satisfied.

Developers can employ compositional analysis techniques, such as refactoring and

decomposition, to address state space concerns for their target system. Both KIV and Lean

support custom lemmas which can be applied to the proof process to simplify the proof

process, where possible. For complex systems that cannot be easily refactored, the approach

presented relies on a model of system behavior as defined by our adaptation assessment

methodology. In practice, such models can be more easily refactored and verified than

original source code [12].

Such techniques continue to demonstrate merit in industry applications. Microsoft has

been employing proofs using F*, a proof assistant programming language, and other modern

proof assistants, such as Lean [61], to improve the security of HTTPS. Project Everest covers

600,000 lines of code and proofs that are integrated hundreds of times per day [75]. Ancillary

to Project Everest, Microsoft released EverCrypt, a cryptographic library that has fully

verified C and assembly code using F* [76]. Zelkova [77], another proof assistant, has been

used by Amazon to encode the semantics of AWS service policies into satisfiability modulo

theories (SMT). Policy properties are then verified using SMT solvers. With a significant

understanding of their domain, researchers at both of these companies have been able to

employ theorem provers to provide hundreds to millions of proofs every day [75, 77].

The most significant issues with scalability are those related to constructing an appropriate

model of the system architecture that can be used for adaptation assessment. Large scale

systems often have many interdependencies between components that would each have to be

evaluated to gauge the full impact of an adaptation [4]. This evaluation can create timing

issues that undermine the integrity of the system’s assessment process. These timing issues

are further exacerbated if the system must perform runtime adaptation assessments within a

restrained window of time. The work presented in this paper addresses these issues by

extracting proof process meta-data to institute heuristics that can be employed by runtime

adaptation assessments. Employing such heuristics in a self-aware system can avoid timing

issues that would otherwise limit scalability.

With respect to IoT and cloud computing, relying on an external adaptation layer to

perform adaptations can introduce additional latency due to network lag time that can be

exacerbated by poor network conditions. IoT devices usually have low computational power

and may operate in low bandwidth situations [52, 54]. External adaptation layers have been

examined with IoT devices and cloud services to address their need to modify their

requirements during deployment [78], but response time can be affected. Once meta-data has

been extracted, our approach employs a lightweight and embedded risk assessment process.

Thus, embedded verification awareness allows risk assessment to be performed on an

adaptation without added latency introduced by a connected, external adaptation layer. In

addition, with our approach, we can perform a proof process on modified requirements,

develop a modified model as an external action, and then redeploy the modified model within

a running system as an embedded adaptation layer. Thus, the approach may benefit SAS in

IoT and cloud computing domains.

To cope with uncertain situations, cyber-physical systems (CPS) should maintain evidence

that the system maintains a certain degree of requirement compliance confidence [3, 79].

Architecting trustworthiness within a CPS involves development-time modeling, verification,

and synthesis of assurance evidence [80], which are all supported by our adaptation

assessment framework. Our risk assessment estimates the probability of a potential

requirement violation due to adaptation, which can be used as an evidence of trustworthiness.

Some of the most significant difficulties in scaling our approach exists where human

intervention is currently required. After proofs have been constructed, experts must evaluate

the proofs and apply the extraction rules to extract verification concerns from the proofs.

These verification concerns are then associated with impact values, which are currently

determined by human expertise. There is potential for automation by simulation or a design-

time adaptation risk assessment. Impact values can then be used to evaluate adaptations once

the adaptation has been translated to a changeset by an expert. Automating the translation

requires a specification language for the adaptation that aligns with changeset expectations.

The risk assessment process employs a CPN that also must be constructed by hand. It is our

intent to further investigate these areas so that the need for human intervention will be

reduced.

Acknowledgements

This material is based on research sponsored by Air Force Research Laboratory under
agreement number FA8750-16-1-0248. The U.S. Government is authorized to reproduce and
distribute reprints for Governmental purposes notwithstanding any copyright notation thereon.
The views and conclusions contained herein are those of the authors and should not be
interpreted as necessarily representing the official policies or endorsements, either expressed
or implied, of Air Force Research Laboratory or the U.S. Government.

References

[1] K. Bellman et al., Self-Improving System Integration – Status and Challenges After Five Years of SISSY, in Proc. 3rd IEEE

Intl. Workshops on Foundations and Applications of Self* Systems (FAS*W), pp. 160–167, (2018).

[2] C. Gruhl, S. Tomforde, and B. Sick, Aspects of Measuring and Evaluating the Integration Status of a (Sub-)System at Runtime,

in Proc. 3rd IEEE Intl. Workshops on Foundations and Applications of Self* Systems (FAS*W), pp. 198–203, (2018).

[3] S. Jahan, M. Pasco, R.F. Gamble, P. McKinley, and B.H.C. Cheng, MAPE-SAC: A Framework to Dynamically Manage

Security Assurance Cases, 1st International Workshop on Self-Protecting Systems (SPS 2019), Umea, Sweden, pp. 146-151,

(2019).

[4] A. Diaconescu, L. J. Di Felice, and P. Mellodge, Multi-Scale Feedbacks for Large-Scale Coordination in Self-Systems, IEEE

13th International Conference on Self-Adaptive and Self-Organizing Systems (SASO), pp. 137-142, (2019).

[5] P. R. Lewis et al., A survey of self-awareness and its application in computing systems, in Proc. Int. Conf. on Self-Adaptive

and Self-Organizing Systems Workshops (SASOW), pp. 102–107, (2011).

[6] A. Goodloe, Challenges in high-assurance runtime verification, In T. Margaria and B. Steffen, editors, 7th Int’l Symp. on

Leveraging Applications of Formal Methods, Verification and Validation, ISoLA 2016, LNCS. Springer, (2016).

[7] G. Blair, N. Bencomo, and R. B. France, Models@ run.time, Computer, vol. 42, no. 10, pp. 22-27, (2009).

[8] E. Clarke, D. Long, and K. McMillan, Compositional model checking, In Proceedings of the Fourth Annual Symposium on

Logic in computer science, IEEE Press, 353–362, (1989).

[9] C. Y. Cho, V. D'Silva, and D. Song, BLITZ: Compositional bounded model checking for real-world programs, 28th

IEEE/ACM International Conference on Automated Software Engineering (ASE), Silicon Valley, CA, pp. 136-146, (2013).

[10] W. Yeh and M. Young, Compositional reachability analysis using process algebra, In Proceedings of the symposium on

Testing, analysis, and verification (TAV4), Association for Computing Machinery, New York, NY, USA, 49–59, (1991).

[11] S. Cheung and J. Kramer, Context constraints for compositional reachability analysis, ACM Trans. Softw. Eng. Methodol. 5, 4

Oct., 334–377, (1996).

[12] Y. Cheng, M. Young, C. Huang, and C. Pan, Towards scalable compositional analysis by refactoring design models, SIGSOFT

Softw. Eng. Notes 28, 5 September, 247–256, (2003).

[13] Y. Cheng, Y. Cheng, and H. Wang, ARCATS: a scalable compositional analysis tool suite, In Proceedings of the 2006 ACM

symposium on Applied computing (SAC '06), Association for Computing Machinery, New York, NY, USA, 1852–1853,

(2006).

[14] J. C. Corbett and G. S. Avrunin, Towards scalable compositional analysis, SIGSOFT Softw. Eng. Notes 19, 5 Dec., 53–61,

(1994).

[15] K. Bellman, Reflective Systems Are a Good Step Towards Aware Systems, Computer Science, (2014).

[16] K. Bellman et al., Self-modeling and Self-awareness, In: Kounev S., Kephart J., Milenkoski A., Zhu X. (eds) Self-Aware

Computing Systems, Springer, Cham, (2017).

[17] P. R. Lewis, M. Platzner, B. Rinner, J. Tørresen, and X. Yao, Eds., Self-aware Computing Systems: An Engineering Approach,

Sprin International Publishing, (2016).

[18] G.J. Holzmann, New challenges in model checking, In: Symposium on 25 years of Model Checking, Seattle, USA, LNCS, vol.

4925. Springer, Heidelberg, (2006).

[19] E. A. Emerson, The beginning of model checking: A personal perspective, In 25 Years of Model Checking, volume 5000 of

LNCS, pages 27–45, Springer Berlin / Heidelberg, (2008).

[20] A. Marshall, S. Jahan, and R. Gamble, Toward Evaluating the Impact of Self-adaptation on Security Control Certification, 13th

Int’l Conf. on Soft. Eng. for Adaptive and Self-Managing Systems, (2018).

[21] S. Jahan, I. Riley, C. Walter, and R. Gamble, Extending Context Awareness by Anticipating Uncertainty with Enki and

Darjeeling, 4th Workshop on Self-Aware Computing, (2020).

[22] O. Lichtenstein and A. Pnueli, Checking that Finite State Concurrent Programs Satisfy their Linear Specification, Proceedings

of the 12th ACM SIGACT-SIGPLAN Symposium on Principles of Programming Languages, ACM, New Orleans, USA,

(1985).

[23] G. Ernst et al., KIV: Overview and VerifyThis competition, Int’l J. on Software Tools for Technology Transfer. 17:6, pp. 677–

694, (2015).

[24] K. Jensen and L.M. Kristensen, Coloured Petri Nets: Modelling and Validation of Concurrent Systems, Springer-Verlag,

(2009).

[25] H. G. Rice, Classes of Recursively Enumerable Sets and Their Decision Problems, Transactions of the American Mathematical

Society, Vol. 74, No. 2, pp. 358-366, (1953).

[26] C. Walter, I. Riley, and R. Gamble, Securing Wearables through the Creation of a Personal Fog, In Proceedings of the 51st

Hawaii International Conference on System Sciences, (2018).

[27] B.H.C. Cheng, et al. Software Engineering for Self-Adaptive Systems: A Research Roadmap. In: Cheng, B.H.C., de Lemos, R.,

Giese, H., Inverardi, P., Magee, J. (eds) Software Engineering for Self-Adaptive Systems. Lecture Notes in Computer Science,

vol 5525. Springer, Berlin, Heidelberg, (2009).

[28] R. de Lemos, D. Garlan, and H. Giese, Software Engineering for Self-Adaptive Systems: Assurances, Dagstuhl Seminar 13511,

(2013).

[29] J. Cámara, R. de Lemos, C. Ghezzi, and A. Lopes, Assurances for Self-Adaptive Systems: Principles, Models, and Techniques,

Springer Publishing Company, Incorporated, (2013).

[30] F. Faniyi et al., Architecting Self-Aware Software Systems, Proc. Working IEEE/IFIP Conf. Software Architecture (WICSA

14), pp. 91–94, (2014).

[31] F. Zambonelli, N. Bicocchi, G. Cabri, L. Leonardi, and M. Puviani, On self-adaptation, self-expression, and self-awareness in

autonomic service component ensembles, in Self-Adaptive and Self-Organizing Systems Workshops (SASOW), 2011 Fifth

IEEE Conference on. IEEE, pp. 108–113, (2011).

[32] E. Bartocci, Y. Falcone, A. Francalanza, and G. Reger, Introduction to runtime verification, in Lectures on Runtime

Verification—Introductory and Advanced Topics, in Lecture Notes in Computer Science, vol. 10457, Springer, pp. 1–33,

(2018).

[33] C. Sánchez et al., A survey of challenges for runtime verification from advanced application domains (beyond software), Form

Methods Syst Des 54, pp. 279–335, (2019).

[34] G. Tamura et al., Towards practical runtime verification and validation of selfadaptive software systems, In: de Lemos, R.,

Giese, H., M¨ uller, H.A., Shaw, M. (eds.) Software Engineering for Self-adaptive Systems II. LNCS, vol. 7475, pp. 108–132.

Springer, Heidelberg, (2013).

[35] F. Mogavero, A. Murano, G. Perelli, and M. Y. Vardi, Reasoning about strategies: On the model-checking problem, TOCL,

vol. 15, no. 4, pp. 34:1–34:47, (2014).

[36] A. Filieri, G. Tamburrelli, and C. Ghezzi, Supporting self-adaptation via quantitative verification and sensitivity analysis at run

time, IEEE Trans. Softw. Eng., vol. 42, no. 1, pp. 75-99, (2016).

[37] S. Tomforde et al., Know Thyself – Computational Self-Reflection in Intelligent Technical Systems, in Self-Adaptive and Self-

Organizing Systems Workshops (SASOW), London, UK, pp. 150–159, (2014).

[38] A. Marshall, S. Jahan, and R. Gamble, Assessing the Risk of an Adaptation using Prior Compliance Verification, In

Proceedings of the 51st Hawaii International Conference on System Sciences, (2018).

[39] M. Kwiatkowska, G. Norman, and D. Parker, Advances and challenges of probabilistic model checking, In 48th Allerton

Conference on Communication Control and Computing, (2010).

[40] D. Garlan, B. Schmerl, S. Cheng, A. Huang, and P. Steenkiste, Rainbow: Architecture-Based Self-Adaptation with Reusable

Infrastructure, in Computer, vol. 37, pp. 46-54, (2004).

[41] S. W. Cheng and D. Garlan, Rainbow: cost-effective software architecture-based self-adaptation, Carnegie Mellon University,

Pittsburgh, PA, (2008).

[42] S. Cheng, V. Poladian, D. Garlan, and B. Schmerl, Improving architecture-based self-adaptation through resource prediction,

Software Engineering for Self-Adaptive Systems, pages 71–88, (2009).

[43] M. U. Iftikhar and D. Weyns, ActivFORMS: Active Formal Models for Self-Adaptation, 9th International Symposium on

Software Engineering for Adaptive and Self-Managing Systems, (2014).

[44] D. Weyns and M. U. Iftikhar, Model-based Simulation at Runtime for Self-adaptive Systems, 13th International Conference on

Autonomic Computing, (2016).

[45] M. Gorbovitski, T. Rothamel, Y. A. Liu, and S. D. Stoller, Efficient runtime invariant checking: a framework and case study, in

Proc. of the 2008 Int. Workshop on Dynamic Analysis, (2008).

[46] K. Zee, V. Kuncak, M. Taylor, and M. Rinard, Runtime checking for program verification, in Proc. of the 7th Int. Conf. on

Runtime Verification, (2007).

[47] S. Ray, J. Park, and S. Bhunia, Wearables, Implants, and Internet of Things: The Technology Needs in the Evolving Landscape,

IEEE Transactions on Multi-Scale Computing Systems, (2016).

[48] J. Padgette et. al., Guide to Bluetooth Security, National institute of standards and technology, (2017).

[49] C. Wang, C. Guo, Y. Wang, Y. Chen, and B. Liu, Friend or Foe?: Your Wearable Devices Reveal Your Personal PIN.,

Proceedings of the 11th ACM on Asia Conference on Computer and Communications Security, (2016).

[50] A. Yohan, N. Lo, V. Randy, S. Chen, and M. Hsu, A Novel Authentication Protocol for Micropayment with Wearable Devices,

Proceedings of the 10th International Conference on Ubiquitous Information Management and Communication, (2016).

[51] A. Maiti, O. Armbruster, M. Jadliwala, and J. He, Smartwatch-Based Keystroke Inference Attacks and Context-Aware

Protection Mechanisms, Proceedings of the 11th ACM on Asia Conference on Computer and Communications Security (ASIA

CSS ’16), (2016).

[52] R. Goyal, N. Dragoni, and A. Spognardi, Mind The Tracker You Wear – A Security Analysis of Wearable Health Trackers,

Proceedings of the 31st Annual ACM Symposium on Applied Computing - SAC 16, (2016).

[53] F. Bonomi, R. Milito, J. Zhu, and S. Addepalli, Fog Computing and Its Role in the Internet of Things, Proceedings of the first

edition of the MCC workshop on Mobile cloud computing (MCC '12), (2012).

[54] L.M. Vaquero and L. Rodero-Merino, Finding your Way in the Fog: Towards a Comprehensive Definition of Fog Computing,

SIGCOMM Comput. Comun. Rev. 44, (2014).

[55] C. W. Walter, The personal fog: an architecture for limiting wearable security vulnerabilities, Ph.D. Dissertation, University of

Tulsa, (2018).

[56] N. Kraft, Here One. https://hereplus.me/products/here-one, (accessed September 2020).

[57] S. O’Kane, Bragi Dash Pro Review. https://www.theverge.com/2017/7/25/16017768/bragi-dash-pro-review-wireless-

headphones-price, 2017, (accessed September 2020).

[58] Jabra Elite Sport. https://www.jabra.com/sports-headphones/jabra-elite-sport, (accessed September 2020).

[59] Garmin. https://www.garmin.com/en-US, (accessed September 2020).

[60] M. Jackson, The meaning of requirements, Ann. Softw. Eng. 3, pp. 5–21, (1997).

[61] L. de Moura, S. Kong, J. Avigad, F. van Doorn, and J. von Raumer, The Lean Theorem Prover, 25th International Conference

on Automated Deduction (CADE-25), Berlin, Germany, (2015).

[62] Lean theorem prover, v 3.4.2. https://github.com/leanprover/lean, 2020, (accessed September 2020).

[63] excaLibur Lean library. https://github.com/ttowncompiled/excaLibur/tree/example-fgcs, 2020, (accessed September 2020).

[64] S. Hudon, Embedding Specialized Proof Languages into Lean: A Case Study, Lean Together 2019. https://lean-

forward.github.io/lean-together/2019/slides/hudon.pdf, 2019, (accessed September 2020).

[65] A. Baanen, A. Bentkamp, J. Blanchette, and J. Hölzl, The Hitchhiker’s Guide to Logical Verification 2020 Edition.

https://github.com/blanchette/logical_verification_2020/blob/master/hitchhikers_guide.pdf, 2020, (accessed September 2020).

[66] Lean Forward, VU Amsterdam. https://github.com/blanchette/logical_verification_2020, 2020, (accessed September 2020).

[67] Lean theorem prover, v4. https://github.com/leanprover/lean4, 2020, (accessed September 2020).

[68] L. Esterle and J. N. Brown, Levels of Networked Self-Awareness, in 2018 IEEE 3rd International Workshops on Foundations

and Applications of Self* Systems (FAS*W), pp. 237–238, (2018).

[69] C. Krupitzer; F. M. Roth, M. Pfannemüller, and C. Becker, Comparison of Approaches for Self-Improvement in Self-Adaptive

Systems, In: Proceedings of the 2016 IEEE International Conference on Autonomic Computing (ICAC), pp. 308-314, (2016).

[70] G. A. Moreno, B. Schmerl, and D. Garlan, "SWIM: An Exemplar for Evaluation and Comparison of Self-Adaptation

Approaches for Web Applications," 2018 IEEE/ACM 13th International Symposium on Software Engineering for Adaptive

and Self-Managing Systems (SEAMS), Gothenburg, pp. 137-143, (2018).

[71] S. W. Cheng, D. Garlan, and B. Schmerl, Evaluating the effectiveness of the rainbow self-adaptive system, In Workshop on

Software Engineering for Adaptive and Self-Managing Systems, (2009).

[72] S.W. Cheng and D. Garlan. Stitch: A language for architecture-based self-adaptation, Journal of Systems and Software, (2012).

[73] M. Binkhonain and L. Zhao, A Review of Machine Learning Algorithms for Identification and Classification of Non-

Functional Requirements, Expert Systems with Applications: X. 1, (2019).

[74] Joint Task Force Transformation Initiative, Security and privacy controls for Federal Information Systems and Organizations,

NIST Special Publication 800-53 revision 4, (2015).

[75] N. Swamy. https://www.microsoft.com/en-us/research/blog/project-everest-advancing-the-science-of-program-proof, 2019,

(accessed September 2020).

[76] J. Protzenko and B. Parno, https://www.microsoft.com/en-us/research/blog/evercrypt-cryptographic-provider-offers-

developers-greater-security-assurances, (2019).

[77] J. Backes et al., Semantic-based Automated Reasoning for AWS Access Policies using SMT, In: Proceedings of the 18th

International Conference on Formal Methods in Computer-Aided Design (FMCAD), pp. 1-9, (2018).

[78] S. Farokhi, P. Jamshidi, I. Brandic, and E. Elmroth, Self-adaptation challenges for cloud-based applications: A control theoretic

perspective, In Proceedings of the 10th International Workshop on Feedback Computing, (2015).

[79] H. Muccini, M. Sharaf, Mohammad, and D. Weyns, Self-Adaptation for Cyber-Physical Systems: A Systematic Literature

Review, 11th International Symposium on Software Engineering for Adaptive and Self-Managing Systems, (2016).

[80] R. Calinescu, D. Weyns, S. Gerasimou, and I. Habli, Architecting Trustworthy Self-Adaptive Systems (Tutorial), 2019 IEEE

International Conference on Software Architecture Companion (ICSA-C), (2019).

Appendix A: Colored Petri Net Transition Rules

P refers to a pink token. B refers to a blue token. R refers to a red token. T refers to a transition. B’

refers to the state of the blue token after it is output by a transition.

Rule Description Condition Action

1 Blue token has

cycled completely
• Ì. ¤h£hg¢ VÍ mÎÏUÐ and gµh±±µ = Ñ

Remove Blue and Pink tokens from

CPN

2 Blue token has

visited the place and

had a previous

conflict but does not

have a conflict with

a VC from a

processed pink

token with a

matching transition

VC

• T.placeName is in

B.visited

• T.placeName is in one of

the tuples of

B.vcConflicts

• NO VC in T.vcInfo

appear in a tuple in

B.vcChanges that are not

already in tuples in

B.vcConflicts associated

with T.placeName

• Remove T.placeName from

B’.visited

• Send B’ to next place

• Send P to its place

3 Blue token has

visited the place and

had a previous

conflict, and does

have a conflict with

a VC from a

processed pink

token with a

matching transition

VC

• T.placeName is in

B.visited

• T.placeName is in one of

the tuples of

B.vcConflicts

• VC in T.vcInfo appear in

a tuple in B.vcChanges

that are not already in

tuples in B.vcConflicts

associated with

T.placeName

• FORALL VC in T.vcInfo that

are also in tuples in

B’.vcChanges

� Increase B’.maxIdx for

the unique ID of red

token
� Create a red token, R,

with the proper idxtoken

and other information

held by B and T

� Update B’. vcConflicts

by increasing idxconflict

and the appropriate

information held by T

for all matching VCs

• Remove T.placeName from

B’.visited

• Send B’ to next place

• Send P to its place

• Send all red tokens to End

place

4 Blue token has

visited the place, but

has not had a

previous conflict

match at this place

and does have a

conflict with a VC

from a processed

pink token with a

matching transition

• T.placeName is in

B.visited

• T.placeName is NOT

in one of the tuples of

B.vcConflicts

• VC in T.vcInfo that’s

also in a tuple in

B.vcChanges

• FORALL VC in T.vcInfo that

are also in tuples in

B’.vcChanges,

� Increase B’. maxIdx for

the unique ID of red

token

� Create a red token, R,

with the proper idxtoken

and other information

VC held by B and T

� Update B’.vcConflicts

by increasing idxconflict

and the appropriate

information held by T

for all matching VCs

• Remove T.placeName from

B’.visited

• Send B’ to next place

• Send P to its place

• Send all red tokens to End

place

5 Blue token has

visited the place, has

not had a previous

conflict match at this

place, and does not

have a conflict with

a VC from a

processed pink

token with a

matching transition

VC

• T.placeName is in

B.visited

• T.placeName is NOT

in one of the tuples of

B.vcConflicts

• NO VC in T.vcInfo

appear in a tuple in

B.vcChanges that are

not already in tuples in

B.vcConflicts

associated with

T.placeName

• Remove T.placeName from

B’.visited

• Send B’ to next place

• Send P to its place

6 Blue token has not

visited the place,

does not have a

conflict with a VC

from a processed

pink token with a

matching transition

VC, and there is no

conflict with any

pink token VC and

transition VC

• T.placeName is NOT

in B.visited

• T.VC is NOT in one of

the tuples of

B.vcChanges

• NO VC in P.VC is has

conflicts a VC in

T.vcInfo

• Add T.place_name to

B’.visited

• Send B’ to next place

• Send P to its place

7 Blue token has not

visited the place and

does have a conflict

with a VC from a

processed pink

token with a

matching transition

VC, but there is no

conflict with any

pink token VC and

transition VC

• T.placeName is NOT

in B.visited

• VC in T.vcInfo that’s

also in a tuple in

B.vcChanges

• NO VC in a tuple in P

conflicts with a VC in

T.vcInfo

• FORALL VC in tuples of in

T.vcInfo that are also in tuples

in B’.vcChanges,

� Increase B’.maxIdx for

the unique ID of red

token

� Create a red token, R,

with the proper idxtoken

and other information

held by B and T

� Update B’.vcConflicts

by increasing idxconflict

and the appropriate

information held by T

for all matching VCs

• Add T.placeName to B’.visited

• Send B’ to next place

• Send P to its place

• Send all red tokens to End

place

8 Blue token has not

visited the place,

does not have a

conflict with a VC

from a processed

pink token with a

matching transition

VC, but does have a

conflict with a pink

token VC and

transition VC

• T.placeName is NOT

in B.visited

• VC in T.vcInfo appear

in a tuple in

B.vcChanges

• A VC in a tuple in P

conflicts with a VC in

T.vcInfo

• FORALL VC in T.vcInfo that

appear in a tuple in P

� Increase B’.maxIdx for

the unique ID of red

token

� Create a red token, R,

with proper idxtoken and

other information held

by P and T

� Update B’.vcConflicts

by increasing idxconflict

and the appropriate

information held by T

for all matching VCs

� Update B’.vcChanges

by increasing idxchange

and the appropriate

change information

from P

• Add T.placeName to

B’.visited

• Send B’ to next place

• Send P to its place

• Send all red tokens to End

place

9 Blue token has not

visited the place,

does have a conflict

with a VC from a

processed pink

token with a

matching transition

VC, but does have a

conflict with a pink

token VC and

transition VC

• T.placeName is NOT

in B.visited

• VC in T.vcInfo that’s

also in a tuple in

B.vcChanges

• A VC in a tuple in P

conflicts with a VC in

T.vcInfo

• FORALL VC in T.vcInfo that

are also in tuples in

B’.vcChanges,

� Increase B’.maxIdx, for

the unique ID of red

token

� Create a red token, R,

with the proper idxtoken

and other information

held by B and T

� Update B’.vcConflicts

by increasing idxconflict

and the appropriate

information held by T

for all matching VCs

• FORALL VC in T.vcInfo that

appear in a tuple in P

� Increase B’.maxIdx for

the unique ID of red

token

� Create a red token, R,

with proper idxtoken and

other information held

by P and T

� Update B’.vcConflicts

by increasing idxconflict

and the appropriate

information held by T

for all matching VCs

� Update B’.vcChanges

by increasing idxchange

and the appropriate

change information

from P

• Add T.placeName to

B’.visited

• Send B’ to next place

• Send P to its place

• Send all red tokens to End

place

