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Abstract 
Security certification establishes that a given system satisfies properties and constraints as 

specified in the system security profile. Mechanisms and techniques have been developed to 

assess if and how well the system complies with the properties, thereby providing a degree of 

confidence in the security certification. Generally,  certification of security controls defined by 

NIST SP800-53 is performed at design time to provide confidence in a system’s trustworthiness 

to achieve the organization’s mission and business requirements. Assuring confidence in a 

self-adaptive system’s security profile is challenging when both functional and security 

conditions may change at run time. Static security solutions are insufficient, given that 

dynamic application of defense mechanisms often needs to dynamically adapt security 

functionality at run time as part of self-protection. This security adaptation may hinder 

maintaining functional constraints or vice versa. In addition, adaptation capabilities may give 

rise to the need for dynamic certification, which can be a difficult procedure given the 

complexity of the security dependencies. Confidence in an information system’s compliance 

with security constraints can be expressed using security assurance cases (SACs). NIST 

security controls are defined with a hierarchical structure that makes them amenable to being 

specified in terms of SACs. A collection of SACs for related security controls form a network 

that can be used to measure the confidence of security compliance through certification-based 

evidence. Once the system is deployed, environmental and functional uncertainties may 

require the coordination of functional and security adaptations. This paper introduces the 

MAPE-SAC, a security-focused feedback control loop, and its interaction with a MAPE-K, 

function and performance-focused control loop, to dynamically manage run-time adaptations 

in response to changes in functional and security conditions. We illustrate the use of both 

control loops and their interaction with an example of two independent systems that need to 

cooperate to facilitate autonomous search and rescue in the aftermath of a natural disaster. 
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1. Introduction 
Guaranteeing trustworthiness is a prime concern for self-adaptive systems, since they must 

manage uncertainties in a dynamic environment [1, 2, 3].  Uncertainty may arise due to faulty 

hardware and software components, malicious attacks, and unpredictable environmental and/or 

functional changes. Effectively maintaining the trustworthiness of the system within uncertain 

situations requires the capability to detect and mitigate security threats at run time and deploy 

autonomous, self-protecting mechanisms to adapt security functionality accordingly [2]. Like self-

adaptive systems, self-protecting systems should include a MAPE (Monitor, Analyze, Plan, and 

Execute) control loop specifically for managing security concerns. However, adapting security 

functionality may hinder the system’s ability to maintain its other quality concerns [4]. While 

a self-adaptive system automatically establishes behavioral changes to preserve its functional 

objectives, changing functional behavior as a part of an adaptation may result in security 

vulnerabilities. Thus, the adaptation decisions of self-protecting systems need to consider 

compliance with both functional and security concerns. 

When the environment is dynamically changing, the ability to assure compliance with security 

constraints requires a rigorous process [1] in order to ensure system integrity. To provide this 

assurance, U.S. federal information systems and organizations have in place security certification 

and accreditation (C&A) processes that establish a baseline of security controls from NIST SP800-

53 [5] (which covers the international ISO/IEC 27002 standard [6]). Assessment processes 

described in NIST SP800-53A include examining the system (e.g., its model, architecture, and 

design documentation), testing the system, and interviewing personnel related to its construction. 

C&A is repeated at scheduled intervals or when there is a major functional change, environmental 

change, or emerging threat. The creation and maintenance of assurance cases [7] provide a method 

to express and justify a measure of confidence that a system complies with requirements [8]. 

Assurance cases use a structured set of arguments with evidence to provide a level of 

confidence that a system satisfies specific claims with respect to its requirements. Typically, 

assurance cases are developed during design time with significant human effort given the heavy 

use of textual descriptions. Security Assurance Cases (SACs) are goal-based models that include 

argumentation to achieve security goals, thereby providing confidence in a system’s security status 

[9, 10]. SACs are modeled using Goal-Structured Notation (GSN) [11], reflecting control 

definitions and arguments substantiating their compliance. Previously, we introduced a template 

for SACs [12] and demonstrated an adaptation operation on an SAC model [13]. 

Because protecting a system from threats can involve both security and functional concerns, 

maintaining a certain confidence level of the system’s requirement compliance following an 

adaptation is challenging [14]. Specifically: 

 

• Static solutions are insufficient since functional and security conditions can change at run 

time, and 

• Dynamic solutions without coordination can lead to an increase in requirement violations 

since functional adaptations can violate security requirements and vice versa. 

 

Any appropriate solution requires a complex configuration, management, and analysis process to 

detect and mitigate uncertainty across regions of concerns. Requiring a single centralized MAPE 

loop to handle different components or concerns can be limiting. An alternative is to employ 

multiple, interacting and decentralized MAPE loops [15, 16].  

This paper describes a framework that supports the management of two interacting MAPE 

loops, MAPE-K and MAPE-SAC, to respectively govern functional and security-based concerns 



 

of an adaptive system. In both cases, GSN models are used to capture the assurance cases for the 

respective compliance concerns that are used to guide the adaptation process.  We introduce a 

MAPE loop interaction protocol to support the coordination between the MAPE-K and MAPE-

SAC loops. Our MAPE-K and MAPE-SAC coordination approach selects a system-level 

adaptation that minimizes compliance degradation across functional and security requirements. 

Coordination is conducted during planning and execution to ensure adaptive system behavior with 

optimal utility while maintaining security compliance. We implement, apply, and evaluate our 

MAPE loop interaction and assurance case adaptation using a robotic-based search-and-rescue 

scenario, emulated on an experimental testbed, where autonomous robots and wearable health 

monitoring devices must interact in order to locate victims in need of immediate medical 

treatment.  

A short, preliminary paper [17] presented the conceptual aspects of this work, with a proof of 

concept application to a different demonstration platform that focused on an abstraction of the 

wheel speed sensor of an autonomous rover. We proposed the initial separation of security and 

functional concerns for adaptation assessment and introduced the MAPE-SAC loop to manage 

security concerns. An abstraction of the MAPE loop interaction based on a modified Regional 

Planning pattern [15] was described, but without any implementation or evaluation. This paper 

leverages concepts from our preliminary work [17]  and significantly extends the prior work, both 

conceptually and with validation on new applications and new platforms. The remainder of this 

paper is organized as follows. Section 2 provides background material and related work. Section 3 

briefly overviews the NIST security controls that we use in this work. The MAPE-K/MAPE-SAC 

interaction framework is introduced in Section 4.  Details of the coordination between the MAPE 

loops are provided in Section 5. Evaluation of the interacting MAPE-K/MAPE-SAC framework is 

presented in Section 6, followed by a discussion of the utility and the limitations in Section 7. 

Finally, we summary the work and discuss future work in Section 8.  

 

2. Background and Related Work 
The MAPE-K loop, shown in Figure 1, was designed to manage the adaptation of autonomic 

systems [14]. The Monitor step collects information from managed resources and detects 

conditions that trigger adaptations. The information is analyzed (Analyze step) to determine if 

change is needed to satisfy system goals. If an adaptation is needed, then the Plan step creates a 

procedure to realize a new target condition that satisfies the goals (including the intermediate steps 

that occur when adapting from one state to another). Finally, the planned procedure is executed 

(Execute step) on the managed resources. The Knowledge component comprises a set of 

requirements the MAPE-K loop uses for adaptation parameters and strategies. 

 

 
Figure 1: MAPE-K Loop 

Many modern autonomous systems are distributed in nature and maintain a large, complex 

structure. Deploying multiple MAPE loops in the managed system and coordinating the 

components of the MAPE loops in a decentralized manner is crucial. Vromant et al. [16] proposed 



 

an extension to the MAPE loop to support intra-loop and inter-loop coordination. When 

coordination is possible, multiple MAPE loops can interact with each other to jointly select an 

adaptation. Weyns et al. [15] discussed patterns of interacting MAPE loops and proposed notations 

to describe the patterns. The authors also suggested drivers for selecting an interaction pattern to 

aid future researchers in developing a systematic approach for describing different types of control 

in self-adaptive systems. 

Industries that (1) work with U.S. federal information systems, (2) rely on controlled 

unclassified information, or (3) provide services to the U.S. Department of Defense supply chain 

are contractually required to comply with clauses that relate to the NIST SP800-53 security 

controls [5] or some subset thereof, such as the NIST SP800-171 [18]. The process by which 

compliance is determined includes certifying that the systems under consideration have executable 

mechanisms to maintain security control effectiveness at an acceptable confidence level. Ross et al. 

[19] identified four phases of the security certification and accreditation process and provides 

guidelines for the certification process of a federal information system. Anisetti et al. [20, 21] 

showed that the basic security certification process starts with building a certification model of the 

target system, is driven by security properties, and produces evidence that supports the properties 

that need to be certified. Security properties can be expressed in notations of formal logic such as 

LTL [22], A-LTL [23], or AutoRELAX fuzzy logic [24]. Anisetti et al. [20, 21] proposed test-

based evidence to support the properties being certified, whereas Damiani et al. [25] proposed 

using formal proofs of abstract certification models as evidence of certification. Marshall et al. [26] 

restate security controls in LTL and define a formal process to verify them within a system using 

an automated theorem prover at design-time. 

Assurance cases provide confidence of the system’s trustworthiness. An assurance case model 

is a hierarchical construction of a claims-argument-evidence structure where a claim involves an 

argumentation and evidence provides support to the argumentation for the claim’s acceptance [7]. 

Understanding assurance case structure has been challenging given the previous heavy reliance on 

text-based descriptions but can be facilitated through graphical argumentation notation [27, 28]. 

Kelly and Weaver [27] proposed Goal-Structured Notation (GSN) where each claim is stated as a 

goal and evidence is represented as a solution. Assurance cases are widely used in the safety 

domain [1, 8], but with increasing security awareness, researchers are exploring the benefits of 

SACs. Alexander et al. [1] demonstrated that significant differences exist between the safety and 

security domains and showed that the latter exhibits more uncertainty due to a lack of knowledge 

of potential attackers and their capabilities. SACs were first proposed by Goodenough et al. [10]. 

SACs provide confidence that the system is “acceptably secure.” Acceptance not only requires 

having specific technology, but also requires people and processes to assess the system. Guidelines 

have been developed to structure claims asserting that a system is sufficiently secure [9, 10]. These 

guidelines include what should be considered to select and elaborate strategies and choose suitable 

evidence. 

Dynamic environments or functional adaptations may result in security threats at run time, 

which may affect the system’s security functionality, security assurance, and trustworthiness [4, 

29]. Thus, having security capabilities as part of self-protection is important. Security capabilities 

include assessment on security requirements, features, components, and a measure of the system’s 

trust level [5]. Self-protecting systems should be able to respond either reactively to mitigate 

security threats or proactively to anticipate security threats [2]. At run time, certification of 

adaptations must be performed quickly and effectively to ensure that system security has not been 

reduced below an acceptable confidence level. Without an efficient certification process, the 

adaptive system may be vulnerable to attack. 



 

Previously, we proposed a runtime risk assessment approach where formal proof of requirement 

compliance is performed against the originally deployed code of the system, and metadata of code 

architecture is extracted for analysis [30]. These metadata contain information about potential state 

variables; their association with the system’s functions, methods, and components; and their 

condition and impact on the original verification process. Adaptation may add/delete/modify the 

system’s functionality, which inhibits the reuse of the original proof process.  We characterized the 

risk of reusing the original requirement compliance verification process after an adaption 

introduces changes [30]. In related work [12], we identified a pattern in state security controls 

defined in NIST SP800-53 and defined a template to model security assurance cases for security 

controls as shown in Figure 2. We have also previously introduced adaptation operations that can 

be used to evolve SAC instances and a dynamic assessment that can be used to evaluate the 

confidence level of an adapted SAC [13]. The assessment process must calculate the impact of 

security and functional changes to determine an achievement weight of each goal to assure security 

compliance. But changes to one security control may propagate to other interrelated security 

controls. We determine satisficing levels using the achievement weight of security controls as a 

part of the assessment of a system’s compliance [13]. 

 
Figure 2: Template to instantiate security assurance case for NIST SP800-53 security control 

3. Working with NIST SP800-53 Security Controls 
Prior work defined a template for this form of SAC using GSN [12] by extracting structural 

patterns from security control statements, and we utilized that work to construct a SAC for NIST 

SP800-53 [18] security control SI-7(5) [17]. This paper extends prior work to a new set of 

interrelated security controls—AC-3, AC-18, AC-21, IA-3, and SC-40—covering access control 

(AC), information and authorization (IA), and system and communications protection (SC). Table 

1 shows the organization of the certification guidelines defined by the Joint Task Force [31] for 

these security controls. 

AC-3, which relies on security control AC-18 and AC-21 for determining access requirements, 

restrictions and circumstances, asserts that there must be steps to enforce authorization of logical 

access to information and system resources. SC-40 asserts that the information system should 

protect wireless links from defined signal parameter attacks. SC-40 is indirectly related to IA-3, 



 

which asserts that the information system should identify and authenticate devices before 

establishing a connection. Both SC-40 and IA-3 rely on AC-18 for obtaining the guidelines to 

implement protection and authorization mechanisms. The design evidence for the system’s 

trustworthiness is formulated through certification assessment methods of examination, 

interviewing, and testing [31]. We instantiate a security control network (SCN) according to the 

labels, parameter values, and formal statements in [31] as shown in Table 1. 

Table 1: Interrelated Security controls as a part of information security defined by NIST SP800-53A REV. 4 

AC-3: ACCESS ENFORCEMENT 

ASSESSMENT OBJECTIVE: Determine if the information system enforces approved authorizations for logical access to 
information and system resources in accordance with applicable access control policies 

 

AC-18: WIRELESS ACCESS 
ASSESSMENT OBJECTIVE: Determine if the organization: 
AC-18(a) establishes for wireless access: 

AC-18(a)[1] usage restrictions; 
AC-18(a)[2] configuration/connection requirement; 
AC-18(a)[3] implementation guidance; and 

AC-18(b) authorizes wireless access to the information system prior to allowing such connections 
 

AC-21: INFORMATION SHARING 
ASSESSMENT OBJECTIVE: Determine if the organization: 
AC-21(a) AC-21(a)[1] defines information sharing circumstances where user discretion is required; 

AC-21(a)[2] facilitates information sharing by enabling authorized users to determine whether access 
authorizations assigned to the sharing partner match the access restrictions on the information for 
organization-defined information sharing circumstances; 

AC-21(b) AC-21(b)[1] defines automated mechanisms or manual processes to be employed to assist users in making 
information sharing/collaboration decisions; and 

AC-21(b)[2] employs organization-defined automated mechanisms or manual processes to assist users in making 
information sharing/collaboration decisions. 

 

IA-3: DEVICE IDENTIFICATION AND AUTHENTICATION 
ASSESSMENT OBJECTIVE: Determine if: 

IA-3[1] the organization defines specific and/or types of devices that the information system uniquely identifies and 
authenticates before establishing one or more of the following: 
IA-3[1][a] a local connection; 
IA-3[1][b] a remote connection; and/or 
IA-3[1][c] a network connection; 

IA-3[2] the information system uniquely identifies and authenticates organization-defined devices before establishing one or 
more of the following: 
IA-3[2][a] a local connection; 
IA-3[2][b] a remote connection; and/or 
IA-3[2][c] a network connection; 

 

SC-40: WIRELESS LINK PROTECTION 
ASSESSMENT OBJECTIVE: Determine if: 

SC-40[1] the organization defines: 
SC-40[1][a] internal wireless links to be protected from particular types of signal parameter attacks; 
SC-40[1][b] external wireless links to be protected from particular types of signal parameter attacks; 

SC-40[2] the organization defines types of signal parameter attacks or references to sources for such attacks that are based upon 
exploiting the signal parameters of organization-defined internal and external wireless links; and 

SC-40[3] the information system protects internal and external organization-defined wireless links from organization-defined 
types of signal parameter attacks or references to sources for such attacks. 

 

Figure 3 shows the interrelated security controls of AC-3, AC-18, AC-21, IA-3, and SC-40 at a 

high level. Control statements are stated as main goal statements and the “provides” attribute holds 

the provision set of state variables’ value (val) and conditions (sat) as a part of the security 

control’s dependencies for compliance. This set flows within the network through a SupportedBy 

link, augmented with a diamond to designate the security control source for the provision set, 

which implies the interrelationship among the security controls. 

 



 

 
Figure 3: Instance of security control network for access control (partial) 

Figure 4 shows the SAC for AC-3 with the control statement as the main goal. Organizationally 

defined values form the context (pink ellipses) of the applicable access control policies (AC-3), 

with an identity-based policy as the chosen access control policy. As a related control to AC-3, 

AC-21 is an Away Goal, a separate but related argument that provides or requires support from the 

main goal, provides specific parameters to AC-3 for its compliance strategy. AC-18 is another 

Away Goal which requires specific parameters from AC-3 (as does AC-21) to certify its own 

compliance strategy. Strategy AC-3 S1 denotes the mechanism, enforceAuthorization, supporting 

the argumentation of AC-3’s effectiveness. AC-3 Req1 is a sub-goal where LTL or other 

propositional logic can be used to formally express requirements unambiguously. AC-3 Req1 is 

further decomposed into modules that are expanded into supporting operational goals directly 

associated with system code as shown in Figure 5. Solutions, shown in the green circles, are 

evidence to support the certification process of security control AC-3. We have also modeled 

security assurance cases for security controls AC-18, AC-21, IA-3, and SC-40 and deployed them 

as a part of the knowledge of the MAPE-SAC control loop discussed in detail in Section 3. 

 



 

 
Figure 4: AC-3 instantiated within the SAC GSN Template 

 

 

 

Figure 5: Expanded AC-3 Module Goals to operational goals needed to enforce authorization 

 

4. MAPE-K/MAPE-SAC Interaction Framework 
The MAPE-K/MAPE-SAC Interaction Framework is motivated by the need for security-based 

self-protection of autonomous systems. The objective is to monitor run-time compliance with 
security controls using the SACs and adapt SACs as appropriate in coordination with the MAPE-K 
loop, which monitors run-time compliance with functional concerns. Similar to the MAPE-K loop, 
the MAPE-SAC loop comprises four main steps: monitor, analyze, plan, and execute, shown in 
Figure 6. It relies on resources tailored to security requirements and the confidence in the 
compliance needed for the system to maintain a threshold of acceptable risk. 

 



 

 

Figure 6: MAPE-SAC loop 

The monitor step examines the security control effectiveness of the system, which includes 

functional and environmental changes. SACs used in this work reflect security controls and the 

certification process guidelines, which are outlined in NIST SP800-53A [31], to certify goal 

satisfaction. The template has been instantiated by providing the parameters’ values, and the 

confidence level of the certification process has been encoded as a set of achievement weights for 

each goal in the SAC. Thus, a model of the concerned security control’s assurance case is 

developed and, in the monitoring step of the MAPE-SAC loop, monitored against functional and 

environmental conditions. 

The security control’s effectiveness is assessed in the analyze step using information collected 

from the executing system pertaining to possible security threats. The analyze step must reliably 

identify when a system or environment change requires a response and assesses the impact of any 

security threat on the goals of a SAC. A security threat has the potential to propagate through a 

network of related security controls and cause the overall system’s compliance to degrade [13]. 

Thus, analysis must assess each security threat’s impact on the security control network and trigger 

an adaptation when it observes significant compliance degradation 
The system reconfiguration cost and the level of security confidence maintained are the main 

planning considerations. Thus, the planner should dynamically evaluate potential adaptations by 
assessing the effectiveness of security controls over the network of SACs. Coordinated planning 
between MAPE-K and MAPE-SAC loops enables system-wide adaptation, which is discussed 
further in Section 5. Finally, during execution, the system is reconfigured to the newly adapted 
state, requiring one or more SACs to be updated. 

We assume functional and security concerns represent two different regions of the system with 
their own mechanisms for evaluating an adaptation. However, a system-wide adaptation has global 
objectives to which it must comply by achieving an optimal global utility. As was stated above, 
any adaptation to one region may affect the requirements of the other region. System-wide 
adaptations must therefore be coordinated between each regional planner in order to plan and 
execute a unified adaptation plan. We adopt a modified Regional Planning Pattern [15], where 
MAPE loops coordinate both in the planning step and the execution step. 

The interaction between the MAPE-K and MAPE-SAC loops is represented in Figure 7. The 
Monitor and Analyze components in both MAPE loops monitor and analyze their respective 
concerns in parallel. Adaptation can be triggered by either or both of the MAPE loops. The loops 
coordinate to plan the optimal adaptation of the system that is compliant for both functional and 
security requirements. When an adaptation has been triggered for either type of requirement, the 
coordinated planner identifies potential changes to functional and security behavior due to the 
adaptation, and each MAPE loop planner assesses the effect of the adaptation on its own concern. 
MAPE loop planners coordinate with each other to reach the optimal adaptation with respect to 
both types of requirements. The optimal adaptation is the adaptation which best satisfies the 
compliance level of the system’s security requirements without risking the proof that supports the 



 

system’s compliance with its functional requirements. The chosen adaptive plan is executed in a 
coordinated manner to evolve regional assurance cases along with changes on the system-level 
code. 

 

 

Figure 7: Interaction between MAPE-K and MAPE-SAC loops 

 

5. Coordination of Interactive MAPE Loops 
To illustrate the MAPE loop interaction, we consider a scenario in which networks of health 

monitoring devices and autonomous robots need to adapt and interact during search and rescue 

operations. Each system operates its own MAPE-K/MAPE-SAC framework tailored to its 

requirements. The first platform comprises an experimental testbed of wearable devices [32] that 

prioritize security and privacy of health-related information, including information potentially 

needed by the rescue robots in our scenario. The testbed wearables are represented by Raspberry Pi 

3s that can simulate the Bluetooth communication of basic cell phones and high-end wearables. 

The wearable or base station triggers an adaptation if it decides that it is in an insecure 

environment. We limit the possible adaptations to include disconnecting a wearable from its base 

station and preventing reconnection until the base station requests a connection or remaining 

connected to the base station but sending only empty data packets. The second platform is an 

autonomous robot experimentation testbed comprise of a collection of Cozmo robots [33]. The 

robots can adapt to adjust the current mission to more quickly complete a global objective, such as 

searching a large or different area. 

We consider the following scenario to show how MAPE loop interaction enables cooperation 

among the two types of systems given functional and security concerns. Imagine a natural disaster 

has occurred, requiring the deployment of search and rescue robots. These robots are equipped 

with visual sensors, searching for survivors, as well as Bluetooth to connect to a survivor’s phone 

or wearable device. Because Bluetooth can be used for localization [34], the robots can discover 

the location of survivors accurately even when visual identification is impossible. Since it is 

important to prioritize survivors who may need immediate medical attention, the robots should 

connect to and request basic information from health-monitoring wearables, such as heart rate or 

stress monitors. 

 

 



 

 

 

The two testbeds can simulate this scenario for experimentation and validation purposes. 

Because the adaptations available to the wearable devices focus on the security of personal data, 

they conflict with the needs of the robots. This conflict requires the wearables to adapt their SACs 

to share information with the robots (role-based adaptation). Specifically, AC-3 (in Figures 3 and 

4) must change its context to allow role-based identification. 

To resolve this conflict, rather than remove the ability of the wearables to prioritize security 

completely, we introduce two new adaptations, which are both modifications of adaptations 

already available to the wearables. A communication protocol called fostering, originally designed 

to pass security states between wearables quickly, can be repurposed for passing important 

information to the rescue robots when needed. When adapted to utilize fostering, a robot can 

search for Bluetooth signals and, once found, connect to the available fostering server. It can 

remain connected only for a short time that is long enough to request and receive information. The 

fostering protocol allows only a single connection request, a single request for data, and responses 

to these two requests before it forcibly terminates the connection. 

Figure 8 shows the architecture of the combined testbed. The left shows the autonomous vehicle 

coordination network. Each robot is in constant communication with all nearby robots to alert them 

of any potential change. The right portion of the figure shows the wearable network. The dashed 

lines represent only occasional communication when the wearables and base station are connected 

to each other, but other base stations and wearables only communicate in the event of fostering. 

 

 
Figure 8: Testbed Integration Architecture 

The combined testbeds can communicate via the cloud, but, for our purposes, we are focusing 

on its Bluetooth communication capability. Should a base station be discovered via Bluetooth, the 

base station of the robot will connect to the base station of the wearable and maintain that 

connection until the wearable location is discovered, at which point the location will be stored and 

the robot will continue searching its designated area for persons in need of assistance. 

 

5.1. Security Assurance Cases 
The SACs are implemented on the base stations. The security requirement defined by security 

control AC-3, which ensures authorization, can be maintained in two ways. The first approach uses 

default Bluetooth pairing, which has the Raspberry Pi 3s refuse connections from unpaired 

devices. The second approach is within the control code, where a list of approved devices is stored 

and checked before connections are accepted. The latter means that, even if a device is paired, it 



 

cannot connect in order to request data without also being on the approved list. Both the request 

information (containing MAC addresses of the connecting devices) and the result of the request are 

logged into a connection log for future review. This results in a conflict preventing the robots from 

connecting to the wearables and requires adaptation of the SAC to allow fostering. 

Security control SC-40 (Figure 3), focused on organization-defined attacks (in this case: Man-

in-the-Middle attacks), is achieved through both sending empty packets and disconnection 

adaptations, though again results in a conflict requiring adaptation when fostering. We also check 

the current Bluetooth connection status and, if no data is being sent, disable Bluetooth entirely.  

Security control IA-3 (Figure 3), focused on device identification, is achieved through the use 

of randomized PINs when pairing Bluetooth devices. We directly embed the PIN randomization 

into the control code, choosing a random PIN for each connection request which must be 

confirmed by the user initiating the connection. The PIN will be valid only for a limited time, in 

this case 10 seconds, before a new PIN is generated. The random PIN is stored and checked to 

ensure it is of sufficient length and complexity. We define sufficient length as having at least 8 

characters, and a strong PIN as any PIN not having the same number repeated consecutively. IA-3 

also conflicts when a robot must connect to the device, requiring an additional adaptation for 

fostering. 

 

5.2.  Functional Assurance Cases 
Both the wearables and the robots have unique requirements, which we define as functional 

assurance cases (FACs) that cannot be violated under normal operation. These FACs are 

represented using GSN notation exactly like the SACs. The FACs are unique to each wearable 

device but are shared across the robots. For this paper, we focus only on the heart rate variability 

monitor (HRVM) FAC shown in Figure 9. The wearable main goal, to autonomously monitor both 

heart rate and stress level, is composed of two sub-goals. The first sub-goal is focused on ensuring 

that the buffer that stores the heart rate data does not overflow, as a loss of heart rate data will 

violate the main goal. The second is focused on ensuring that the buffer that stores the stress level 

data does not overflow. We note that the LTL square means “it is always the case” and the LTL 

diamond means “eventually.” 

In this work, during the monitor phase of the MAPE-K loop, heart rate data, stress level data, 

buffer conditions are monitored on the heart rate variability monitor (HRVM) testbed and are 

analyzed to determine the user’s health condition. During the analyze phase, the FAC is 

instantiated with observed stress level data and buffer conditions so that the system can assess its 

compliance status. The determineStressLevel and bufferMaintenance procedures analyze stress 

level data and buffer conditions over time to determine whether the user is stressed or if the buffer 

has overflowed, which eventually implies that the user needs immediate medical attention. An 

adaptation is triggered in response to significant requirement compliance degradation. 



 

 
Figure 9: Heart Rate Variability Monitor Functional Assurance Case 

 

The robot FAC is shown in Figure 10. Its primary goal is search and rescue. It contains an away 

goal to announce the location of people it finds and their heart rate condition, if data is available, 

and an away goal to integrate itself into the global goal (rescue the maximum number of people) 

with the other robots. It contains only one sub-goal with modules focused on detecting users and 

rescuing (determining the location of) users when possible. Similarly, the rescue robot testbed also 

maintains a MAPE-K loop for its own functional requirements. The monitor phase captures the 

heart rate and location of the people for rescue as environmental conditions. It captures the 

assigned search area and rescue mode as functional conditions. During the analyze phase, these 

environmental and functional conditions are analyzed to determine if the robot’s integration is 

valid for performing the rescue mission; this is handled by rescueProcedure. 
 



 

 
Figure 10: Autonomous Robot Functional Assurance Case 

 

5.3.  Interaction Protocol 
In this paper, we introduce, design, and implement an interaction protocol based on the 

Regional Planning Pattern [15]. The purpose of the interaction protocol is to standardize a 

communication pattern that processes can use to effectively coordinate their adaptation. The 

Regional Planning pattern was designed so that processes with separate regions of concerns could 

coordinate during the planning step to have their adaptation decided by a third process, referred to 

as the coordination manager, which can be deployed on a separate system or as a subprocess, as is 

the case with our testbed. The coordination manager is responsible for selecting an adaptation that 

will be executed by both coordinating processes. It is not specified by the Regional Planning 

pattern how the coordination manager should select an adaptation, so we have taken the liberty of 

defining an interaction protocol that is robust enough to be deployed by a variety of processes. 

According to the Regional Planning pattern, coordination takes place during the planning step. 

One process must initiate, and the other process must respond. One processes may not reach its 

respective planning step at the same time as the other process. As such, either process can wait 

during its planning step by blocking for a period of time, as specified by an input value, or until it 

receives a response. If the blocking process does not receive a response before its waiting period 

has expired, then the process does not coordinate. The process that initiates the coordination is 

termed the initiator and the other process is termed the participant. 

The interaction protocol is conducted as follows. Once they reach their planning step, the 

MAPE-K process and the MAPE-SAC process prompt the coordination planner to generate a set of 

adaptation plans and block until the coordination planner is finished. Once the coordination 

planner has generated a set of adaptations, it sends the set of adaptations to both the MAPE-K and 

MAPE-SAC processes, both processes become unblocked, and the coordination planner blocks 

until it receives a risk assessment from the MAPE-K process and a degree of compliance 

confidence assessment from the MAPE-SAC process. The MAPE-K and the MAPE-SAC 

processes translate each adaptation to a change set, and then apply associated risk assessment 

methods on each change set. The results are sent to the coordination planner. It is left to each 

process to select and perform the assessment process according to its requirements. By separating 



 

the logic of ranking adaptations, which is performed by the MAPE-K and MAPE-SAC processes, 

from the logic of selecting an adaptation, which is performed by the coordination manager, the 

interaction protocol remains robust. Any process that can perform any kind of assessment of the 

adaptation changes in accordance with the requirements of the coordination manager can utilize the 

interaction protocol to interact with any other process that can also perform a similar assessment; 

the two methods of assessment do not need to be the same. 

After receiving the assessment results from both the initiator and the participant, the 

coordination planner decides on a plan as follows. First, it selects the highest ranked plan (i.e., 

least risk). If the plan selected from the initiator is in the top half of the participant plan rankings, 

then the plan is accepted. Otherwise, the plan from the initiator is rejected and the coordination 

planner selects the next best plan from the participant and the plan ranking review process 

continues. Similarly, if the highest ranked plan is selected from the participant and is in the top half 

of the initiator’s ranked plans, it is accepted. Otherwise, the plan selected from the participant is 

rejected and the coordination planner selects the next best plan from the initiator and the plan 

ranking process continues. The coordination manager alternates between reviewing the next 

highest rank plan from the initiator and reviewing the next highest ranked plan from the participant 

so that both the initiator and the participant each has the opportunity to have their best plan 

selected. This process repeats until either a plan is selected or until there are no more plans. Once 

the outcome is decided, the plan is communicated to the MAPE-K and MAPE-SAC processes, 

unblocking both processes and enabling them to proceed to their execution steps. 

The interaction protocol presented in this paper extends our prior work [17]. Previously, to 

select an adaptation, the initiator would send a sequence of adaptations to the participant who 

would evaluate each adaptation individually and either accept or reject the adaptation. The initiator 

would accept the first adaptation accepted by the participant and reject any adaptation rejected by 

the participant. If the participant rejected all adaptations, then the system would enter a default 

state and no adaptation would be applied. Our current work differs from our prior work in that (a) 

no adaptation is assessed individually as all adaptations are known by both the initiator and the 

participant, (b) the initiator can reject an adaptation that has been accepted by the participant, and 

(c) at least one adaptation must be accepted by both the initiator and the participant, i.e., the system 

cannot enter a default state. 

 

5.4.  Adaptation 
By default, the wearable systems focus primarily on security of personal information and 

therefore do not allow fostering as shown in Figure 11 (left side). However, in a disaster scenario, 

fostering is needed by the autonomous rescue robot to help determine the condition of the victim. 

We simulate four adaptation plans for wearable devices to assist a rescue mission in a disastrous 

area. 

A1: Stay connected, send empty packets, no fostering is allowed 

A2: Stay connected, send empty packets, fostering is allowed 

A3: Get disconnected, no fostering is allowed 

A4: Get disconnected, fostering is allowed 

A wearable’s interactive MAPE loops evaluate the adaptation plans by coordinating themselves 

and allow fostering as a functional adaptation as shown in Figure 11 (right). However, fostering 

violates security control IA-3 as written. Other interrelated security controls realize the operational 

circumstance and prioritize access to rescue-relevant data over identification and authorization as 

defined by IA-3. Once the context of accessControlPolicy, defined in security control AC-3, and 

connectionRequirements, defined in AC-18 (Figure 3), have been changed, the coordination 



 

between the MAPE loops yields an optimal system-wide adaptation. To maintain rescue mission 

objectives, the adaptation must prevent communication while remaining connected and allow 

fostering, if needed, in order to connect to a rescue robot. 

 

  
Figure 11: Expanded Modular goal: Wearable Req2 M2 (left: before adaptation and right: after adaptation) 

 

6. Evaluation 
We implemented and tested the MAPE-K loop, MAPE-SAC loop, and coordination planner on 

the wearable testbed. To validate the above scenario, we focus only on the heart rate variability 

monitor. The wearable device is connected to its base station via Bluetooth, sending data to 

simulate heart rate information. If the system detects the need for an adaptation, it must determine 

an optimal system configuration. 

To evaluate the MAPE loops and their coordination, we designed a series of experiments using 

the four previously described adaptations: A1, A2, A3, and A4. We assume that a coordination 

planner implemented on a wearable device can dynamically generate adaptation plans. Further, we 

assume that the planners used in the MAPE-K and MAPE-SAC loops can translate those plans into 

a change set, respective to their region of concerns, and that they can perform assessment of 

changes for compliance of their requirements. 

Security compliance is assessed by determining the satisficing level of the main security control 

goal included in SAC model. Here, a low satisficing level implies higher risk of non-compliance 

with a security requirement. We produce a changeSet to determine (1) what state variables are 

affected due to change, (2) what will be the new state of the state variables after changes have been 

applied, (3) what are conditions of the changes, (4) what evidence is needed to support the 

changes, and (5) what is the rationale behind the changes. We represent each main security control 

goal as a softgoal and interdependencies among the argumentations the goals as a Soft goal 

Interdependency Graph (SIG) [13]  The impact of the changes associated with state variables and 

their propagation toward the main security control goals are considered to calculate the 

achievement weight, �� for each goals within the argumentation, which is used to assess 

compliance degradation.  

 
����� = ����, for leaf nodes,  

       = ��������������, for all � ∈ �ℎ��������� for non-leaf nodes 



 

 

The compliance degradation of a security control main goal can affect other related security 

controls and cause signification compliance degradation in the overall system. After determining 

achievement weight for each main security control goal, we calculate the satisficing level,  ! for 

all interrelated main security controls.  

 
 !�"� = �����������"� + ∑ �����% ∈ &'(%)*+,-�.� � 

 

Functional compliance is assessed by determining the risk of reusing the original proof of 

verification process, as changes may inhibit reusing original proof [30]. The planners would then 

supply their risk assessment to the coordination planner, which then selects an adaptation plan 

based on the ordering of the adaptation plans across the two provided risk assessments. For our 

risk assessment, we produce a changeSet to determine (1) what state variables are affected due to 

change, (2) what are the conditions of the changes, and (3) how do the changes impact the state 

variables. The risk assessment process uses this information to identify conflicts that arise during 

the verification process due to the changes and to alert when there are potential conflicts. The alerts 

include all of the impact multipliers needed for the risk assessment on the changes, which are (1) 

the impact on state variables due to changes, /01 , (2) the impact on component due to changes, 

/23, and (3)  what the planner believes the impact on state variables is, 4̂. We multiply these 

impact multipliers together to estimate the probability of risk associated with each alert, t. 
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Then, we calculate expected utility of the adaptation plan using the following utility function.  
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Here, E��� is utility weight of requirements needed to maintain system compliance. Higher 

expected utility means adaptation is less risky, and adaptation plans are ranked based on their 

expected utility.  

 

For the purposes of our experiments, the coordination planner always provides the four 

aforementioned adaptation plans: A1, A2, A3, and A4, to the MAPE-K and MAPE-SAC planners 

which, in return, provide their risk assessment and satisficing level of the four adaptation plans. 

Three experiments are conducted to evaluate the MAPE-K and MAPE-SAC coordination on the 

wearable security testbed. The first two experiments are designed to evaluate the expected best and 

worst behavior of the MAPE loop coordination, as determined by the ordering of the adaptation 

plans provided by the MAPE-K and MAPE-SAC planners. The best case is that the orderings of 

the risk assessments are the same, and the worst case is that they are the reverse of one another. 

The final experiment is designed to provide an assessment of the MAPE loop coordination across 

all possible wearables. MAPE-K and MAPE-SAC planners can provide a wide variety of risk 

assessments based on the concerns of the wearable system on which they are implemented. 

Each experiment comprises three processes. The first process manages the MAPE-K loop, the 

second process manages the MAPE-SAC loop, and the third process manages the coordination 

planner. The MAPE-K process loops through its monitor and analyze steps, as does the MAPE-

SAC process, constantly checking to determine if the system is still secure. The current security 



 

state of the system is represented as a global Boolean flag that is set to true if the wearable system 

is in a secure state or false if the wearable system is in an insecure state. If the monitor step 

determines that the wearable system is still in a secure state, then no adaptation is needed and the 

plan and execute steps produce no adaptation. 

After all threads are started, the state of the wearable system is flipped to insecure. Both MAPE 

processes then observe that the wearable system is insecure in their respective monitor steps, 

determine that an adaptation is needed in their respective analyze steps, and interact with the 

coordination planner in their planning step. 

For the first experiment, both the MAPE-K and the MAPE-SAC processes provide the same 

risk assessment to the coordination planner: A1, A2, A3, A4. The first set of plans selected by the 

coordination planner are A1 and A1. Since the first set of plans match, the coordination planner 

decides on A1. 

For the second experiment, the MAPE-K process provides the following risk assessment: A1, 

A2, A3, A4, and the MAPE-SAC process provides the following risk assessment: A4, A3, A2, A1. 

The coordination planner decides on plan A3. The MAPE-K process communicated first and 

became the initiator. Since A1 (the highest ranked plan from the MAPE-K process) is in the 

bottom half excluding the middle of the risk assessment from the MAPE-SAC process, it is 

rejected and A2 is selected. Then, since A4 (the highest ranked plan from the MAPE-SAC process) 

is in the bottom half excluding the middle of the risk assessment from the MAPE-K process, it is 

rejected and A3 is selected. Since A2 is ranked in the top half inclusive by the MAPE-SAC, the 

coordination planner decides on A2. If the MAPE-SAC had been the initiator, then the 

coordination planner would have decided on A3 for the same reason. 

In the third and final experiment, we iterate over every possible permutation of A1, A2, A3, and 

A4 for the MAPE-K loop. For each permutation, we iterate over every possible permutation of A1, 

A2, A3, and A4 for the MAPE-SAC loop. There are 24 possible permutations of each set for a 

total of 576 trials. Each plan decided by the coordination planner is recorded, the results are 

aggregated into Table 2. After each trial, the system is reset so that the initial conditions of each 

trial are the same. 

Table 2 shows the results gathered from the evaluation conducted in the third experiment. From 

this table, we can see that plan A1 was selected 146 times, A2 was selected 135 times, A3 was 

selected 147 times, A4 was selected 148 times, and in 0 cases there was no agreement between the 

MAPE-K and the MAPE-SAC loops. Based on these results, we can see that each adaptation plan 

is selected with roughly equal likelihood, as should be expected. In addition, we can see that if no 

coordination takes place, then in 42% of the trials, a violation will occur in either the functional 

concerns or the security concerns. A violation occurs when a functional adaptation or a security 

adaptation causes significant degradation in the system’s compliance with its security requirements 

or functional requirements, respectively. Whereas, if coordination does take place, then a violation 

will occur in 0% of the trials with the adaptations selected. 

 
Table 2: Results gathered from the implementation of the interaction protocol on the interactive Bluetooth testbed with 576 trials 

Plan Count Percentage 

A1 146 0.25 

A2 135 0.23 

A3 147 0.26 

A4 148 0.26 

Violations w/ Interaction 0 0 

Violations w/o Interaction 240 0.42 



 

 

 

We also examined the average position of the chosen adaptation for both the MAPE-K and 

MAPE-SAC loops. Ideally, this average should be similar over the 576 trials and between 1 and 2, 

indicating that the first or second plan of the MAPE-K and MAPE-SAC are chosen more often 

than not. In our trials, the MAPE-K average position was 1.66, while the average position of the 

MAPE-SAC was 1.61. These numbers are very similar and, importantly, very close to the optimal 

position. It is important to observe this value as each time an adaptation is rejected, the next 

adaptation is less satisfactory for either the MAPE-K or MAPE-SAC process. In our experiment 

the MAPE-K was more often the initiator. This results in the MAPE-SAC plan being prioritized 

when planners disagree. 

 

7. Discussion 
Given the inherent complexity of coordinating an adaptation across separate regions of 

concerns, the proposed approach has some limitations. First, the interaction protocol cannot ensure 

that there exists a best adaptation across cooperating systems. Rather, given a set of ranked 

adaptations from each system, the interaction protocol can select the adaptation that best minimizes 

cumulative impact on both systems. Any attempt to minimize cumulative impact can only be as 

effective as the assessment that each system uses to rank the adaptations. In addition, our 

framework also assumes that both systems have equal priority. When selecting an adaptation, the 

interaction protocol does not attempt to minimize impact for one system over the other. Further, 

the risk assessment that we use to rank adaptations cannot guarantee that there is an acceptable 

adaptation. It can only rank adaptations in terms of their likelihood to inhibit proof re-use for 

functional requirements and compliance degradation for security requirements, and there is 

currently no metric to evaluate system trustworthiness. 

The concept of interacting MAPE loops has largely been pioneered by Vromant [16] and 

Weyns [15] through their theoretical exploration of control patterns. But they did not consider 

explicitly how knowledge of an adaptation would be exchanged and shared among MAPE 

components, which gives rise to the need for an interaction protocol. To the authors’ best 

knowledge, our interaction protocol is the first such explicitly defined protocol to enable two 

separate interactive MAPE loops to systematically share such knowledge. Consequently, there is a 

lack of other appropriate approaches with which we might compare our work. 

We note that Vromant et al. [16] has published and evaluated a coordination manager that 

coordinates separate MAPE loops in each step of the control loop following the Coordinated 

Control pattern from Weyns [15]. Their implementation is a centralized system coordinating 

parallel processes. In contrast, our approach coordinates MAPE loops implemented on separate but 

integrated testbeds, making our solution applicable to a distributed system. Vromant [16] does not 

provide an evaluation section that would allow for an appropriate comparison of the two 

approaches.  As such, we are limited to describing and validating our framework within specific 

application domains. 

This framework can be used for systems employ dynamic graphical security models or 

reliability models. Security models that use attack graphs identify vulnerabilities and dependency 

nodes to exploit a system’s vulnerabilities [35]. Our framework supports the instantiation of 

security assurance cases by including the security requirements (as dictated by the NIST security 

controls) and dependencies among them that are needed to maintain the system’s security profile. 

Compliance degradation within the system’s security profile can be considered as a potential 

vulnerability. Thus, our assessment of compliance confidence allows for the detection of potential 



 

vulnerabilities.  Reliability models rely on the assessment of components, i.e., functional 

reliability, and the probabilistic distribution of the component, i.e., functional utilization [36].  Our 

assessment of functional compliance relies on reasoning about functional or environmental 

changes. This reasoning uses impact metrics that are pre-established by the system developers 

given their understanding of the range of state and environment variabilities for the function to still 

be effective. Assessing the compliance degradation of maintaining a goal can be considered as 

determining the extent of system reliability overall.  

8. Conclusion 
This paper proposes a MAPE-K/MAPE-SAC interaction framework to dynamically maintain 

functional and security concerns in an adaptive, self-protecting system. We represent the 

interaction between the MAPE-K and MAPE-SAC loops by modifying the Regional Planning 

Pattern to use coordinated planning and execution, and we separate security and functional 

concerns to different regions. We recognize that coordination requires knowledge about code level 

interdependency between functional and security concerns for conflict resolution, as both 

adaptations apply on a single application level. We illustrate how such a framework can be used to 

manage system security requirements, as environmental uncertainty and functional adaptations 

occur, using an example of two interactive testbeds, designed for an autonomous search and rescue 

scenario in the event of a natural disaster.  

Future work will explore several directions. First, we plan to develop a dependency profile to 

represent the interdependency and assign weights, so that we can determine tradeoffs between 

different adaptations. Second, we will apply security controls from different domains and devices 

and develop a catalogue for modeling security assurance cases. Finally, we are exploring how 

these techniques governing two interacting MAPE loops can be applied to large autonomous 

distributed systems that are exposed to additional sources of environmental and security 

uncertainty. 
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