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PREFACE 

This research incorporates the concept of chance-constrained pro­

gramming and multiple objective goal programming in the area of vehicle 

routing problems. The research led to the development of the model of 

the Goal Programming (GP) Stochastic Vehicle Routing Problem (SVRP) that 

allows the decision makers involvement in the solution process of prob­

lem to obtain satisfactory vehicle routes for the SVRP. It is shown 

that, mathematically, a new set of deterministic linear time constraints 

are equivalent to the nonlinear set of time constraints of the problem 

for distributions such as poisson and chi-square. Additionally, the 

effects of the route failing probabilities on the total elapsed time of 

the whole delivery system, and the existence of the optimum solution for 

the "F" type problem are proven mathematically. 

A modification of the Clarke and Wright algorithm is developed to 

determine the most favorable vehicle routes of the SVRP for the "E" type 

problem. Additionally, two heuristic algorithms which are the modifica­

tion of the Clarke and Wright "savings" approach are developed for solv­

ing the "F" type problem. Computational experiments are performed on 

three test problems to justify the proposed algorithms. Two interactive 

computer programs are developed for the SVRP and goal programming tech­

nique which allows the decision maker to provide satisfactory vehicle 

routes. 
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CHAPTER I 

INTRODUCTION 

1.1 Background 

Managers of private firms involved in the distribution of goods 

from a warehouse or depot to designated delivery points, as well as 

authorities responsible for public or private transportation systems, 

have become increasingly aware of the need to maximize operational effi­

ciency and minimize delivery costs such as fuel, replacement of vehi­

cles, and labor. To illustrate the economical significance of the Vehi­

cle Routing Problem (VRP), Bodin [7] used a survey by Kearney (1980) to 

show that about 16 percent of the sales value of an item is based on the 

physical distribution costs of that item, and of this, about one-fourth 

is due to downstream distribution of the final product from distribution 

centers to customers. Turner and Vu further reported that in 1974 about 

10 percent of the average community's budget was spent on refuse collec­

tion and disposal, a total of 7.8 billion dollars [60]. Factors such as 

these have attracted a great deal of attention to the VRP, and very 

recently, to the Stochastic Vehicle Routing Problem (SVRP). 

The result of this unprecedented interest has been the development 

and utilization of computerized procedures to solve certain types of 

vehicle routing problems which reduce associated distribution costs and 

delivery time and increase customer satisfaction. 

1 
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Briefly then, an essential element in any logistics routing system 

is the allocation and routing of vehicles for the purpose of collecting 

and delivering goods and services on a regular basis. However, routing 

decisions are complicated by the need of managers to reduce associated 

costs, and at the same time, satisfy customer demands by making certain 

that goods are delivered safe, at the right time, and in the right 

quantity. 

The Vehicle Routing Problem (VRP) is a generic name given to a 

whole class of problems involving the visiting of customers by vehicles 

[6, 13]. The VRP is also known in the literature as "vehicle schedul­

ing" [8, 11, 17, 24, 35, 41, 49, 64, 65, 67], "vehicle dispatching" [19, 

26, 27, 50], or "delivery problem" [57, 58, 59]. Dantzig and Ramser are 

generally credited for the first formulation of the VRP as presented in 

their 1959 paper "The Truck Dispatching Problem" [19]. The VRP can be 

stated as follows: given a set of nodes and arcs to be visited by a 

fleet of vehicles, construct a low-cost, feasible set of routes for each 

vehicle [ 7] . 

The SVRP is to design a set of feasible routes starting from and 

eventually returning to a central depot, in order to deliver commodities 

to a finite number of demand points with randomly distributed customer 

demands, randomly distributed travel and unload times having known dis­

tribution functions, such that the capacity constraint and time con­

straints of the problem are satisfied. If, however, the amounts of 

demand at each location, travel time between any two stations, and 

unload time at each location are known with certainty, and providing 

that a vehicle capacity restriction exists, this problem is a determin­

istic VRP. 
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In the multiple objective SVRP, more than one criteria are consid­

ered in the same problem which, depending on the nature of the criteria, 

are either maximized or minimized. For example, if the safety of the 

products on the vehicle route is considered to be one of the criteria, 

it is to be maximized. If, on the other hand, the total cost or total 

elapsed time is considered to be one of the criteria, it is to be 

minimized. 

Relevant objective functions for the SVRP may contain the follow-

ing: 

1. Minimize the total cost 

2. Minimize the total elapsed time on the route (travel time and 

unload time) 

3. Maximize the safety of products on the route 

4. Maximize the fulfillment of emergency services [49] 

5. Maximize the fulfillment of conditional dependencies of sta­

tions such as deadlines and earliest delivery times [49] 

6. Minimize the total deterioration of goods on the route 

7. Minimize the safety stock for each vehicle route (this is due 

to the nature of the probab:Llistic demands) 

Frequently, managers are interested in achieving two or more of 

the above objectives up to satisfactory levels instead of -optimizing a 

single criteria. Goal Programming (GP), which is one of the techniques 

for multiple objective decision analysis, can be employed to provide a 

simultaneous solution to this system of competing objectives. Hence, it 

is desirable to formulate a GP model of the problem within the framework 

of the SVRP, such that capacity constraints, time constraints, customer 
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demand, and decision making requirements are satisfied. Due to the com­

plexity of the SVRP, a set of stations to be visited by a fleet of vehi­

cles needs to be partitioned into feasible sets of routes, one for each 

vehicle enabling the application of the multiple objective GP technique 

to each of the vehicle routes. The multiple objective SVRP, then, con­

sists of the following two major stages: 

Stage I: Route Construction Stage (RCS) 

Stage II: Route Improvement Stage (RIS) 

The primary task of the RCS is partitioning a set of stations 

which are scattered around the central depot, into feasible subsets by 

applying a VRP heuristic approach. Using concepts of the GP technique, 

the RIS is used to sequence the stations on each vehicle route to meet 

the customers' and decision makers' requirements. 

1.2 Research Objectives 

The primary and secondary objectives of this research are 

described more specifically in the following sections. 

1.2.1 Primary Objectives 

The primary objectives of the proposed research are as follows: 

1. Within the framework of the SVRP, develop a mathematical for­

mulation for a multiple objective GP model. To accomplish this objec­

tive, the following subobjectives must be met: 

a. Develop a formulation of the SVRP in which travel time, 

unload time, and customer demands may be represented as 

random variables having known distribution functions. 



b. Transform the general SVRP into an equivalent determin­

istic VRP for each stage of the problem. 
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c. Mathematically prove the existence of a set of determin­

istic linear time constraints which are equivalent to 

the nonlinear set of time constraints of the problem for 

distributions such as the Poisson and chi-square. 

d. Develop the Linear Goal Programming (LGP) mathematical 

formulation of the RIS of the problem where the con­

flicting multiple objectives are treated explicitly. 

e. Mathematically prove the effects of the route failing 

probabilities of ak and ~ of the total elapsed time of 

the system where 0 ~ ak ~ 1 and 0 ~ ~k ~ 1 for all k. 

2. Determine an appropriate solution technique for the RCS of the 

problem. In order to accomplish this objective, the following sub­

objectives must be met: 

a. Mathematically prove the existence of the optimum solu­

tion for the RCS of the problem. 

b. Develop an algorithm that gives the most satisfactory 

vehicle routes for the RCS of the problem. 

1.2.2 Secondary Objectives 

The secondary objectives to be achieved are as follows: 

1. Develop a computer program of the algorithm for the heuristic 

approach which is designed to construct feasible vehicle routes in the 

RCS of the problem. 
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2. Develop a computer program of the interactive LGP procedure 

that will allow the decision maker's involvement in the solution process 

of the RIS of the problem. 

The scope of the proposed research is limited to the single depot, 

multiple vehicle, node routing problem with stochastic demand and travel 

and unload times and the development of the multiple objective goal pro­

gramming formulation of the SVRP. 

1.3 Outline of Succeeding Chapters 

Chapter I defines the problem and states the objectives and subob­

jectives of this research. Chapter II reviews the existing literature 

and the solution techniques of the VRP and SVRP. Chapter III discusses 

Chance-Constrained Programming (CCP) used with random variables in pro­

gramming models. Chapter IV reviews the literature on linear goal pro­

gramming techniques. In Chapter V, the SVRP and its equivalent deter­

ministic forms are developed and some necessary theorems are proven. 

Chapter VI is devoted to the development of linear integer goal program­

ming (LIGP) techniques. Chapter VII demonstrates the development of an 

appropriate heuristic approach for solving the SVRP. The heuristic 

approach developed in this study is a modification of the Clark and 

Wright algorithm. Chapter IX discusses the details of the interactive 

computer programs for the SVRP and LIGP techniques. Chapter X gives a 

conclusion and recommendations for future research in the field of SVRP. 



CHAPTER II 

LITERATURE REVIEW 

2.1 Vehicle Routing Problem 

The VRP is a challenging logistics management problem with varia­

tions that range from school bus routing to the dispatching of delivery 

trucks for consumer goods. Regardless of the variations, the basic com­

ponents of the problem are a fleet of vehicles with fixed capacities and 

a set of demands for transporting passengers or certain objects 

(consumer goods, etc.) between specified depots and delivery points. 

The problem is complicated because managers must also take into consi­

deration a variety of constraints such as fixed vehicle capacity and the 

duration of a route. 

Some of the problems classified under the generic name are the 

Travelling Salesman Problem (TSP) and its variants; Multiple TSP and 

Time Constrained TSP; Single Depot, Multiple Vehicle Node Routing 

(SMVR); Multiple Depot, Multiple Vehicle, Node Routing (MMVR); and Sin­

gle Depot, Multiple Vehicle, Node Routing Problem (SMVR) with stochastic 

demands. These problems have a pronounced discrete and combinational 

structure and are problems in the mathematical programming area known as 

"combinatorial optimization." 

The TSP, a combinatorial optimization problem with some real life 

applications, is the substructure of all VRP's [14] and has been studied 

extensively in the literature. Dantzig and Ramser [19] describe the TSP 

7 
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as follows: "Find the shortest route (tour) for a salesman, starting 

from a given city, visiting each of a specified group of cities, and 

returning to the original point of departure" [19, p. 80]. Mathemati-

cally, this problem can be formulated as: 

Minimize 
N N 
~ ~ 

i=l j=l 
(2.1) 

Subject to: 
N 
~ X. . = 1, for all j e S 

. 1 l.J 
1.= 

{1,2, ... ,N} 

N 
~ x .. = 1, 

. 1 l.J J= 

xij (form a tour) 

for all i E S 

for all i,j e S 

(2.2) 

(2.3) 

(2.4) 

(2.5) 

where Cij is the cost of travelling from node ito node j, Cii = oo, 

where i = 1,2, ... ,N. Constraint (2.5) can thus be written in the form 

of 

zi - zj + NXij ~ N - 1, for 2 ~ i * j ~ N (2.6) 

and for some nonnegative real numbers Zi. 

Since 1959, when Dantzig and Ramser [19] first introduced the VRP 

and proposed a linear programming based heuristic for its solution, the 

heuristic method has been widely researched [15, 27]. Christofides and 

Eilon [13] indicated the largest VRP of any complexity solved to date by 

exact methods and reported in the open literature contains only 31 
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demand points. Before considering different approaches for solving the 

VRP, a formulation of the problem as a 0-1 integer program is given. 

This problem, known as the "pure delivery" problem, can be formulated as 

follows [31]: 

N N NV 
Minimize: ~ ~ ~ dij Xij k 

i=l j=l k=l 

Subject to: 
N NV 
~ ~ x. "k = 1 

i=l k=l ~J 

N N 
~ X. k - ~ X "k = 0 

i=l .~P j=l :J 

NV 

j 2,3, ... , N 

k = 1,2, ... , NV 

p=1,2, ... ,N 

k = 1,2, ... , NV 

k = 1, ... , NV 

zi - zj + N ~ xijk ~ N - 1 
k=1 

(2. 7) 

(2.8) 

(2.9) 

(2.10) 

(2.11) 

(2.12) 

i =I= j 1,2, ... ,N 

N N N N 
~ tik ~ X .. k + ~ ~ tij k Xij k ~ Tk 

i=1 j=1 ~J i=1 j=1 
(2.13) 

k = 1,2, ... ,NV 

for all i,j,k, and i =I= j (2.14) 
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where 

N number of nodes 

NV number of vehicles 

Qk capacity of truck ~ 

Tk maximum time allowed for vehicle k on a route 

di = demand at node i (d1 = 0) 

tik = time required for vehicle k to deliver or collect at node 

i (tlk = 0) 

travel time for vehicle k from node i to node j 

(tiik = 00) 

dij distance from node i to node j 

if arc (i,j) is traversed by vehicle k 

otherwise 

Zi arbitrary real numbers, i = 1,2, ... ,N 

The objective function (2.7) represents minimization of total dis· 

tance travelled by NV vehicles. Alternatively, costs could be minimized 

by replacing dij with Cij• depending on the vehicle type. Equation 

(2.8) ensures that each demand node is served by exactly one vehicle; 

equation (2.9) ensures that if a vehicle enters a demand node it must 

exit from that node; equation (2.10) is the vehicle capacity constraint 

and (2.11) guarantees that vehicle availability is not exceeded; equa· 

tion (2.12) prohibits subtours; and finally, equation (2.13) is the 

total elapsed route time constraint. 
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2.2 Solution Techniques for the VRP 

2.2.1 Background 

Solution techniques for the VRP fall into two categories: those 

which solve the problem heuristically and those which solve the problem 

optimally. Basically, heuristic techniques have proved to be an attrac­

tive alternative to exact methods because they are easy to understand, 

readily accepted by managers, easy to program and maintain for computer­

ized planning, and effective in solving a wide range of practical prob­

lems which provide solutions that are usually accepted as "reasonable" 

[35]. The literature review concentrates on single-depot, multiple­

vehicle and multiple-depot, and multiple-vehicle situations. 

2.2.2 Heuristic Algorithms 

The majority of the previous efforts on the VRP have involved 

heuristic algorithms. Also, the heuristic methods which have been 

developed for the VRP are largely modifications of TSP heuristics. 

These algorithms can be categorized into the following four groups: 

1. Tour building heuristics, 

2. Tour improvement heuristics, 

3. Two-phase methods, and 

4. Lagrangian relaxation heuristics. 

2.2.2.1 Tour Building Heuristics. The Clarke and Wright 

"savings" approach is the one used most often in tour building heuris­

tics [17, 30, 31]. This approach calculates the saving between nodes i 

and j, Sij, as shown below: 
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(2.15) 

where Cij is the delivery cost for moving goods from node ito node j. 

More detail of this approach is given in Section 7.2. Gaskell [25] 

introduced the following alternatives that give results which are at 

least as good as the one found by Clarke and Wright's procedure. The 

savings are calculated as shown below: 

(2.16) 

(2.17) 

where dis the average of all d0 i. The rest of the procedure is the 

same as Clark and Wright's; however, the concept of modified savings can 

be given by ~ij = Sij - 9dij where 9 is a shape parameter. By varying 

e, the analyst can place greater or less emphasis on the cost of travel 

between two nodes, depending on their position relative to the depot. 

Yellow [67] suggested using a simple geometrical search technique 

on an ordered list of the polar coordinates of the delivery points. The 

saving was defined as 

s (2.18) 

where ~ is the shape parameter. Special cases are ~ = 1 for the Clarke 

and Wright procedure and~= 2 for Gaskell's ~method. Equation (2.18) 

may be expressed by polar coordinates relative to the delivery depot 

s 
(2.19) 

where ri and ei are the polar coordinates of point i. The rest of the 

procedure is the same as Clarke and Wright's. 
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Tillman and Cochran [59] modified the Clarke and Wright algorithm. 

The essential difference of the two methods is that Tillman and 

Cochran's method allows for the inclusion of restrictions on the system, 

and in some cases, will yield a better answer. 

Holmes and Parker [35] constructed an extension of Clarke and 

Wright's approach. This new approach is concerned with the classical 

VRP where a set of vehicles with known capacities service a known set of 

points with deterministic demands at the lowest possible cost. The 

mechanics of the so-called "saving" approach are utilized as the founda­

tion of the algorithm. This procedure is capable of handling the sym­

metric and nonsymmetric interpoint distances (costs) matrix. 

Mole and Jameson [48] proposed a technique which is largely depen­

dent on the Clarke and Wright savings criterion and the r-opt method 

introduced by Lin and Kernighan [42]. In this technique, a general 

parametric criterion of the following form was developed for including a 

node C between nodes A and B in the tour: 

MSAVc (A,B) 

where A and~ are the route shape parameters. In the case where node C 

is introduced between depot o and node K, the above equation can modify 

as: 

MSAVc (K,o) (2.20) 

For A in the range·of 1 ~A~ 2 and~= A- 1, a ranking identical to 

Gaskell's ~criterion would be generated from the latter equation where 

~ = (A- 1)-l- 1. This sequential route building algorithm may be 

thought of in terms of a repeating sequence of the following steps: 
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1. Determine the most advantageous position to introduce custo-

mer C. 

2. Identify the next customer to be placed on the emerging route. 

3. Possible resequencing of customers on the emerging route is 

explored using the r-optimal technique. 

Buxery [8] proposed a new model for planning the VRP using the 

"savings" heuristic rule along with the Monte Carlo simulation, subject 

to a maximum load restriction. The heart of this technique is similar 

to the one developed by Clarke and Wright; i.e., "Its function is to 

monitor the feasibility of the chosen new journey, at any particular 

juncture, for incorporation into the existing route pattern" [8, p. 

566]. The main idea for utilizing the Monte Carlo simulation is based 

on (1) all methods rely a great deal on time consuming "trial and 

error" evaluation procedures, and (2) good solutions cannot be obtained 

without explicitly constructing some alternatives. The procedure 

requires various parameters such as location of depot, location of 

demand points, demands, the number of point-pairs contained in the 

selection list, weighting factor M to control the relative probability 

of generating each point-pair from the selection list, and finally, the 

run length if it is desired. 

Williams [64] proposed a heuristic technique that could be used in 

attaining a visual solution. This method is based on joining customers 

farthest from the depot to the closest feasible customers within the 

immediate proximity. The route construction starts with nodes at 

extreme points in the area in order to avoid single long journeys and to 

minimize the total distance as nodes are added to the solution. Linking 
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together the closest nodes to the peripheral starting point will gener-

ally minimize the distance travelled to service those nodes; thus, sort-

ing of the distance matrix is highly reduced because initially only the 

closest node is required. After the initial link of a route has been 

found, then, from the distance matrix, the closest two feasible nodes to 

the farthest node is a link which has two nodes to which nodes can be 

assigned. A feasible node is a node that, if added to a link, will not 

cause the link to violate any restrictions. 

As previously mentioned, the VRP has been studied widely, but the 

multidepot VRP has attracted less attention and only a few articles are 

presented in the literature. Tillman [57], however, is credited for 

introducing the multiple terminal delivery problem. Specifically, the 

procedure begins with an initial feasible solution by assigning each 

vehicle to its closest depot. The algorithm is based on the "saving" 

criterion that was developed by Clarke and Wright [17]. Generally, this 

method involves determining savings from joining points on routes and 

making possible assignments as a function of the maximum savings for 

joining demand points on routes. The algorithm permits restrictions to 

be imposed on the system. One such procedure, however, is Tillman and 

Cain's [58] modification of the Clarke and Wright procedure which deter-

mines the initial solution by passing exactly one route from each demand 

point to the closest depot. When the distance between demand points i 

and j (dij) and the farther distance between demand point i and depot k 

(Uik) is known, then the total distance of all routes is defined as 

N 
D = ~ 2 min {Uik} 

i-1 k 
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where N is the number of demand points. This method successfully links 

pairs of nodes in order to decrease the total distance travelled. 

However, it should be noted that the computation of savings is not as 

straightforward as in the case of a single depot problem. Hence, the 

savings Sijk must be evaluated by 

(2. 21) 

where 

Uik 
~ 2 m~n {Uit} 

~ Uik otherwise. 

Uik if i has not yet been given 
a permanent assignment 

(2.22) 

Savings Sijk are computed for i,j- 1,2, ... ,N (i * j) and k 

at each step and can be stored in M matrices, each N by N. 

1,2, ... ,M 

Golden, Magnanti, and Nguyen [31] have proposed two algorithms for 

the multiterminal VRP. The first is based on the saving criterion 

method and the other is based on the Gillett and Johnson's philosophy 

[27]. The "saving" based algorithm uses Tillman and Cain's approach for 

computing savings but excludes the idea of a penalty function. The sec-

ond algorithm is precisely developed for large problems where the multi-

depot VRP is viewed as a two-step process: first, nodes have to be 

allocated to depots and then routes are built which link nodes assigned 

to the same depot. A large problem is introduced by dividing it into as 

many subproblems as there are depots and then solving each problem sepa-

rately [ 27] . 

2.2.2.2 Tour Improvement Heuristics Approach. The best known 

heuristic approach for the TSP is the branch exchange approach intro-

duced by Lin (1965) and later modified by Lin and Kernighan [45]. Lin 
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and Kernighan define a tour to be r-optimal if no improvement can be 

made by replacing any r of its links with any other set of r links. An 

r-optimal tour has a certain probability of being optimal, and Lin sug­

gests that three-optimal tours should normally be used since these give 

the best trade-off between computing time and probability of the tour is 

optimal. 

Christofides and Eilon [13], who have modified the Lin "r-opt" 

procedure, developed a new approach that starts with a feasible solution 

and tests perturbations to obtain r-optimality. This approach for r = 2 

examines each pair of arcs to build a new feasible and economical route 

which is replaced by any two old arcs from the route. The chief advan­

tage, however, is that it is able to handle restrictions such as 

1. Customer wants delivery at a certain time, 

2. Capacity may vary between vehicles, and 

3. Customer wants delivery by a certain vehicle. 

Christofides and Eilon [15] and Lin and Kernighan [45] have shown 

that the number of operations needed for an r-optimal tour is polynomi­

nal inn (number of customers on a tour), exponential in r, and bounded 

below by nr; thus, only "small" values of r can be used. Additionally, 

Christofides and Eilon discovered that when all possible links are con­

sidered in joining r changes into a tour, approximately (~)(r-1)!2r-l 

combinations need to be checked in order to ensure r-optimality. 

Wren and Holliday [65] generated a customer list in order of the 

angular coordinate along the most sparse direction. In contrast to the 

Clarke and Wright method, the number of vehicles available at the depot 

must first be specified, which allows routes to be built up regarding 

the number of vehicles available. Customers are then introduced into 
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the algorithm and each customer is assigned to a vehicle. Next, a 

"refine" procedure is activated to determine whether improvements can be 

obtained by simple categories, resequencing within routes, or realloca­

tion between routes. The coordinate axis is rotated in equal increments 

of goo, the algorithm is repeated each time, and the best of the four 

resulting route structures is chosen. This heuristic approach is capa­

ble of handling both single and multiple depot VRPs. 

Russell [50] extended the Lin and Kernighan heuristic procedure to 

an approach called "MTOUR." It is directly analogous to the 

Christorides and Eilon [15] method in which they extend Lin's 3-opt TSP 

heuristic procedure to solve the vehicle dispatching problem. MTOUR is 

able to handle side conditions such as due date or interval constraints 

requiring that a visit be made only during certain time intervals. The 

MTOUR algorithm requires a feasible solution of the VRP with M vehicles 

as input. This MTOUR solution is expressed as a travelling salesman 

tour on an expanded network, then a modified 3-opt procedure or any 

other improvement scheme is used to reduce total cost [7]. At each step 

of the modified 3-opt procedure, a check for feasibility must be carried 

out to have an improved total cost and feasible solution. Run times, 

however, grow approximately as N2 · 3 , where N is the number of demand 

points. 

2.2.2.3 Two-Phase Methods. In the two-phase method, customers 

are first assigned to vehicles without specifying the sequence in which 

customers are visited. In the second phase, routes are obtained for 

each vehicle using a TSP heuristic. The procedures introduced by 

Gillett and Miller [26] and Christofides and Eilon [15] are two-phase 

methods that use a modified Lin-Kernighan heuristic in phase two. 



19 

Gillett and Miller [26] also introduced an algorithm called the 

"sweep" algorithm. This algorithm consists of two parts, a forward 

sweep and a backward sweep. In this procedure, the problem is broken 

down into smaller subproblems which can be solved more easily. The 

locations are ordered according to their polar coordinate angles from a 

central depot and assigned to a single route as they are swept by, going 

through an increasing list of the angles until the vehicle capacity or 

distance constraints are exceeded. Rectangular coordinates for each 

demand point are required in order to evaluate the polar coordinates. 

A customer is chosen at random and the ray from the origin through the 

customer is "swept" either clockwise or counter-clockwise. Customers 

are assigned to a given vehicle as they are "swept" until the capacity 

constraint for that vehicle is reached. A new vehicle is then selected 

and the sweep continues with assignments now being made to the new vehi­

cle. The "refine" phase checks for improvement which could result from 

resequencing of customers within a route and reassignment of customers 

between routes. The procedure is repeated twice, once in the direction 

of increasing angular coordinates and once in the direction of decreas­

ing angular coordinates. In most cases, the two procedures produce dif­

ferent routes and consequently different minimum total distances. The 

best approximate solution is the one that has the smallest value. 

According to Turner and Vu [61], the main disadvantages of this proce­

dure are as follows: 

1. It applies only to single-depot problems 

2. The computer time increases quadratically with the average 

number of sites per route if the total number of sites remain relatively 

constant 
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3. The second phase requires a TSP procedure to solve each route 

individually 

The main advantages of this procedure are (1) little computer time is 

required to solve large problems with small numbers of sites per route, 

and (2) it is quite simple to program. 

The Christofides and Eilon ([13] pp. 332-333) two-phase method 

begins with a minimal insertion cost heuristic for inserting customers 

into emerging routes. The following scores are calculated for all the 

unrouted customers: 

where Xr· indicates an unrouted customer on the route Rh. Then a 
~h 

feasible customer xr* is inserted into route Rh where 

8 * r min {8r}, xr unrouted and feasible 

(2.23) 

(2.24) 

At each step, route Rh is optimized by using the Lin-Kernighan r-optimal 

method. In the second phase, a customer is designated in each of the 

routes formed in Phase 1. Beginning with the K routes that join the 

depot to ik, k = 1,2, ... ,K, the remaining customers are inserted using a 

rule based on the cost of inserting a customer into alternative routes. 

Cheshire, Malleson, and Noccache [11] presented a technique which 

is a dual heuristic because it retains local optimality at each step 

while gradually approaching feasibility. This procedure, where solu-

tions are built up by retaining feasibility while gradually approaching 

optimality, is in contrast with other VRP approaches which are primal 

heuristic. However, the main features of the proposed algorithm are 

initial schedule building, the construction of a complete but infeasible 
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schedule, and feasibility enforcement. An initial schedule is generated 

by one delivery per vehicle route. At each step of construction of the 

initial schedule, the next delivery which is farthest from the depot and 

from those deliveries are already included in the initial schedule is 

chosen. The total number of vehicle routes must be estimated either by 

the schedule or by the algorithm. The complete schedule is built up by 

including deliveries one at a time, but before a new delivery is 

included in the partial schedule, the existing partial schedule is 

locally optimized until it is impossible to gain an improvement by repo­

sitioning any delivery already included. 

The cost function for a delivery on a route is made up of a time 

and a penalty function. The penalty function is a sum of terms, each 

proportional to the additional degree of violation of any constraint 

caused by the inclusion of the delivery into the existing partial sched­

ule. The Lagrangian multipliers are initially set to some low values, 

then, when all deliveries have been included in the schedule, the 

Lagrangian multipliers associated with each violated constraint are 

increased in value and the total schedule is adjusted by single delivery 

repositioning until 1-opt is again achieved. Next, the cost reduction 

in each vehicle route is checked. This process is repeated until a fea­

sible total schedule is achieved. 

The Gillett and Johnson algorithm [27], an extension of the 

Gillett and Miller [26] "sweep" algorithm, is a two-stage procedure. 

During the first stage the assignment of locations to depots are deter­

mined and during the second stage, several single depot VRP's are 

solved. For any location i,t'(i) and t''(i) are considered to be the 

closest and the second closest depot to i. Then, based on the value of 

r(i), where 
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r(i) di,t'(i)/di,t''(i) for all i (2.25) 

locations are ranked in an increasing value of r(i). Based on this 

ranking, the nodes that are relatively close to a depot are considered 

first and assignment of nodes then starts from the list of r(i) until a 

cluster is constructed around every depot. Say that two nodes, j and k, 

are already assigned to a depot t and then a new node i is inserted 

between j and k on a route linked to i, an additional distance dji + dij 

- djk' which represents a part of the total distance (or costs), will be 

created. The sweep algorithm, however, is utilized to construct and 

sequence a route in the cluster around the depot independently. 

2.2.2.4 Lagrangian Relaxation Heuristic. According to Bodin [7], 

Stewart and Golden presented a heuristic algorithm that considers the 

customer demands explicitly. This procedure treats the capacity con-

straints by moving them into the objective function and then imposing a 

penalty when demand on a route exceeds capacity. The mathematical for-

mulation of this VRP is 

Minimize: 

Subject to: 

N N N 
L L L 

k=-1 i-1 j=l 

N 
L d. x .. k < Q, 

~ ~J -
i=l j=l 

(2.26) 

k 1,2, ... ,M (2.27) 

(2.28) 

(2.29) 



where 

Cij cost or distance of moving from ito j, 

di demand at point i, 

Q = vehicle capacity, 

S* - the set of all M-TSP solutions. 

Then the Lagrangian problem associated with this VRP is 

Minimize: 
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(2.30) 

N N N N 
Subject to: l: l: di Xijk 2:: l: l: di Xijr 

i=l j-1 i=l j-1 
(2.31) 

for all r- k + 1 and k = 1,2, ... ,M-l and 

(2.32) 

(is the penalty route failure). 

Constraint (2.31) is redundant, however, the effect is to assign the 

largest demand route (number 1), the second largest (number 2), and so 

on. The Lagrangian problem is solved for x(A) each time that A is var-

ied. Hence, the procedure is heuristic due to the fact that the VRP is 

solved approximately and not exactly. Also, the exact procedure might 

not give an optimal solution to the VRP since there may be a duality gap 

between the objective value for the "best" x(A) and the optimal solution 

to the VRP. 

Stewart and Golden [55] also proposed a newer heuristic algorithms 

for the VRP which makes use of the lagrangian relaxation to transform 

the VRP into a M-TSP. The new formulation suggested by the authors is 
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M N M N 
Minimize ~ ~ c.· xiJ"k + ~ Ak <~ JJ.i xijk - Q) 

k=-1' i,j-1 ~J k==l i,j==l 
(2.33) 

N N 
Sub j ec t to : ~ JJ.i Xij k - ~ J.l.i Xij r ~ 0 , r - k + 1 

i,j=-1 i,j=l 
(2.34) 

k ... 1,2, ... ,M-1 

for all i,j ,k (2.35) 

for all k 

where Ak can be thought of as a penalty for each demand on route k in 

excess of vehicle capacity. The penalties for larger demand routes are 

considered to be higher than the small demand routes; however, the arc 

exchange procedure is used to solve this heuristic algorithm. The key 

to the algorithm is in the selection of values for the Lagrangian multi-

pliers (Ak, k = 1,2, ... ,M). Only Al. is set at a positive level (all 

other A are zero), and the value of Al is increased at each iteration 

until the 3-opt procedure produces a feasible solution to the original 

VRP. However, Al is the multiplier associated with the first and 

largest demand route. Usually, a better solution is generated when Al 

is applied to each route that is infeasible. Then the objective func-

tion becomes 

Minimize: 

(2.36) 

where 

s { k I ~ . JJ.i xij k > Q l . 
~.J 

'(2.37) 
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2.3 Exact Solutions to the VRP 

The VRP formulation as an integer program is actually the one pre-

sented previously (2.7) - (2.14), as originally formulated by Golden et 

al. [31]. 

Balinski and Quandt [5] formulated the VRP as an integer program 

where it is a representative of a cluster-first, route-second approach 

to the VRP in which demand points are first assigned to the vehicle 

clusters and then each vehicle is routed over the demand points assigned 

to it to determine a delivery sequence. The formulation is 

M 
Minimize: ~ c. zj . 1 J J= 

(2.38) 

M 
Subject to: ~ a .. zj 1 

. 1 ~J J-
i=l,2, ... ,N (2.39) 

N 
~ a .. di ~ Q 

. 1 ~J 
~= 

j = 1, ... ,M (2.40) 

= ~ 
0 

zj 
1 

j "" 1, ... ,M (2.41) 

where decision variables Zj are binary and specify whether or not clus­

ter j is used; alj = 1, if demand point i is assigned to clusters j and 

0, otherwise, these coefficients are fixed and defined for each cluster 

j; dj is the demand of station j and Q is the capacity of any vehicles 

in the fleet which are assumed to be homogeneous; Cj is the minimum cost 

of any vehicle route passing the demand points i assigned to the jth 

cluster (i.e., the demand point i with aij- 1). 



26 

Foster and Ryan [24] proposed an integer programming formulation 

of the VRP which is solved using the Revised Simplex Method. This 

method is strictly primal in that both feasibility and integrality are 

withheld at all stages. An integer programming formulation of the VRP 

with a planning horizon of more than one day is extended to incorporate 

the linear constraints. The suggested formulation is 

Minimize: l: (V + mJ. ) xJ. 
jeJ 

(2.42) 

Subject to: l: a .. XJ .... 1 
jeJ l.J 

i=-1,2, ... ,N (2.43) 

where Xj is 0 or 1, represents the probability that route j is in the 

schedule; V is the mileage equivalent cost of each vehicle; mj is the 

total mileage of route j; aij = 1 if delivery i is made on route j; and 

N is the number of deliveries. J is the set of all feasible routes. 

Fisher and Jaikumer [23] have formulated a heuristic approach 

which describes the VRP as consisting of two interrelated components: 

the TSP and the Generalized Assignment Problem. Finally, Christofides, 

Mingozzi, and Toth [12] have formulized the VRP as a dynamic program 

problem. 

2.4 Stochastic Vehicle Routing Problem (SVRP) 

2.4.1 An Overview 

The SVRP has attracted less attention in the literature than the 

deterministic VRP. However, the SVRP is a problem of interest to opera-

tion researchers due to the wide applicability of such a model in real 

life situations. The SVRP is to design a set of routes starting from 

and eventually returning to a central depot and to deliver products to a 
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fixed number of demand points such that the capacity constraints, proba-

bilistic customer demands, and the duration of the routes are satisfied. 

Tillman [57] proposed a modification of the Clarke and Wright pro-

cedure for multidepot delivery and collection problems having proba-

bilistic demands that are poisson distributed. The objective function 

of the delivery problem for a given number of stop points on a proposed 

route is 

Min E[cost] = Min 
R 

R 00 

jl c1 (D)h(D)dD + jl c2 (D)h(D)dD} 

0 R 

(2.42) 

where the first expression from the right indicates the cost of not 

hauling enough commodity to satisfy all customer demands on a route and 

the second expression from the right represents the cost of hauling 

excess commodity on the route that is not needed. 

The value of R determined for each route is the load assigned to 

the truck for that route. Notations are 

c2(D) 

D 

cost of hauling excess commodity on the route that is not 
needed, or 

cost of completing scheduled route and having unfilled 
capacity 

cost of not hauling enough commodity to satisfy all the 
demands on the route, or 

cost of filling truck prior to completing the scheduled 
route 

(2.43) 

di the probabilistic demand for the ith stop 



fi(di) =probability density function of the random variable di 

h(D) = probability density function of D 

Golden and Stewart [30] have extended Tillman's SVRP in a differ-

ent way considering only a single depot problem. In this technique the 
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locations on the route are n1 , n2 , n3 , ... ,nk, and it is assumed that all 

vehicles have the same capacity Q and that the total demand for all 

locations is 

(2.44) 

where dni is the demand at location i which is described by the indepen-

dent poisson distribution with mean and variance Ani. Then 

E(X) = Var(X) = An1 + An2 + , ... , + Ank (2.45) 

for that route. Using the central limit theorem and approximating with 

normal distributions, then~- An1 + , ... , + Ank, and rr = ~ ~· How-

ever, by considering the definitions of primary and secondary errors 

from Chapter V, Section 5.5.5, one can write, 

P(X ~ Q) 

and 

P(X ~ aQ) 

P (primary error) P(Z ~ ~~- ~) ~ (1- a) 

aO - ~ 
P(secondary error)= P(Z ~ ~~ )~a 

where Q is the truck capacity and 0 < a, a ~ 1. 

(2.46) 

(2.47) 

Assuming that ~ is nearly the same for most of K routes, then an 

artificial capacity~. as the vehicle capacity, can be used along with 



the Ani as demand points and the "saving" approach of Clarke and Wright 

to obtain a fixed set of routes. Therefore, the following problem is 

the one that must be solved: 
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Minimize: expected total cost (2.48) 

Subject to: 

1. a fixed set of routes, 

2. satisfaction of customer demands, 

3. P(primary error)~ (1- a), and 

4. vehicle capacity is obeyed. 

where 0 ~ a ~ 1. 

Golden and Yee [29] extended this work to several other demand 

distributions and presented a more comprehensive view of vehicle 

routing. 

In a later article, Yee and Golden [66] presented a dynamic pro­

gramming approach to determine the driver operating strategies when 

demands on a route are probabilistic. Specifically, after delivery of 

goods to a demand point on a fixed route, which has already been deter­

mined by the Clarke and Wright procedure, the driver is faced with the 

decision of whether to return to the depot to replenish the supply. 

However, the optimal decision is based on whether the remaining supply 

of goods in the vehicle is greater or less than some critical value 

which must take into account the following criteria: 

1. The probabilistic demands on the remaining portion of the 

route, and 

2. The distances between the remaining customers. 
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Cook and Russell [18] have successfully treated a large routing 

problem with timing constraints and stochastic travel times and demands. 

The authors approach the problem by generating a deterministic solution 

using the MTOUR algorithm and then testing these routes via simulation 

to demonstrate that they are effective; however, the stochastic nature 

of the problem is not explicitly considered in the route generation 

stage. The basic procedure for the generation of travel times and 

pickup times is based on the development of the multiple regression 

equations for each random variable so that the point estimates can be 

calculated. The regression equation for the intra-city transit times is 

derived by employing the euclidean distance and average speed limit as 

the independent variables. The service time (pickup time) is considered 

to be a function of two independent variables: number of containers and 

the total capacity of the containers. Based on these assumptions, the 

second regression equation for pickup times is determined. 

2.5 Interactive Heuristic Approach 

Interactive vehicle routing is a general approach in which a high 

degree of human interaction is incorporated into the problem solving 

process [7]. It is a method of building routes which is under the con­

trol of the decision maker who uses an interactive computer program to 

indicate the results of decisions made in terms of cost, time, distance, 

or vehicle utilization. 

Krolak et al. [41] proposed a man-machine approach which takes the 

following steps: 

1. The decision maker defines the problem, 



2. The computer organizes the data and then gives several alter­

native solutions using a sophisticated heuristic technique, 

3. The decision maker creates another solution and the computer 

compares the solutions using a pictorial display, and 

4. The decision maker attempts to modify the computer solution. 

This process continues until the decision maker is satisfied with the 

solution. 

Stacy [53] has developed an interactive vehicle routing algorithm 

which creates various logical stages in the trail of project design, 

data collection, validation, and staff training. Also, Waters [63] has 

developed an interactive vehicle routing algorithm which is able to 

introduce the concept to new or trainee schedulers. Some of the advan­

tages and disadvantages of the interactive procedure as summarized by 

Turner and Vu [61] are given below: 

Advantages of the Interactive Vehicle Routing problem: 

1. Human interaction is allowed, yielding better solutions 

2. The computer helps organize the data for the decision maker 

Disadvantages of the Interactive Vehicle Routing problem: 

1. It is time consuming for both the decision maker and computer 

2. The solution is usually suboptimal 

3. The concepts require trained or experienced personnel 

Park [49] presented a heuristic algorithm to determine vehicle 

routes for the multiple-vehicle, single-depot case where conflicting 

multiple objective functions are treated explicitly. This heuristic 

approach is based on the ideas of Gillett and Miller [26], Clarke and 

31 
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Wright [17], and Williams [64], which were discussed earlier. Park's 

heuristic approach implies different upper bounds for the constraints on 

vehicle travel distance and are based on the preemptive goal priority 

structure. 

Allison [2] developed an interactive model to solve the Workload 

Balancing Vehicle Routing Problem (WBVRP) using multiple criteria analy­

sis. This research is concerned with the VRP in order to minimize the 

total distance of the whole delivery system and the deviation in work­

load among the routes. The workload elements are defined to be (1) 

total distance on time spent driving, and (2) the total weight or amount 

of goods delivered. The WBVRP is a multiple criteria optimization prob­

lem and is concerned with the deterministic customer demand and travel 

time. 

2.6 Summary 

This chapter has presented a literature review of the VRP, 

multiple-depot VRP, and SVRP. As indicated, the single-depot, multiple­

vehicle, node routing problem has attracted the attention of most 

researchers whereas little research has been conducted on the SVRP and 

multidepot, multiple-vehicle, node routing problem. 

As previously discussed, solution techniques for the VRP are 

divided into two main categories: those which solve the problem opti­

mally and those which solve the problem heuristically. Optimal seeking 

procedures are only practical for solving small-sized problems while 

heuristic techniques are the most promising tools for solving large­

scale problems. For this reason, a great deal of attention has been 

given to the Clark and Wright [17] heuristic approach and its modi­

fications and as well as to the Gillett and Miller [26] approach. 
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In this research, the heuristic methods were categorized into four 

groups: tour building heuristics, tour improvement methods, two-phase 

methods, and Lagrangian relaxation heuristic approaches. It should be 

noted that there are relatively few interactive approaches that solve 

the VRP and only two procedures that are capable of handling the VRP in 

a multiple objective environment [2, 49]. Moreover, each of the proce­

dures described, with the exception of [2, 49], has a single objective 

cost, time, or distance minimization. 



CHAPTER III 

CHANCE-CONSTRAINED PROGRAMMING (CCP) 

3.1 Introduction 

When the parameters in a mathematical programming model are pre­

sumed to be random variables rather than constants, a stochastic pro­

gramming problem must be solved. These problems involve risk if the 

probability distributions of the random variables are known, or involve 

uncertainty if the distribution of at least one random variable is 

unknown. The difficulties of dealing with risk and uncertainty in pro­

gramming problems have been discussed in the literature since the 

1950's. 

Chance-Constrained Programming has been introduced into stochastic 

programming literature mainly through the exposition of Charnes and 

Cooper (10]. These authors suggest theE, V, and P models. In theE 

model the expected value of the objective function is to be maximized; 

in the V model the objective is to minimize a generalized mean square 

error; and in the P model the purpose is to maximize the probability 

that C'X does not exceed a given constant C~X0 . In this technique, a 

decision vector X has to be selected such that each constraint is satis­

fied at least a (0 ~a~ 1) percent of the time. The topic of CCP is 

perhaps best introduced by first exhibiting an ordinary LP problem in 

its general form as: 
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Minimize Z = C'X 

Subject to: AX~ b, X~ 0 

where A is an m x n matrix of constraints and C' is a 1 x n matrix while 

b is an m x 1 matrix. A chance-constrained formulation would replace 

the above problem with one of the following kind: 

Minimize 

Subject to: 

n 

n 
z = ~ c.x. 

. 1 J J J-

P(~ aij xj ~ bi) ~ ai 
j==l 

x. > 0 
J -

for all i 1, ... ,m 

for all j 

(3.1) 

(3.2) 

(3.3) 

where "P" means probability and 0 ~ ai ~ 1. The parameters of this 

problem are the objective function coefficients Cj, the coefficients 

aij• and the right hand side values bi. Practically, aij' Cj, and bi 

are not necessarily constant, and in general, some or all of their ele-

ments are random variables. The vector a is a set of constants that 

are probability measures which determines the extent of the constraint 

violations. 

The value of the objective function, Z, will depend upon the val-

ues of Cj, bi, and aij when they are random variables having known dis­

tribution functions. The "E Model" [10] that optimizes the expected 

value of the objective function may be used only when the Cj are random 

variables. When one or more aij and/or one or more bi are random vari­

ables, the "E" Model cannot be applied. In this case, the surrogate 
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models of stochastic programming such as CCP and stochastic programming 

with recourse may be applied [33]. 

Problem (3.1)-(3.3) seek a solution vector X that satisfies the CC 

(3.2) and minimizes the value of Z. Many authors [20, 22, 28, 33, 62], 

as well as Charnes and Cooper [10], have offered methods to convert such 

stochastic models into their deterministic models (not necessarily lin-

ear) which can be solved by the existing mathematical programming 

techniques. 

3.2 Development of Deterministic Equivalents 

In this section, two cases where constraint requirements, bi, and 

input-output coefficients, aij are random variables having known distri­

bution functions will be discussed. To develop the equivalent determin-

istic form of chance-constrained inequality (3.2), consider in more 

detail a constraint 

n 
~ aiJ" x. < b. J - ~ 

j==l 
for all i = l, ... ,m (3.4) 

in the following two situations: 

independently 

2 

distributed random variables with mean 

~i and variance O'b., and 
~ 

2. aij are random variables with mean ~aij' 

aij are distributed independently of aik (j ¢ k). 

2 
and variance 0' 

aij ' 

The random variables bi and aij are assumed to be normal random 

variables. However, Sections 3.2.1 and 3.2.2 deal with the development 

of the equivalent deterministic form of the probabilistic constraints 

considering the above situations, respectively. A comprehensive survey 
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for the development of the equivalent deterministic forms for other sit-

uations is discussed in (68]. 

3.2.1 Constraint Requirements Random Variable. bi 

In particular, constraint (3.4) is 

n 
P(~ aij Xj ~ bi) ~ ai for all i- 1,2, ... ,m 
j=l 

(3.5) 

where (1 - ai) denotes the allowable "risk" that a random variable will 

be chosen such that 

n 
~ 

j=l 

The equivalent deterministic form of the constraint (3.5) for nor-

mally distributed random variables of bi is 

Where Kai is a standard normal value such that <I>(Ka) = a and <P repre-

sents the cumulative distribution function for the standard normal (28, 

pp. 275]. Hence, by solving the problem 

Minimize: 

Subject to: 

n 
~ c. xJ. 
. 1 J J= 

one can obtain the optimal solution to problem (3.1)-(3.3). 

(3.6) 

1, ... ,m 

(3.7) 



3.2.2 Input-Output Coefficients 

Random Variable. aij 

To deal with one constraint at a time, drop the subscript i 

2 
and let ~j and rrj be the mean and variance of aj. Then given X, 

the mean value of ~ ajXj is M - ~ ~j Xj and its standard deviation 
2 2 i J J 

isS=(~ rrj Xj) (assuming M and Sexist). Now if there exists a 

constant T such that 
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P( (~ aj Xj - M)/ S) ~ T) = a 
J 

(3.8) 

then constraint P(~ aj Xj ~ b) ~ a is equi~alent to the nonstochastic 
J 

constraint 

M + TS ~ b. (3. 9~ 

Of course, M and S contain the unknown Xj. Constraint (3.9) is gener­

ally nonlinear in nature, as can be seen when it is written in the fol-

lowing form: 

n n 2 2 ~ 
~ ~a .. XJ. + T (~ rr a .. xJ.) ~ bi for all i, 

j==l l.J j=l ~J 
(3.10) 

where T = -Ka and Ka is as previously defined [28]. The constraint 

(3.9) can be substituted for (3.2) if M and S exist and T is independent 

of XJ .. This will be the case if the distribution of(~ a X M)/S j ij j -

is the same as (a-rJ· - ~a .. )/rra . .. This case is true when a .. are nor-
~ ~ ~ ~ 

mally distributed or random variables aij all have the same stable dis-

tribution with parameters Uij and Vij• respectively. Vajda [62, p. 84] 
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claims that stable distributions have the common property of being com-

pletely determined by the specifications of two parameters U and V (not 

necessarily the mean and standard deviation) where U is real and 

V > 0. The convolution of any n X m distributions F((aij - Uij)/Vij) 

fori= 1,2, ... , m and j- 1,2, ... , n is of the form F((a- U)/V). 

Poisson, binomial, chi-square, and normal distributions belong to this 

family. 

The deterministic constraint (3.10) can be written as: 

n 
~ 

j=l 

n 2 
"- x. -b. _<- T(~ cr •. r-al.· J. J l. l.J . 1 J= 

2 ! 
xij) 2 (3.11) 

When a > 0.5 then 'T is negative, which requires that one square both 

sides of the inequality to obtain 

which is a quadratic constraint. 

2 n 2 2 
xj - ,. ~ cr ij xj ~ o 

j=l 
(3.12) 

When the random variables aij or bi are not normally distributed, 

the development outlined above does not apply. Goicoechea, Hansen, and 

Duckster [28, pp. 276-281] developed the equivalent deterministic forms 

of the probabilistic constraints which consist of random variables other 

than normal, such as exponential, uniform, and beta random variables. 

3.3 Summary 

The most common method for dealing with random variables in pro-

gramming models is through certainty equivalents which can be achieved 

by transforming the CCP problems into nonstochastic problems. The 



equivalent deterministic forms of the probabilistic constraints are 

either linear, as shown in (3.7), or nonlinear, as shown in (3.10) or 

(3.12). 
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CHAPTER IV 

MULTIPLE OBJECTIVE GOAL PROGRAMMING MODELS 

4.1 Introduction 

Goal Programming draws upon the highly developed and tested tech­

niques of linear programming, yet provides a solution to a complex sys­

tem of competing objectives. This technique can handle problems having 

a single goal with multiple subgoals as well as problems having multiple 

goals and subgoals [69]. The basic concept of GP involves incorporating 

some managerial goals into the constraints of the model. 

Goal Programming technique was originally introduced by Charnes 

and Cooper [10] in early 1961 for a linear model. The GP has been 

extended into many areas, including the capital budgeting problem [38] 

and aggregate production and manpower planning [1]. Lee [42] applied 

goal programming to problems in production planning, financial deci­

sions, academic planning, and medical care, to_mention a few. A GP 

model is useful for the following three types of analysis [38]: 

1. To determine the input (resource) requirements to achieve a 

set of goals 

2. To determine the degree of attainment of defined goals with 

given resources and 

3. To provide the optimum solution under varying inputs and pri­

ority structures. 
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In general, a goal programming problem can be categorized as: 

1. Linear goal programming (LGP) problem, 

2. Linear integer goal programming (LIGP) problem, and 

3. Nonlinear goal programming (NGP) problem. 

The LGP problem is discussed in section 4.2 and LIGP has been delayed 

until Chapter VI. The importance of NGP has been recognized by many 

authors including Griffith [32], Ignizio [38], and Lee and Wynne [43]. 

where 

4.2 General Model 

The general model of LGP can be stated as follows [38]: 

Minimize 

Subject to: 

pj 

+ -
wij, wij 

z k m 
~ ~ 

j=l i=l 
(4.1) 

i = 1,2, ... ,m (4.2) 

i=m+l, ... ,s (4.3) 

i 1,2, ... ,m (4.4) 

i 1,2, ... ,m (4.5) 

r = 1,2, ... ,n 

is the preemptive priority weight assigned to goal j 

are numerical (differential) weights assigned to the 

deviational variables of goal i at a given priority 

level j 



Pi = represents the positive deviations or surplus vari-

ables from goal j (overachievement) 

ni - represents the negative deviations or slack variables 

from goal j (underachievement) 

bi = is the ith target level where i 1,2, ... ,m 

air - is the technological coefficient of Xr in goal i. 

The sets of goal const·raints are those with i = 1,2, ... ,m and the 

sets of rigid constraints are those with i = m + l, ... ,s. 

There are three basic approaches to problems characterized by a 

priori set of goals: Preemptive Goal Programming, Archimedean (or Non-

preemptive) Goal Programming, and Multigoal Programming. These three 

approaches are discussed in more detail below. 

4.2.1 Preemptive Goal Pro~ramming 

The objective function for preemptive goal programming is often 

written as [69]: 
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(4.6) 

The purpose of preemptive goal programming is the minimization of 

fi (ni, pi), one by one, in the order of their (preemptive) priorities. 

Functions fi are typically linear functions of deviational variables; 

so on. The summation above is redundant and meaningless; however, it is 

prevalent in the literature and thus cannot be ignored. 
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4.2.2 Archimedean Goal Programming 

The objective function is to minimize (69]: 

All the objective functions are considered simultaneously and 

their weights Wi are not preemptive. Powers r can take any value, but 

usually r = 1,2, or oo. 

4.2.3 Multigoal Programming 

The purpose of Multigoal Programming is to minimize 

[fl (nl, p1), ... , fk (nk, pk)], as in Multiobjective Linear Programming 

[3, 36, 37, 69]. However, it is not necessary to write the objective 

function in terms of an aggregate preference function. Other variants 

of GP and multiobjective linear programming can be found in [28, 37, 

43]. 

4.3 Solution Methods for Linear Goal 

Programming Problems 

The most commonly used solution techniques for solving LGP prob-

lems are, partitioning goal programming [4], multiphase linear goal pro-

gramming [28, 31], and interactive sequential goal programming [43]. 

Arthur and Ravindran [4] have modified the method of solution of 

GP problems with preemptive weights into a procedure called the Parti-

tioning GP algorithm. In the partitioning procedure constraints should 

be categorized such that a nested series of GP problems can be formed: 
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In general, SPk stands for the kth subproblem which consists of those 

goal constraints assigned to the first k priority levels and the cor­

responding terms in the objective function of the kth subproblem. The 

solution procedure starts with the smallest subproblem, SP1 , which con­

sists of all goal constraints assigned to this priority, the system con­

straint, and the corresponding terms in the objective function. The 

main idea after obtaining the optimal solution of each subproblem is to 

examine the optimal tableau for alternate optimal solutions. If no 

alternative solutions exists, then the solution is optimal for the GP 

problem. In this case, the value of decision variables of the optimal 

tableau is substituted into the goal constraints of the lower priority 

levels (if any exist) to calculate their attainment levels. If alter­

nate optimal solutions exist, the optimization process is continued 

after augmenting-the next set of goal constraints and their objective 

function terms into the optimal tableau. However, the process of addi­

tion of goal constraints and objective function terms continues until no 

alternate optimum solution exists for one of the subproblems, or until 

all priority levels have been considered in the optimization process. 

The linear independency between each pair of individual variables guar­

antees no need for the dual simplex operation on the updated tableau at 

the beginning of each optimization process. Most important, when the 

optimal solution to the SPk-l is obtained, before the addition of new 

goal constraints (for SPk) into the optimal tableau, one should delete 

all nonbasic columns which have a negative value for (Zj - Cj) from the 

optimal tableau of SPk-l for further consideration. 
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The multiphase (or modified simplex) algorithm is simply a refine­

ment of the well-known two phase method. In this method, the basic sim­

plex method of linear programming is utilized to minimize the devia­

tional variables. The deviational variables are ranked according to 

preemptive priority factors so that during the solution process the 

goals are considered in order of their priorities. The weighting method 

is allowed to incorporate the cardinal values to goals at given priority 

levels [27, 44]. 

In most cases, the multiple objective problems cannot be optimized 

simultaneously because such problems involve making trade-off decisions 

to get the "best compromise" solution. However, Interactive Sequential 

GP [46] (ISGP) is a link between GP and interactive approaches which is 

based on the implicit assumption that the decision maker can adjust the 

desired goals through an interactive learning process based on the 

information in a set of solutions. Any iteration, say r, consists of 

two phases: calculation and evaluation. The Principal Solution and a 

set of Alternate Solutions are obtained in the calculation phase, and 

the evaluation phase consists of the decision maker's indication of his 

preference judgment about these solutions in the form of new desirable 

goal levels. With this new information, the process goes back to the 

calculation phase of the (r + l)th iteration. Both linear and nonlinear 

problems can be solved by ISGP. Additional details concerning this pro­

cedure are given by Masud and Hwang [46]. 

4.4 Summary 

The GP approach appears to be an appropriate solution technique in 

developing a model to attain multiple, competitive, and often conflict­

ing objectives with varying priorities. However, GP is not the answer 
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to all decision problems. In fact, there are a large number of problems 

that cannot be solved by this method, nor can this technique replace the 

subjective aspects of decision making. The application of GP for deci­

sion analysis does force the decision maker to think of goals and con­

straints in terms of their importance to the organization, and thus are 

an invaluable aid to the decision-making process. 



CHAPTER V 

DEVELOPMENT OF THE STOCHASTIC 

VEHICLE ROUTING PROBLEM 

5.1 Development 

This chapter is concerned with the development of the VRP within 

the framework of stochastic programming and addresses the goal program­

ming formulation of the problem in which priorities of various goals are 

identified. The sensitivity of time and truck capacity upon the proba­

bility of route failures is analyzed and some necessary theorems are 

proven. 

The SVRP examined in this research is concerned with the multiple­

vehicle, single-depot node routing problem in which restrictions are 

placed on the total travel and unload times of each vehicle route. 

Alternatively, restriction can be imposed by the Decision Maker (DM) 

regarding total elapsed time of each vehicle route instead of specifying 

each type of time constraint individually. For example, the DM may 

specify that routes must require less than 10 hours time for both travel 

and unload times. 

The time constraints arise in many real life problems such as 

industrial refuse collection and scheduled mail pick-up and delivery 

problem [18]. The importance of time constraints has been recognized by 

many authors including Cheshire et al. [11], Fisher and Jaikumer [23], 

Evans et al. [21], and Williams (64]. 
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Some of the work that has been published in the literature deals 

with stochastic elements within the framework of linear, single objec­

tive, and heuristic approaches [18, 29, 30, 57]. As mentioned in 

Chapter I, this author considers two major stages for the stochastic 

VRP, the Route Construction Stage (RCS) and Route Improvement Stage 

(RIS). The following is a brief description of these two stages. 

5.1.1 The Route Construction Stage 
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The RCS of the SVRP consists of problem formulation and partition­

ing a set of stations into feasible sets of vehicle routes. The pres­

ence of nonlinearities in the equivalent deterministic form of the SVRP 

generally make the problem more complex than similarly-sized VRPs. For 

this reason, only heuristic methods for solving SVRP are considered in 

this study. 

The RCS of the SVRP consists of the following steps: 

1. Problem formulation in which objective functions and proba­

bilistic constraints are identified, 

2. Transformation of the above stochastic problem into an equiva­

lent deterministic form, and 

3. Partitioning of a set of stations into feasible subsets using 

an appropriate heuristic approach. 

The RIS of the problem consists of problem formulation and 

sequencing of stations on each vehicle route to meet the customer's and 

decision maker's requirements. 



5.1.2 The Route Improvement Stage 

This stage of the problem is important because the final results 

depend on the decision maker's policy and the way in which goals and 

their relevant priorities are listed. Obviously, the goal priority 

structure of all objectives must be carefully stated because the 

achievement of one goal may result in a very poor achievement of the 

remaining goals. 

The RIS of the SVRP consists of the following steps: 

1. Problem formulation in which goals and probabilistic con­

straints are identified, 
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2. Transformation of the above stochastic problem into an equiva­

lent deterministic form, and 

3. GP formulation of RIS in which priorities of various goals are 

identified. 

Here, it should be noted that the mathematical formulation of the 

RIS, and in turn the derivation of its equivalent deterministic form, is 

easier to formulate than the RCS of the problem. Also, it is necessary 

to develop mathematically the objective functions of the RIS of the 

problem in terms of the decision variables. For these reasons, the 

problem formulation of the RIS of the problem is given in Sections 5.4 

and 5.5 and the problem formulation of the RCS of the problem is delayed 

until Section 5.6. 

• 



5.2 Notations 

The following notations are utilized in this research: 

NS number of stations on a vehicle route, excluding the cen­

tral depot 

TNS = the total number of stations to be served, excluding the 

central depot 

C the total cost of each vehicle route 

Cij the travel cost of moving from station ito j, Cii = oo 

di the demand at station i (i = 1,2, ... ,TNS), is a random 

variable having a known.distribution function 

dij the distance between station i and station j, and dii = oo 

D a 1 x NS vector with components of di 

I set of stations on a vehicle route, including the central 

depot, 0 stands for central depot 

J I - {0} 

M the mean of travel time on a vehicle route 

NV number of vehicles 

n(i) = a set of negative deviations for constraint (i) 

p(i) - a set of positive deviations for constraint (i) 

P(.) stands for probability of (.) 

Q a vehicle capacity 

Q the artificial capacity of a vehicle 

R the variance-covariance (dispersion) matrix for customer 

demand 

S = a set of feasible solutions for each vehicle route 

SNV a set of feasible solutions for NV trucks 
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SS the safety stock 

ti the unload time at station i, (i = 1,2, ... ,TNS), is a ran-

dom variable having a known distribution function 

tij the travel time from station ito station j, is a random 

vartable having a known distribution function 

(i- 0,1,2, ... ,TNS) and (j- O,l, ... ,TNS) and tii- oo 

E a 1 x NS vector with components of ti 
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Tl the maximum total travel time allowed on each vehicle route 

T2 the maximum total unload time allowed on each vehicle route 

TRk a predetermined maximum total travel time allowed for the 

kth vehicle route 

TT the total time required to complete a vehicle route 

UTk a predetermined maximum total unload time allowed for the 

kth vehicle route 

V the variance-covariance (dispersion) matrix for travel time 

W the variance-covariance (dispersion) matrix for unload time 

x .. =decision variables, 1 if a truck goes from station ito 
~J 

station j, 0 otherwise 

G a 1 x NS vector with components Xij 

decision variables, 1 if the kth truck goes from station i 

to station j, 0 otherwise 

the predetermined level of constraint violations, where 

0 < a S 1, 0 < ~ S 1, 0 < ~ S 1, and 0 < ~ S 1 

the predetermined level of constraint violation of the kth 

truck, where 0 < ak S 1, 0 < ~ S 1, and 0 < ~ S 1 

the mean of the demand at station i 

the variance of the demand at station i 



the mean of the unload time at station i 

the variance of the unload time at station i 

the mean of the travel time between station i and j 

the variance of the travel time between station i and j 

'V = a constant value 

u a 1 x NS vector with components ~ti 

H = a 1 x NS vector with components ~~ 

Tl = a target level for travel time for each vehicle route 

T2 a target level for unload time for each vehicle route 

T a TNS X TNS matrix with components of tij 

5.3 Assumptions 

The following assumptions were considered in this model building: 

1. The demand at each destination is a random variable having a 

known distribution function 

2. The unload time at each destination is a random variable hav-

ing a known distribution function 

3. The travel time from one station to another is a random vari-

able having a known distribution function 

4. The commodity to be transported is homogeneous 

5. All vehicles have the same capacity 
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6. The shortest distance between two stations is considered to be 

euclidian 

7. The maximum allowable total travel time of each vehicle route 

is Tl 
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8. The maximum allowable total unload time of each vehicle route 

is T2 

9. a,~.~.~.ak,~· and ~k are predetermined. 

5.4 Route Improvement Stage: Problem Formulation 

5.4.1 Time Constraints 

The formulation to be presented is based on the previous assump-

tions and notations. The basic form of the problem is typified by the 

situation in which deliveries are made from a central depot to the des-

tinations by NV vehicles. All goods as well as the NV trucks are 

assumed to be available for delivery at an arbitrary time zero. This 

formulation allows different predetermined conditions on each vehicle 

route. Tl is considered to be the maximum value of the total travel 

time on each vehicle route for 100(1 - a)% of the time. On the other 

hand, the maximum value of the total unload time on each vehicle route 

is T2 for 100(1 - ~)% of the time. In general, when the travel time 

between any link and unload time at each station are deterministic, then 

the total elapsed time on the vehicle route is 

NS 
Total elapsed time=~ (t .. +l + t;). . 0 ~, ~ .... 

~= 

(5.1) 

where 0 stands for depot, t 0 = 0, and NS + 1 is defined to be 0. 

The DM is generally interested in minimizing the total travel cost 

and total travel and unload times of each vehicle route to target levels 
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C, Tl, and T2, respectively. Additionally, other criteria such as cus-

tomer satisfaction may attract the attention of the DM in order to sat-

isfy the customer's requirements. Hence, the multiple objective SVRP 

can be formulated having the following goals and constraints. However, 

the method of calculation of Tl and T2 are delayed until Section 5.7. 

Problem A 

Goals: 

1. Minimize total travel cost or distance of each vehicle route 

c ... }:; }:;c .. 
iei jei ~J 

i:#j 

(5.2) 

2. Minimize total travel and total unload times of each vehicle 

route to the target levels which are set to be Tl and T2, respectively. 

3. Maximize the dependency conditions such that station r follows 

station s. 

Constraints: 

P(}:; }:; ti Xij ~ T2) ~ (1 - f3) 
iei jei 

i::foj 

P(}:; }:; tiJ' xiJ' ~ Tl) ~ (1 - a) 
iei jei 

i::foj 

G 

(5.3) 

(5.4) 

(5.5) 
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where tij and ti are independent random variables and assumed 

2 
mally distributed with means 1-Lt·. and 1-Lt-~ , and variances <rr,. 

to be nor-

~ ~ ~ 

2 
and crt .• 

1 

respectively. The Tl and T2 introduced above indicate suitable upper 

limits on travel and unload times for each vehicle route. 

5.4.2 Demand Constraint 

In the field of VRP, one of the difficulties which occurs in the 

application of mathematical programming is that the demands at stations 

are not constants but are either fluctuating or of uncertain values. 

However, used on the previous assumptions and notations, a probabilistic 

demand can be handled by using the concept of probabilistic constraints. 

For example, suppose that ~ is the maximum allowable probability that a 

vehicle route will fail due to the total probabilistic demand exceeding 

the truck capacity, then: 

P(~ ~ di xiJ. ~ Q) :;:: (1 - ~) 
iei jei 

i:foj 

(5.6) 

where di's are independent random variables representing demand at loca-

tion i and assumed to be normally distributed with mean J-Ldtand variance 

2 
rrdt, and Q is the truck capacity. The existence of the probabilistic 

customer demand forces the decision maker to minimize the safety stock 

(unused capacity) which is Q-Q. However, the method of calculation of 

Q is delayed until Section 5.7. By incorporating this idea, Problem A 

can be modified to a more general form of a multicriteria SVRP, as pre-

sented in Problem B: 



57 

Problem B 

Goal: 

1. Minimize total travel cost or distance of each vehicle route 

c-}: }:c .. x .. 
i€I j €I :tJ :tJ 

i=Fj 

(5.7) 

2. Minimize total travel and unload times of each vehicle route 

to the target levels which are set to be Tl and T2, respectively 

3. Minimize the route safety stock 

ss "" Q - Q (5.8) 

4. Maximize the dependency conditions such that station r follows 

station s 

Constraints: 

P(}: }: ti Xij ~ T2) ~ (1 - !3) 
i€I j€I 

i=Fj 

P(}: }: tiJ. xiJ. ~ Tl) ~ (1 - a) 
i€I j€I 

i:Fj 

P(}: }: di xiJ. ~ Q) ~ (1 - '11) 
i€I j€I 

i=Fj 

(5.9) 

(5.10) 

(5.11) 

(5.12) 
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It is worth noting that when travel and unload times are proba­

bilistic, then Problem A should be chosen for the purpose of the GP for­

mulation of the RIS of the problem. On the other hand, when customer 

demand and travel and unload times are probabilistic, then Problem B 

should be used to construct the GP formulation of the RIS of the prob­

lem. 

Problems A and B are used in Section 5.8 for the purpose of the GP 

formulation of the SVRP. 

5.5 Development of the Deterministic Forms for 

the Set of Constraints of Problem B 

It has been shown [39] that it is possible to deal effectively 

with random variables in the constraint set of a stochastic programming 

problem. When random variables appear in the constraint set, determin­

istic equivalents must be derived to replace the original chance­

constrained inequalities. Therefore, this section is devoted to the 

development of the equivalent deterministic form of the constraints of 

Problem B. The following subsections consider each constraint sepa­

rately: 

1. Deterministic form for unload time constraints 

2. Deterministic form for travel time constraints 

3. Deterministic form for demand constraints 

5.5.1 Deterministic Form for Unload 

Time Constraint 

The first constraint of Problem B is called the unload time con­

straint which is written as 
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P(~ ~ ti Xij ~ T2) == (1 - ~). 
iEI jEI 

(5.13) 

i*j 

Now one can consider an NS component vector E- (t1 , t 2 , ... , tNs) as a 

multivariate normal with mean vector U = (J.Ltl, J.L~ , ... , J.Lt N~ and var-

iance-covariance matrix 

W= (5.14) 

where the ti's are independent random variables corresponding to the 

unload time at each of the i stations. Let Z 

vector of NS elements where each component of Z is 

Vi E I, i * j (5.15) 

According to multivariate statistical analysis [9, 34, 39], the linear 

combination Z'E is univariate normal with mean Z'U and variance Z'WZ. 

Therefore 

P(Z'E ~ T2) P((Z'E- Z'U)/(Z'WZ)~ ~ (T2 - Z'U)/(Z'WZ)~) (1 - ~). 

(5.16) 

The above inequality exists if and only if 

N((T2 - Z'U)/(Z'WZ)~) (1 - ~) 

or 

(T2- Z'U)/(Z'WZ)~ N- 1(1- ~). 
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Finally, the deterministic form of (5.13) is 

Z'U + N- 1(1- ~)(Z'WZ)~- T2 (5.17) 

where Z'U and (Z'WZ)~ are the mean and standard deviation of the unload 

time on the vehicle route and N- 1 (1 - ~) is the normalized deviate cor-

responding to the required probability 

1 
~-­

( 2'rr) ~ 

N- 1(1 - ~) 

jl exp(-x2/2) dx. 

- 00. 

(5.18) 

If the required probability (1 - ~) - 0.95, then N- 1 (1 - ~) - 1.645 

from the normal table [34, pp. 592-593]. The evaluated deterministic 

form given above is generally nonlinear in nature, which can be seen 

when it, (5.17), is written in the following form: 

+ N- 1(1- ~)(~ ~ 0'~ Xtj)~ = T2. 
iei jei 

i=Fj 

5.5.2 Deterministic Form for 

Travel Time Constraint 

(5.19) 

The second constraint of problem B (inequality (5.10)), called the 

travel time constraint, is written as 

P(~ ~ tiJ' XiJ' ~ Tl) 
iei jei 

i=Fj 

(1 - a). (5.20) 

2 
Suppose that J.L~j and 0' 't:Lj are the mean and variance of tij where tij 's 

are independent random variables corresponding to the travel time from 
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station i to station j and are assumed to be normally distributed. 

Then, one can consider a travel time vector T = (tij) Vi,j, i * j, as a 

multivariate normal with mean M = (~t··) Vi,j, i * j, and variance-
~] 

covariance matrix V. Let G = [Xij], Vi,j, i * j, be a vector of all 

elements Xij which are arranged in the same order as the elements of T 

(tij), Vi,j, i * j. According to multivariate statistical analysis, 

the linear combination G'T is univariate normal with mean G'M and vari-

ance G'VG. Hence: 

P(G'T ~ Tl) = P((G'T- G'M)/(G'VG)~ ~ (Tl- G'M)/(G'VG)~). (5.21) 

Thus, by the definition of a cumulative distribution function, i.e., 

Nx(x) - P(X ~ x) where X is a random variable, one can write 

N((Tl- G'M)/(G'VG)~) = (1- a). 

Then, after similar calculations as previously considered 

G'M + N- 1 (1 - a) (G'VG)~ = Tl (5.22) 

where G'M and (G'VG)~ are the mean and standard deviation of the travel 

time on a vehicle route and N- 1 (1 - a) is the normal deviate as 

described in Section 5.5.1. Constraint (5.22) is generally nonlinear in 

terms of xij as shown below: 

~ ~ ~t~J· xiJ. 
iei jei ... 

i*j 

(5.23) 
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5.5.3 Evaluation of the Total Time TT 

This section determines the nature of the total elapsed time of 

each vehicle route in terms of the decision variables, Xij' when deci­

sion maker needs to use TT ~ Tl + T2 as a criterion. Using equations 

(5.17) and (5.22), one can write: 

TT = Tl + T2 = (X'M + Z'U) + [N- 1(1- a)(X'VX)~ + N- 1(1- ~) (Z'WZ)~]. 

(5.24) 

If a < 0.5 and ~ < .5, then N- 1 (1 - a) and N- 1 (1 - ~) > 0. Therefore, 

the above constraint can be written as: 

(TT - X'M- Z'U) 2 (5.25) 

which is a quadratic function in terms of xij' 

5.5.4 Deterministic Form for the Demand Constraint 

This section is devoted to derivation of the deterministic form of 

the demand constraint where di's are independent random variables cor-

responding to the demand at station i and are assumed to be normally 

distributed. The demand constraint can be rewritten in the form 

P(~ ~ di xij s Q) 
iei jEI 

(1 - 11). (5.26) 

i=t!=j 

2 
If J.L~ and crd.i. are the mean and variance of di, then one can consider 

an NS component vector D = (d1 , d2 , ... , dNs) as a multivariate normal 

with mean vector H = (J.Ldl, J.Ld i ... , J.LdNt and variance-covariance mat­

rix R. Let Y = (Y1 , Y2 , ... , YNs) be a vector of NS elements where each 

component of Y is 
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Yi = ~ xiJ. 
jEI 

Vi E I' i =I= j . (5.27) 

Again, according to multivariate statistical analysis, the linear combi-

nation Y'D is univariate normal with mean Y'H and variance Y'RY. Hence, 

P(Y'D ~ Q) - P((Y'D- Y'H)/(Y'RY)~ ~ (Q- Y'H)/(Y'RY)~) 

or 

((Q- Y'H)/(Y'RY)~) = N- 1(1- ~). (5.28) 

Then 

Q- Y'H + N- 1(1- ~)(Y'RY)~ (5.29) 

where Y'H and (Y'RY)~ are the mean and standard deviation of the demand 

on the vehicle route and N- 1(1 - ~) is the normal deviate as previously 

described. This deterministic form is also nonlinear in nature, as can 

be seen when it is written in expanded form as 

~ ~J.l. X + 
iEI jEI ~ ij 

i=l=j 

5.5.5 Safety Stock and Surplus in Term of 

the Decision Variables Xij 

(5.30) 

Before the development of the safety stock and surplus in term of 

the decision variables begins, it is necessary to define the following 

terms. Golden and Stewart [30, pp. 253-254] have defined the primary 

and secondary error as follows: 



Primary Error 

A primary error occurs when a vehicle cannot satisfy the demands 

of the customers on the route to which it has been assigned. 

Secondary Error 

A secondary error occurs when a vehicle returns to the central 

depot after satisfying the demands on its route with more than 100(1 

a) percent of its original load, where 0 ~ a~ 1. 
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The primary error requires an additional trip to the central depot 

which causes additional cost and service delay. On the other hand, the 

existence of the secondary error is a waste of load and unload times and 

in some cases it is a waste of products (i.e., perishable goods). 

By considering a delivery problem with one central depot, NS 

demand points, and a vehicle capacity Q with probabilistic demand di for 

the ith customer, then by appealing to the Central Limit Theorem, one 

can argue that the total route demand, TD, is approximately normally 

distributed where 

TD (5.31) 

If di are poisson distributed with mean and variance~~· then the mean 

and variance of the total demand on the route are, respectively: 

E(TD) (5.32) 

and 

E(TD). (5.33) 
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The primary and secondary errors of each vehicle route are, respectively 

P(TD ~ Q) P(z ~ (TD- E(TD))/cr(TD)) (5.34) 

and 

P(TD ~ aQ) P(z ~ (aQ- E(TD))/cr(TD)) where 0 < a~ 1 (5.35) 

and z is a unit normal deviate. 

One may treat the primary error as P(TD ~ Q) ~ ~ where 0 < ~ 

< 0.5 by incorporating the concept of an artificial capacity of a truck, 

Q, where Q < Q, 

P(z ~ (Q- Q)/cr(TD)) = ~ (5.36) 

which has an equivalent deterministic form of 

Q = Q + N- 1(1- ~) cr(TD). (5.37) 

Notice that (5.37) is similar to (5.29). The quantity of Q- Q is 

called the route safety stock (SS) which is protection against the pri­

mary error. Since (1 - ~) > 0.5, then N- 1 (1 - ~) is positive. Using 

the SS as a criteria, one will have the following expression in terms of 

the decision variables xij: 

1 ""' ""'1. SS = N- (1- ~)(~ ~ v 

iE! jel cit 
i=¢=j 

The secondary error as defined in (5.35) 

P(TD ~ aQ) P(z ~ (aQ- E(TD))/cr(TD)) = ~ 

(5.38) 



with the following equivalent deterministic form: 

aQ = E(TD) + N-l(1)a(TD). (5.39) 

In this case, the quantity Q - aQ is the extra number of units of 

products carried on the vehicle routes if trucks are loaded up to their 

Q capacity. To minimize the carrying of these units on the vehicle 

route one may use the following nonlinear objective function: 

(5.40) 

The GP formulation of the RIS of the problem is delayed until Sec-

tion 5.8. 

5.6 Route Construction Stage: 

Problem Formulation 

The problem formulation of this stage is divided into two sections 

according to the type of criteria that is to be minimized. The criteria 

to be considered are: 

1. Total cost (or distance) as presented in problem C, and 

2. Total time as presented in problem D. 

When cost (or distance) is considered as a criteria, the objective func-

tion is linear in terms of the decision variables Xijk" On the other 

hand, when total time is considered to be minimized, the objective func-

tion becomes nonlinear in terms of the decision variables Xijk" 
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5.6.1 Using Cost as a Criterion 

Problem C 

NV TNS TNS 
Minimize: c = L L L c .. xijk 

k==l i=O j =0 l.J 
i:f:j 

Subject to: 

TNS TNS 
P(L L t .. 

. 0 . 0 l.J l.= J= 
i:f:j 

TNS TNS 
P(L L ti Xijk ~ UTK) ~ (1 - ~), k = 1, ... ,NV 
i=l j==O 

i:f:j 

TNS TNS 
P(L L di Xijk ~ Q) ~ (1 - 'Ilk), k = 1, ... ,NV 

i=-1 j=O 
i:f:j 

5.6.2 Using Total Time as a Criterion 

Problem D 

NV 
Minimize: L [TRk + UTk] 

k=l 

Subject to: 

TNS TNS 
P(L L t .. 

. 0 . 0 l.J l.= J= 
i:f:j 

TNS TNS 
P(L L ti Xijk ~ UTK) ~ (1 - J3k), k = 1, ... ,NV 
i=l j=O 

i:f:j 
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(5.41) 

(5.42) 

(5.43) 

(5.44) 

(5.45) 

(5.46) 

(5.47) 

(5.48) 



TNS TNS 
P(~ ~ di Xijk ~ Q) ~ (1 - Tlk), k = 1, ... ,NV 
i=l j-0 

i:;l:j 

(5.49) 

(5.50) 

where SNV is the set of all feasible solutions to the NV travelling 

salesman problem, and ak, ~. and 'T1k (k = 1, ... , NV) are the probabil­

ity of constraint infeasibility on the Kth route by violating the prede-

termined levels TRk, UTk, and Q, respectively. The process of transfor-

mation of the above probabilistic constraints to their equivalent deter-

ministic forms are similar to those sho~ previously. Without loss of 

generality and for the sake of space, the deterministic forms of Prob-

lems C and D are shown in following section. 

However, the equivalent deterministic form of each situation is 

completely different and, hence, each requires a different solution 

technique. 

5.6.3 Equivalent Deterministic Forms of Problems 

C and D of the RCS of the Problem 

The equivalent deterministic form of Problem C is 

Problem E 

Minimize: c 
NV TNS TNS 
~ ~ ~c .. 

k=l i-o J -o l.J 
i:;l:j 

(5.51) 
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Subject to: 

TNS TNS TNS TNS 2 2 
~ ~ JJ.d· xijk + N-1(1 - 11kH~ ~ crd. xijk)~ ~ Q (5.54) 

i=l j=O ~ i=l j=O ~ 
i*j i*j 

X= [Xijk] e SNV and k = 1,2, ... ,NV. (5.55) 

Similarly, the equivalent deterministic form of Problem D is 

Problem F 

Minimize: 

NV TNS TNS TNS TNS 
~ { [~ ~ fl.t· ~ijk + ~ ~ fl.t· xijkl + 

k=l i=O j=O ~J i=l j=O ~ 
i*j i*j 

(5.56) 

Subject to: 

(5.57) 

k = 1,2, ... , NV (5.58) 
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The deterministic forms of problems C and D will be called "E" and "F" 

type problems. 

The most important characteristic of the "E" type problem is that 

while the decision maker desires to minimize total expected cost or dis-

tance of the whole delivery system, he can also restrict the travel and 

unload times of each single vehicle route. 

On the other hand, the "F" type problem deals with the minimiza-

tion of total elapsed time of the whole delivery system with no restric-

tion on the travel and unload times of each vehicle route. 

It is the decision maker's responsibility to determine which of 

these two problems are suitable for the delivery system. These two 

problems offer two benefits. One benefit is that they support the deci-

sion maker, quantitatively, in attempting to make a good decision. The 

decision maker may be willing to change some or all upper bounds, TRk, 

UTk, of each vehicle route when a previous solution was not favorable. 

The second benefit is that the "F" type problem allows the decision 

maker to minimize total elapsed time of the whole delivery system with-

out time restriction put on each single vehicle route. 

Since normal distributions are symmetrical about their mean, the 

objective function (5.59) is identical with the expected value reformu-

lation of (5.56) when ak = 0.5 and~= 0.5 for all k e (1,2, ... ,NV), 

which yields: 

TNS TNS TNS TNS 
Minimize: E(~ ~ [t .. 

. 0 . 0 ~J 
~= J= 

xijk + ~ ~ ti xijkl) 
i=l j=O 

(5.59) 

i=t!=j i=t!=j 



from which one obtains the expression 

Minimize: (5.60) 

when ak = ~k = ~- 0.5 for all k e (1,2, ... ,NV) then problem (5.56)-

(5.58) is converted to the following problem. 

NV TNS TNS TNS TNS 
Minimize ~ [~ ~ f.l.t · · xijk + ~ ~ f.l.t · xijkl 

k=l i==O j=O l.J i-1 j=-0 1 
(5.61) 

i*j i*j 

Subject to: k ... 1, ... ,NV 

When 0.5 < (1- ak), (1- ~). (1- ~) < 1 for all k E (1,2, ... ,NV), 

which is reasonable to assume, N- 1(1- ak), N- 1(1- ~), and N- 1(1-

~k) are all greater than zero, then (5.56) and (5.58) are convex, since 

(X'VX)~ is a convex function. Therefore, problem (5.56) - (5.58) is a 

convex programming problem. 

The corresponding deterministic form of the previous problem, 

shown in (5.56)- (5.58), is shown below with qk = N- 1(1- ak) and fk = 

N- 1(1- ~k) and ek = N- 1(1- ~)fork= (1,2, ... ,NV): 

Maximize: 
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Subject to: 

NV 
-~ 
k-1 

TNS TNS 2 
[qk (~ ~ (J"t·. 

i==O j-0 1 J 
i'¢=j 

AX~ b 

k-l, ... ,NV 

(5.62) 

(5.63) 

(5.64) 

where constraint set AX~ b is equivalent to constraints (2.8), (2.9), 

(2.11), and (2.12) where N ... TNS and depot is node 0. 

Next, consider the following quadratic programming problem which 

is (5.62) with R1k and R2k inserted as shown: 

Maximize: 

NV 
-~ 

k=l 

Subject to: 

NV TNS TNS 
- ~ [~ ~ J..l.t·. 
k-1 i-0 j==O 1 J 

i'¢=j 

TNS TNS 
X .. k + ~ ~ J..l.t • X .. k] 

1J i=-1 j=O 1 1J 

i::;Cj 

k = 1,2, ... ,NV 

AX~ b. 

Rlk and R2k are the positive parameters defined as follows 

(5.65) 

(5.66) 

(5.67) 

(5.68) 
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(5.69) 

for all k E (1,2, ... ,NV). The following theorem provides the optimum 

solution for problem (5.56)- (5.58). 

Theorem (5.1) 

" 
If an optimal solution X(Rlk, R2k) of problem (5.65) - (5.67) sat-

isfies the conditions Rlk and R2k as shown in (5.68) and (5.69), then 

" 
X(Rlk, R2k) is also the optimal solution vector of problem (5.62) -

(5.64). 

For problem (5.62) - (5.64) the Lagrangian function is 

FI(X,A,~) 

NV 
~ 

k==l 

NV TNS TNS TNS TNS 
=- -~ [~ ~ ~t ·. xijk + ~ ~ ~t· xijkl -

k=-1 i==O j-0 1 J i-1 j-0 1 

i:jCj i:jCj 

TNS TNS 2 
[qk <~ ~ crt·· 

i=-0 j==O 1J 
i:jCj 

TNS TNS TNS TNS 2 2 l1 
[Q-~ ~~d· Xijk-ek <~ ~crd.xijk) l 

i=l j=O 1 i=l j=O 1 
+ ~(b -AX). 

i:jCj i:jCj 
(5.70) 
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The vector X= [Xijk] for all i,j,k is an optimal solution for (5.62)-
A A A 

(5.64), if X and A= (A1 , ... ,Ak) and~ satisfy the following 

conditions: 

NV 
fJFI/iJX .. k = - ~ 

l.J k=l 

TNS TNS TNS TNS 
[ ~ ~ ~t .. + ~ ~ ~t. ] 

. 0 . 0 l.J . 1 . 0 1. 

NV 
-~ 

k=l 

NV 
-~ 
k=l 

NV 
+~ 
k=l 

-A~ 

1.== J= 1.= J= 

TNS TNS 
qk (~ ~ cr2 

i=O j=O tij 
i=foj 

TNS TNS 
fk (~ ~ cr2 

i=l j=O ti 
i=foj 

i=foj i=foj 

TNS TNS 
x .. k)/(~ ~ 

l.J . 0 . 0 1.= J= 
i=foj 

TNS TNS 
x .. k)/(~ ~ 

l.J . 0 . 0 1.= J= 
i=foj 

TNS TNS TNS TNS 
Ak (~ ~ ~d. - ek(~ ~ crdr 

i=l j=O 1 i=l j=O 
i=foj i=foj 

~ 0 for xijk = 0 

= 0 for xijk > 0 

~ 0 for all Ak = 0 

= 0 for Ak > 0 

k = 1,2, ••• ,NV 

~ 0 for ~ = 0 
iJFI/iJ~ = + (b - AX) 

= 0 for ~ > 0 

(5.71) 

(5. 72) 

(5.73) 
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Similarly, the Kuhn-Tucker conditions of the problem (5.65) - (5.67) can 
1\ 1\ 1\ " 

be written as shown below. If X= [Xijk] V i,j,k and X, A,~ 

satisfy the following conditions, then it is the optimum solution of 

problems (5.65)- (5.67). 

NV TNS TNS TNS TNS 
FII(X,A,~) =- L [L L ~t .. 

k=l i=l j=O ~J 
i:;l=j 

X .• k + L L ~t . X •• k] 
~J . 1 . 0 ~ ~J 

NV 
-L 

k=l 

NV TNS TNS TNS TNS 

~= J= 
i:;l=j 

c1FII/c1X. 'k = - L [L L ~ + L L ~t 
~J k=l i=O j=O tij i=l j=O i 

NV 
+L 

i=l 

i:;l=j i:;l=j 

TNS TNS 
Ak (L L ~d- ek 

i=O j=O i 
i:;l=j 

~ 0 for xijk = 0 

= 0 for xijk > 0 

+ ~(b-AX) 
(5.74) 

(5.75) 
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~ ;;::: o, Ak == o 

~ - o, Ak > o (5.76) 

8FII/8~ == (b - AX) 
;;::: 0, ~ .. 0 

=0.~.>0 (5.77) 

Hence, if equations (5.68) and (5.69) exist, then the conditions of both 

" problems are identical. Therefore, X(R1 , R2 ) is also an optimal 
k k " 

solution of (5.62)- (5.64). Conversely, for any optimal solution X 

of (5.62)- (5.64), if R1 ,R2 is set such that it satisfies (5.68) and 
" . k k 

(5.69), X also satisfies the condition (5.65)- (5.67). 

This theorem indicates that an optimal solution to the "F" type 

problems exists. Since this problem is nonlinear and decision variables 

are in 0-1 form, seeking the optimum solution by exact procedure is not 

efficient. Hence, heuristic approaches are considered for solving "E" 

and "F" type problems. 

5.7 Distributions Other Than Normal 

The deterministic constraints (5.19), (5.23), and (5.30) can be 

replaced with some other constraints in an easier form, if the time and 

demand distributions are of ~he same special forms. There are several 

distributions that satisfy the following condition: 

(5.78) 
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This means that the variance is some constant multiple of the mean of 

that distribution. Distributions such as Poisson and chi-square satisfy 

the above condition. The value of 'V for these distributions are 

1. Poisson 'V = 1 

2. Chi-square v 

2v 2 

The following theorem shows the existence of a set of determinis-

tic linear time and demand constraints which are equivalent to the non-

linear set of the time and demand constraints of the RIS problem. 

Theorem 5.2 

Under the following conditions: 

1. The probability distributions of tij are independent and sta-

ble [62, p. 84], and rr2 
tij 

2. The probability distributions of ti are independent and 

stable, and rr2 = \Vrr. 
t r-t· 

i l. 

3. The probability distributions of di are independent and 

stable, and rr2 = 'VJJ..di• 
di 

then there exist values Tl, T2, and Q such that 

~ ~ 
iEI jei 

i:;Cj 

JJ.. x .. 
t ij l.J 

Tl (5.79) 



78 

~ ~ 1-Lt x .. = T2 
iEI jei i ~J 

(5.80) 

i=t!=j 

-
~ ~ J.Ld x .. = Q 

iEI jEI i ~J 
(5.81) 

i=t!=j 

which are equivalent to the deterministic constraint (5.23), (5.19), and 

(5.30), respectively. 

The proof is developed only for (5.79). One can prove similarly 

for (5.80) and (5.81). Since decision variable Xij is either zero or 1, 

then, 

Therefore 

or 

[~ 

2 2 
X =a X ij ~j ij 

2 
~ ~at x .. 

iei jEI ij ~J 
i=t!=j 

2 l 

~ abJ· xiJ" ]'2 = [~ ~ 
iei jei -:~. iei jei 

i::foj i=t!=j 

2 x .. 
ij ~J 

2 2 ! 
CJ' X ] 2 = [~ ~ 'I'J.L 
tij ij iEI j ei t"i_j 

i=t!=j 

! 
xij l 2 

(5.82) 



Substitute (5.82) in equality (5.23), then 

~ ~ -1 •Tr! ~ ~ ! 
..:... ..:... J.LhJ· xiJ" + N (1- a)"1' 2 [..:... ..:... crt·· xiJ.] 2 = Tl. 

iEI jEI ':l. iEI jEI ~J 
i:¥=j i:¥=j 

Let 

v = [~ ~ Jl.r,J· XiJ.]i and N- 1 (1- a)=<!> 
iei jei "'l. 

i:¥=j 

then 

Solve for v 

However, 

Hence, 

or 

~ ~ J.l.h xiJ" == Tl . 
iei jei ':l.j 

i:¥=j 

A similar analysis yields 

~ "·t X. . = T2 . ,... i ~J 
iei jEI 

i:¥=j 

and 
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(5.83) 

(5.84) 

(5.85) 

(5.86) 
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~ J.Ld x .. = Q. 
l.• l.J (5.87) 

iei jei 
i=#j 

5.8 Goal Programming Formulation 

The GP approach is based on a priority structure of the estab-

lished goals. In other words, the technique provides a solution accord-

ing to the policy of the decision maker. The decision maker is thus 

required to determine the priority of the desired attainment of each 

goal and rank them in ordinal sequence for decision analysis. 

The purpose of this section is to demonstrate the application of 

GP to decision problems in the area of SVRP. The model presented here 

has a priority of goals as follows: 

1. All routes are feasible 

2. Minimize the total cost of each vehicle route 

3. Minimize the total travel and unload times 

4. Minimize the route safety stock 

5. Maximize the customer's satisfaction through the emergency 

service for the kth customer 

6. Meet the dependency conditions such that station r follows 

station s 

The Linear Integer Goal Programming (LIGP) formulation of Problem 

B is provided by utilizing the results of Theorem (5.2). Constraints 

(5.92) and (5.93) will change to nonlinear forms when random variables 

other than poisson and chi-square are utilized. 



System constraints: 

1. Route feasibility 

~ xiJ. + n(l) - p(l) 
jei 

i * j 
~ 

iei 
xij + n(2) - p(2) 

i * j 

1 for all i e I 

1 for all j e I 

zi - zj + N xij + n(3) - p(3) = N - 1 

\;/ i,j E I, i =I= j 

and i,j =I= 0. 

Goal constraints: 

2. Total cost of each vehicle route 

~ ~ C .. x .. + n(4) - p(4) = C 
iei j ei l.J l.J 

i=l=j 

3. Total elapsed time of each vehicle route 
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(5.88) 

(5.89) 

(5.90) 

(5.91) 

~ ~ Jl.t 1.J. XiJ" + ~ ~ Jl.t· XiJ" + n(5) - p(5) = Tl + T2. (5. 92) 
iei jei iei jei 1 

i=l=j i=l=j 

When the minimization of the total travel and unload times of each vehi-

cle route to target levels Tl and T2 are required, the goal constraint 

(5.92) can be divided into the following constraints, respectively: 

~ ~ Jl.t·· Xij + n'(5)- p'(5) 
iei jei l.J 

i=l=j 

Tl and 

n'(5) e n(5) 
p'(5) E p(5) 



~ ~ J.l.t X· • + n" ( 5) - p" ( 5) = T2 
iEI jEI i ~J 

i:;Cj 

4. Route safety stock 

n"(5) E n(5) 
p" (5) E p(5) 

~ ~ J.l.d . XiJ" + n(6) - p(6) == [ (Q - Q)/N- 1(1 - 1})] 2 ... a constant 
iEI jE! ~ 
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i:;Cj (5. 93) 

5. Emergency service for the kth customer 

x0k + n(7) - p(7) = 1 (5.94) 

where all Xij's are either 0 or 1. 

6. Meet the dependency conditions such that station r follows 

station s 

Xrs + n(8) - p(8) - 1 (5.95) 

The system constraints, (5.88)- (5.90), are based on the logic 

and philosophy of the VRP in that only one station must follow station i 

on a given route. These constraints can be achieved by minimizing 

P1 [n(l) + p(l) + n(2) + p(2) + p(3)] 

where n(.) and p(.) indicate the vectors of the underachievement and 

overachievement for the set of system constraints and P1 indicates the 

first goal priority. The goal constraints, (5.91)- (5.95), can be 

achieved through the minimization of P2[p(4)], P3[p(5)], P4 [p(6)], 

P5 [n(7) + p(7)], and P6 [n(8) + p(8)], respectively. 

The trade-offs among the goals (2) - (5) can be easily made. For 

instance, if the goal of route safety stock is more important than the 



total cost, total time of each vehicle route, and customer's sat­

isfaction, it is necessary to minimize P2 [p(6)] after minimizing P1 [.]. 

In this problem, it is assumed that neither underachievement nor over­

achievement of the fifth and sixth goals are desirable. Therefore, the 

variables n(l), p(l), n(2), p(2), p(3), n(7), p(7), n(8), and p(8) are 

to be minimized. However, it is assumed that the total cost and total 

elapsed time must be less than predetermined levels C and Tl + T2, 

respectively. Thus, only p(4) and p(5) are to be minimized for these 

two goals. Since the route safety stock cannot exceed the value of 

[(Q- Q)/N- 1(1- ~)] 2 , then p(6) is to be minimized. 

5.9 Sensitivity of Time and Truck Capacity 

upon the Probability of Route Failures 
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In most cases, some of the problem data are not known exactly, but 

are estimated as accurately as possible. The probability of route fail­

ures a, ~. and ~ might not exactly be known for the decision maker 

because travel and unload times, and customer demands are random vari­

ables. Therefore, the probability of route failures forces one to ana­

lyze the sensitivity of time and truck capacity. 

Theorem 5.3 

If a, the probability of route failure, increases (up to 0.5), 

the value of Tl will increase provided that Tl is a fixed value. 

Proof: 

Let us reconsider equation (5.84) in the form of (5.96), where 

~ Z = z1_a = N- 1 (1 - a) and Tl is fixed value: 
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(5.96) 

a!1;aa = af1;az · az;aa · (5.97) 

az;aa < 0, and this is because when a increases, then (1 - a) and 

Z(l _ a) decrease. However, after some calculations, one has 

Notice that when a and b are two positive numbers, the following 

inequality exists: 

(5.98) 

Therefore, 

Z'l'(z2'1' + 4Tl) j < Z'l'(z2'1') t + Z'I'(4Tl) t = z 2'1'3/ 2 + 2Z'I'Tl j. 
(5.99) 

Hence, due to inequality (5.99), 

(5.100) 

The numerator on the right hand side of (5.100) is 

(5.101) 

Hence 

a!1;aa = aii;az · az;aa > o. Q.E.D. 



Corollary 1 to Theorem 5.3 

If~. the probability of route failure, increases (up to 0.5) 

then the value of T2 will increase provided that T2 is a fixed value. 

Corollary 2 to Theorem 5.3 

If~. the probability of route failure, increases (up to 0.5) 

then the value of Q will increase provided that Q is a fixed value. 

Theorem 5.4 

Suppose that ak and~· the probability of route failures, are 

set such that ~k/dak > 0, then by increasing ak and~ (up to 0.5), 

the total elapsed time of the kth route will decrease. 

Proof: 

The total elapsed time of the kth route is 
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(5.102) 

Now, it is necessary to show that aTk;aak < 0 where 

(5.103) 



azl;aak and az2;a~k are both less than zero because by increasing 

ak and ~k' (1 - ak) and (1 - ~) decrease and consequently z1 = 

Z(l - ak) and z2 = Z(l - ~) decrease. However, 

2 2 ! 
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(~ ~ O'tij xijk) 2 > 0 (5.104) 
iei jei 

i=1:j 

(~ ~ 
2 2 ! 

O't· xijk) 2 > 0 (5.105) 
iei jei ~ 

i=1:j 

(+) (-) + (+) (-) (+) = (-) + (-) < 0. Q.E.D. 

Theorem 5.5 

If the condition of Theorem (5.4) exists for all NV truck routes, 

then the total elapsed time of the whole system decreases. 

Proof: 

According to Theorem (5.4) the total elapsed time of each vehicle 

route decreases and thus it can be concluded that the total elapsed time 

of the whole delivery system will decrease since NV remains unchanged. 

Theorem 5.6 

For a SVRP having only probabilistic customer demands, if~. the 

probability of route failure, increases (up to 0.5), then the total 

travel distance of the whole delivery system will decrease. 
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Proof: 

To prove this theorem, the following, which is a mathematical 

model for a SVRP having only probabilistic customer demand and no time 

restrictions, is considered: 

NV TNS TNS 
Minimize: D ~ ~ ~ d .. xiJ.k 

k-1 i-0 j =0 ~J 
(5.106) 

i=#=j 

Subject to: 

TNS TNS 
~ ~ J.Ld i xijk + N-1(1 

i=l j-0 

TNS TNS 2 
- 11kH~ ~ a dr 

i-1 j=O 
i=#=j i=#=j 

By setting 

TNS TNS 
Z == N- 1 (1 - 'Tlk) and Y = (~ ~ 

i-1 j-0 
i=#=j 

(5.107) 

(5.108) 

it will be noticed that az;~ < 0 because by increasing 'Tlk• (1 - 'Tlk) 

decreases and consequently N- 1(1- 'Tlk) decreases. Hence, Z · Y 

decreases and consequently, Q = Q- Z · Y will increase. However, 

oD/o~ == oD/aQ aQfoZ oZ/~. It is obvious that ~/oZ = - Y < 0. Hence, 

it remains to show that ao;~ < 0, this is because aQiaz . az;a~ > 0. 

Now, it is only necessary to prove that in the deterministic VRP where 

customer demands are equal to their demand's mean, by increasing the 

artificial capacity of truck the travelled distance will decrease. If 

the transportation cost depends linearly on the weight of goods deliv-

ered and the distance travelled, then the following equation can be 

used: 
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c .. = u .. w .. d .. 
lJ lJ lJ lJ (5.109) 

where 

Uij = cost per unit weight per unit distance from node i to node 

j, 

Wij =weight transported from node ito node j, 

dij =the distance from node ito node j, 

rj = number of times that weight Wij can be fitted in Q. 

However, 

and 

or 

Since Xij = ~:, then 

or 

Hence, 

NV TNS TNS 
D }:; }:; }:; 

k=l i=O j=O 
dij 

i*j 

NV TNS TNS 
D }:; }:; }:; 

k=l i=O j=O 
i*j 

an -1 NV TNS 
- = -- }:; aq (Q) 2 k=l 

}:; 

i=O 

NV 
x. "k = }:; 

lJ k=l 

TNS cij rj 
}:; 

j=O uij 
i*j 

TNS TNS 
}:; }:; d .. 

. 0 . 0 lJ 1= J= 
i*j 

< 0. 

(5.110) 

This result indicates that ao;aq < 0, which proves this theorem. Q.E.D. 
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The following theorem is concerned with the number of constructed 

vehicle routes for the SVRP having probabilistic customer demands. It 

indicates that when number of constructed vehicle routes increases, then 

the total demand to be served by the vehicles will increase. However, 

this situation will not happen when customer demands are deterministic. 

Theorem 5.7 

The larger number of routes is equivalent to the larger total 

demand to be served by all vehicles. 

Proof: 

2 
Suppose that ~i and cri are the mean and variance of demand point 

i. It is clear that 

TNS 
L 

i=l 
~i ~1 + ~2 + + ~TNS· (5.112) 

But 

TNS 
i.)~ ~ ~ ~ (L < crl + cr2 + + crTNS · l. 

i-1 
(5.113) 

If only one vehicle can be used to deliver all customer demands, then 

the following inequality is needed: 

TNS 
L 

i=-1 

TNS 
~i + N- 1 (1 - ~) (L 

i=l 

2 ! 
cr .)2 <Q 

l. - • (5 .114) 

If two vehicles are used instead of one vehicle to deliver the customer 

demands, the following inequalities are needed; 

m<TNS m<TNS 
L ~i + N- 1 (1 - ~) (L 

i=l i=l 
(5 .115) 
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and 

TNS TNS 
~ Jl.i + N-1(1 - TJ){~ 

2 1 
(J' .)Z < Q 1 - . (5.116) 

i=m+l i=m+l 

Hence, after the addition of both sides of inequalities (5.115) and 

(5.116), the result is the following inequality: 

TNS m<TNS 
~ Jl.i + N-1(1 - TJ) [ (~ 

i=l i=l (5.117) 

The left-hand side of inequality (5.117) represents the total generated 

demands to be served by two vehicles. Using the concept of inequality 

(5.113), inequality (5.117) can be written in the following form 

TNS TNS 
~ J.Li + N-1(1 - TJ){~ 

i=l i-1 

m 
[ ( ~ 

i=l 

(5.118) 

The inequality (5.118) indicates that the total generated demand 

using two vehicles is larger than using one vehicle. However, one can 

extend the previous discussion for NV vehicles which are needed to 

satisfy all customer demands. 

5. 10 Summary 

This chapter has presented the development of a multiple objective 

goal programming formulation of SVRP in which customer demand and travel 

and unload times are considered to be random variables having known dis-

tribution functions. The mathematical formulations of the problem were 

directly related to the model developments for the RCS and RIS of the 
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problem. The equivalent deterministic forms of Problems "C" and "D" 

were developed and presented by "E" and "F" type problems, respectively. 

The existence of the optimum solution for the RCS of the problem 

is shown through Theory (5.1). The existence of a set of deterministic 

linear time constraints, which are equivalent to the nonlinear set of 

time constraints of the problem for distributions such as poisson and 

chi-square, is proved through Theory (5.2). The effects of route 

failure probabilities on the total elapsed time of the whole delivery 

system were proved through Theories (5.3)- (5.5). Theory (5.6) 

illustrates that the total travelled distance decreases when route 

failure probability increases. Additionally, Theory (5.7) is provided 

to demonstrate that the larger number of vehicle routes is equivalent to 

the larger customer demands. 

The remainder of this research is divided into five chapters. 

Chapter VI is devoted to th~ development of the LIGP technique. Chapter 

VII demonstrates the development of an appropriate heuristic algorithm 

for obtaining favorable vehicle routes for "E" and "F" type problems. 

These heuristic approaches are new modifications of Clarke and Wright's 

algorithm. Chapter IX discusses the details of two interactive computer 

programs for the SVRP and LIGP techniques. Chapter X gives the conclu­

sions and recommendations for future research in the area of SVRP. 



CHAPTER VI 

LINEAR INTEGER GOAL PROGRAMMING TECHNIQUE 

6.1 Introduction 

Linear Programming (LP) is a well known mathematical technique for 

optimizing a single objective function such as profit, total elapsed 

time, or total travelled distance, subject to stated constraints. The 

LP technique is employed in decision making situations in many real 

world problems. Due to the existence of conflicting objectives in many 

decision making situations, the area of multiple objective decision mak­

ing has received a great deal of attention in recent years. In such 

decision making situations, the overall desire is that all objectives or 

goals be simultaneously met to as large an extent as possible. 

One well known procedure which treats this problem is the .Goal 

Programming (GP) technique. The GP programming technique assumes that 

the variables take continuous values within the feasible region. A Lin­

ear Integer Goal Programming (LIGP) problem is a goal programming prob­

lem in which the constraints and objective functions are linear, but the 

variables in the final solution are required to be integers. 

Two distinct GP techniques, Preemptive Goal Programming (PREGP) 

and Partitioning Goal Programming (PARGP), are employed as a basis of 

algorithm routings. The PREGP and PARGP procedures are based on the 

simplex method of LP and Arthur and Ravindran's technique for solving 

linear goal programming problems. Arthur and Ravindran [4] have devised 
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a PARGP technique which consists of solving a series of linear program­

ming subproblems with the solution to the higher priorities used as the 

initial solution of the lower priority problem. The major advantage of 

PARGP, relative to PREGP, is that one deals with the fewer constraints, 

fewer variables, and only one objective function at each stage of the 

the problem. 
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The methodology for solving linear goal programs cannot be used to 

solve the linear integer goal program. Therefore, the PREGP and PARGP 

are extended to accomplish the handling of integer variables. However, 

two approaches are used for the integer algorithm developments of goal 

programs. The first approach deals with the development of the "cutting 

planes" (new objectives) that are added to the problem formulation when 

the continuous solution of the original problem has been obtained by the 

algorithm. The second approach concerns the development of the branch 

and bound algorithm for linear integer goal programs. However, the 

developed linear integer goal programs for GP techniques of PREGP and 

PARGP are called LIPREGP and LIPARGP, respectively. 

6.2 Cutting Plane Method for 

Integer Goal Programming 

The Cutting Plane (CP) method is a procedure which is used in lit­

erature [42] to solve the integer GP problems. The CP algorithms were 

originally developed in 1958 by Ralph Gomory [40, 56] for general Inte­

ger Linear Programming (ILP). The main difference between the Gomory 

procedure for Linear Integer Programming (LIP) and the CP of goal pro­

gramming is the method in which these procedures handle the multidimen­

sional priority weights. 
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The following sections are devoted to the development of the CP 

method for the All-Integer and Mixed-Integer LGP problems. The All-

Integer, where all variables are required to be integer valued, will be 

discussed first, followed by a discussion of the Mixed-Integer case. 

6.2.1 Development of All-Integer Cut 

Suppose that the ith constraint is the selected source row and it 

appears in the final tableau of the related GP as 

(i == source row) (6.1) 

where for simplicity xj denotes any variable, whether decision or devia­

tion; aij is the coefficient of variable xj in the source row, and bi is 

the right-hand-side value of the source row. Indicate the integer part 

of a as [a], then, since [aij] ~ aij and xj ~ 0, one can write 

n 
k [aij] xj ~ bi. (6.2) 

j=-1 

Any integer vector x which satisfies (6.1) will also satisfy (6.2). For 

such an x, the left-hand side of (6.2) is an integer. Hence, integer 

vector x must also satisfy the following conseraint 

(6.3) 

On the assumption that aij and bi are not integer valued, one can write 

(6.4) 
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and 

(6.5) 

where 0 ~ fij < 1 and 0 ~ fi < 1. 

After substituting (6.4) and (6.5) in (6.3), then 

n 
~ (-f .. ) XJ· ~-f. (6.6) 

. 1 ~J ~ 
J-

Inequality (6.6) can further be changed into 

n 

~ ( -fij) xj + ni - Pi 
j=l 

-f. 
~ 

(6.7) 

Equation (6.7) is the cutting plane constraint to be added to the final 

tableau of the GP problem with the noninteger variables. In order to 

take care of the infeasibility resulting from the addition of constraint 

(6.7) into the final tableau of the GP problem, the dual simplex method 

may be employed to solve the new problem. Alternatively, the cutting 

plane (6.7) can be arranged as in (6.8): 

n 

~ fij xi + ni - Pi 
j-1 

In this case, the regular primal procedure is utilized. 

(6.8) 

In order to satisfy the cutting plane constraints (6.7) and (6.8), 

pi and ni should be minimized at the first priority level, respectively, 

and all other priorities are downgraded one level lower than their orig-

inal assignment. 



6.2.2 Development of the Mixed-Inte~er Cut 

A Mixed-Integer Linear Goal Programming (MILGP) problem [40] can 

be developed in a manner similar to the pure IGP problem as previously 

described. In this case, only certain variables are to be integer-

valued. The remaining ones take on feasible values on the continuous 

scale. Suppose that xj is a variable which is required to be integral, 

then the ith (source row) constraint can be written as 

xj + ~ ~j xj = bi 
jE nonbasic 

By considering 

then 

or 

xj + ~ ~j xj = [bi] + fi 
jE nonbasic 

~ ~j xj + ni - Pi 
jE nonbasic 

(6.9) 

(6.10) 

(6.11) 

(6.12) 

where, the index i indicates the source row, fi is the fractional part 

of the right-hand side value of the source row, and f' is defined as 
ij 

follows: 

aij if a .. > 0 and xj is a continuous 
~~-varia le 

(f.j(f.-l))a .. 
~ ~ ~J 

if a .. < 0 
vari~~le 

and xj is a continuous 

f' 
ij 

fij if f .. < 
vari~~le 

fi and xj is an integer 

(f ·/(1-f.)) (1-f .. ) if fi~ > fi and xj is an integer 
~ l. ~J 

varia le 
(6.13) 
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Note that fij is the nonnegative fractional part of aij" When the 

cutting plane method (6.12) is chosen to be used, then pi is to be mini­

mized at the first priority level. All other priorities are to be down­

graded one level lower than their original assignment. However, using 

either technique, the process of adding cutting plane methods and solv­

ing the new problem is repeated until an integer solution is reached. 

This process is described in more detail below. 

6.3 Algorithm for LIGP using 

Cutting Plane Method 

The proposed algorithm can be summarized as follows: 

Step 1: Solve the initial GP problem by dropping the integerality 

requirements. If the solution to this problem is integer, stop. Other­

wise, go to Step 2. 

Step 2: Generate the cutting plane constraint as shown in (6.8) 

or (6.12), depending on the type of problem (pure or mixed integer). A 

most promising technique for choosing the source row is to choose the 

constraint in the final simplex tableau which gives the largest fi. 

Step 3: Solve the new problem with the augmented cutting plane. 

Use the regular method of the GP procedure. If the solution to this 

problem is integer, stop. Otherwise, go to step 2. 



Example 1 

The following problem was taken from A. A. Abduelmagd [1] for 

illustration of this procedure. This problem is solved by the preemp­

tive LIGP procedure using the cutting plane method where an integer 

solution to variables x1 , x2 , x3 , x4 , x5 , and x6 is required. 

Minimize 

Subject to: 

8x1 + x2 + 3x3 + 2x4 + 3x5 - 3x6 + n1 - P1 - 17 

3x1 + 2x3 + x4 + xs - x6 + n2 - p2 = 5 

Sx1 + x3 + 2x4 + xs - 4x6 + n3 - p3 = 8 

12x1 + x2 + 2x3 + Sx4 + 4x5 - 6x6 + n4 - P4 - 30 

A continuous solution to this problem is obtained after five simplex 

iterations have been performed. The solution is 

x1 = 0.40, x2 = 7.0, x4 = 4.60, x6 - 0.80 
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where the remainder of variables are zero and all three priorities have 

been achieved. Since only six variables out of 14 variables (number of 

decision variables plus deviations) were required to be integer, the 

mixed integer procedure was employed to obtain an optimal integer solu­

tion for this problem. After 23 more iterations and seven cuts, the 

following integer solution was obtained: 

0.0, x4 = 4.0, x5 - 1.0, x6 = 0.0 

where all priority levels were achieved. 
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6.4 Branch and Bound Method for 

Integer Goal Programming 

The technique of Branch and Bound was originally introduced by 

Land and Doing [40, 56]. Due to the inefficiency of Branch and Bound 

for computer coding, a modification of the algorithm was developed by 

Dakin [40, 44, 56]. This technique, unlike the CP methods, can be 

applied directly to both the pure and mixed integer LGP problems. In 

order to apply the Dakin algorithm to a LGP, one starts to solve the 

problem by a general LGP with the integer requirements ignored. If the 

result of this GP happens to be an integer solution according to the 

original integer requirements of the problem, then the optimal solution 

has been achieved. If the optimal solution is not an integer solution, 

then a noninteger variable should be selected from the list of the 

requi~ed integer variables. After such a variable, xj, is selected, one 

can write a range of the following form for that variable: 

(6.14) 

where [bj] represents the largest integer that is less than the value of 

bj. Since xj is required to be integer, the given range by (6.14) is 

infeasible for this variable. However, to avoid any solution in this 

range, the following conditions can be utilized as two objectives 

x. < 
J -

X· > J -
+ 1 

Each of these objectives is a presentation of a new problem which is 

branched from the previous problem. The GP problem which is associated 
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with each new branch consists of the GP problem of the previous problem 

from which this branch emanates and one of these two new objectives. 

The Branch and Bound method can be summarized in the following five 

steps: 

Step 1 (Initial Solution): Solve the problem by a general method 

of LGP by treating all variables (decision variables and deviations) as 

continuous. Check the optimal solution, if this solution satisfies the 

integer requirements of the problem, then the optimal solution has been 

obtained, otherwise, go to Step 2. 

Step 2 (Branching Variable Selection): Select a variable from the 

set of variables which are constrainted to be integer and its solution 

value is not integer. Using this variable, develop two new objectives 

as follows: 

and 

X· > (b.J+l J - ~ 

(6.15) 

(6.16) 

where xj is the basic variable located in the ith row and bi is the 

right-hand-side value of this row (or the solution value of xj). 

The objectives of (6.15) and (6.16) can be written in terms of 

nonbasic variables of the optimal tableau from which xj was chosen. 

More clearly, objective (6.15) can be written as 

n 

~ aij xj ~ [bi] 
j=l 

(6.17) 
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or 

(6.18) 

By setting fi = bi- [bi], (6.18) can be written as 

Therefore, 

n 
L aij xj + ni -Pi - fi (6.19) 

j-1 

where ni is to be minimized at the first priority level. Similarly, the 

objective xj ~ [bi] + 1 can be written as 

n 
L (-aij) xj + ni- Pi= (1- fi) (6.20) 

j=l 

where ni should be minimized again at the priority level one. Further-

more, it should be noted that each of the equations (6.19) and (6.20) 

will be treated separately as a new constraint and a new objective func-

tion in the goal programming formulation of new problems which emanate 

from the previous problem. 

Step 3 (Formation of New Nodes): Add these new constraints to the 

goal programming problem by the node under consideration in Step 2. One 

subproblem is formed by augmenting constraint (6.19) and the other by 
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augmenting constraint (6.20). Solve each of these subproblems as a lin­

ear goal programming using the simplex method to obtain two new solu­

tions to these problems. Determine the degree of goal attainments (the 

optimal value of the objective function) for each subproblem separately. 

Step 4 (Test for Terminal Node): Each of the nodes formed in Step 

3 may be a terminal node for one of the following reasons: 

1. The problem represented by the node may have no feasible 

solution. 

2. The value of xj, j E I are all integers (I indicates the 

set of all required integer variables). 

In both cases, the node under consideration should be terminated. 

In the second case, the value of the objective function should be com­

pared with current best available vaiue. By defining vector Ri -

(r1 , r 2 , ... ) as the value of priority levels at node i, then for any two 

solutions, say Rk and~· Rk is preferred to ~ if a priority level of 

Rk is lower in value than the corresponding priority level in ~ and all 

preceding priority levels are equal in both Rk and~ [38, pp. 130]. 

The priority level Rk is preferred to priority level Rr if Rk - (0, 100, 

16, 300, 0) and Rr- (0, 100, 19, 401, 5). 

Step 5 (Node Selection): If both nodes at Step 4 were terminated 

then select the next node from the list of nodes which are in the wait­

ing list for further branching. If exactly one node in Step 4 was ter­

minated, then use the nonterminal node and go to Step 2. 

If both nodes in Step 4 were nonterminal, then choose the more 

promising one. A node with the smallest value of the objective function 

is considered to be more promising. However, the other node should be 



added to the list of waiting nodes for further branching which are con­

sidered later. Figure 1 depicts the branch and bound procedure for 

LIGP. 
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The selection of variables from which to generate new constraints 

is obviously one of the most important steps to be taken in the solution 

process of LIGP problem. The ith constraint where the basic variable xj 

assumes a noninteger value is considered to be the source row. The eas­

iest way of selecting the source row is to pick up a basic variable with 

the largest fractional part. It is important to note that this rule is 

not an absolute one but it works well. 

Example 2 

Let us reconsider the problem which is given in example 1. Now an 

integer solution to this problem by the LIPARGP technique along with the 

branch and bound procedure is required. 

A continuous solution to this problem was obtained after 5 itera­

tions which is give below: 

0.40 x2 = 1.0 x6 = o.so 

where all priorities are achieved and the remainder of variables are 

zero. The integer procedure has started on the sixth iteration and has 

stopped on the sixteenth iteration with the result given in Figure 2. 

Hence, the optimal integer solution to this problem by branch and bound 

technique is x1 = 0, Xz- 7, x3 - 0, x4 = 5, x5 = 1, x6 = 1 where prior­

ities 1 and 3 have been achieved and the underachievement of priority 2 

is equal to 1. 



Solve the 

original problem 

Select variable x_j(jei) 
whose value is 

noninteger 

Construct two new subproblems: 
one with xj < [bj], the other wit 

X • ) (b ·] + 1 
J - J 

added to the original problem 

Select the subproblem with the 
lexicographically lowest value 
Rt for further branching. Rt is 
the lowest value of the priority 
levels for subproblem t. 

Figure 1. Flowchart for the Branch and Bound Procedure 
for LIGP 
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Xl = 0.2727 
X2 = 7.545 
X3 = 0.09 
X4 = 5.0 
X6 = 1.0 
r2 = 0 

X2 = 8.0 
X3 = 0.33 
X4 = 5.0 
X6 = 0.66 
r2 = 0.33 

Xl = 0.4, X4 = 4.6 
X2 = 7.0, X6 = 0.8 

Xl = 0.40 
X2 = 7.2 
X4 = 4.8 
X6 = 1 
r2 = 0 

Xl = 0 
X2 = 5 
X4 = 3 
X5 = 2 
X6 = 0 
r2 = 2 

Xl = 0.5714 
X2 = 6.5714 
X4 = 4.00 
X6 = 0. 71428 
r2 = 0.857 

Xl = 0 
X2 = 7 
X4 = 5 Optimal 
X5 = 1 Solution 
X6 = 1 
r2 = 1 

Figure 2. A Tree Diagram Presentation of the Solution of 
Example 2 
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Example 3 

The problem which is presented in Table I [44] is a 10 variable 

problem with 15 constraints and 6 priority levels. Therefore, the total 

number of variables (decision and deviation) are 40. First, an attempt 

was made to find only an integer solution to this problem using the 

branch and bound method and LIPREGP. Therefore, an integer solution to 

this problem after 11.10 seconds and 115 iterations was obtained. The 

solution is 

0, x8 - 0, x9 

o, x5 = o, 

1, x10 = o 

where all priorities have been achieved at the levels of 

Next, an attempt was made for the evaluation of 0-1 integer solution to 

the above problem. Therefore, constraints of the following type: 

xi+ ~b-Pi- 1, Vi= 1,2, ... ,10 and an absolute priority level 

Po - k pi+m were added into the original problem. Now this problem is 
i=l 

composed of 60 variables, 25 constraints, and 7 priorities. The abso-

lute priority level was considered as the first priority and the origi-

nal priorities of the problem were downgraded by one level. This prob-

lem was solved by the LIPREGP using branch and bound method. Three 

integer solutions of the following were obtained after 68 iterations and 

11.37 seconds. The first set of 0-1 integer solutions are: 

(I) 

0, Xg = 0, Xg = 1, x10 = 0 



TABLE I 

A 10-VARIABLE TEST PROBLEM FOR 
EXAMPLE 3* 

Minimize: z = P1(n14 + Pls) + P2(P1 + P2 + P3) + P3n4 + 

P4 (n5 + n6 + n7) + P5(n8 + n9 + n10) + 

P6(Pll + P12 + P13) 

Subject to: 

1 xl x2 x3 x4 Xs x6 x7 X8 X9 

1 10 20 100 75 200 
2 so 150 90 100 40 10 10 
3 10 5 1 10 4 
4 256 315 173 160 680 475 95 65 120 
5 60 75 20 250 10 5 
6 100 150 25 170 250 100 5 5 
7 100 150 100 115 250 so 70 25 so 
8 46 56 15 185 6 
9 74 111 16 126 199 65 
10 75 111 74 79 186 32 27 14 29 
11 31 43 29 37 21 17 6 33 18 
12 33 41 29 41 27 17 6 31 19 
13 35 40 31 42 27 24 13 21 19 
14 1 
15 1 

X1o 

75 
115 

20 
100 

1 
74 

9 
27 
41 

1 
1 

*The data of this test problem is taken from Lewis (44, p. 83]. 
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bi 

250 
259 
300 

1800 
275 
600 
590 
187 
242 
267 

81 
84 
84 
1 
1 
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where priorities 1 through 6 have been achieved at the level of 0, 0, 0, 

125, 0, and 163.2, respectively. The second set of 0-1 integer solution 

is 

o, x4 

1, x9 

1, x5 = o, 

o, x10 - 1 

where priorities 1 through 6 have been achieved at the level of 0, 95, 

309, 45, 78 and 343, respectively. Finally, the third set of 0-1 inte­

ger solution is 

o, x5 = 1, 

1, x10 ... o 

where priorities 1 through 6 have been achieved at the level of 0, 83, 

0, 105, 0, and 254, respectively. 

Obviously, the optimal integer solution to this problem is the 

first set of integer solutions using the method of preference as previ­

ously described. Lewis [44, p. 82] solved this problem by the zero-one 

goal programming code. The same optimal integer solution was obtained 

by the 0-1 GP code after 12 seconds and 490 solution combinations. 

6.5 Summary 

The purpose of this chapter was to develop the linear integer goal 

programming techniques which could efficiently be used in the goal ori­

ented problems. Two goal programming techniques, PREGP and PARGP, were 

used as the basis of the algorithm routings. The Cutting Plane method 

and Branch and Bound techniques were employed for solving the integer 

goal programming problems. Two cases of all integer variables and mixed 
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integer variables were discussed for the Cutting Plane methods. Similar 

situations were investigated for the IGP based on the Branch and Bound 

procedure. The applicability of IGP methods were demonstrated through 

the solution of three example problems. 



CHAPTER VII 

DEVELOPMENT OF THE HEURISTIC ALGORITHM 

FOR STOCHASTIC VRP 

7.1 Introduction 

This chapter is concerned with the description and evaluation of 

the appropriate solution procedures for the "E" and "F" type problems. 

The proposed approaches for solving the "E" and "F" type problems are 

based on the Clarke and Wright "saving" approach to construct feasible 

vehicle routes which in turn satisfy the probabilistic customer demands 

at each station and the probabilistic travel and unload times 

constraints. 

7.2 Clarke and Wright Algorithm 

The Clarke and Wright algorithm [17] (saving approach) is the most 

widely known of the heuristics developed for solving delivery problems. 

In the saving approach, it is assumed that every two distinct demand 

points i and j are supplied individually by two vehicles (Figure 3). 

Figure 3. Initial Set-up 
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Figure 3 illustrates an initial set-up where one vehicle is 

assigned to one demand point. However, if instead of two vehicles, one 

uses only one vehicle (Figure 4), the saving in travelled time (cost or 

distance) is: 

S .. == 2T0 . + 2To. - (To. + To. + T .. ) = To. + To. - T .. 
~J ~ J ~ J ~J ~ J ~J 

Figure 4. NODES i and j linked by using the 
Savings Approach concept. 

(7 .1). 

The user calculates the "savings" associated with all pairs of 

locations to be serviced and then sorts these savings in decreasing 

order beginning with the list of pairs with positive values. Starting 

at the top of the list, the demand points are combined provided that the 

resulting tour is feasible and truck capacity is not violated. Using 

this method, increasingly larger and better tours are formed until the 

list of savings is exhausted. The chief deficiency of this method is 

that once an arc is added to a route, it is never removed. 

7.3 Development of the Heuristic Approach 

For "E" Type Problem 

The "E" type problem, as developed in Chapter V, is reproduced 

here. 



NV TNS 
Minimize ~ ~ 

k=l i=O 

Subject to: 

TNS 
~ c .. xiJ"k . 0 l.J J= 

TNS TNS l TNS TNS 2 2 1 

~ ~ 1-Lr~ xi "k + N- (1 - ~)(~ ~ crt . xiJ"k) 2 :s; UTk 
"1"0 '"1. J "1"0 l. l.= J= ].= J= 

TNS TNS l TNS TNS 2 2 1 
~ ~ 1-Lq xijk + N- (1 - 1lk) (~ ~ crd i xijk) 2 :s; Q 

i=l j=O i=l j=O 

fork= 1,2, ... ,NV 

(7. 2) 

(7.3) 

(7.4) 

(7.5) 

(7.6) 

To adapt the Clarke and Wright algorithm, the following rule pre-

viously described in Section 7.2 must be employed, 

where Cij is the cost of moving from station ito station j. In this 

problem, constraints (7.3), (7.4), and (7.5) should be checked for fea-

sibility before the addition of any new node to an existing route or 

before combining two routes together. However, the procedure for solv-

ing the "E" type problem is completely identical to the Clarke and 

Wright algorithm with the exception that some additional checks must be 

made for new constraints. The "E" type problem algorithm uses the 

objective function ~ ~ ~ Cij Xijk and nonlinear constraints (7. 3), 

(7.4), and (7.5) in contrast to the deterministic form of the Clarke and 
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Wright algorithm where only linear constraints must be checked for fea-

sibility. These evaluations make the procedure more complex, and conse-

quently more memory allocation and computer time will be required. 

The calculations in all three constraints, (7.3), (7.4), and 

(7.5), are carried out by using values Tl = N- 1(1- cr), T2 = N- 1(1- ~), 

and T3 ~ N- 1 (1 - ~) rather than using cr, ~. and~. respectively. The 

evaluation of T1 , T2 , and T3 is not a very hard job. For instance, for 

normal distribution which has been assumed in equations (7.3), (7.4), 

and (7.5), T1 , T2 , and T3 will be the standard normal deviate z. 

The flowchart shown in Figure 5 outlines the procedural steps for 

the method developed for the "E" type problem. 

7.4 Development of Heuristic Approach 

For "F" Type Problem 

The "F" type problem, as shown in Chapter V, is reproduced here. 

Minimize 
NV TNS TNS TNS 
~ { [ ~ ~ JJ.b · X· · k + ~ 

k=l i=O j=O '"'l.J ~J i=l 

Subject to: 

k=l, ... ,NV 

As mentioned before, it is almost impossible to solve a large scale 

(7.7) 

(7. 8) 

(7. 9) 

problem such as the "F" type problem by the exact procedure. Therefore, 
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Yes 

Enter number of Nodes and terminal, distanc 
matrix, travel time, variance of travel 
time, mean unload time, variance of unload 
time, mean and variance of demand, capacity 
of truck, and TRk and UTk 

Calculate the saving in terms of 
costs for all pairs of nodes 

Order the savings from the 
largest to smallest 

Create I 
new route 

Yes 

Yes 

Figure 5. Algorithmic Flowchart of Procedural Steps for "E" 
Type Problem 
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heuristic approach is considered for solving this problem. In the "F" 

type problem the objective is to minimize total elapsed, travel, and 

unload times where these times are random variables. Two modifications 

of the Clarke and 'Wright algorithm as they pertain to the "F" type prob-

lem, are shown in Sections 7.4.1 and 7.4.2. 

7.4.1 Algorithm (I) 

To adapt the Clarke and 'Wright algorithm to handle the random 

travel and unload times when the minimization of the total elapsed time 

of the whole delivery system is the criterion, the saving function must 

be modified. A saving function of the following form can be used for 

evaluation of savings when travel time is random variable having a known 

distribution function: 

provided that J.l.toi + J.l.toj - J.l.t ij 0 and 0 < -y :S 1. The saving function 

shown in (7.10) can be developed very easily. Consider Figures 3 and 4 

which have been used for the Clarke and 'Wright saving algorithm: by 

considering the fact that the travel time between demand points i and j 

are random variables with means of J.l.toi, J.l.toj , and J.l.t ij' and variances 

2 2 2 
CJ'r,..., CJ't-,..., and CJ't. .. Also, if one vehicle is used instead of using 

-v1 ~J 1J 

two, the saving in terms of these random variables is ST - t 0i + t 0j -

tij' where toi• toj• and tij are assumed to be independent random vari­

ables. Therefore, 

E(ST) 

or 
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E(ST) fl.t-1'\ • + fl.t-1'\ • - fl.t .. 
'"\)~ 'VJ ~J 

(7.11) 

and 

2 2 2 
Var(ST) = <Ttoi + <Ttoj + <Tt ij" (7.12) 

The total saving in terms of mean and standard deviation of random vari-

able ST can be related in one expression with more emphasis in mean of 

saving than on the standard deviation of saving, as shown by Equation 

(7.10). In this equation, if~= 1, then all emphasis is placed on the 

mean of saving ST which involves the basic concept of Clarke and 

Wright's algorithm. On the other hand, if 0 < ~ < 1, then a combination 

of mean and standard deviation 9f saving ST will be used. 

7.4.2 Algorithm (!!) 

To adapt the Clarke and Wright algorithm, the following saving 

function can be used: 

Fsaving 

2 
where fLsaving = E(ST), <Tsaving 

<T2 8 > 0 and 
t ij 

-2 2 
(J' = c~ (J't • JM). 

ij ~J 

(7.13) 

var(ST), M is the total number of 

(7 .14) 

Maximizing function (7.13) provides a station which can be added 

to the vehicle route. When 8 approaches to infinitive, then Fsaving = 

fLsaving' which is the basic concept of the Clarke and Wright algorithm. 

On the other hand, when 8 -4 0, then a great emphasis is placed on the 

standard deviation rather than on the mean. Equation (7.14) indicates 



that cr2 is a constant value for each specific problem. Hence, Fsaving 

for each pair of demand points depends upon the value of saving in mean 

and on the amount of standard deviation between these two stations. 

Since great emphasis will more often be placed on the mean of saving 

rather than on the variance of saving, one can logically design a larger 

coefficient for saving in mean than on the variance. However, one may 

employ both algorithms to solve a SVRP and then accept the solution with 

the lowest total travel time for the whole system. The flowchart shown 

in Figure 6 outlines the procedural steps for the method of solution for 

the "F" type problem. 

To compare saving function (7.10) and (7.13), consider the follow-

ing new notations for simplicity: 2 
x = ~saving' Y = (crsaving)~, z = 

Sij' c = cr2 =constant and z' = Fsaving· Hence, the saving functions 

(7.10) and (7.13) can be written in terms of new notations as: 

z = 1X + (1 - ~)y, and 

c 
z' x + 

respectively. To obtain a relationship between~ and 8, let z = z'. 

Therefore, 

or 

c 
~X + (1 - ~)y = X + 

8*y 

c 
1 + -----

8*y*(x-y) 

(7 .15) 

(7 .16) 

Equation (7.16) indicates that~ approaches 1 when 8-+ oo regard-

less of the values of x, y, and c. However, one can expect to obtain 

similar results by algorithms (I) and (II) of the "F" type problem when 
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Enter (1) Number of nodes and terminal 
(2) mean and variance of travel time 
(3) mean and variance of unload time 
(4) mean and variance of demand 
(5) capacity of truck 

Use Algorithm I or II to calculate the 
savings in terms of travel~time 

(mean and variance) 

Order the savings from the 
largest to smallest 

Yes 

Drop the previous best pair an~----~~ 
consider the next best pair 

Add this 
node into 
the route 

Create a 
new route 
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Figure 6. Algorithmic Flowchart of Procedural Steps for "F" Type Problem 



~ and 8 accept large values in ranges zero to one and zero to infini­

tive, respectively. 
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A flowchart summarizing the general structure of the analysis and 

solution of the SVRP is shown in Figure 7. The analysis begins with the 

determination of the type of the objective function which is to be mini­

mized as was shown by problem C or D. The next step is the determina­

tion of the equivalent deterministic forms of problems C or D as were 

presented by the "E" or "F" type problem. The "E" or "F" type problem 

is used for the purpose of constructing routes. The routes are deter­

mined using the appropriate heuristic approach of "E" or "F" type 

problem. 

If the decision maker is willing to accept the vehicle routes con­

structed by the RCS of the problem without change, then the procedure 

halts. Otherwise, the DM should consider the output information f~om 

the RCS of the problem and provide a set of goals for the RIS. Two GP 

models for the RIS of the problem are shown by problems A and B. 

Prior to the formulation of each problem (each vehicle route is 

called a problem) as a 0-1 integer GP problem, values Tl and T2 for 

problems A and Q for problem B should be evaluated. This 0-1 integer CP 

problem can be solved using either LIPARGP or LIPREGP techniques. The 

route improvement stage should be applied to those vehicle routes that 

do not satisfy the customer and decision maker's requirements after RCS 

of the problem has been applied. 

7.5 Example Problem 

The algorithm for the multiple objective GP model of the SVRP is 

illustrated by a simple example problem. The following small problem is 

involved with a single depot and 15 locations to be served by vehicles. 



Formulate the SVRP as: 

(1) "C" problem to'minimize total 
cost (distance), or 

(2) "D" problem to minimize total 
elapsed time of whole deliv­
e 

Determine the equivalent 
deterministic form of the selected 

problem which is referred to as 
an "E" or "F" type problem 

obtained from "C" or "D" 
respectively. 

"E" type problem 

Apply the developed 
hueristic approach for 

the "E" type problem 

"F" type problem 

Apply algorithm (I) 
·or (II) for "F" type 

problem 

Figure 7. General Structure of the Analysis and Solution of SVRP 
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Use the kth vehicle rout 
as input data for RIS 

Choose problem "A" 
as GP model 

Choose problem "B" 
as GP model 

Evaluate Tl and T2 by using 
equations: 

Evaluate the artificial 
capacity of truck by 

equation: 
Tl [ (-<j>'I'~+(<J>2'1'+4Tl) ~) /2] 2 

and 

respectively. 

Q =- [ (-<I> 'I'~+ ( <J>'I'+4Q) ~) /2] 2 

Formulate the problem as 0-1 
integer GP problem and use 

LIPARGP or LIPREGP techniques to 
solve the roblem. 

F-igure 1,_--r 'Continued 
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TABLE II 

SUMMARY OF DISTANCES BETWEEN LOCATION IN MILES 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

0 00 
1 60 00 
2 27 63 00 
3 27 36 45 00 
4 87 75 63 90 00 
5 48 42 33 48 52 00 
6 102 45 99 81 78 66 00 
7 90 54 78 81 29 45 39 00 
8 72 39 57 60 39 27 45 21 00 
9 51 63 27 60 36 21 57 48 42 00 
10 24 36 30 18 72 30 78 69 48 42 00 
11 48 39 69 21 105 66 81 93 72 81 39 00 
12 63 21 75 36 96 60 57 75 60 81 45 24 00 
13 45 15 48 27 69 30 57 54 36 48 21 39 30 00 
14 66 60 45 69 21 21 72 39 27 21 51 87 78 48 00 
15 81 27 78 63 66 48 21 33 27 66 57 66 45 36 48 00 

Source: Skitt, R. A. and Levary, R. R. "Vehicle Routing Via Column 
Generation." Euro~ean Journal of O~erational Research, Vol. 21 
(1985), p. 72. 



TABLE III 

MEAN TRAVEL TIME BETWEEN LOCATIONS IN MINUTES* 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

0 00 
1 78 00 
2 38 92 00 
3 36 47 59 00 
4 111 104 80 115 00 
5 62 56 40 60 62 00 
6 146 66 132 99 146 66 00 
7 125 69 95 101 125 69 56 00 
8 96 58 73 75 96 58 66 25 00 
9 61 80 35 77 61 80 82 62 52 00 

10 35 43 41 25 35 43 95 98 68 59 00 
11 65 51 88 36 65 51 106 133 90 103 56 00 
12 78 30 90 49 79 30 71 98 82 103 66 34 00 
13 58 19 62 38 58 19 73 79 47 61 27 51 39 00 
14 90 73 55 96 90 73 100 51 37 29 61 119 94 64 00 
15 108 34 93 90 108 34 28 40 37 79 68 94 56 46 68 00 

Source: Skitt, R. A. and Levary, R. K. "Vehicle Routing Via Column Generation." 
EuropeanJQurnal of Operational Research, Vol. 21 (1985) p. 73. 

*The original data has been multiplied by 60 and rounded off to the nearest integer value. 

..... 
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Demand Point 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 

TABLE IV 

SUMMARY OF DEMAND AND UNLOAD TIME 
FOR EACH DEMAND POINT 

Demand Un1oad·Time 

Mean Variance Mean 

30 30 15 
29 29 15 
16 16 8 
12 12 6 
37 37 18 
17 17 9 

6 6 4 
22 22 11 
20 20 9 
33 33 16 
11 11 7 
37 37 18 
10 10 11 
14 14 7 
25 25 15 
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(minutes) 

Variance 

15 
15 
·8 
6 

18 
9 
4 

11 
9 

16 
7 

18 
11 

7 
15 



Tables II, III, and IV summarize the necessary data for whole stations. 

Tables II and III give the summary of distance between locations in 

miles and travel time between locations in minutes, respectively. Table 

IV gives the mean and variance of demand and unload time at each demand 

point. Additional conditions are as follows: 

1. Total unload time for each vehicle route is restricted to 120 

minutes, 

2. Total travelled time for each route is limited to 480 minutes, 

3. Capacity of each truck is 80 units, 

4. ak = 0.1, ~ = ~k = 0.05, and 

5. The OM's requirements are given in details in Section 7.5.2. 

This is because the OM can set the goal priority levels based 

on the results of the RCS of the problem. 

The process of solution for this example problem is divided into 

four parts. In the first part, this problem is treated as an "E" type 

problem where minimization of the total travelled distance of the whole 

delivery system is considered as a criterion. The second part treats 

this problem as a "F" type problem considering the minimization of the 

total elapsed time of the whole delivery system as a criterion. The 

third part deals with the utilization of the developed LIGP technique to 

improve the sequence of stations on the constructed vehicle routes to 

meet the OM's requirements. The fourth part of the solution process is 

concerned with the sensitivity analysis of the results as were theoreti­

cally investigated in Chapter V. 

The first and second parts of the solution process are illustrated 

in Section 7.5.1 while the third and fourth parts are discussed in Sec­

tions 7.5.2 and 7.6, respectively. 
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7.5.1 Route Construction Stage 

If the above conditions along with all other assumptions being 

employed in this research apply to this example problem, then the "E" 

and "F" type problems can be solved by applying the proposed algorithms 

in order to determine the most satisfactory solution. 

The solution to the "E" type problem, as formulated in Chapter V, 

is obtained via the computer program where constructed vehicle routes 

are {0, 4, 7, 6, 15, 0}, {0, 9, 14, 8, 13, 0}, {0, 1, 12, 0}, {0, 10, 3, 

11, 0}, and {0, 2, 5, 0}. The total distance, travel time, unload time, 

and customer demand of each vehicle route are shown in Table V. The 

total travelled distance is 810 miles and total travel and unload times 

are 1,240 and 215 minutes, respectively. 

The next attempt was to solve the example problem (7.5) using the 

concept of the "F" type problem, as described in Chapter V. Two algo­

rithms, (I) and (II), were employed with~= 0.90 and 8 = 0.50 for these 

procedures, respectively. The constructed vehicle routes by algorithm 

(I) are {0, 14, 7, 6, 15, 0}, {0, 1, 12, 0}, {0, 11, 4, 5, 0}, {0, 9, 8, 

13, 0}, {0, 2, 0}, and {0, 3, 10, 0} while the constructed vehicle 

routes by algorithm (II) are {0, 14, 7, 6, 15, 0}, {0, 1, 12, 0}, {0, 9, 

4, 10, 0}, {0, 2, 8, 13, 0}, and {0, 5, 11, 3, 0}. The details of the 

results in the case of the "F" type problem using algorithm (I) are 

given in Table VI. The results obtained in the case of "F" type problem 

using algorithm (II) are given in Table VII. The results show that the 

number of constructed vehicle routes in the case of the "F" type problem 

using algorithm (II) is smaller than that obtained from the algorithm 

(I). Therefore, one can verify Theorem (5.7) by comparing the total 
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Route 
Number 

1 
2 
3 
4 
5 

Total 

TABLE V 

SUMMARY OF RESULTS FOR "E" TYPE PROBLEM USING 
ak = 0.1, ~ = ~k = 0.05 for all k 

Travel Unload 
Distance Time Time 

(Mile) (minute) (minute) 

267 454 43 
180 251 48 
144 203 42 
111 177 40 
108 155 42 

810 1,240 215 

Demand 

72 
79 
80 
72 
79 

382 

demand, travel, and unload times that are generated by algorithms (I) 

and (II) of the "F" type problem. 

The results obtained from this simple example by the heuristic 

approaches of the "E" and "F" type problems can be compared using tables 

V, VI, and VII. The number of constructed vehicle routes using the "E" 

type problem is equal to that obtained by the algorithm (II) of the "F" 

type problem. However, the number of constructed vehicle routes by 

algorithm (I) is larger than that obtained by algorithm (II). Tables VI 

and VII indicate that the total travel and unload times and total gener-

ated demand by algorithms (I) and (II) are not equal. This is mainly 

because of the difference in the number of vehicle routes. On the other 

hand, the total travel and unload times and total demands obtained by 

algorithm (I) of the "F" type problem is larger than that obtained by 

the heuristic approach of the "E" type problem and algorithm (II) of the 

"F" type problem. 
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TABLE VI 

SUMMARY OF RESULTS FOR THE "F" TYPE PROBLEM USING 
ALGORITHM (I) WHERE ak = 0.1, ~k = ~k = 0.05 

("/ = 0.9) 

Travel Unload 
Route Time Time Demand 

(minute) (minute) 

1 356 44 
2 203 42 
3 274 40 
4 236 40 
5 108 32 
6 87 21 

Total 1,264 219 

TABLE VII 

SUMMARY OF RESULTS FOR THE "F" TYPE PROBLEM USING 
ALGORITHM (II) WHERE ak = 0.10, ~ = ~ = 0.05 

(8 = 0.5) 

Travel Unload 

74 
80 
72 
63 
60 
37 

386 

Route Time Time Demand 
Number (minute) (minute) 

1 356 44 74 
2 203 42 80 
3 209 40 78 
4 . 234 47 73 
5 202 42 77 

Total 1,204 215 382 
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7.5.2 Route Improvement Stage 

When the arrangement of stations on one route do not exactly or 

even partially meet the decision maker's needs, then the route improve­

ment technique should be employed. This stage of the problem is 

required to sequence the stations on each route for the purpose of meet­

ing the customer's and decision maker's criteria. The stations on each 

vehicle route are sequenced by using the LIGP technique. Prior to the 

utilization of this technique, the decision maker should consider the 

following information from the RCS: 

1. constructed routes, 

2. total demand of each route, 

3. total expected cost, time or distance for the whole delivery 

system, 

4. unload and travel times for each route, and 

5. number of required vehicles. 

In order to demonstrate the application of the route improvement 

stage of the problem that involves multiple conflicting goals, routes 

number 1 and 2 from the set of routes of the "E" type problem have been 

selected. The set of goals and priorities assigned to these routes are 

described in Sections 7.5.2.1 and 7.5.2.2, respectively. It is assumed 

that the sequence of stations on routes 3, 4, and 5 meet the decision 

maker's criteria. 
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7.5.2.1 Goals and Priorities for Route 1 

of "E" Tvne Problem 

Of course the primary objective is to reconstruct a new feasible 

route. Therefore, route feasibility has been given the first priority. 

Other priorities are as listed below (Problem B from Section 5.4.2): 

P2 - To minimize total travelled distance to 267 miles 

P3 - To minimize total travel time to 450 minutes and total unload 

time to 50 minutes 

P4 - To minimize the route safety stock 

P5 To meet the dependency condition for station 7 which is to be 

served after station 6. 

Before the formulation of Multiple Objective GP begins, one should 

use equation (5.84) from Theorem 5.2 in order to calculate the artifi-

cial capacity of truck, Q: 

where ~ = N- 1 (1 - ~) and 'V is as previously defined. By substituting 

Q- 80 units, 'V = 1, and~= 1.645 (34, pp. 592-593] in the above equa-

tion, an artificial truck capacity of 66 units will be obtained. 

The problem can be formulated as: 

10 22 
Min Pl ( ~ (ni + Pi) + ~ Pi] + P2 (p23) + 

i=l i=ll 
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Subject to: 

xo,4 + xo,7 + Xo 6 
' 

+ Xo 15 + n1 
' 

- P1 == 1 

X4 o + X4 7 + X4 6 
' ' ' 

+ x4, 15 + n2 - P2 = 1 

x7,o + x7,4 + x7,6 + X7 15 + n3 
' 

- P3 = 1 

x6 o + x6 4 + x6 7 
' ' ' 

+ x6 15 + n4 
' 

- P4 = 1 

X15 0 + X15 6 + X15 7 + X15 4 + n5 - P5 = l , , ' ' 

x4,0 + x7,0 + x6,0 + x15,0 + n6 - P6 = 1 

Xo,4 + x7,4 + x6,4 + x15,4 + n7 - P7 = 1 

Xo 7 + X4 7 + x6 7 + X15 7 + ns - Ps = 1 ' , , , 

Xo 6 + X4 6 + X7 6 + x15 6 + ng - Pg = 1 
' , , ' 

z1 - z2 + 5X4 7 
' 

+ nu - Pu = 4 

z1 - z3 + 5X4 6 
' 

+ n12 - P12 = 4 

z1 - z4 + 5X4 15 + n13 - P13 = 4 
' 

z2 - z1 + 5X7,4 + n14 - P14 = 4 

z2 - z3 + 5X7 6 + n15 
' 

- P15 == 4 

z2 - z4 + 5X7,15 + n16 - P16 = 4 

z3 - z1 + 5X6 4 + n17 
' 

- P17 = 4 

z3 - z2 + 5X6 7 + n18 
' 

- P1s = 4 

z3 - Z4 + 5X6 15 + n19 
' 

- P19 = 4 

Z4- Z2 + 5X15,7 + n21- P21 = 4 

Z4 - Z3 + 5X15 6 + n22 - P22 = 4 
' 

87X0 ,4 + 90x0 , 7 + 102X0 , 6 + 81X0 , 15 + 87X4 ,o + 39X4 , 7 + 

78X4 , 6 + 66X4 ,15 + 90X7 , 0 + 39X7 ,4 + 39X7 , 6 + 33X7 , 15 + 
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102x6 ,0 + 78X6 , 4 + 39X6 , 7 + 21X6 , 15 + 81XlS,O + 66X15 , 4 + 

33Xl5,7 + 2lX15,6 + n23 - P23 = 267 

6Xo,4 + 6X7,4 + 6X6,4 + 6Xl5,4 + 4Xo,7 + 4X4,7 + 

4X6,7 + 4Xl5,7 + 9Xo,6 + 9X4,6 + 9X7,6 + 9Xl5,6 + 

lSXO,l5 + lSX4,15 + lSX7,15 + lSX6,15 + n24 - P24 SO 

12X0 , 4 + 12X7 , 4 + 12x6 , 4 + 12X15 , 4 + 6X0 , 7 + 6X4 , 7 + 

6X6 , 7 + 6X15 , 7 + 17X0 , 6 + 17X4 , 6 + 17X7 , 6 + 17x15 , 6 + 

25XO,l5 + 25X4,15 + 25X7,15 + 25X6,15 + n25 - P25 = 66 

111X0 , 4 + 12SX0 , 7 + 146X0 , 6 + 108XO,lS + 111X4 , 0 + 

125X4 , 7 + 146X4 , 6 + 108X4 , 15 + 125X7 ,0 + 125X7 , 4 + 

56X7 , 6 + 40X7 , 15 + 146X6 , 0 + 146X6 , 4 + 56X6 , 7 + 28X6 , 15 + 

108XlS,O + 10Sx15 , 4 + 40X15 , 7 + 2Sx15 , 6 + n27 - p27 = 450 

An attempt was made to evaluate the 0-1 integer solution of the 

above problem. Therefore, constraints of the following type 

Vi, i = 1, ... , 20, 

and an absolute priority level of 

20 
Po = ~ Pi+20 

i=l 

were added to the original problem. The resulting problem consisted of 

47 constraints, 118 variables (decision and deviational variables), and 

6 priority levels. The absolute priority level was considered as the 

first priority and the original priorities of the problem were down-

graded by one level. This problem was solved by the LIPARGP technique 
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using the branch and bound method. Two new integer solutions, illus-

trated in the form of routes {0, 15, 6, 7, 4, 0) and {0, 6, 7, 15, 4, 

0), were obtained. Other computer results are illustrated in Table 

VIII. Route {0, 15, 6, 7, 4, 0) which satisfies the decision maker's 

criteria is the final solution to this problem. 

TABLE VIII 

SUMMARY OF RESULTS FOR ROUTE 1 OF 11 E 11 TYPE PROBLEM 
AFTER EMPLOYMENT OF THE RIS OF THE PROBLEM 

Sequence of Unload Travel 
Solution locations on Distance Time Time 
Number each new route (minute) (minute) 

1 {0' 15, 6, 7, 4, 0) 267 34 428 
2 {0. 6, 7, 15, 4, 0) 327 34 461 

7.5.2.2 Goals and Priorities for Route 2 

of 11 E11 Type Problem 

As expected, the route feasibility is given the first priority 

level where other priorities are (Problem A from Section 5.4.1): 

P2 - To minimize total travelled distance of each vehicle route to 

180 miles, 

P3 - To minimize the unload time of vehicle route to T2 minutes 

and travel time of vehicle route to T1 minutes 

P4 - To meet the dependency conditions such that Station 8 

follows Station 9. 
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The third priority level requires the minimization of travel and 

unload times to the levels of T1 and T2 , respectively; hence, prior to 

the formulation of this Multiple Objective GP, T1 and r 2 must be calcu­

lated. Equation (7.17) can be used again for the calculation of r 1 . Q 

and~ are substituted by 480 and 1.285, respectively. Similarly, in the 

evaluation of ! 2 , Q and~ can be.substituted with 120 and 1.645, respec-

tively. The overall formulation of the problem for Route 2 of the "E" 

type problem is: 

10 22 
Min Pl [ ~ (ni +Pi) + ~ (pi)] + P2 (p23) + 

i=l i-ll 

Subject to: 

XO,l3 + Xo,8 + XO,l4 + Xo,9 + nl - P1 = l 

xl3,0 + xl3,8 + xl3,14 + xl3,9 + n2 - P2 = 1 

x8,0 + x8,13 + x8,14 + Xa,9 + n3 - P3 = 1 

xl4,0 + xl4,13 + xl4,8 + xl4,9 + n4 - P4 = 1 

Xg,o + x9,13 + x9,8 + x9,14 + n5 - P5 - 1 

xl3,0 + x8,o + xl4,0 + Xg,o + n6 - P6 - 1 

x0,13 + x8,13 + xl4,13 + x9,13 + n7 - P7 = 1 

xo,8 + xl3,8 + xl4,8 + Xg,a + na - Pa = 1 

xO,l4 + xl3,14 + x8,14 + x9,14 + ng - Pg = 1 

Xo,9 + xl3,9 + xa,9 + xl4,9 + nlo - P1o- 1 

zl - Z2 + 5Xl3,8 + n11 - P11 = 4 

zl - Z3 + 5Xl3,14 + n12 - P12 = 4 



21 - 24 + sx13,9 + n13 - P13 = 4 

22 - 21 + sx8 13 + n14 - P14 = 4 
' 

22 - 24 + sx8,9 + n16 - P16 = 4 

23 - 21 + sx14 13 + n17 - P17 = 4 
' 

24 - 21 + sx9,13 + n2o - P2o = 4 

24 - 22 + SX9 8 + n21 - P21 = 4 
. ' 

24 - 23 + SX9 14 + n22 - P22 = 4 
' 

45Xo 13 + 72Xo 8 + 66Xo 14 + 51Xo 9 + 4SX13 O + 
' , , ' ' 

36X13,8 + 48X13,14 + 48X13,9 + 72X8,0 + 36X8,13 + 

27X8 14 + 42X8 9 + 1SX14 O + 48X14 13 + 27X14 8 + 
' ' ' ' ' 

21X14 9 + 51X9 O + 48X9 13 + 42X9 8 + 21x9 14 + 
' ' , , , 

n23 - p23 = 180 

11Xo 13 + 11X8 13 + 11X14 13 + 11X9 13 + 11Xo 8 + 
' , , , ' 

11X13,8 + 11X14,8 + 11X9,8 + 7X0,14 + 7X13,14 + 

7X8,14 + 7X9,14 + 9X0,9 + 9X13,9 + 9X8,9 + 9X14,9 + 

n24 - p24 = 111 

58X0 , 13 + 96X0 , 8 + 90X0 ,14 + 61Xo,g + 58X13 ,0 + 

47X13,8 + 64X13,14 + 61X13,9 + 96X8,0 + 47X8,13 + 

37X8,14 + 52X8,9 + 90X14,0 + 64X14,13 + 37X14,8 + 

29X14 , 9 + 61Xg,o + 61X9 ,13 + 52Xg, 8 + 29X9 ,14 + 

n25 - p25 = 452 

x9,8 + n26 - P26 = 1 
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A similar procedure for calculation of 0-1 integer solution for 

this problem was used. After the addition of all necessary constraints 

and the absolute priority level of P0 , the total number of constraints, 

variables, and priorities became 46, 116, and 5, respectively. This 

problem was solved by LIPARGP technique and a new solution illustrated 

in forms of route {0, 14, 9, 8, 13, 0} was obtained. 

The characteristics of this vehicle route are: 

total travelled distance 

total unload time 

total travel time 

210 miles 

38 minutes 

276 minutes 

These results indicate that all decision maker's criteria, except the 

total travelled distance, have been achieved. However, it can be con­

clude that an increase of 30 miles in the total travelled distance has 

been sacrificed for the achievement of other goals set by the decision 

maker. 

The final solution to this example problem, according to the deci­

sion maker's criteria and customer's requirements, is summarized in 

Table IX. 

7.6 Sensitivity of Elapsed Time Upon The 

Probability of Route Failures 

Thus far, the basic concepts of the SVRP and the derivation of 

solution methods have been the main objective of this research. How-

ever, an important part of any solution process is the analysis of the 

parameter changes after the final solution has been determined. This 

technique is defined as the sensitivity analysis of the procedure. The 
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Route 
Number 

1 
2 
3 
4 
5 

Total 

TABLE IX 

THE SUMMARY OF FINAL RESULTS OF EXAMPLE PROBLEM 
BASED ON THE "E" TYPE PROBLEM ANALYSIS 

Travel Unload 
Distance Time Time 

(mile) (minute) (minute) 

267 428 34 
210 276 38 
144 203 42 
111 177 40 
108 155 42 

840 1,239 196 
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Demand 

72 
79 
80 
72 
79 

382 

degree of uncertainty in real world problems such as demands, travel and 

unload times, shipment, and costs has increased the utilization of sen-

sitivity analysis in the decision making environments. Obviously, fore-

casting techniques can be used to predict the future values of the 

important parameters of the problem when the final solution is rela-

tively sensitive to these factors. 

The purpose of this section is to introduce some ideas concerning 

the analysis of elapsed time in the SVRP due to route failure probabili-

ties. To illustrate this idea, it is necessary to review the example 

problem presented in the previous section. In the example, the route 

failure probabilities were considered to beak~ 0.1, ~k ~ ~ = 0.05. 

Now, what will be the number of vehicle routes, travel time, unload 

time, and travelled distance using different values of route failure 

probabilities by employing the "E" and "F" type problems? 
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The data and all necessary information of the example problem has 

been used in the solution process of the "E" type problem. The results 

are shown in Tables X and XI. Table X gives the summary of results when 

~k = ~ and ak accept different values. On the other hand, Table XI 

illustrates the results for the "E" type problem when TJk is fixed and ak 

= ~k accepts different probability levels. The number of vehicle routes 

for this example using the "E" type problem under these probability 

levels is 5. 

After solving the "E" type problem, the next objective was to 

solve the example problem (7.5) using the "F" type problem solution pro­

cedure where~- 0.90. Table XII provides the travel time, unload time, 

and total elapsed time of each vehicle route developed by algorithm (I), 

where ak accepts different values and ~k = TJk are fixed. Table XIII 

provides the travel time, unload time, and total elapsed time of each 

vehicle route developed by algorithm (I) for fixed ~ and various proba­

bility levels for ak =~where~= 0.90. 

The example problem (7.5) was solved by the "F" type problem using 

the algorithm (II) where 8 - 0.50. These results are shown in Tables XIV 

and XV. However, Tables X, XII, and XIV indicate that if ak increases, 

then the travel time of each vehicle route decreases. For instance, 

Table XI shows that by increasing ak from 0.05 to 0.1, then the travel 

time of routes 1 and 2 decrease from 462 to 454 and 257 to 251, respec­

tively. Tables XI, XIII, and XV support the results of Theorem 5.5, 

which has been proved in Chapter V. This means, for example, that if ak 

and ~k increase such that ak = ~· then the travel and unload times of 

each vehicle route will decrease. 



Route 
Number 

1 
2 
3 
4 
5 

1 
2 
3 
4 
5 

1 
2 
3 
4 
5 

TABLE X 

SUMMARY OF RESULTS FOR THE "E" TYPE PROBLEM 
FOR ~k - ~- 0.05 

Travel 
Time 

Unload 
Time ak 

(minutes) (minutes) 

0.05 462 43 
257 48 
208 42 
181 40 
159 42 

0.10 454 43 
251 48 
203 42 
177 40 
155 42 

0.30 438 43 
239 48 
193 42 
167 40 
146 42 
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Route 
Number 

1 
2 
3 
4 
5 

1 
2 
3 
4 
5 

1 
2 
3 
4 
5 

TABLE XI 

SUMMARY OF RESULTS FOR THE "E" TYPE PROBLEM 
FOR 'Tlk = 0. OS 

Travel Unload 
ak 13k Time Time 

(minutes) (minutes) 

0.05 0.05 462 43 
257 48 
208 42 
181 40 
159 42 

0.1 0.1 454 41 
251 45 
203 40 
177 38 
155 40 

0.30 0.30 438 37 
239 41 
193 36 
167 33 
146 36 
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Route 
Number 

1 
2 
3 
4 
5 
6 

1 
2 
3 
4 
5 
6 

1 
2 
3 
4 
5 
6 

TABLE XII 

SUMMARY OF RESULTS FOR THE "F" TYPE PROBLEM USING 
ALGORITHM (I) WHERE ~ = ~k = 0.05 

AND 'Y = 0.90 

Total Elapsed 
Travel Unload Time of Each 

c:xk Time Time Route 
(minutes) (minutes) (minutes) 

0.025 368 44 412 
212 42 254 
285 40 325 
246 40 286 
115 32 147 

93 21 114 

0.10 356 44 400 
203 42 245 
274 40 314 
236 40 276 
108 32 140 

87 21 108 

0.30 342 44 386 
193 42 235 
262 40 302 
225 40 265 
101 32 133 

80 21 101 
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Route 
Number 

1 
2 
3 
4 
5 
6 

1 
2 
3 
4 
5 
6 

1 
2 
3 
4 
5 
6 

ak 

TABLE XIII 

SUMMARY OF RESULTS FOR THE "F" TYPE PROBLEM 
USING ALGORITHM (II) WHERE ~k = 0.05 

AND 'Y = 0.90 

Total Elapsed 
f3k Travel Unload Time of Each 

Time Time Route 
(minutes) (minutes) (minutes) 

0.025 0.025 368 46 414 
212 44 256 
285 41 326 
246 41 287 
115 33 148 

93 22 115 

0.10 0.10 35p 42 398 
203 40 243 
274 38 312 
236 38 274 
108 30 138 

87 19 106 

0.30 0.30 342 38 380 
193 36 229 
262 33 295 
225 33 258 
101 26 127 

80 17 97 
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Route 
Number 

1 
2 
3 
4 
5 

1 
2 
3 
4 
5 

1 
2 
3 
4 
5 

TABLE XIV 

SUMMARY OF RESULTS FOR THE "F" TYPE PROBLEM USING 
ALGORITHM (II) WHERE ~k ... 1'1k ... 0. OS AND 

8 = 0.50 

Total Elapsed 
a.k Travel Unload Time of Each 

Time Time Route 
(minutes) (minutes) (minutes) 

0.025 368 44 412 
212 42 254 
219 40 259 
244 47 291 
211 42 253 

0.10 356 44 400 
203 42 245 
209 40 249 
234 47 281 
202 42 244 

0.30 342 44 386 
193 42 235 
199 40 239 
223 47 270 
192 42 234 
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Route 
Number 

1 
2 
3 
4 
5 

1 
2 
3 
4 
5 

1 
2 
3 
4 
5 

TABLE XV 

SUMMARY OF RESULTS FOR THE "F" TYPE PROBLEM USING 
ALGORITHM (II) WHERE ~k = 0.05 

AND 8 ... 0.5 

Travel Unload Total Elapsed 
ak ~k Time Time Time 

(minutes) (minutes) (minutes) 

0.025 '0.025 368 46 414 
212 44 256 
219 41 260 
244 48 292 
211 44 255 

0.10 0.10 356 42 398 
203 40 243 
209 38 247 
234 44 278 
202 40 242 

0.30 0.30 342 38 380 
193 36 229 
199 33 232 
223 40 263 
192 36 228 
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7.7 Summary 

A heuristic algorithm based on the concept of Clarke and Yright's 

saving approach for the "E" type problem has been developed. The devel­

opment of the heuristic approach for the "F" type problem was related to 

two new algorithms, (I) and (II). Two functions, one for each algo­

rithm, have been developed and used as the basis of the saving evalua­

tions in the "F" type problem. Two algorithms which consist the saving 

rules are used for partitioning a set of stations into feasible subsets 

using the concept of the Clarke and Yright procedure. Algorithms (I) 

and (II), which were developed in this chapter, have the capability of 

evaluating the savings for the SVRP where travel times are random vari­

ables. Hence, any SVRP with probabilistic customer demand, travel time, 

and unload time can be solved by employing the proposed heuristic 

approaches. 

A simple example problem (7.5) is employed to illustrate the algo­

rithm procedure. The process of solution of this example were divided 

into four sections. In the first part, the problem was treated as an 

"E" type problem, and in the second part as a "F" type problem, as dis­

cussed in Chapter V. The appropriate heuristic approaches of these 

types of problems were employed to design the vehicle routes. The third 

part of the analysis is related to the utilization of the developed LIGP 

technique for improving the sequence of stations on the constructed 

vehicle routes by the RCS of the problem for the "E" type problem. 

Finally, the example problem (7.5) was analyzed through the sensitivity 

analysis, as theoretically investigated in Chapter V. The results of 

this example problem fully support the theoretical background of the 

sensitivity analysis in relation to the route failure probabilities. 
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The most important characteristic of the developed algorithms for 

"E" and "F" type problems is to take into account the decision maker's 

and the customer's requirements. These procedures allow the decision 

maker to investigate and make good trade-off decisions concerning any 

possible criteria in the problem's environment. 
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CHAPTER VIII 

ANALYSIS OF RESULTS 

8.1 Introduction 

The objective of this chapter is to analyze the results obtained 

from the "E" and "F" type problems developed in Chapter VII and the SVRP 

having only probabilistic customer demands. These results will be used 

to validate the new procedure for the SVRP. Three numerical examples 

demonstrate the performance of these algorithms. The validity of these 

procedures is evaluated by comparing the results with those of the 

existing saving methods for the SVRP having only probabilistic customer 

demands. A saving method developed by Stewart [54] is selected for the 

purpose of comparison of the results for the SVRP with only probabilis­

tic customer demand. However, the lack of research in the area of SVRP 

with probabilistic customer demand and travel and unload times has made 

a comparison of results for this type of problem impossible. Therefore, 

the computational results obtained by Algorithms (I) and (II) of the "F" 

type problem, as described in Chapter VII, are only compared to each 

other. 

Before entering into the analysis of the test problems, it is 

important to discuss difficulties which may arise due to the utilization 

of CCP in the SVRP. Specifically, the major difficulty with CCP is the 

determination of appropriate probability levels for constraints. Obvi­

ously, a reasonable approach is to provide a specific range for each 
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probability level for the important constraints and several probability 

levels for other constraints, then determine the corresponding results. 

The reason for considering a specific range for probability levels is 

two-fold. First, a specific range will prevent the problem from becom­

ing too large. Second, the decision maker might not be interested in 

the whole range of the probability level which is from 0 to 1. The gen­

eral assumption, of course, is that the manager of a delivery system is 

able to determine the value of these probability levels because of his 

or her familiarity, experience, and utilization of the CCP in the SVRP. 

Another point that needs to be mentioned concerns the utilization 

of LIGP in the route improvement stage of the problem. The goal program 

developed in this research can only solve the linear and linear integer 

GP problems, For this reason, whenever a GP problem with nonlinear con­

straints appears to 0e a feasible option, a nonlinear integer goal pro­

gram regarding the minimization of the priority levels must be employed. 

In this case, the GP model should be able to solve a nonlinear problem 

with 0-1 type decision variables. 

In the examples given in this chapter for comparison purposes, one 

or more of the random variables are considered to be normally dis­

tributed. This is done for ease of comparison of the new model with the 

other models. 

8.2 Validity of the New Model 

To validate the new model, the results are first verified through 

hand computations to assure that the results satisfy all specified con­

ditions. Specifically, such verification consists of determining that 

(1) the total demand of each route and truck capacity agree, (2) each 
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customer is served by only one truck, (3) the total travel time of each 

vehicle route satisfies the predetermined travel time level, and (4) 

there is no disagreement with the total unload time of each route and 

its predetermined level. 

Next, the results obtained from this model are compared with those 

obtained from the saving method developed by Stewart [54]. Stewart's 

model is selected as a basis for comparison because the new model has 

similar characteristics provided that customer demands are probabilistic 

and travel and unload times are deterministic. 

8.3 Comparison with the Stewart Model 

In this section, two test problems proposed by Stewart [54] are 

used for the purpose of comparison. The detailed data for these prob­

lems are reproduced in Appendix C. The first test problem consists of 

fifty demand points where customer demands are considered to be normally 

distributed. The second test problem consists of 75 demand points with 

normally distributed customer demands. The objective of these two prob­

lems is the minimization of the total travelled distance between the 

stations. 

Table XVI compares the results of Clarke and Wright's algorithm 

for the CCP problem, where ~ = 0.01, 0.025, 0.10, and 0.15 are consid­

ered to be the probability of route failure for customer demand. These 

results are based on the fifty node problem with truck capacity of 160 

units and where customer demands are considered to be normally dis­

tributed. The proposed model produced routes requiring the same number 

as those derived by the Stewart algorithm. The total travel distance of 
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both algorithms are almost identical. Most likely, the small differ­

ences between the generated total travelled distance by these two proce­

dures is due to round-off errors in integer calculations. 

Table XVII summarizes the computational results of Clark and 

Wright's algorithm for the CCP problem of 75 demand points (second test 

problem) for ~values of 0.025, 0.05, and 0.10, where the capacity of 

each truck is considered to be 140 units. The customer demands were 

assumed to be normally distributed. The detailed data for this problem 

is shown in Appendix C. The results indicate that the same number of 

vehicle routes and nearly identical travel distances are obtained by 

both procedures. It is expected that the route distance will decrease 

with the increase in the ~ probability level. 

8.4 Validity of the Developed Heuristic 

Approaches 

In this section the validity of the developed heuristic approaches 

for solving the "E" and "F" type problems is proven. A numerical prob­

lem (third test problem) is furnished in order to demonstrate some 

important points when "E" and "F" type problems are used. The model is 

solved with the total distance ("E" type problem) and total elapsed time 

("F" type problem) as two separate objective functions. The data for 

this problem is randomly generated [51] with the following characteris­

tics: 

1. this problem is an extension of Steward's 50-node problem, 

2. customer demands are normally distributed, 

3. unload times are poisson distributed such that mean unload 

time is equal to mean customer demand, 



Problem 
Number 

1 

2 

3 

4 

TABLE XVI 

COMPARISON OF RESULTS OF THE 50 DEMAND POINTS 
WITH THE STEWART ALGORITHM FOR THE CHANCE­

CONSTRAINED VRP WITH NORMALLY 
DISTRIBUTED CUSTOMER DEMAND 
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Stewart Proposed Procedure 

TJ Distance Number of Distance Number of 
(Mile) Routes (Mile) Routes 

0.010 606 7 607 7 

0.025 596 6 590 6 

0.100 621 6 622 6 

0.150 623 6 623 6 

Truck Capacity = 160 units 

Problem 
Number 

1 

2 

3 

TABLE XVII 

COMPARISON OF RESULTS FOR 75 DEMAND POINTS WITH 
THE STEWART ALGORITHM FOR CHANCE-CONSTRAINED 

VRP WITH NORMALLY DISTRIBUTED CUSTOMER 
DEMAND 

Stewart Proposed Procedure 

TJ Distance Number of Distance Number of 
(Mile) Routes (Mile) Routes 

0.025 975 13 973 13 

0.050 948 12 

0.100 923 12 923 12 

Truck Capacity = 140 units 
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4. mean travel time between stations i and j is considered to be 

5. 

a linear function of distance between stations i and j. It is 

evaluated through the following equation, mean of 

tij - 1.2 dij + 3, and 

the standard deviation, atij , of travel times was randomly 

generated using a uniform random number generator so that atij 

fall between zero and 1/4 of the mean travel time of tij· 

In this case, the customer demands and travel and unload times are 

assumed to be independent of each other. The detailed data for charac-

teristics 1 through 5 are shown in Appendix C. 

The following conditions for solving this problem are shown in 

Table XVIII: 

1. truck capacity with values of 140, 160, and 200 units, 

2. unload time with values 60, 90, and 120 minutes for each 

vehicle route in order to solve the "E" type problem, 

3. travel time with values 420, 390, and 360 minutes per route 

for solving the "E" type problem, 

4. route failure probabilities of ak, ~. and ~ can accept 

ranges 0 < ak < 0.20, 0 < ~ < 0.10, and 0 < ~ < 0.10, 

5. in Algorithm (I) of "F" type problem, 'Y can accept values 

0.70 < 'Y < 0.99, and 

6. in Algorithm (II) of "F" type problem, 8 can accept values 

0.50 < 8 < 4.0. 

The amount of truck capacity, maximum value of travel and unload 

times per each vehicle route, value of probability levels, and other 
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factors such as ~ and 8 are chosen arbitrarily. A set of nine subprob-

lems considering different combinations and using previous conditions 

are designed and illustrated in Table XVIII. 

Subproblem 
Number 

1 
2 
3 

4 
5 
6 

7 
8 
9 

Truck 

TABLE XVIII 

SUMMARY OF DATA FOR TEST PROBLEM 
NUMBER 3 

Mean 
Unload Travel 

Time Time (lk 
Capacity (minutes) (minutes) 

140 60 420 0.05 
140 60 420 0.10 
140 60 420 0.20 

160 90 390 0.05 
160 90 390 0.10 
160 90 390 0.20 

200 120 360 0.05 
200 120 360 0.10 
200 120 360 0.20 

f3k 'Tlk 

0.10 0.025 
0.10 0.025 
0.10 0.025 

0.10 0.025 
0.10 0.025 
0.10 0.025 

0.025 0.01 
0.050 0.05 
0.10 0.10 

The purpose of this section is to solve these nine subproblems by 

treating them in the following categories: 

Category 1. "E" type problem, 

Category 2. "F" type problem using Algorithm (I) with ~ = 0.90, 

Category 3. "F" type problem using Algorithm (II) with 8 = 0.50. 



Eighteen additional subproblems are solved by treating subproblem 9 as 

Category 4. "F" type problem using Algorithm (I) with 1 = 0.70, 

0.80, 0.82, 0.85, 0.87, 0.92, 0.95, 0.97 and 0.99, 

and 

Category 5. "F" type problem using Algorithm (II) with 8 

1.0, 1.5, 1.7, 2.0, 2.3, 2.5, 3.0, and 4.0. 

0.40, 
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As can be seen, a grand total of 45 subproblems will be solved using the 

data and information of this example problem. 

Two procedures have been employed to solve this test problem. 

First, it is treated as an "E" type problem where the minimization of 

the total travelled distance is the criterion. Second, it is treated as 

a "F" type problem using the minimization of total elapsed time of the 

whole delivery system as a criterion. It is important to note that the 

upper bounds for travel and unload times for each route, as given in 

Table XVIII, are not used in the solution process of the problem when 

the "F" type procedure is employed. Therefore, the parameters to be 

considered at the time of analysis of results of the "F" type problem 

are truck capacity, probability levels ak, ~. and ~· and other fac­

tors such as 1 and 8. 

8.4.1 Results of Category 1 

Table XIX illustrates the minimization of the total travel dis­

tance of the delivery system under the existence of travel and unload 

time constraints and truck capacity (Category 1). The results indicate 

that by increasing the probability levels of a, ~. and ~ the travel and 

unload times of each vehicle route and consequently the total elapsed 

time of the whole delivery system decreases. The number of vehicle 



routes and total travelled distance of the whole delivery system 

decreased from 17 to 8 routes and 1036 to 675 miles as the vehicle 

capacity increased from 140 to 200, respectively. 

8.4.2 Results of Category 2 

Table XX demonstrates the results of the nine subproblems for the 

"F" type problem using Algorithm (I) where~= 0.90 (Category 2). The 

table shows that a better solution can be obtained in terms of minimum 

number of vehicles and minimum travel and unload times when this proce­

dure is selected. It also shows that increasing truck capacity 

decreases the number of vehicle routes. The·final observation is that 

when ak (the route failure probability for travel time) increases, the 

total travel time of the whole delivery system decreases. 

8.4.3 Results of Category 3 
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Table XXI, which is self explanatory, describes the improvement 

process in detail. The results show that the objective function which 

measures the total elapsed time of the whole delivery system has 

improved in all cases. It is important to note that the number of vehi­

cle routes decreased as the truck capacity increased. 

8.4.4 Results of Category 4 

Table XXII shows the results of subproblem 9 where ~ has 

increased from 0.70 to 0.99. The number of vehicle routes and total 

unload times is fixed for all cases. The total travel times decrease as 

the value of~ increases from 0.70 to 0.99. It is interesting to note 



Problem 
Number 

1 
2 
3 

4 
5 
6 

7 
8 
9 

Problem 
Number 

1 
2 
3 

4 
5 
6 

7 
8 
9 

TABLE XIX 

SUMMARY OF RESULTS OF "E" TYPE PROBLEM 
(CATEGORY 1) 

Travel Unload Total Elapsed 
Distance Time Time Time 

(Mile) (Minutes) (Minutes) (Minutes) 

1036 1474 918 2392 
1036 1456 918 2374 
1036 1436 918 2354 

783 1140 891 2031 
783 1128 891 2019 
783 1113 891 2004 

675 994 876 1870 
695 1010 903 1913 
675 973 876 1849 

TABLE XX 

SUMMARY OF RESULTS FOR THE "F" TYPE PROBLEM 
USI~G ALGORITHM (I) YHERE ~ = 0.90 

(CATEGORY 2) 

Total Total Total 
Travel Unload Elapsed Time 

Time Time (minutes) 
(minutes) (minutes) 

964 867 1831 
953 867 1820 
942 867 1809 

959 861 1820 
949 '861 1810 
939 861 1800 

902 896 1798 
878 876 1754 
861 853 1714 
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Number of 
Routes 

17 
17 
17 

11 
11 
11 

8 
8 
8 

Number of 
Routes 

7 
7 
7 

6 
6 
6 

5 
5 
5 



Problem 
Number 

1 
2 
3 

4 
5 
6 

7 
8 
9 

~ 

0.70 
0.80 
0.82 
0.85 
0.87 
0.90 
0.92 
0.95 
0.97 
0.99 

TABLE XXI 

SUMMARY OF RESULTS FOR THE "F" TYPE PROBLEM 
USING ALGORITHM (II) WHERE 8 = 0.50 

(CATEGORY 3) 

Total Total Total 
Travel Unload Elapsed Time 

Time Time (minutes) 
(minutes) (minutes) 

995 872 1867 
986 872 1858 
972 872 1844 

965 861 1826 
955 861 1816 
946 861 1807 

944 853 1797 
911 876 1787 
895 854 1749 

TABLE XXII 

SOLUTION OF SUBPROBLEM 9 USING ALGORITHM (I) 
WITH VARIOUS VALUES OF ~ 

(CATEGORY 4) 

Travel Unload Total Elapsed 
Time Time Time 

(minutes) (minutes) (minu~es) 

877 853 1730 
886 854 1740 
877 853 1730 
877 853 1730 
877 853 1730 
861 853 1714 
860 853 1713 
860 853 1713 
860 853 1713 
860 853 1713 
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Number of 
Routes 

8 
8 
8 

6 
6 
6 

5 
5 
5 

Number of 
Routes 

5 
5 
5 
5 
5 
5 
5 
5 
5 
5 



that the total travelled time remains constant when ~ increases from 

0.82 to 0.87 and from 0.92 to 0.99. 

8.4.5 -Results of Category 5 

Table XXIII illustrates the results of subproblem 9 where 8 

increases from 0.40 to 4.0. The amount of travel time remains constant 

as the value of 8 increases from 1.0 to 2.3 and from 2.5 to 4.0. A 

total travel time of 887 minutes is obtained as 8 increases from 1.0 to 

2.3. No change in the number of vehicle routes occurred as 8 increased 

from 0.40 to 4.0. The results from Tables XXII and XXIII indicate that 

the amount of total elapsed time provided by Algorithms (I) and (II) of 

the "F" type problem equalize as~ and 8 both are assigned large values. 

It is therefore concluded that Algorithms (I) and (II) are closely 

related and that the results of these algorithms can be used for the 

purpose of comparison. 

8.5 Summary 

Several aspects of the SVRP have been analyzed in this chapter. 

The computational experience of the proposed procedure on three test 

problems has been presented, and the computational results of a SVRP 

having only probabilistic customer demands on two test problems has been 

compared with the available procedure from the literature. It has been 

shown that a SVRP can be treated as both "E" and "F" type problems. 

Usually the "E" type problem is expected to produce a larger number of 

vehicle routes because the objective function measures the total trav­

elled distance with restrictions on travel and unload times and truck 

capacity. On the other hand, the "F" type problem measures the total 

158 



0.40 
0.50 
1.00 
1.50 
1. 70 
2.00 
2.30 
2.50 
3.00 
4.00 

TABLE XXIII 

SOLUTION OF SUBPROBLEM 9 USING 'ALGORITHM (I) 
WITH VARIOUS VALUES OF 8 

(CATEGORY 5) 

Travel Unload Total Elapsed 
Time Time Time 

(minutes) (minutes) (minutes) 

899 853 1752 
895 854 1749 
887 854 1741 
887 854 1741 
887 854 1741 
887 854 1741 
887 854 1741 
860 853 1713 
860 853 1713 
860 853 1713 
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Number of 
Routes 

5 
5 
5 
5 
5 
5 
5 
5 
5 
5 
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elapsed time of the whole delivery system with no restrictions on travel 

and unload times for each vehicle route. The computational results of 

the experiments on the 45 subproblems show that the algorithm is capable 

of solving different types of SVRP considering different conditions. 

Additionally, sensitivity analysis on the final result can be performed 

by changing the probability levels, upper bounds on travel and unload 

times, truck capacity, and by using different values of~ and 8 for 

Algorithms (I) and (II) of the "F" type problem. 



CHAPTER IX 

USING INTERACTIVE COMPUTER PROGRAMS 

9.1 Introduction 

This chapter describes two interactive computer programs which 

primarily implement the.route construction and route improvement stages 

of the SVRP. The computer program for the route construction stage of 

the problem, whether deterministic or probabilistic VRP, provides the 

user a tool for designing vehicle routes. The computer program for the 

PREGP and PARGP, whether the final solution for the decision variables 

is required to be continuous or ~nteger, supply a good procedure for 

solving any types of LGP. 

Both computer programs are interactive in such a way that the com­

puter alerts the user for the necessary inputs. These two programs are 

coded in FORTRAN. The LIGP program is shown in Appendix A and the SVRP 

program is shown in Appendix B. For the user, the more important para­

meters are provided by the program in order to make the procedure faster 

and save system operating time. For instance, the values of ~ and 8 are 

provided by the SVRP program and presented to the user for selection. 

Additionally, these two interactive computer programs are designed to 

investigate the user's input data and then prompt the user to correct 

probable errors or inconsistencies. As a saf~guard, the program will 

move into a new stage only when the input has been checked by the pro­

gram and verified by the user. These interactive procedures are coded 
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in such a way that any user, with or without previous knowledge about 

the computer and/or the mathematical structure of these models, can eas­

ily operate the system to determine the most desireable solution. Fur­

thermore, the values to be entered are questioned and explained by the 

program. For instance, when several values must be entered, the program 

explains how to enter the data and instructs the operator to leave a 

blank space between the entries. 

The remainder of this chapter explains these two interactive pro­

cedures in more detail. The next two sections deal with the description 

of the interactive computer program for the LIGP and for the SVRP, 

respectively. 

9.2 Interactive Linear Integer 

Goal Programming 

This section is concerned with the analysis of the linear integer 

goal programming procedures, LIPREGP and LIPARGP, as coded in FORTRAN 

and presented in Appendix A. The interactive procedure for the PREGP is 

based on the simplex method approach described by Zeleny [69], while the 

PARGP technique uses the concept of partitioning goal programming devel­

oped by Ravindaran [4]. These two techniques can be used to obtain both 

continuous and integer solutions, and additionally, the interactive 

integer PREGP technique can be used for the sensitivity analysis of the 

problem. The two integer programming methods discussed in Chapter VI 

are incorporated into these two goal programming procedures. 

The interactive PREGP can be employed to 

1. derive a solution to a general goal programming problem, 

2. perform a sensitivity analysis, 



3. derive an integer solution (pure or mixed integers) by the 

cutting plane method, and 

4. derive an integer solution (pure or mixed integers) by the 

branch and bound procedure. 
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A need for the post optimality analysis comes after the solution 

of the problem has been obtained. This is because a number of changes 

may be necessary after the problem is solved. For instance, the goal 

attainment levels may increase or decrease, or the technological coeffi­

cients may need to be changed. This computer program can be used when 

it is desirable to evaluate a set of new solutions because of one or 

more of the following changes: 

1. change one or more right-hand side values, 

2. add one or more new decision variables, 

3. add one or more new objective functions, or 

4. change the coefficient of a nonbasic variable associated with 

the ith row, jth nonbasic column. 

The PARGP performs exactly the same as the PREGP except that it 

does not consider the best feature of the PREGP, which is the sensitiv­

ity analysis. This is because when the optimal solution to the kth 

subproblem is obtained, the PARGP procedure requires the deletion of all 

the nonbasic columns which have a negative value of (Zj - Cj) from the 

optimal tableau of the kth problem for further consideration (before the 

addition of new goal constraints of such problem K+lth). However, a 

continuous or integer solution to any problem with linear constraints 

and objective function terms can be obtained by each of these proce­

dures. The algorithmic flowchart presented in Figure 8 gives the gen­

eral idea of these computer programs. 



Number of problems to 
be solved 

Display of Menu 1 

Choose the option 

Read the input dat 
for the whole 

roblem 

Subroutines for 
PREGP procedure 

Print the final 
results 

Continuous solu­
tion by PARGP 

read the input data 
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subproblem 

Subroutines for 

PARGP procedures 

Yes 

Figure 8. Algorithmic Flowchart of the Computer Program 
for LIGP (Continued) 
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The first question asked by this program is the number of problems 

that are to be solved. After the user has input data and pressed the 

RETURN key, the program asks for verification of the operator's response 

to the question, then continues by displaying the options from Menu 1 as 

presented below. An input of "1" (PREGP) or "2" (PARGP) for this menu 

indicates that the LPREGP or LPARGP is to be used as a selected proce­

dure for solving the desired problem. 

DISPLAY OF MENU 1 

CONTINUOUS SOLUTION BY PREGP PROCEDURE 

*** ENTER 1 *** 

CONTINUOUS SOLUTION BY PARGP PROCEDURE 

*** ENTER 2 *** 

*** CHOOSE THE OPTION *** 

The user is allowed to choose a printing procedure for the inter­

mediate computer calculation. The options are to 

1. print all calculations in the tableau format, or 

2. print only the basic variables and their values including the 

level of achievement of all priority goals. 

After a continuous solution for the original problem is obtained, 

the program displays a menu of sensitivity analysis, Menu 2. One or 

more of the changes of the same type which are given in this menu can be 

performed at the same time. For instance, one can change one or more 

right hand side values or add one or more new decision variables of the 

problem. 
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*** DISPLAY OF MENU 2 *** 

*** MENU FOR SENSITIVITY ANALYSIS *** 

TO DO NO CHANGES ENTER 5 

CHANGE THE RHS VALUES 

** ENTER 1 ** 

TO ADD A NEW DECISION VARIABLE 

** ENTER 2 ** 

TO ADD A NEW OBJECTIVE FUNCTION 

** ENTER 3 ** 

TO CHANGE THE COEFFICIENT ASSOCIATED WITH THE 

ith ROW, jth NONBASIC COLUMN 

** ENTER 4 *** 

*** CHOOSE THE OPTION *** 

When no changes are required, the user enters 5 in order to move 

into the next stage. In this case, the program displays Menu 3, which 

allows the selection of choices for an integer method, or the option to 

terminate with a continuous solution only. In order to evaluate the 

integer solution of the required decision variables, the user can elect 

to use the final result of the original problem, or continue with the 

results associated with the last sensitivity analysis. 

DISPLAY OF MENU 3 

INTEGER SOLUTION BY PREGP USING GOMORY GP 

*** ENTER 3 *** 

INTEGER SOLUTION BY PREGP USING B & B 

*** ENTER 4 *** 
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INTEGER SOLUTION BY PARGP USING GOMORY GP 

*** ENTER 5 *** 

INTEGER SOLUTION BY PARGP USING B & B 

*** ENTER 6 *** 

TO KEEP THE CONTINUOUS SOLUTION 

*** ENTER 7 *** 

*** CHOOSE THE OPTION *** 

The method of data arrangement for this program is described in 

Section 9.2.1. 

9.2.1 The Data Input Procedure 

For the sake of time and quick data input, the operator is advised 

to arrange the data before the logon process begins. To use the PREGP 

technique, the following data arrangement is necessary: 

1. number of constraints, number of variables, and total number 

of priority levels, 

2. number of original decision variables, number of positive and 

negative deviational variables, 

3. number of nonzero elements in the left hand side of the con-

straints, 

4. right hand sides values, 

5. basis which is the list of the negative deviation variables, 

and 

6. number of nonzero elements in all priority levels. 

Care should be taken in the arrangement of the input data for the 

PARGP procedure. The following steps should be followed before the 

arrangement of data for PARGP starts: 
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1. break down the original problem into as many subproblems as 

the total number of priorities, 

2. the data arrangement for the first subproblem is exactly the 

same as the data arrangement for PREGP, 

3. the number of constraints and variables for the Kth subproblem 

should be calculated as below: 

Number of constraints for the Kth subproblem = (number of goal and rigid 

constraints used in all K subproblems) - (number of goal and rigid con­

straints used in all (k-1) subproblems), and, 

Number of variables for the Kth subproblem = (number of variables 

(decisions and deviations) used in all k subproblems) - (number of vari­

ables (decisions and deviations) used in all (K-1) subproblems), and 

4. enter "0" if no new constraint or no new variable has been 

used in the new subproblem. 

9.3 Interactive Stochastic 

Vehicle Routing Problem 

The main objective of this section is to describe the interactive 

computer program for the SVRP. Because deterministic VRP is a special 

case of the SVRP, the program is designed to solve any of these types of 

problems. A SVRP can be categorized as a VRP 

1. with only probabilistic customer demand, 

2. with probabilistic travel time, unload time, and customer 

demand when the total cost of whole system is expected to be 

minimized ("E" type problem), and 
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3. with probabilistic customer demand, travel and unload times 

when total elapsed time of whole delivery system is expected 

to be minimized ( "F" type problem) . 

The algorithmic flowchart (Figure 9) gives the general idea about 

this interactive computer program. 

The number of problems needed to be solved by the system is the 

first question the user responds to. Following the verification of this 

response by the operator, the program displays Menu 1 and expects a 

response of "1", "2", "3" or "4" as presented below: 

DISPLAY OF MENU 1 

SELECT ONE OF THE FOLLOWING 

TO SOLVE THE DETERMINISTIC VRP 

** ENTER 1 ** 

TO SOLVE A SVRP WITH PROBABILISTIC DEMAND 

** ENTER 2 ** 

TO SOLVE SVRP OF "E" TYPE PROBLEM 

** ENTER 3 ** 

TO SOLVE SVRP OF "F" TYPE PROBLEM 

** ENTER 4 ** 

9.3.1 The Data Input Procedure 

VRP: To prevent errors at the time of entering the data, the user 

needs to arrange the data before the logon process begins. The arrange­

ment of data for the VRP is as shown below: 

1. the distance type to be used (euclidean or linear), 

2. number of demand points + depot, 

3. truck capacity, 
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4. coordinate of depot first and then customer's locations, and 

5. customer demands. 

SVRP: Steps 1 through 4 of the data arrangement for the VRP can 

be used when one deals with the SVRP having only probabilistic customer 

demands. The remainder of steps for SVRP are: 

5. the Z value (from the normal table) of the route failure 

probability when customer demand is probabilistic, and 

6. mean and variance of customer demands. 

The arrangement of data for the SVRP of the "E" type problem is 

shown below: 

1. the type of distribution function for customer demand, 

2. number of customer demands + depot, 

3. capacity of truck, 

4. total expected unload and travel times for each vehicle route, 

5. the Z values for a, ~. and~ probability levels, 

6. mean travel time, 

7. variance of travel time, 

8. mean and variance of unload time, 

9. mean and variance of customer demand, and 

10. type of distance (euclidean or linear). 

The arrangement of data for the "F" type problem is very similar 

to the "E" type problem. However, in this case items 1, 4, and 10 are 

excluded from the data arrangement. 

After all necessary data have been entered into the system, the 

computer will perform all necessary calculations and print the following 

outputs: 
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1. total cost, distance, or time depending on the nature of 

criteria, 

2. set of all constructed vehicle routes, 

3. total demand of each vehicle route, 

4. total travel and unload times for each vehicle route (far "E" 

and "F" type problems), and 

5. number of required vehicles. 

In many cases the user will find it necessary to evaluate a set of 

new solutions by incorporating one or more of the following modifica­

tions: 

1. change the truck capacity, 

2. change the tot~l unload and travel times, 

3. change the value of a, ~. and~. 

4. change one or more customer demands, 

5. change the unload time at one or more of stations, 

6. change the coordinate of locations, and/or 

7. change the travel time between the ith and jth customer. 

One or more of these changes can be made when the algorithm dis­

plays Menu 2 as shown below: 

DISPLAY OF MENU 2 

SELECT ONE OF THE FOLLOWING 

TO CHANGE THE CAPACITY OF TRUCK 

** ENTER 1 ** 
TO CHANGE THE "UTIME" OR "TTTIME" 

** ENTER 2 ** 
TO CHANGE "ALPHA", "BETA" AND "ETA" 

** ENTER 3 ** 
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case, 

TO CHANGE THE COORDINATE OF LOCATIONS 

** ENTER 4 ** 

TO CHANGE THE CUSTOMER DEMAND 

** ENTER 5 ** 

TO CHANGE THE UNLOAD TIME 

** ENTER 6 ** 

TO CHANGE THE TRAVEL TIME 

** ENTER 7 ** 

** TO DO NO CHANGES ENTER 8 ** 

When no changes are expected, the user should enter 

the user is allowed to do one of the following: 

1. enter "1" to change an "E" type problem to a "F" 

2. enter "2" to change a "F" type problem to an "E" 

or 

3. enter "3" to terminate. 

"8". In this 

type problem, 

type problem, 

Changes 1 through 5 of Menu 2 do not require recalculation and 

ranking of the savings which are associated with each of the two demand 

points. When the appropriate information for any specific changes has 

been entered, the program restarts the process of route construction, 

considering all new and old restrictions of the problem. Although these 

types of changes save operation as well as computer time, the 6th and 

7th changes from list of Menu 2 save only operation time. For these two 

cases, the program restarts all necessary calculations for savings eval­

uations and ranks these savings from the largest to the smallest, as 

described in Chapter VII. 

175 



This program is well structured for considering more than one 

change at a time. For instance, it is possible to change truck capa­

city, values a, ~ and ~. customer demands, and/or coordinates of loca­

tions before moving toward the calculation process. However, the pro­

gram's structure demands that when making such changes, the coordinates 

of locations and travel time be considered last. 

9.4 Summary 

In this chapter, the important features of the interactive com­

puter programs for SVRP and linear integer goal programming are 

described. Also, methods in which the decision maker can use the inter­

active LIPREGP for sensitivity analysis and determination of integer 

solutions using one of the LIGP techniques are demonstrated. A LIPARGP 

technique which can be used for deriving a continuous or an integer 

solution is also given. The methods of data arrangements for these two 

procedures are fully described. 

The interactive SVRP is described in detail and it is shown that 

three different categories of these types of problems can be solved by 

this procedure. Without termination from the program, the user can 

change the type of problem which was being used previously. Also, the 

interactive SVRP can be used when the operator desires to evaluate a set 

of new solutions by changing the truck capacity, total travel and unload 

times, and/or probability levels. 
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CHAPTER X 

CONCLUSIONS AND RECOMMENDATIONS 

10.1 Conclusions 

This dissertation has presented a study of a GP model of the gen­

eral SVRP in which travel time, unload time, and customer demands are 

random variables. This research extends the state of the art in multi­

ple objectives SVRPs by fulfilling the primary and secondary objectives 

and all the subobjectives of Chapter I. That is: 

1. A GP model of the problem within the framework of the SVRP has 

been mathematically formulated, 

2. A SVRP in which travel time, unload time, and customer demands 

may be represented as random variables has been developed, 

3. An equivalent deterministic form of the SVRP for RCS and RIS 

of the problem has been formulated, 

4. The existence of a new set of deterministic linear time con­

straints which are equivalent to the nonlinear set of time constraints 

of the problem for distributions such as poison, binomial, negative bi­

nomial, gamma, chi-square and exponential has been proven through Theory 

5.2, 

5. A linear GP formulation of the RIS of the problem where con­

flicting multiple objectives are treated explicitly has been developed, 

6. The effects of the route failure probabilities of ak and ~k 

on the total elapsed time of the system with 0 ~ ak ~ 1 and 
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0 ~ ~k ~ 1 for all k have been proven through Theories 5.3, 5.4, and 

5.5, 
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7. The existence of the optimum solution for the route construc­

tion stage of the problem has been proven through Theory 5.1, 

8. A heuristic algorithm which is a modification of the Clarke 

and Wright heuristic procedure has been developed in order to solve the 

"E" type problem, 

9. Two new heuristic approaches based on the concepts of the 

Clarke and Wright algorithm have been originated in order to solve the 

"F" type problem. The computational experiments show that these two 

procedures are closely related, 

10. A comprehensive, interactive computer program for the SVRP has 

been developed and described. This program is capable of solving a VRP, 

a SVRP having only probabilistic customer demands, and a SVRP with "E" 

and "F" type problems. This program allows the decision maker's 

involvement in the solution process of the problem. The decision maker 

can evaluate the solution by changing the value of probability levels, 

truck capacity, customer demands, and other important parameters of the 

problem to fully analyze the sensitivity of the final solution, and 

11. An interactive Computer Program for the LIGP using the concepts 

of preemptive and partitioning GP has been developed and described to 

determine the most favorable vehicle routes of the multiple objective 

SVRP's where the decision policies and customer requirements need to be 

fully considered. The interactive procedure allows a decision maker to 

provide an integer solution for the problem, and to understand the 

behavior of the system through the utilization of the sensitivity analy­

sis of the optimal solution. 
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10.2 Recommendations 

There are several directions in which additional research should 

be conducted in the area of the SVRP and the LIGP technique. Some pos­

sible considerations for future research are presented below: 

1. To develop an interactive computer program as a link between 

the interactive SVRP and LIGP programs in order to eliminate the opera­

tor's time for mathematical formulation of the GP problem which is based 

on the constructed vehicle routes from the RCS of the problem. 

2. To develop new heuristic approaches for solving the "E" and 

"F" type problems. 

3. To develop an iterative procedure that solves the "F" type 

problem optimally. 

4. To apply a computer graphic system to the interactive proce­

dure developed for the SVRP to help the decision maker visualize the 

constructed vehicle routes. 

5. To consider other stochastic elements such as vehicle break­

downs together with the SVRP which is developed in this research. 

6. To develop a heuristic approach for solving a GP problem where 

decision variables are required to be 0-1. 

7. ·To develop an interactive nonlinear integer goal program that 

can solve the nonlinear constraints of the type generated by the CCP 

with 0-1 decision variables. 
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INTERACTIVE COMPUTER PROGRAM FOR LINEAR 
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c~ FORTRAN PROGRAM TO SOLVE THE LINEAR 
C• INTEGER PREEMPTIVE GOAL PROGRAMMING 
c~ (LIPREGL).AND LINEAR INTEGER PARTITION- * 
C* NING GOAL PROGRAMMING(LIPARGP) PROBLEMS ~ 

C* 

C* 

C* 
c· 
c• 
C* 
c· 
C* 
C* 
C* 
'c• 
c• 
c· 
C* 

c• 

AUTHOR: YAHYA ZARE-MEHRJERDI 
ADVISOR:DR.M.P.TERRELL 

COMPUTER: IBM 3061D 
DATE: NOVEMBER 1986 

SCHOOL OF INDUSTRIAL 
ENGINEERING AND MANAGEMENT 

OKLAHOMA STATE UNIVERSITY 
STILLWATER,OK. 74078 

* 
" 

"' 
* 

* 

C* THIS PROGRAM ALLOWS THE USER TO FIND A CONTINOUS OR 
C• INTEGER SOLUTION OF A LINEAR .GOAL PROGRAMMING PROBLEM 
C* USING PREEMPTIVE GOAL PROGRAMMING(PREGP) OR PARTITIONNIG 
C* GOAL PROGRAMMING(PARGP)METHODS. 
C"' AN INTEGER SOLUTION OF PROBLEM CAN BE OBTAINED USING 
c~ EITHER CUTTING PLANE OR BRANCH AND BOUNO TECHNIQUES. 
C"' AODITIONNALLY,USER CAN OBTAIN A MIXED INTEGER SOLUTION 
C* OF THE PROBLEM BY EMPLOYING EITHER OF THESE GP METHODS. 
C* FINALLY,PREGP CAN BE USED FOR THE PURPOSE OF SENSITIVITY 
c~ ANALYSIS OF THE PROBLEM. 

c 
C* THE FOLLOWING SUBROUTING ARE USED IN THIS 
C* PROGRAM. 
c~ 

c~ INTERS= TO READ THE INPUT DATA 
c• PIVCOL= TD FIND THE PIVOT COLUMN 
c• PIVROW= TO FIND THE PIVOT ROW 
C* CALC TO UPDATE THE NEW TABLEAU 
c• PARTG = IS USED FOR PARTITIONNING GP. 
C" ACHECK= TO DETERMINE THE P OF ALTERNATIVE SOLUTIONS FOR 
c~ !NILS = TO PREPARE THE INITIAL TABLEAU FOR SUBPROBLEMS 
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PARGP 



c~ 

c 

c~ 

c 
c 

TSORT 

BOUND 
BRNCH 

OTHER THAN THE FIRST ONE FOR PARGP 
IT SORTS THE BASIC AND NONBASIC VARIABLES WHOSE VALUES 

ARE REQUIRED TO BE INTEGER 

TO CONTROL THE PROGRAM FOR THE BRANCH AND BOUND PROCEDU 
TO DETERMINE THE SOURCE ROW AND DEVELOPE THE NEW 

CONSTRAINTS FOR THE BRANCH AND BOUND PROCEDURE 

C• SUMMARY= IT STORE ALL INTEGER SOLUTIONS IN ORDER TO PROVIDE 
THE USER WITH THE LIST OF ALL INTEGER VARIABLES 

c 
C MEMOH = CONSISTS THE CONTENTS OF MENU 1,2 AND 3. 
C• ADDUP = TO ENTER THE DATA FOR NEW PRIORITY LEVEL 
C* DUALS = STANDS FOR DUAL SIMPLEX METHOD 
C• PIVROW= TO FIND THE PIVOT ROW 
c• FACT1 TO CONTROL THE PROGRAM FOR PREEMPTIVE LIGP TECHNIQUE 
c• FACJ2 TO CONTROL THE PROGRAM FOR PARTITIONNING LIGP 
c• TECHNIQUE 
c· 

INTGR 

c· 

TO DEVELOP THE GOMGRY CUTTING PLANE FOR PURE AND MIXED 
INTEGER VARIABLES FOR BOTH PREGP AND PARGP TECHNIQUES 

C• SADD= TO PROVIDE THE OBJECTIVE FUNCTION FOR THE FINAL TABLEAU 
c• AND TO DOWNGRADE THE PREVIOUS OBJECTIVES BY ONE LEVEL 
c• GOMORY= TO FIND THE SOURCE ROW AND COUNT THE P OF AVAILABLE 

INTEGER VARIABLES 

C• BINVRS= TO CALCULATE THE INVERSE OF MATRIX B 

C• SENSTY= TO PERFORM THE SENSITIVITY ANALYSIS FOR PREGP. 
C* 

DEFINITION OF VARIABLES 

IPEMPT 
I PART 

NPRO 
NO PRO 

NOV 
NOC 

IP 
IC 
IW 

STANDS FOR PREEMPTIVE GOAL PROGRAMMING PROCEDURE 
STANDS FOR PARTITIONNIG GOAL PROGRAMMING PROCEDURE 

TOTAL NUMBER OF PRIORITIES 
NUMBER OF PRIORITIES.NOTE THAT NOPRO=NPRO 
FOR PREEMPTIVE PROCEDURE.NOPR0=1 FOR SGL. 
NUMBER OF VARIABLES 
NUMBER OF CONSTRAINTS 
IS THE NUMBER OF CONSTRAINTS PLUS ONE 
IS THE NUMBER OF CONSTRAINTS PLUS PRIORITIES 
IS THE NUMBER OF ALL VARIABLES PLUS ONE 
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C* 
C* 
C* 
c· 
C* 
C• 
C* 
C* 
C* 
c· 
c· 
C* 
C* 
C* 
C* 
C* 
C* 
C* 
c• 

NOS 
LND1 
LPD1 

NPRNT 

!BOUND 

INTGP 

NXREAL 
INTRANT 

KING 
NNZRO 
IPZRO 

KINPRO 
IPROBL 
NONZRO 

FRACT 
KNOC 
KNOV 
!PVC 

NUMBER OF ORIGINAL DECISION VARIABLES 
NUMBER OF ORIGINAL NEGATIVE DEVIATIONS 
NUMBER OF ORIGINAL POSITIVE DEVIATIONS 
1 MEANS PRINT ALL INTERMEDIATE TABLEAUES 
2 MEANS TO PRINT THE LIST OF ALL VARIABLES AND 

PRIORITY LEVELS AND THEIR VALUES 
0 USE LIPREGP TOGETHER WITH THE CUTTING PLANE METHOD 
1 USE LIPARGP TOGETHER WITH THE CUTTING PLANE METHOD 
3 USE THE BRANCH AND BOUND TECHNIQUE 
0 KEEP THE FINAL SOLUTION CONTINOUS 
1 FIND THE INTEGER SOLUTION OF THE PROBLEM 
NUMBER OF INTEGER VARIABLES 
NUMBER OF ITERATIONS 
COUNTS THE NUMBER OF VARIABLES FOR THE PARGP PROCEDURE 
NUMBER OF NONZERO ELEMENST IN THE NEW CONSTRAINTS 
NUMBER OF NONZERO ELEMENTS IN THE NEW PRIORITY 
IS THE NUMBER OF PRIORITIES INCLUDING THE ABSOLUTE ONE 
NUMBER OF PROBLEMS TO BE SOLVED 
NUMBER OF NONZERO ELEMENTS IN THE MATRIX OF 
TECHNOLOGICAL COEFFICIENTS 
IS THE FRACTION PART OF THE VALUE OF A VARIABLE 
NUMBER OF NEW CONSTRAINTS TO BE ADDED IN PARGP 
NUMBER OF NEW VARIABLES TO BE ADDED IN PARGP 
STANDS FOR PIVOT COLUMN 

C* !PROW = INDICATES PIVOT ROW 
C• INC 
C* XMAX 
C* IB(I) 
C* ID(I) 
C• IN( I) 
C* IV(I) 
C* IBOR( I) 
C* IVZAR( I) 
C* ISDD(I) 

SSIN( I) 

C* LDECS(I) 
C* LPDEV(I) 
C* LNDEV(I) 
C* !REAL(!) 
c• IPM(I) 
c· 

C* DUM( I) 
C* NONBAS(I) 

IS A COUNTER 
STANDS FOR THE MAXIMUM 
ARRAY OF BASIC VARIABLES 
ARRAY OF ALL VARIABLES(DECISION PLUS DEVIATION) 
ARRAY OF GOAL ACHIVEMENT LEVELS 
ARRAY OF VALUE OF RIGHT HAND SIDE VALUES 
ARRAY OF BASIC VARIABLES (USED FOR SENSITIVITY ANAL.) 
ARRAY OF VALUE OF RHS(USED FOR THE SENSITIVITY ANAL.) 
ARRAY OF ORIGINAL LIST OF VARIABLES(USED FOR 
SENSITIVITY ANAL.) 
ARRAY OF GOAL ACHIVEMENT LEVELS(USED FOR SENSITITY 
ANAL.) 
ARRAY OF DECISION VARIABLES 
ARRAY OF POSITIVE DEVIATIONS 
ARRAY OF NEGATIVE DEVIATIONS 
LIST OF REQUIRED INTEGER VARIABLES 
0 INDICATES THAT VARIABLE I IS NONBASIC 
OTHERWISE THE NONBASIC VARIABLE HAS ALREADY BEEN 
DELETED FROM THE TABLEAU 
ARRAY OF CUTTING PLANE 
THE LIST OF NONBASIC VARIABLES FROM THE REQUIRED 
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C* 
C* KSASE( I) 
C* 
C* XDOM(I) 
C* 
C* XMOD(I) 
C* SIV(I) 
C* ISIN(I) 
C* SIN(I) 
C* ISID(I) 
C* A!V(I) 
C* 
C* A!N( I) 

C* 
C* IDVAR(I) 
C* 
C* IABASE(I) 
C* 
C* KBB(I) 
C* 
C* RHV(I) 
C"' 

c• 
C* 
c· 
c· 
c• 
C* 

ARHN(I) 

KDD(I) 

F(I) 

C• FF( I) 

C* 
C* SARRY(I) 
C• XARRY(I) 
C"' IBU(I) 
C* 
C* 
c• 
c· 
c· 
C(* 
c· 

!UN( I ) 

IUD(Il 

IUV (I ) 

C* TAB(I.J) 
C* ZZ(1,J) 
c· c(I.Jl 
c· 
C* Z(I,J) 
C"' SZV(I,J) 

INTEGER VALUED VARIABLES 
THE LIST OF BASIC VARIABLES FROM THE LIST OF THE 
REQUIRED INTEGER VALUED VARIABLES 
ARRAY OF NEW CONSTRAINTS USED IN THE BRANCH AND 
SOUND TECHNIQUE 
IT IS EQUAL TO THE -XDOM(I) 
TO SAVE THE VALUE OF THE RHS VALUES 
TO SAVE THE LIST OF THE BASIC VARIABLES 
TO SAVE THE VALUE OF THE PRIORITY LEVELS 
TO SAVE THE LIST OF THE DECISION VARIABLES 
TO SAVE THE VALUE OF PRIORITY LEVELS OF THE OPTIMAL 
TABLEAU FOR SOLVING SUBPROBLEM TWO 
TO SAVE THE RHS VALUE OF THE OPTIMAL TABLEAU FOR 
SOLVING SUBPROBLEM TWO 
TO SAVE THE LIST OF THE VARIABLES OF THE OPTIMAL 
TABLEAU FOR SOLVING SUBPROBLEM TWO 
TO SAVE THE LIST OF THE BASIC VARIABLES OF THE 
OPTIMAL TABLEAU FOR SOLVING SUBPROBLEM TWO 
TO SAVE THE LIST OF THESASIC VARIABLES OF OPTIMAL 
TABLEAU OF SUBPROBLEM 1 

TO SAVE THE VALUE OF THE BASIC VARIABLES OF THE 
OPTIMAL TABLEAU OF SUBPROBLEM 1 

TO SAVE THE VALUE OF THE PRIORITY LEVELS OF THE 
OPTIMAL TABLEAU OF SUBPROBLEM 1 

TO SAVE THE LIST OF·THE DECISION VARIABLES OF THE 
OPTIMAL TABLEAU OF SUBPROBLEM 1 

TO SAVE THE VALUE OF THE PRIORITY LEVEL OF SUB­
PROBLEM 1 

TO SAVE THE VALUE OF THE PRIORITY LEVELS OF SUB 
PROBLEM 2 
TO SAVE THE INTEGER SOLUTION OF VARIABLES 
TO SAVE THE LIST OF THE INTEGER VARIABLES 
TO SAVE THE LIST OF BASIC VARIABLES OF THE OPTIMAL 
TABLEAU OF SUBPROBLEM 2 
TO SAVE THE VALUE OF THE PRIORITY LEVELS OF THE 
OPTIMAL TABLEAU OF SUBPROBLEM 2 
TO SAVE THE LIST OF THE DECISION VARIABLES OF THE 
OPTIMAL TABLEAU OF SUBPROBLEM 2 

TO SAVE THE VALUE OF THE BASIC VARIABLES OF THE 
OPTIMAL TABLEAU OF SUBPROBLEM 2 
ARRAY OF TABLEAU OF THE ORIGINAL PROBLEM 
ARRAY OF TABLEAU OF THE JTH VARIABLE OF PRIORITY 1 

ARRAY OF THE PRIORITY WEIGHTS FOR THE JTH VARIABLE 
AND ITH PRIORITY LEVEL 
ARRAY OF TABLEAU OF PRIORITY VALUES 
AN ARRAY USED FOR SENSITIVITY ANALYSIS 
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C* STOF(I,Jl 
C* ATABII,J) 
C* 
C* AZE(I,J) 
C* ATT(I,J) 
C* AZZ(I.J) 
C* 
C* TUT(I,J) 
C* ZUZ(I.J) 

AN ARRAY USED FOR THE SENSITIVITY ANALYSIS 
ARRAY OF THE OPTIMAL TABLEAU USED FOR THE BRANCH AND 
AND BOUND TECHNIQUE 
THIS ARRAY IS USED IN THE BRANCH AND BOUND TECHNIQUE 
ARRAY OF OPTIMAL TABLEAU OF SUBPROBLEM 1 

= ARRAY OF PRIORITY COEFFICIENTS OF OPTIMAL TABLEAU 
OF SUBPROBLEM 1 

C*SENS(I,J) 

ARRAY OF OPTIMAL SOLUTION OF SUBPROBLEM 2 
ARRAY FROM THE OPTIMAL TABLEAU OF SUBPROBLEM 2 
GIVES THE MATRIX OF B INVERS 

C* 
C* 
c 

C* 

C* 

c 

SZZ(I.J) 
STABB(I,J) 

THIS ARRAY IS USED FOR THE SENSITIVITY ANALYSIS 
THIS TABLEAU IS USED IN THE SENSITIVITY ANALYSIS 

MAIN PROGRAM • 

DIMENSION TAB~100, 100),Z~ 100,100),ID(100),IB(100) 
DIMENSION IBOR(100),IVZAR(100) 
DIMENSION STOF(100.100),ISDD(100),SZV(100,100),SSIN(100) 
DIMENSION TABB(100,100),ZZ(1,100),IPM(1000),IREAL(50) 
DIMENSION IV(100),IN(100),LEVATT(50),C(100, 100) 
DIMENSION LDECS( 100),LPDEV(100),LNDEV(100) 
REAL IV,IN 
COMMON/B1/TAB,IV,ID,IB.LIT 
COMMON/B2/Z,IN,IP,IC,IW 
COMMON/B3/IPVC,XMAX,NOV,INO 
COMMON/B4/NPRNT,NOC,NOPRO 
COMMON/B5/NPRO,IPM,TABB,ZZ 
COMMON/B6/IPEMPT,IPART,IBOUND 
CDMMON/B7/ICHECK,INTGP,IREAL,NXREAL 
COMMON/B11/KAT,KIT 
COMMON/B12/ITRATN,KINPRO,LEVATT 
COMMON/B13/ICOUNT,IFLAG 
COMMON/B15/IPAT,KRAZY 
COMMON/B19/IBUND 
COMMON/B20/LDECS,LPDEV.LNDEV,LTOT1,LTOT2,LTOT3 
COMMON/SS1/IBOR,IVZAR,STOF,ISDD,SZV,SSIN 

C NUMBER OF PROBLEMS YOU WISH TO SOLVE 
c 

5 
7 

c 

WRITE(6,5) 
WRITE(10,5) 
FORMAT(//2X, 'ENTER THE NUMBER OF PROBLEMS YOU WISH TO SOLVE') 
READ (5,*) IPROBL 
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8 

6 

WRITE\6,8) IPROBL 
WRITE(10,8) IPROBL 
FORMAT(//2X, 'NUMBER 01= PROBLEMS=' ,2X,I2) 
IF(IPROBL.LE.O) THEN 
WRITE(6,6) 
WRITE( 10,6) 
FORMAT(//5X. 'REENTER AGAIN') 
GO TO 7 
END IF 
DO 3001 I=1,IPROBL 

C** TO COUNT THE NUMBER OF ITERATIONS 
ITRATN=O 
IBUND=O 
ICOUNT=O 

C* TO KEEP THE NUMBER OF VARIABLES. 
KAT=O 

C* TO DISPLAY MENU 1 
C• 

JOYL=1 
CALL MEMOH(JOYL,ISEN) 
IF (IPART.EQ.1) CALL PARTG 
IF(IPEMPT.EQ.1) GO TO 1000 
GO TO 3003 

C***** CALL FOR INPUT DATA 
1000 ICHECK=O 

WRITE (6,151) 
WRITE( 10, 151) 

151 FORMAT(//10X, 'ALGORITHM IS USING GP PREEMTIVE PROCEDURE') 
INTUR=1 
CALL INTERS (INTUR) 

C*** CALL FOR PIVOT COLUMN AND PIVOT ROW 

IN0=1 
DO 20 IN0=1 ,NOPRO 

10 CALL PIVCOL 
IF(XMAX.EQ.O) GO TO 20 
IF\IPVC.EQ.O) GO TO 20 
CALL PIVROW(IPROW) 
CALL CALC(IPROW) 

C** 

20 

CALL PTRG(NOV) 

IF(INO.EQ.1) GO TO 10 
IF(IN(INO).EQ.O) GO TO 20 
GO TO 10 

CONTINUE 
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ISSS=O 
C TO SPECIFY THE TYPE OF SENSITIVITY ANALYSIS 

502 WRITE(6,500) 
WRITE( 10,500) 

500 FORMAT(5X. 'DO YOU WISH TO DO ANY SENSITIVITY ANALYSIS') 
WRITE(6,501) 
WRITE( 10,501 l 

501 FORMAT(5X,'*~ ENTER 1 FOR YES **'//5X, '**ENTER 2 FOR NO*') 
READ(5,*) NOYES 

IF(NOYES.E0.2) GO TO 3003 

C* 
C* TO DISPLAY MENU 3 

c• 
JOYL=2 
CALL MEMOH(JOYL,ISEN) 
IF(ISEN.EQ.5) GO TO 3003 

ISSS=ISSS+1 
IF(ISSS.EO. 1) THEN 

IAM=1 

ELSE 
WR IT E ( 6 , 503 ) 

WRITE ( 10,503) 
503 FORMAT(/5X, 'DO YOU LIKE TO WORK WITH THE FINAL TABLEAU'/ 

+5X, 'OF THE ORIGINAL PROBLEM') 
WRITE ( 6 , 504 ) 
WRITE ( 1 0 , 504 ) 

504 FORMAT(/5X, 'ENTER' ,2X, '1: :YES' ,2X, '2:NO') 

READ(5,*) NOYYSS 

IF(NOYYSS.E0.1) THEN 

IAM=2 
CALL SENSTY(!SEN.IAM) 

IAM=3 

ELSE 
IAM=3 

END IF 
END IF 
CALL SENSTY(ISEN.IAMl 

ISUMMY=3 
CALL SUMMRY(IB,IN,NOPRO,IV,JZJJ,NOC,ISUMMYl 

GO TO 502 
C TO DETERMINE AN INTEGER PROCEDURE,CUTTING PLANE METHOD OR BRANCH 
C AND BOUND TECHNIQUE 

3003 JOYL=3 
CALL MEMOH(JOYL,ISENl 
IF(IPART.EO. 1) GO TO 3000 
IF(INTGP.EQ. 1) THEN 
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IAM=2 
CALL SENSTY{ISEN,IAM) 
IF(IBOUND.EQ.1.ANO.IPEMPT.EQ. 1) THEN 
CALL FACT1 
GO TO 3001 
ENDIF 

C1 TO DISPLAY MENU 2 
3000 IF(IBOUND.EQ. 1.ANO.IPART.EQ. 1) THEN 

CALL FACT2 

3001 

2 

GO TO 3001 
END IF 
IF(IBDUNO.EQ.2) THEN 
CALL PTRG(NOV) 
IBUND=1 
CALL BOUND 
GO TO 3001 
ENOIF 
END IF 
CONTINUE 
STOP 
END 

SUBROUTINE INTERS(INTUR) 
DIMENSION IBOR(100),IVZAR(100) 
DIMENSION STOF(100, 100),SZV(100, 100),ISOD(100),SSIN(100) 
DIMENSION TAB ( 100, 100) , Z ( 100, 100) , I 0 ( 100) , IV ( 100) 
DIMENSION IB(100),IREAL(SO),IN(100),Cl100,100) 
DIMENSION TAB8(100, 100),LEVATT(50),ZZ(1, 100),IPM(1000) 
DIMENSION LDECS(100),LPDEV(100),LNDEV(100) 
REAL IV,IN,ISM,LEVATT 
COMMON/81/TAB,IV.IO,IB,LIT 
COMMON/82/Z,IN,IP,IC,IW 
COMMON/83/IPVC,XMAX,NOV,INO 
COMMON/84/NPRNT,NOC,NOPRO 
COMMON/85/NPRO,IPM,TA8B,ZZ 
COMMDN/B6/IPEMPT,IPART.I80UND 
COMMON/B7/ICHECK.INTGP,IREAL.NXREAL 
COMMON/88/C 
COMMON/812/ITRATN,KINPRO.LEVATT 
COMMON/820/LDECS,LPOEV.LNOEV,LTOT1,LTOT2,LTOT3 
COMMON/SS1/IBOR,IVZAR,STOF,ISDD,SZV,SSIN 
GO TO (2,4),INTUR 
WRITE(6,9) 
WRITE( 10,9) 
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9 FORMAT(10X, '-->','ENTER 1 FOR PRINTING ALL TABLEAU'/ 
+13X. 'ENTER 2 FOR PRINTING VARIABLES AND THEIR VALUES'/) 

100 CONTINUE 
READ(5,*.END=100) NPRNT 

101 CONTINUE 

10 
+ 

WRITE(6,10) 
WRITE ( 10. 10) 
FORMAT(5X. ·-->· ,2X, 'ENTER NO. OF CONTS. '//5X,'-->',2X, 
'ENTER NO.OF VARIABLES'//5X. '-->' ,2X, 'ENTER NO. OF PRIORITIES') 
READ(5,*,END=101) NOC,NOV,NPRO 
IF(IPEMPT.EQ.1) NOPRO=NPRO 
IF(IPART.EQ.1) NOPR0=1 
WRITE(6,20) NOC,NOV,NOPRO 
WRITE(10,20) NOC,NOV,NOPRO 

20 FORMAT(5X, 'NOC=',I2//5X, 'NOV=' .I2//5X, 'NOPRO=',I2) 
WRITE(6. 5) 
WRITE ( 10, 5) 
READ(5,*) ICORR 
IF(ICORR.EQ.2) THEN 
WRITE(6,7) 
WRITE ( 10,7) 
GO TO 101 
END IF 
WRITE ( 6 , 2 1 ) 
WRITE( 10,21) 

21 FORMAT(5X, '-->' ,2X, 'ENTER THE NUMBER OF ALL VARIABLES' 
+/10X, 'ENTER THE F OF POSITIVE DEVIATIONS'/10X,'ENTER THE P OF 
+ALL NEGATIVE DEVIATIONS') 

REA0(5,*) NOS,LPD~.LND1 
WRITE ( 6, 600) 
WRITE( 10,600) 
READ(5,*) (LDECS(I),I=1,NDS) 
IF(LPD1.EQ.O) GO TO 151 
WRITE(6,601) 
WR IT E ( 1 0 • 60 1 ) 

READ(5,*) (LPOEV(J),0=1,LP01) 
151 IF(LN01.EQ.O) GO TO 152 

WRITE( 6, 602) 
WRITE(10,602) 

600 FORMAT(5X, '-->' ,2X, 'ENTER THE LIST OF DECISION VARIABLES') 
601 FORMAT(5X, '-->',2X, 'ENTER THE LIST OF POS- DEV VARIABLES') 
602 FORMAT(5X. '-->' ,2X, 'ENTER THE LIST OF NEG-DEV VARIABLES') 

READ(S,*) (LNDEV(K).K=1,LND1) 
152 LTOT1=NDS 

LTOT2=LPD1 
LTOT3=LND1 
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c 
DO 22 I= 1 , NOV 
ID(Il=I 
ISDD(I)=I 

22 CONTINUE 
4 IF(INTGP.EQ.1) THEN 
30 WRITE(6,170) 

WRITE( 10, 170) 
170 FORMAT(//10X.'--->' ,2X, 'ENTER THE NUMBER OF INTEGER VARIABLS') 

READ(S,•) NXREAL 
WRITE{6,171) NXREAL 
WRITE{10,171) NXREAL 

171 FORMAT(//10X,'--->' ,2X,'ENTER' ,2X,I3,2X.'VARIABLES NAMES') 
READ(S,*) (IREAL(I),I=1,NXREAL) 
WRITE(6,605) 
WRITE(10,605) 

605 FORMAT(//20X,'LIST OF THE REQUIRED INTEGER VARIALES'l 
DO 604 I=1,NXREAL 
WRITE(6,603) IREAL(I) 
WRITE(10,603) IREAL(I) 

603 FORMAT(//20X,I5) 
604 CONTINUE 

WRITE(6,5) 
WRITE( 10,5) 
READ(S, *) ICORR 
IF(ICORR.EQ.2) THEN 
WRITE(6,7) 
WRITE(10,7) 
GO TO 30 
END IF 
RETURN 
END IF 
DO 4 1 I= 1 , NOC 
DO 41 J=1,NOV 
STOF(I.J)=O.O 

41 TAB(I,J)=O.O 
WRITE(6,42) 
WRITE( 10.42) 

42 FORMAT(SX,'-->' ,2X, 'ENTER NUMBER OF NONZERO ELEMENTS IN' 
+/10X, 'THE TECHNOLOGICAL MATRIX') 

REAO(S.•) NONZRO 
WRITE(6,23) 
WRITE(10,23) 

23 FORMAT(SX, '-->' ,2X, 'ENTER THE TECHNOLOGICAL COEFFICIENTS') 
WRITE(6,31) 
WRITE( 10,31) 

195 



31 FORMAT(SX, '-->',2X,'ENTER ROW I ,COLUMN J AND THEN ITS'/ 
+10X, 'VALUE.' ,2X, 'LEAVE ONE SPACE BETWEEN ENTRIES' l 

102 CONTINUE 
DO 43 I=1,NONZRO 

33 READ(s.~.END=102) L.M.VALUE 
WRITE(6,32) L,M,VALUE 
WRITE(10,32) L,M,VALUE 

32 FORMAT(10X, 'ROW=' ,2X,I3.2X, 'COLUMN=',2X,I3.2X, 'VALUE=' .F8.4) 
WRITE(6,5) 
WRITE( 10,5) 
READ(S.~) ICORR 
!F(ICORR.EQ.2) THEN 
WRITE(6,7) 
WRITE( 10, 7) 

GO TO 33 
END IF 
TAB(L,M)=VALUE 
STOF(L,M)=VALUE 

43 CONTINUE 
DO 40 I=1,NOPRO 
DO 40 u=1,NOV 
SZV(I.u)=O.O 

40 Z( I. u)=O 
WRITE(6,50) 
WRITE( 10,50) 

50 FORMAT(SX, '-->' ,2X, 'ENTER THE RIGHT HAND SIDE VALUES') 
103 CONTINUE 

DO 60 I=1,NOC 
35 READ(S,•,END=103) IV(!) 

WRITE(6,34) IV(I) 
WRITE(10,34) IV(I) 

34 FORMAT(SX,'RHS=',2X,F9.4) 
WRITE(6,5) 
WRITE( 10.5) 
QEAD(S.•) ICORR 
IFtiCORR.EQ.2) THEN 
WRITE ( 6, 7) 
WRITE(10,7) 
GO TO 35 
END IF 

60 IVZAR(I)=IV(I) 
WRITE(G, 70) 
WRITE( 10,70) 

70 FORMAT(SX, '-->','ENTER THE INITIAL BASIC VARIABLES') 
104 CONTINUE 

DO 80 I=1,NOC 
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37 READ(5,*,END=104) IB(Il 
WRITE(6,36) IB(I) 
WRITE(10.36) IB(I) 

36 FORMAT(SX, 'BAISC VARIABLE='.2X.I4) 
WRITE(6,5) 
WRITE( 10,5) 
READ(S.~) ICORR 
IF(ICORR.EQ.2) THEN 
WRITE(6, 7) 
WRITE( 10, 7) 
GO TO 37 
END IF 

80 IBOR(I)=IB(I) 
106 CONTINUE 

DO 1201 I=1.NOPRO 
DO 1201 J=1,NOV 

1201 C(I,J)=O. 
WRITE ( 6, 1202) 
WRITE ( 1 0 , 1 202 ) 

1202 FORMAT(5X, '-->',2X, 'ENTER THE NUMBER OF NONZERO ELEMENTS' 
+/10X,'IN THE PRIORITY WEIGHT MATRIX') 

READ(5,*,END=106) NZROP 
WRITE(6, 38) 
WRITE(10,38) 

38 FORMAT(5X,'-->',2X, 'ENTER PRIORITY NUMBER I ,VARIABLE #'/10X, 
+'THEN ITS PRIORITY WEIGHT.' ,2X, 'LEAVE A SPACE BETWEEN ENTRIES') 

DO 1203 I=1,NZROP 
45 READ(5,•) J,KK,PL 

WRITE(6,39) J,KK,PL 
WRITE(10,39) J,KK,PL 

39 FORMAT(10X, 'PRIORITY#=' .2X,I3,2X. 'VARIABLE P =' ,2X,I3,2X, 
+'PRIORITY WEIGHT =' ,2X,F8.4) 

WRITE(6,5) 
WRITE( 10,5) 
READ(5,•) ICORR 
IF(ICORR.EQ.2) THEN 
WRITE(6, 7) 
WRITE(10,7) 
GO TO 45 
END IF 

1203 C(J,KK)=PL 
IF(ICHECK.EQ. 1) RETURN 
IROUTY=1 
IF(IROUTY.EQ. 1) GO TO 186 
DO 1200 J=1,NOPRO 
DO 1200 I= 1 , NOC 
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K=IB(I) 

Z(J.K)=O 
1200 CONTINUE 

JJ=IB(1) 

JJ1=JJ-1 
DO 150 I=1,NOPRO 

DO 150 J=1.JJ1 
SUM=O 
ISM=O 

DO 160 K=JJ,NOV 
KK=K-JJ1 
ISM=ISM+C(I,K)*IV(KK) 

160 SUM=SUM+C(I,K)*TAB(KK,J) 
Z(I.J)=SUM-C(I,J) 
SZV(I,J)=Z(I,J) 

150 IN(I)=ISM 
GO TO 1888 

186 CONTINUE 

DO 180 I=1,NOPRO 
DO 180 K=1,NOV 
DO 182 KK=1,NOC 

IF(IB(KK).EQ.ID(K)) THEN 
Z(I,K)=O. 
GO TO 180 
END IF 

182 CONTINUE 

SUM=O 

ISM=O 
DO 183 KK=1,NOC 

LOK=IB(KK) 
SUM=SUM+C(I,LOK)*TAB(KK,K) 

183 ISM=ISM+C(I,LOK)*IV(KK) 
Z(I.K)=SUM-C(I,K) 

180 IN(I)=ISM 
5 FORMAT(2X, 'CORRECT' ,5X, 'ENTER'.5X, '1:YES' ,SX, '2:NO') 
7 FORMAT(2X,'REENTER AGAIN') 

RETURN 

END 

SUBROUTINE PIVCOL 
DIMENSION IN( 100) 
DIMENSION Z( 100,100),IPINK( 100) 
REAL IN,IV,LEVATT 
COMMON/82/Z,IN,IP,!C,IW 
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COMMON/83/IPVC,XMAX,NOV,INO 
COMMON/813/ICOUNT,IFLAG 
COMMON/819/IBUND 

C SAVE THE NAME OF ENTERING VARIABLE INTO THE BASIS 
c 

DO 5 I= 1, NOV 
5 IPINK(I)=O 

IPVC=O 
XMAX=O 
IF(IBUND.EQ.O) THEN 
DO 10 J=1.NOV 
IF(XMAX.GE.Z(INO.J)l GO TO 10 
XMAX=Z(INO,J) 
IPVC=J 

10 CONTINUE 
ELSE 
DO 20 J=1,NOV 
IF(Z(INO,J).LE.O.) GO TO 20 
XMAX=Z(INO,J) 
IPVC=J 
GO TO 21 

20 CONTINUE 
END IF 

21 IF ( I PVC. NE . 0) THEN 
IPINK(IPVC)=IPVC 
END IF 

c 

IF(ABS(XMAX).LE. 1E-4) XMAX=O. 
60 IN01=IN0-1 

IF(IN01.EQ.O) RETURN 
IF(IPVC.EQ.O) RETURN 
DO 40 I= 1 , I NO 1 

IF(Z(l,IPVC).LE.-.00011 THEN 
IG=1 
GO TO SO 
ELSE 
IG=O 
END IF 

40 CONTINUE 
IF(IG.EQ.O) RETURN 

C PURPOSE TO FIND A PIVOT COLUMN OR AN ENTERING VARIABLE 
C WHICH DOES NOT DESTROIED THE PREVIOUS PRIORITY LEVELS. 
c 

SO IPV=O 
XMAX=O 
IF(IBUND.EQ.O) THEN 

199 



DO 50 J=1,NOV 
IF(XMAX.GE.Z(INO,J)) GO TO 50 

IF(J.EQ.IPINK(J)) GO TO 50 

XMAX=Z(INO.J) 
IPV=J 

50 CONTINUE 

ELSE 
DO 85 J= 1 , NOV 
IF(Z(INO,J) .LE.O.) GO TO 85 

IF(J.EQ.IPINK(J)) GO TO 85 

XMAX=Z(INO.J) 

IPV=J 
GO TO 86 

85 CONTINUE 

ENDIF 
86 IPVC=IPV 

c 

IF(IPVC.NE.O) T~EN 
IPINK(IPVC)=IPVC 
END IF 
IF(XMAX.EQ.O) GO TO 70 

GO TO 60 
70 RETURN 

END 

SUBROUTINE PIVROW(IPROW) 

DIMENSION TAB(100. 100),IV(100) 
DIMENSION IREAL(SO),ID( 100),18(100) 
REAL IN.IV,LEVATT 

COMMON/B1/TAB,IV.ID.IB.LIT 
COMMON/B3/IPVC,XMAX.~OV.INO 

COMMON/B4/NPRNT,NOC,NOPRO 
COMMON/B7/ICHECK,INTGP,IREAL,NXREAL 

COMMON/B15/IPAT,KRAZY 

IF(INTGP.EQ.1) THEN 

C CHECK FOR FEASIBILITY 
KRAZY=O 

DO 1 00 I= 1 , NOC 
IF(IV(I).LT.O.) THEN 
KRAZY=KRAZY+1 

RETURN 
ENDIF 

100 CONTINUE 
ENDIF 
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c 
C TEST FOR THE PIVOT ROW 

IPAT=O 
IFSBL=O 
IDGN=O 
RAT=200000000. 

310 DO 300 !=1.NOC 
IF(TAB(I,IPVC)) 300,300,312 

312 RATIO=IV(I)/TAB(I.IPVC) 
IF(RAT.EQ.RATIO) IDGN=1 
IF(RAT.LT.RATIOl GO TO 300. 
RAT=RATIO 
I PROW= I 

300 CONTINUE 
DO 500 I = 1 . NOC 
IF(TAB(I,IPVC).LE.O.) THEN 
IFSBL=IFSBL+1 
END IF 

500 CONTINUE 

C* 

C"'* 

IF(IFSBL.EQ.NOC) THEN 
IPAT=1 
RETURN 
ENDIF 
RETURN 
END 

SUBROUTINE CALC 

SUBROUTINE CALC(IPROW) 
DIMENSION TAB(100, 100),Z(100.100),IV(100).LEVATT(SO).IN(100) 
DIMENSION TT(200,101),IB(100).ID(100l,B(200. 101) 
REAL IV,IN.LEVATT 
COMMON/81/TAB.IV,ID.IB,LIT 
COMMON/82/Z,IN,IP,IC.IW 
COMMON/83/IPVC,XMAX,NOV,INO 
COMMON/84/NPRNT,NOC,NOPRO 
COMMON/86/IPEMPT,IPART,IBOUND 
COMMON/812/ITRATN,KINPRO,LEVATT 
ITRATN=ITRATN+1 

IB(IPROW)=ID(IPVC) 
IP=NOC+1 
IC=NOC+NOPRO 
IW=NOV+1 
LIT=O 
LOOP=O 
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DO 5 K= 1,NOC 

5 IF(IV(Kl.GE.O) LOOP=LOOP+1 

DO 10 I=1,IC 

DO 10 J=1,IW 

10 TT(I.J)=O 

DO 20 I=1,NOC 

DO 20 J=1,NOV 
20 TT(I.J)=TAB(I,J) 

DO 30 I=1,NOC 

30 TT(I.IW)=IV(I) 

K=O 
DO 40,I=IP,IC 

K=K+i 

DO 40 J=1,NOV 

40 TT(I.J)=Z(K,J) 

K=O 

DO 50 I= I P, I C 

K=K+1 

50 TT(I,IW)=IN(K) 

DO 313 I=1,IC 

DO 314 J=1,IW 

IF(I.EQ.IPROW) GO TO 315 
IF(J.EQ.IPVC) GO TO 1111 

B(I,J)=TT(I,J)-TT(IPROW,J)•TT(I,IPVC)/TTliPROW,IPVC) 

GO TO 314 

315 B(I,J)=TT(I.J)/TT(IPROW,IPVC) 

GO TO 314 

1111 DO 1 112 K = 1 , I W 

IF(K.EQ.IPROW) GO TO 1113 

B(K,J)=O 

GO TO 1112 

1113 B(!PROW,!PVC)=1. 

1112 CONTINUE 

314 CONTINUE 

313 CONTINUE 

DO 100 I=1,IC 

DO 100 J=1,IW 

100 IF(ABS(B(I .. J)).LE. 1E-4) B(I,J)=O. 

DO 70 I=1,NOC 

DO 70 J=1,NOV 

70 TAB(I,J)=B(I.J) 

DO 80 I= 1 , NOC 
80 IV(I)=B(I.IW) 

K=O 

DO 90 I =I P , I C 
K=K+1 
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DO 90 J=1,NOV 
Z(K,J)•B(I,J) 
IN(K)=B(I.IW) 
IF(ABS(IN(K)).LE.0.01) IN(K)=O. 

90 CONTINUE 
RETURN 
END 

c• SUBROUTINE PTRG 

c 

SUBROUTINE PTRG(NOV) 
DIMENSION TAB( 100, 100), IS( 100), IV( 100). ID( 100). IN( 100) 
DIMENSION Z(100,100),LEVATT(50),C( 100,100) 
DIMENSION IPM(1000),TA88(100,100),ZZ(1,100) 
REAL IN,IV,LEVATT 
COMMON/81/TA8,IV,ID,IB,LIT 
COMMON/82/Z,IN,IP,IC,IW 
COMMON/84/NPRNT,NOC,NOPRO 
COMMON/85/NPRO,IPM,TA88,ZZ 
COMMON/86/IPEMPT,IPART.I80UND 
COMMON/812/ITRATN,KINPRO,LEVATT 

WRITE(6,10) ITRATN 
WRITE( 10. 10) ITRATN 

10 FORMAT(//10X, 'TA8LE'//10X, 'ITERATION' ,2X,I5) 
WRITE(6,5) 
WRITE( 10,5) 

5 FORMAT(//) 
GO TO (1,2).NPRNT 
WRITE(6,20) 
WRITE( 10,20) 

20 FORMAT(10X, 'BASIS',35X,'VARIABLES',40X ,'VALUES') 
WRITE(6,100) 
WRITE( 10, 100) 
WRITE(6,30) (ID(I).I=1,NOV) 
WRITE(10,30) (IO(I),I=1,NOV) 

30 FORMAT(4X,17(5X,I2)) 
WRITE(6,100) 
WRITE( 10, 100) · 

100 FORMAT(10X, '-------------------------------------------------

+--------------------------------------------------') 
DO 50 I=1,NOC 
WRITE(6,60) l8(I),(TAB(I,J),J=1,NOV),IV(I) 
WRITE(10,60) I8(I).(TAB(I,J).J=1,NOV),IV(I) 

60 FORMAT(/1X,I2,1X,5(F16.6, 1X),F16.6) 
50 CONTINUE 

203 



DO 70 I=1.NOPRO 

WRITE(6.80l (Z(I.J),J=1.NOVl,IN(I) 

WRITE(10,80) (Z(I.Jl.J=1,NOV),IN(1l 

80 FDRMAT(/3X.5(F16.6,1X),F16.6) 

70 CONTINUE 

2 WRITE ( 6. 101 ) 

WRITE( 10, 101) 

101 FORMAT(////10X,'VARIABLES',18X,'VALUES') 
WRITE(6,5l 

WRITE( 10,5) 

DO 102 I= 1 , NOC 

WRITE(6,103) IB(I).IV(I) 

WRITE(10,103) IB(I),IV(I) 

103 FORMAT(15X,I3,10X,F16.6) 

102 CONTINUE 
IF(ITRATN.EQ.O) RETURN 

WRITE(6.106) 

WRITE( 10. 106) 

106 FORMAT(//15X, 'PRIORITY' ,10X, 'GOAL ACHIEVEMENT') 

DO 104 I=1,NOPRO 

WRITE(6,105) I,IN(I) 

WRITE(10,105) I,IN(l) 

105 FORMAT(//15X,I8,10X,F16.6) 

104 CONTINUE 

RETURN 

END 

SUBROUTINE PARTG 

DIMENSION TAB( 100, 100), IV( 100). IB( 100), ID( 100) ,Z( 100.100) 

DIMENSION IN(100),IREAL(50).TAA(100, 100) 

DIMENSION IPM(1000),TA88(100, 100),C( 100, 100),ZZ(1,100) 

DIMENSION LEVATT(50),SAVE(50, 100),CC(100,100) 

DIMENSION LDECS(100),LPDEV(100),LNDEV(100) 

REAL IN,IV,LEVATT 

COMMON/81/TAB,IV,ID,IB,LIT 

COMMON/82/Z.IN.IP.IC,IW 

COMMON/83/IPVC,XMAX,NOV,IND 

CDMMDN/84/NPRNT,NDC,NDPRD 

COMMON/85/NPRO,IPM,TABB,ZZ 

COMMON/86/IPEMPT,IPART.IBOUND 

COMMON/87/ICHECK,INTGP,IREAL,NXREAL 

COMMON/88/C 

COMMON/810/KING 

COMMON/811/KAT,KIT 
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c 

COMMON/812/ITRATN,KINPRO,LEVATT 

COMMON/815/IPAT,KRAZY 
COMMON/817/ICALL,CC,SAVE,ISIGN 

COMMON/820/LDECS.LPDEV.LNDEV,LTOT1,LTOT2,LTOT3 

WRITE ( 6 , 10) 
WRITE( 10, 10) 

10 FORMAT(//10X, 'ALGORITHM IS USING THE PARGP PROCEDURE') 
ICHECK=O 
ISIGN=O 
KINPR0=1 

INTUR=1 
CALL INTERS (INTUR) 

c 
C TO SAVE THE VECTOR OF PRIORITY WEIGHTS 

c 
DO 18 I= 1 , 100 
DO 18 J=1,50 

18 SAVE(J,I)=O. 
DO 19 I= 1 , NOV 

19 SAVE(1,I)=C(1,I) 

ICALL=1 
C** CALL FOR PIVOT COLUMN AND PIVOT ROW 

40 INC= 1 
C TO COUNT THE NUMBER PRIORITIES 

c 
50 CALL PIVCOL 

IF(XMAX.EQ.O) GO TO 20 
IF(IPVC.EQ.O) GO TO 20 
CALL PIVROW(IPROW) 

CALL CALC(!PROW) 
C IF(LIT.NE.O.OR.LIT.NE.NOC) GO TO 20 

CALL PTRG(NOV) 

GO TO 50 
20 KINO=IN0+1 
100 IF(KINO.GT.NPRO) GO TO 30 

LEVATT(KINPRO)=IN(1) 

KINPRO=KINPR0+1 

IOMID=1 
CALL ACHECK(ICHECK,IOMID) 

IF(ISIGN.EQ. 1} RETURN 
IF(ICHECK.EQ.1) THEN 
CALL INILS(ICHECK,LX) 
ICALL=ICALL+1 
DO 17 I=1,NDV 

SAVE(ICALL,I)=CC(1,!) 
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17 CONTINUE 
END IF 

60 CALL PIVCOL 

IF(XMAX.EQ.O.OR.IPVC.EQ.O) GO TO 80 
CALL PIVROW(IPROW) 
CALL CALC(IPROW) 

CALL PTRG(NOV) 

GO TO 60 
80 KINO=KIN0+1 

GO TO 100 
30 RETURN 

END 

C* SUBROUTINE ACHECK 

SUBROUTINE ACHECK(ICHECK,IOMIO) 

* 

DIMENSION TAB(100,100),IV(100),IB(100),I0(100),IN(100) 

DIMENSION Z(100,100),ZZ(1,100),TA8B(100, 100),TAA(100, 100) 
DIMENSION IPM(1000),LEVATT(50),SAVE(50,100),IDD(100) 
DIMENSION CC(100. 100) 
REAL IN,!V,LEVATT 
COMMON/81/TA8,IV,ID,IB,LIT 

COMMON/82/Z,IN,IP,IC,IW 
COMMON/63/IPVC,XMAX,NOV,INO 
COMMON/84/NPRNT,NOC,NOPRO 
COMMON/B5/NPRO,IPM,TA86,ZZ 

COMMON/86/IPEMPT,IPART,IBOUND 

COMMON/B10/KING 
COMMON/B11/KAT,KIT 
COMMON/B12/ITRATN,KINPRO,LEVATT 

COMMON/B17/ICALL,CC,SAVE,ISIGN 
GO TO (1,2),IOMID 

C** PURPOSE TO DETERMINE THE NUMBER OF ALTERNATIVE SOLUTIONS 

K=O 
DO 10 I=1,NOV 

10 IF(Z(1,I).EQ.O.) K=K+1 

C** TO CHECK FOR ALTERNATIVE SOLUTIONS 
C ICHEK=1 INDICATES THAT THERE EXIST AT LEAST ONE ALTER SOLUTION. 

NZRO=K-NOC 

IF(NZRO.GE. 1) THEN 

ICHECK=1 
ISIGN=O 

ELSE 
C THE PRESENT SOLUTION IS OPTIMAL FOR THE ORIGINAL PROBLEM WITH 

C RESPECT TO ALL PRIORITIES 

c 
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ICHECK=O 
ISIGN=1 
END IF 

C** TO DETERMINE A NONBASIC COLUMN WITH NEGATIVE CRITERION COEFF. 
2 K=O 

DO 20 I= 1 , NOV 
C•* IPM(I) INDICATES THE SPECIFIC NONBASIC COLUMN 

IPM(I)=O 
DO 30 J=.1, NOC 

30 IF(ID(I) .EQ.IB(J)l GO TO 20 
IF ( Z ( 1 , I ) . LT. 0. ) THEN 

C•• TO COUNT THE NUMBER OF NONBASIC COLUMNS 
K=K+1 
IPM(I)=I 
END IF 

20 CONTINUE 
NOVV=NCV-K 
DO 40 I = 1 , NCVV 
DO 40 J=1 ,NCC 
ZZ(1,I)=O. 

40 TABB(I,J)=O. 

C*** KING COUNTS NUMBER OF VARIABLES 
C*** 

70 

150 
60 

cx•x 

C*** NOV 
C**• THE 

IF(KAT.EQ.O) THEN 
KING=NOV 
ELSE 
KING=KING+KAT 
END IF 
IDID=O 
IDO=O 
00 60 I = 1 . NOV 
IF(I.EQ.IPM(I)) GO TO 150 
IDID=IDID+1 
IDO=IDC+1 
ZZ(1.IDO)=Z(1,IDID) 
DC 70 J=1,NOC 
TABB(J,IDC)=TAB(J,IDID) 
IDD(IDC)=ID(IDID) 
GO TO 60 
IDID=IDID+1 
CONTINUE 

INDICATES THE NUMBER OF VARIABLES CONSIDERING 
FACT THAT SOME OF THEM CAN BE ELEMINATED 

C*** DURING PREVIOUS ITERATIONS. 
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C*** 

NOV=IDO 
DO SO I=1,NOV 
DO 90 J=1,NOC 

90 TAB(J,I)=TABB(J.I) 
ID(I)=IDDCI) 

80 Z ( 1 , I ) = ZZ ( 1 . I ) 
CALL PTRGCNOV) 
IF(ICHECK.EQ.1.AND.ISIGN.EQ.O) RETURN 
IF(ICHECK.EQ.O.AND.ISIGN.EQ. 1) THEN 
DO 50 LOLY=KINPRO,NPRO 
K=LOLY~1 

IN(K)=O. 
CALL INILS(ICHECK,LX) 
ICALL=ICALL+1 
DO 9 I= 1, NOC 
SAVE(ICALL,I)=CC(1,I) 

9 CONTINUE 
DO 12 I= 1 , NOC 
DO 13 J=1,KIT 
IF(IB(I).EQ.ID(J)) THEN 
LOCT=IB(I) 
IN(K)=IN(K)+SAVE(K,LOCT)*IV(I) 
LEVATT(K)=IN(K) 
GO TO 12 
END IF 

13 CONTINUE 
12 CONTINUE 
50 CONTINUE 

C* 

CALL PTRG(NOV) 
END IF 
RETURN 
END 

SUBROUTINE !NILS 

SUBROUTINE INILS(ICHECK,LX) 

• 

DIMENSION TAB(100,100),IV(100),IB(100),ID(100l,IN( 100) 
DIMENSION TAA(100, 100),TABB(100,100).C( 100,1001 
DIMENSION LEVATT(50),Z(100, 100),ZZ(1,100l,IPM( 1000) 
DIMENSION TBC(100, 100),SAVE(50,100),CC(100,100) 
COMMON/B1/TAB,IV,ID,IB,LIT 
CDMMON/B2/Z,IN,IP,IC,IW 
COMMON/B3/IPVC,XMAX,NOV,INO 
COMMON/B4/NPRNT,NOC,NOPRO 
COMMON/B5/NPRO.IPM,TABB.ZZ 
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c 

COMMON/86/IPEMPT,IPART,IBOUND 
COMMON/88/C 
COMMON/89/NOC1,NOC2 
COMMON/810/KING 
COMMON/812/ITRATN,KINPRO,LEVATT 
COMMON/817/ICALL.CC,SAVE,ISIGN 
REAL IN,IV,LEVATT 
NOC1=NOC 
CALL ADDUP(CC) 

NOC2=NOC 
NOC3•NOC2-NOC1 
NNOC=NOC1+1 
DO 5 NBC= 1 , NOC3 
DO 30 J=1,NOV 
DO 20 I= 1 . NOC 1 
IF(IB(I).EQ.ID(J)) THEN 
L=I 
IF(TAB(NNOC,J).NE.O.) THEN 
IF(TAB(L,J).EQ.O.) GO TO 30 
DD=TAB(NNOC,J)/TAB(L,J) 
DO 10 K•1.NOV 
TAA(L,K)=-DD•TAB(L,K) 
MARY=NOV+1 
TAA(L,MARY)=-DD*IV(L) 
TBC(NNOC,K)=TAB(NNOC,K)+TAA(L,K) 
TAB(NNOC,K)=TBC(NNOC,K) 

10 CONTINUE 

c 

IV(NNOC)=IV(NNOC)+TAA(L.MARY) 
GO TO 30 
END IF 
END IF 

20 CONTINUE 
30 CONTINUE 

NNOC=NNOC+1 
5 CONTINUE 

NOC3=NOC2-NOC1 
NNOC=NOC1+1 
DO 6 NBC= 1, NOC3 
IF(IV(NNOC).GE.OJ GO TO 40 
KNNN=NNOC-1 
DO 31 J=1,NOV 
IF(TAB(NNOC,J).E0.-1.) THEN 
K=O 
DO 32 I=1,KNNN 
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IF(TAB(I.J).EQ.O.) K=K+1 
32 CONTINUE 

IF(K.EQ.KNNN) THEN 
IET=ID(J) 
IYES=J 
GO TO 34 
END IF 
END IF 

31 CONTINUE 
GO TO 40 

34 DO 33 J=1,NOV 
TAB(NNOC,J)=-TAB(NNOC,J) 
IF(ABS(TAB(NNOC,J)).LE.0.0002) TAB(NNOC.J)=O. 

33 CONTINUE 
IPD=IB(NNOC) 
IV(NNOC)=-IV(NNOC) 
IF(ABS(IV(NNOC)l.LE.0.0002) IV(NNOC)=O. 
IB(NNOC)=IET 
PJET=CC(1,IET) 
CC(1,IET)=CC(1,IPD) 
CC( 1, IPD)=PJET 
DO 42 l<u=1,NOV 

42 IF(ID(KJ).EQ.IPD) INNO=Ku 
POTT=C\1,IYES) 
C( 1,IYES)=C(1,INNO) 
C ( 1 , I NNO ) = POTT 

40 NNOC=NNOC+1 
6 CONTINUE 

KING1=KING+1 
DO 70 I= 1 , NOV 
DO SO u=1.NOC 
IF(IB(J).EQ.ID(I)) THEN 
Z(1,I)=O. 
GO TO 70 
END IF 

SO CONTINUE 
BSUM=O. 
ASUM=O. 
DO 90 J• 1, NOC 
K=IB{J) 
ASUM=ASUM+CC(1,K)*TA8(J,I) 
BSUM=BSUM+CC(1,K)•IV(J) 

90 CONTINUE 
Z ( 1 , I ) =ASUM-C ( 1 . I) 
IN(1)=8SUM 

70 CONTINUE 
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2 

CALL PTRG(NOV) 
RETURN 
END 

SUBROUTINE ADDUP(CC) 
DIMENSION TAB( 100, 100), Z( 100, 100), ID( 100), IB( 100) 
DIMENSION IV( 100), IN( 100) ,C( 100, 100), TABB( 100, 100) 
DIMENSION LEVATT(50),ZZ(1, 100).IPM(1000) 
DIMENSION CC(100,100) 
DIMENSION ZXY(80,100) 
REAL IN,IV,LEVATT 
COMMON/B1/TAB,IV,ID,IB.LIT 
COMMON/B2/Z,IN.IP,IC,IW 
COMMON/B3/IPVC,XMAX,NOV,INO 
COMMON/B4/NPRNT,NOC,NOPRO 
COMMON/B5/NPRO,IPM.TABB,ZZ 
COMMON/B6/IPEMPT,IPART,IBOUND 
COMMON/BS/C 
COMMON/B10/KING 
COMMON/B11/KAT,KIT 
COMMON/B12/ITRATN,KINPRO,LEVATT 
NOCP=NOC 
NOVP=NOV+1 
WRITE(6,1) 
WRITE( 10, 1) 
FORMAT(1CX, '-->' ,2X, 'ENTER THE NUMBER OF NEW CONST. AND' 

+/15X, 'NUMBER OF NEW VARIABLES') 
READ(5,*) KNOC,KNOV 
KAT=KNOV 
WR!TE(6,133) KNOC,KNOV 
WRITE(10,133) KNOC,KNOV 

133 FORMAT(10X,'KNOC=',I2,5X, 'KNOV=' ,I2) 
WRITE(6,114) 
WRITE( 10, 114) 
READ(S,•) ICORR 
IF(ICORR.EQ.2) THEN 
WRITE(6. 115) 
WRITE(10,115) 
GO TO 2 
ENOIF 
IF(KNOV.EQ.O.AND.KNOC.EQ.O) GO TO 1079 

C TO CONSIDER A SPECIAL SITUATION 
C THIS IS THE CASE WHEN KNOV=O AND KNOC IS GREATER ZERO 

IF(KNOC.NE.O.AND.KNOV.EQ.O) THEN 
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NOC=NOC+KNOC 
GO TO 2101 
END IF 
NOC=NOC+KNOC 
INOV1=NOV+1 
NOV=NOV+KNOV 
K=KING 
DO 10 I= 1 , KNOV 
K=K+1 
ID( INOV1 )=K 
IPM(K)•O 
INOV1=INOV1+1 

10 CONTINUE 
C KIT COUNTES THE TOTAL NUMBER OF VARIABLES 

KIT=KING+KNOV 
DO 20 I=NOVP,NOV 
DO 20 u=1,NOCP 

20 TAB(u,I)=O. 
C*~ PURPOSE TO READ THE VALUE OF EACH ELEMENT OF EACH CONST. 

2101 

c 
c 

2000 

KING1=KING+1 
DO 2000 K=1,KNOC 
DO 2000 I=1,KIT 
ZXY(K,I)=C. 

WRITE(6,2007) 
WRITE( 10,2007) 

2007 FORMAT(5X, '-->' ,2X, 'ENTER F OF NONZERO ELEMENTS IN THE' 

c 

3 

4 

5 

+/10X,'NEW CONSTRAINTS') 

READ(S,s) NNZRO 
WRITE(6,3) NNZRO 
WRITE(10,3) NNZRO 
FORMAT('P OF NONZERO ELEMENTS= ',5X,I5) 
WRITE(6,4) 
WRITE(10,4) 
FORMAT(SX, '-->' ,2X, 'ENTER ROW I , COLUMN u AND ITS VALUE'/10X 

+,'LEAVE ONE SPACE BETWEEN THE ENTRIES') 
DO 2008 I=1,NNZRO 
READ(5,*) L,M,VALUE 
WRITE(6, 116) L,M,VALUE 
WRITE(10,116) L,M,VALUE 
WRITEl6,114) 
WRITE( 10, 114) 
READ(5,"') ICORR 
IF(ICORR.EQ.2) THEN 
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WRITE(6, 115) 
WRITE ( 1 0 , 1 1 5 ) 
GO TO 5 
END IF 
ISOR=L-NOCP 

2008 ZXY(ISOR,M)=VALUE 
c 

DO 2003 J= 1. NOV 
IDONE=ID(J) 
DO 2004 N= 1 , KIT 
IF(IDONE.EQ.N) THEN 
DO 2001 K=1,KNOC 
L=K+NOCP 
TAB(L,J)=ZXY(K,N) 

2001 CONTINUE 
GO TO 2003 
END IF 

2004 CONTINUE 
2003 CONTINUE 
C** PURPOSE TO READ THE BASIS AND RIGHT HAND SIDE VALUES OF • 
C** NEW CONSTRAINTES 
C* 

WRITE ( 6, 6) 
WRITE( 10,6) 

6 FORMAT(5X, '-->',2X, 'ENTER ROW I, COLUMN J AND THE RHS VALUES') 
DO 33339 I=1,KNOC 

7 READ(5,*) L.IBB,VIV 
WRITE(6,117) 
WRITE(10,117) 

117 FORMAT('ROW I =' ,2X,I3,2X, 'BASIS=' ,2X,I3,2X, 'RHS=' ,2X,F8.4) 
WRITE(6,114) 
WRITE ( 1 0 , 1 1 4 ) 
READ( 5,") ICORR 
IF(ICORR.EQ.2) THEN 
WRITE(6.115) 
WRITE( 10,115) 
GO TO 7 
END IF 
IV(L)=VIV 
IB(L)=IBB 

33339 CONTINUE 
C*** 

KING1=KING+1 
1079 WRITE(6.2009) 

WRITE(10,2009) 
2009 FORMAT(5X, '-->' ,2X, 'ENTER P OF NONZERO ELEMENTS IN THE' 
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+/10X, 'NEW PRIORITY MATRIX') 
REA0(5,*) IPZRO 
DO 1 12 I = 1 . KIT 

112 CC(1,I)=O. 
WRITE ( 6, 1 18) 
WRITE(10,118) 

118 FORMAT(5X, '-->' ,2X, 'ENTER VAR F,2X,ITS PRIORITY WEIGHT') 
DO 113 I=1,IPZRO 
WRITE(6,9) 
WRITE(10,9) 

9 FORMAT('NUMBER OF NONZERO ELEMENTS=',2X,l5) 
8 READ(5,*) L,VALUE 

WRITE(6, 119) L,VALUE 
WRITE(10,119) L,VALUE 

119 FORMAT('VARIABLE=' ,2X,I3,2X, 'PRIORITY WEIGHT=' ,2X,F8.4) 
WRITE ( 6 , 114) 
WRITE(10,114) 
READ(5,*) ICORR 
IF(ICORR.EQ.2) THEN 
WRITE ( 6 , 1 15 ) 
WRITE(10,115) 
GO TO 8 
END IF 

113 CC(1,L)=VALUE 

1999 

110 
114 
115 
116 

C* 

C** 

IBET=O 
DO 110 I=1,KIT 
IF(I.GE.KING1) GO TO 1999 
IF(IPM(I).EQ.Il. GO TO 110 
IBET=IBET+1 
Ct1,IBET)=CC(1,I) 
CONTINUE 
FORMAT(2X, 'CORRECT' ,2X,'ENTER',2X, '1:YES' ,2X, '2:NO') 
FORMATt'REENTER AGAIN') 
FORMAT(2X, 'ROW I=',2X,I3, 'COLUMN J=' ,2X,I3,2X,'VALUE=' ,2X, 

+F8.4) 
RETURN 
END 

SUBROUTINE DUALS 

SUBROUTINE DUALSX(IPROW,LAS,IBALL) 
DIMENSION TAB( 100, 100), IV( 100), IB( 100), ID( 100) 
DIMENSION LEVATT(50),Z(100,100),ZZ( 1, 100),B(200,101) 
DIMENSION TT( 100, 100),IPM(1000).TABB(100,100l,IN(100) 
DIMENSION ISVZ(100),PRLV(50,60) 
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c 

REAL IN,IV.LEVATT 
COMMON/81/TA8,IV,ID.I8.LIT 
COMMON/82/Z.IN.IP.IC,IW 
COMMON/83/IPVC,XMAX,NOV,INO 
COMMON/64/NPRNT,NOC,NOPRC 
COMMON/BS/NPRO,IPM,TABB,ZZ 
COMMON/86/IPEMPT,IPART.IBOUND 
COMMON/89/NOC1,NOC2 
COMMON/812/ITRATN.KINPRO,LEVATT 

C*• TO FIND THE PIVOT ROW 
LA8=0. 
IBALL=O 

40 AMOST=O. 

10 

DO 10 I=1 ,NOC2 
IF(IV(Il.GE.AMDST) GO TO 10 
I1=I 
AMOST=IV(I1) 
CONTINUE 
IF(AMOST.EQ.O.) RETURN 
R=1.E+10 
IPROW=I1 

C** TO FIND THE PIVOT COLUMN 
IF(IPART.EQ.1) THEN 
J1=0 
DO 20 J= 1 . NOV 
IF(TAB(!1,J).GE.O.) GO TO 20 
IF(Z(1.J) .GE.O.) GO TO 20 
RR=Z(1,J)/TAB(I1,J) 
IF(RR.LT.Rl J1=J 
IF(RR.LT.R) R=RR 

20 CONTINUE 
IPVC=J1 
IF(IPVC.EQ.O) THEN 
IBALL=1 
RETURN 
END IF 
END IF 

C CONSIDER A SITUATION WHEN PREEMPTIVE GOAL PROGRAMMING IS CONCERNED 
c 

BF(IPEMPT.EQ. 1) THEN 
IKOT=O 
DO 61 KL=1,NOV 
IF(TAB(I1.KL).GE.O) GO TO 61 
IKOT=IKOT+1 
ISVZ(IKOT)=KL 
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DO 60 K= 1 , NDPRO 
IF(Z(K,KL).GE.O) THEN 
PRLV( K, IKDT) =0. 
GO TO 60 
END IF 
PRLV(K,IKOT)=A8S(Z(K,KL)/TAB(I1,KL)) 

60 CONTINUE 
61 CONTINUE 

I=1 
L=2 
IPVC=O 

90 IF(L.GT.IKOT) GO TO 92 
DO 91 J=1,NOPRO 
IF(PRLV(.J,I).EQ.PRLV(.J,L)J GO TO 91 
IF(PRLV(.J,I).LT.PRLV(.J,L)) THEN 
ILL=I 
I=ILL 
L=L+1 
IPVC=ISVZ(I) 
GO TO 90 
ELSE 
ILL=L 
IziLL 
IPVC•ISVZ(L) 
L=L+1 
GO TO 90 
END IF 

91 CONTINUE 
END IF 

c 
92 CALL CALC(IPROW) 

CALL PTRG(NOV) 
C** CHECK FOR OTHER NEGATIVE RIGHTE HAND SIDE VALUES 

.J=O 
DO 30 I = 1 , NOC 

30 IF(IV(I).GE.O) J=.J+1 
IF(.J.EQ.NOC) THEN 
DO 51 IN0=1.NOPRO 

65 CALL PIVCOL 
IF(XMAX.EQ.O.OR.IPVC.EQ.Ol GO TO 52 
CALL PIVROW(IPROW) 
CALL CALC(IPROW) 
CALL PTRG(NOV) 
IF(INO.EQ.1) GO TO 65 

51 CONTINUE 
52 LAB=1 
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GO TO 50 
END IF 
GO TO 40 

50 RETURN 

c· 

c·· 

c 

END 

SUBROUTINE FACT1 

SUBROUTINE FACT1 
DIMENSION IB(100),IREAL(50l,IV(100).IN(100) 
DIMENSION DUM( 100), IPM( 1000), TAB8 ( 100. 100). Z ( 100, 100) 
DIMENSION ID(100),ZZ(1,100),LEVATT(50),TA8(100,100) 
DIMENSION ZPR0(100.100),INPR0(100).ZPNEW( 100, 100) 
DIMENSION LDECS( 100),LPDEV(100l,LNDEV(100) 
REAL IN,IV.INPRO,LEVATT 
INTEGER ZROCUT 
COMMON/81/TAB,IV,ID,I8.LIT 
COMMON/82/Z,IN,IP,IC,IW 
COMMON/83/IPVC,XMAX,NOV,INO 
COMMON/84/NPRNT,NOC,NOPRO 
COMMON/85/NPRO,IPM,TA8B.ZZ 
COMMON/B6/IPEMPT,IPART,IBOUND 
COMMON/B7/ICHECK,INTGP,IREAL,NXREAL 
COIVIMON/B10/KING 
COMMON/B11/KAT,KIT 
COMMON/B12/ITRATN,KINPRO,LEVATT 
COMMON/B13/ICOUNT,IFLAG 
COMMON/B14/ZPRO,INPRO,KPRIOR.ZPNEW,MVARR,MROWSS 
COMMON/B15/IPAT,KRAZY 
COMMON/B20/LDECS,LPDEV,LNDEV,LTOT1,LTOT2.LTOT3 

C PURPOSE TO CONTROL THE PROGRAM FOR LIPREGP PROBLEM 
c 

IFLAG=1 
MROWSS=NOC 
MVARR=NOV 
KPRIOR=NPR0+1 

C MOVE THE FIRST PRIORITY LEVEL INTO THE SECOND LEVEL IN 
C ORDER TO SAVE A POSITION FOR THE NEW ABSOLUTE PRIORITY 
C LEVEL 
c 

K=1 
DO 101 I=1,NPRO 
K=K+1 
INPRO(Kl=IN(I) 
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DO 102 J= 1, NOV 
ZPRO(K.Jl=O.O 
ZPRO(K.J)=Z(I,Jl 

102 CONTINUE 
101 CONTINUE 

IDEN=NOV-NXREAL 
IDECID=O 
IF(IDEN.GE. 1) IOECI0=1 

C TC KEEP THE NUMBER OF EXISTING PRIORITY LEVELS 
21 L=K 

CALL INTGR(L,IDECID,ZROCUT) 
IF(ZRDCUT.EQ. 1) GO TO 2 
GO TO (1,2),ICOUNT 

C TO START FROM THE FIRST PRIORITY LEVEL 
IN0=1 
DO 5 IN0=1,L 

10 CALL PIVCOL 
IF(XMAX.EQ.O) GO TO 5 
IF(IPVC.EQ.O) GO TO 5 

CALL PIVROW(IPROW) 
CALL CALC(IPROW) 
IF(ITRATN.EQ.200) RETURN 
CALL PTRGCNOV) 
IF(INO.EQ.1) GO TO 10 
IF(IN(INO).EQ.O) GO TO 5 

5 CONTINUE 
GO TO 21 

2 ISUMMY=3 

C* 

c 

CALL SUMMRY(IB.IN,NOPRO,IV,JZJJ,NOC.ISUMMY) 
RETURN 
END 

SUBROUTINE FACT2 

SUBROUTINE FACT2 
DIMENSION I8(100),IREAL(50),IV( 100l,LEVATT(50l,IN( 100) 
DIMENSION DUM( 100), IPM( 1000), TABS ( 100, 100) , Z( 100, 100 l 
DIMENSION TAB(100, 100),ZPR0(100. 100),ID( 100l,ZZ( 1. 100) 
DIMENSION LDECS( 100).LPDEV(100),LNDEV(100) 
DIMENSION INPR0(100),ZPNEW(100,100) 
REAL IN,IV,INPRO;LEVATT 
INTEGER ZROCUT 
COMMON/81/TAB,IV,ID.IB,LIT 
COMMON/82/Z,IN,IP,IC,IW 
COMMON/B3/IPVC,XMAX,NOV,INO 
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c 

COMMON/84/NPRNT,NOC.NOPRO 
COMMON/85/NPRO,IPM,TA88,ZZ 
COMMON/86/IPEMPT,IPART,IBOUND 
COMMON/87/ICHECK,INTGP,IREAL,NXREAL 
COMMON/810/KING 
COMMON/811/KAT,KIT 
COMMON/812/ITRATN,KINPRO,LEVATT 
COMMON/813/ICOUNT,IFLAG 
COMMON/814/ZPRO.INPRO,KPRIOR,ZPNEW,MVARR,MROWSS 
COMMON/815/IPAT,KRAZY 
COMMON/820/LDECS,LPDEV,LNDEV,LTOT1,LTOT2.LTOT3 

C PURPOSE TO CONTROL THE PROGRAM FOR LIPARGP PROBLEM 
c 

IFLAG=1 
MROWSS=NOC 
KPRIOR=NPR0+1 
IOMID=2 
CALL ACHECK(ICHECK,IOMID) 
MVARR=NOV 
K=2 
INPRO(K)=IN(1) 
DO 19 v=1.100 

19 ZPRO(K.J)•O.O 
DO 22 v=1,NOV 
ZPRO(K,v)=Z(1,v) 

22 CONTINUE 
C TO DETERMINE THE TYPE OF THE CUTTING PLANE THAT SHOULD BE USED 

IDEN=NOV-NXREAL 
IDECID=O 
IF(IDEN.GE.1) IDECID=1 

C TO KEEP THE NUMBER OF EXISTING PRIORITY LEVELS 
c 
21 L•K 

CALL INTGR(L,IDECID.ZROCUT) 
IF(ZROCUT.EQ.1) GO TO 2 
GO TO (1,2),ICOUNT 
IN0=1 
00 5 INC= 1, L 

10 CALL PIVCOL 
IF(XMAX.EQ.O.OR.IPVC.EQ.O) GO TO 5 
CALL PIVROW(IPROW) 
NOPR0=2 
CALL CALC(IPROW) 
IF(ITRATN.EQ.20) RETURN 
CALL PTRG(NOV) 
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IF(INO.EQ. 1) GO TO 10 
5 CONTINUE 

GO TO 21 
2 ISUMMY=3 

CALL SUMMRY(IB,IN,NOPRO,IV,JZJJ,NOC,ISUMMY) 
RETURN 
END 

SUBROUTINE INTGR(L,IDECID.ZROCUT) 
DIMENSION IBI 100),IV(100),IN(100) 
DIMENSION ZPR0(100, 100),INPR0l100) 
DIMENSION ZPNEW(100, 100),IREAL(50) 
DIMENSION DUM(100),IPM(1000),LEVATT(50),ZZl 1,100) 
DIMENSION TABB(100, 100),Z(100.100l,ID(100),TAB(100, 100) 
REAL IN,IV,INPRO,LEVATT 
INTEGER ZROCUT 
COMMON/81/TAB,IV,ID,IB,LIT 
COMMON/82/Z,IN,IP,IC,IW 
COMMON/83/IPVC,XMAX,NOV,INO 
COMMON/84/NPRNT,NOC,NOPRO 
COMMON/85/NPRO,IPM,TA88,ZZ 
COMMON/86/IPEMPT,IPART,I80UND 
COMMON/87/ICHECK,INTGP,IREAL.NXREAL 
COMMON/812/ITRATN,KINPRO,LEVATT 
COMMON/813/ICOUNT,IFLAG 
COMMON/814/ZPRO,INPRO,KPRIOR.ZPNEW,MVARR,MROWSS 

C** PURPOSE TO DETERMINE THE MAXIMUM FRACTION OF THE 
C•• RIGHT HAND SIDE. 

IF(NXREAL.NE.Ol THEN 
CALL GOMORY(J8.KROWS,FMAX) 
IF(JB.EQ.1) THEN 
WRITE(6, 106) 
WRITE ( 10, 106) 

106 FORMAT(//10X,'THE REQUIRED VARIABLES ARE INTEGERE VALUED') 
ICOUNT=2 
RETURN 
ELSE 
IROW=KROWS 
GO TO 107 
END IF 
ENDIF 
FMAX=O.O 
DO 11 I= 1, NOC 
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DO 10 u=1,MVARR 
IF(IPEMPT.EQ.1) THEN 
IF(IB(I).NE.Jl GO TO 10 
GO TO 3 
END IF 

C USING PARTITIONNING GOAL PROGRAMMING PROCEDURE 
IF(IPART.EQ.1) THEN 

3 

1 
5 

10 
11 

107 

C** 

LOCD=IDlJ) 
IF(IB(I).NE.LOCD) GO TO 10 
GO TO 3 
END IF 

IRHS=IV(I) 
FRACT=IV(I)-IRHS 
IF(FRACT.LT.0.98) GO TO 1 
IV(Il=IV(I)-FRACT+1.0 
FRACT=O.O 
IF(FMAX-FRACT) 5,11,11 
FMAX=FRACT 
IROW=I 
GO TO 11 
CONTINUE 
CONTINUE 
IF( FMAX. LE .0. 1) THEN 
ICOUNT=2 
IFLAG=2 
RETURN 
END IF 

C** TO DEVELOP THE GOMORY CUTTING PLANE CONSTRAINT 

IF(IDECID.EQ.O) THEN 
DO 25 u=1,NOV 
ITT =TAB(IROW,J) 
FRACT=TAB(IROW,J)-ITT 
IF(ABS(FRACT).LE.0.00001) GO TO 20 
IF(FRACT.GE.O.O) GO TO 15 
DUM(J)=1.0+FRACT 
GO TO 25 

15 DUM(J)=FRACT 
GO TO 25 

20 DUM(J)=O.O 
25 CONTINUE 

ELSE 
C PURPOSE TO DETERMINE A GOMORY CUTTING PLANE CONSTRAINTE 
C FOR THE MIXED INTEGER VALUES. 
c 
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WRITE ( 6. 1004) 
WRITE( 10,1004) 

1004 FORMAT(//20X, ·~·• PROGRAM IS USING MIXED INTEGER PROC') 
DO 1000 K= 1. NOV 

KABA=O 
DO 1001 J=1,NXREAL 

1001 IF(IREAL(J).EQ.K) KASA=KABA+1 

c 
c 

c 
c 

IF(KABA.EQ.1) GO TO 1002 

IF(TAB(IROW,K).GE.O) THEN 

DUM(K)=TAB(IROW,K) 

ELSE 
DUM(K)=(FMAX/(FMAX-1. ))*TAS(IROW,K) 

ENOIF 

GO TO 1000 
C FOR INTEGER VALUES 
1002 ITT=TAB(IROW,K) 

FRACT=TAB(IROW,K)~ITT 

IF(ABS(FRACT).LE.FMAX) THEN 

DUM(K)=FRACT 

ELSE 
DUM(K)=(FMAX/(1.-FMAX))•( 1-FRACT) 

END IF 

1000 CONTINUE 

END IF 
C CHECK FOR ZERO-CUTTING PLANE. SUCH CUT MAY EXIST WHEN PARTITION 

C ING GP PROCEDURE IS USED TO SOLVE A SMALL SIZED PROBLEM. 

c 
ZROCUT=O 

ICOTT=O 
DO 260 ILL=1,NOV 
IF(DUM(ILL)) 260,27,260 

27 ICOTT=ICOTT+1 

260 CONTINUE 
IF(ICOTT.EQ.NOV) THEN 
ZROCUT=1 

WRITE ( 6, 28) 
WRITE( 10,28) 

28 FORMAT(//10X,'A ZERO-CUT IS DETECTED') 
IF(!PART.EQ.1) THEN 

WRITE(6,29) 
WRITE( 10,29) 

29 FORMAT(//10X, 'TRY ANOTHER PROCEDURE'//10X, 'USE PREEMPTIVE 
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+ 

30 
+ 

GP PROCEDURE') 
RETURN 
END IF 
I F(IPEMPT. EQ. 1 l THEN 
WRITE(6.30) 
WRITE( 10,30) 
FORMAT(//10X, 'TRY ANOTHER PROCEOURE'//10X, 'USE PARTIT 
IONNIG GP PROCEDURE') 
END IF 
RETURN 
ENDIF 

C•• ADD CUTTING PLANE FRACTION TO THE FINAL TABLEUA 
C USING PREEMPTIVE GOAL PROGRAMMING PROCEDURE 
c 

IF(IPEMPT.EQ.1) THEN 
NVAR1=NOV+1 
NVAR=NOV+2 
NCONS=NOC+1 
ID(NVAR1)=NVAR1 
ID(NVAR)=NVAR 
IB(NCONS)=NVAR 
DO 70 I=1,NOC 
DO 70 J=NVAR1,NVAR 

70 TAB(I,J)=O.O 
DO 71 I=2,L 
DO 71 J=NVAR1,NVAR 

71 Z(I,J)=O.O 
TAB(NCONS.NVAR1)=-1.0 
TAB(NCONS.NVAR)=1.0 
DO 90 J= 1 , NOV 

90 TAB(NCONS,J)=DUM(J) 
IV(NCONS)=FMAX 
GO TO 26 
END IF 

C USING PARTITIONNING GOAL PROGRAMMING PROCEDURE 
c 

IF(IPART.EQ. 1) THEN 
LOCT=ID(NOV) 
NVAR1=LOCT+1 
NVAR2=LOCT+2 
NCONS=NOC+1 
NVV1=NOV+1 
NVV2=NOV+2 
ID(NVV1)=NVAR1 
ID(NVV2)=NVAR2 
IB(NCONS)=NVAR2 
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DO 8 1 I= 1 , NOC 
DO 81 J=NVV1,NVV2 

81 TAB(I,J)=O.O 
DO 83 I=2,L 
DO 83 J=NVV1,NVV2 

83 Z(!,J)=O.O 
TAB(NCONS,NVV1)=-1. 
TAB(NCONS,NVV2)=1. 

C TO ORGANIZE THE NEW ROW CONSTRAINT FOR THE SIMPLEX TABLEAU 
DO 82 J=1,NOV 

82 TAB(NCONS,J)=DUM(J) 
IVlNCONS)=FMAX 
NVAR=NVV2 
GO TO 26 
ENDIF 

C•*ADD A NEW PRIORITY TO THE PRIORITY MATRIX 
26 CONTINUE 

C USING PREEMPTIVE GOAL PROGRAMMING PROCEDURE 
IF(IPEMPT.EQ. 1) THEN 
DO 91 I= 1 ,NVAR 
DO 95 J=1,NCONS 
IF(IB(J).EQ.Il THEN 
ZPR0(1,I)=O.O 
GO TO 91 
ELSE 
ZPR0(1,I)=TAB(NCONS,I) 
END IF 

95 CONTINUE 
91 CONTINUE 

DO 92 I=2,L 
DO 92 J=NVAR1.NVAR 

92 ZPRO(I,J)=O.O 
ZPR0(1,NVAR1)=-1. 
ZPR0(1,NVAR)=O.O 
GO TO 94 
ENDlF 
IF(IPART.EQ.1) THEN 
DO 191 I= 1 , NVV2 
DO 192 J=1,NCONS 
IF(IB(J).EQ.ID(I)l THEN 
ZPR0(1,I)=O.O 
GO TO 191 
ELSE 
ZPR0(1,I)=TAB(NCONS.I) 
END IF 

192 CONTINUE 
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191 CONTINUE 
ZPRO( 1,NVV1 )=-1. 
ZPR0(1.NVV2l=O.O 
ZPR0(2,NVV1l=O.O 
ZPR0(2,NVV2)=0.0 
END IF 

C*~ TO DETERMINE THE VALUE OF THE NEW PRIORITY LEVEL 
c•~ 

94 CONTINUE 
ICARE=2 
CALL SADD(IFLAG,NCONS,ICARE,LINEl 

C*• TO UPDATE NUMBER OF CONSTRAINTS,VARIABLES AND PRIORITIES. 
NOV=NVAR 
NOC=NCONS 
NPRO=KPRIOR 
NOPRO=NPRO 
IF(IFLAG.EQ.2) THEN 
DO 1103 J= 1 , NOV 
Z(1.J)=ZPR0(1,J) 
IN(1)=INPR0(1) 

1103 CONTINUE 
C SET THE Z VALUES OF THE NEW VARIABLES TO ZERO 

IF(IPART.EQ.1) THEN 
Z(2,NVV1)=0.0 
Z(2.NVV2)=0.0 
END IF 

C USING PREEMPTIVE GP PROCEDURE 
c 

IF ( IPEMPT. EQ. 1) THEN 
Z(2,NVAR1)=0.0 
Z(2,NVAR)=O.O 
END IF 
END IF 
IF(IFLAG.EQ.1) THEN 
DO 103 I=1,L 
DO 103 J=1,NOV 
Z(I,J)=ZPRO(I.J) 
IN(I)=INPRO(!) 

103 CONTINUE 
END IF 
ICOUNT=1 
IFLAG=2 

C USING PARTITIONNING GP PROCEDURE 
IF(IPART.EQ.1) THEN 
NOPR0=2 
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CALL PTRG(NOV) 
RETURN 
END IF 

C USING PREEMPTIVE GP PROCEDURE 
c 

C* 

IF(IPEMPT.EQ. 1) THEN 
CALL PTRG(NOV) 
END IF 
RETURN 
END 

SUBROUTINE SADD 

SUBROUTINE SADD(IFLAG,NCONS,ICARE,LINE) 
DIMENSION TAB( 100, 100), IV( 100), I8( 100), ID( 100), IN( 100) 
DIMENSION Z(100, 100),ZPNEW(100,100),ZPR0(100,100),INPR0(100) 
DIMENSION TA88(100,100),IPM(1000),LEVAT~(50),ZZ(1,100) 
REAL IN,IV,INPRD,LEVATT 
COMMON/81/TA8,IV,ID.IB,LIT 
COMMON/82/Z,IN,IP.IC,IW 
COMMON/83/IPVC,XMAX,NOV,INO 
COMMON/84/NPRNT,NOC,NOPRO 
COMMON/85/NPRO,IPM,TAB8,ZZ 
COMMON/86/IPEMPT,IPART,I80UND 
COMMON/812/ITRATN,KINPRO,LEVATT 
COMMON/814/ZPRO,INPRO,KPRIOR,ZPNEW,MVARR.MROWSS 
GO TO (1,2),ICARE 
IFLAG=1 
IF(IPART.EQ.1) THEN 
K=2 
INPRO(Kl=IN(1) 
DO 10 J= 1, 100 

10 ZPRO(K,J)=O.O 
DO 20 J= 1 , NOV 
ZPRO(K,J)=Z(1,J) 

20 CONTINUE 
GO TO 50 
END IF 
IF(IPEMPT.EQ. 1) THEN 
K=1 
KAKE=NPR0-1 
DO 30 I=1,KAKE 
K=K+1 
INPRO(K)=IN(I) 
DO 40 J=1.NOV 
ZPRO(K,J)=O. 
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ZPRO(K,J)=Z(I,J) 
40 CONTINUE 
30 CONTINUE 

ENDIF 
50 LINE=K 

RETURN 
2 BSUM=IV(NCONS) 

DO 70 I=1.NOV 
DO 80 u=1,NCONS 
IF(IB(J).EQ.ID(I)) THEN 
ZPNEW(1,Il=O.O 
GO TO 70 
ENDIF 

80 CONTINUE 
ZPNEW(1,I)=TAB(NCONS,I) 

70 CONTINUE 
IF(IFLAG.EQ. 1) THEN 
DO 100 I = 1 , NOV 
ZPR0(1,I)=ZPNEW(1,I) 

100 CONTINUE 
INPR0(1)=BSUM 
RETURN 
END IF 
DO 101 I= 1 , NOV 
ZPRO( 1, I )=ZPNEW( 1, I )+Z( 1, I) 

101 CONTINUE 

c 

INPR0(1)=IN(1)+8SUM 
RETURN 
END 

SUBROUTINE GOMORY(J8,KROWS,FMAX) 
DIMENSION ID(100),INPR0(100),TA8(100,100),Z(100,100) 
DIMENSION !REAL( SO), IV( 100), IB( 100). IN( 100) .ZPNEW( 100. 100) 
DIMENSION !PM( 1000),TAB8(100,100),ZZ(1. 100),ZPR0(100, 100) 
DIMENSION LEVATT(SO) 
REAL IN.IV,INPRO,LEVATT 
COMMON/81/TA8.IV.ID.I8,LIT 
COMMON/82/Z.IN,IP,IC,IW 
COMMON/83/IPVC,XMAX,NOV,INO 
COMMON/84/NPRNT,NOC,NOPRO 
COMMON/85/NPRO,IPM,TA88,ZZ 
COMMON/86/IPEMPT,IPART,I80UND 
COMMON/87/ICHECK,INTGP,IREAL,NXREAL 
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COMMON/812/!TRATN.KINPRO.LEVATT 
COMMON/813/ICOUNT,IFLAG 
COMMON/814/ZPRO,INPRO,KPRIOR.ZP~EW.MVARR,MROWSS 

JB=O 
KD=O 

C COUNT THE NUMBER OF INTEGER VARIABLES WHICH ARE AVAILABLE. 
DO 17 I=1,NXREAL 
DO 18 J=1,NOC 
IF(IREAL(I).EQoiB(J)) THEN 
IRHS=IV(J) 
FRACT=IV(J)-IRHS 
IF(FRACToLEoOo02oOR.FRACToGEo0.98) THEN 
KD=KD+1 
GO TO 17 
END IF 
END IF 

18 CONTINUE 
17 CONTINUE 

IF(KD.LT.NXREAL) GO TO 12 
JB=1 
RETURN 

C TO FIND THE MAXIMUM FRACTION FOR THE REQUIRED INTEGER VARIABLES 
12 FMAX=OoO 

DO 10 I=1,NOC 
DO 11 J=1,NXREAL 
IF(IB(I)oNE.IREAL(J)) GO TO 11 
IRHS=IV(I) 
FRACT=IV(I)-IRHS 
IF ( FRACT. LEo o 99) GO TO 1 
IV(I)=IV(I)-FRACT+1. 
FRACT=O.O 

1 IF(FMAX-FRACT) 5,10,10 
5 FMAX=FRACT 

KROWS=I 
GO TO 10 

11 CONTINUE 
10 CONTINUE 

C"' 

c 

RETURN 
END 

SUBROUTINE TSORT 

SUBROUTINE TSORT(KBASE.NONBAS.LL.LOWJ 
0 I MENS I ON T AS ( 100, 100) , Z ( 100, 100) , I D ( 100) . I B ( 100) , IV ( 100) 
DIMENSION IN( 100) ,C( 100,100). TABS( 100, 100) .ZZ( 1,100) 
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DIMENSION LEVATT(50),IPM(1000).KBASE(50l,NONBAS(50),IREAL(50) 
REAL IN.IV,LEVATT 
COMMON/81/TAB,IV,ID.IB,LIT 
COMMON/82/Z.IN,IP,IC.IW 
COMMON/83/IPVC,XMAX,NOV.INO 
COMMON/84/NPRNT,NOC,NOPRO 
COMMON/85/NPRO,IPM,TA8B,ZZ 
COMMON/BG/IPEMDT,IPART,IBOUND 
COMMON/87/ICHECK,INTGP,IREAL.NXREAL 
COMMON/88/C 
COMMON/810/KING 
COMMON/811/KAT,KIT 
COMMON/812/ITRATN,KINPRC,LEVATT 
COMMON/813/ICOUNT,IFLAG 
COMMON/815/IPAT,KRAZY 

C SAVE THE FOLLOWING VECTORS FOR THE REQUIRED INTEGER VARIABLES 
00 10 I=1,NXREAL 
KBASE(I)=O 
NONBAS(I)=O 

10 CONTINUE 
C THE FOLLOWING SECTION SORT THE BASIC AND NONBASIC VARIABLES 
C WHOSE VALUE REQUIRED TO INTEGEREO 
C TO RECORD THE NONINTEGER BASIC VARIABLES 

LOW=O 
00 30 I=1,NXREAL 
00 20 ..J•1,NOC 
IF(IREAL(I).EQ.IB(..J)) THEN 
LOW=LOW+1 
KBASE(LOW)=IB(..J) 
GO TO 30 
END IF 

20 CONTINUE 
30 CONTINUE 
c 
C RECORD THE LIST OF NONBASIC VARIABLES TO BE INTEGEREO. 
c 

LL=O 
DO 40 I=1,NXREAL 
DO 50 ..J=1,LOW 
IF(IREAL(Il.EQ.KBASE(..J)) THEN 
Izz .. o 
GO TO 40 
ELSE 
IZZ=1 
END IF 

50 CONTINUE 
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IF(IZZ.EQ.1) THEN 

LL=LL•1 

NONBAS(LL)=IREAL(I) 

END IF 

40 CONTINUE 

c 

RETURN 

END 

SUBROUTINE BOUND 

~IMENSION ATAB(100,100).AZE(100. 100),AIV( 100).AIN(100) 

DIMENSION IABASE(100).IDVAR(100),ATT(100, 100),AZZ( 100, 100) 

DIMENSION KBB(100),RHV(100),ARHN(100),KDD(100),IN( 100) 

DIMENSION TABI100.100),Z(100.100).IB( 100).ID(100),IV(100) 

DIMENSION TABB(100. 100),ZZ( 1,100).INPR0(100),XOOM(100) 

DIMENSION ZPR0(100. 100),XMOD(100),IPM( 1000),IREAL(50) 

DIMENSION F(50),FF(50),ZPNEW(100,100),LEVATT(50) 

DIMENSION TUT(100,100),ZUZ(100, 100),IUN(100).IUB(100) 

DIMENSION IUD(100),IUV(100),XARRY(200),SARRY(200),ISETT(100) 

DIMENSION LOECS(100),LPDEV(100),LNDEV(100) 

REAL IN,IV,IUV,IUN,INPRO.LEVATT 

INTEGER ZROCUT,SETNOV,SETNOC,SETLL,SUTLL 

COMMON/81/TAB.IV,ID.IB.LIT 

COMMON/82/Z,IN.IP,IC,IW 

COMMON/83/IPVC,XMAX,NOV,INO 

COMMON/84/NPRNT,NOC,NOPRO 

COMMON/85/NPRO,IPM,TABS.ZZ 
COMMON/86/IPEMPT,IPART,IBOUND 

COMMON/87/ICHECK.INTGP,IREAL.NXREAL 

COMMON/810/KING 

COMMON/812/ITRATN,KINPRO,LEVATT 

COMMON/813/ICOUNT.IFLAG 

COMMON/814/ZPRO,INPRO,KPRIOR,ZPNEW,MVARR.MROWSS 

COMMON/815/IPAT,KRAZY 

COMMON/816/ATAB,AZE,AIV,AIN.IA8ASE,IDVAR,XOOM,XMOD 

COMMON/818/IOUE,SETNOV,SETNOC,SETLL 

COMMON/B20/LDECS.LPDEV,LNDEV.LTOT1,LTOT2,LTOT3 

NUM8ER=O 

IQUE=O 

JZJJ=O 
NIB8=1 

IF(IPART.EQ. 1) THEN 

I FLAG=~ 

MVARR=NDV 
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MROWSS=NOC 
KPRIOR=NPR0+1 
MVARR=NOV 
K=2 
INPRO(K)=INl1) 
DO 19 u=1,100 

19 ZPRO(K.u)=O.O 
D022u=1,NOV 
ZPRO(K,u)=Z(1,u) 

22 CONTINUE 
GO TO 21 
END IF 
IF(IPEMPT.EQ.1) THEN 
IFLAG=1 
MROWSS=NOC 
MVARR=NOV 
KPRIOR=NPR0+1 
K=1 
DO 101 I=1,NPRO 
K=K+1 
INPRO(K)=IN(I) 
DO 102 u=1, NOV 
ZPRO(K,u)=O. 
ZPRO(K,u)=Z(I,u) 

102 CONTINUE 
101 CONTINUE 

GO TO 21 
END IF 

21 L=K 
C TO CONSTRUCT TWO NEW CONSTRAINTES 
c 

IBR=1 
IQUE=IQUE+1 
WRITE(6,2222) 
WRITE( 10,2222) 

2222 FORMAT(//10X, 'USING IBR=1') 
SETNOV=NOV 
SETNOC=NOC 
SETLL=L 
CALL BRNCH(IBR,L,FMAX,uB.ZROCUT,IROW) 
IF(ZROCUT.EQ.1) RETURN 
IF(uB.EQ.1) THEN 
ISUMMY=1 
CALL SUMMRY(IB,IN,NOPRO,IV,uZuu,NOC,ISUMMY) 
IF(NUMBER.EQ.1) GO TO 1 
GO TO 92 
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END IF 
GO TO ( 1,2),ICOUNT 

2 INO= 1 
NIBR=IBR 
DO 13 IN0=1,L 
DO 600 LOT=1.NOC 
IF(IV(LOT).LT.O.) GO TO 601 

600 CONTINUE 
10 CALL PIVCOL 

IF(XMAX.EQ.O.OR.IPVC.EQ.O) GO TO 5 

CALL PIVROW(IPROW) 
IF(IPART.EQ.1) NPR0=2 
CALL CALC(IPROW) 
IBR=3 
CALL BRNCH(IBR,L,FMAX,JB,ZROCUT,IROW) 
IF(JB.EQ.1) THEN 
ISUMMV=1 
CALL SUMMRY(IB,IN,NOPRO,IV,JZJJ,NOC,ISUMMV) 
CALL PTRG(NOV) 
GO TO 602 
END IF 

_CALL PTRG(NOV) 
DO 603 I = 1 , NOC 
IF(I.EQ.IROW) THEN 
IRIGHT=IV(I) 
HTT=IV(I)-IRIGHT 
END IF 

603 CONTINUE 
IF(INO.EQ.1) GO TO 10 
GO TO 5 

601 CALL OUALSX(IPROW,LAB,IBALL) 
IBR=3 
CALL BRNCH(IBR,L,FMAX,JB.ZROCUT,IROW) 
IF(JB.EQ.1) THEN 
ISUMMV=1 
CALL SUMMRY(IB,IN,NOPRO,IV,JZJJ,NOC,ISUMMV) 
CALL PTRG(NOV) 
GO TO 602 
END IF 

5 IF(IN(2).EQ.O) GO TO 602 
13 CONTINUE 
602 IBR=NIBR 

IF(IBR.EQ.2) GO TO 1000 
DO 2111 !=1 ,NOC 
DO 222 J=1,NOV 
ATT(I,J)=TAB(I,J) 
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222 CONTINUE 

RHV(I)=IV(I) 
KBB(I)=IB(I) 

2111 CONTINUE 

00 23 I=1,NOPRO 
DO 24 J=1 ,NOV 

AZZ(I,Jl=Z(I,J) 
KOD ( J ) = ID ( J ) 

24 CONTINUE 
ARHN(I)=IN(I) 

23 CONTINUE 

c 

NVARL=NOV 

KNNOC=NOC 

SUTLL=L 

C SAVE THE VALUE OF PRIORITY OF ONE AND TWO 

c 
00 9 I=1,SUTLL 

9 F(Il=IN(I) 

c 
C PREPARE TO SOLVE THE SECOND PROBLEM 

c 

22222 

IBR=2 
IQUE=IQUE+1 

WRITE(6,22222) 
WRITE( 10,22222) 
FORMAT(//10X, 'USING IBR=2') 

NOV=SETNOV 
NOC=SETNOC 

LNEW=SETLL 
IF(IQUE.EQ.2) LNEW=SETLL-1 

DO 11 I= 1 , NOC 
DO 20 J=1,SETNOV 
TAB(I,J)=ATAB(I.J) 

20 CONTINUE 
IV(I)=AIV(I) 

IB(I)=IABASE(I) 

11 CONTINUE 
C SET NOPRO EQUAL TO L 

DO 30 I=1,LNEW 
DO 40 J=1,SETNOV 
Z(I ,J)=AZE( I .J) 
ID(J)=IDVAR(J) 

40 CONTINUE 
IN(I)=AIN(IJ 

30 CONTINUE 
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c 

IF(IQUE.EQ.2) THEN 
NOPRO=L .. 1 
CALL PTRG(NOV) 
ICARE=1 
CALL SADO(IFLAG,NCONS,ICARE,LINE) 
K=LINE 
ELSE 
CALL PTRG(NOV) 
END IF 

C STORE XDOM IN XMOD 
DO 50 J= 1, SETNOV 
XOOM(J)=O. 
XDDM(J)=XMCD(J) 

50 CONTINUE 
c 

FMAX=1.-FMAX 
CALL BRNCH(lBR.L,FMAX,JS,ZROCUT,lROW) 
IF(JB.EQ.1.0R.ZROCUT.EQ.1) GO TO 1 
GO TO 2 

1000 CONTINUE 
IF(IPART.EQ.1) NPR0=2 
DO 8 I= 1 , NPRO 

8 FF(ll=IN(I) 
c 
C PREPARE TO SOLVE THE PARTITIONNING PROBLEM 

IF(IPART.EQ. 1) THEN 
IF(F(1).EQ.O.ANO.F(2).GT.O) THEN 
IF(FF(1l.EQ.O.AND.FF(2).EQ.O) GO TO 21 
END IF 

c 

IF(FF(1).EQ.O.ANO.FF(2).GT.O) THEN 
IF(F(1).EQ.O.AND.F(2).EQ.O) GO TO 57 
END IF 
IF(F(1).GT.O.AND.FF(1).EQ.O) GO TO 21 
IF(F(1).EQ.O.AND.FF(1).GT.O) GO TO 57 
NPR0=2 
GO TO 58 

END IF 

COMPARE THE SOLUTION OF THESE TOW PROBLEMS(FOR PREEMPTIVE) 
IF(F(2).GT.O.AND.FF(2).GT.O) GO TO 77 

C TERMINATION RULE FOR SUB P1 
IF(F(2).GT.O.AND.FF(2).LE.O) GO TO 56 

C TERMINATION RULE FOR SUB #2 
IF(F(2).LE.O.AND.FF(2).GT.O) GO TO 57 
GO TO 58 
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C CONTINUE BRANCHING FROM SUB #2 
56 CALL PTRG(NOV) 

GO TO 21 
C CONTINUE BRANCHING FROM SUB F1 
57 NOV=NVARL 

NOC=KNNOC 
DO 5 1 I = 1 . NOC 
DO 52 J=1,NOV 
TAB(I,J)=ATT(I.J) 

52 CONTINUE 
IV(I)=RHV(I) 
IB(I)=KBB(I) 

51 CONTINUE 
C SET NOPRO TO L 

DO 53 I= 1 , SUTLL 
DO 54 J=1 ,NOV 
Z(I,J)=AZZ(I,J) 
ID(J)=KOD(J) 

54 CONTINUE 
IN(I)=ARHN(I) 

53 CONTINUE 
CALL PTRG(NOV) 
IF(ITRATN.GT.100) RETURN 
GO TO 21 

58 IAIA=O 
DO 55 KL= 1, NPRO 
IF(F(KL).EQ.O.AND.FFlKL).EQ.O) THEN 
IAIA=IAIA+1 
IF(IAIA.EQ.NPRO) GO TO 71 
GO TO 55 
END IF 
IF(F(KL).LT.FF(KL)) THEN 
IF(JB.EQ.1.AND.IQUE.EQ.2) GO TO 68 
IF(IQUE.EQ.2) GO TO 65 
GO TO 68 

C SAVE THE TABLEAUE OF SUB #2 
65 NIBB=2 

KVV1=NOV 
KCC1=NOC 
00 66 I= 1 . KCC 1 
DO 67 J=1,KVV1 

67 TUT(I,J)=TABli,J) 
IUV(I)=IV(I) 
IUB( I )=IS( I) 

66 CONTINUE 
DO 69 I= 1, L 
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DO 70 J=1,NOV 

ZUZ(I. J )=Z( I, J) 

IUOlJ)=ID(Jl 
70 CONTINUE 
69 IUN(I)=IN(Il 

C TO USE TABLE OF SUB~1 FOR FURTHER COMPUTATIONS 
68 NOV=NVARL 

NOC=KNNOC 

00 6 1 I= 1 . NOC 
00 62 J= 1 , NOV 
TAB(I,Jl=ATT(I,J) 

62 IV(I)=RHV(I) 

IB(Il=KBB{I) 
61 CONTINUE 

DO 63 I=1,SUTLL 
DO 64 J= 1, NOV 
Z(I.J)=AZZ(I,J) 
ID{J)=KOO(J) 

64 CONTINUE 
IN(I)=ARHN(I) 

63 CONTINUE 
GO TO 76 

ELSE 
IF(IQUE.EQ.2) GO TO 71 

GO TO 76 

71 NI88=2 
KVV1=NVARL 
KCC1=KNNOC 
DO 72 I=1 ,KCC1 

DO 73 J=1.KVV1 
73 TUT(I.J)=ATT(I.J) 

IUV(I)=RHV(I) 

IUB(Il=KBB(I) 
72 CONTINUE 

DO 74 I=1,L 
DO 75 J= 1 , KVV 1 
ZUZ(I,Jl=AZZ(I,J) 

IUO(J)=KDD(J) 
75 CONTINUE 

IUN(!)=ARHN(I) 

74 CONTINUE 
GO TO 76 

END IF 
55 CONTINUE 
76 CALL PTRG(NOV) 

GO TO 21 
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77 IF(IQUE.EQ.2) THEN 
WRITE(6,91) 
WRITE!10,91) 

91 FORMAT(//10X, 'THIS PROBLEM HAS NO INTEGER SOLUTION') 
GO TO 1001 
END IF 

92 NUMBER=1 
IF(NIBB.EQ.2) THEN 
NOV=KVV1 
NOC=KCC1 
DO 78 I=1 ,NOC 
DO 79 J=1 ,NOV 

79 TAB(I,J)=TUT(I,J) 
IV( I )=IUV(I) 

78 IB(I)=IUB(I) 
DO 80 I•1,NOPRO 
DO 81 J= 1 , NOV 
Z(I,J)=ZUZ(I,J) 
ID(J)•IUD(J) 

81 CONTINUE 
IN(I)=IUN(I) 

80 CONTINUE 
CALL PTRG(NOV) 
GO TO 21 
END IF 

1 IF(NUMBER.EQ.O) GD TO 92 
1001 ISUMMY=2 

C* 

CALL SUMMRY(IB,IN,NOPRO,IV,JZJJ,NOC,ISUMMY) 
ISUMMY=3 
CALL SUMMRY(IB,IN,NOPRO,IV,JZJJ,NOC,ISUMMY) 
RETURN 
END 

SUBROUTINE BRNCH 

SUBROUTINE BRNCH(IBR,L,FMAX,JB,ZROCUT,IROW) 
DIMENSION TAB(100,100),Z(100,100),IBl100),ID(100),IN(100) 
DIMENSION IV(100),INPR0(100),ZPRO( 100, 100),IPM(1000) 
DIMENSION ZPNEW( 100,100),XDOMI 100l,XMOD(100),ZZl1,100l 
DIMENSION ATAB(100,100),AIVl100),AIN(100J,AZE(100,100) 
DIMENSION IABASE{100).IDVAR(100).ATT{100, 100),AZZ(100,100) 
DIMENSION KBB(100),RHV(100),ARHN(100),TABB(100, 100) 
DIMENSION LEVATT(50),IREAL(50),KBASE(50),NONBAS(50) 
REAL IN,IV,INPRO,LEVATT 
INTEGER ZROCUT,SETNOV,SETNOC,SETLL,SUTLL 
COMMON/61/TAB,IV,ID,IB,LIT 
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COMMON/82/Z,IN,IP,IC,IW 
COMMON/83/IPVC,XMAX.NOV,INO 
COMMON/84/NPRNT,NOC,NOPRO 
COMMON/85/NPRO,IPM,TABB,ZZ 
COMMON/86/IPEMPT.IPART,IBOUND 
COMMON/87/ICHECK,INTGP,IREAL,NXREAL 
COMMON/810/KING 
COMMON/812/ITRATN,KINPRO,LEVATT 
COMMON/813/ICOUNT,IFLAG 
COMMON/814/ZPRO.INPRO,KPRIOR,ZPNEW,MVARR,MROWSS 
COMMON/815/IPAT,KRAZY 
COMMON/816/ATAB,AZE,AIV,AIN,IABASE,IDVAR,XDOM,XMOD 
COMMON/818/IQUE,SETNOV,SETNOC,SETLL 
CALL TSORT(KBASE,NONBAS,LL,LOW) 
IFFECT=O 
ZROCUT=O 
JB=O 
KD=O 
DO 1 0 I = 1 , LOW 
DO 9 J=1,NOC 
IF(KBASE(I).EQ.IB(J)) THEN 
IRHS=IV(J) 
FRACT=IVlJ)-IRHS 
IF(FRACT.LE.0.02.0R.FRACT.GE.0.98) THEN 
KD=KD•1 
GO TO 10 
END IF 
END IF 

9 CONTINUE 
10 CONTINUE 

KD=KD+LL 
IF(KD.LT.NXREAL) THEN 
GO TO (20,2,400).I8R 

400 RETURN 
ELSE 
JB= 1 
WRITE(6,40) 

40 FORMAT(//15X. 'ALL REQUIRED VARIABLES ARE INTEGER') 
RETURN 
ENOIF 

20 FMAX=O.O 
c 

IF(IFFECT.EQ. 1) THEN 
DO 300 I= 1 , NOC 
DO 301 J=1,LOW 
IF(IB(I ).NE.K8ASE(J)) GO TO 301 
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IF(IV(I).EQ.O.) GO TO 301 
IRHS=IV(I) 
FRACT=IV(I)-IRHS 
IF(FRACT.LT.0.5) THEN 
FRAKSN=FRACT/IV(I) 
ELSE 
FRAKSN=(1.-FRACT)/IV(I} 
END IF 
IF(FMAX-FRAKSN) 302,300,300 

302 FMAX=FRAKSN 
IROW=I 
GO TO 300 

301 CONTINUE 
300 CONTINUE 

c 

ELSE 
DO 30 I = 1 , NOC 
DO 11 v= 1 , LOW 
IF(IB(I).NE.KBASE(.J)) GO TO 11 
IRHS=IV(I) 
FRACT=IV(I)-IRHS 
IF(FRACT.LE.0.99) GO TO 111 

IV(I)=IV(I)-FRACT+1. 
FRACT=O.O 

111 IF(FMAX-FRACT) 5,30,30 
5 FMAX=FRACT 

I ROW= I 
GO TO 30 

11 CONTINUE 
30 CONTINUE 

c 

c 

END IF 

IF(FMAX.LE.0.01) THEN 
ICOUNT=1 
RETURN 
END IF 

C TO DEVELOPE TWO NEW CONSTRAINTS 
c 

I PROW= I ROW 
DO 25 v = 1 , NOV 
IF(ID(.J).EQ.IB(IPROW)) GO TO 21 
XDDM(v)=TAB(IPROW,.J) 
IF(XDOM(v).EQ.O) THEN 
XMOD(v)=XDOM(.J) 
ELSE 
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XMOD(J)=-XDOM(J) 
END IF 
GO TO 25 

21 XDOM(J)=O.O 
XMOD(J)=O.O 

25 CONTINUE 
WRITE(6,110) (XDOM(J),J=1,NOVl 
WRITE( 10, 110) (XDOM(J) ,J=1.NOV) 
WRITE(€,110) (XMOD(J).J=1,NOV) 
WRITE( 10, 110) (XMOD(J) ,J=1,NOV) 

110 FORMAT(//2X,10(F8.5,2X)) 
C CHECK FOR ZERO-CUTTING PLANES 

ZROCUT=O 
ICOTT=O 
DO 26 ILL=1,NOV 
IF(XDOM(ILL)) 26,27,26 

27 ICOTT=ICOTT+1 
26 CONTINUE 

IF(ICOTT.EQ.NOV) THEN 
ZROCUT=1 
WRITE(€,28) 
WRITE ( 10,28) 

28 FORMAT(//10X, 'A ZERO-CUT IS DETECTED') 
IF(IPART.EQ.1) THEN 
WRITE(6,29) 
WRITE( 10,29) 

29 FORMAT(//10X, 'TRY ANOTHER PROCEDURE'//10X, 'USE PREEMPTIVE 
+ GP PROCEDURE') 

END IF 
C PURPOSE TO CONSIDER THE PREEPTIVE GOAL PROGRAMMING PROCEDURE 

IF(IPEMPT.EQ.1) THEN 
WRITE(6,24) 
WRITE( 10.24) 

24 FORMAT(//10X, 'TRY ANOTHER PROCEDURE'//10X, 'USE PARTITIONING 
+ GP PROCEDURE') 

END IF 
RETURN 
END IF 

C SAVE THE TABLEAU.BASIS,RHS, DECISION VARIABLES,AND MATRIX OF PRIORITY 
C WEIGHTES 

DO 70 I=1,NOC 
00 80 J=1,NOV 
ATAB(I.J)=TAB(I,J) 

80 CONTINUE 
AIV(Il=IV(!) 
IABASE(I)=IB(I) 
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70 CONTINUE 
DO 81 I= 1 , NDPRD 
DO 82 J=1,NDV 
AZE(I,J)=Z(I,J) 
IOVAR(J)=ID(J) 

82 CONTINUE 
AIN(I)=IN(I) 

81 CONTINUE 
c 
C ADD THE CUTTING PLANES INTO THE TABLE 
c 
2 IF(IPEMPT.EQ.1) THEN 

NVAR1=NDV+1 
NVAR=NDV+2 
NCONS=NOC+1 
ID(NVAR1)=NVAR1 
ID(NVAR)=NVAR 
IB(NCONS)=NVAR 
DO 90 I= 1 , NOC 
DO 90 J=NVAR1,NVAR 

90 TAB(I,J)=O. 
DO 92 !=2,L 
DO 92 J=NVAR1,NVAR 

92 Z(I,J)=O. 
TAB(NCONS,NVAR1)=-1. 
TAB(NCONS,NVAR)=1. 
DO 93 J=1,NOV 

93 TAB(NCONS,J)=XDOM(J) 
IV(NCONS)=FMAX 
END IF 

c 
C ADD A NEW PRIORITY TO THE PRIORITY MATRIX 
c 

IF( IPEMPT. EO. 1) THEN 
DO 94 I=1,NVAR 
DO 95 J=1,NCONS 
IF( IB(J). EO. I) THEN 
ZPRD(1,I)=O.O 
GO TO 94 
ELSE 
ZPRO( 1,I)=TAB(NCONS,I) 
END IF 

95 CONTINUE 
94 CONTINUE 

DO 96 I=2,L 
DO 96 J=NVAR1,NVAR 
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c 

96 ZPRO(I.J)=O. 
ZPRO( 1,NVAR1)=-1. 
ZPRO( 1,NVAR)=O. 
GO TO 194 
END IF 

C FOR PARTITIONNING PROCEDURE 
c 

IF(IPART.EQ. 1) THEN 
LOCT=IO(NOV) 
NVAR1=LOCT+1 
NVAR2=LOCT+2 
NCONS=NOC+1 
NVV1=NOV+1 
NVV2=NOV+2 
ID(NVV1)=NVAR1 
ID(NVV2)=NVAR2 
IB(NCONS)=NVAR2 
DO 1 0 1 I= 1 , NOC 
DO 101 J=NVV1,NVV2 

101 TAB(I,J)=O. 
DO 102 J=NVV1,NVV2 

102 Z(2,J)=O. 
TA8(NCONS,NVV1l=-1. 
TA8(NCONS,NVV2)=1. 
DO 103 J=1.NOV 

103 TAB(NCONS,J)=XOOM(Jl 
IV(NCONS)=FMAX 
NVAR=NVV2 
END IF 
IF(IPART.EQ. 1) THEN 
DO 104 I= 1. NVV2 
DO 105 J=1,NCONS 
IF(IB(J).EQ.ID(l)) THEN 
ZPR0(1,I)=O. 
GO TO 104 
ELSE 
ZPR0(1,I)=TAB(NCONS,I) 
END IF 

105 CONTINUE 
104 CONTINUE 

ZPR0(1,NVV1l=-1. 
ZPRO ( 1 , NVV2 ) =0. 
ZPR0(2,NVV1)=0. 
ZPR0(2,NVV2)=0. 
END IF 
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c 
194 CONTINUE 
C UPDATE NUMBER OF CONSTRAINTES ,VARIABLES,AND PRIORITIES 
c 

NOV=NVAR 
NOC=NCONS 
NPRO=KPRIDR 
NOPRO=NPRO 
BSUM=IV(NCONS) 
INPR0(1)=BSUM 
DO 107 J=1,NOV 
Z(1,J)=ZPR0(1,J) 
IN( 1 )=INPRO( 1) 

107 CONTINUE 
c 
C IF(IFLAG.EQ.1) THEN 

IF(IQUE.LE.2) THEN 
DO 108 I=2,L 
DO 109 J=1,NOV 
Z(I,J)=ZPRO(I.J) 

109 CONTINUE 
IN(I)=INPRO(I) 

108 CONTINUE 

C'* 

c 

IN(1)=IV(NCONS) 
ENDIF 
ICOUNT=2 
IF(IPART.EQ. 1) THEN 
NOPR0=2 
CALL PTRG(NOV) 
RETURN 
ENDIF 
IF(IPEMPT.EQ.1) THEN 
CALL PTRG(NOV) 
END IF 
RETURN 
END 

SUBROUTINE SUMMRY 

SUBROUTINE SUMMRY(IB.IN,NOPRO,IV.JZJJ,NOC.ISUMMY) 

DIMENSION IB(100),IV( 100),SARRY(200),XARRY(200),ISETT(100) 
DIMENSION LDECS( 100l.LPOEV(100),LNDEV(100) 
DIMENSION IN( 100l.BINE(100),KBUT(SO) 
REAL IV, IN 
INTEGER XARRY 
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COMMON/B20/LDECS,LPDEV,LNDEV,LTOT1,LTOT2,LTOT3 
c 

GO TO (83.82,999),ISUMMY 

c 
C TO STORE THE INTEGER SOLUTIONS 

c 
83 JZJJ=JZJJ•1 

IF(JZJJ.EQ.1) THEN 

DC 84 J= 1 . NOC 
SARRY(J)=IV(J) 

84 XARRY(J)=IB(J) 

ISETT(JZJJ)=NOC 
DO 60 L=1,NOPRO 

60 BINE(L)=IN(L) 
KBUT(JZJJ)=NOPRO 

END IF 
IF(JZJJ.GE.2) THEN 
MAN1=1 

KBBC=JZJJ-1 
DO 70 I=1,KBBC 

70 MAN1=MAN1•ISETT(I) 
MAN2=MAN1+NOC-1 

K=O 
DO 91 J=MAN1,MAN2 
K=K+1 

SARRY(J)=IV(K) 
91 XARRY(J)=IB(K) 

ISETT(JZJJ)=NOC 
MAN3=1 
LAM=JZJJ-1 
DO 65 L=1,LAM 

65 MAN3=MAN3+KBUT(L) 
MAN4=MAN3+NOPR0-1 

LK=O 
DO 66 J=MAN3,MAN4 
LK=LK+1 

66 BINE(J)=IN(LK) 

c 

KBUT(JZJJ)=NOPRO 

END IF 

RETURN 

82 CONTINUE 
C TO SUMMARIZE THE INTEGER SOLUTIONS 

c 
IF(JZJJ.EQ.O) THEN 
WRITE(6,90) 
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WRITE( 10,90) 
WRITE(6,92) 
WRITE( 10,92) 

92 FORMAT(//20X, 'THIS PROBLEM HAS NO INTEGER SOLUTION') 
RETURN 
END IF 
WRITE ( 6, 90) 
WRITE( 10.90) 

90 FORMAT(//20X. 'SUMMARY OF INTEGER SOLUTION') 
JET1=1 
JET3=1 
DO 85 1=1,JZJJ 
JET2=!SETT(I) 
JET=JET 1+JET2- 1 
WRITE(6,87) 
WRITE(10,87) 

87 FORMAT(//20X, 'VARIABLES',11X, 'VALUE') 
DO 86 II=JET1,JET 
WRITE(6,89) XARRY(II),SARRY(II) 
WRITE(10.89) XARRY(II),SARRY(II) 

89 FORMAT(//20X,I8,10X,F16.6) 
86 CONTINUE 

JET1=JET+1 
JET4=KBUT(I) 
JET5=JET3+JET4-1 
WRITE(6,67) 
WRITE( 10.67) 

67 FDRMAT(//20X, 'PRIORITY' ,11X, 'VALUE') 
IOT=O 
DO 68 JJ=JET3.JET5 
IDT=IOT+1 
WRITE(6,69) IOT,BINE(JJ) 
WRITE(10,69) IOT,BINE(JJ) 

69 FDRMAT(//20X,I8, 10X,F16.6) 
68 CONTINUE 

JET3=JET5+1 
85 CONTINUE 

RETURN 
c 
999 WRITE(6,109) 

WRITE( 10,109) 
WRITE(6,101) 
WRITE( 10. 101) 

101 FORMAT(//10X, 'OPTIMAL SOLUTION FOR ORIGINAL DECIS. VARIABLES') 
DO 102 J=1,LTOT1 
IBIB=O 
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DO 103 I = 1 , NOC 

IF(IB(Il.EO.LDECS(J)) THEN 

WRITE(6,104) J,IV(I) 

WRITE(10,104) J.IV(Il 

104 FORMAT (I I 1 OX, 'X ( ' , I 2, 1 X, · ) = · , 6X, F 16.6) 

IBIB=1 

GO TO 102 

END IF 

103 CONTINUE 

IF(IBIB.EQ.O) THEN 

WRITE(6, 105) J 

WRITE( 10. 105) J 

105 FORMAT(/ I 1 OX, 'X ( ' , I 2, 1 X, ' ) =' , 16X, '0. 0000' ) 

END IF 

102 CONTINUE 

15550 

WRITE(6.109) 

WRITE( 10, 109) 

WRITE(6,15550) 

WRITE( 10, 15550) 

FORMAT(II20X,'OVERACHIVEMENTS') 

DO 106 J=1,LTOT2 

IAIA=O 

DO 107 I= 1 , NOC 

IF(IB(Il.EO.LPDEV(J)) THEN 

WRITE(6,108) J,IV(I) 

WRITE(10,108) J,IV(I) 

108 FORMAT(/ I10X, 'D+(', 12, 1X,' )=', 6X, F 16.6) 

IAIA=1 

GO TO 106 

END IF 

107 CONTINUE 

IF(IAIA.EQ.O) THEN 

WRITE(6,110) J 

WRITE( 10, 110) u 
110 FORMAT(/I10X,'D+(',I2,1X,')=',16X,'O.OOOO') 

END IF 

106 CONTINUE 

c 
WRITE(6,109) 

WRITE( 10, 109) 

WRITE(6,111) 

WRITE ( 10, 111 l 

111 FORMAT(/I20X, 'UNDERACHIVEMENT') 

DO 112 J=1.LTOT3 

ICIC=O 

246 



DO 113 I=1,NOC 
IF(IB(Il.EQ.LNDEV(J)) THEN 

WRITE(6,115) J,IV(I) 
WRITE(10,115) J,IV(I) 

1 15 FORMAT(// 1 OX. 'D- ( ' , I 2, 1 X, ' ) = ' . 6X, F 16 . 6 l 
ICIC=1 
GO TO 112 
END IF 

113 CONTINUE 
IF(ICIC.EQ.O) THEN 
WRITE(6,114) J 
WRITE ( 10, 1 1 4 ) J 

1 14 FORMAT ( // 1 OX , 'D- ( ' , I 2 , 1 X , ' ) = ' , 16X , ' 0 . 0000 ' ) 
ENDIF 

112 CONTINUE 
WR IT E ( 6 , 1 09 ) 
WRITE ( 1 0 . 1 09 ) 
RETURN 
END 

C* SUBROUTINE MEMOH 

c 

c 

c 

SUBROUTINE MEMOH(JOYL,ISEN) 

DIMENSION IREAL(50) 
COMMON/B6/IPEMPT,IPART,IBOUND 
COMMON/B7/ICHECK,INTGP,IREAL.NXREAL 

GO TO ( 1,2,4),JOYL 
C DISPLAY OF MENU 1 
c 

WRITE(6, 7) 
WRITE(10,7) 

7 FORMAT( 15X, 'DISPLAY OF MENU 1 ') 
WRITE(6,10l 
WRITE( 10, 10) 

10 FORMAT(/5X, 'CONTINOUSE SOLUTION BY PREGP PROCEDURE') 
WRITE ( 6, 11 l 
WRITE(10,11) 

11 FORMAT(/5X. '***ENTER 1 ***') 
WRITE ( 6, 20) 
WRITE(10,20) 

20 FORMAT(/5X,'CONTINOUSE SOLUTION BY PARGP PROCEDURE') 
WRITE(6,21) 
WRITE( 10,21) 
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21 FORMAT(/5X,'*** ENTER 2 ***') 

IF(JOYL.EQ. 1) GO TO 3 

C TO DISPLAY OF MENU 3 

4 WRITE(6,8) 

WRITE( 10,8) 

8 FORMAT(/15X, 'DISPLAY OF MENU 3 ') 

WRITE ( 6. 40) 

WRITE ( 10, 40) 

40 FORMAT(/5X. 'INTEGER SOLUTION BY PREGP USING CUTTING PLANE') 
WRITE(6.41) 
WRITE( 10,41) 

41 FORMAT(/5X,'*** ENTER 3 ***') 

WRITE ( 6, 50) 
WRITE( 10,50) 

50 FORMAT(/5X, 'INTEGER SOLUTION BY PREGP USING B & B 'J 

WRITE(6,51) 
WRITE(10,51) 

51 FORMAT(/5X, '*** ENTER 4 ***') 
WRITE(6,60) 
WRITE( 10,60) 

60 FORMAT(/5X, 'INTEGER SOLUTION BY PARGP USING CUTTING PLANE') 
WRITE(6. 61) 
WRITE(10,61) 

61 FORMAT(/5X, '*** ENTER 5 ***') 

WRITE(6,68) 
WRITE( 10,68) 

68 FORMAT(/5X, 'FIND INTEGER SOLUTION BY PARGP USING B & 8') 
WRITE ( 6, 69) 

WRITE( 10,69) 
69 FORMAT(/5X, '**" ENTER 6 ***') 

c 
WRITE ( 6. 65 l 

WRITE( 10,65) 
65 FORMAT(/5X, 'TO KEEP THE CONTINOUSE SOLUTION') 

WRITE(6,66) 
WRITE( 10,66) 

66 FORMAT(/5X, '*** ENTER 7 ***') 

3 WRITE(6,9) 
WRITE( 10.9) 

9 FORMAT(/15X, '*** CHOOSE THE OPTION •••' l 

READ (5,*) MOO 
IF(MOO.EQ.7) RETURN 

IF(MOO.EQ. 1) THEN 
WRITE(6, 70) 

WRITE( 10, 70) 

IPART=O 
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249 

IPEMPT=1 
INTGP=C 
IBOUND=O 
GO TO 999 
END IF 
IF(MOO.EQ.2J THEN 
WRITE(6. 71) 
WRITE(10,71) 
IPART=1 
IPEMPT=O 
INTGP=O 
IBOUND=O 
GO TO 999 
END IF 
IF(uOYL.EQ.1) RETURN 
IFIMOO.EQ.3) THEN 
WRITE(6,90) 
WRITE ( 10, 90) 
IPEMPT=1 
IPART=O 
INTGP=1 
IBOUND=1 
GO TO 999 
END IF 
IF(MOO.EQ.4) THEN 
WRITE(6,91) 
WRITE( 10,91) 
IPEMPT=1 
IPART=O 
INTGP=1 
IBOUND=2 
GO TO 999 
END IF 
IF(MOO.EQ.5) THEN 
WRITEl6.92) 
WRITE( 10,92) 
IPART=1 
IPEMPT=O 
INTGP=1 
IBOUND=1 
GO TO 999 
END IF 
IF(MOO.EQ.6) THEN 
WRITE(6.93) 
WRITE( 10,93) 
IPART=1 



IPEMPT=O 
INTGP=1 
IBOUND=2 
END IF 

70 FORMATl/SX, 'A CONTINOUSE SOLUTION BY PREGP IS REQUESTED') 
71 FORMAT(//SX, 'A CONTINOUS SOLUTION BY PARGP IS REQUESTED') 
90 FORMAT(//SX, 'LIPREGP AND GOMORY 'S CP METHOD IS SELECTED') 
91 FORMAT(//SX, 'LIPREGP AND BRACH AND BOUND METHOD IS SELECTED') 
92 FORMAT(//5X,'LIPARGP AND GOMORY 'S CP METHOD IS SELECTED') 
93 FORMAT(//SX, 'LIPARGP AND BRANCH AND BOUND METHOD IS SELECTED') 
999 IF(INTGP.EQ.1) THEN 

INTUR=2 
CALL INTERS(INTUR) 
ENDIF 
RETURN 

c 
C DISPLAY OF MENU 2 
c 
2 WRITE(6,94) 

WRITE(10,94) 
94 FORMAT(15X,'*** DISPLAY OF MENU 2 ***') 

WRITE(6, 700) 
WRITE( 10, 700) 

700 FORMAT(25X, '*** MENUE FOR SENSITIVITY ANALYSIS***') 
299 FORMAT(SX,'TO 00 NO CHANGES ENTER 5') 

WRITE(6,100) 
WRITE( 10, 100) 

100 FORMAT(SX, 'CHANGE .THE RHS VALUES') 
WRITEl6, 101) 
WRITE( 10, 101) 

101 FORMAJ(SX, '*" ENTER 1 **') 
WRITE(6, 102) 
WRITE( 10, 102) 

102 FORMAJ(5X,'J0 ADD A NEW DECISION VARIABLE') 
WRITE(6 ,103) 
WRITE( 10, 103) 

103 FORMAT(5X, '*** ENTER 2 •••') 

WRITE(6, 104) 
WRITE( 10, 104) 

104 FORMAJ(SX,'TO ADD A NEW OBJECTIVE FUNCTION') 
WRITE ( 6 , 1 05 ) 
WRITE( 10, 105) 

105 FORMAT(5X, '** ENTER 3 ••' l 
WRITE(6, 106) 
WRITE ( 10, 106) 

106 FORMAJ(SX, 'TO CHANGE THE COEFFICIENT ASSOCIATED WITH THE 
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+ ITH ROW AND JTH NONBASIC COLUMN') 
WRITE(6,107) 

107 FORMAT(5X,'*** ENTER 4 ***') 

WRITE ( 6, 299) 

c 

C* 

c 

WRITE( 10,299) 
WRITE( 6, 9) 
WRITE( 10,9) 

READ(S,•) ISEN 

RETURN 

END 

SUBROUTINE BINVRS 

SUBROUTINE BINVRS(SENS,ISKIL) 
DIMENSION IVZAR( 100),STOF(100,100),ISDD( 100).SZV(100,100) 
DIMENSION ID(100),IBOR(100),TAB(100, 100),SENS(100,100) 
DIMENSION IV(100),I8(100),SSIN(100) 
COMMON/B1/TAB,IV,ID,IB,LIT 

COMMON/B3/IPVC,XMAX,NOV,INO 
COMMON/B4/NPRNT,NOC,NOPRO 
COMMON/SS1/IBOR,IVZAR,STOF,ISDD,SZV,SSIN 

REAL IV 
C PURPOSE TO DETERMINE THE MATRIX OF 8 INVERSE 

K=O 
DO 10L=1,NOC 

00 20 J=1,NOV 
IF(ID(J).EQ.IBOR(L)) THEN 
K=K+1 

00 30 LI = 1 , NOC 
30 SENS(LI,K)=TAB(LI,J) 

GO TO 10 
END IF 

20 CONTINUE 
10 CONTINUE 

ISKIL=K 
DO 40 I = 1 , I SKI L 
WRITE(6,50) (SENS(I,Jl,J=1,ISKIL) 

WRITE(10,50) (SENS(I,J),u=1,ISKIL) 

50 FORMAT(5X,10(F6.2,2X)) 
40 CONTINUE 

C* 

RETURN 
END 

SUBROUTINE SENSTY 
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SUBROUTINE SENSTY(ISEN,IAM) 
DIMENSION STABB(100.100),SIV(100l.ISIB(100),SZZ(100,100) 
DIMENSION ISID(100),SIN(100).LNBVG(100).BMOD(100),SENS(100, 100) 
DIMENSION IBOR(100),IVZAR(100).STOF(100,100),SZV(100,100) 
DIMENSION ISDD(100),SSIN(100),SCC(100, 100),BBC(100),TAA(100,100) 
DIMENSION IPM(1000l,ISIN(100),TBC(100, 100) 
DIMENSION TAB(100,100).IV(100),ID(100),IB(100),Z(100, 100) 
DIMENSION IN( 100). C( 100, 100). TABS( 100, 100), ZZ( 1, 100) 
CO~MON/81/TAB.IV,ID,IB,LIT 

COMMON/82/Z.IN,IP.IC,IW 
COMMON/83/IPVC,XMAX,NDV,INO 
COMMON/B4/NPRNT,NOC,NOPRO 
COMMON/85/NPRO,IPM,TABB.ZZ 
COMMON/88/C 
COMMON/89/NOC1,NOC2 
COMMON/SS1/IBOR,IVZAR,STOF,ISDD,SZV.SSIN 
REAL IN,IV 

C TO SAVE THE OPTIMAL TABLEAU FOR SENSITIVITY 
c 
52 FORMAT(2X, 'CORRECT' ,5X,'ENTER',2X, '1:YES',2X,'2:NO') 
53 FORMAT(2X, 'REENTER AGAIN') 

GO TO (1,2,901l,IAM 
00 61 I= 1 , NOC 
DO 62 ..J=1,NOV 

62 STABB(I,..J)=TAB(I,..J) 
SIV(I)=IV(I) 
ISIN(I)=IB(I) 

61 CONTINUE 
DO 63 I= 1 , NO PRO 
DO 64 ..J=1,NOV 
SZZ(I,..J)=Zti,..J) 

64 ISID(..J)=IDt..J) 
63 SIN(I)=IN(I) 

NCO•NOC 
NVO=NOV 
NPO=NOPRO 

901 IF(ISEN.EQ.1) THEN 
WRITE(6,108) 
WRITE( 10,108) 

108 FORMAT(5X,'TO CHANGE THE RHS VALUES') 
WRITE(6, 109) 

WRITEl10, 109 l 
109 FORMAT(SX, 'ENTER THE NUMBER OF CHANGES IN RHS') 

REAO(S,~) ICHANG 
WRITE(6,51) ICHANG 
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WRITE(10,51) ICHANG 
51 FORMAT('~ OF :HANGES =' ,2X,I4) 
c 

WRITE ( 6 , 110) 
WRITE( 10,110) 

110 FORMATl5X, 'ENTER THE ROW NUMBER AND ITS VALUE RESPEVCTIVELY') 
DO 120 I=1,ICHANG 

55 READ(5,•) IRUD,PROD 
WRITE(6,54) IRUD.PROD 
WRITE(10,54) IRUD.PROD 

54 FORMAT(2X,'ROW=' ,2X,I4, 'RHS=' ,2X,FB.4) 
WRITE(6,52) 
WRITE(10,52) 
READ(5,•) ICORR 
IF(ICORR.EQ.2) THEN 
WRITE(6,53) 
WRITE( 10,53) 
GO TO 55 
END IF 

120 IVZAR(IRUD)=PROD 
CALL BINVRS(SENS.ISKIL) 
DO 121 I=1,ISKIL 
SUM=O 
DO 122 J=1,ISKIL 

122 SUM•SUM+SENS(I.J)*IVZAR(J) 
IV(I)=SUM 

121 CONTINUE 
c 
C EVALUATE THE VALUE OF EACH PRIORITY LEVEL 
c 

DO 40 I=1.NOPRO 
SSM=O 
DO 41 KI<=1,NOC 
LOK=IB(KK) 

41 SSM=SSM+C(I,LOK)•IV(KK) 
40 IN(I)=SSM 

CALL PTRG(NOV) 
00 50 I = 1 , I SKI L 
IF(IV(Il.LT.OJ THEN 
NOC2=NOC 
CALL DUALSX(IPROW,LAB,IBALL) 
GO TO 999 
END IF 

50 CONTINUE 
999 RETURN 

END IF 
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c 
C FOR ADDITION OF NEW DECISION VARIABLES 
c 

IF(ISEN.EQ.2) THEN 
WRITE(6,320l 
WRITE( 10. 320) 

320 FORMAT(SX, 'A VARIABLE NEED TO BE ADDED') 
322 FORMAT(SX, 'ENTER ROW P,VAR ~START FROM 1 AND THEN ITS VAL') 

WRITE(6,323) 
WRITE( 10,323) 

323 FORMAT(SX, 'ENTER THE NUMBER OF NEW VARIABLES') 
READ(S,*) NNVR 
WRITE{6,56) NNVR 
WRITE(10,56l NNVR 

56 FORMAT('# OF NEW VARIABLES=',2X,I4) 
NOVB=NOV 
DO 324 I= 1 , NNVR 
NOVB1=NOVB+I 
ID(NOVB1)=NOVB1 
DO 998 IPPL=1,NOPRO 

998 C(IPPL,NOVB1)=0. 
DO 700 u=1,NOC 

700 STOF{u,NOV81)=0.0 
324 CONTINUE 

WRITE(6,321) 
WRITE(10,321) 

321 FORMAT(SX,'ENTER THE NUMBER OF NONZERO ELEMENTS') 
READ(S,*) NOCZRO 
WRITE(6,57) NOCZRO 
WRITE(10,57) NOCZRO 

57 FORMAT(2X, '~' OF NONZERO ELEMENTS =' .2X.I4) 
WRITE(6,322l 
WRITE( 10,322) 
DO 326 u=1,NOCZRO 

59 READ(S,*) IRUW.IRR,VALY1 
WRITE(6,58) IRUW,IRR,VALY1 
WRITE( 10,58) IRUW,IRR,VALY1 

58 FORMAT( 2X, 'ROW=', 2X,l3, 2X, 'VARIABLE~<', 2X. !3, 2X. 'VALUE'. 2X, FS. 4) 
WRITE(6,52) 
WRITE(10,52l 
READ(S, •) ICORR 
IF(ICORR.EQ.2) THEN 
WRITE(6,53) 
WRITE( 10,53) 
GO TO 59 
END IF 
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NOV81=NOV+IRR 
STOF(IRUW,NOVB1)=VALY1 

326 CONTINUE 

CALL BINVRS(SENS.ISKIL) 
DO 329 IZB=1,NNVR 

NO=NOV+IZB 
DO 327 LI8=1,ISKIL 

SUM=O 
DO 328 LIC=1 ,ISKIL 

328 SUM=SUM+SENS(LIB,LIC)*STOF(LIC.NO) 

BMOD( LIB) =SUM. 
327 CONTINUE 

DO 330 I=1,ISKIL 
330 TAB(I,NO)=BMOD(I) 

329 CONTINUE 
DO 333 IZB=1,NNVR 
ND=NOV+IZB 
DO 331 I=1,NOPRO 

SUM=O 
00 332 J=1.NOC 
MP=IB(J) 
SUM=SUM+C(I,MP)•TAB(J,NO) 

332 CONTINUE 
Z(I,NO)=SUM-C(I.NO) 

331 CONTINUE 
333 CONTINUE 

NOV=NO 
CALL PTRG(NOV) 
DO 335 IN0=1,NOPRO 

10 CALL PIVCOL 
IF(XMAX.EQ.O.OR.IPVC.EQ.O) GO TO 335 

CALL PIVROW(IPROW) 
CALL CALC(IPROW) 
CALL PTRG(NOV) 
IF(INO.EQ. 1) GO TO 10 

IF(IN(INO).EQ.O) GO TO 335 

335 CONTINUE 

c 

RETURN 

END IF 

CC ADD A NEW OBJECTIVE FUNCTION 

c 
IF(ISEN.EQ.3l THEN 
WRiiE ( 6, 400) 
WRITE(10,400) 

400 FORMAT(SX, 'YOU ARE IN THE PROCESS OF ADDING A OBJECTIVE FUN') 

255 



65 WRITE(6,401) 

WRITE ( 10,401) 

401 FORMAT(5X, 'ENTER * OF NEW CONSTRAINTS AND P OF NEW VARIABLES') 
READ(5,*) KKNOC,KKNOV 

WRITE(6,402) KKNOC,KKNOV 
WRITE(10,402) KKNOC,KKNOV 

402 FORMAT(5X, 'NO.OF NEW CONST=' ,2X.I3/5X, 'NO. OF NEW VAR=' ,!3) 
WRITE(6,52) 

WRITE(10,52) 
READ(5,*) ICORR 

IF(ICORR.EQ.2) THEN 
WRITE(6,53) 

WRITE( 10,53) 
GO TO 65 
ENOIF 

NOC1=NOC 
NOVP=NOV+1 

NOCP=NOC 
NOC=NOC+KKNOC 
NOV=NOV+KKNOV 

INOV1=NOVP 
DO 403 I=1,KKNOV 

ID( INOV1 )=INOV1 
INOV1=INOV1+1 

403 CONTINUE 
DO 404 I=NOVP,NOV 

DO 404 J= 1 , NOCP 

404 TAB(J,I)=O.O 
NOCC=NOC1+1 

DO 900 IBOL=NOCC,NOC 
DO 900 IBOK=1,NOV 

900 TAB(IBOL,IBOK)=O. 
WRITE(6,406) 
WRITE( 10,406) 

406 FORMAT(SX, 'ENTER NUMBER OF NONZERO ELEMENTS IN THE NEW 
+ CONSTRAINTS') 

READ(S,*) NZRON 
WRITE(6,66) NZRON 
WRITE(10,66) NZRON 

66 FORMAT(2X, '#OF NONZERO ELEMENTS =' ,2X,I5l 
WRITE(6,67) 
WRITE( 10,67) 

67 FORMAT(2X, 'ENTER ROW !,COLUMN J AND ITS VALUE') 
DO 407 I=1,NZRON 

WRITE(6,68) L.M,VALUE 
WRITE(10,68) L,M,VALUE 
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68 FORMAT(2X. 'ROW I =',2X,I3, 'COLUMN J =' ,2X,I3, 'VALUE=' ,2X,F8.4) 
WRITE(6,52) 
WRITE( 10,52) 
READ(5,*) ICORR 
IF(ICORR.EQ.2) THEN 
WRITE(6,53) 
WRITE( 10,53) 
GO TO 69 
END IF 

69 READ(5,*) L,M,VALUE 
TAB(L,M)=VALUE 

407 CONTINUE 
WRITE ( 6, 408) 
WRITE( 10,408) 

408 FORMAT(5X, 'ENTER BASIS AND RHS VALUE OF EACH CONSTRAINT') 
DO 409 I=1,KKNOC 

71 READ(5,*) L,IBB,VIV 
WRITE(6,70) L,IBB,VIV 
WRITE(10,70) L,IBB,VIV 

70 FORMAT(2X. 'ROW=' ,2X.I3, 'BASIS=' ,2X,I3,'RHS=' ,2X,F8.4) 

409 

WRITE(6,52) 
WRITE(10,52) 
READ(5,*) ICORR 
IF(ICORR.EQ.2) 
WRITE(6,53) 
WRITE( 10,53) 
GO TO 71 
END IF 
IB(L)=IBB 
IV(L)=VIV 
CONTINUE 
WRITE(6,410) 
WRITE ( 10.401) 

THEN 

410 FORMAT(SX, 'ENTER THE PRIORITY LEVEL OF THIS NEW GOAL AND ' 
+/SX. 'THE NUMBER OF NONZERO ELEMENTS IN THE NEW PRIORITY LEVEL') 

REAO(S,*) LPGOAL,NONZO 
WRITE(6,72) LPGOAL,NONZO 
WRITE(10,72) LPGOAL,NONZO 

72 FORMAT(2X, 'PRIORITY LEVEL' ,2X,I3,2X, '#OF NONZERO ELEMENTS 
+=',2X,I3) 

WRITE(6,412) 
WRITE( 10,412) 

412 FORMAT(/SX,'ENTER THE PRIORITY WEIGHTS') 
c 
C TO ARRANGE THE MATRIX OF PRIORITY WEIGHTS 
c 
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IF(LPGOAL.EQ.1) THEN 

DO 415 I=1.NDPRO 
K=I+1 

DO 416 J=1.NOV 

SCC(1.J)=O.O 

IF(J.GE.NOVPl THEN 

SCC(K,J)=O. 

GO TO 416 

END IF 

SCC(K,Jl=C(I,J) 

416 CONTINUE 

415 CONTINUE 

GO TO 426 

ENDIF 

NOPP=NOPR0+1 

IF(LPGOAL.EQ.NOPP) THEN 

DO 417 I=1,NOPRO 

DO 417 J=1,NOV 

IF{J.GE.NOVP) THEN 

SCC(I,J)=O. 

GO TO 417 

END IF 

SCC(I,J)=C(I,J) 

417 CONTINUE 

DO 418 J= 1. NOV 

418 SCC(NOPP,J)=O.O 

GO TO 426 

END IF 
IF(LPGOAL.NE.1.AND.LPGOAL.NE.NOPRO) THEN 

ILP1=LPGOAL-1 

ILP2=LPGOAL+1 

NPPP=NOPR0+1 

DO 420 I=1,NPPP 

IF(I.LE.ILP1) THEN 

DO 42 1 J= 1 , NOV 

IF(J.GE.NOVP) THEN 

SCC(I,J)=O. 

GO TO 421 

END IF 

SCC(I.J)=C(I,Jl 

421 CONTINUE 

GO TO 420 

END IF 
IF(I.EQ.LPGOAL) THEN 

DO 422 J=1,NOV 

SCC(LPGOAL.J)=O.O 
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422 CONTINUE 
GO TO 420 
END IF 
K=I-1 
DO 423 J=1,NOV 
IF(J.GE.NOVP) THEN 
SCC(I,Jl=C. 
GO TO 423 
END IF 
SCC(I,J)=C(K,J) 

423 CONTINUE 
420 CONTINUE 

END IF 
426 WRITE(6,73) 

WRITE(10,73) 
73 FORMAT(2X,'ENTER VAR ~. AND PRIORITY WEIGHT OF THIS VARIABLE') 

DO 4~7 I=1,NONZD 
75 READ(5,*) IVAR,IVAL 

WRITE(6,74) IVAR,IVAL 
WRITE(10,74) IVAR,IVAL 

74 FORMAT(2X, 'VARIABLE#' ,2X,I3,2X,'PRIORITY WEIGHT=',2X,I4) 
WRITE(6,52) 
WRITE( 10,52) 
READ(5,*) ICORR 
IF(ICORR.EQ.2) THEN 
WRITE(6,53) 
WRITE(10,53) 
GO TO 75 
END IF 
SCC(LPGOAL,IVAR)=IVAL 

427 CONTINUE 
NOC2=NOC 
NOC3=NOC2-NOC1 
NNOC=NOC1+1 
DO 500 NBC=1,NOC3 
DO 501 J=1,NOV 
DO 502 I=1,NOC1 
IF(IB(Il.EQ.ID(J)) THEN 
L=I 
IF(TAB(NNOC,J).NE.O.) THEN 
IF(TAB(L,J).EQ.Ol GO TO 501 
DD=TAB(NNOC,J)/TAB(L,J) 
DO 503 K= 1, NOV 
TAA(L,K)=-DD*TAB(L,K) 
MARY=NOV+1 
TAA(L.MARY)=-DD•IV(L) 
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TBC(NNOC,K)=TAB(NNOC,K)+TAA(L,K) 
TAB(NNOC.K)=TBC(NNOC,K) 

503 CONTINUE 
IV(NNOC)=IV(NNOC)+TAA(L,MARY) 
GO TO 501 
END IF 
END IF 

502 CONTINUE 
501 CONTINUE 

NNOC=NNOC+1 
500 CONTINUE 
c 
C TO EVALUATE THE VALUE OF PRIORITY LEVELS 

NOPOO=NOPR0+1 
DO 600 K=1,NOPOO 
DO 60 1 I= 1 , NOV 
DO 602 J=1,NOC 
IF(IB(J).EO.ID(I)l THEN 
Z(K,Il=O.O 
GO TO 601 
END IF 

602 CONTINUE 
BSUM=O.O 
ASUM=O.O 
DO 603 J=1,NOC 
KBK=IB(Jl 
ASUM=ASUM+SCC(K,KBK)*TAB(J,I) 
BSUM=BSUM+SCC(K,KBK)*IV(J) 

603 CONTINUE 
Z(K,I)=ASUM-SCC(K,I) 
IN(K)=BSUM 

601 CONTINUE 
600 CONTINUE 

c 
c TO 
c 

902 

NOPRO=NOPOO 
CALL PTRG(NOV) 

FIND THE OPTIMAL 

NOPRO=NOPOO 
DO 902 I=1,NOC 
IF(IV(I).LT.O.) 
NOC2=NOC 

SOLUTION 

THEN 

CALL DUALSX(IPROW,LAB.IBALL) 
RETURN 
END IF 
CONTINUE 
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DO 604 IN0=1,NOPRO 

605 CALL PIVCOL 

IF(XMAX.EQ.O.OR.IPVC.EQ.O) GO TO 604 

CALL PIVROWliPROW) 
CALL CALC(IPROW) 
CALL PTRG(NOV) 
IF(INO.EQ.1) GO TO 605 

IF(IN(INO).EQ.O) GO TO 604 
604 CONTINUE 

c 

RETURN 

END IF 

C TO CHANGE A(I.J) THE COEFFICIENTS OF THE JTH VAR.IN THE ITH ROW 

c 
C NOTE A(I,J) ARE ASSOCIATED WITH NONBAIC VARIABLES ONLY 

c 
IF(ISEN.EQ.4) THEN 

WRITE(6,300) 
WRITE(10,300) 

300 FORMAT(5X, 'IT IS ONLY POSSIBLE TO CHANGE THE COEFICIENT OF 
+ THE NONBASIC VARIABLES') 

C FIND THE LIST OF NONBASIC VARIABLES 
K=O 

DO 301 I= 1 , NOV 
LBC=O 
DO 302 J= 1 , NOC 
IF(ID(I).NE.IB(J)) THEN 
LBC=LBC+1 
END IF 

302 CONTINUE 
IF(LBC.EQ.NOC) THEN 
K=K+1 
LNBVG(K)=ID(I) 

END IF 
301 CONTINUE 

DO 304 LK=1,K 
WRITE(6,303) LNBVG(LK) 

WRITE(10,303) LNBVG(LK) 

303 FORMATl/5X,I2) 

304 CONTINUE 

c 
WRITE(6.305) 
WRITE( 10,305) 

305 FORMAT(/5X, 'ENTER THE ROW F, VARIABLE F,AND THEN ITS VALUE') 

77 READ(S,*} IZC,IZB,POT 

WRITE(6,76) IZC,IZB.POT 
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WRITE(10,76) IZC,IZB,POT 
76 FORMAT(2X. 'ROW=' ,2X,I3,2X. 'VAR=' ,2X,I3,2X,'VALUE=',2X.F8.4) 

WRITE(6,52) 
WRITE( 10,52) 
REA0(5,•) ICORR 
IF(ICORR.EQ.2) THEN 
WRITE{6,53) 
WRITE( 10,53) 
GO TO 77 
END IF 
STDF(IZC,IZB)=PDT 
CALL BINVRS(SENS,ISKIL) 
DO 306 LIB=1,ISKIL 
SUM=O 
DO 307 LIC=1,ISKIL 

307 SUM=SUM+SENS(LIB,LIC)•STDF(LIC,IZB) 
BMOD (LIB) =SUM 

306 CONTINUE 
DO 309 I=1,ISKIL 

309 TAB(I,IZB)=BMOD(I) 
c 
C TO FIND THE VALUE OF Z(!,u) 
c 

DO 3007 I=1,NOPRO 
SUM=O 
DO 308 u=1,NOC 
MPciB(u) 
SUM=SUM+C(I,MP)•TAB(u,IZB) 

308 CONTINUE 
Z(I,IZB)=SUM-C(I,IZB) 

3007 CONTINUE 
c 

CALL PTRG(NOV) 
DO 3009 IN0=1,NOPRO 

310 CALL PIVCOL 
IF(XMAX.EQ.O.OR.IPVC.EQ.O) GO TO 3009 
CALL PIVROW(IPROW) 
CALL CALC(IPROW) 
CALL PTRG(NOV) 
IF(INO.EQ.1) GO TO 310 
IF(IN(INO).EQ.O) GO TO 3009 

3009 CONTINUE 

c 

END IF 
RETURN 

2 WRITE(6,3) 
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WRITE( 10. 3) 
3 FORMAT(/5X.'DD YOU WISH TO CONTINUE WITH THE RESULTS ' 

+/5X, 'ASSOCIATED WITH THE SENSITIVITY ANALYSIS') 
WRITEf6,4) 
WRITE(10.4l 

4 FORMAT(/5X,'** ENTER 1 FOR YES *'//5X.'"'"' ENTER .2 FOR NO"'*') 
c 

READ(S,•) NNODYY 
IF(NNDOYY.EQ. 1) RETURN 
IF(NNDOYY.EQ.2) THEN 
NDC=NCD 
NOV=NVD 
NOPRO=NPO 
DO 5 I= 1. NDC 
DO 6 J=1,NOV 

6 TAB(I,J)=STABB(I,J) 
IV (I )=SIV( I) 
IB(I)=ISIN(I) 

5 CONTINUE 
c 

DO 7 I=1,NDPRO 
DO 8 J=1,NOV 
Z(I,J)=SZZ(I,J) 

8 ID(I)=ISID(I) 
7 IN(I)=SIN(I) 

END IF 
RETURN 
END 
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APPENDIX B 

INTERACTIVE COMPUTER PROGRAM FOR THE 

STOCHASTIC VEHICLE ROUTING PROBLEM 
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c~ 

C* FORTRAN COMPUTER PROGRAM FOR THE 
ca STOCHASTIC VEHICLE ROUTING PROBLEM 
C• (SVRP) 

c· 
AUTHOR 

ADVISOR 
DATE 

COMPUTER 

YAHYA ZARE-MEHRJERDI 
DR.M.P.TERRELL 
NOVEMBER 1986 
IBM 3081D 

C• SCHOOL OF INDUSTRIAL ENGINEERING 
c• AND MANAGEMENT 
c• STILLWATER, OK. i4078 
c· 

c• 

C* THIS PROGRAM ALLOWS THE USERS TO SOLVE THE FOLLOWING TYPES OF 
C• THE SVRP: 
c• 
C• 1. DETERMINISTIC VEHICLE ROUTING PROBLEM (DVRP) 
C* 
c• 2. STOCHASTIC VEHICLE ROUTING PROBLEM HAVING ONLY PROBABILISTIC 
C* CUSTOMER DEMANDS(SVRPJ 
C* 
c• 3. STOCHASTIC VRP WITH PROBABILISTIC CUSTOMER DEMAND AND 
C* TRAVEL AND UNLOAD TIMES OF THE "F" TYPE PROBLEM AND 
c• 
C* 4. STOCHASTIC VRP WITH PROBABILISTIC CUSTOMER DEMAND AND 
C• TRAVEL AND UNLOAD TIMES OF THE "F" TYPE PROBLEM 
c· 

c• 
C• THE FOLLOWING SUBROUTINGS ARE USED IN THIS PROGRAM: 
c· 
C• MEMOH =THIS SUBROUTING PROVIDES THE AVAILABLE MENUES 
c· FOR THE USERS 
c• DETERM =IT IS USED FOR CONTROLLING THE PROCESS OF PROBLEM 
c· SOLVIG OF THE SVRP 
C• TSORT, HEAPSN,SWAPN.PUSHDN AND SAVMAT =THESE SUBROUTINES 
C• PERFORM TOGETHER TO PROVIDE THE SORTED SAVINGS FOR THE VRP AND SVRP 
c~ INPT =THIS SUBROUTINE PROVIDES THE INPUT DATA FOR THE DVRP 
C• RTCONT = IT IS USED TO CONSTRUCT THE VEHICLE ROUTES 
C• INTR =CHECKS THE EXISTENCE OF ANY INTERIOR STATION IN CONSTRUCTED 
C* VEHICLE ROUTES FOR ROUTING A NEW PAIR OF SELECTED STATIONS 
C• COMBND =TO ADD A NEW STATION INTO AN AVAILABLE ROUTE 
C• COMBRT = IT IS USED FOR PURPOSE OF COMBINING TWO ROUTES TOGETHER 
C* FEASBL =CHECKS THE FEASIBILITY OF THE ROUTES FOR DVRP 
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C* CTD 
c· 

=EVALUATE THE COST ,TIME OR DISTANCE OF THE CONSTRUCTED 
VEHICLE ROUTES FOR DVRP 

c• CHCKK =EVALUATES THE TOTAL DEMAND,OF EACH ROUTE FOR DVRP 
C• WWRT =PRINTS THE FINAL INFORMATIONS FOR EACH CONSTRUCTED ROUTE 
C* SWTCH =IT PERFORMS THE TASK OF SWITCHING THE PLACE OF AVAILABLE 
C• ROUTES AFTER TWO ROUTES HAVE BEEN COMBINED TOGETHER 
C* PROS =CONTROL THE PROGRAM FOR THE SVRP OF THE "E" TYPE PROBLEM 
C* STINPT=TO READ THE INPUT DATA FOR THE SVRP 
CS** PRCHCK•CHECKS THE ROUTE FEASIBILITY FOR THE "E" AND "F" TYPE 
C* PROBLEMS 
C• STFSBL=CHECK THE FEASIBILITY OF ADDING A NODE INTO A ROUTE OR 
C• COMBINING TWO ROUTES TOGETHER 
C* CONTRL=EVALUATE THE VARIANCE DEMAND,TRAVELLING,AND UNLOADING 
C• TIMES BEFOR ADDITION OF ANY NODE INTO A ROUTE 
C* SOFT =DETERMINE MEAN AND VARIANCE OF TRAVEL TIME OF EACH ROUTE 
C• RUSH =DETERMINE MEAN AND VARIANCE OF DEMAND AND UNLOAD TIMEOF ROUTE 
c• STSAVE=DETERMINE THE SORTED SAVIGES FOR THE SVRP OF THE "F" 
C* TYPE PROBLEM 
C• FSBL= CHECK THE FEASIBILITY FOR SVRP WITH ONLY PROBABILISTIC 
c• CUSTOMER DEMANDS 
C* FCHECK=IS USED FOR THE SVRP WITH THE PROBABILISTIC DEMAND 
c• FAST=DETERMINE TOTAL DEMAND OF A ROUTE BEFORE ADDITION OF A NEW NODE 
C* STCONT=EVALUATE THE VARIANCE OF DEMAND 
C* STARS=IS USED FOR SOLVING THE "E" TYPE PROBLEM 
c• STCTD=EVALUATE THE TOTAL ELAPSE TIME FOR SVRP OF THE "F" TYPE 
C• PROBLEM 

C* THE FOLLOWING IS THE LIST OF VARIABLES USED IN THIS PRO~RAM 
c• 
C* 
C'" 

c• 

NPT 
TCAP 

NUMBER OF DEMAND POINTS INCLUDING CENTRAL DEPOT 
VEHICLE CAPACITY. ALL VEHICLES ARE ASSUMED TO BE 
HOMOGENOUES 

C* X(I) = IS THE X COORDINATE OF STATION 
c· Y(I) IS THE Y COORDINATE OF STATION 
C*DIST(I,u)= DISTANCE BETWEEN STATIONS I AND u 
C* DDT = STANDS FOR THE DETERMINISTIC VRP 
c· SST STANDS FOR THE STOCHASTIC VRP 
c• MSVA = ARRAY OF SAVING AFTER SORTING 
c· NSAVE ARRAY OF SAVING BE FOR SORTING 
c· NB (I) A POINTER WHICH SHOWS THE FIRST ELEMENT OF EACH VEHICLE 
c• ROUTE 
c• NF(I) = A POINTER WHICH SHOWS THE LAST ELEMENT OF EACH VEHICLE 
C* ROUTE 
C* NR(I) A POINTER WHICH SHOWS THE NUMBER OF STATIONS ON EACH 
C* VEHICLE ROUTE 
C .. TDMAND(I)= TOTAL DEMAND OF VEHICLE ROUTE I 
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p 

NTRY 
NUMBER OF CONSTRUCTED VEHICLE ROUTE 
IS THE NUMBER OF SORTED SAVINGS WHICH ARE GREATER THAN 
ZERO 

C*ROUTE(I.J)=INDICATES THE JTH ELEMENT OF ROUTE 
c~ ALPHA IS THE NORMAL DEVIATE OF THE ROUTE FAILURE PROBABILITY 

BATA 

c· ATAH 
c· 
C* UTIME 
C• TTTIME 
C.. IEE 
C" IFF 
c• DELTA 
c· 
C• !ALGOL 
C• BKAMA 
C* 
C* KPRO 
C* 
C*DMAND(I) 
C*VDMAND(I)= 
C*MEAN(I,J)= 
C"'VARS(I,J)= 
C* MINE( I) 

c· VIRS(I) 
c· IPROBL 
c· NCUSTOM 
c· NLOCAT 
c• 
C* IDMN 
c· IVDMN 
C* 
C" NCHANG 
C*TIHAT( I) 
C"' 
C*TJHAT(I) 
c· 
c· DO 

FOR TRAVEL TIME 
IS THE NORMAL DEVIATE OF THE ROUTE FAILURE PROBABILITY 
FOR UNLOAD TIME 
IS THE NORMAL DEVIATE OF THE ROUTE FAILURE PROBABILITY 
FOR THE DEMAND 
UPPER BOUND OF UNLOAD TIME FOR EACH VEHICLE ROUTE 
UPPER BOUND OF TRAVEL TIME FOR EACH VEHICLE ROUTE 
INDICATES THE "E" TYPE PROBLEM 
INDICATES THE "F" TYPE PROBLEM 
A CONSTANT VALUE USED IN THE ALGORITHM 2 OF "F" TYPE 
PROBLEM· 
INDICATES THE TYPE OF ALGORITHM: 1 OR 2. 

INDICATES THE VALUE OF GAMA FOR ALGORITHM 1 OF "F" TYPE 
PROBLEM 
INDICATES THAT THE PROBLEM IS SVRP WITH ONLY PROBABILISTIC 
CUSTOMER DEMAND 
MEAN DEMAND OF DEMAND POIT 
VARIANCE OF DEMAND POINT I 
MEAN TRAVEL TIME BETWEEN STATINS I AND J 
VARIANCE OF TRAVEL TIME BETWEEN STATIONS 
MEAN UNLOAD TIME OF STATION I 
VARIANCE OF UNLOAD TIME OF STATION I 
NUMBER OF PROBLEMS TO BE SOLVED 
NUMBER OF CUSTOMER DEMANDS TO BE CHANGED 

I AND J 

NUMBER OF LOCATIONS WHICH THEIR COORDINATES RAE NEEDED 
TO BE CHANGED 
MEAN DEMAND OF THE SPECIAL LOCATION THAT NEED TO BE CHANGED 
VARIANCE DEMAND OF THE SPECIAL LOCATION THAT NEED TO BE 
CHANGED 
NUMBER OF NECESARRY CHANGES IN THE TRAVEL TIME 
AN ARRAY THAT KEEP THE ITH SUBSCRIPT OF THE SORTED 
SAVING Sli,J) 
AN ARRAY THAT KEEP THE JTH SUBSCRIPT OF THE SORTED 
SAVING SII.J) 
TOTAL COST. TIME ,OR DISTANCE 

C*TULOAD(I)= TOTAL UNLOAD TIME OF ROUTE 
C*TTRAVL(I)= TOTAL TRAVEL TIME OF ROUTE I 
C•WAR(I.J) 
c· 
C*MAR(I,J) 
C* 

THE SAVING IN VARIANCE FOR RANDOM VARIABLE TRAVEL TIME 
USING ALGORITHMS(!) AND (II) OF "F" TYPE PROBLEM 
THE SAVING IN MEAN FOR RANDOM VARIABLE TRAVEL TIME 
USING ALGORITHM (I) AND (II) OF "F" TYPE PROBLEM 
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ex 
C* 
C"' 
C* 
C* 
C* 
C* 
C* 
c 
c 

C"' 

TTOTAL 
IDDT 

GAMA 

IDSTB 

TOTAL TRAVEL TIME FOR "F" TYPE PROBLEM 
0 USING EUCLIDIAN DISTANCE 
1 USING STRAIGHT LINE DISTANCE 
IS THE NORMAL DEVIATE OF THE ROUTE FAILURE PROBABILITY 
FOR SVRP HAVING ONLY PROBABILISTIC CUSTOMER DEMANDS 
1 FOR DISTRIBUTIONS SUCH AS POISSON,BINOMIAL,GAMMA, 

EXPONENTIAL,NEGATIVE BINOMIAL,AND CHI-SQURE 
0 FOR OTHER DISTRIBUTIONS 

MAIN PROGRAM 

DIMENSION NSA(5000),TI(5000),Tu(5000) 
INTEGER TIHAT,TJHAT,TI,Tv.NSA,DIST 
INTEGER FLI,FLJ,FLIJ,FIJ,ROUTE,DMAND,R,P,XX 
INTEGER TCAP,X,Y,T,PP,TT,DDT,SST 
COMMON/A1/X(300),Y(300) 
COMMON/A2/NPT,NW,TCAP,MNP,NTRY 
COMMON/A3/MSVA(5000),NSAVE(SOOO),XX(SOOO) 
COMMON/ A4/NB( 100), NF ( 100), NR ( 100), P 
COMMON/AS/DMAND(300),TDMAND(100) 
COMMON/A6/LI,LJ,LI1,LI2,LJ1,Lu2,LRI,LRJ 
COMMON/A7/IBV,IWB 
COMMON/A8/DIST(300,300) 
COMMON/AS/TIHAT(SOOO),TJHAT(SOOO),ROUTE( 100, 100) 
COMMON/A10/ALPHA,BATA,ATAH,UTIME,TTTIME 
COMMON/A12/DDT,SST,IZAR 
COMMON/A15/IEE,IFF,DELTA.IALGOL,BKAMA 
COMMON/A16/KPRO,GAMA 

C* READ THE NUMBER OF PROBLEMS TO BE SOLVED 
35 WRITE(6,30l 

WRITE(10,30) 
30 FORMAT(//SX, 'NUMBER OF PROBLEMS YOU WISH TO SOLVE') 

READ(S,•) IPROBL 
WRITE(6,31l IPROBL 
WRITE(10,31) IPROBL 

31 FORMAT(//SX, 'NUMBER OF PROBLEMS=',2X,I2) 
WRITE(6,3J 
WRITE( 10,3) 
READ(S,*) ICORR 
IF(ICORR.EQ.2) THEN 
WRITE(6,4) 
WRITEt.10,4) 
GO TO 35 
END IF 
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c 

c 

DO 99 I=1.IPROBL 
IF(IPROBL.GE.1) THEN 
WRITE ( 6. 33) 
WRITE(10,33J 

33 FORMAT(//5X,' SELECT ONE OF THE FOLLOWINGS') 
ELSE 
WRITE( 6, 34) 
WRITE( 10,34) 

34 FORMAT(//5X, 'ERROR MESSAGE' .2X,'REENTER AGAIN') 
GO TO 35 
END IF 

IFAA=O 
IZAR=1 
DELGAM=O 

C TO DISPLAY MENU 1 
c 

KALL=1 
CALL MEMOH(MOO,KALL,MOH) 

c 
C PURPOSE TO SOLVE THE DETERMINISTIC VRP 
1000 IF(ODT.EQ.1) THEN 

CALL DETERM 
GO TO 999 
END IF 

C PURPOSE TO SOLVE THE SVRP HAVING ONLY PROBABILISTIC DEMAND 
c 

IF(KPRO.EQ. 1) THEN 
CALL STATS 
GO TO 999 
END IF 

C PURPOSE TO SOLVE THE SVRP 
501 IF(SST.EQ.1) THEN 
C PURPOSE TO SOLVE THE "E" TYPE PROBLEM OF SVRP 

IF(IEE.EQ.1) THEN 
CALL PROS 
GO TO 999 
END IF 

C PURPOSE TO SOLVE THE "F" TYPE PROBLEM OF SVRP 
IF(IFF.EQ.1) THEN 

8 FORMAT(//15X, '--->' ,2X, 'ENTER A VALUE FOR DELTA') 
9 FORMAT(//15X, '--->','SUGGESTED VALUES ARE'/19X,' .5,1. ,1.5, 

+2.2.5,3,3.5,4') 
7 WRITE(6.32) 

WRITE(10,32) 
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32 FORMAT(//10X, 'ENTER YOUR CHOICE OF ALGORITHS "F" TYPE PROS') 
WRITE(6,36) 
WRITE(10,36) 

36 FORMAT(//10X, 'ENTER 1 ---->ALGORITHM I'/16X, '2 ---->ALGORITHM 

c 
+I I ' ) 

READ(5,*) !ALGOL 
WRITE(6,5) !ALGOL 
WRITE(10.5) !ALGOL 

5 FORMAT(//5X. 'THE SELECTED ALGORITHM IS',2X,I2) 
WRITE(6,3) 
WRITE ( 10. 3 ) 
READ(5,*) ICORR 
IF(ICDRR.EQ.2) THEN 
WRITE(6.4) 
WRITE( 10,4) 
GO TO 7 
END IF 

C TO OBSERVE FOR CHANGES OF ALGORITHM 
IFAA=IFAA+1 
IF(IFAA.GE.2) THEN 
WRITE ( 6 , 502 ) 
WRITE ( 10, 502) 

502 FORMAT(5X,'DO YOU WISH TO CHANGE THE VALUE OF DELTA OR GAMA') 
WRITE(6,503) 
WRITE ( 10,503) 

503 FORMAT(5X. 'ENTER', 2X, '1: YES'. 2X, '2: NO') 
C TO SEE IF THE USER WANTS TO CHANGE THE VALUE OF DELTA OR GAMA 

READ(5,*) DELGAM 
IF(DELGAM.EQ. 1) IZAR=2 
END IF 
IF(IFAA.EQ. 1) THEN 
IFALGL=IALGOL 
ELSE 
IF(IFALGL.EQ.IALGOL) GO TO 888 
IZAR=2 
IFALGL=IALGOL 
END I" 

C TO USE THE ALGORITHM(!!) OF "F" TYPE PROBLEM 
888 I~(IALGOL.EQ.2) THEN 
12 WRITE(6,8) 

WRITE(10,8) 
WRITEl6,9) 
WRITE( 10,9) 
READl5,*) DELTA 
WRITE(6,6l DELTA 
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WRITE(10,6) DELTA 
6 FORMAT(//SX,'DELTA=',F8.3) 

WRITE(6,3) 
WRITE( 10,3) 
READ( 5, *) ICORR 
IF(ICORR.EQ.2) THEN 
WRITE(6,4) 
WRITE( 10,4) 
GO TO 12 
END IF 
END IF 

C TO USE THE ALGORITHM(!) OF "F" TYPE PROBLEM 
IF(IALGOL.EQ. 1) THEN 

14 WRITE(6,37) 
WRITE( 10,37) 

37 FORMAT(//10X,'ENTER A VALUE FOR GAMA') 
WRITE(6,38) 

38 
WRITE(10,38) 
FORMAT(//10X,' 0< GAMA < 
READ(S,*) BKAMA 
WRITE(6,21) BKAMA 
WRITE( 10,21) BKAMA 

1 ' ) 

21 FORMAT(/ /SX, 'BKAMA=', 2X, FS. 3) 
WRITE(6,3) 
WRITE( 10,3) 
READ(S,*) ICORR 
IF(ICORR.EQ.2) THEN 
WRITE(6,4) 
WRITE( 10,4) 
GO TO 14 
END IF 
CALL STATS 
GO TO 999 
END IF 
IF(DELTA.EQ.O) THEN 
WRITE(6,11) 
WRITE(10,11) 

11 FORMAT(//15X, '--->' ,2X, 'ZERO IS NOT ACCEPTABLE, TRY AGAIN') 
GO TO 12 
END IF 
CALL STATS 
ELSE 
WRITE(6,20) 
WRITE( 10,20) 

20 FORMAT(5X, 'PLEASE CHECK YOUR FIRST DATA CARD') 
ENDIF 
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END IF 
c 
C TO DO ANY NECESSARY CHANGES FOR THIS PROBLEM BEFOR MOVING TO ANOTHER 
C PROBLEM. 
C TO DISPLAY MENU 2 
999 KALL=2 

CALL MEMOH(MOO,KALL,MOH) 
IF(MOH.EQ. 12) GO TO 99 
IF(MOH.EQ.10) THEN 
SST=1 
IEE=1 
IFF=O 
IZAR=4 
CALL PROB 
GO TO 999 
END IF 
IF(~OH.EQ.11) GO TO 501 
GO TO 1000 

99 CONTINUE 
3 FORMAT(/SX, 'CORRECT' ,2X,'ENTER',2X, '1:YES' ,2X, '2:NO') 
4 FORMAT(/SX. 'REENTER AGAIN') 

STOP 
END 

c• SUBROUTINE MEMOH 

c 
SUBROUTINE MEMOH(MOO,KALL,MOH) 
DIMENSION MEAN(300,300),VIRS(300).MINE(300),VARS(300.300J 
DIMENSION VDMAND(300) 
COMMON/A1/X(300),Y(300) 
COMMON/A2/NPT,NW,TCAP.MNP,NTRY 
COMMON/A3/MSVA(5000),NSAVE(5000),XX(5000) 
COMMON/A4/NB(100),NF(100),NR(100),P 
COMMON/A5/DMAND(300),TDMAND(100) 
COMMON/A9/TIHAT(5000),TJHAT(5000).ROUTE(100,100) 
COMMON/A10/ALPHA,BATA.ATAH,UTIME,TTTIME 

-COMMON/A12/DDT,SST,IZAR 
COMMON/A15/IEE,IFF,DELTA.IALGOL,BKAMA 
COMMON/A16/KPRO,GAMA 
INTEGER DDT,ROUTE,P,SST,TCAP,X,Y,DMAND 
INTEGER VDMAND,VARS,VIRS,UTIME,TTTIME 

3 FORMAT(/5X, 'CORRECT' ,2X, 'ENTER' ,2X, '1:YES',2X, '2:NO') 
4 FORMAT(/5X,'REENTER AGAIN') 

GO TO (1,2),KALL 
c 
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C DISPLAY OF MENU 1 

c 
WRITE(6,8) 

WRITE( 10.8) 

8 FORMAT( 15X. '*""' DISPLAY DF MENU 1 ,.,.,. ') 

WRITE(6,10) 

WRITE( 10. 10) 

10 FORMAT(//SX. 'TO SOLVE THE DETERMINISTIC VRP') 

WRITE(6,11l 

WRITE(10,11) 

11 FORMAT(SX,' *"' ENTER 1 "'"'') 

WRITE(6,20) 

WRITE( 10,20) 

20 FORMAT(SX, 'TO SOLVE A SVRP WITH PROBABILISTIC DEMAND') 

WRITE(6,21) 

WRITE(10,21) 

21 FORMAT(SX, '*"' ENTER 2 *"'') 

WRITE(6,30) 

WRITE(10,30) 

30 FORMAT(SX, 'TO SOLVE SVRP OF "E" TYPE PROBLEM') 

WRITE(6,31) 

WRITE( 10,31) 

31 FORMAT(SX,'** ENTER 3 "'"'') 

WRITE(6,40) 

WRITE( 10.40) 

40 FORMAT(SX, 'TO SOLVE SVRP OF "F" TYPE PROBLEM') 

WRITE(6,41) 

WRITE ( 10, 4 1 ) 

41 FORMAT(SX, '*" ENTER 4*"'') 

c 
WRITE(6,9) 

WRITE ( 10, 9 ) 

9 FORMAT(/ /SX, '**"' CHOOSE THE OPTION *"'* ') 

IF(IZAR.EQ.2) THEN 

WRITE(6,621) 

WRITE( 10,621) 

621 FORMAT(/SX, 'ENTER ONLY 3 OR 4 ') 

END IF 

READ(S,x) MOO 

WRITE(6,3) 

WRITE(10,3) 

READ( 5, "') ICORR 

IF(ICORR.EQ.2) THEN 

WRITE(6,4) 

WRITE(10,4) 

GO TO 1 
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274 

END IF 
~ ... 

DDT=O 
SST=C 
IEE=O 
IFF=O 
KPRO=O 
IF (MOO . E Q . 1 ) THEN 
WRITE(6,50) 
WRITE( 10,50) 
DDT=1 
GO TO 999 
END IF 
IF(MOO.EQ.2) THEN 
WRITE ( 6 . 60) 
WRITE( 10,60) 
SST=1 
KPRD=1 
GO TO 999 
END IF 
IF(MOO.EQ.3) THEN 
WRITE(6,70) 
WRITE( 10, 70) 
SST=1 
IEE=1 
GO TO 999 
END IF 
IF(MOO.EQ.4) THEN 
WRITE(6,80) 
WRITE( 10,80) 
SST=1 
IFF=1 
GO TO 999 
END IF 

50 FORMAT(//5X, 'A SOLUTION TO OVRP IS REQUIRED') 
60 FORMAT(//5X. 'A SOLUTION TO SVRP WITH PROBABILISTIC DEMAND'/ 

+5X, 'IS REQUIRED') 
70 FORMAT(//5X, 'YOUR PROBLEM IS SVRP OF "E" TYPE PROBLEM ') 
80 FORMAT(//5X. 'YOUR PROBLEM IS SVRP OF "F" TYPE PROBLEM ') 
999 RETURN 

2 CONTINUE 
c 

ICHANG=1 
C DISPLAY OF MENU 2 
519 WRITE(6,7) 

WRITE ( 1 0, 7 l 



7 FORMAT(15X,'•*~ DISPLAY OF MENU 2***') 
WRITE(6,90) 
WRITE( 10,90) 

90 FORMAT(SX, '•• DO YOU WISH TO DO ANY CHANGES **') 
WRITE(6.100) 
WRITE( 10, 100) 

100 FORMAT(SX, 'TO CHANGE THE CAPACITY OF TRUCK' l 
WRITE(6,101) 
WRITE( 10, 101) 

101 FORMAT( SX, '•• ENTER 1 ••') 
WRITE(6, 102) 
WRITE( 10, 102) 

102 FORMAT(SX, 'TO CHANGE THE "UTIME" OR "TTTIME" ') 
WRITE(6,103) 
WRITE ( 10, 103) 

103 FORMAT(SX,'** ENTER 2 **') 
WRITE(6, 104) 
WRITE( 10, 104) 

104 FORMAT(SX, 'TO CHANGE "ALPHA","BATA" AND "ATAH" ') 
WRITE(6, 105) 
WRITE ( 10, 105 l 

105 FORMAT(SX,'** ENTER 3 **') 

WRITE(G. 106) 
WRITE( 10, 106) 

106 FORMAT(5X,'TO CHANGE THE COORDINATE OF LOCATIONS') 
WRITE(6, 107) 
WRITE( 10, 107) 

107 FORMAT(SX,'** ENTER 4 **') 
WRITE( G. 108) 
WRITE ( 10, 108 l 

108 FORMAT(SX, 'TO CHANGE THE CUSTOMER DEMAND') 
WRITE(6, 109) 
WRITE( 10, 109) 

109 FORMAT(SX,'** ENTER 5 **') 
WRITE(6, 110) 
WRITE( 10, 110) 

110 FORMAT(SX, 'TO CHANGE THE UNLOAD TIME') 
WRITE ( 6, 111 ) 
WRITE( 10,111 l 

111 FORMAT(SX,' ** ENTER 6 ••') 
WRITE(6,112l 
WRITE( 10,112) 

112 FORMAT(5X,' TO CHANGE THE TRAVEL TIME') 
WRITE(6, 113) 
WRITE( 10, 113) 

113 FORMAT(SX,'** ENTER 7 **') 
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WRITE ( 6, 114 l 
WRITE( 10, 114) 

114 FORMAT(5X, '~*TO DO NO CHANGES ENTER 8 **x') 
WRITE ( 6, 622) 

622 
WRITE( 10,622) 
FORMAT(5X, 'TO CHANGE ALGORITHM 
WRITE(6,623J 
WRITE( 10,623) 

INTO I: OR VISE VERSA') 

623 FORMAT(5X,'xx• ENTER 9 "'**') 

IF(ICHANG.EQ.1 l THEN 

25 
518 

624 

WRITE(6,91) 
WRITE(10,91) 
READ{5.*) NCHA 
END IF 
IF(NCHA.GT. 1) THEN 
WRITE ( 6, 501 ) 
WRITE(10,501) 
END IF 
WRITE(6,25) 
WRITE( 10,25) 
FORMAT( 15X, '*•• CHOOSE 
READ(5,•) MOH 
WRITE(6,624J MOH 
WRITE(10,624) MOH 
FORMAT(/5X, 'YOUR OPTION 
WRITE ( 6, 3) 
WRITE(10,3) 
READ(5,*) ICORR 
IF(ICORR.EQ.2) THEN 
WRITE(6,4) 
WRITE( 10,4) 
GO TO 518 
END IF 
IF(MOH.EQ.9l THEN 
IZAR=2 
GO TO 130 
END IF 
IF(MOH.EC.8) THEN 
WRITE(6,618) 
WRITE( 10.618) 

THE OPTION ••*') 

=' , 2X, I 3) 

618 FORMAT(/5X, 'DO YOU WISH TO SOLVE THIS PROBLEM BY ANOTHER'/ 
+5X,'METHOD. POSIBLE SELECTIONS ARE "F"-->"E",AND "E"-->"F"') 

WRITE(6.619) 
WRITE( 10,619) 

619 FORMAT(/5X, 'ENTER' ,2X, '1 :F--->E' ,2X. '2:E--->F' .2X. '3:NO') 
READ(5,•) KYNOO 
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C PURPOSE TO CHANGE THE "F" TYPE PROBLEM INTO "E" TYPE 
IF(KYNOO.EQ. 1) THEN 
MOH=10 
IZAR=4 
END IF 

C PURPOSE TO CHANGE THE "E" TYPE PROBLEM INTO "F" TYPE 
IF(KYNOO.EQ.2) THEN 
SST=1 
IFF=1 
IEE=O 
MOH=11 
IZAR=2 
END IF 
IF(KYNOO.EQ.3) THEN 
MOH=12 
RETURN 
END IF 
GO TO 130 
END IF 

91 FORMAT(5X.'ENTER THE NUMBER OF CHANGES') 
501 FORMAT(5X, 'CHANG IN COORDINATION OR TRAVAL. TIME COMES LAST') 

IF(MOH.EQ.1) THEN 
WRITE(6,120) 
WRITE( 10,120) 

120 FORMAT(5X, 'ENTER THE NEW CAPACITY OF TRUCK') 
502 READ(5,z) TCAP 

WRITE(6, 115) TCAP 
WRITE(10,115) TCAP 

115 FORMAT(//5X, 'THE NEW CAPACITY OF TRUCK=' ,2X,I4) 
WRITE ( 6, 3) 
WRITE(10,3) 
READ(5,K) ICORR 
IF(ICORR.EQ.2) THEN 
WRITE(6,4) 
WRITE( 10,4) 
GO TO 502 
ENDIF 
IZAR=3 
DO 200 I=1.NTRY 

200 NSAVE(I)=MSVA(I) 
GO TO 130 
END IF 
IF(MOH.E0.2) THEN 

503 WRITEl6.121) 
WRITE(10,121) 

121 FORMAT(SX, 'ENTER NEW VALUES FOR UTIME AND TTTIME') 
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READ(5,*) UTIME ,TTTIME 
WRITE!6,3) 
WRITE ( 10. 3 l 
READ(5.*) ICDRR 
IF(ICORR.EQ.2l THEN 
WRITE(6,4) 
WRITE( 10,4 l 
GO TO 503 
END IF 
WRITE(6,117) UTIME ,TTTIME 
WRITE(10, 117) UTIME,TTTIME 

117 FORMAT(//5X, 'UTIME=' .2X,I5,2X, 'TTTIME=' ,2X,I5) 
IZAR=3 
DO 201 I=1,NTRY 

201 NSAVE(!)=MSVA(I) 
GO TO 130 
END IF 
IF(MOH.EQ.3) THEN 

504 WRITE(6,122) 
WRITE( 10,122) 

122 FORMAT(5X,'ENTER VALUES FOR ALPHA , BATA AND ATAH') 
READ(5,*) ALPHA,BATA,ATAH 
WRITE ( 6, 118) 
WRITE( 10, 118) 

118 FORMAT(//5X, 'THE NEW VALUES FOR ALPHA ,BATA AND ATAH ARE') 
WRITE(6, 119) ALPHA,BATA,ATAH 
WRITE(10, 119) ALPHA,BATA,ATAH 

119 FORMAT(//5X, 'ALPHA=' ,2X,F6.3,2X. 'BATA=' ,2X,F6.3,2X, 'ATAH=' 
+,2X,F6.3) 

IZAR=3 
WRITE(6,3) 
READ( 5, *) ICORR 
IF(ICORR.E0.2) THEN 
WRITE(6,4) 
WRITE( 10,4) 
GO TO 504 
END IF 
GO TO 130 
END IF 
IF(MOH.EQ.4) THEN 

505 WRITE(6, 123) 
WRITE(10,123) 

123 FDRMAT(5X, 'ENTER THE= OF LOCATIONS NEED TO BE CHANGED') 
READ~5.*) NLOCAT 
WRITE(6,3) 
WRITE( 10,3) 
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READ(5, .. ) ICORR 
IF(ICORR.EQ.2J GO TO 505 
DO 140 I=1,NLOCAT 

506 WRITE(6,141) 
WRITE( 10,141) 

141 FORMAT(5X, 'ENTER LOCATION. THEN ITS COORDINATES X AND Y') 
READ(5,*) LOCAT,JXJ,JYJ 
WRITE(6,507) LOCAT,JXJ,JYJ 
WRITE(10,507) LOCAT,JXJ.JYJ 

507 FORMAT(5X, 'LOCATION=' ,2X,I3, 1X, 'X=' ,2X,I3,2X, 'Y=' ,2X,I3) 
WRITE(6,3) 

140 

202 

WRITE ( 10, 3) 
READ\5,*) ICORR 
IF(ICORR.EQ.2J THEN 
WRITE(6,4) 
WRITE( 10,4) 
GO TO 506 
END IF 
X(LOCAT)=JXJ 
Y(LOCAT)=JYJ 
CONTINUE 
WRITE( 6. 202) 
WRITE(10,202l 
FORMAT ( 25X, "'"' PLEASE WAIT *"') 
IZAR=2 
GO TO 130 
ENOIF 
IF(MOH.EQ.5) THEN 

508 WRITE(6,124) 
WRITE( 10,124) 

124 FORMAT(5X, 'ENTER THE~ OF CUSTOMER DEMAND POINTS TO BE CHANGED') 
READ(5,*) NCUSTM 
WRITE(6,42) NCUSTM 
WRITE(10,42) NCUSTM 

42 FORMAT(//5X, 'NUMBER OF CHANGES =' .2X,I5) 
WRITE(6,3) 
WRITE( 10.3) 
READ( 5. *) ICORR 
IF(ICORR.EQ.2) GO TD 508 
DO 142 I=1,NCUSTM 

510 WRITE(6,143) 
WRITE( 10,143 l 

143 FORMAT(5X, 'ENTER CUSTOMER # ,MEAN AND THEN VARIANCE OF DEMAND' J 
READ(5,*) NCSTM,IDMN,IVDMN 
WRITE(6,509) NCSTM,IDMN,IVDMN 
WRITE(10,509) NCSTM,IDMN,IVDMN 
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509 FORMAT(5X. 'CUSTOMER#' ,2X,I3,2X. 'MEAN=',2X,I3,2X,'VAR=' ,2X.I3l 
WRITE(6,3) 
WRITE(10,3) 
READ(5,*) ICORR 
IF(ICORR.EQ.2) THEN 
WRITE(6, 4) 
WRITE( 10,4) 
GO TO 510 
END IF 
DMAND(NCSTM)=IOMN 
VDMAND(NCSTMl=IVDMN 

142 CONTINUE 
IZAR=3 
DO 203 I=1,NTRV 

203 NSAVE(Il=MSVA(I) 
GO TO 130 
END IF 
IF(MDH.EQ.6) THEN 

511 WRITE(6,125) 
WRITE( 10,125) 

125 FORMAT(5X, 'ENTER# OF CUSTOMERS WITH NEW UNLOAD TIME VALUES') 
READ(5,*) NCUSTM 
WRITE(6,517) NCUSTM 
WRITE(10,517) NCUSTM 

517 FORMAT(5X, '#OF CUSTOMERS WITH NEW UNLOAD TIME =',2X,I3) 
WRITE(6,3) 
WRITE(10,3) 
REA0(5,") ICORR 
IF(ICORR.EQ.2) GO TO 511 
DO 144 I=1,NCUSTM 

513 WRITE(6,145) 
WRITE( 10,145) 

145 FORMAT(5X, 'ENTER CUSTOMER s,MEAN AND VAR OF UNLOAD TIME') 
READ(5,*) NCSTM,IDMN,IVDMN 
WRITE(6,512) NCSTM,IDMN,IVDMN 
WRITE(10,512) NCSTM,IDMN,IVDMN 

512 FORMAT(5X, 'CUSTOMER F' ,2X,I3,2X. 'MEAN=',1X,I3,2X, 'VAR=' ,2X,I3) 
WIUTE( 6. 3) 
WRITE( 10.3) 
READ(5,*) ICORR 
IF(ICORR.EQ.2) THEN 
WRITE(6,4) 
WRITE( 10,4) 
GO TO 513 
END IF 
MINE(NCSTM)=IDMN 
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VIRS(NCSTM)=IVDMN 
144 CONTINUE 

IZAR=3 
DO 204 I=1,NTRY 

20~ NSAVE(I)=MSVA(I) 
GO TO 130 
END IF 
IF(MOH.EQ.7) THEN 
WRITE(6,126) 
WRITE( 10, 126) 

126 FORMAT(5X, 'ENTER THE# OF CHANGES OF TRAVEL TIME') 
READ(5,x) NCHANG 
WRITE(6.514) NCHANG 
WRITE( 10,514) NCHANG 

514 FORMAT(5X, 'POF CHANGES =' ,2X,I3) 
DO 147 I=1,NCHANG 

516 WRITE(6,146) 
WRITE( 10,146) 

146 FORMAT(5X, 'ENTER I,J,MEAN AND VARIANCE OF TRAVEL TIME') 
READ(5,x) K,L,KB,KZ 
WRITE(6,515) K,L,KB,KZ 
WRITE(10,515) K,L,KB,KZ 

515 FORMAT(/5X, 'I=', 2X, I3, 1X, 'u=', 2X, I3, 'MEAN=', 2X, I3, 1X, 'VAR=', 
+2X, I 3) 

WRITE(6,3) 
WRITE( 10,3) 
READ(5,x) ICORR 
IF(ICORR.EQ.2) THEN 
WRITE( 6. 4) 
WRITE( 10,4) 
GO TO 516 
END IF 
MEAN(K,L)=KB 
VARS(K,L)=KZ 
MEAN(L,K)=MEAN(K,L) 
VARS(L,K)=VARS(K.L) 

147 CONTINUE 
IZAR=2 
GO TO 130 
ENDIF 

130 ICHANG=O 
NCHA=NCHA-1 
IF(NCHA.GE. 1) GO TO 519 
DO 616 !=1 ,NW 
ROUTE(I.1)=I 
ROUTE (I , 2) = 1 
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MNP1=MNP-1 
DO 617 .J=3,MNP1 

617 ROUTE(I,.J)=O 
NB(I)=O 
NF ( !)=O 

616 NR(I)=2 

c 

c 

RETURN 
END 

SUBROUTINE DETERM 
C••• 

c···· 

DIMENSION NSA(5000),TI(5000),T.J(5000) 
INTEGER TIHAT,TvHAT,TI,T.J,NSA,DIST 
INTEGER FLI,FLJ,FLiv,FI.J,ROUTE,DMAND,R,P,XX 
INTEGER TCAP,X,Y,T,PP,TT 
INTEGER DDT,SST 
COMMON/A1/X(300),Y(300) 
COMMON/A2/NPT,NW,TCAP,MNP,NTRY 
COMMON/A3/MSVA(5000),NSAVE(5000),XX(5000) 
COMMON/A4/N8(100),NF(100).NR(100),P 
COMMON/A5/DMAND(300),TDMAND(100) 
COMMON/A6/LI,L.J,LI1,LI2,L.J1,Lv2.LRI,LR.J 
COMMON/A7/IBV,IWB 
COMMON/A8/DIST(300,300) 
COMMON/A9/TIHAT(5000),TvHAT(5000),ROUTE(100, 100) 
COMMON/A12/DOT,SST,IZAR 
READ IN IDDT AS 0 OR 1 . 

IDDT= 0 IF USING THE EUCLIDIAN DISTANCE 
= 1 1F USING THE STRAIGHT LINE DISTANCE 

GO TO (4,5,8),IZAR 
4 WRITE(6,1) 

WRITE( 10, 1) 
FORMAT(2X, '-->',5X, 'ENTER 0 FOR EUCLIDIAN DISTANCE'// 

+ 2X, '-->' ,5X, 'ENTER 1 FOR LINEAR DISTANCE') 
READ(5,") IDDT 
CALL INPT(IDDT) 

5 CALL SAVMAT 
TT=NTRY 
CALL TSORT(NSAVE,TIHAT,TvHAT,NTRY) 

C*"" SET THE TOTAL DEMAND OF EACH ROUTE TO ZERO 
D050I=1,NTRY 
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50 MSVA(I)=NSAVE(I) 
8 DO 7 P=1,NW 

7 TOMAND(P)=O 
T=1 

11 P= 1 

R=3 
IX=5 
PP=P 

IT! =TIHAT( T) 

JTJ=TJHAT(T) 
TDMAND(P)=TDMAND(P)+DMAND(ITI)+DMAND(JTJ) 
IF(TDMAND(P).LE.TCAP) THEN 

ROUTE(P,R)=TIHAT(T) 
NB(P)=ROUTE(P,R) 
R=R+1 

ROUTE(P.R)=TJHAT(T) 
NF(P)=ROUTE(P,R) 

NR(P)=R 
END IF 
K=T+1 

IF(TDMAND(P).GT.TCAP) THEN 

NSAVE(K-1)=0 
TDMAND(P)=O 
T=K 

GO TO 11 
END IF 

C*** CONSTRUCT THE ROUTE 

DO 10 T=K,TT 
NSAVE(T-1)=0 
IYOUTH=1 
CALL INTR(IN,PP,T,IYOUTH) 

IF(IN.EQ. 1) GO TO 10 
PP=P 
CALL RTCONT(PP,T) 

10 CONTINUE 

c· 

IYOUTH=2 
CALL INTR(IN,PP,T.IYOUTH) 
CALL WWRT(PP) 

RETURN 

END 

SUBROUTINE TSORT 

SUBROUTINE TSORT (NSAVE,TIHAT,TJHAT,NTRY) 
DIMENSION TIHAT(5000),TJHAT(5000).TI(5000),TJ(5000),NSAVE(5000) 

DIMENSION NSA(SOOO) 
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INTEGER TIHAT.TJHAT,TI.TJ,NSA,NSAVE 
c~~ TO SORT IN DECREASING ORDER 

CALL HEAPSN(NSAVE,TIHAT,TJHAT,NTRY) 
DO 50 J=1.NTRY 
KK=NTRY+1-J 
NSA(KKl=NSAVE(Jl 
TI ( KK )=TIHAT( J) 
TJ(KK)=TJHAT(J) 

50 CONTINUE 
DO 60 I=1.NTRY 
NSAVE(I)=NSA(I\ 
TI HAT (I ) = TI ( I ) 
TJHAT(I)=TJ(I) 

60 CONTINUE 
WRITE(6, 10) 

10 FORMAT(10X, 'SORTED SAVINGS') 
RETURN 
END 

SUBROUTINE INPT(IDDT) 

* 

DIMENSION VDMAND(300),MEAN(300,300),VARS(300.300) 
DIMENSION MINE(300),VIRS(300) 
INTEGER TCAP,X,DDT,SST.Y,VDMAND,DMAND,TDMAND 
COMMON/A1/X(300),Y(300) 
COMMDN/A2/NPT,NW,TCAP,MNP,NTRY 
COMMON/A5/DMAND(300),TDMAND(100) 
COMMON/A8/DIST(300,300) 
COMMON/A12/DDT,SST.IZAR 
COMMON/A14/MEAN,VARS,MINE,VIRS,VDMAND 
COMMON/A16/KPRO,GAMA 

78 WRITE(6,1) 
WRITE( 10, 1) 
FORMAT(5X, '--->' ,2X, 'ENTER THE NUMBER OF STOP POINTS'/ 

+15X, 'INCLUDING THE TERMINAL AND TRUCK CAPACITY RESPECTIVELY') 
READ(5,*) NPT,TCAP 
WRITE(6,2) NPT,TCAP 
WRITE( 10,2) NPT,TCAP 

2 FORMAT(5X,'NUMBER OF DEMAND POINTS=',I3// 
+5X, 'CAPACITY OF TRUCK=' ,!5) 

WRITE(6.76) 
WRITE( 10, 76) 
READ(5,~) ICORR 
IF(ICORR.EQ.2) THEN 
WRITE(6,77) 
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WRITE\10.77) 
GO TO 78 
END IF 
IF(IDDT.EC. 1) GO TO 13 
WRITE ( 6. 3) 
WRITE( 10,3) 

3 FORMAT(SX, '--->' .SX. 'ENTER THE EUCLIDIAN DISTANCE'/ 
+18X. 'FOR ALL STOP POINTS AND TERMINALS') 

WRITE(6,4) 
WRITE( 10,4) 

4 FORMAT(SX, '--->' .SX. 'ENTER EUCLIDIAN DIST. FOR TERMINAL FIRST') 
DO 1 0 I= 1 , NPT 

79 READ(S,•) X(I),Y(I) 
WRITE\6,16) X(I),Y(I) 
WRITE(10,16) X(I).Y(I) 
WRITE(6, 76) 
READ(S.*) ICORR 
IF(ICORR.E0.2) THEN 
WRITE(6, 77) 
WRITE( 10, 77) 
GO TO 79 
END IF 

10 CONTINUE 

C** WRITE THE EUCLIDIAN DISTANCE 
c·· 

WRITE(6,11) 
WRITE(10.11) 

11 FORMAT(10X.'EUCLIDIAN DISTANCE',//16X.'X',8X,'Y') 
DO 12 I= 1 . NPT 
WR IT E ( 6 , 16 ) X ( I) , Y ( I ) 
WRITE ( 10, 16) X (I) , Y ( I) 

16 FORMAT(14X,I4,8X,l4) 
12 CONTINUE 

C**** 
C** EVALUATE THE DISTANCE BETWEEN POINTS I AND J 
c·-

DO 20 I=1,NPT 
DO 20 J=1.NPT 
IFII.EQ.J) DIST(!.J)=O 
IFII.GE.J) GO TO 20 
WW=FLOAT((X(I)-X(J))•~2+(Y(!)-Y(J))*•2) 

DIST(I,J)=SQRT(WW) 
OIST(J,l)=DIST(I.J) 

20 CONTINUE 
13 IF(IODT.EO.O) GO TO 95 
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WRITE(6, 19) 

WRITE( 10.19) 

19 FORMAT(5X,'ENTER THE LINEAR DISTANCE BETWEEN THE POINTS' I 

DO 35 I= 1 . NPT 
READ(5.*) (DIST(!,J),J=I,NPTJ 

35 CONTINUE 

DO 36 I=2.NPT 
K=I-1 
DO 37 u= 1 ,K 
DIST(!,J)=DIST(J.I) 

37 CONTINUE 
36 CONTINUE 
95 IF(DDT.EQ.1) THEN 

WRITE(6, 7) 
WRITE(10,7) 

7 FORMAT(5X,'--->' ,5X,'ENTER THE CUSTOMER DEMANDS') 

DO 8 I=2,NPT 
81 READ(5,*) DMAND(I) 

WRITE(6,26) I.DMAND(I) 
WRITE(10,26) I,DMAND(I) 
WRITE(6,76) 

WRITE(10,76) 
READ(5,*) ICORR 
IF(ICORR.EQ.2) THEN 
WRITEI6,77) 

WRITE(10,77) 

GO TO 81 
ENOIF 

8 CONTINUE 

c···· 
C•* WRITE THE DEMANDS 

c··· 
WRITE(6, 24) 

WRITE( 10,24) 
24 FDRMAT(2X,'DEMAND POINT',8X. 'DEMAND') 

DO 75 I=2,NPT 
WRITE(6,26) I.DMAND(I) 
WRITE(10,26) I.DMAND(I) 

26 FORMAT(8X,I3,10X,I5J 

75 CONTINUE 
GO TO 111 
END IF 
IF(KPRO.EQ.1) THEN 

WRITE\6. 142) 
WRITE( 10. 142) 

142 FORMAT(//10X,'ENTER THE VALUE OF GAMA' l 
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82 READ(5.~) GAMA 
WRITE(6,141) GAMA 
WRITE(10,141) GAMA 

141 FORMAT(//20X, 'GAMA=' ,5X.F10.4) 
WRITE(6.76) 
WRITE( 10, 76) 
READ( 5, ~) ICORR 
IF(ICORR.EQ.2) THEN 
WRITE(6.77) 
WRITE( 10, 77) 
GO TO 82 
END IF 
WRITEI6.112) 
WRITE(10.112) 

112 FORMAT(//10X, '---',2X,'ENTER MEAN AND VARIANCE OF DEMAND') 
DO 113 I=2,NPT 

83 READ(5,*) DMAND(I),VDMAND(I) 
WRITE(6,116) I,DMAND(I),VDMAND(I) 
WRITE(10,116) I,DMAND(I),VDMAND(I) 
WRITE(6, 76) 
WRITE(10,76) 
READ(S, "') ICORR 
IF(ICORR.EQ.2) THEN 
WRITE(6,77) 
WRITE( 10.77) 
GO TO 83 
END IF 

113 CONTINUE 
c•• WRITE THE DEMAND 

WRITE(6,114) 
WRITE(10.114) 

114 FORMAT(//2X, 'DEMAND POINT',SX.'MEAN DEMAND' ,SX. 'VAR DEMAND') 
DO 115 I=2,NPT 
WR!TE(6.116) I,DMANO(I).VDMAND(I) 
WRITE(10,116) I,DMAND(!).VOMAND(Il 

116 FORMAT(//11X,I2,12X,I5,12X,I5) 
115 CONTINUE 

END IF 
111 WRITE(6,38) 

WRITE( 10,38) 
38 FORMAT( 10X, 'DISTANCE') 

ITDD=O 
DO 41 I=2,NPT 
ITDD=ITDD+DMAND(I) 

41 CONTINUE 
NW=(!TDD/TCAP)+20 
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NNW=NW-20 
MNP=(NPT/NNW)+1 
MNP=MNP+7 

76 FORMAT(/2X, 'CORRECT' ,2X, 'ENTER' ,1X, '1: :YES' ,2X. '2:NO') 
77 FORMAT(/2X, 'REENTER AGAIN') 

RETURN 
END 

C* SUBROUTINE HEAPSN 

c 

SUBROUTINE HEAPSN(XX,POS.PPOSS,N) 
INTEGER XX(SOOO),POS(SOOO).PPOSS(SOOO) 
N2=N/2 
DO 10 J=1,N2 
I=N2+1-J 

10 CALL PUSHDN (XX,POS,PPOSS.I,N) 
N1=N-1 
DO 20 JJ=1,N1 
I=N1+1-JJ 
CALL SWAPN(XX(1),XX(I+1),POS( 1),POS(I+1),PPOSS\1), 
PPOSS(I+1)) 

20 CALL PUSHDN(XX,POS,PPOSS,1,I) 
RETURN 
END 

SUBROUTINE SWAPN(I,J,P,Q,R,Sl 
INTEGER P,Q,R,S 
K=I 
I=J 
J=K 
Z=P 
P=Q 
Q=Z 
T=R 
R=S 
S=T 
RETURN 
END 

SUBROUTINE PUSHDN(XX,POS,PPOSS,I,N) 
INTEGER XX(SOOO),POS(SOOO).PPOSS(SOOOJ 

* 
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LOGICAL FIN 

FIN=.FALSE. 
K=XX(I) 

Z=POS(I) 

T=PPOSS(I) 

J=I'"2 
10 CONTINUE 

C"' 

!F(J.LE.N.AND .. NOT.FIN) THEN 
IVV=J+1 

IF(IVV.LE.N) THEN 
IF(J.LT.N.AND.XX(J).LT.XX(J+1)) J=J+1 

ENDIF 
IF(K.GE.XX(J)) THEN 

FIN=.TRUE. 

ELSE 
XX(J/2)=XX(J) 
POS(J/2)=POS(J) 
PPOSS(J/2)=PPOSS(J) 

J=J•2 
END IF 
XX(J/2)=K 

POS(J/2)=Z 
PPOSSlJ/2)=T 
GO TO 10 

END IF 
RETURN 
END 

SUBROUTINE SAVMAT 

C•* THIS SUBROUTINE CONSTRUCT THE SAVING MATRIX AND THE 
C"'"' INITIAL SOLUTION TO THE PROBLEM 

DIMENSION ISAVE(300.300) 
INTEGER TCAP,X,P,TIHAT,TJHAT,ROUTE 
COMMON/A2/NPT,NW,TCAP,MNP,NTRY 

COMMON/A3/MSVA(5000),NSAVE(SOOO),XX(5000) 

COMMON/A4/NB(100).NFl 100J.NR( 100).P 
COMMON/A9/TIHAT(5000),TJHAT(5000),ROUTE(100, 100) 

CDMMON/A8/DIST(300,300) 
NTRY=O 
DO 60 I=2,NPT 
DO 60 J=I.NPT 
ISAVE(I,J)=-99999 

IF!DIST(I,J).EQ.O) GO TO 70 

289 



ISAVE(I,Jl=DIST(I,1)+DIST(1,J)-DIST(I.J) 
70 ISAVE(J.Il=ISAVE(I,J) 
60 CONTINUE 

DO 80 I=2.NPT 
ISAVE(l, 1)=-99999 
ISAVE(1,ll=ISAVE(I,1) 

80 CONTINUE 

C** CONSTRUCT THE INITIAL SOLUTION OR INITIAL ROUTE B' 
C** THE FOLLOWING MATRIX.PUT THE ARRAY ISAVE INTO THE 
C** NEW ARRAY NSAVE WHICH IS ONE DIMENSIONAL. 

L=O 
IPT=NPT-1 
DO 100 I=2, IPT 
K=I+1 
DO 100 J=K,NPT 
IF(ISAVE(I,J).LE.O) GO TO 100 
L=L+1 
NSAVE(L)=ISAVE(I,J) 
TIHAT( L) =I 
TJHAT(L)=J 

100 CONTINUE 
NTRY=L 
DO 170 I=1,NW 
ROUTE (I, 1 )=I 
ROUTE(I,2l=1 
ROUTE(I,MNP)=1 
MNP1=MNP-1 
DO 180 J=3,MNP1 

180 ROUTE(I,J)=O 
NB(I)=O 
NF( I)=O 
NR(I) =2 

170 CONTINUE 
DO 13 I= 1, NW 
WRITE(6,23) (ROUTE(I,J),J=1,MNP) 
WRITE(10,23) (ROUTE(l,J).J=1,MNP) 

23 FORMAT(5X.30(I2,2Xl) 
13 CONTINUE 

RETURN 
END 

c· SUBROUTINE RTCONT 

c 
SUBROUTINE RTCONT(PP,Tl 

* 
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DIMENSION VARS(300.300),MINE(300).MEAN(300,300) 
DIMENSION VIRS(300),VDMAN0(300) 
INTEGER P.T,R,PP,ROUTE,TIHAT,TJHAT,DMAND,TDMAND 
INTEGER DDT,SST,VARS,VIRS.VDMAND 
COMMON/ A4/NB ( 100), NF ( 100). NR ( 100), P 
COMMON/AS/DMAN0(300),TDMAND(100) 
COMMON/A6/LI.LJ,LI1.LI2.LJ1,LJ2,LRI,LRJ 
COMMON/ A9/TI HAT ( 5000), T JHAT ( 5000) , ROUTE ( 100, 100) 
COMMDN/A12/DDT,SST.IZAR 
COMMON/A14/MEAN,MINE,VARS,VIRS,VDMAND 
COMMON/A15/IEE.IFF,DELTA,IALGOL,BKAMA 
COMMON/A16/KPRO,GAMA 
COMMON/A17/KDMANO,KTULOD,KTTRVL 

C** LRI= INDICATES ROUTE LRI 
C** LRJ=INDICATES ROUTE LRJ 
C** LI1 =INDICATES THAT TIHAT(T) IS EQUAL TO THE NB(KPP) 
C** LI2 = INDICATES THAT TIHAT(T) IS EQUAL TO THE NF(KPP) 
C** LJ1=INDICATES THAT TJHAT(T) IS EQUAL TO THE NB(KPP) 
C** LJ2= INDICATES THAT TJHAT(T) IS EQUAL TO THE NF(KPP) 

LRI=O 
LRJ=O 
LI1=0 
LI2=0 
LJ1=0 
L..J2=0 
LI=O 
L..J=O 
KPP=PP 
DO 10 KPP= 1, PP 
IF(NB(KPP).EQ.TIHAT(T).OR.NF(KPP).EQ.TIHAT(T)l THEN 
LI=1 
LRI=KPP 
IF(NB(KPP).EQ.TIHAT(T)l LI1=1 
IF(NF(KPPl.EQ.TIHAT(T)) LI2=1 
IF(NB(KPP).EQ.T..JHAT(T\.OR.NF(KPP).EQ.T..JHAT(T)) RETURN 
END IF 
IF(NB(KPP).EQ.T..JHAT(T).OR.NF(KPP) .EQ.T..JHAT(T) ) THEN 
LJ=1 
LR..J=KPP 
IF(NB(KPP).EQ.T..JHAT(Tll L..J1=1 
IF(NF(KPP).EQ.T..JHAT(T)) L..J2=1 
IF(NB(KPP).EQ.TIHAT(T).OR.NF(KPP).EQ.TIHAT(T\) RETURN 
END IF 

10 CONTINUE 
IF(Ll .EQ.O.AND.LJ.EQ.O) THEN 

P=PP+1 
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R=3 
ROUTE(P,R)=TIHAT(T) 
NB(P)=ROUTE(P.R) 
R=R+1 
ROUTE(P,R)=TJHAT(T) 
NF!P)=ROUTE(P,R) 
PP=P 
NR(P)=R 
RETURN 
END IF 
IF(LI.EQ.1.AND.LJ.EQ. 1) THEN 
CALL COMBRT(IVB,IWB,IXBB,IYBS,PP,T) 
IF(IVB.EQ.O.AND.IWB.EQ.O.AND.IXBB.EQ.O.AND.IYBB.EO.O) 

+ RETURN 
CALL SWTCH(IVB.IWS,IXBB,IYBB,PP) 
RETURN 
END IF 

C• TO COMBINE TWO ROUTES TOGETHER 
IF(LI.EO. 1.AND.LJ.EO.O) THEN 
CALL CDMBND(T) 
RETURN 
END IF 

c• TO ADD A NODE INTO AN EXISTING ROUTE 
IF(LI.EQ.O.AND.LJ.EQ. 1) THEN 
CALL COMBND(T) 
END IF 
RETURN 
END 

C* SUBROUTINE INTR 

C* 
SUBROUTINE INTR(IN,PP,T,IYDUTH) 
INTEGER PP,TCAP,TIHAT,TJHAT,RDUTE,T 
COMMDN/A2/NPT,NW.TCAP,MNP,NTRY 
COMMON/A4/NB(100),NF(100),NR(100),P 
COMMDN/A9/TIHAT(5000),TJHAT(5000l,RDUTE(100, 100) 
GO TO (1,2),IYOUTH 
IN=O 
DO 20 I=1,PP 
NNR=NR (I) -1 
IF(NNR.LT.4) GO TO 20 
DO 10 J=4,NNR 
IF(ROUTE(I,J).EQ.TIHAT(T).OR.ROUTE(I.J).EQ.TJHAT(Tl) IN=1 

10 CONTINUE 
20 CONTINUE 
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RETURN 
:;: ICANCL=O 

DO 30 I=2,NPT 
DO 40 .J=1,PP 
MNOPP=NR(.J) 
DO 50 K=3,MNOPP 
!F(I.EQ.ROUTE(J.K)) GO TO 30 

50 CONTINUE 
40 CONTINUE 

ICANCL=I 
P=PP""1 
R=3 
ROUTE(P,R)=ICANC~ 

NB(P)=ROUTE(P,R) 
NF(P)=ROUTE(P,Rl 
NR(P)=R 
PP=P 

30 CONTINUE 

C* 

C"" 

RETURN 
END 

SUBROUTINE COMBND 

SUBROUTINE COMBND(T) 
INTEGER TCAP,P,DMAND,TIHAT,TJHAT,ROUTE,FLI,FLJ 
INTEGER FLIJ,FIJ,T,PP,DDT,SST 
COMMON/A2/NPT,NW,TCAP,MNP,NTRY 
COMMON/A4/NB(100),NF(100),NR(100l,P 
COMMON/A5/DMAND(300),TDMANDl 100) 
COMMON/A6/LI.LJ.LI1,LI2,LJ1,L.J2,LRI,LRJ 
COMMON/A9/TIHAT(5000), TJHAT(SOOO), ROUTE( 100, 100) 
COMMON/A12/DDT,SST,IZAR 
COMMON/A15/IEE,IFF,DELTA,IALGOL.BKAMA 
COMMON/A16/KPRO,GAMA 
COMMON/Ai7/ KDMAND,KTULOD,KTTRVL 
IF(LI.EQ.1) THEN 
IF ( LI 1 . EQ. 1 ) THEN 
IF(DDT.EQ 1) THEN 
IX=i 
CALL FEASBL(IA,FLI,FLJ,FLIJ,FI.J.T,IZX) 
GO TO 5 
END IF 
IF(KPRO.EQ. i) THEN 
IX=1 
CALL FSBL(IX,FLI,FLJ,FLIJ,FIJ,T.IZX.KDMAND) 
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GO TO 5 
END IF 
IF(SST.EQ 1 .AND.IEE.EQ. 1) THEN 
IX=1 
CALL STFSBL(IX,FLI,FLJ,FLIJ,FIJ,T,IZX.KDMAND,KTULOD,KTTRVL) 
GO TO 5 

END IF 
IF(SST.EQ. 1 .AND.!FF.EQ. 1) THEN 
IX=1 
CALL FSBL(IX,FLI,FLJ,FLIJ,FIJ,T,.ZX.KDMAND) 
GO TO 5 

END IF 

5 IF ( F LI . EO. 1 } THEN 
C** ADD A NODE IN FRONT OF ROUTE LRI 

LOC=4 
NOV1=NR(LRI)+1 
NVV=NOV1+1 
NVZ=NVV-LOC 
DO 10 K"1,NVZ 
I=NVV-K 
J=I-1 

10 ROUTE(LRI,I)=ROUTE(LRI,J) 
ROUTE(LRI,3)=TJHAT(T) 
NF(LRI)=ROUTE(LRI,NOV1) 
NB(LRI)=TJHAT(T) 
NR(LRI)=NOV1 
ENOIF 
RETURN 
END IF 

IF(LI2.EQ.1 l THEN 
IF(DDT.EQ. 1) THEN 
IX=1 
CALL FEASBL(IX,FLI,FLJ,FLIJ.FIJ,T,IZX) 
GO TO 15 
END IF 
IF(KPRO.EQ. 1) THEN 
IX=1 
CALL FSBL(IX,FLI,FLJ,FLIJ,FIJ,T.IZX.KDMAND) 
GO TO 15 
END IF 
IF(SST.EQ. 1 .AND.IEE.EQ. 1) THEN 
IX=1 

C * PURPOSE TO CHECK THE FEASIBILITY OF VEHICLE ROUTES 
CALL STFSBL(IX,FL!,FLJ,FLIJ,FIJ,T,IZX,KDMAND,KTULOD,KTTRVL) 

GO TO 15 
ENDIF 
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IF(SST.EQ.1.AND.IFF.EQ.1) THEN 
IX=1 
CALL FSBL(IX,FLI,FLJ,FLIJ,FIJ,T,IZX.KDMAND) 
GO TO 15 
ENDIF 

15 IF(FLI.EQ.1) THEN 
cw~ ADD A NODE AT THE END OF ROUTE OF LRI 

LOC=NR(LRI)+1 
ROUTE(LRI,LOC)=TJHAT(T) 
NR(LRI)=LOC 
NF(LRI)=TJHAT(T) 
END IF 
END IF 
RETURN 
ENDIF 
IF(LJ.EQ. 1) THEN 
IF(LJ1.EQ.1) THEN 
IF(DDT.EQ.1) THEN 
IX=2 
CALL FEASBL(IX,FLI,FLJ,FLIJ,FIJ,T,IZX) 
GO TO 20 
END IF 
IF(KPRO.EQ.1) THEN 
IX=2 
CALL FSBL(IX,FLI,FLJ,FLIJ,FIJ,T,IZX,KDMAND) 
GO TO 20 
END IF 
IF(SST.EQ.1.AND.IEE.EQ. 1) THEN 
IX=2 
CALL STFSBLliX,FLI,FLJ,FLIJ,FIJ,T,IZX,KDMAND,KTULOD,KTTRVL) 
GO TO 20 
END IF 
IF(SST.EQ. 1.ANO.IFF.EQ. 1) THEN 
IX=2 
CALL FSBL(IX,FLI,FLJ,FLIJ,FIJ,T,IZX,KDMAND) 
GO TO 20 
END IF 

20 IF(FLJ.EQ.1) THEN 
C** ADD A NODE IN THE FRONT OF ROUTE LRJ 

LOC=4 
NOV2=NR(LRJ)+1 
NWW=NOV2+1 
NWZ=NWW-LOC 
DO 30 K=1,NWZ 
I=NWW-K 
J=I-1 
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30 ROUTE(LRJ,I)=ROUTE(LRJ,J) 
ROUTE(LRJ.3)=TIHAT(T) 
NF(LRJ)=ROUTE(LRJ.NOV2) 
NR(LRJ)=NOV2 
NB(LRJ)=TIHAT(T) 
END IF 
RETURN 
END IF 
IF(LJ2.EQ. 1) THEN 
IF(DDT.EC. 1) THEN 
IX=2 
CALL FEASBL(IX,FLI,FLJ,FLIJ,FIJ,T.IZX) 
GO TO 25 
END IF 
IF(KPRO.EQ. 1) THEN 
IX=2 
CALL FSBL(IX,FLI,FLu,FLiu,FIJ,T,IZX,KDMAND) 
GO TO 25 
END IF 
IF(SST.EQ.1.AND.IEE.EQ. 1) THEN 
IX=2 
CALL STFSBL(IX,FLI,FLu,FLlu,Fiu,T,IZX,KDMANO,KTULOD,KTTRVL) 
GO TO 25 
END IF 
IF(SSi.EQ. 1.AND.IFF.EQ.1) THEN 
IX=2 
CALL FSBL(IX,FLI,FLu,FLiu.Flu,T,IZX,KDMAND) 
GO TO 25 
END IF 

25 IF(FLu.EQ.1) THEN 
C** ADD A NODE AT THE END OF ROUTE LRu 

LOC=NR(LRu)+1 
ROUTE(LRu,LOC)=iiHAi(T) 
NR(LRJ)=LOC 

C** NODE NB DOES NOT CHANGE 
NF(LRJ)=TIHAT(i) 
END IF 
END IF 
ENOIF 
RETURN 
END 

SUBROUTINE COMBRT(IVB,IWB.IXBB.IYBB.PP,T) 
DIMENSION TULOAD(100),TTRAVL(100) 
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INTEGER TIHAT,TJHAT,ROUTE,P,FLI,FLJ,FLIJ,FIJ 
INTEGER OMANO,TOMANO,PP,T,OOT,SST 
COMMON/A4/NB(100),NF( 100),NR( 100).P 
COMMON/A5/0MAN0(300),TOMAND(100) 
COMMON/A6/LI.LJ.LI1,L!2,LJ1,LJ2,LRI,LRJ 
COMMON/A9/TIHAT(5000),TJHAT(5000),ROUTE(100.100) 
COMMON/A12/DDT,SST,IZAR 
COMMON/A15/IEE.IFF,DELTA,IALGOL,BKAMA 
COMMON/A16/KPRO,GAMA 
COMMON/A17/KOMANO,KTULOD,KTTRVL 
IVB=O 
IWB=O 
IXBB=O 
IYBB=O 
IF(LI2.EQ. 1.AND.LJ2.EQ.1) THEN 
I~(DDT.EQ.1) THEN 
IX=3 
CALL FEASBL (IX,FLI,FLJ,FLIJ,FIJ,T,IZX) 
GO TO 41 
END IF 
IF(KPRO.EQ.1) THEN 
IX=3 
CALL FSBL(IX,FLI,FLJ,FLIJ,FIJ,T,IZX,KDMAND) 
GO TO 41 
ENDIF 
IF(SST.EQ.1.AND.IEE.EQ. 1) THEN 
IX=3 
CALL STFSBL(IX,FLI,FLJ,FLIJ,FIJ,T,IZX,KDMAND,KTULOD,KTTRVL) 
GO TO 41 
END IF 
IF(SST.EQ. 1.AND.IFF.EQ.1) THEN 
IX=3 
CALL FSBL(IX,FLI,FLJ,FLIJ,FIJ,T,IZX,KOMAND) 
GO TO 41 
END IF 

CC• FOR CHECK 
c·· 
41 IF(FLIJ.EQ.1) THEN 

IXB8=1 
PUT ROUTE LRJ IN ROUTE LRI 

LC=NR(LRI)+1 
LO=NR(LRJ)-2 
LB=LC+LD-1 
J=NR(LRJ) 
NF(LRI)=NB(LRJ) 
DO 10 I=LC.LB 
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ROUTE(LRI,I)=ROUTE(LRJ.J) 
ROUTE(LRJ,J)=O 
J=J-1 

10 CONTINUE 
c~~ NB(LRI) ODES NOT CHANGE. 

NR(LRI)=LB 
NR(LRJ)=2 
NB(LRJ)=O 
NF(LRJ)=O 
ELSE 
RETURN 
ENDIF 
IF(DDT.EQ.1) THEN 
TDMAND(LRI)=TDMAND(LRil+TDMAND(LRJ) 
TDMAND(LRJ)=O 
RETURN 
END IF 
IF(KPRO.EQ.1) THEN 
TDMAND(LRI)=KOMAND 
TDMAND(LRJ)=O 
RETURN 
END IF 
IF(SST.EQ.1.AND.IEE.EQ. 1) THEN 
TDMAND(LRI)=KOMAND 
TDMAND(LRJ)=O 
TULOAD(LRI)=KTULOD 
TULOAD(LRJ)=O 
TTRAVL(LRI)=KTTRVL 
TTRAVL(LRJ)=O 
RETURN 
END IF 
IF(SST.EQ.1.AND.IFF.EQ.1) THEN 
TDMAND(LRI)=KDMAND 
TDMAND(LRJ)=O 
ENDIF 
RETURN 
END IF 
IF ( LI 2. EQ. 1. AND. LJ 1. EQ 1 ) THEN 
IF(DDT EQ.1) THEN 
IX=3 
CALL FEASBL(IX,FLI.FLJ.FLIJ,FIJ,T,IZXJ 
GO TO 42 
END IF 
IF(KPRO.EQ.1) THEN 
IX=3 
CALL FSBL(IX,FLI.FLJ,FLIJ,FIJ.T.IZX,KDMAND) 
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C*" 

GO TO 42 
ENOIF 
IF(SST.EQ.1 .AND.IEE.EQ.1) THEN 
IX=3 
CALL STFSBL(IX,FLI,FLJ,FLIJ,FIJ,T,IZX,KDMAND.KTULOD,KTTRVLl 
GO TO 42 
END IF 

IF(SST.EQ. 1.AND.IFF.EQ. 1) THEN 
IX=3 

CALL FSBL(IX,FLI,FLJ.FLIJ,FIJ,T,IZX,KDMAND) 
GO TO 42 
END IF 

42 IF(FLIJ.EQ.1) THEN 
IVB=1 
LC=NR(LRI)+1 
LD=NR(LRJ)-2 
LB=LD+LC-1 
J=3 

DO 15 I=LC,LB 
ROUTE(LRI.I)=ROUTE(LRJ,J) 
RDUTE(LRJ,J)=O 
J=J+1 

15 CONTINUE 
NF(LRI)=NF(LRJ) 
NR(LRil=LB 
NR(LRJ)=2 
NB(LRJ)=O 
NF(LRJ)=O 
ELSE 
RETURN 
END IF 
IF(DDT.EQ.1) THEN 
TDMAND(LRI)=TDMAND(LRI)+TDMAND(LRJ) 
TDMAND(LRJ)=O 
RETURN 
END!F 
IF(KPRO.EQ.1) THEN 
TDMAND(LRil=KDMAND 
TDMAND(LRJl=O 
RETURN 
END IF 
IF(SST.EQ.1.AND.IEE.EQ. 1) THEN 
TDMAND(LRil=KDMAND 
TDMAND(LRJ)=O 
TULOAD(LRI)=KTULOD 
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c 

TULOAO(LRvl=O 
TTRAVL(LRI)=KTTRVL 
TTRAVL(LRJl=O 
RETURN 
END IF 
IF (SST. EO. 1 . AND. IFF. EO. 1 ) THEN 
TOMANO(LRI l=KOMAND 
TDMAND(LRvl=O 
END IF 
RETURN 
END IF 

IF(LI1.EQ.1.AND.LJ2.E0.1) THEN 
IF(OOT.EQ.1) THEN 
IX=4 
CALL FEASBL(IX,FLI,FLJ,FLIJ,FIJ,T,!ZX) 
GO TO 43 
END IF 
IF(KPRO.EO. 1) THEN 
IX=4 
CALL FSBL(IX,FLI,FLJ,FLIJ,FIJ,T,IZX,KOMANO) 
GO TO 43 
END IF 
IF(SST.EQ.1.ANO.IEE.E0.1) THEN 
IX=4 
CALL STFSBL(IX,FLI,FLJ,FLIJ.FIJ.T,IZX.KDMANO.KTULOO,KTTRVL) 
GO TO 43 
END IF 
IF(SST.EQ. 1.ANO.IFF.EQ. 1) THEN 

CALL FSBL(IX.FLI.FLJ.FLIJ,Flv,T,IZX,KDMAND) 
GO TO 43 
END IF 

43 1F(FIJ.EQ.1) THEN 
IWB=1 
LC=NR(LRJ)+1 
LD=NR(LRI)-2 
LB=LD+LC-1 
v=3 
DO 30 I=LC,LB 
ROUTE(LRJ,I)=ROUTE(LRI.J) 
ROUTE(LRI,J)=O 
J=J+1 

30 CONTINUE 
NF(LRJ)=NF(LRI) 

c•• NB(LRJ) DOES NOT CHANGE. 
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NR(LRJ)=LE 
NR{LRI)=2 
NB(LRil=O 
NF(LRI )=0 
ELSE 
RETURN 
END IF 
IF{DDT.EQ. 1) THEN 
TDMAND{LRJ)=TDMAND{LRJ)+TDMAND(LR!) 
TDMAND{LRil=O 
RETURN 
END IF 
IF{KPRO.EQ.1) THEN 
TDMAND(LRJ)=KDMAND 
TDMAND(LRI)=O 
RETURN 
ENDIF 
IF(SST.EQ.1 .AND.IEE.EQ. 1) THEN 
TDMAND(LRJ)=KDMAND 
TDMAND(LRI)=O 
TULOAD(LRJ)=KTULOD 
TULOAO(LRI)=O 
TTRAVL(LRJ)=KTTRVL 
TTRAVL{LRI)=O 
RETURN 
ENDIF 
IF{SST.EQ.1 .AND.IFF.EQ. 1) THEN 
TDMANO(LRJ)=KDMAND 
TDMAND(LRI)=O 
ENDIF 
ENOIF 
RETURN 
END 

SUBROUTINE FEASBL(IX,FLI,FLJ,FLIJ.FIJ.T,IZX) 
INTEGER TCAP,DMAND,TIHAT,TJHAT,RDUTE,FLI,FLJ,FLI~.FIJ 
INTEGER TOMAND,P,T,PP 
COMMON/A2/NPT,NW,TCAP,MNP,NTRY 
COMMON/ A4/N8( 100). NF ( 100), NR { 100), P 
COMMON/A5/DMAND(300),TDMAND(100) 
COMMON/A6/LI.LJ,LI1,LI2,LJ1.LJ2,LRI,LRJ 
COMMON/A9/TIHAT(5000).TJHAT(5000),ROUTE(100, 100) 
GO TO ( 1,2,3,4,5),IX 
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IYZ=1 
ISET=1 
CALL CHCKK(LRI,IYZ,ISET) 
JTJ=TJHAT( Tl 
KDMAND=TDMAND(LRI)+DMAND(JTJ) 
IF(KDMAND.LE.TCAP) THEN 
FLI=1 
ELSE 
FLI=O 
END IF 
RETURN 

2 IYZ=1 
ISET=1 
CALL CHCKK!LRJ.IYZ,ISET) 
ITI=TIHAT(T) 
KDMAND=TDMAND(LRJ)+DMAND(ITI) 
IF(KDMAND.LE.TCAP) THEN 
FLJ=1 
ELSE 
FLJ=O 
END IF 
RETURN 

3 IYZ=1 
ISET=1 
CALL CHCKK(LRI.IYZ,ISET) 
IYZ=1 
CALL CHCKK(LRJ.IYZ,ISET) 
KDMAND=TDMAND(LRI)+TDMAND(LRJ) 
IF(KDMAND.LE.TCAP) THEN 
FLIJ=1 
ELSE 
FLIJ=O 
END IF 
RETURN 

4 IYZ= 1 
ISET=1 
CALL CHCKK(LRI.IYZ,ISET) 
ISET=1 
IYZ=1 
CALL CHCKK(LRJ.IYZ.ISET) 
KDMAND=TDMAND(LRI)+TDMAND(LRJ) 
IF(KDMAND.LE.TCAP) THEN 
FIJ=1 
ELSE 
FIJ=O 
END IF 
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RETURN 
5 ITI=TIHAT(T) 

JTJ=TJHAT(T) 

TDMAND(P)=TDMAND(Pl+DMAND(ITI)+DMAND(JTJ) 
IZX=O 
IF(TDMAND(Pl.LE.TCAP) IZX=1 
RETURN 
END 

c· SUBROUTINE CTD 

c 

SUBROUTINE CTD(PP.DD,IDD) 
INTEGER PP,P,ROUTE,TIHAT,TJHAT 
REAL IDD 
DIMENSION IDD(100) 
COMMON/A4/NB(100).NF(100),NR(100).P 
COMMON/A8/DIST(300,300) 
COMMON/A9/TIHAT(5000),TJHAT(5000),ROUTE(100,100) 
DD=O 
'DO 10 I= 1 , PP 
IDD(I )=0 
NN=NR(I) 
DO 20 J=2,NN 
K=ROUTE(I.J) 
L=ROUTE(I,J+1) 
LL=J+1 
IF(LL.GT.NN) THEN 
IDD( I )=IDD( I )+DIST(K, 1) 
ELSE 
IDD(I)=IDD(I)+D!ST(K,L) 
END IF 

20 CONTINUE 
DD=DD+IDD(Il 

10 CONTINUE 
RETURN 
END 

SUBROUTINE CHCKK(PP,IYZ,ISET) 
INTEGER DMAND,TDMAND.PP,ROUTE,TIHAT,TJHAT,P 
REAL IDD 
DIMENSION IDD( 100) 
COMMON/A4/NB( 100),NF(100).NR(100l.P 
COMMON/A5/DMANDI300),TDMAND(100) 
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COMMON/A9/TIHAT(5000),TJHAT(5000),ROUTE(100, 100) 
GO TO ( 1 , 2) , IY Z 

NN=NR(PP) 

TOMAND(PP)=O 

DO 20 J=3,NN 

K=ROUTE(PP,J) 

20 TOMAND(PPl=TDMAND(PP)+DMAND(Kl 

2 

RETURN 

DO 40 I=ISET,PP 

TDMAND(Il=O 

NN=NR(I) 

DO 30 J=3,NN 

K=ROUTE(I,Jl 

IF(K.EO.O) GO TO 40 
30 TOMAND(Il=TOMAND(I)+DMAND(K) 

40 CONTINUE 

c•· 

RETURN 

END 

SUBROUTINE WWRT(PP) 

DIMENSION MOLE(100),IDD(100),TULOAD(100),TTRAVL(100) 

INTEGER TULOAD,TTRAVL,DDT.SST.TULDD,TTDD 

INTEGER P,ROUTE,TDMAND,DMAND,TIHAT,TJHAT,PP 

REAL IDD 

COMMON/A2/NPT,NW,TCAP,MNP,NTRY 

COMMON/A4/NB(100),NF(100).NR(100).P 

COMMON/A5/DMAND(300),TDMAND(100) 

COMMON/A9/TIHAT(5000),TJHAT(5000),ROUTE(100, 100) 

COMMON/A12/DDT,SST,IZAR 

COMMON/A13/TULOAO,TTRAVL 

COMMON/A15/IEE,IFF,OELTA,IALGOL,BKAMA 

COMMON/A16/KPRO,GAMA 

WRITE ( 6, 10) 

WRITE( 10, 10) 

10 FORMAT(5~. 'THE ROUTES ARE THE FOLLOWINGS' I 
MNK=MNP-1 

DO 20 I=1,PP 
WRITE(6,30l I,(ROUTE(I,Jl.J=2.MNK),ROUTE(I,MNP) 

WRITE( 10,30) I,(ROUTE(I.J).J=2,MNK),ROUTE(I,MNP) 

30 FORMAT(//5X, 'ROUTE ',2X,I3,2X, '-->' .2X,30(1X.I2)) 

20 CONTINUE 
IF(DDT.EQ. 1.0R.IEE.EQ. 1.0R.KPRD.EQ. 1) THEN 
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CALL CTD(PP,DD,IDD) 

END IF 
IF(IFF.EQ. 1) THEN 

CALL STCTD(PP,DD) 
W~ITE(6,41) DD 

W~ITE( 10,41) DD 

41 FORMAT(i/30X, 'TOTAL ELAPSE TIME OF WHOLE SYSTEM IS' ,2X.F10.4) 
GO TO 42 
END IF 

KKDD=DD 
WRITE(6.40) KKDO 
WRITE(10.40) KKDD 

40 FORMAT(10X, "TOTAL DISTANCE IS' ,1X,IB) 
DO 50 I=1,PP 

MOLE(I)=!OD(I) 
WR!TE(6,60) I,MOLE(I) 
WRITE( 10,60) I,MOLE(I) 

60 FORMAT(//5X,'DISTANCE ROUTE' ,2X,I3, 'IS' ,I6) 

50 CONTINUE 
42 IYZ=2 

ISET=1 
IF(DDT.EQ.1) THEN 
CALL CHCKK(PP,IYZ,ISET) 

END IF 
IF(KPRO.EQ.1) THEN 
CALL FCHECK(PP,IYZ.ISET) 

GO TO 99 
END IF 
IF(SST.EQ.1) THEN 
CALL PRCHCK(PP,IYZ,ISET) 

TULDD=O 
TTDD=O 
WRITE(6,51) 

WRITE(10,51) 
51 FORMAT(//30X, 'TOTAL UNLOAD TIME OF EACH ROUTE') 

DO 52 I= 1, PP 

TULDD=TULOD+TULOAD(I) 
WRITE(6.53l I ,TULOAD(I) 
WRITE( 10.53) I,TULOAD(Il 

53 FORMAT(//30X, 'UNLOAD TIME' ,2X,I3.2X, 'IS' ,2X,I8) 

52 CONTINUE 
WRITE(6.101) TULDD 
WRITE( 10,101) TULDD 

101 FORMAT(//30X, 'TOTAL UNLOAD TIME OF WHOLE SYSTEM=' ,2X,I6) 
WRITE(6.54) 

WRITE( 10.54) 

305 



54 FORMAT(//30X, 'TOTAL TRAVEL TIME OF EACH ROUTE') 

DO 55 I=1.PP 
TTDD=TTDD+TTRAVL(Il 

WRITEf6,56l I,TTRAVL(Il 
WRITE(10,56) I,TTRAVL(I) 

56 FORMAT(//30X. 'TRAVLING TIME ',2X,I3,2X, 'IS' ,2X,IS) 

55 CONTINUE 
WRITE(6, 102) TTDD 

WRITE(10.102) TTDD 
102 FORMAT(//30X. 'TOTAL TRAVEL TIME OF WHOLE SYSTEM=' ,2X,I6) 

END IF 
99 WRITE(6.70l 

WRITE( 10, 70) 
70 FORMAT(//20X, 'TOTAL DEMAND OF EACH ROUTE') 

DO 80 !=1.PP 
WRITE(6,90) I.TDMAND(I) 
WRITE(10,90) I,TDMAND(I) 

90 FORMAT(30X, 'DEMAND ROUTE' ,2X,!3, 'IS' ,IS) 

80 CONTINUE 
K=PP 
WRITE(6,100) K 

WRITE(10,100) K 
100 FORMAT(//30X,'NUMBER OF THE REQUIRED VEHICLES' ,2X, 'IS·, 

2X, I2) 

RETURN 

END 

SUBROUTINE SWTCH(IVS.IWS.IXBB,IYBB.PP) 
DIMENSION KROOT(100, 100),KNR( 100),KNF(100),KNB(100) 
INTEGER P,T,R,PP,ROUTE,TIHAT,TJHAT,DMAND,TDMAND 

INTEGER DDT,SST 
COMMON/A4/NB(100),NF(100),NR( 100),P 

COMMON/A5/DMAND(300l.TDMAND(100) 

COMMON/A6/LI,LJ,LI1,LI2.LJ1,LJ2.LRI,LRJ 
COMMON/A9/TIHAT(5000l,TJHAT(5000),ROUTE(100, 100) 

COMMON/A12/DDT.SST,IZAR 
COMMON/A16/KPRO,GAMA 
DO 5 I=1,PP 

DO 15 J= 1 , 20 
C•• VALUE 20 IN THE ABOVE DO IS STANDING FOR MNP 

15 KROOT(I,J)=O 

KNR(!)=2 
KNB(I)=O 
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5 KNF(I)=O 
MEET=O 
DO 10 I=1,PP 
IF(IXBB.EQ.1 .AND.I.EQ.LRJl GO TO 10 
IF(IY88.EQ.1 .ANO.I.EQ.LRJ) GO TO 10 
IF(IVB.EQ.1.AND.I.EQ.LRJ) GO TO 10 
IF(IWB.EQ. 1.AND.I.EQ.LRI) GO TO 10 
NRI= NR(I) 
MEET=MEET.,.1 
DO 20 J=3,NRI 

20 KROOT(MEET.Jl=ROUTE(I,J) 
KNR(MEET)=NR(I) 
KNF (MEET) =NF ( I ) 
KNB(MEET)=NB(I) 

10 CONTINUE 
DO 50 I=1,PP 
NRI=NR(I) 
DO 60 J=3,NRI 

60 ROUTE(I,J)=O 
NR(Il=2 
NF (I )=0 
NB(I)=O 

50 CONTINUE 
PP=MEET 
P=MEET 
DO 30 I=1,MEET 
KNRI=KNR(I) 
DO 40 J=3,KNRI 

40 ROUTE(I,J)=KROOT(I,J) 
NR(I)=KNR(I) 
NB(I)=KNB(I) 
NF(I)=KNF(I) 

30 CONTINUE 
ISET=1 
IYZ=2 
IF(DDT.EQ. 1) THEN 
CALLCHCKK(PP,IYZ,ISET) 
RETURN 
END IF 
CALL FCHECK(PP,IYZ,ISETl 
RETURN 
END IF 
IF(SST.EQ.1) THEN 
CALL PRCHCK(PP,IYZ,!SET) 
ENDIF 
REiURN 
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END 

SUBROUTINE PROS 
INTEGER TIHAT,TJHAT,TI,TJ,NSA,TCAP.X,Y,T,PP,TT 

INTEGER ROUTE,TDMAND 

INTEGER TULOAD,TTRAVL,VDMAND,DMAND 
INTEGER VARS,VIRS,P,UTIME,TTTIME,DDT.SST 
REAL LOAD,KMAND,LTRAV 

DIMENSION NSA(SOOO),TI(SOOO),TJ(SOOO) 
DIMENSION TULOAD(100),TTRAVL(100),MEAN(300,300) 

DIMENSION VARS(300,300),MINE(300),VIRS(300),VDMAND(300) 
COMMON/A1/X(300),Y(300) 

COMMON/A2/NPT,NW,TCAP.MNP,NTRY 
COMMON/A3/MSVA(5000),NSAVE(SOOO),XX(S000) 

COMMON/A4/NB(100),NF(100l,NR(100),P 
COMMON/AS/DMAND(300),TDMAND(100) 
COMMON/A6/LI,LJ,LI1,LI2,LJ1,LJ2,LRI,LRJ 

COMMON/A7/IBV,IWB 
COMMON/A8/DIST(300,300) 
COMMON/A9/TIHAT(SOOO),TJHAT(SOOO),ROUTE(100. 100) 
COMMON/A10/ALPHA,BATA,ATAH,UTIME,TTTIME 
COMMON/A12/DDT.SST,IZAR 

COMMON/A13/TULOAD,TTRAVL 
COMMON/A14/MEAN,VARS,MINE,VIRS.VDMAND 
COMMON/A15/IEE,IFF,DELTA,IALGOL,BKAMA 
GO TO (4,5,8,4),IZAR 

4 CALL STINPT 

5 CALL SAVMAT 
TT=NTRY 
CALL TSORT(NSAVE,TIHAT,TJHAT,NTRY) 

C** SET TOTAL DEMAND OF EACH ROUTE TO ZERO 

C** SET TOTAL TRAVELING TIME OF EACH ROUTE TO ZERO 
C** SET TOTAL UNLOADING TIME OF EACH ROUTE TO ZERO 

C** 
DO 50 I=1,NTRY 

50 MSVA(I)=NSAVE(I) 

8 DO 7 P=1,NW 
TDMAND(P)=O 
TTRAVL(Pl=O 
TULOAD(Pl=O 

7 CONTINUE 
T=1 

1 1 p = 1 
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R=3 
IX=5 
PP=P 
ITI=TIHAT(T) 
JTJ=TJHAT(T) 

C•* TO DETERMINE THE DEMAND OF DEMAND POINTS ITI AND JTJ 

KMAND=VDMAND(ITI)+VDMAND(JTJ) 
KMAND=SQRT(KMAND) 
TDMAND(Pl=TDMAND(P)+(ATAH • KMAND)+DMAND(ITI)+DMAND(JTJ) 

C•* TO DETERMINE THE TOTAL UNLOADING TIME OF DEMAN~ POINTS ITJ,JTJ 
LOAD=VIRS(ITI)+VIRS(JTJ) 
LOAD=SQRT(LOAOl 
TULOAD(P)=TULOAO(P)+(BATA*LOAD)+MINE(ITI)+MINE(JTJ) 

c•• TO DETERMINE THE TOTAL TRAVELING TIME FOR DEMAND POINTS ITI 
C•* AND JTJ 

C•* 
C•* 
C•* 

LTRAV=VARS(1,ITI)+VARS(JTJ,1)+VARS(ITI,JTJ) 
LTRAV=SQRT(LTRAV) 
TTRAVL(P)=TTRAVL(P)+MEAN(1.ITI)+MEAN(JTJ,1)+MEAN(ITI,JTJ) 
+(ALPHA*LTRAV) 
IF(TOMANO(P).LE.TCAP.AND.TULOAD(P).LE.UTIME.AND.TTRAVL(P). 

+ LE.TTTIME) THEN 

+ 

TO 

ROUTE(P,R)=TIHAT(T) 
NB(P)=ROUTE(P,Rl 
R=R+1 
ROUTE(P.R)=TJHAT(T) 
NF(P)=ROUTE(P.R) 
NR(P)=R 
END IF 
K=T+1 
IF(TDMANO(P).GT.TCAP.OR.TULOAD(P).GT.UTIME.OR.TTRAVL(P). 
GT.TTTIME) THEN 
NSAVE(K-1)=0 
TDMAND(Pl=O 
TTRAVL(Pl=O 
TULOAD(P)=C 
T=K 
GO TO 11 
END IF 

CONSTRUCT A ROUTE 
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DO 10 T=K.TT 
NSAVE(T-1!=0 
IYOUTH=1 
CALL INTR(IN,PP,T,IYOUTH) 
IFtiN.EQ. 1 J GO TO 10 
PP=P 
MNK=MNP-1 
CALL RTCONT(PP,T) 

10 CONTINUE 

C•"• 

IYOUTH=2 
CALL INTR(IN,PP,T.IYOUTH) 
CAL.L WWRT(PP) 
RETURN 
END 

SUBROUTINE STINPT 
INTEGER DMAND,VDMAND,TCAP,VARS,VIRS,UTIME,TTTIME 
INTEGER X,Y,TDMAND 
DIMENSION MEAN(300,300) ,VARS(300.300),MINE(300) 
DIMENSION VIRS(300),VDMAND(300) 
COMMON/A1/X(300l,Y(300) 
COMMON/A2/NPT.NW,TCAP,MNP.NTRY 
COMMON/A3/MSVA(5000).NSAVE(5000l.XX(5000) 
COMMON/A5/DMAND(300),TDMAND(100) 
COMMON/A8/DIST(300.300) 
COMMON/A10/ALPHA.BATA,ATAH,UTIME,TTTIME 
COMMON/A12/DDT,SST,IZAR 
COMMON/A14/MEAN,VARS,MINE,VIRS,VDMAND 
COMMON/A15/IEE,IFF,DELTA,IALGOL.BKAMA 

c~• IDSTB =1 STANDS FOR DISTRIBUTIONS SUCH AS POISSON ,BINOMIAL, 
C** EXPONENTIAL ,GAMMA,NEGATIVE BINOMIAL,AND CHI-SQUARE 
C** IDSTB=O STANDS FOR OTHER DISTRIBUTIONS. 
C*'" 

IF(IZAR.EQ.4) GO TO 10 
WRITE(6,80) 
WRITE( 10.80) 

80 FORMAT(5X. 'ENTER THE TYPE OF DISTRIBUTION FUNCTIONS'/ 
+'ENTER 1 FOR EXPON,BINOMIAL,CHI-SQURE,POISSON.NEG-BINO,GAMMA') 

WRITE(6,81) 
WRITE ( 10. 8 1 ) 

81 FORMAT(SX,' 0 OTHERWISE') 
20~ REA0(5,•) IDSTS 

WRITE(6,200) 
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WRITE! 10.200) 
READ(5,•) ICORR 
IF(ICORR.EQ.2) THEN 
WRITE!6,201) 
WRITE( 10,201) 
GO TO 204 
ENDIF 

205 WRITE(6,1) 
WRITE! 10. 1) 
FORMAT(SX, '-->'.'ENTER THE NUMBER OF STOP POINTS INCLUDING'/ 

+'THE TERMINAL AND TRUCK CAPACITY RESPECTIVELY') 
c•• 

READ(5.•) NPT,TCAP 
WR!TE(6,101) NPT,TCAP 
WRITE(10,101) NPT,TCAP 

101 FORMAT(//20X,I5,5X,I5) 
WRITE(6.200) 
WRITE( 10,200) 
READ(S,*) ICORR 
IF(ICORR.EQ.2) THEN 
WRITE(6,201) 
WRITE(10,201) 
GO TO 205 
END IF 

206 WRITE(6,3) 
WRITE( 10, 3) 

3 FORMAT(5X,'--->',2X, 'ENTER THE TOTAL UNLOAD TIME AND TOTAL'/ 
+'TRAVELING TIME FOR EACH ROUTE') 

READ(5,•) UTIME.TTTIME 
WRITE(6,220) UTIME,TTTIME 
WRITE(10,220) UTIME,TTTIME 

220 FORMAT(2X, 'UTIME=' ,1X.I3,2X, 'TTTIME=' ,1X,I3) 
WRITE(6,200) 
WRITE( 10.200) 
READ(5,*) ICORR 
IF(ICORR.EQ.2) THEN 
WRITE(6,201) 
WRITE( 10.201) 
GO TO 206 
END IF 

c·· 
c·· ALPHA PROBABILITY OF ROUTE FAILING FOR VIOLATING THE TOTAL 
c·• TRAVELING TIME. 
c·· BATA PROBABILITY OF ROUTE FAILING FOR VAIOLATING THE TOTAL 
c•• UNLOADING TIME 
c·· ATAH PROBABILITY OF ROUTE FAILING FOR VIOLATING THE CAPACITY 
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OF TRUCK. 

207 WRITE(6.5l 
WRITE( 10.5) 

5 FORMAT(5X, 'ENTER VALUES OF ALPHA,BATA.ATAH RESPECTIVELY') 
c 

READ(5,~) ALPHA,BATA,ATAH 
WRITE(6, 11237) ALPHA,SATA,ATAH 
WRITE(10, 11237) ALPHA,SATA,ATAH 

11237 FORMAT(//20X,F10.4,2X.F10.4,2X.F10.4) 
WRITE(6,200) 
WRITE ( 10.200 l 
READ( 5, *) ICORR 
IF(ICORR.EQ.2) THEN 
WRITE\6,201) 
WRITE( 10,201) 
GO TO 207 
END IF 
GO TO 15 

10 WRITE(6,2) 
WRITE( 10,2) 

2 FORMAT(//10X, '--->',2X, 'ENTER 0 FOR EUCLIDIAN DISTANCE'/ 
+14X, '1 FOR LINEAR DISTANCE') 

READ(5,*) IEUC 
IF(IEUC.EQ.1) THEN 

209 WR!TE(6,12) 
WRITE( 10,12) 

12 FORMAT(5X, '--->','ENTER THE. LINEAR DISTANCE OR COST MATRIX') 
DO 1 1 I= 1 . NPT 
READ(5,*) (DIST(I,ul.J=I,NPT) 
WRITE(6,42l (DIST(I,J),u=1,NPTl 
WRITE(10,42) (DIST(I.J),J=1,NPTl 
WRITE(6,200) 
WRITE( 10.200) 
READ(5.*) ICORR 
IF(ICORR.EQ.2) THEN 
WRITE\6,201) 
WR!TE(10,201) 
GO TO 209 
END IF 

11 CONTINUE 
DO 14 I=2,NPT 
K=I-1 
DO 13 u= 1, K 
DIST(I.ul=DIST(u.I) 

13 CONTINUE 
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14 CONTINUE 
ELSE 

210 WRITE(6,4) 
WRITE(10,4) 

4 FORMAT(//10X, ·--->',2X.'ENTER THE EUCLIDIAN DISTANCE'/ 
•10X. 'WITH THE COORDINATE OF TERMINAL POINT FIRST·) 

DO 6 I= 1, NPT 
READ(5,•) X(I),Y(I) 
WRITE(6,9) X(I),Y(l) 
WRITE(10,9) X(I),Y(I) 
WRITE(6,200) 
WRITE( 10, 200) 
READ( 5, •) ICORR 
IF(ICORR.EQ.2) THEN 
WRITE(6,201) 
WRITE( 10,201) 
GO TO 210 
END IF 

6 CONTINUE 
C** 
C** WRITE THE EUCLIDIAN DISTANCE 
c•· 

WRI'rE(6, 7) 
WRITE( 10, 7) 

7 FORMAT(10X,'EUCLIDIAN DISTANCE'//16X, 'X' ,10X, 'Y') 
DO 8 I=1,NPT 
WRITE(6,9) X(I),Y(I) 
WRITE(10,9) X(I),Y(l) 

9 FORMAT(14X,I4,8X,l4) 
8 CONTINUE 

c•• EVALUATE THE DISTANCE BETWEEN POINTS ! AND u 
00 91 I=1,NPT 
0091 J=1,NPT 
IF(I.EQ.J) DIST(I,J)=O 
IF(I.GE.J) GO TO 91 
SOB=FLOAT((X(Il-X(J))**2+(Y(I)-Y(J))**2) 
DIST(I,J)=SQRT(SOB) 
DIST(J,l)=DIST(I.J) 

91 CONTINUE 
END IF 
IF(IZAR.EQ.4) RETURN 
IF(IEE.EQ.1) GO TO 223 

15 CONTINUE 
WRITE(6,16) 
WRITE( 10, 16) 
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16 FORMAT(5X, 'ENTER THE MEAN TRAVEL TIME BETWEEN I AND J') 
DO 17 I= 1 . NPT 

2~1 READ(9,¥) (MEAN(I.J).J=I.NPT) 
WRITE\10,45) (MEAN(I,J),J=1,NPT) 
WRITE(6,200) 
WRITE( 10,200) 

C READ(S,*) ICORR 
ICORR=1 
IF(ICORR.EQ.2) THEN 
WRITE(6,201) 
WRITE( 10,201) 
GO TO 211 
END IF 

17 CONTINUE 
WRITE ( 6, 102) 
WRITE( 10.102) 

102 FORMAT(5X, 'ENTER THE VARIANCE OF TRAVEL TIME BETWEEN I , J') 
DO 52 I= 1 , NPT 

212 READ(S,*) (VARS(I,J),J=I.NPT) 
WRITE(10,48) (VARS(I,J),J=1,NPT) 
WRITE ( 6, 200) 
WRITE ( 10, 200) 
IF(ICORR.EQ.2) THEN 
WRITE ( 6, 201) 
WRITE( 10,201) 
GO TO 212 
ENDIF 

52 CONTINUE 
DO 30 I=2.NPT 
K=I-1 
DO 31 J=1,K 
MEAN(I,J)=MEAN(J,I) 
VARS(I.J)=VARS(J.I) 

31 CONTINUE 
30 CONTINUE 

WRITE(6, 18) 
WRITE( 10, 18) 

18 FORMATf5X, '--->','ENTER THE MEAN AND VARIANCE OF UNLOAD 
+ TIME FOR EACH DEMAND POINT I') 

DO 19 I=2.NPT 
213 READ(9,*) MINE(I),VIRS(I) 

ICDRR=1 
WRITE(6,221) MINEli),VIRS(I) 
WRITE(10,221) MINE(I),VIRS(I) 

221 FORMAT(/2X, 'MEAN=',2X.l4, 'VAR=' ,2X,I4) 
WRITE(6,200) 
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WRITE( 10,200) 

IF(ICORR.EQ.2) THEN 
WRITE(6,201) 

WRITE( 10.201) 

GO TO 213 
END IF 

19 CONTINUE 
WRITE(6,20) 

WRITE( 10,20) 
20 FORMAT(5X, '--->','ENTER THE MEAN AND VARIANCE OF THE '/ 

+9X,'DEMAND POINT I') 

DO 21 I=2,NPT 
214 READ(S.•) DMAND(I),VDMAND(I) 

WRITE(6,222) DMAND(I),VDMAND(I) 

WRITE(10,222) DMAND(I),VDMAND(I) 
222 FORMAT(2X, 'DMAND=', 1X,I4,2X, 'VDMAND=' ,2X,I4) 

WRITE(6, 200) 
WRITE( 10,200) 

ICORR=1 
IF(ICORR.EQ.2) THEN 

WRITE(6,201) 
WRITE( 10,201) 

GO TO 214 
END IF 

21 CONTINUE 
IF(IEE.EQ.1) GO TO 10 

223 WRITE(6,22) 
WRITE( 10,22) 

IF(IEE.E0.1) THEN 
22 FORMAT(//15X,'DISTANCE MATRIX ') 

00 25 I= 1 , NPT 
WRITE(6,42) (OIST(!,J),J=1,NPT) 

WRITE(10,42) (DIST(I,J),J=1,NPT) 
42 FORMAT(1X,15F5.1) 

25 CONTINUE 

END IF 
WRITE(6,43) 

WRITE( 10,43) 
43 FORMAT(I/15X, 'MEAN TRAVEL TIME' l 

45 FORMAT(1X.20I4) 
WRITE ( 6, 46) 
WRITE( 10,46) 

46 FORMAT(//15X.'VARIANCE TRAVEL TIME') 

48 FORMAT(1X,20I4l 
WRITE(6,26) 
WRITE ( 10,26) 
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26 FORMAT(5X, 'DEMAND POINT' ,2X, 'DEMAND' ,10X, 'VARIANCE DEMAND', 
+ 10X, 'MEAN UNLOADING' ,10X. 'VARIANCE UNLOADING') 

DO 27 I=2,NPT 
WRITE(6,28) I,DMAND(!),VDMAND(I).MINE(I),VIRS(Il 
WRITE(10,28) I.DMAND(I),VDMAND(Il,MINE(I),VIRS(I) 

28 FORMAT( 10X, !3, 2X, !5, 19X, I5, 19X, !5, 22X, I5) 
27 CONTINUE 

IF(IDSTB.EQ.1) GO TO 50 
ITDD=O 
IVDD=O 
DO 41 I=2.NPT 
ITDD=ITDD+DMANO(I) 
IVOD=IVDD+VDMAND(I) 

41 CONTINUE 
BB=FLOAT(IVDD) 
IVDD=SQRT(BB) 
IVDD=ATAH*IVDD 
ITOTAL=IVDD+ITDD 
NW=(ITDTAL/TCAP)+10 
NNW=NW-10 
MNP=(NPT/NNW)+1 
MNP=MNP+5 
GO TO 99 

50 WRITE(6,777) 
WRITE( 10, 777) 

777 FORMAT(5X, 'ENTER THE VALUE OF SAI') 
READ( 5, *) ISAI 
BK=(ATAH**4)•(ISAI*•2)+4*TCAP*(ATAH**2)*ISAI 
BKK=SQRT(BK) 
TCAPBR=(2*TCAP+(ATAH•*2)•ISAI-8KKl*.5 
WRITE(6,61) TCAPBR 
WR!TE(10,61) TCAPBR 

61 FORMAT(//15X, 'ARTIFICIAL CAPAVITY OF TRUCK=' ,F8.3) 
C** 
C** TOTAL MEAN DEMAND ON EACH ROUTE MUST BE LESS THAN TCAP=TCAPBR 
C** 

ITDD=O 
DO 51 I=2,NPT 
ITDD=ITDD+DMAND(Il 

51 CONTINUE 
NW=(ITDD/TCAP)+10 
NNW=NW-10 
MNP=(NPT/NNW)+1 
MNP=MNP+5 

99 CONTINUE 
200 FORMAT(/2X, 'CORRECT' .2X, '1:YES' ,2X, '2:NO') 
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201 FORMAT(/2X, 'REENTER AGAIN') 
RETURN 

c• 

END 

SUBROUTINE PRCHCK 

SUBROUTINE PRCHCK(PP,IYZ.ISET) 
INTEGER DMAND,TDMAND,PP.ROUTE.TIHAT,TJHAT,P 
INTEGER VDMAND,MEAN.VARS,MINE,VIRS 
REAL KVD.KVVRS,KWVARS 
INTEGER TULOAD,TTRAVL.UTIME,TTTIME 
DIMENSION IDD(100),VDMAND(300),MEAN(300,300) 
DIMENSrON VARS(300,300l,MINE(300),VIRS(300) 
DIMENSION TULOAD(100),TTRAVL(100) 
COMMON/A4/NB(100),NF(100).NR(100),P 
COMMON/A5/DMAND(300),TDMAND(100) 
COMMON/A6/LI,LJ,LI1,LI2,LJ1,LJ2,LRI,LRJ 
COMMON/A9/TIHAT(5000),TJHAT(5000),ROUTE(100,100) 
COMMON/A10/ALPHA,8ATA,ATAH,UTIME,TTTIME 
COMMON/A11/VD,IMEAN,VVRS,KMP,WVARS,KMON 
COMMON/A13/TULOAD,TTRAVL 
COMMON/A14/MEAN,VARS,MINE,VIRS,VDMAND 
GO TO ( 1 , 2), I YZ 
NNaNR(PP) 
TDMAND(PP)zO 
TTRAVL(PP)=O 
TULOAD(PP)=O 
VD=O 
DO 20 J=3.NN 
K=ROUTE(PP,J) 

20 VD=VD+VDMAND(K) 
KVD=SQRT(VD) 
KVD=ATAH*KVD 
DO 30 J=3,NN 
K=ROUTE(PP,J) 

30 TDMAND(PP)=TDMANO(PP)+DMAND(K) 
IMEAN=TDMAND(PP) 

C*• TOTAL DEMAND OF ROUTE PP,CNSIDERING MEAN AND VARIANCE 
TDMAND(PP)=TDMANO(PPl+KVD 

C** TO CALCULATE TOTAL STANDARED DEVIATION OF UNLOAD TIME 
VVRS=O 
DO 40 J=3,NN 
K=ROUTE(PP,J) 

40 VVRS=VVRS+VIRS(Kl 
KVVRS=SQRT(VVRS) 
KVVRS=BATA•KVVRS 
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DO 50 J=3,NN 
K=ROUTE ( PP, J) 

50 TULOAD(PP)=TULOAD(PP)+MINE(K) 
KMP=TULOAD(PP) 

C** TOTAL UNLOAD TIME CONSIDERING MEAN AND VARIANCE 
TULOAD(PP)=TULOAD(PP)+KVVRS 

C••*TO CALCULATE TOTAL TRAVEL TIME OF ROUTE PP. 

WVARS=O 
DO 60 J=3,NN 
K=J-1 
KA=ROUTE(PP,K) 
KB=ROUTE(PP,J) 

60 WVARS=WVARS+VARS(KA,KB) 
KG=ROUTE(PP,NN) 
WVARS=WVARS+VARS(KG, 1) 
KWVARS=SQRT(WVARS) 
KWVARS=ALPHA*KWVARS 
KMEN=O 
DO 70 J=3,NN 
K=J-1 
LA=ROUTE(PP,K) 
LB=ROUTE(PP,J) 

70 KMEN=KMEN+MEAN(LA,LB) 
LG=ROUTE(PP.NN) 
KMON =KMEN+MEAN(LG,1) 
TTRAVL(PP)=TTRAVL(PP)+KMON+KWVARS 
RETURN 

2 DO 80 I=ISET,PP 
TDMAND(I)=O 
NN=NR(I) 
VD=O 
DO 90 J=3,NN 
K=ROUTE(I,J) 

90 VD=VD+VDMAND(K) 
KVD=SQRT(VD) 
KVD=ATAH*KVD 
DO 100 J=3.NN 
K=ROUTE(I,J) 

100 TDMAND(I)=TDMAND(I)+DMAND(K) 
TDMAND(Il=TDMAND(I)+KVD 

80 CONTINUE 
c•• TD FIND THE TOTAL UNLOAD TIME OF EACH CONSTRUCTED ROUTE 
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DO 110 I=ISET,PP 
TULOAD(I)=O 
NN=NR(I) 
VVRS=O 
DO 120 J=3,NN 
K=ROUTE(I,J) 

120 VVRS=VVRS+VIRS(K) 
KVVRS=SQRT(VVRS) 
KVVRS=BATA*KVVRS 
DO 130 J=3,NN 
K=ROUTE(I,J) 

130 TULOAD(I)=TULOAD(I)+MINE(K) 
TULOAD(I)=TULDAD(I)+KVVRS 

110 CONTINUE 
C*• TO FIND THE TOTAL TRAVEL TIME FOR EACH CONSTRUCTED ROUTE 

DO 140 I=ISET,PP 
TTRAVL(I)=O 
NN=NR(I) 

C** TO CALCULATE TOTAL VARIANCE OF TRAVEL TIME FOR ROUTEI 
WVARS=O 
DO 150 J=3,NN 
K=J-1 
KA=ROUTE(I,K) 
KB=ROUTE(I,J) 

150 WVARS=WVARS+VARS(KA,KB) 
KG=ROUTE(I,NN) 
WVARS•WVARS+VARS(KG,1) 
KWVARS=SORT(WVARS) 
KWVARS=ALPHA*KWVARS 

C•• TO CALCULATE TOTAL MEAN TRAVEL TIME OF ROUTE I 
KMEN=O 
DO 160 J=3,NN 
K=J-1 
LA=ROUTE(I,Kl 
LB=ROUTE(I,J) 

160 KMEN=KMEN+MEAN(LA,LS) 
LG=ROUTE(I,NNl 

c•• TO FIND TOTAL MEAN TRAVEL TIME OF ROUTE 
KMON=KMEN+MEAN(LG,1) 
TTRAVL(I)=TTRAVL(I)+KMON+KWVARS 

140 CONTINUE 
RETURN 
END 
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UBROUTINE STFSBL 

SUBROUTINE STFSBL(IX,FLI,FLJ,FLIJ,FIJ,T,IZX.KDMAND.KTULOD, 
+ KTTRVL) 

DIMENSION MEAN(300,300),VARS(300,300),MINE!300) 
DIMENSION TULOAQ(100),TTRAVL(100) 
DIMENSION VIRS(300),VDMAND(300) 
INTEGER TCAP,DMAND,TIHAT,TJHAT,ROUTE,FLI,FLJ.FLIJ,FIJ 
INTEGER TDMAND,P.T,PP,UTIME,TTTIME 
INTEGER VARS,VIRS,VDMAND,TULOAD,TTRAVL 
REAL KVO,KVVRS,LOAD.KMAND,LTRAV,KWVARS 
COMMON/A2/NPT,NW,TCAP,MNP,NTRY 
COMMON/A4/NB(100),NF(100),NR(100),P 
COMMON/A5/DMAN0(300),TDMAND(100) 
COMMCN/A6/LI,LJ,LI1,LI2.LJ1,LJ2,LRI.LRJ 
COMMCN/A9/TIHAT(5000),TJHAT(5000),ROUTE(100,100) 
COMMCN/A10/ALPHA,BATA,ATAH,UTIME,TTTIME 
COMMON/A11/VD,IMEAN,VVRS,KMP,WVARS,KMON 
COMMON/A13/TULOAO,TTRAVL 
COMMON/A14/MEAN,VARS,MINE,VIRS,VDMANO 
ITI=TIHAT(T) 
JTJ=TJHAT(T) 
GO TO (1,2,3,4).IX 
IYZ=1 
ISET=1 
CALL PRCHCK(LRI.IYZ,ISET) 
IRAS=ITI 
IRAK=JTJ 
KRAFT=LRI 
CALL CONTRL(IRAS,IRAK,KRAFT,KDMANO,KTULOC,KTTRVL) 

IF(KDMAND.LE.TCAP.AND.KTULOD.LE.UTIME.AND.KTTRVL.LE.TTTIME) 
+ THEN 

FLI=1 
ELSE 
FLI=O 
END IF 
RETURN 
IYZ=1 
ISET=1 
CALL PRCHCK(LRJ,IYZ,ISET) 
IRAK=ITI 
IRAS=JTJ 
KRAFT=LRJ 
CALL CCNTRL(IRAS.IRAK,KRAFT,KDMAND,KTULCD.KTTRVL) 
IF(KOMAND.LE.TCAP.AND.KTULCD.LE.UTIME.AND.KTTRVL.LE.TTTIME) 

+ THEN 
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FLJ=1 
ELSE 
FLJ=O 
END IF 
RETURN 

3 IYZ=1 
ISET=1 
CALL PRCHCK(LRI.IYZ,ISETl 
M1=IMEAN 
V1=VD 
N1=KMP 
W1=VVRS 
MYN1=KMON 
VD1=WVARS 
CALL PRCHCK(LRJ,IYZ,ISET) 
M2,.IMEAN 
V2=VD 
N2=KMP 
W2=VVRS 
MYN2=KMON 
VD2=WVARS 
CALL SOFT(KTTRVL,VD1,VD2,MYN1,MYN2,ITI,JTJ) 
CALL RUSH(M1.M2,N1,N2,V1,V2,W1,W2,KDMAND.KTULOD) 
IF(KDMAND.LE.TCAP.AND.KTULOD.LE.UTIME.AND.KTTRVL.LE.TTTIME) 

+ THEN 
FLIJ=1 
ELSE 
FLIJ=O 
END IF 
RETURN 

4 IYZ=1 
ISET=1 
CALL PRCHCK(LRI,IVZ,ISET) 
M1=IMEAN 
V1=VD 
N1=KMP 
W1=VVRS 
MYN1=KMON 
VD1=WVARS 
CALL PRCHCK(LRJ,IVZ,ISET) 
M2=IMEAN 
V2=VD 
N2=KMP 
W2=VVRS 
MYN2=KMON 
VD2=WVARS 
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• 

c~ 

C** 

CALL SOFT(KTTRVL,VD1,VD2,MYN1,MYN2,ITI,JTJ) 
CALL RUSH(M1,M2,N1,N2.V1,V2,W1,W2,KDMAND,KTULOD) 
IF(KDMAND.LE.TCAP.AND.KTULOD.LE.UTIME.AND.KTTRVL.LE.TTTIME) 
THEN 
FIJ=1 
ELSE 
FIJ=O 
END IF 
RETURN 
END 

SUBROUTINE CONTRL 

SUBROUTINE CONTRL(IRAS,IRAK,KRAFT,KDMAND,KTULOD,KTTRVLJ 
INTEGER DMAND,VDMAND,TCAP,VARS,VIRS,UTIME,TTTIME 
REAL KVD,KVVRS,KWVARS 
INTEGER TULOAD ,TTRAVL,TDMAND 
DIMENSION MEAN(300,300),VARS(300,300),MINE(300) 
DIMENSION VIRS(300),VDMAND(300) 
DIMENSION TULOAD(100),TTRAVL(100) 
COMMON/A5/DMAND(300),TDMAND(100) 
COMMON/A10/ALPHA,BATA,ATAH,UTIME,TTTIME 
COMMON/A11/VD,IMEAN,VVRS,KMP,WVARS,KMON 
COMMON/A13/TULOAD,TTRAVL 
COMMON/A14/MEAN.VARS,MINE,VIRS,VDMAND 

C** TO EVALUATE THE VARIANCE OF DEMAND 
VDNEW=VD+VDMAND(IRAK) 

C** TO EVALUATE THE VARIANCE OF UNLOADING TIME 
VVRSNU=VVRS+VIRS(IRAK) 

C** 
C** TO EVALUATE THE VARIANCE OFTRAVELING TIME 

WVARSU=WVARS+VARS( 1,IRAK)+VARS(IRAS,IRAK)-VARS(IRAS,1) 

C** 

C** 

KVD=SQRT(VDNEW) 
KVD=ATAH*KVD 
KDMAND=IMEAN+DMAND(IRAK)+KVD 

KVVRS=SQRT(VVRSNU) 
KVVRS=BATA*KVVRS 
KTULOD=KMP+MINE(IRAK)+KVVRS 
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KWVARS=SQRT(WVARSU) 
KWVARS=ALPHA*KWVARS 
KTTRVL=KMON+MEAN(1,!RAK)+MEAN(IRAS,IRAKI+KWVARS-MEAN(IRAS,1) 
RETURN 
END 

SUBROUTINE SOFT(KTTRVL,VD1,VD2,MYN1,MYN2,ITI.JTJ) 
INTEGER VARS,VIRS,VDMAND 
REAL KWVARS 
DIMENSION MEAN(300,300),VARS(300,300) 
DIMENSION MINE(300),VIRS(300l.VDMAND(300) 
CDMMON/A10/ALPHA,BATA,ATAH,UTIME,TTTIME 
COMMON/A14/MEAN,VARS,MINE.VIRS,VDMAND 
MEN=MEAN(1,ITI)+MEANl 1,JTJ) 
MENS=MEN-MEAN(ITI.JTJ) 
MEANTL=MYN1+MYN2-MENS 
V03=VARS(1,ITI)+VARS(1,JTJ) 
SVD3=VD3-VARS(ITI,JTJ) 
VD=VD1+VD2-SVD3 
KWVARS=SQRT(VD) 
KWVARS=ALPHA*KWVARS 
KTTRVL=MEANTL+KWVARS 
RETURN 
END 

SUBROUTINE RUSH(M1,M2,N1,N2,V1,V2,W1,W2,KDMAND,KTULOD) 
COMMON/A10/ALPHA.BATA,ATAH,UTIME,TTTIME 
REAL IV3. IW3 
M3=M1+M2 
V3=V2+V1 
IV3=SQRT(V3) 
IV3=ATAH*IV3 
KDMAND=M3+IV3 
N3=N1+N:;: 
W3=W1+W2 
IW3=SQRTlW3) 
IW3=BATA*IW3 
KTULOD=N3+IW3 
RETURN 
END 

SUBROUTINE STSAVE 
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C*• THIS SUBROUTINE CONSTRUCT THE SAVING MATRIX FOR PROBLEM F WHEN 
c•• TIME IS CONSERNED. 

DIMENSION VARS(300,300),M!NE(300),VIRS(300),VDMAN0(300l 
DIMENSION MEAN(300,300) ,ISAVE(300,300),WAR( 100, 100) 
DIMENSION MAR( 100, 100) 
INTEGER TCAP,X,P,TIHAT,TJHAT,ROUTE,VARS,VIRS,VDMAND 
COMMDN/A2/NPT,NW,TCAP,MNP,NTRY 
COMMDN/A3/MSVA(5000l,NSAVE(5000l.XX(5000) 
CDMMDN/A4/NB( 100l,NF( 100).NR( 100l,P 
CDMMDN/AB/DIST(300,300) 
COMMDN/A9/TIHAT(5000), TJHAT(5000), ROUTE( 100, 100) 
COMMDN/A14/MEAN,VARS.MINE,VIRS,VDMAND 
COMMDN/A15/IEE,IFF,DELTA,IALGDL,BKAMA 
IF(IALGDL.EQ.2) THEN 
ISIGMA=O 
DO 10 I=2,NPT 
DO 10 J=2.NPT 
ISIGMA=ISIGMA+VARS(I,Jl 

10 CONTINUE 
K=NPT-1 
KK=K*K 
IBAR=ISIGMA/(KK*DELTA) 
END IF 
DO 15 I=2,NPT 
DO 15 J=2 ,NPT 
WAR(I,Jl=O 
MAR(I.J)=O 

15 CONTINUE 
DO 20 I=2,NPT 
DO 30 J=I,NPT 

C PURPOSE TO DETERMINE THE LIST OF SAVINGS FOR BOTH ALGORITHMS 
C OF "F" TYPE PROBLEM 

ISAVE(I,J)=-99999 
IF(MEAN(I,J).EQ.O) GO TO 40 
MAR(I,J)=MEAN(I,1)+MEAN(1,Jl-MEAN(I,J) 

C PURPOSE TO DETERMINE THE SAVINGS FOR ALGORITHM(!) 
IF(IALGDL.EQ.1) THEN 

c 

c 

MAR(I.Jl=BKAMA•MAR(I,J) 
END IF 

40 IF(VARS(I,J).EQ.O) GO TC 50 
WAR(I,Jl=VARS(I, 1)+VARS( 1,J)+VARS(I,J) 

IF(IALGDL.EQ.1) THEN 
WAR(I.J)=(1-BKAMA)*SQRT(WAR(!.J)) 
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c 
END IF 

50 MAR(J,Il=MAR(I,J) 
WAR(J.I)=WAR(I.J) 
IF(WAR(I.J).EQ.O) GO TO 30 
IF(IALGOL.EQ.2) THEN 
ISAVE(I.J)=MAR(I.JJ+ISAR/SQRT(WAR(l,J)) 
END IF 
IF(IALGOL.EQ. 1) THEN 
ISAVE(I,J)=MAR(I,J)+WAR(I,J) 
END IF 

ISAVE(J,I)=ISAVE(I,J) 
30 CONTINUE 
20 CONTINUE 

IF(IALGOL.EQ.1.AND.SKAMA.EQ.1) THEN 
ISAVE(I,J)=MAR(I,J) 
ISAVE(J,I)=ISAVE(I,J) 
END IF 
DO 60 I=2,NPT 
ISAVE(I,1)=-99999 
I SAVE ( 1 , I ) =I SAVE ( I , 1 ) 

60 CONTINUE 
C** 
C*"' 
C•*PUT ARRAY ISAVE INTO A ONE DIMENSIONAL ARRAY 

L=O 
IPT=NPT-1 
DO 100 I=2,IPT 
K=I+1 
DO 100 J=K.NPT 
IF(ISAVE(I,J).LE.Ol GO TO 100 
L=L+1 
NSAVE(L)=ISAVE(I,J) 
TIHAT ( L) =I 
TJHAT( L)=J 

100 CONTINUE 
NTRY=L 
DO 170 I=1,NW 
ROUTE(I,1)=I 
ROUTE(I.MNP)=1 
ROUTE(I,2)=1 
MNP1=MNP-1 
DO 180 J=3,MNP1 

180 ROUTE(I,Jl=O 
NB( Il=O 
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NF(I)=O 
NR(I)=2 

170 CONTINUE 

DO 13 I=1.NW 
WRITE(6,23) (ROUTE(I,J).J=1,MNP) 

23 FORMAT(5X,30(I2.2X) I 
13 CONTINUE 

RETURN 

END 

SUBROUTINE FSSL(IX.FLI,FLJ,FLIJ,FIJ,T,IZX.KDMAND) 
DIMENSION MEAN(300,300),VARS(300,300) 
DIMENSION MINE(300),TULOAD(100).TTRAVL(100),VIRS(300) 
DIMENSION VDMAND(300) 

INTEGER TCAP,DMAND,TIHAT,TJHAT,ROUTE,FLI,FLJ,FLIJ.FIJ 
INTEGER TDMAND,P,T,PP,XX,UTIME,TTTIME 
INTEGER VARS,VIRS,VDMAND,TULOAD,TTRAVL 
COMMON/A2/NPT,NW,TCAP,MNP,NTRY 
COMMON/A3/MSVA(5000),NSAVE(5000),XX(5000) 
COMMON/A4/NB(100),NF(100),NR(100),P 

COMMON/A5/DMAND(300).TDMAND(100) 
COMMON/A6/LI,LJ,LI1,LI2,LJ1,LJ2,LRI,LRJ 

COMMON/A7/IBV,IWB 
COMMON/A9/TIHAT(5000),TJHAT(5000),ROUTE(100. 100) 
COMMON/A10/ALPHA,BATA,ATAH,UTIME.TTTIME 
COMMON/A11/VD.IMEAN,VVRS,KMP,WVARS,KMON 

COMMON/A13/TULOAD,TTRAVL 
COMMON/A14/MEAN,VARS,MINE,VIRS,VDMAND 
COMMON/A15/IEE,IFF.DELTA,IALGDL,BKAMA 
COMMDN/A16/KPRO,GAMA 

C PURPOSE OF THIS SUBROUTINE IS TO DETERMINE THE FEASIBILITY 
C FOR THE SVRP WHEN CUSTOMER DEMANDS ARE ONLY PROBABILISTICS 

IYZ=1 

ISET=1 
ITI=TIHAT(T) 
JTJ=TJHAT(Tl 
GO TO ( 1,2,3,4).IX 

CALL FCHECKILRI,IYZ.ISET) 

IRAK=ITI 
IRAS=JTJ 
KRAFT=LRI 
CALL STCDNT(IRAS,IRAK,KRAFT,KOMAND) 

IF(KDMAND.LE.TCAP) THEN 

FLI=1 
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ELSE 
FLI=O 
END IF 
RETURN 
CALL FCHECK (LRJ,IYZ,ISETl 
IRAS=ITI 
IRAK=JTJ 
KRAFT=LRJ 
CALL STCONT(IRAS,IRAK.KRAFT,KDMAND) 
IF(KDMAND.LE.TCAP) THEN 
FLJ=1 
ELSE 
FLJ=O 
END IF 
RETURN 

3 CALL FCHECK(LRI.IYZ,ISET) 
M1=IMEAN 
V1=VD 
CALL FCHECK(LRJ,IYZ,ISET) 
M2=IMEAN 
V2=VD 
CALL SFAST(M1,M2,V1,V2.KDMAND) 
IF(KDMAND.LE.TCAP) THEN 
FLIJ= 1 
ELSE 
FLIJ=O 
END IF 
RETURN 

4 CALL FCHECK(LRI,IYZ,ISET) 
M1=IMEAN 

c~ 

V1=VD 
CALL FCHECK(LRJ.!YZ,ISET) 
M2=IMEAN 
V2=VD 
CALL SFAST(M1,M2,V1.V2,KDMAND) 
IF(KDMAND.LE.TCAP) THEN 
FIJ=1 
ELSE 
FIJ=O 
END IF 
RETURN 
END 

SUBROUTINE FCHECK 
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c 

SUBROUTINE FCHECK(PP,IYZ,ISET) 
DIMENSION IDD(100),VDMAND(300),MEAN(300,300) 
DIMENSION VARS(300.300),MINE(300l,VIRS(300l 
DIMENSION TULOAD(100).TTRAVL( 100) 
INTEGER DMAND,TDMAND,PP,ROUTE,TIHAT,TJHAT,P 
INTEGER VDMAND.MEAN,VARS.MINE,VIRS 
INTEGER TULDAD,TTRAVL,UTIME,TTTIME 
REAL KVD 
COMMON/A4/NB(100),NF(100),NR(100),P 
COMMON/AS/ DMAND(300),TDMAND(100l 
CDMMDN/A6/LI,LJ,LI1,LI2.LJ1.LJ2,LRI,LRJ 
COMMDN/A9/TIHAT(5000),TJHAT(5000),ROUTE(100,10C) 
CDMMON/A10/ALPHA,BATA,ATAH,UTIME,TTTIME 
COMMDN/A11/VD,IMEAN.VVRS,KMP,WVARS,KMON 
COMMDN/A13/TULOAD,TTRAVL 
CDMMDN/A14/MEAN,VARS,MINE,VIRS,VDMAND 
COMMON/A15/IEE.IFF,OELTA,IALGOL.BKAMA 
COMMON/A16/KPRO,GAMA 
IF(KPRO.EQ. 1) ATAH=GAMA 

GO TO (1,2), IYZ 
NN=NR(PP) 
TDMAND(PP)=O 
VD=O 
DO 10 J=3,NN 
K=ROUTE(PP,Jl 

10 VD=VD+VDMAND(K) 
KVD=SQRT(VDl 
KVD=ATAH*KVD 
DO 20 J=3,NN 
K=RDUTE(PP,J) 

20 TDMAND(PP)=TDMAND(PP)+DMAND(K) 
IMEAN=TDMAND(PP) 

C** TOTAL DEMAND OF ROUTE PP CONSIDERING MEAN AND VARIANCE 
C** OF ALL DEMAND POINTS LOCATED ON THIS ROUTE. 

2 

TDMAND(PP)=TDMAND(PP)+KVD 
RETURN 
DO 80 I=ISET.PP 
TDMANO(I)=O 
NN=NR(Il 
VD=O 
DO 90 J=3,NN 
K=ROUTE(I.J) 

90 VD=VD+VDMAND(Kl 
KVD=SQRT(VD) 
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KVD=ATAH*KVD 
DO 100 J=3,NN 
K=ROUTECI.J) 

100 TDMAND(II=TDMAND(I)+DMAND(K) 
TDMAND(IJ=TDMAND(I)+KVD 

80 CONTINUE 

c• 

C** 

c• 

RETURN 
END 

SUBROUTINE SFAST 

SUBROUTINE SFAST(M1.M2,V1,V2,KDMAND1 
COMMON/A10/AlPHA.BATA,ATAH,UTIME.TTTIME 

REAl IV3 
COMMON/A16/KPRO.GAMA 
IF(KPRO.EQ. 1) ATAH=GAMA 
M3=M1+M2 
V3=V1+V2 
IV3=SQRT(V3) 
IV3=ATAH•IV3 
KOMAND=M3+IV3 
RETURN 
END 

SUBROUTINE STCONT 

SUBROUTINE STCONT(IRAS,IRAK,KRAFT.KOMANO) 
DIMENSION MEAN(300,300),VARSC300.300),MINE(300) 
DIMENSION VIRS(300).VDMAND(300),TUlOAD(100),TTRAVL(100) 
INTEGER DMAND,VDMAND,TCAP,VARS,VIRS.UTIME,TTTIME 
INTEGER TULOAD,TTRAVL,TDMAND 
REAL KVD 
COMMON/A5/0MAND(300),TDMAND(100) 
COMMON/A10/ALPHA,BATA.ATAH,UTIME,TTTIME 
COMMDN/A11/VD,IMEAN.VVRS,KMP.WVARS,KMON 
COMMON/A13/TULOAD,TTRAVL 
COMMON/A14/MEAN,VARS,MINE,VIRS,VDMAND 
COMMON/A15/IEE,IFF,DELTA.IALGOL,BKAMA 
COMMON/A16/KPRO,GAMA 
IF(KPRO.EQ. 1) ATAH=GAMA 

C*'" TO EVALUATE THE VARIANCE OF DEMAND 
VDNEW=VD+VDMAND(IRAS) 
KVD=SQRT(VDNEW) 
KVD=ATAH'"KVD 
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C** 

C*"' 

KDMAND=IMEAN+DMAND(IRAS)+KVD 
RETURN 
END 

SUBROUTINE STATS 

DIMENSION MEAN(300,300),VARS(300,300).MINE(300) 
DIMENSION TULOAD( 100). TTRAVL( 100). VIRS( 300) 
DIMENSION VDMAND(300) 
INTEGER TCAP,DMAND,TIHAT,TJHAT,ROUTE,FLI,FLJ,FLIJ,FIJ 
INTEGER TDMAND,P,T,PP,TT.XX,UTIME.TTTIME 
INTEGER VARS,VIRS,VDMAND,TULOAD,TTRAVL,DDT,SST 
REAL KMAND 
COMMON/A2/NPT,NW,TCAP,MNP,NTRY 
COMMON/A3/MSVA(5000).NSAVE(5000).XX(5000) 
COMMON/A4/NB(100),NF(100),NR(100),P 
COMMON/ A5/DMAND ( 300), TDMAND (1 00) 
COMMON/A6/LI,LJ.LI1,LI2.LJ1,LJ2,LRI,LRJ 
COMMON/A7/IBV.IWB 
COMMON/A9/TIHAT(5000), TJHAT(5000), ROUTE( 100, 100) 
COMMON/A10/ALPHA,BATA,ATAH.UTIME.TTTIME 
COMMON/A11/VD,IMEAN,VVRS,KMP,WVARS,KMON 
COMMON/A13/TULOAD.TTRAVL 
COMMON/A14/MEAN.VARS,MINE,VIRS,VDMAND 
COMMON/A15/IEE,IFF,DELTA,IALGOL,BKAMA 
COMMON/A12/DDT.SST,IZAR 
COMMON/A16/KPRO.GAMA 
COMMON/A17/KDMAND,KTULOD,KTTRVL 

IF(KPRO.EQ. 1) THEN 
GO TO (20,2 1 .22).IZAR 

20 WRITE(6,4) 
4 FORMAT(//10X, '---• ,2X, 'ENTER 0 FOR EUCLIDIAN DISTANCE AND 

+1 FOR LINEAR DISTANCE') 
READ( 5. X) IDDT 
CALL INPT(IDDT) 

21 CALL SAVMAT 
GO TO 9 
END IF 

GO TO (30,31,22),IZAR 
30 CALL STINPT 
31 CALL STSAVE 
9 TT=NTRY 
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I 

CALL TSORT(NSAVE,TIHAT,TJHAT.NTRY) 
C*• SET THE TOTAL DEMAND OF EACH ROUTE TO ZERO 

DO 50 I=1,NTRY 
50 MSVA(I)=NSAVE(I) 
22 DO 7 P=1,NW 

TDMAND( P) =0 . 
7 CONTINUE 

T=1 
11 P= 1 

R=3 

PP=P 
ITI=TIHAT(T) 
JTJ=TJHAT(T) 

C*• TO DETERMINE THE DEMAND POINTS OF ITI AND JTJ. 
C** 

C*• 

IF(KPRO.EQ.1) ATAH=GAMA 
KMAND=VDMAND(ITI)+VOMAND(JTJ) 
KMAND=SQRT(KMAND) 
TOMANO(P)=TOMAND(P)+(ATAH*KMAND)+OMAND(ITI)+OMANO(JTJ) 
IF(TDMANO(P).LE.TCAP) THEN 
ROUTE(P.R)=TIHAT(T) 
NB(P)=ROUTE(P,R) 
R=R+1 
ROUTE(P,R)=TJHAT(T) 
NF(P)=ROUTE(P,R) 
NR(P)=R 
END IF 
K=T+1 
IF(TDMANO(P).GT.TCAP) THEN 
NSAVE(K-1)=0 
TDMANO(P)=O 
T=K 
GO TO 11 
END IF 

TO CONSTRUCT A ROUTE 
DO 10 T=K,TT 
NSAVE(T-1)=0 
IYOUTH=1 
CALL INTR(IN,PP,T.IYOUTH) 
IF(IN.EQ.1) GO TO 10 
PP=P 
MNK=MNP-1 
CALL RTCONT(PP,T) 

10 CONTINUE 
IYOUTH=2 
CALL INTR(IN,PP,T,IYOUTH) 
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CALL WWRT(PP) 

RETURN 

END 

SUBROUTINE STCTD(PP,TTOTAL ) 
DIMENSION IDD{100),VDMAND(300).MEAN(300,300) 

DIMENSION TTRAVL( 100),VARS!300.300),MINE(300) 
DIMENSION VIRS(300),TULOAD(100) 
INTEGER TULOAD,TTRAVL,UTIME,TTTIME,VDMAND,MEAN,VARS 
INTEGER MINE,VIRS.DMAND,TDMAND,PP,ROUTE,P. 

INTEGER TIHAT,TJHAT 
COMMON/A4/NB(100),NF( 100),NR(100).P 
COMMON/A5/DMAND(300),TDMAND(100) 
COMMON/A6/LI,LJ,LI1,LI2,LJ1,LJ2,LRI,LRJ 

COMMON/A9/TIHAT(5000),TJHAT(5000),ROUTE(100,100) 
COMMON/A10/ALPHA,BATA,ATAH,UTIME,TTTIME 
COMMON/A11/VD,IMEAN,VVRS,KMP,WVARS,KMON 

COMMON/A13/TULOAO,TTRAVL 
COMMON/A14/MEAN,VARS,MINE,VIRS.VDMAND 

TTOTAL=O. 

IYZ=2 

ISET=1 
CALL PRCHCK(PP,IYZ,ISET) 

DO 10 I=1,PP 
TTOTAL=TTOTAL+TULOAD(I)+TTRAVL(I) 

10 CONTINUE 
RETURN 

END 
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APPENDIX C 

DATA FOR TEST PROBLEMS 1, 2, AND 3 
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TABLE XXIV 

SO NODE PROBLEM 

TEST PROBLEM #l 

i xi Yi J.Li a? 
l. 

i xi Yi J.Li a? 
l. 

1 37 52 7 3 26 27 68 7 2 
2 49 49 30 100 27 30 48 25 9 
3 52 64 16 5 28 43 67 14 4 
4 20 26 9 9 29 58 48 6 4 
5 40 30 21 18 30 58 27 19 40 
6 21 47 15 6 31 37 69 11 2 
7 17 63 19 14 32 38 46 12 4 
8 31 62 23 15 33 46 10 23 11 
9 52 33 11 3 34 61 33 26 27 

10 51 21 5 1 35 62 63 17 6 
11 42 41 19 14 36 63 69 6 1 
12 31 32 29 53 37 32 22 9 2 
13 5 25 23 33 38 45 35 15 14 
14 12 42 21 49 39 59 15 14 4 
15 36 16 10 6 40 5 6 7 3 
16 52 41 15 9 41 10 17 27 81 
17 27 23 3 0 42 21 10 13 3 
18 17 33 41 67 43 5 64 11 2 
19 13 13 9 2 44 30 15 16 28 
20 57 58 28 87 45 39 10 10 11 
21 62 42 8 2 46 32 39 5 1 
22 42 57 8 2 47 25 32 25 25 
23 16 57 16 7 48 25 55 17 8 
24 8 52 10 6 49 48 28 18 13 
25 7 38 28 16 so 56 37 10 3 

Central Depot is at x0 - 30, Yo - 40 

Vehicle Capacity is Q - 160 
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TABLE XXV 

75 NODE PROBLEM 

TEST PROBLEM #2 

i xi Yi J.l.i a? 
l. 

i xi Yi J.l.i a? 
l. 

1 22 22 18 7 44 21 48 17 12 
2 36 26 26 27 45 50 30 21 18 
3 21 45 11 2 46 51 42 27 46 
4 45 35 30 18 47 so 15 19 40 
5 55 20 21 28 48 48 21 20 11 
6 33 34 19 23 49 12 38 5 1 
7 so 50 15 5 50 15 56 22 54 
8 55 45 16 28 51 29 39 12 3 
9 26 59 29 17 52 54 38 19 40 

10 40 66 26 75 53 55 57 22 30 
11 55 65 37 38 54 67 41 16 7 
12 35 51 16 16 55 10 70 7 5 
13 62 35 12 4 56 6 25 26 27 
14 62 57 31 107 57 65 27 14 4 
15 62 24 8 2 58 40 60 21 9 
16 21 36 19 10 59 70 64 24 19 
17 33 44 20 8 60 64 4 13 3 
18 9 56 13 11 61 36 6 15 25 
19 62 48 15 6 62 30 20 18 9 
20 66 14 22 30 63 20 30 11 3 
21 44 13 28 87 64 15 5 28 22 
22 26 13 12 9 65 50 70 9 3 
23 11 28 6 2 66 57 72 37 152 
24 7 43 27 81 67 45 42 30 36 
25 17 64 14 22 68 38 33 10 4 
26 41 46 18 36 69 50 4 8 7 
27 55 34 17 6 70 66 8 11 8 
28 35 16 29 23 71 59 5 3 0 
29 52 26 13 7 72 35 60 1 0 
30 43 26 22 19 73 27 24 6 1 
31 31 76 25 17 74 40 20 10 11 
32 22 53 28 22 75 40 37 20 44 
33 26 29 27 81 
34 50 40 19 10 
35 55 50 10 6 
36 54 10 12 3 
37 60 15 14 4 
38 47 66 24 64 Central Depot is at x0 - 40, Yo - 40 
39 30 60 16 7 
40 30 50 33 30 Vehicle Capacity is Q - 140 
41 12 17 15 9 
42 15 14 11 2 
43 16 19 18 13 
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TABLE XXVI 

50 NODE PROBLEM 

TEST PROBLEM #3 

Demand Mean Demand Mean 
Unload Unload 

i xi Yi J.Li a? Time* i xi Yi J.Li a? Time* l. l. 

1 37 52 7 3 7 26 27 68 7 2 7 
2 49 49 30 100 30 27 30 48 25 9 25 
3 52 64 16 5 16 28 43 67 14 4 14 
4 20 26 9 9 9 29 58 48 6 4 6 
5 40 30 21 18 21 30 58 27 19 40 19 
6 21 47 15 6 15 31 37 69 11 2 11 
7 17 63 19 14 19 32 38 46 12 4 12 
8 31 62 23 15 23 33 46 10 23 11 23 
9 52 33 11 3 11 34 61 33 26 27 26 

10 51 21 5 1 5 35 62 63 17 6 17 
11 42 41 19 14 19 36 63 69 6 1 6 
12 31 32 29 53 29 37 32 22 9 2 9 
13 5 25 23 33 23 38 45 35 15 14 15 
14 12 42 21 49 21 39 59 15 14 4 14 
15 36 16 10 6 10 40 5 6 7 3 7 
16 52 41 15 9 15 41 10 17 27 81 27 
17 27 23 3 0 3 42 21 10 13 3 13 
18 17 33 41 67 41 43 5 64 11 2 11 
19 13 13 9 2 9 44 30 15 16 28 16 
20 57 58 28 87 28 45 39 10 10 11 10 
21 62 42 8 2 8 46 32 39 5 1 5 
22 42 57 8 2 8 47 25 32 25 25 25 
23 16 57 16 7 16 48 25 55 17 8 17 
24 8 52 10 6 10 49 48 28 18 13 18 
25 7 38 28 16 28 so 56 37 10 3 10 

Central Depot is at x0 - 30, Yo - 40 

Vehicle Capacity is Q - 160 

*Unload time is poisson distributed (mean - variance) 



0 19 28 
36 17 12 
'l 41 27 
40 38 14 
53 39 40 
34 

!9 0 17 
43 17 28 
28 35 ll 
42 23 10 
70 56 56 
32 

28 17 0 
36 15 32 
17 20 15 
31 30 16 
76 63 60 
19 

42 26 21 
54 33 48 
12 31 17 
47 21 30 
92 78 77 
35 

23 40 47 
40 34 18 
61 56 48 
48 58 35 
32 19 22 
48 

, 0 
.I.~ 29 28 
20 :.6 14 
42 33 35 
2.; 49 22 
53 42 36 
23 

16 23 36 
50 :9 24 
48 52 30 
53 35 23 
55 41 4 .. 

• I 
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TABLE XXVII 

50 NODE PROBLEM 

TEST PROBLEM 1fo3 

MEAN TRAVEL TIME 

42 23 19 
37 24 32 
29 33 30 
43 41 50 
44 32 40 

26 40 29 
53 35 46 
28 37 42 
54 39 35 
44 48 53 

21 47 28 
63 48 45 
43 52 55 
49 26 25 
58 49 51 

0 62 46 
76 57 63 
47 57 65 
68 41 15 
59 67 69 

62 0 27 
21 24 25 
40 37 24 
39 52 70 
52 20 32 

46 27 0 
45 39 20 
46 49 43 
28 28 50 
61 24 27 

45 28 33 
35 15 44 
16 19 22 
56 53 55 
31 42 52 
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16 34 29 30 
29 23 20 41 
36 12 38 37 
55 24 21 48 

c: 14 21 28 "' 

23 30 16 32 
25 39 36 57 
25 12 22 28 
40 39 25 54 
19 30 17 34 

36 44 29 22 
13 43 45 64 
37 25 25 13 
32 41 20 45 
26 38 32 28 

45 45 28 40 
30 60 59 80 
33 35 14 23 
17 58 38 62 
41 53 37 46 

28 47 48 42 
45 12 12 20 
54 31 59 55 
75 18 34 51 
24 12 38 36 

33 51 42 17 
22 20 30 41 
51 27 47 33 
57 16 11 32 
17 21 37 12 

0 22 24 43 
40 32 20 44 
29 13 38 47 
59 35 35 62 
19 21 13 42 
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TABLE XXVII (continued) 

34 30 44 45 47 51 22 0 19 58 
67 42 43 50 28 63 52 52 38 63 
51 62 33 10 20 35 16 26 34 55 
68 28 35 75 66 56 58 55 50 79 
72 58 66 17 62 71 36 41 16 59 
59 

29 16 29 28 48 42 24 19 0 45 
57 31 38 57 36 58 38 50 41 65 
34 1:7 17 21 33 43 11 19 18 39 
56 14 23 67 53 40 42 51 39 68 
~7 62 66 34 59 66 30 39 14 48 
45 

30 32 22 40 42 17 43 58 45 0 
" i .... 18 28 60 52 31 12 35 44 55 
33 19 34 54 60 57 54 34 45 22 
13 4'9 25 31 13 40. 48 30 11 26 
68 56 49 70 37 34 28 35 44 10 

9 

36 43 36 54 40 20 50 67 ... ; 
::;), 17 

0 29 30 sa 56 21 27 31 46 49 
47 31 47 63 66 59 66 44 59 36 
14 62 36 17 21 55 62 25 21 14 
61 52 41 78 29 22 34 36 54 12 
23 

17 17 15 33 34 16 29 42 31 18 
29 0 20 51 39 33 14 31 34 51 
30 27 22 39 45 45 40 19 34 23 
28 37 10 40 .,-•' 38 44 28 11 40 
64 50 47 55 37 40 15 26 29 20 
20 

12 28 32 48 18 14 24 43 38 28 
30 20 0 35 28 23 30 14 19 34 
47 42 35 37 39 32 46 22 47 40 
35 47 21 34 39 55 61 15 20 42 
47 33 31 52 23 31 11 :a 31 23 
33 

37 53 63 76 21 45 35 50 57 60 
58 51 35 0 25 41 62 29 20 20 
76 74 61 43 35 18 60 43 70 72 
66 68 49 55 70 85 90 35 52 68 
25 14 29 49 35 47 39 28 46 54 
65 
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TABLE XXVII (continued) 

24 35 48 57 24 39 15 28 36 52 
56 39 29 25 0 45 51 32 15 37 
60 62 43 21 15 10 39 25 50 58 
61 47 34 59 62 68 72 36 43 68 
47 33 42 30 41 53 27 22 25 49 
56 

32 46 45 63 25 20 44 63 58 31 
21 33 23 41 45 0 38 16 33 30 

59 47 . 52 57 57 ~6 "66 42 64 49 ., ... 
..J.:. 66 39 16 39 67 74 , , 28 30 ..... 
42 34 22 71 10 11 3i 26 51 23 
37 

29 25 13 30 45 22 40 52 38 12 
27 14 30 62 51 38 0 39 46 60 
24 15 25 50 57 57 47 30 36 14 
21 41 20 40 17 31 39 36 14 35 
73 61 55 65 43 43 27 37 39 19 

9 

23 39 43 60 12 20 32 52 50 35 
31 31 14 29 32 16 39 0 19 23 
58 50 47 45 44 32 56 33 59 50 
40 59 33 30 45 66 73 9 28 42 
36 24 20 58 13 24 23 14 41 28 
41 

20 36 45 59 12 30 20 38 41 44 
46 34 19 20 15 33 46 19 0 27 
59 58 44 31 28 , -

-b 46 26 54 55 
52 52 32 47 55 67 73· 25 36 57 
38 23 31 42 29 41 22 12 31 40 
50 

41 57 64 80 20 41 44 63 65 =c:: ...... 
49 51 34 20 37 30 60 23 27 0 
78 71 66 55 50 33 71 49 77 71 
59 76 52 42 65 87 93 28 49 58 
15 a 13 64 23 34 41 29 55 48 
62 

41 28 17 12 61 42 48 51 34 33 
47 30 47 76 60 59 24 58 59 78 

0 :3 21 52 62 67 40 37 22 15 
40 30 29 62 33 11 18 55 34 54 
91 77 74 65 63 64 40 52 41 40 
28 
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TABLE XXVII (continued) 

41 35 20 31 56 33 52 62 47 19 
31 27 42 74 62 47 15 50 58 71 
23 0 32 61 68 69 55 42 40 ll 
21 47 32 45 13 28 35 46 25 35 
83 72 65 76 53 50 39 48 50 26 
12 

27 ll 15 17 48 35 30 33 17 34 
47 22 35 61 43 52 25 47 44 66 
21 32 0 34 44 50 25 20 15 25 
43 18 17 59 39 28 32 46 29 57 
78 64 64 48 55 59 27 39 23 38 
32 

29 28 43 47 40 46 16 10 21 54 
63 39 37 43 . 21 57 50 45 31 55 
52 61 34 0 14 28 21 22 37 54 
64 32 32 69 64 58 61 49 46 75 
65 51 59 18 56 65 31 34 14 54 
56 
33 37 52 57 37 49 19 20 33 60 
66 45 39 35 15 57 57 44 28 50 
62 68 44 14 0 19 32 29 48 63 
70 43 39 70 70 69 72 49 51 78 
5S 45 55 17 54 65 35 34 23 58 
63 

30 42 55 65 24 43 22 35 43 57 
59 45 32 18 10 46 57 32 16 33 
67 69 50 28 19 0 46 33 58 65 
"":: 0- 54 41 60 68 75 79 38 48 71 
41 28 40 34 42 54 33 25 32 53 
61 

36 25 3i 33 54 51 29 16 11 54 
66 40 46 60 39 66 47 56 46 71 
40 -- .,- 21 32 46 0 2i 22 47 ...... .. !) 
'"A 
c~ .!.5 32 76 61 45 46 58 48 77 
81 67 72 29 66 74 38 46 18 57 
::-: --
12 . 12 25 35 31 27 13 26 19 3~ 
44 19 22 43 25 42 30 33 26 49 
37 42 20 22 29 33 27 0 30 36 
44 29 12 52 44 45 49 34 26 55 
61 47 49 38 42 49 , 4 ·- 23 13 35 
36 
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TABLE XXVII (continued) 

38 22 25 14 59 47 38 34 18 45 
59 34 47 70 50 64 36 59 54 77 
22 40 15 37 48 sa 22 30 0 32 
54 10 28 71 49 26 27 sa 41 68 
89 74 76 4a 67 71 39 50 28 50 
42 

37 28 13 23 55 .33 47 55 39 22 
36 23 40 72 sa 49 14 50 55 71 
15 11 25 54 63 65 47 36 32 0 
28 38 27 50 21 21 28 47 25 42 
84 71 66 69 54 53 36 47 43 29 
16 

40 42 31 47 48 24 53 68 56 13 
14 28 35 66 61 32 21 40 52 59 
40 21 43 64 70 65 64 44 54 28 

0 59 36 27 11 46 53 34 21 17 
71 61 51 80 39 33 37 43 54 15 
15 

3e 23 30 21 58 49 35 28 14 49 
62 37 47 68 47 66 41 59 52 76 
30 47 18 32 43 54 15 29 10 38 
59 0 30 74 54 33 34 59 44 72 
57 73 76 41 68 73 39 49 25 53 
47 

14 10 16 30 35 22 23 35 23 25 
36 10 21 49 34 39 20 33 32 52 
29 32 17 32 39 41 32 12 28 27 

36 30 0 47 34 38 43 32 18 47 
65 51 50 48 41 46 14 25 21 27 
27 

43 54 49 68 39 28 56 75 67 31 
17 40 34 55 59 16 40 30 47 42 
62 45 59 69 70 60 76 52 71 50 
27 74 47 0 35 69 76 25 33 19 
52 47 32 84 23 11 41 39 62 24 
37 

41 39 26 41 52 28 53 66 53 13 
21 27 39 70 62 39 17 45 55 65 
33 13 39 64 70 68 61 44 49 21 
11 54 34 35 0 39 46 40 22 24 
77 67 58 79 46 41 38 46 53 19 
10 
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TABLE XXVII (continued) 

so 35 25 15 70 so 55 56 40 40 
55 38 55 as 68 67 31 66 67 87 
11 28 28 58 69 75 45 45 26 21 
46 33 38 69 39 0 10 63 42 60 
99 86 83 71 72 72 49 60 48 48 
35 

55 40 32 17 75 57 59 58 42 48 
62 44 61 90 72 74 39 73 73 93 
18 35 32 61 72 79 46 49 27 28 
53 34 43 76 46 10 0 70 49 67 

OS 92 89 72 78 79 54 6"6 51 55 
42 

24 39 41 58 18 16 35 55 51 30 
25 28 15 35 36 11 36 9 25 28 
55 46 46 49 49 38 58 34 58 47 
34 59 32 25 40 63 70 0 25 36 
40 30 22 62 11 19 23 17 43 23 
36 
.,, .... 25 20 38 34 11 35 50 39 11 
21 11 20 52 43 28 14 28 36 49 
34 25 29 46 51 48 48 26 41 25 
21 44 18 33 22 42 49 25 0 32 
62 so 44 62 32 33 19 27 36 12 
16 

48 54 45 62 51 32 62 79 68 26 
14 40 42 68 68 30 35 42 57 58 
54 35 57 75 78 71 77 55 68 42 
17 72 47 19 24 60 67 36 32 0 
68 61 48 90 37 27 46 48 65 23 
29 

53 70 76 92 32 53 55 72 77 68 
61 64 47 25 47 42 73 36 38 15 
91 83 78 65 58 41 81 61 89 84 
71 87 65 52 77 99 105 40 62 68 

0 , ... ... , 22 72 34 '4 54 42 66 60 
74 

39 56 63 78 19 42 41 58 62 56 
52 50 33 14 33 34 61 24 23 8 
77 72 64 51 45 28 67 47 74 71 
61 73 51 47 67 86 92 30 50 61 
17 0 18 59 27 38 40 28 52 50 
63 
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. TABLE XXVII (continued) 

40 56 60 77 22 36 47 66 66 49 
41 4:1 31 29 42 22 55 20 31 13 
74 65 64 59 55 40 72 49 i6 66 
51 76 so 32 58 83 89 22 44 48 
22 18 0 70 15 24 4C 29 57 41 
56 

44 44 sa 59 52 61 31 17 34 70 
78 55 52 49 30 71 65 58 42 64 
65 76 48 18 17 34 29 38 48 69 
80 41 48 84 79 71 72 62 62 90 
72 59 70 0 69 79 47 48 29 70 
72 

32 48 49 67 20 24 42 62 59 37 
29 37 23 35 41 10 43 13 29 23 
63 53 55 56 54 42 66 42 67 54 
39 68 41 23 46 72 78 11 32 37 
34 27 15 69 0 15 31 24 51 29 
43 

40 53 51 69 32 27 52 71 66 34 

22 40 31 47 53 11 43 24 41 34 
64 50 59 65 65 54 74 49 71 53 
33 73 46 11 41 72 79 19 33 27 
44 38 24 79 15 0 38 34 59 27 
41 

5 19 26 41 24 17 19 36 30 28 
34 15 11 39 27 31 27 23 22 41 
-10 39 27 31 35 33 38 14 39 36 
37 39 14 41 38 49 54 23 19 46 
54 40 40 47 31 38 c 14 23 26 
31 

14 30 38 53 12 21 21 41 39 35 
36 26 10 28 22 26 37 14 12 29 
52 48 39 34 34 25 46 23 50 47 
43 49 25 39 46 60 66 17 27 48 
42 28 29 48 24 34 14 0 30 31 
40 

21 17 32 37 38 37 13 16 14 44 
54 29 31 46 . 25 51 39 41 31 55 
41 50 23 14 23 32 18 13 28 43 
54 25 21 62 53 48 51 43 36 65 
66 52 57 29 51 59 23 30 0 45 
46 
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TABLE XXVII (continued) 

28 34 28 46 36 12 42 59 48 10 
12 20 23 54 49 23 19 28 40 48 
40 26 38 54 58 53 57 35 50 29 
15 53 2i 24 19 48 55 23 12 23 
60 50 41 70 29 27 26 31 45 0 
17 

34 32 19 35 48 23 46 59 45 9 
23 . 20 33 65 56 37 9 41 50 62 
28 12 32 56 63 61 53 36 42 16 
15 47 27 37 10 35 42 36 16 29 
74 63 56 72 43 41 31 40 46 17 

0 
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TABLE XXVI II 

50 NODE PROBLEM 

TEST PROBLEM ffo3 

VARIANCE TRAVEL TIME 

0 0 3 10 2 1 0 2 2 0 
6 2 2 3 3 2 4 5 3 7 

l 4 5 7 3 i 7 2 "' 1 ' 
1 2 0 3 0 9 5 4 2 1 

2 4 6 2 4 7 0 0 5 4 

0 

0 0 2 3 2 1 2 0 1 2 

1 0 ... 0 8 5 3 7 2 4 
" 2 8 
... 3 4 4 4 2 2 0 
~ 

9 1 2 5 8 4 5 8 5 7 

7 8 9 8 1 8 0 1 . 1 J. 

i 

3 2 0 l 9 3 7 6 5 5 

7 0 6 9 2 11 0 0 9 1 

0 4 2 4 8 6 6 1 4 2 
1 5 0 4 2 4 6 6 3 2 

10 10 0 13 0 6 4 8 5 5 
0 

10 3 1 0 1 5 3 3 3 3 

13 2 8 3 5 1 2 14 9 11 

1 0 2 2 5 1 2 8 1 1 

5 4 0 10 6 2 2 5 0 11 ., 

3 10 9 5 15 10 0 8 2 0 
7 

2 2 9 1 0 5 1 10 5 1 
5 3 3 4 5 2 8 0 0 0 
0 10 2 0 7 1 11 2 12 9 

11 12 4 6 1 7 2 0 0 10 
0 3 2 7 0 7 0 0 8 3 
9 

1 
, 3 5 5 0 0 10 10 2 .. 

4 0 1 6 5 0 5 0 4 1 
9 1 7 0 4 4 12 2 8 3 
2 6 2 6 2 8 0 2 0 2 
8 9 l 12 2 5 0 0 6 0 
3 

0 2 7 3 1 0 0 2 4 7 

2 2 
, 3 1 9 9 7 2 6 
.I. 

3 2 4 2 4 0 2 2 8 9 
a 7 5 5 4 7 4 5 3 9 

8 6 11 4 5 0 0 2 2 10 
5 



346 

TABLE XXVIII (continued) 

2 0 6 3 10 10 2 0 4 3 
7 1 1 11 2 13 9 12 3 6 

12 3 1 0 4 0 2 1 5 12 
4 4 0 11 3 2 3 4 9 16 

10 2 4 1 6 13 6 3 0 9 
9 

2 1 5 3 5 10 4 4 0 2 
12 7 8 9 5 3 2 3 5 10 

0 8 0 4 5 10 2 0 0 8 
10 2 5 11 11 9 0 12 5 14 
10 11 13 3 5 5 6 7 3 10 

2 

0 2 5 3 1 2 7 3 2 0 
4 0 1 13 8 0 0 0 1 13 
7 1 0 9 13 3 1 3 0 2 
0 1 2 4 2 8 2 1 1 0 

16 4 .a 12 5 3 0 7 6 1 
0 

6 1 7 13 5 4 2 7 12 4 
0 6 6 4 11 2 0 5 4 4 
5 0 4 12 14 14 14 9 3 2 
2 0 3 2 3 7 7 3 0 2 
2 7 1 11 5 1 l 6 12 2 
0 
2 0 0 2 3 0 2 l 7 0 
6 0 4 4 2 6 1 1 4 12 
3 3 1 4 10 10 3 2 6 5 
0 5 0 2 3 8 2 3 0 2 

14 3 6 5 1 3 0 4 1 2 
4 

2 2 6 8 3 1 1 1 8 1 
6 4 0 6 1 3 6 1 3 1 
0 6 7 5 7 3 5 5 8 5 
4 ... 4 8 9 8 1 0 4 1 I 

8 3 4 1 2 7 1 0 6 2 
5 

3 0 9 3 4 6 3 11 9 13 
4 4 6 0 4 8 9 3 0 4 
4 14 4 0 2 1 !3 3 4 4 
7 2 2 1 6 10 19 6 9 6 
6 ., 6 7 2 

, 
8 6 7 1 ... ... 

l 
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TABLE XXVIII (continued) 

3 8 2 5 5 5 1 2 5 6 
11 2 1 4 0 2 5 :z 0 5 

1 14 7 2 2 1 0 4 3 3 
5 11 1 13 1 12 7 3 1 14 
3 0 9 0 10 2 5 3 3 9 
0 

2 5 11 1 2 0 9 13 3 0 
2 6 3 8 2 0 0 2 0 2 

11 1 0 7 4 0 0 5 14 12 
5 16 7 1 2 1 10 1 5 7 
5 4 4 7 1 1 6 4 4 0 
6 

4 3 0 2 8 5 9 9 2 0 
0 1 6 9 5 0 0 0 9 13 
0 0 3 11 9 13 3 1 3 3 
0 4 2 8 0 1 1 8 2 2 
1 2 11 15 9 7 5 5 3 4 
1 

5 7 0 14 0 0 7 12 3 0 
5 1 1 3 2 2 0 0 1 3 
8 11 1 7 7 5 2 1 3 9 
2 0 4 4 7 15 17 0 6 9 
8 3 2 7 0 5 5 2 9 0 
8 

3 2 9 9 0 4 2 3 5 1 
4 4 3 0 0 0 9 1 0 5 

13 8 1 7 5 3 6 1 4 1 
12 8 0 9 10 12 9 3 1 ::: 

"' 6 1 1 8 4 1 2 1 7 6 
3 

7 4 1 11 0 , 
6 6 10 13 

4 12 1 4 5 2 13 3 5 0 
7 , , 11 10 8 7 1 6 7 5 -· 

12 6 9 , 0 1 5 2 2 7 ... ~ 

3 0 2 12 0 
12 

7 5 2 6 6 

1 2 0 1 0 s 3 12 0 ... 
I 

5 3 0 4 1 11 0 8 13 7 
0 4 0 6 7 3 7 6 4 1 
4 1 1 0 0 1 3 13 6 0 
4 7 8 13 9 14 1 1 1 ., 
0 
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TABLE XXVIII (continued) 

~ 8 4 0 10 1 :2 3 8 ~ 

~ 

0 3 
,. 14 14 1 0 11 8 11 0 

4 0 :2 0 1 11 11 6 1 0 
4 :2 1 3 2 4 5 8 2 4 

15 11 13 17 1 1 2 1 1 0 
0 

5 2 2 2 2 7 4 1 0 0 
4 , 7 4 7 0 . 3 1 1 11 ... 
0 2 0 1 7 5 5 2 0 3 
..... 0 ~ 13 7 3 6 3 1 1 '!' ~ 

10 4 8 9 7 14 0 0 4 4 
7 

7 3 4 2 0 0 2 0 4 9 
12 4 5 0 2 7 11 7 7 10 

6 0 1 0 1 4 :2 2 0 12 
6 3 2 4 14 0 5 5 3 12 
5 1 2 3 10 1 4 0 1 6 
0 

3 4 a 5 7 4 4 4 5 13 
14 10 7 2 2 4 9 7 5 8 

7 1 7 1 0 4 5 2 7 14 
2 10 3 14 15 5 16 2 4 3 
4 2 2 3 3 13 7 7 5 2 
3 

7 4 6 1 1 4 0 0 10 3 
14 10 3 1 1 0 13 5 3 7 

3 11 5 4 4 0 5 7 2 15 
7 5 1 3 14 14 8 6 0 12 
8 6 4 4 3 10 1 3 3 10 

13 

i 4 6 2 11 12 ·2 2 2 1 
14 3 5 13 0 0 3 2 6 1 

7 11 5 2 5 5 0 2 1 6 
8 0 6 12 12 10 8 2 2 5 

19 11 0 5 6 9 9 3 3 10 
11 

2 2 1 8 2 2 2 1 0 3 
9 2 5 3 4 5 1 1 1 6 
6 6 2 2 2 7 2 0 6 6 
0 2 2 5 7 9 4 6 1 9 
5 11 3 8 5 10 0 2 3 7 
2 
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TABLE XXVIII (continued) 

2 2 4 1 12 8 8 5 0 0 
3 6 8 4 3 14 3 3 4 7 
4 1 0 0 7 2 1 6 0 4 
7 1 6 11 1 4 4 13 2 3 
1 1 14 11 11 '13 7 3 1 7 
0 

1 0 2 1 9 3 9 12 8 2 
2 5 5 4 3 12 3 9 1 5 
1 0 3 12 14 15 6 6 4 0 
5 9 4 0 1 3 5 2 4 4 

18 12 3 16 10 8 7 10 8 1 
2 

1 9 1 5 11 2 8 4 10 0 
2 0 4 7 5 5 0 2 12 12 
4 4 9 6 2 7 8 0 7 5 
0 0 0 3 1 3 8 1 2 3 
7 12 3 15 6 3 3 6 7 1 
2 

2 1 5 4 12 6 7 4 2 1 
0 5 7 2 11 16 4 0 8 6 
1 2 0 3 10 5 0 2 1 9 
0 0 2 8 0 2 7 0 6 ., .. 
8 12 12 2 9 6 1 9 6 3 
6 

0 2 0 0 4 2 5 0 5 2 
3 0 4 2 1 7 2 4 0 9 
1 1 1 2 3 1 6 2 6 4 
0 2 0 11 3 2 4 3 1 7 

10 12 0 0 8 6 0 3 4 4 
1 

3 5 4 10 6 6 5 11 11 4 
2 2 8 1 13 1 8 4 9 1 
0 3 13 4 14 3 12 5 11 0 

·. 3 8 11 0 8 0 10 1 4 0 
10 7 4 13 4 2 4 3 0 5 

0 

0 8 2 6 1 2 4 3 11 2 
3 3 9 6 1 2 0 7 10 9 
0 2 7 14 15 14 12 7 1 1 
1 0 3 8 0 3 11 2 4 1 
7 14 6 11 3 7 3 6 7 0 
2 
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TABLE XXVIII (continued) 

9 4 4 2 7 8 7 2 9 8 7 8 8 10 12 1 1 15 12 1 1 4 3 0 5 14 10 9 4 3 3 2 2 0 3 0 1 10 2 3 20 12 13 7 0 13 5 9 3 0 2 

5 5 6 2 2 0 4 3 0 2 7 2 1 19 7 10 1 17 9 5 3 5 6 5 16 8 8 4 4 5 8 7 4 10 11 1 0 12 3 9 
2 17 1 . 14 0 
3 

15 12 1 1 12 

4 8 6 5 0 2 5 4 12 , 
3 3 0 6 3 1 8 0 3 2 13 8 3 5 2 6 2 6 13 2 1 0 3 1 2 10 12 0 1 8 1 0 0 2 1 1 4 1 3 4 8 

2 5 3 9 0 0 3 9 5 1 0 0 4 9 1 5 2 6 1 2 6 2 , 
3 4 0 2 1 2 4 ... 

2 6 1 4 4 2 3 1 0 2 c: 8 1 8 6 1 3 2 3 1 1 

, 
7 2 11 10 2 9 16 14 0 . ... 2 1 6 14 7 2 9 5 7 4 

0 4 1 12 3 12 5 9 3 4 
3 3 7 0 1 3 9 8 2 0 0 15 6 0 7 0 4 9 8 4 5 

2 7 10 3 0 8 8 10 10 16 2 14 8 6 3 5 1 a 6 3 4 15 10 5 4 8 19 5 1 18 ~ 8 10 10 7 20 2 1 5 0 I 

0 1 1 1 6 4 11 5 11 1 15 

4 8 10 10 3 9 6 2 11 4 
7 3 3 2 0 4 2 3 1 0 7 11 4 1 2 6 11 11 1 12 12 12 , ... 7 14 12 17 0 8 15 ... .:: , 

0 0 12 3 1 0 4 0 1 ... 
2.5 
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TABLE XXVIII (continued) 

6 9 0 9 2 1 11 4 13 8 
1 6 4 6 9 4 11 2 1 2 
8 13 8 2 2 4 0 3 14 3 
3 12 0 4 6 13 1 0 1 6 
1 0 0 16 1 3 8 3 13 7 
7 

2 8 13 5 7 12 4 1 3 12 
11 5 1 7 0 7 15 7 8 12 
13 17 9 3 3 4 5 8 11 16 
15 2 0 13 11 7 14 2 8 0 

1 12 16 0 7 6 10 11 3 16 .. 
7 

4 1 0 15 0 2 I 5 6 5 5 
5 1 2 2 10 1 9 0 4 0 
9 1 7 10 3 3 6 5 11 10 
6 9 a 4 3 0 0 1 6 7 
6 3 1 7 0 1 0 2 8 3 
1 

7 8 6 10 7 5 0 13 5 3 

1 3 7 1 2 1 7 5 1 7 

14 1 14 1 13 10 9 10 13 8 

3 6 6 2 
., 13 15 1 1 0 
I 

4 l 3 6 ·1 0 1 3 12 5 

9 

0 0 4 0 0 0 0 6 6 0 

1 0 1 8 5 6 5 5 2 5 

1 2 0 4 7 1 9 0 7 7 

3 1 0 4 3 5 l2 4 3 4 
~ , 0 8 10 0 1 0 3 4 2 ·-4 

0 1 8 8 0 0 ~ 3 7 7 

6 4 0 6 3 4 5 2 1 2 

1 1 0 0 7 3 3 2 3 10 

6 9 3 3 6 Q 1 1 2 9 
"' 

5 4 3 11 2 3 3 0 4 2 

5 

5 1 5 2 8 6 2 0 3 6 

12 l 6 7 3 4 3 9 7 6 

1 1 4 1 5 . 3 3 3 1 8 
., 6 4 0 7 3 1 3 3 8 
' 

11 0 13 3 8 12 4 4 0 4 

l 
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TABLE XXVIII (continued) 

4 1 5 0 3 0 10 9 !0 1 
2 2 2 1 9 0 4 0 6 6 
7 0 4 6 2 10 10 7 7 1 
1 3 4 5 0 0 12 4 1 4 

l l 7 16 3 5 2 2 4 0 
0 

0 7 0 7 9 3 5 9 2 0 
0 4 5 1 0 6 1 8 3 12 
0 0 7 0 3 13 ll 2 0 2 
2 6 1 0 2 2 3 8 l 5 

15 15 7 7 1 9 4 c: 1 0 ... 
0 
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