SYNTHETIC METHODOLOGY, STEREOCHEMISTRY, AND ANTIARRHYTHMIC ACTIVITY OF SELECTED 3,7-DIHETERABICYCLO[3.3.1]NONANES
 AND DERIVATIVES

by
GARY STEVEN SMITH
Bachelor of Science
Southwestern Oklahoma State Unıversity
Weatherford, Oklahoma
1982

Submitted to the Faculty of the Graduate College
of the Oklahoma State University
in partial fulfillment of the requirements
for the Degree of
DOCTOR OF PHILOSOPHY
December, 1986

Thesis Approved:

ACRNOWLEDGMENTS

For his support assistance and patience in this project, I would like to acknowledge Dr. K. D. Berlin, who will always have my deepest respect and appreciation. I also would like to express my appreciation to Drs. E. M. Holt and D. van der Helm, as well as their respective assistants, for the crystallographic work; as well as to Dr. B. J. Scherlag for the biological assays. Special thanks are in order for Stan Sigle, Norman Perriera and Steve McGowan for technical assistance. Financial support in this project from the National Heart, Lung and Blood Institute (National Institutes of Health, DHHS) and the Chemıstry Department of Oklahoma State Unıversity is also acknowledged.

I would also like to express appreciation to the faculty of the Chemistry and Blochemistry Departments, particularly Drs. W. T. Ford, E. J. Eisenbraun, R.A. Bunce, R. K. Gholson, who have made my graduate work an enlightening and enjoyable experience. I would like to thank my fellow students and co-workers (Tım Fakler, Jonathan Gale, Satish Mulekar, Shashank Otıv, Vıcki Pruıtt, Shırish Rajadhyaksha, Lyle Spruce, Dan Thompson and Stan Zızman) for therr companionship during the last four years and wish them the best of luck in the future. Joe and Sarah Novak are thanked for their support and patience over and above what one normally expects from friends. Bobby Sumpter is acknowledged for some of the worst coffee ever known to be brewed in a drip coffeemaker.

I wish to thank my mother, father and stepmother for their encouragement and moral support while pursuing my undergraduate and
graduate education. Perhaps most of all, I wish to thank Soon M. Han, who, by her love, understanding, and constant encouragement, has made the sunlight so much more brilliant and the darkness so much less fearsome.

TABLE OF CONTENTS
Chapter Page
I. HISTORICAL. 1
Synthetic Routes 3
Stereochemical and Conformational Aspects. 13
Analgesic Activity 30
Heart Disease and Antarrhythmic Agents 31
II. RESULTS AND DISCUSSION. 48
Synthetic Procedures 51
Mechanistic Considerations 66
Structural and Conformational Analysis 76
Single Crystal X-ray Diffraction Crystallography 109
Antiarrhythmic Properties. 128
Suggestions for Future Work. 138
III. EXPERIMENTAL SECTION. 140
General Information. 140
3,3,5,5-Tetradeutero-4-selenanone (16h) 134
7-Benzyl-2,4-bis(2-chlorophenyl)-3,7-diazabıcy-clo[3.3.1]nonan-9-ones (17d, 18d):Method A143
Method B: Reaction performed at RT 144
Method C: Reaction performed in boiling ethanol. 145
Attempted Preparation of 7-Benzyl-2,4-diphenyl-3,7-diazabicyclo[3.3.1]nonan-9-ones 17e, 18e
By Method B 147
By Method C 147
3,7-Dıbenzyl-3,7-diazabıcyclo[3.3.1]nonan-9-one (28d):Method A148
Method B 149
3,7-Dibenzyl-3,7-diazabicyclo[3.3.1]nonane Hydroperchlorate (29d) 150
7-Benzyl-2,4-bis(2-chlorophenyl)-3,7-diazabıcy- clo[3.3.1]nonane 30b 151
7-Benzyl-2,4-bis(2-chlorophenyl)-3,7-diazabicy- clo[3.3.1]nonane 31b 153
7-Benzyl-2,4-bis(2-chlorophenyl)-3,7-diazabicy- clo[3.3.1]nonane Hydroperchlorate 32b. 154
7-Benzyl-2,4-bis(2-chlorophenyl)-3,7-dıazabıcy- clo[3.3.1]nonane Hydroperchlorate 33b. 155
Chapter Page
3,7-Dibenzyl-3,7-diazabıcyclo[3.3.1]nonan- 9,9-diol Hydroperchlorate (70d) 156
3,7-Dıbenzyl-9,9-dimethoxy-3,7-diazabıcyclo[3.3.1]- nonane Hydroperchlorate (102a) 156
3-Thıa-7-benzyl-9,9-dimethoxy-3,7-diazabicyclo[3.3.1]-nonane Hydroperchlorate (102b)157
7-Benzyl-3-thia-7-azabicyclo[3.3.1]nonan-9-one (27a),3,6-dibenzylhexahydro-8a-methoxy-5H-4a,8-(methano-thiomethano) -2 H -pyrido[3,4-e]-1,3-oxazine (103a),and $2,4,10,12-$ Tetrabenzyl-2,4,10,12-tetraaza-15-thia-dispıro[5.1.5.3]hexadecan-7-one (104a)
Method A: 2.0 Equivalents Benzylamine 159
Method B: Dropwise Addition 160
Method C: 1.0 Equivalents Benzylamıne 161
Analytical Data 162
7-Benzyl-3-selena-7-azabicyclo[3.3.1]nonan-9-one (27b),3,6-dibenzylhexahydro-8a-methoxy-5H-4a,8-(methano-selenomethano) $-2 \mathrm{H}-\mathrm{pyr}$ do $3,4-\mathrm{e}]-1, \overline{3}$-oxazine (103b),and 2,4,10,12-TeErabenzyl-2,4,10,12-tetraaza-15-selenadi-spiro[5.1.5.3]hexadecan-7-one (104b)
Method A: 1.4 Equivalents Benzylamıne 163
Method B: 2.0 Equivalents Benzylamine 165
Method C: 1.0 Equivalents Benzylamine 166
Analytical Data 167
3,6-Dibenzylhexahydro-8a-methoxy-5H-4a,8-(methano- thiomethano)-2H-pyrido[3,4-e]-1,3-oxazine dihydroperchlorate (103c). 168Attempted Preparation of 3,7-Dibenzyl-2,4-diphenyl-3,7-diazabicyclo[3.3.1]nonan-9-one (107) 169
7-Benzyl-3-thia-7-azabicyclo[3.3.1]nonan-9-oneoxime (108).170
Tetrahydrothiapyran-4-one oxime (109a) 171
1,3,5-Tribenzylhexahydro-1,3,5-triazine (110a) 164
BIBLIOGRAPHY 273

LIST OF TABLES

Table Page
I. Selected Antiarrhythmic Agents in Clinical Use. 34
II. Properties of Selected Antiarrhythmic Agents in Clinical Use. 35
III. Antiarrhythmıc properties of $N^{\prime} N^{\prime}-D i a l k y l b i s p i d i n e s$ 38
IV. Antiarrhythmic Properties of Benzamides 80-84 39
V. Antiarrhythmic Properties of Bispidines 34 c and 86 41
VI. Antiathmic Properties of $N-A l k y l-N^{\prime}-b e n z y l b i s p ı d i n e s$ 42
VII. Antiarrhythmic Properties of 9-Substituted Bispidines 43
VIII. Antiarrhythmic Properties of 29a. 44
IX. Antiarrhythmic Properties of 3-Selena-7-aza- bicyclo[3.3.1]nonane Hydroperchlorates. 46
X. ${ }^{13} \mathrm{C}$ NMR Chemical Shifts of Isomeric 2,4-Diaryl- 7-hetera-3-azabicyclo[3.3.1]nonan-9-ones 82
XI. ${ }^{13}$ C NMR Chemical Shifts of Isomeric 2,4-Dıaryl- 7-hetera-3-azabicylo[3.3.1]nonanes. 83
XII. ${ }^{13}$ C NMR Chemical Shifts of 2,4-Dıaryl-7-hetera- 3-azabicyclo[3.3.]nonane Hydroperchlorates. 84
XIII. ${ }^{15} \mathrm{~N}$ NMR Chemical Shifts of Isomeric 3-hetera-7- azabicyclo[3.3.1]nonane derıvatives 86
XIV. I_{H} NMR Chemical Shifts for $N-H$ in selected 3-Hetera- 7-azabicyclo[3.3.1]nonane Derıvatives 92
XV. ${ }^{13}$ C and ${ }^{l_{H}}$ NMR Chemical Shifts of 7-benzyl-3-hetera- 7-azabicyclo[3.3.1]nonan-9-ones 94
XVI. ${ }^{13}$ C NMR Chemical Shifts of N-Benzyl-3-thia-7-azabicyclo- [3.3.1]nonan-9-one Oxime and Related Oximes 97
XVII. ${ }^{13}$ C NMR Chemical Shifts of N-Benzyl-3-hetera-7-azabi- cyclo[3.3.1]nonane Hydroperchlorate Derivatives 99
XVIII. ${ }^{15} \mathrm{~N}$ NMR Chemical Shifts of N -Benzyl-3-hetera-7-azabicy- clo[3.3.1]nonane Hydroperc̄hlorate Derivatives 100
XIX. ${ }^{13} \mathrm{C}$ NMR Chemical Shifts for $103 \mathrm{a}, \mathrm{b}, \mathrm{c}$ 104
XX. I_{H} NMR Chemical Shifts of 103a,b,c 105
XXI. Crystal Data for 18d, 32b, 33b 112
XXII. Crystal Data for 102b, 103a, and 103b 104
XXIII. Selected Bond Distances (\AA) for Ketone 18d and Isomeric Hydroperchlorates 32b, 33b 112
XXIV. Selected Bond Angles (${ }^{\circ}$) for Ketone $18 d$ and Isomeric Hydroperchlorates 32b, 33b. 113
XXV. Selected Bond Distances (\AA) for Ketal 102b. 119
XXVI. Selected Bond and Dihedral Angles $\left(^{\circ}\right.$) for Ketal 102b. 120
XXVII. Selected Bond Distances (A) in 3,6-Dibenzylhexahydro-8a-methoxy-5H-4a,8-(methanoheteromethano)-2H-pyrido-[3,4-e_]-1,3-0xazines 103a,b 124
XXVIII. Selected Bond and Dihedral Angles (${ }^{\circ}$) 3,6-Dibenzylhexahydro-8a-methoxy-5H-4a,8-(methanoheteromethano)-2H-pyrido[3,4-e]-1,3-oxazines 103a,b 125
XXVIII. Antiarrhythmic Properties of 32b, 33b, 70d, 102a, 102b, 103c. 133

LIST OF FIGURES

Figure Page

1. HETCOR NMR Spectrum of 18 d 90
2. HETCOR NMR Spectrum of 103a 102
3. HETCOR NMR Spectrum of 103b 103
4. Perspective Drawing of 18d. 109
5. Perspective-Drawing of 33b. 115
6. Perspective Drawing of $\mathbf{3 2 b}$. 116
7. Perspective Drawing of $\mathbf{1 0 2 b}$ 117
8. Perspective Drawing of 103a 122
9. Stereo Drawing of 103a. 122
10. Perspective Drawing of 103b 123
11. Electrogram Recorded for 24-Hour Infarcted Dog After Administration of 102a. 131

LIST OF PLATES

Plate Page
I. IR Spectrum of $\mathbf{1 6 h}$. 173
II. I_{H} NMR Spectra of 16 h and 16 d 174
III. ${ }^{13} \mathrm{C}$ NMR Spectra of $\mathbf{1 6 h}$ and $\mathbf{1 6 d}$ 175
IV. IR Spectrum of 17d. 176
V. l_{H} NMR Spectrum of $17 d$. 177
VI. ${ }^{13} C$ NMR Spectrum of $17 d$ 178
VII. HETCOR NMR Spectrum of 17d. 179
VIII. ${ }^{15} \mathrm{~N}$ NMR Spectrum of 17 d 180
IX. IR Spectrum of 18d. 181
X. $\quad l_{H}$ NMR Spectrum of $18 d$. 182
XI. $\quad 13_{H}$ NMR Spectrum of $\mathbf{1 8 d}$ 183
XII. $\quad{ }^{15} \mathrm{~N}$ NMR Spectrum of 18 d 184
XIII. IR Spectrum of 19b. 185
XIV. l_{H} NMR Spectrum of $19 b$. 186
XV. ${ }^{13} \mathrm{C}$ NMR Spectrum of $19 b$ 187
XVI. IR Spectrum of 19c. 188
XVII. ${ }^{13} \mathrm{C}$ NMR Spectrum of 19 c 189
XVIII. IR Spectrum of 27a. 190
XIX. $\quad l_{H}$ NMR Spectrum of 27a. 191
XX. ${ }^{13} C$ NMR Spectrum of $27 a$ 192
XXI. HETCOR NMR Spectrum of 27a 193
XXII. IR Spectrum of 27b. 194
Plate Page
XXIII. 1_{H} NMR Spectrum of 27b. 195
XXIV. ${ }^{13} \mathrm{C}$ NMR Spectrum of 27 b 196
XXV. HETCOR NMR Spectrum of 27b. 197
XXVI. IR Spectrum of 28d. 198
XXVII. l_{H} NMR Spectrum of 28d. 199
XXVIII. ${ }^{13} \mathrm{C}$ NMR Spectrum of 28d 200
XXIX. ${ }^{15} \mathrm{~N}$ NMR Spectrum of 28 d 201
XXX. IR Spectrum of 29d. 202
XXXI. l_{H} NMR Spectrum of 29d. 203
XXXII. ${ }^{13} \mathrm{C}$ NMR Spectrum of 29d 204
XXXIII. ${ }^{15} \mathrm{~N}$ NMR Spectrum of 29d 205
XXXIV. IR Spectrum of 30b. 206
XXXV. 1_{H} NMR Spectrum of 30b 207
XXXVI. ${ }^{13} \mathrm{C}$ NMR Spectrum of $\mathbf{3 0 b}$ 208
XXXVII. ${ }^{15} \mathrm{~N}$ NMR Spectrum of $\mathbf{3 0 b}$ 209
XXXVIII. IR Spectrum of 31 b 210
XXXIX. l_{H} NMR Spectrum of $31 b$. 211
XL. ${ }^{13} \mathrm{C}$ NMR Spectrum of 31 b 212
XLI. $\quad{ }^{15} \mathrm{~N}$ NMR Spectrum of 31 b 213
XLII. IR Spectrum of 32b. 214
XLIII. l_{H} NMR Spectrum of $32 b$. 215
XLIV. ${ }^{13} C$ NMR Spectrum of $32 b$ 216
XLV. HETCOR NMR Spectrum of 32b. 217
XLVI. ${ }^{15} \mathrm{~N}$ NMR Spectrum of $\mathbf{3 2 b}$ 218
XLVII. IR Spectrum of 33b. 219
XLVIII. l_{H} NMR Spectrum of 33 b 220
XLIX. ${ }^{13}$ C NMR Spectrum of $\mathbf{3 3 b}$ 221
L. HETCOR NMR Spectrum of 33b. 222
LI. ${ }^{15} N$ NMR Spectrum of 33b 223
LII. IR Spectrum of 70d. 224
LIII. l_{H} NMR Spectrum of $70 d$. 225
LIV. ${ }^{13}$ C NMR Spectrum of $\mathbf{7 0 d}$ 226
LV. HETCOR NMR Spectrum of 70d. 227
LVI. ${ }^{15}{ }_{N}$ NMR Spectrum of 70d 228
LVII. IR Spectrum of 102a 229
LVIII. $\quad l_{H}$ NMR Spectrum of $102 a$ 230
LIX. ${ }^{13} \mathrm{C}$ NMR Spectrum of 102a. 231
LX. HETCOR NMR Spectrum of 102 a 232
LXI. ${ }^{15} \mathrm{~N}$ NMR Spectrum of 102a. 233
LXII. IR Spectrum of 102b 234
LXIII. $\quad l_{H}$ NMR Spectrum of $\mathbf{1 0 2 b}$ 235
LXIX. ${ }^{13}$ C NMR Spectrum of $\mathbf{1 0 2 b}$. 236
LXX. HETCOR NMR Spectrum of 102b 237
LXXI. ${ }^{15} \mathrm{~N}$ NMR Spectrum of 102 b 238
LXXII. IR Spectrum of 103a 239
LXIII. l_{H} NMR Spectrum of $103 a$ 240
LXIX. ${ }^{13}$ C NMR Spectrum of 103a. 241
LXX. ${ }^{15} \mathrm{~N}$ NMR Spectrum of 103a. 242
LXXI. IR Spectrum of 103b 243
LXXII. $\quad l_{H}$ NMR Spectrum of $\mathbf{1 0 3 b}$ 244
LXXIII. ${ }^{13} \mathrm{C}$ NMR Spectrum of 103 b 245
LXXIV. ${ }^{15} \mathrm{~N}$ NMR Spectrum of 103 b 246
Plate
LXXV. ${ }^{77}$ Se NMR Spectrum of $\mathbf{1 0 3 b}$ 247
LXXVI. IR Spectrum of 103c 248
LXXVII. \quad_{H} NMR Spectrum of 103 C 249
LXXVIII. ${ }^{13} \mathrm{C}$ NMR Spectrum of 103 c 250
LXXIX. HETCOR NMR Spectrum of 103c 251
LXXX. IR Spectrum of 104 a 252
LXXXI. $\quad l_{H}$ NMR Spectrum of $104 a$ 253
LXXXII. ${ }^{13} \mathrm{C}$ NMR Spectrum of 104 a 254
LXXXIII. HETCOR NMR Spectrum of 104a 255
LXXXIV. ${ }^{15} \mathrm{~N}$ NMR Spectrum of 104 a 256
LXXXV. IR Spectrum of 104b 257
LXXXVI. $\quad \mathbf{l}_{H}$ NMR Spectrum of $\mathbf{1 0 4 b}$ 258
LXXXVII. ${ }^{13} \mathrm{C}$ NMR Spectrum of $\mathbf{1 0 4 b}$. 259
LXXXVIII. ${ }^{15} \mathrm{~N}$ NMR Spectrum of $\mathbf{1 0 4 b}$ 。 260
LXXXIX. ${ }^{77}$ Se NMR Spectrum of $\mathbf{1 0 4 b}$ 261
XC. IR Spectrum of 108. 262
XCI. l_{H} NMR Spectrum of 108. 263
XCII. ${ }^{13}$ C NMR Spectrum of 108 264
XCIII. ${ }^{15} \mathrm{~N}$ NMR Spectrum of 108 265
XCIV. IR Spectrum of 109a 266
XCV. l_{H} NMR Spectrum of $109 a$ 267
XCVI. ${ }^{13} \mathrm{C}$ NMR Spectrum of 109a 268
XCVII. IR Spectrum of 110a 269
XCVIII. $l_{\text {H NMR }}$ Spectrum of $110 a$ 270
XCIX. ${ }^{13}$ C NMR Spectrum of $110 a$. 271
C. ${ }^{15} \mathrm{~N}$ NMR Spectrum of 110 272

CHAPTER I

HISTORICAL

Heterocyclic and carbocyclic compounds containing the bicyclo[3.3.1]nonane ring system 1 have been of interest due to theoretical considerations concerning the possible conformations as well as to the bıologıcal actıvıty of certain derıvatıves. The basıc ring system is

unique in that it can exist in four conformations: $46,65,115$ chair-chair 1-CC, boat-chair 1-BC, charr-boat 1-CB and boat-boat 1-BB. In cases where X and Y are identical the $B C$ and $C B$ conformers are, of course, equivalent. Factors which determine the conformations adopted by these systems have been of considerable interest.

1-C C

1-BC

1-CB

1-BB

The primary concerns involving the biological activity of these systems have been in the analgesic and antiarrhythmic properties of the heterocyclic analogs where X and/or Y are $N-R, O, S$, se while Z is $C R_{2}$.

2a $R=R^{\prime}=H$

2d

2b $R=H, R^{\prime} R^{\prime}==0$
2c RR $==0, R^{\prime}=H$

These properties may arise from the similarity of the heterocyclic systems to the B and C rings of a series of $C-15$ lupine alkaloids: sparteıne (2a), aphyllıne (2b), lupanıne (2c), and α-isosparteine (2d). Sparteine is known to possess biological activity as an antiarrhythmıc agent; however, it is also quite toxic. $6,26,78,88,103$ Interestingly, it has been postulated that $\mathbf{2 a}, \mathbf{2 b}$, and $\mathbf{2 d}$ are $s i d e$ products 1 n the biosynthesis of 2 c due to an oversupply of cadaverine, the metabolic precurser for these alkaloids. 112

This discussion will focus on the 3-hetera-7-azabicyclo[3.3.1]nonanes with reference to other related carbocyclic and heterocyclic compounds. First, there will be an abbreviated survey of the synthetic methodologies which have been used to arrive at the 3-aza- and 3-hetera-7-azabıcyclo[3.3.1]nonane systems. This will be followed by an evaluation of the stereochemical and conformational aspects of such systems as well as the biological activities found for certain derivatives of the 3-hetera-7-azabicyclo[3.3.1]nonanes, with emphasis on the antiarrhythmic properties. This last section will also include a short
synopsis on heart disease, antiarrhythmic drugs currently in use, and several of the methods used in the preliminary screening of these types of drugs.

Synthetic Routes

Extensive reviews have been published that cover the synthetic routes to the carbocyclic bicyclo[3.3.1]nonanes 22,65 and the analogs with heteroatoms at the 3-, 7- and 9-positions, 46,114 as well as numerous derivatives containing these ring systems. The emphasis here

will be on the synthesis of compounds containing the ring system 3 where $X 1 s C R{ }_{2}, N R, O, S$, and $S e$, as well as derivatives of these compounds. The discussion is not intended to be a complete or representative survey; however, it will illustrate some of the more popular and interesting methods used in the preparation of the compounds.

Annelation of the enamines of cyclic ketones has been employed to obtain 3-azabicyclo[3.3.1]nonan-9-ones. ${ }^{46}$ The pyrrolidine enamıne of N-tosylpıperidin-4-one (4), when treated with ethyl β, β-dibromoisobut-

4

1. $\left(\mathrm{BrCH}_{2}\right)_{2} \mathrm{CHCO}_{2} \mathrm{Et}$
2.

8

11

yrate and triethylamine, afforded ketone 5. 95 Interestingly, enamines 6, when treated with cinnamaldehyde, afforded 7 with equatorial cyclic amine groups at the 8 -position. 22,23 The exact nature of this rearrangement has not been established. 22,46

Conversion of isophthalic acid (8) to the cis-/trans- diacıd 9, was accomplıshed in four high-yield steps. 87 Treatment of the diastereomeric mixture with various amınes and heating afforded the dimmides 10. Reduction with LiAlH_{4} then gave 11 in good yields. Similar treatment of the anhydride derived from cis-hexahydroisophthalic acid (9-cis) with dialkylaminoalkylamines afforded N-dialkylaminoalkyl derlvatives of $10 .{ }^{76}$ Along these same lines, di-acid chloride $12 a$, upon treatment with ammonia, formed the diamide $\mathbf{1 2 b} .^{100}$ Subsequent heating of $\mathbf{1 2 b}$ induced cyclization to 13 .

Cleavage of 1,3-diazaadamantanes under acidic condıtions yielded 3,7-dıazabicyclo[3.3.1]nonanes. ${ }^{46}$ For example, treatment of ketone 14

14

15
a. $R=A c e t y l$
b. $R=$ Tosyl
c. $R=$ Nitroso (100%)
d. $\mathrm{R}=\mathrm{CH}_{2} \mathrm{Ph}$
e. $\mathrm{R}=\mathrm{CH}_{3}$
f. $\mathrm{R}=\mathrm{CH}_{3}\left(\mathrm{H}_{2} \mathrm{SO}_{4} \cdot I / 2 \mathrm{H}_{2} \mathrm{O}\right)$
with acetic anhydride, tosyl chloride or nitrous acid produced 15a-c. 101 In a like manner, the analogous 1,3-diazaadamantanes (with CH_{2} at the 6-position) were also cleaved by benzoyl chloride or nıtrous acid to afford the NoN'-dibenzoyl- and N,N'-dinıtroso-1,5-diphenyl-3,7-diazabicyclo[3.3.1]nonanes. 101

A common route to aryl-substituted 3-aza- and 3-hetera-7-azabicyclo[3.3.1]nonane ring systems $(17,18)$ is via a Mannich condensation of a cyclohexanone derivative (e.g. 16) with an aromatic aldehyde and ammonia. 46 For example, when cyclohexanone (16a) was treated with benzaldehyde and ammonium acetate, the ketone $17 a$ was obtained along with the bisarylidene 19a.9 Numerous additional examples are known in the literature $46,107,108$ including ketones $17 b^{5}, 18 a, b^{47}$ and isomerıc

16
a. $\mathrm{X}=\mathrm{CH}_{2}$
b. $X=0$
c. $X=S$
d. $X=S e$
e. $X=\mathrm{NCH}_{3}$
f. $\mathrm{X}=\mathrm{NCH}_{2} \mathrm{Ph}$
g. $X=\frac{\downarrow}{\boldsymbol{N}}\left(\mathrm{CH}_{3}\right)_{2} \mathrm{I}^{-}$
h. $X=\operatorname{Se}\left(\underline{d}_{4}\right)$

16a

d. $\frac{\mathrm{X} \quad \mathrm{CH}_{2}}{} \quad \frac{\mathrm{Ar}}{\mathrm{Ph}(45 \%)}$
b. $\mathrm{NCH}_{2} \mathrm{Ph}$ o- $-\mathrm{ClC}_{6} \mathrm{H}_{4}$
c. $\mathrm{NCH}_{2} \mathrm{Ph} \mathrm{Ph}$
ketones 17 c and 18c. 106 These reactions were typically performed by heating an ethanolic solution of the reactants at $60-70^{\circ} \mathrm{C}$ for a few minutes. The products commonly precipitate from the reaction mixtures upon the addition of a nonpolar solvent such as ether; however, the yields are often quite modest. Tetraaryl derivatives 21 have been obtarned by similar Mannich reactions from cis- or trans-2,6-diphenyl-1-heteracyclohexan-4-ones 20. 10,12,63 Aryl-substituted bicylic ketones 23 have been obtained by the treatment of diesters 22 with formaldehyde and benzylamine. 35-37

a. $\mathrm{X}=\mathrm{CH}_{2}$
a. $\mathrm{X}=\mathrm{CH}_{2}, \mathrm{Ar}=\mathrm{Ph}$
b. $X=S$
b. $X=S, A r=P h$
c. $X=0$
c. $X=0, A r=P h$
d. $X=N H$
d. $X=N H, A r=p-T o l y l$

Mannich condensation of N-alkylpiperidin-4-ones with alcoholic paraformaldehyde or aqueous formaldehyde, acetic acıd, and varıous prımary amınes has afforded a varıety of $N . N^{\prime}$-dialkyl-3,7-dıazabıcyclo-[3.3.1]nonan-9-ones. ${ }^{46}$ (In passing, it should be noted that the 3,7-dıaza-bıcyclic ketones system have the common name "bispidones").

Employing this route, Douglas and Ratlıff ${ }^{27}$ synthesized the N-methyl-N'-alkylbispidones 24a-d in ylelds of 40-55\%. Wolff-Kıshner reduction of these ketones to the bispidines 25 followed by direct conversion to the hydroperchlorates 26 was accomplished in yields of 60-70\%. Similarly, other workers have employed various N-alkylpiperi-din-4-ones as well as other primary amines. $16,17,63,91-93$ The ketones were typically isolated as crude materials via an extended aqueous workup. Occasionally, these have been further purified via distillation under reduced pressure followed by recrystallization. $16,17,27$ The reduced compounds have commonly been isolated in crystalline form as

salts of perchloric, fumaric, plcric, or hydrochloric acıd. This general route has been extended to the synthesis of the N-benzyl-3-hetera-7-azabıcyclo[3.3.1]nonan-9-ones 27a,b and 28a,b from the appropriate l-heteracyclohexan-4-ones 16a-f, paraformaldehyde and benzylamıne. $5,14,15,16,92,93,107,108$ Wolff-Kishner reduction followed by treatment with perchloric acid then afforded salts 29a-c.

30

31

32

33

31-33
a. Se $\quad \mathrm{p}^{-\mathrm{ClC}_{6} \mathrm{H}_{4}}$
b. $\mathrm{NCH}_{2} \mathrm{Ph} \quad \mathrm{o}-\mathrm{ClC}_{6} \mathrm{H}_{4}$
c. Se Ph

Catalytıc debenzylation of N-benzyl-N'-alkylbispidınes 34 has led to the N-monoalkylated bispidines $35.16,17,79,92,93$ Treatment of the latter with sodıum hydrıde ${ }^{16,17}$ or methyl 1 ithium, 79,93 followed by alkylation, has produced related $N N^{\prime} N^{\prime}-d i a l k y l b i s p i d ı n e s ~ 36 . ~ A c i d$ chlorıdes and 35 have given rise to N-alkyl-N'-acylbıspidines. 79

The mechanism for the Mannich condensation is worthy of discussion. This topic as well as the variety of products formed via this reaction has been the subject of extensive reviews. $1,18,42,105,110$ In 1 ts most simplistic form, the reaction effects the amınomethylation of a compound with one or more active hydrogens. These compounds may be enolizable ketones as described above, phenols, acetylenic compounds, primary or secondary amines, and mercaptans. 105,110 The generally accepted mechanism ${ }^{46,105}$ involves the reaction of a primary or secondary amine

34
a. $\frac{\mathrm{R}}{\mathrm{CH}_{3}(=27 \mathrm{c})}$
b. $\mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{3}$
c. $\quad \mathrm{PhCH}_{2}$

35

1. MeLi. or NaH
2. $\mathrm{R}^{\prime \prime}-\mathrm{X}$

36

	R
	R^{\prime}
a. CH_{3}	$\mathrm{CH}_{3}(=25 \mathrm{a})$
b. $\mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{3}$	$\mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{3}$
c. PhCH_{2}	ArCH_{2}

With the aldehyde to give a hydroxymethylamine ${ }^{105}$ which, under acıdıc condıtions, dehydrates to give an immınıum ion. The 1 mminıum ion, in turn, suffers nucleophilic attack from the active hydrogen compound, e.g., the enol 37 of ketone 16 to give products collectively known as "Mannich bases" (e.g. 38). Multıple alkylations of the actıve hydrogen compound are possible when there are multiple active hydrogens. ${ }^{91,105}$ This is prevented primarily by careful selection of the reaction conditions and proper stoichiometry of the reactants. ${ }^{105,110}$ Barring multiple alkylations of the active hydrogen compound, when a secondary amine is used, the reaction stops after the initial aminoalkylation (e.g. 38, R,R' = alkyl). However, when a prımary amıne or ammonia is used, the Mannich base ($38, R=H, R^{\prime}=$ alkyl; $R=R^{\prime}=H$) from the

inıtıal amınomethylation can undergo additional condensations. 42,46 In the synthesis of the 3-hetera-7-azabicyclo[3.3.1]nonan-9-ones and 7-azabicyclo[3.3.1]nonan-9-ones, cyclization is presumed to proceed by stepwise formation of another imminium ion 39 and subsequent amınomethylation to afford 40. Intermolecular reactions can occur to glve products such as 41, which was obtained, along with the bicyclic ketone 42 in a Mannich condensation of cyclohexanone, aqueous formaldehyde, and methylamine hydrochloride. ${ }^{43}$ Another side reaction is deamination to give α, β-unsaturated ketones, l.e. 43. This is reported to occur in cases where the aldehyde substituent $R^{\prime \prime}$ can stabilize the formation of the conjugated system. 110 When aromatic

41

43
aldehydes and ammonium acetate are used, these are commonly the major products formed in the reaction, e.g., bisarylidene 19a.9 Deaminations of aminomethylated acyclic ketones obtained via the Mannıch reaction have been used to synthesize acyclic vinyl and divinyl ketones as monomers for polymerization reactions. 57,58 The mechanısm of the Mannich reaction to give the 3-hetera-7-azabicyclo[3.3.1]nonan-9-ones will be the subject of further discussion in next chapter.

Stereochemical and Conformational Aspects

As discussed earlier, four conformations are possible for the generalızed bicyclo[3.3.1]nonane ring system where X and Y are not 1 dentıcal. Intramolecular steric interactions are present in all of these conformations to some degree. A survey of the conformations adopted by varıous carbocyclic bıcyclo[3.3.1]nonanes is illustrative of many of
these interactions. The influence of these interactions, as well as the parameters arising from the substitution of hetero atoms into the ring system, shall be the subject of the following discussion.

CB

CC

BC

BB

In addition to the l,3-diaxial interactions commonly associated With cyclohexane chairs, ${ }^{68}$ severe transannular steric interactions between the endo protons $H(3)$ and $H(7)$ are present in the CC conformation of bicyclo[3.3.1]nonane (44). Furthermore, a Newman projection along the $C(1)-C(2)$ and $C(4)-C(5)$ bonds illustrates a gauche interaction between the $C(2)-C(3)-C(4)$ bridge and the $C(5)-C(6)$ and $C(1)-C(8)$ bonds.

Bicyclo[3.3.1]nonane (44) has been determined to exist as a CC in the solid state based on crystallographic data. ${ }^{22}{ }^{13} \mathrm{C} \mathrm{NMR}^{71}$ analysis and infrared ${ }^{22}$ data, as well as electron diffraction studies $54,55,62$ have indicated that this is the predominant conformation in the gas

44 Newman projection
phase and in solution. If one assumes that the CC conformation of 44 can be treated as idealızed cyclohexane chairs with two bonds in common, the calculated $C(3) \ldots C(7)$ distance would be $2.52 \AA .22$ According to this model, the endo protons $H(3)$ and $H(7)$ would be in the same plane as $C(3)$ and $C(7)$. Assuming normal $C-H$ bond lengths (1.09 \AA) and a hydrogen covalent radius of $0.32 \AA, 64$ the volume of space between $C(3)$ and $C(7)$ is too small to accomodate the endo protons. Experimentally, the $C(3) \ldots C(7)$ distance $1 n 44$ from X-ray data is $3.06 \AA .^{22}$ Moreover, the $C(2)-C(1)-C(8)$ bond angle was found to be 113°, or slightly greater than tetrahedral. ${ }^{22}$ Thus, it has been indicated ${ }^{22}$ that the cyclohexane rings are flattened to minımize the endo $H(3) \ldots H(7)$ steric interaction. It was also indicated that no skewing (as seen in certain cyclohexane derivatives) was apparent; instead the planes of the three carbon bridges $C(2)-C(3)-C(4)$ and $C(6)-C(7)-C(8)$ are splayed outward by an angle of 18° to (rather than parallel to) the $C(1)-C(9)-C(5)$ plane. The BC conformer of bicyclo[3.3.1]nonane (45) also suffers from serious transannular interactions, namely between the $H(3)$ exo and H(9)endo, in the form of cyclohexane-boat bowsprit interactions. Moreover, a Newman projection of an idealized CB conformer indicates the pseudo axial C-H bonds [at $C(2)$ and $C(4)]$ in the boat ring eclipse

45

45 Newman projection
the $C(1)-C(8)$ and $C(5)-C(6)$ bonds in the chair ring. Electron diffraction data coupled with molecular mechanics calculations have indicated that at $65^{\circ} \mathrm{C}$ bicyclo[3.3.1]nonane has a CC \ddagger BC (i.e. $44 \vec{\leftarrow} 45$) equilibrium with only circa 5\% of the population being in the BC form (45): at 400° the BC represents circa 25% of the population. ${ }^{56}$ Calculations indicate that the energy difference between 44 (CC) and 45 (CB) is circa $2.3 \mathrm{kcal} / \mathrm{mol}$ with 44 being favored.

The predominant conformations of $46-50$ in solution have been deduced from an analysis of ${ }^{1} H$ NMR coupling constants in the presence of lanthanide shift reagents as well as by ${ }^{13} \mathrm{C}$ NMR chemical shift data. ${ }^{68}$ Intuitively, introduction of bulky groups at the 3- or 7-exo positions should increase the $C C \nexists B C$ barrier, and, indeed, only the CC conformers

46a

46b

47a

47b

48

49

50
were reported. Conversely, introduction of bulky groups at the corresponding endo positions was determıned to destabilıze the CC conformer: thus, these systems (46b, 47b) adopt predominantly BC conformations in solution. It should be mentioned that, while the results of this study are internally consistent, few model compounds of known conformation are available for comparison.

Substitution of bulky groups at both 3,7-endo positions (e.g. 4850) was also determined to give rise to CB conformers, apparently with the ring possessing the less bulky substituent in the boat and with flattening of the chair ring. 68 Introduction of a carbonyl at $C(9)$ did not alter these conclusions ${ }^{42,67}$ although it should be expected that

this would decrease the $C C \neq B B$ barrier. This was ascertained to be the case in a proton NMR study on bicyclo[3.3.1]nonan-9-one (51-52) using lanthanide shift reagents with calculated chempcal shift and coupling constant values. 74 At ambient temperature in solution, it was determined that a 78\%-22\% equilibrium exists between the 51 and 52, respectively. Another study revealed that, based upon molecular mechanics calculations on molecules such as 53-55, the introduction of geminal dimethyl groups at $C(9)$ apparently inhibits the formation of CB forms, albeit the groups at the 3 - and 7-positions were generally much

55

less bulky in this study. ${ }^{4}$ The results were reinforced by ${ }^{13} \mathrm{C}$ NMR chemical shift data. In this latter effort, only compound 55 was found to exist in a $B C$ form. This molecule was determined to exist in an equilibrium of $\mathrm{BC} \ddagger \mathrm{CB}$ conformers $(55 \nmid 56)$ with the boat ring in each being extremely flattened. The calculated difference in energy between conformations was on the order of $1 \mathrm{kcal} / \mathrm{mol}$ with 55 being the more favored form.

The introduction of sufficiently bulky groups at both 3- and 7-endo positions could conceivably force a BB conformation despite the much greater transannular steric interactions. It has been pointed out that, although the CC and BC conformations in the bicyclo[3.3.1]nonane ring system are too rigid to permit twist forms, the $B B$ form $1 s$ more labile, allowing for the adoption of a "double twist-boat" (DTB) as a minimum energy conformation. ${ }^{56,66}$ In fact, such a double twist-boat (57) has been reported. ${ }^{66}$ The assignment of this conformation was based upon the
$57 \mathrm{R}=\mathrm{HO}\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}$

determination of proton NMR coupling constants in a spectrum that was so complex as to prevent simple first-order analysis. To alleviate this difficulty, varying amounts of a lanthanide shift reagent, Eu(DPM) 3^{\prime} were employed to spread the signals over a much wider range. The measured coupling constants for the pseudo axial protons on $C(2)$ [and thus, $C(4,6,8)$] were: $J_{H(2)-H(2)}=12 \mathrm{~Hz}$ (geminal coupling), $J_{H(2)-H(3)}$ $=12 \mathrm{~Hz}$ (trans diaxial), $J_{H(2)-H(1)}=2 \mathrm{~Hz}$. The authors claimed this data could only be explained in terms of a double twist-boat conformation. The vicinal $J_{H(2)-H(3)}$ was reported to be 6.0 Hz which was the same value found for the corresponding methine and methylene protons in cis-1,4-di-t-butylcyclohexane, a compound that was presumed to prefer the twist-boat conformation. ${ }^{68}$ The lanthanide shift reagent was determined to have no discernable influence on the conformation and geometry. Chemical shifts in the absence of Eu(DPM) 3 were extrapolated from the data with the shift reagent present. These, along with coupling constants found in the presence of the shıft reagent, were incorporated into a computer simulation program which derived a spectrum identical to that found experimentally in the absence of Eu(DPM) 3° Corrections to eliminate alpha and beta substituent effects so as to provide a more direct comparison of ${ }^{13} \mathrm{C}$ NMR chemıcal shift data
covalent radii with concomitant greater lone parr repulsions in 60 resulted in more severe 3,7-transannular interactions that destabilize the CC form.

It was pointed out that lone parr repulsion should increase with increasing atomic number along the series 0...O<0...S $<$ S...S and that this trend is the opposite of the order expected if dipole-dipole repulsions were operating. 113 The $S(3) \ldots O(9)$ and $S(3) \ldots S(7)$ distances were $2.84 \AA$ and $4.24 \AA$, respectively, in 60 . In 61, the $O(3) \ldots S(7)$ distance was found to be $3.12 \AA$ which was said to reflect the strong repulsions between these two atoms. The authors commented that if 60 were to exist in the C form, the $S(3) \ldots S(7)$ distance would be $4.6 \AA$ but that the sum of the van der Waals radil of the two sulfur atoms is 3.6-3.7 A. They also noted that literature data show S...S nonbonded contacts in the range of $3.6-4.0 \AA$. Therefore, lone pair repulsion, rather than pure steric repulsions, seemed to be the destabilizing parameter. Displaying the same trend, 62^{34} and 63^{33} have been reported to exist in a $B C$ (simılar to 60 with the selenane ring in the boat form) and CC (similar to 61), respectively.

Another interesting comparison is the ketone series $27 a, b, 28 b$ Here, the conformations of solıds $27 a$ and $27 b$ have been established by crystallography to be $B C$ forms with the piperidine ring in the chair. 14,107 proton NMR coupling constant data have indicated that the liquid 28b exists as a CC in solution. ${ }^{5}$ Again, this may reflect the effect of the lone pair interactions and the larger covalent radil of the S and $S e$ atoms $\operatorname{in} 27 a$ and $27 b$ compared to that of the 0 atom in 28b. It was noted that 1 n 27b the torsional angles $C(9)-C(1)-C(2)-S e(3)$ and
between compounds for bicyclo[3.3.1]nonane derivatives (along with average values for CC, BC and BB conformers) have been reported. 69 From these data, along with ${ }^{l_{H}}$ NMR shifts, 58 has also been suggested to exist as a BB. ${ }^{71}$ compound 59 was indicated to exist as a BB; however, no supporting evidence was presented. ${ }^{27}$ The authors only noted that a CC was improbable and that endo-substitution of the iodomethyl groups was also speculative.

When a heteroatom, such as N, O, S, or $S e$, is introduced at the 3-, 7- or 9-position, the adoption of a CB (or $B C$), becomes more favorable due to the absence of bowsprit interactions found in the boat rings of bicyclo[3.3.1]nonanes. Other parameters influencing the conformation include the difference in the carbon-heteroatom bond distance and the analogous carbon-carbon bond distances which are a function of the covalent radii of the heteroatoms, nonbonding electron pair interactions, and, in the case of nitrogen, atomic inversion. These factors will be discussed in more detail in the following paragraphs.

In 9-oxa-3,7-dithia- (60) and 3-oxa-7,9-dıthiabicylo[3.3.1]nonane
(61), X-ray crystallography revealed CB and CC conformers, respectively. 113 The authors concluded that the increase in

60

61

62

63

27a

27b

28b
$C(9)-C(5)-C(4)-\operatorname{Se}(3)$ were $45.5-47.2^{\circ}$ compared to $2.6-3.9^{\circ}$ in the analogous torsional angles of 27a. 107 The conclusion of the authors was that this resulted from increased flattening in the selenane boat (compared to the sulfur analog) and the longer $C-S e$ bond length (circa 1.94 A) compared to the C-S bond (circa $1.81 \AA$). The Se...C(9) distance was 2.89 \& versus $2.82 \AA$ for $S . . . C(9)$ which also supported this conclusion. The $C(6)-N(7)-C(8)$ plane in the selenium compound has a greater inward bend, l.e. it is more "puckered", than the analogous plane in the sulfur derivative, based on the comparable $C(9)-C(1)-C(2)-N(3)$ and $C(9)-C(5)-C(4)-N(3)$ torsional angles (67.7-68.8 8° versus 58.7-59.9 9°. However, a direct observation of an equilibrium between the BC and a second conformer via dynamic ${ }^{13} C$ NMR analysis of $27 a$ at low temperatures has been reported. ${ }^{13}$ It was observed that the four aliphatic ${ }^{13} \mathrm{C}$ NMR signals began to broaden at $-85^{\circ} \mathrm{C}$ with the separation into four smaller peaks ($37.7,45.8,55.3,61.5 \mathrm{ppm}$) and four larger peaks (32.0, 47.4, 58.9, 60.3 ppm$)$ occurring at $-90^{\circ} \mathrm{C}$. At $-100^{\circ} \mathrm{C}$, a gated off-acquisition (no NOE) spectrum of 27 indicated an approximately 78.5:21.5 ratio of conformers with the $B C$ still predominating. The identity of the second conformer (CC, CB, BB) was not ascertalned.

In examining a series of 3,7-diazabicyclo[3.3.1]nonanes and -9-ones (24a,e, 25a, 28c,d), it becomes evident that due to atomıc inversion about the nitrogen, these systems may be more labile than their carbocyclic counterparts. Dipole moment measurements indicate that 25a exists as a flattened cc. ${ }^{27}$ From comparison of the solid state and solution IR spectra, ${ }^{1} H$ NMR coupling constants, and ${ }^{13} C$ NMR chemical shifts, $1 t$ has been determined that bispidones 24a,e and 28c,d all exist predominantly as the CC conformers in solution. ${ }^{32}$ This result for 28c is in direct contrast to earlier work by the same group, wherein a crystal structure ${ }^{94}$ of ketone $28 c$ indicated that this compound existed as a $B C$ in the solid state (as in 27c) with the methyl-substituted piperıdıne ring in the boat form. The discrepancy in conformation (27c versus 28c) was rationalized by noting that the conformation adopted by a system in solid state is often dependent upon the packing forces involved while conformation in solution is dependent to some extent on solvation requirements. ${ }^{32}$

a. $\mathrm{R}=\mathrm{CH}_{3}$
e. $\mathrm{R}=\mathrm{CH}_{2}^{3} \mathrm{CH}_{2} \mathrm{Ph}$

Compounds $15 \mathrm{~d}^{50}$ and $15 \mathrm{e}^{51}$ have been reported to be in BC forms in the solid state as ascertained by crystallographic methods while a dynamic ${ }^{13}$ C NMR study ${ }^{102}$ of $15 e$ has indrcated the observation of a rapid $C B \overrightarrow{\#} B C$ equilibrium in solution. It was observed that, at ambient temperature the l_{H} NMR spectrum exhibited only one AB quartet, rather than two, for the methylene protons, and that the ${ }^{13} \mathrm{C}$ NMR spectrum showed only three aliphatic signals, namely for the $\mathrm{N}^{-\mathrm{CH}_{3}}$, bridgehead methines $C(1,5)$, and ring methylenes $C(2,4,6,8)$. The authors reported that as the temperature decreased, the signal for the ring methylenes broadened and finally split into two peaks of equal intensity (coalescence temperature: $-63^{\circ} \mathrm{C}$). At the slow exchange limit, the maximum chemıcal shıft difference was 6.0 ppm . Usıng a sımple ($\mathrm{A} \neq \mathrm{B}$) kinetic model, the calculated ΔG^{*} for this transition was determined to be $9.7 \mathrm{kcal} / \mathrm{mol}$. As these methylene signals showed no changes below the temperature at which nitrogen inversion was presumed to be prohibited and as the $C(1,5)$ signal remained a sharp singlet throughout the temperature range investigated, it was concluded that a $\mathrm{BC} \neq \mathrm{CB}$ equilibrium was being observed. The possibility of a DTB \ddagger DTB equilibrium was discounted as these averaging motions are pseudorotational and, therefore, expected to have a very low energy barrier. ${ }^{102}$ In this situation, a chemical shift difference of 6.0 ppm for $\mathrm{C}(2,6)$ and $C(4,8)$ was deemed unlikely.

While the authors of the aforementioned study $d_{1} d$ not address this question, it should be pointed out that the splitting of the NMR signal for $C(2,4,6,8)$ Into two peaks of equal intensity at low temperatures while the peak for $C(1,5)$ remained sharp is fairly strong evidence against the significant contribution of a $C C \neq B C$ equilibrium (i.e., l5e
$(C C) \neq 15 e(B C)$. The magnetic environment of a bridgehead carbon in this system is identical in the $B C$ and $C B$ conformers while this is not true in the $C C$ versus $B C$ forms. A significant contribution from a CC conformer would be expected to result in splitting (or at least broadening) of the peak for $C(1,5)$. Furthermore, a $C C \not \subset B C$ equilibrium should not result in two peaks of equal intensity. If the chemical

shifts of $C(2,4,6,8)$ in the $C C$ form were colncident with the shifts of $C(2,4)$ in the boat ring or $C(6,8)$ in the charr ring of the $B C$ form, the ratio of the peak heights would be approximately 3:1 (disregarding NOE).

In bicyclo[3.3.1]nonanes with substituents at $C(2,4,6,8)$ there exists the possibility of different configurations as well as different conformations. In a study of 2,4-diaryl-3-azabicyclo[3.3.1]nonan-9-ones, -9-01s, and -9-acetates (17a, 64a,b), it was determıned by comparison of ${ }^{13}$ C NMR chemical shifts that these compounds probably exist predominantly as the CC conformers in solution. ${ }^{47}$ A crystal structure of $17 a$ has supported this conclusion. ${ }^{47}$ A similar compound, 6,8-bis(2-chloropheny1)-3-oxa-7-azabıcyclo[3.3.1]nonan-9-one (17b) has also shown to be CC from crystallographic evidence. ${ }^{5}$ In contrast, the 2,4-diaryl-3-thia-7-azabicyclo[3.3.1]nonan-9-one 18a and -9-01s 65 were suggested to be largely BC in solution with the piperidine rings in the boat form. 47 An X-ray structure of alcohol 65 has shown this to be true

16
a. $\mathrm{X}=\mathrm{CH}_{2}$
b. $X=0$
c. $X=S$

20
a. $\mathrm{X}=\mathrm{CH}_{2}$
b. $X=S$

18a
a. CH_{2}
b. 0

a. $\mathrm{R}=\mathrm{OH}$
b. $R=O A C$

in the solid state. 29 Since these ketones were formed via Mannich reactions from l-heteracyclohexan-4-ones $16 a, b, c$, it was postulated that the presence of the large sulfur atom forced the formation of the plperidine boat during the Mannich condensation. Support for this idea was observed in ketone 66 b which was also obtained from a Mannich reactıon, this time from cis-20b. ${ }^{63}$ Again, the piperıdıne ring was found to be in the boat and the solid-state structure confirmed by crystallographic analysis. Isomeric tetraaryl ketones 66a and 67a (with boat and chair pıperidine rings, respectively) have also been 1 solated from a Mannich reaction mixture wherein cis-20a was treated with benzaldehyde and ammonium acetate. ${ }^{73}$

Sparteine (2a), as well as other C-15 lupine alkaloıds, possesses in 1 ts B and C rings the bispıdine ring system. Extensive $I R^{1} N M R$, ${ }^{13} \mathrm{C}$ NMR, and ${ }^{15} \mathrm{~N}$ NMR investlgations have demonstrated that sparteine exists in the conformation shown with the B and C rings being in a CB form. $19,20,30,81,87$ A diasterıomer, $\alpha-1$ sosparteine (2d), has been determined from crystallographic evidence to exist as a cc. ${ }^{70}$ β-Isosparteine (68), after some debate, $19,87,90$ was concluded to exist as a CB with an axial $C(1)-C(10)$ bond. This type of behavior was also

observed in the monohydroperchlorate of sparteine (69).90 An extensive IR study of this compound indicated a CC conformation for the two central rings with an axıal C(11)-C(12) bond.

A rather intriguing case of epımers resulting from an inversion about nitrogen in 2,4-diphenyl-3-azabicyclo[3.3.1]nonan-9-one (17a) has been reported. 7 Ketone 17 a , as well as the relative with $\mathrm{C}(9)=\mathrm{CH}_{2}$, has been found by crystallographic methods to exist in a CC form with the phenyl rings in equatorial positions. 47 Invertomer 17a (mp $175-176^{\circ} \mathrm{C}$), with an equatorial, or exo, $\mathrm{N}-\mathrm{H}$ bond was formed when this compound was crystrallızed from polar solvents such as alcohol, dioxane, chloroform, or acetone. Invertomer $17 a^{\prime}$ (mp $181-182^{\circ} \mathrm{C}$) was formed by crystallization from nonpolar solvents such as heptane, petroleum ether,

$17 a$

or cyclohexane. Both forms were crystallized from ether. The two Invertomers were distinguished from each other by different crystalline forms and by the presence of Bohlmann bands in the solid state (KBr) IR spectrum of $17 a$ that are absent in the spectrum of $17 a^{\prime \prime}$.

Bohlmann bands, ${ }^{46,111}$ are $C-H$ stretching vibrations observed in the $2700-2900 \mathrm{~cm}^{-1}$ region of the IR spectra of pıperidine derivatives when a C-H bond alpha to nitrogen is antiperiplanar with the electron pair of nitrogen. The presence of four bands in at 2750, 2790, 2810, and 2840 cm^{-1} in the $I R$ spectrum of $17 a$ indicate that there are two alpha protons trans and coplanar with the electron pair.

It $1 s$ interesting to note that the salts of 3-hetera-7-azabicyclo[3.3.1]nonanes typically adopt the CC conformation. This behavior, for example, has been observed in the 3-oxa-, 3-thia- and 3-selena- analogs of $\mathbf{7 0}$, which were formed when the corresponding ketones $\mathbf{2 7 a , b}$ and $\mathbf{2 8 b}$ were treated with perchlorıc acid. $5,15,107$ This conformation was indicated by spectroscopic evidence (IR, ${ }^{1}{ }_{H N M R},{ }^{13} \mathrm{C} N M R,{ }^{15} \mathrm{~N} N M R$) and confirmed in 70a by a crystal structure. The hydroperchlorates $29 \mathrm{a}, \mathrm{b}, \mathrm{c}$ derived from the 9 -methylene analogs of ketones $27 a, b$ and $\mathbf{2 8 b}$ also gave CC conformers as indicated by spectroscopic and crystallographic data. $5,14,107$ The hemihydrated salt $15 f$ was reported to adopt the $C C$

conformation (apparently retaining the keto group, in contrast to 70). 49 As mentioned previously, it was found that spartenne monohydroperchlorate (69) also adopted a CC conformation with an axial C(11)-C(12) bond. 90 since spectroscopıc and crystallographic evıdence indicated significant intramolecular hydrogen bonding between the proton at $N(7)$ and the heteroatom at the 3 -position in 29 and 70 , it was concluded that this stabilized the CC conformers sufficiently to overcome the 3,7-transannular crowding required for this conformation. 5,15,107 It has been suggested, ${ }^{49}$ however, that the stabilizing parameter is the electrostatic attraction between $\stackrel{+}{N}(3)$ and the electron pair at $N(7)$.

Analgesic Activity

Many derivatives of the 3-azabicyclo[3.3.1]nonane possess analgesic properties. ${ }^{46}$ For example, the citrate salt of $71 a$ was found to be about 3 times more potent than meperidine hydrochloride (72) as an analgesic with reduction of certain adverse side effects. However, the

acute toxicity of 71 a was almost similar to that of 72.4^{46} Upon addition of a hydroxyl group at the meta position of the phenyl ring (71b), the activity was found to be radically increased. 61 This compound was more than 400 times more active than 72 in terms of analgesic activity and 1600 times more potent than morphine hydrochloride. Despite an acute toxicity about 6.5 tımes higher than morphine hydrochloride, the therapeutic index $\left(L D_{50} / E D_{50}\right)$ was determined to be about 67000 compared to 112 for morphine hydrochloride.

Heart Dısease and Antiarrhythmic Agents

Coronary heart disease is the leading cause of death in the U.S. Over 38\% of all deaths each year are attributed to heart disease, which is actually a wide assortment of disorders. 82 The underlying cause of many of these is atheroschlerosis, the deposition of fatty plaque along the interior walls of the arteries resulting in restriction of blood flow through these blood vessels. An estimated 98% of all patients suffering a heart attack have symptoms of atherosclerosis. Occurrence of this in a coronary artery results in a decrease in blood flow and oxygen supply to the affected portion of the myocardium, a condition known as ıschemı. 82 Appreciable loss in blood flow induces angina
pectoris, or anginal pain. Complete blockage of a constricted artery, usually by a blood clot or arterial spasm, induces a myocardial infarction (MI). 45 This results in severe damage to the cardiac tissue and predominantly affects the left ventricle. The direct results of MI are the development of cardiac arrythmias and the potential farlure of the heart as a pump due to ventricular fibrillation. 53.

Sudden death due to coronary heart disease represents 76% of all nontraumatic deaths in the adult population. ${ }^{53}$ of all deaths from atherosclerotic heart disease, 50-80\% occur within 1 hour after the onset of symptoms. 28 These deaths are usually the result of ventricular fibrillation which is observed in about two-thirds of all cases. ${ }^{28}$ During ventricular fibrillation the impulses that control the contractions of the ventricles become chaotic and all pumping action is lost. This is inevitably a fatal condition unless treatment $1 s$ begun immediately. 31 This usually involves the admınistration of DC cardioversion to arrest the heart which can then return to 1 ts normal rhythm. It has been estimated that of sudden cardiac deaths, approximately 44\% are due to $\mathrm{MI}, 34 \%$ to myocardial ischemia, and 22% to poorly understood primary cardiac-rhythm disturbances. ${ }^{53}$

Of cardiac arrhythmias resulting from myocardial infarction, ventricular tachycardia (literally: rapıd heart beat) is by far the most serious. 24 Ventricular tachycardia (VT) is usually presaged by ventricular premature contractions, which are the most common type of cardiac arrhythmia. 24 Ventrıcular premature contractions (VPC) are isolated ectopic beats which may be observed in nearly every individual at some time during his or her life. An occasional occurrence is usually of no clinical significance. For example, they may be experienced in healthy
adults following excessive ingestion of coffee or tea, heavy smoking, or in times of emotional excitement. However, the frequent occurrence of this arrhythmıa, particularly if it is multıfocal in origin, nearly always indicates the presence of organic heart disease. 24

The term ventricular tachycardia is used when three or more of these ectopic beats occur consecutively, typically at a rate of $150 / \mathrm{min}$ or greater. More specifically, VT is a rapid or accelerated heart rhythm originating in the ventricles and unrelated to atrial rhythm. ${ }^{31}$ This is opposed to normal sinus rhythm which arises from the sinoatrial node in the right atrium. While bouts of paroxysmal VT may occur, sustained VT is particularly ominous due not only to the resultant decrease in cardiac output but also because it may degenerate into ventricular fibrillation, a potentially fatal condition. ${ }^{24}$ To prevent this, VT is treated by DC cardioversion or by pharmacological therapy. The pharmacological treatment of myocardial infarction usually involves the administration of an antiarrhythmic drug to control the arrhythmia and prevent its reoccurrence. The actual drug chosen for treatment depends on the type of cardiac arrhythmia. ${ }^{31}$ The chemical structures of several of the more commonly prescribed agents in clinical use are given in Table I. There is great variety in the structures of compounds which exhibıt antiarrhythmic activity ${ }^{103}$ and all such cardioactive drugs exhibit a variety of undesirable side effects which limit their utility. Also, the therapeutic window, the range between the effective dose and the toxic dose, is often quite narrow in many individuals. Data on the uses of several of these compounds and some of their more pronounced detrımental effects are given in Table II.

TABLE I

SELECTED ANTIARRHYTHMIC AGENTS IN CLINICAL USE

Quinidıne (73)

Procainamide (75)

Propranolol (74)

Lidocaine (76)

Verapamil (77)

PROPERTIES OF SELECTED ANTIARRHYTHMIC AGENTS IN CLINICAL USE

Drug	Treatment of	Detrimental Effects
```Quinidine (73) (as sulfate, gluconate, polygalacturonate)```	Ventricular tachycardia (VT) Supraventricular tachycardia Maintenance therapy after VT, atrial flutter and fibrillation.	Known to induce VT. Gastrointestinal difficulties: nausea, diarrhea, vomiting. Hypotensive effects. May induce Heart failure. ${ }^{31,53}$
Propranolol (74)   (as hydrochloride)   $\beta$-adrenoreceptor   blocking agent	Catacholamine-induced arrhythmias Ventricular fibrillation (preventative agent) Angina pectoris Supraventricular tacycardia	May induce congestive heart failure, bradycardia, cardiac arrest. ${ }^{31,53}$
Procainamide (75) (as hydrochloride)	Ventricular tachycardia	Gastrointestinal difficulties similar to quinidine. Anorexia, giddiness. Fever and rashes in sensitive individuals. ${ }^{31,53}$
Lidocaine (76) (as hydrochloride)	Ventricular premature beats   Myocardial infarction   Ventricular tachycardia	CNS depressant: drowsiness, paresthesia muscle twitching, convulsions. Can induce VT, cardiac arrest. ${ }^{31,53}$
Verapamil (77) Calcium channel blocking agent	```Ventricular tachycardia Supraventricular tachycardia Angina pectoris```	Hypotension, vertigo, dizziness, muscle weakness, nausea, constipation. May induce VT in patients with atrial flutter, fibrillation。 ${ }^{2,8,82}$

Of the agents given in Table $I$, lidocaine (76) may be the most 1mportant. It is the drug of choice in the treatment of nearly all types of ventricular tachycardia. ${ }^{24}$ It is usually the first drug admınistered to patients suffering from acute myocardial infarction upon arrıval at a coronary care unit. ${ }^{31}$ It is very fast acting, having a serum half-time of only $15-20$ minutes. 53 It, however, can induce cardiac arrest due to its depressant activity on the sinoatrial node. 53 While its most alarming toxic reactions involve the central nervous system, these are usually associated with excessive doses in sensitive individuals or with the presence of advanced liver disease. ${ }^{31,53}$ As it is the current drug of choice in the treatment of $M I$ and $V T$, it is used as a benchmark compound in the testing of the antiarrhythmic properties of the compounds developed in this study.

This list of antlarrhythmic agents is by no means all-inclusive. Other drugs employed in the treatment of arrhythmias and serious cardiac disorders include the digitalis glycosides, ${ }^{31}$ dıphenylhydantoin (Dilantin) $2,31,53$ and disopyramide. $2,8 \mathrm{~b}, 53$ Many others such as bretylium, ${ }^{2,8 c, 31,53}$ methyl lıdocaine, ${ }^{53}$ dimethylpropranolol ${ }^{53}$ and amiodarone ${ }^{104}$ are still consıdered experimental or investigational drugs pending completion of clinical trials. Several more are undergoing preliminary testing in anımal models. $40,59,77,98-100$

In recent years, the antiarrhythmic properties of the 3,7-diaza-, 3-thıa-7-aza- and 3-selena-7-azabıcyclo[3.3.1]nonanes have been investigated by a variety of screens. These tests include the mousechloroform fibrillation assay, wherein the effect of the drug on chloroform-induced ventricular fibrillation is determined in adult mice. ${ }^{78,79}$ A second assay ${ }^{16}$ involves inducing a thiobutabarbitol
narcosis in rats, subsequently followed by induction of an arrhythmia by administration of Aconitine. The relative effect of the drug is determined by the amount of Aconitine required to induce the arrhythmia in rats treated with the prospective drug. A third method involves measuring the functional refractory time after electrical stimulus in guinea pigs and measuring the effect of a prospective drug on this parameter. ${ }^{17}$ The above three assays offer the advantage of being relatively inexpensive and permiting a large number of experiments with limited quantities of each compound. A fourth method, considered to be more definitive, ${ }^{53}$ involves surgical induction of a myocardial Infarction in dogs followed by induction of a ventricular tachycardia by cardiac pacing. ${ }^{84-86}$ The effectiveness of a prospective agent is then determined by its abilıty to control ventricular tachycardia. This method is preferable in that the cardiovascular physiology of the dog model is very similar to that of man, as are the induced MI and VT. 45 Since this was the testing methodology used in the current study, it will be discussed in greater detall in Chapter III.

The antiarrhythmic properties of several N, N'-dialkyl-3,7-diazabicyclo[3.3.1]nonanes have been examined. Based upon data from mousechloroform fibrillation assays wherein each compound was tested in 8-12 mice, Ruenitz and Mokler ${ }^{78}$ reported that although the salts of amines 34a-c, 78, 79 (Table III) were reasonably potent, their toxicity was high with therapeutic indices for all the compounds in the study being in the 0.87-1.46 range. Correlation of octanol/water partitioning of these compounds indicated that activity increased with lipophilicity. In a separate study ${ }^{79}$ the same authors found that several $N$-alkyl-

TABLE III
ANTIARRHYTHMIC PROPERTIES OF N,N'-DIALKYLBISPIDINES ${ }^{a, b}$



TABLE IV
ANTIARRHYTHMIC PROPERTIES OF BENZAMIDES $80-84^{a, b}$

	X	R	$E D_{50}{ }^{\circ}$	$L D_{50}{ }^{\text {d }}$	$L D_{50} / E D_{50}$
80	4-Cl	$\mathrm{CH}_{3}$	49	535	10.89
81	H	$\mathrm{CH}_{3}$	85	621	7.29
82	$4-\mathrm{CH}_{3} \mathrm{O}$	$\mathrm{CH}_{3}$	78	463	5.93
83	$4-\mathrm{CH}_{3} \mathrm{O}$	$\mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{3}$	106	488	4.60
84	H	$\mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{3}$	242	500	2.07
80	Disopyr		60	504	8.40
a. SOURCE: reference 79.   b. As determined by the mouse-chloroform fibrillation assay in adult CF mice.   C. Efłective dose ( $\mu \mathrm{mol} / \mathrm{kg}$, i.p.) to reduce heart rate below 200 beats per min in $50 \%$ of sample ( $8-12$ mice per compound).   d. Lethal dose ( $\mu \mathrm{mol} / \mathrm{kg}, 1 . \mathrm{p}$.) required to shorten survival time to less than 2 h ( $6-10$ mice per compound).					

bispıdinebenzamıdes 80-84 (Table IV) were more potent and less toxic (having therapeutic indices in the range of $2-10$ ) than the

N, N'-dıalkylbispidines.
Simılar bispıdines have been examıned by Bınnig and coworkers. ${ }^{16}$ Amines 34c and 86 (Table V) were more potent than lidocaine (76) as determined by left auricle refractory period prolongation in guinea pigs. In a separate study, ${ }^{17} 88-91$ (Table VI) were found to be more active and with lower toxicity than quinidine (73) as determined by prolongation of arrhythmia induction by Aconitine in laboratory rats. Nador and coworkers ${ }^{60}$ have determıned the antiarrhythmic properties of a series of $N N^{\prime} N^{-d i a l k y l b i s p i d i n e s ~ w i t h ~ e i t h e r ~ a n ~ a r y l ~ e t h e r ~ o r ~ a r y l ~}$ ester group at the 9-position (Table VII). All tested compounds were found to be 5-58 times more active than lidocaine in restoring normal sinus rhythm in rats suffering from Aconıtıne-induced arrhythmias. Studies by Scherlag and coworkers $14,84,107$ demonstrated the antiarrhythmic properties of several 3-thia- and 3-selena-7-azabicyclo[3.3.1]nonanes. 3-Thia-7-azabicyclo[3.3.1]nonane hydroperchlorate (29a, Table VIII) was found to prevent the induction of sustalned ventricular tachycardia (SVT) in 8 of 10 dogs that had surgically-induced myocardial Infarctions. 84 Moreover, in the animals that did exhibit SVT, the heart rate was dramatically slowed by an average of $29 \%$ relative to control experiments. Lidocaine (76), in contrast, permitted induction of SVT in all 10 dogs tested with reduction of the rate of the SVT by only an average of $11 \%$ relative to the control. Lidocaine generally showed a hypotensive effect during the SVT while $29 a$ was found to increase blood pressure 10-15\% during the SVT. This latter activity is desirable since

TABLE V

$$
\text { ANTIARRHYTHMIC PROPERTIES OF BISPIDINES } 34 c \text { and } 86^{a, b}
$$

	$R \quad R^{\prime}$	Antiarrhythmic effect, $E_{25}$	$\begin{aligned} & \text { Inotropic } \\ & \text { effect, } E D_{25} \end{aligned}$	$I / A^{e}$
34c	$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{2} \quad \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{2}$	0.034	0.07	2.0
86	$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{2} \mathrm{CH}_{2} \quad\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}$	0.13	0.26	2.0
76	Lidocaine	0.47	0.48	1.0
87	N-Propylajmalıne ${ }^{\text {f }}$	0.0037	0.0015	0.4

a. SOURCE: reference 16.
b. As determined by refractory period elongation of left auricle of guinea pigs (18-30 experiments per compound).
C. Effective dose to produce $25 \%$ extension of refractory period ( $\mathrm{mg} / \mathrm{kg}$ ) .
d. Effective dose to lower contractile force by $25 \%$ ( $\mathrm{mg} / \mathrm{kg}$ ).
e. Inotropic (contractile force lowering) effect/antiarrhythmic effect relative to lidocaine (76).
f. N-Propylajmaline (87):



TABLE VI
ANTIARRHYTHMIC PROPERTIES OF N-ALKYL-N'-BENZYLBISPIDINES ${ }^{a, b}$


TABLE VII
ANTIARRHYTHMIC PROPERTIES OF 9-SUBSTITUTED BISPIDINES ${ }^{a, b}$



TABLE VIII
ANTIARRHYTHMIC PROPERTIES OF $29 a^{a, b}$

		$\mathrm{N}^{\text {c }}$	Inducible ${ }^{\text {d }}$	Avg. Rate of $\mathrm{SVT}^{\text {e }}$
Control ${ }^{\text {f }}$		10	8	352
$29 a^{9}$			3	250
Control ${ }^{\text {f }}$		10	8	336
Lidocaine ${ }^{\text {g }}$	76		10	298

a. SOURCE: reference 84.
b. As determined by inhibition/reduction of sustained ventrıcular tachycardia in 24-h infarcted dog heart.
c. Number of dogs tested.
d. Number of dogs wherein sustained ventricular tachycardia (SVT) could be induced via cardiac pacing after surgical indiction of myocardial infarction.
e. Average rate (beats/min) of induced SVT.
f. No antiarrhythmic drug present.
g. $3-6 \mathrm{mg} / \mathrm{kg}$, i.p.

mean blood pressure commonly drops during SVT, often to dangerously low levels. 53

Ketone 27a showed little antiarrhythmic effect while 1 ts hydrated salt 70a was found to have activity similar to but not as good as 29a. 14 The phenyl alcohol 101 showed an overall depressive effect on myocardial conduction in infarcted as well as normal tissue.

The antiarrhythmic and hemodynamic properties ${ }^{107}$ of several 3-selena-7-azabicyclo[3.3.1]nonane derıvatives are given in Table IX. The 7-benzyl- and 7-phenethyl-derivatives 29b and 29edemonstrated activity similar to 29a. In prelıminary studies on one dog, 29e prevented the induction of the $S V T$ at both 3 and $6 \mathrm{mg} / \mathrm{kg}$ doses. In a separate experiment, 29b reduced the rate of the $S V T$ by $27 \%$ at $3 \mathrm{mg} / \mathrm{kg}$. Lidocaine, in the same animal, only showed an $11 \%$ reduction in the rate of the SVT at $4 \mathrm{mg} / \mathrm{kg}$. Compounds 33 c and 70 b showed only modest reductions in the rate of the $S V T$ at $3 \mathrm{mg} / \mathrm{kg}$. However, 33a showed improved activity at $6 \mathrm{mg} / \mathrm{kg} .107$

Although it is difficult to compare activities of compounds assayed by different methods, and provided that all the compounds discussed, as well as those mentioned in the appropriate references, are operating by the same physiological mechanısm, some generalızed observations can be

TABLE IX

ANTIARRHYTHMIC PROPERTIES OF 3-SELENA-7-AZA-BICYCLO[3.3.1]NONANE HYDROPERCHLORATES ${ }^{\text {a, }}$

made from review of the information discussed in this section. The presence of an $\mathbb{N}$-methyl, $\underline{N}^{-b e n z y l, ~} \mathbb{N}$-phenethyl, or $\underline{N}$-aryloyl group is generally associated with good activity. As indicated by the work of Ruenitz and Mokler, ${ }^{79}$ several $N$-benzoyl derivatives show excellent activity. Although the number of directly comparable compounds is limited, the $N$-benzoyl derivatives demonstrated better activity than the corresponding benzyl analogues, e.g., 81 versus $34 a$ and 84 versus 34b (see Tables III and IV).

Ruenıtz and Mokler ${ }^{78}$ commented on the correlation of activity with llpophillcity. The presence of llpophillic groups at the 9-position appears to be associated with good activity. The data presented by Scherlag and coworkers $14,85,107$ indicated that compounds with a methylene group at the 9-position had better activity than those with protic groups at this position, although the number of derivatives evaluated was small. Furthermore, comparing the data in Tables III and VII, the presence of bulky but relatively nonpolar aryl moieties at the 9-position may enhance the activity over a methylene group, although, again, a direct comparison is not possible with the data at hand.

RESULTS AND DISCUSSION

The major accomplishment of this research has been the development of synthetic procedures to obtain several new and novel 3-hetera-7-azabicyclo[3.3.1]nonane derivatives. Several of the compounds have displayed excellent antiarrhythmic properties as determined by electrocardiological analysis of 24 -hour infarcted-heart dogs. As discussed in the previous chapter, such dogs are considered ${ }^{53}$ excellent models of the human cardiovascular system for the testing of antiarrhythmic drugs.

Isomeric ketones 17d, 18d, the reduced analogs 30b, 31b as well as


17d


30b

$32 b$

$$
\mathrm{Ar}=\mathrm{O}-\mathrm{ClC}_{6} \mathrm{H}_{4}
$$



18d


31b


33b
the monohydroperchlorates 32 b , 33 b were prepared. As shall be discussed, isomeric ketones such as 17 d and 18d, obtained via a Mannich reaction, are rare in the chemical lıterature. Salts $32 b$ and $33 b$ were submitted to Dr. B. J. Scherlag (Veterans Adminıstration Hospıtal, Oklahoma City, OK) for biological testing in dog models.

In addition, synthetic procedures were developed for the preparation of the 9,9-diol (hydrated ketone) 70d, the dimethyl ketal derivatives 102a,b and the 9-methylene analog 29d. Since hydroperchlorate 29a [see Table VIII (page 44)] is known to possess significant antiarrhythmic properties by the above assay, 14,84 and since 29 d as the amine or as the hydrochlorıde [see compound 34c, Tables III (page 38), V (page 41)] has been shown to also have good activity by other screening methods, 16,78 it seemed desirable to compare the effects of the nonpolar ketal group with those of the derivatives with the methylene group at the 9-position. This also provided an opportunity to make a direct comparison of $\mathbf{2 9 a}$ and 29d in terms of the relative effects of the thiane ring versus the plperıdine ring, thus affording information about the optimum structural characterıstics for good bıological activity.

$29 \mathrm{ax}=\mathrm{S}$
b $x=S e$
$\mathrm{d} \mathrm{X}=\mathrm{NCH}_{2} \mathrm{Ph}$


70a $x=s$
$b x=S e$
$\mathrm{d} \mathrm{X}=\mathrm{NCH}_{2} \mathrm{Ph}$


102 a $\mathrm{x}=\mathrm{s}$
b $\mathrm{X}=\mathrm{NCH}_{2} \mathrm{Ph}$

Although the diols $70 a, b$ have not been found to be as active as the 9-methylene analogs $29 a, b, 14,107$ tt was felt that a screening of diol 70d would help establish whether this trend held true for the diaza analogs as well.

It was also possible to isolate the novel tricyclic ketals 103a,b and spiral ketones $104 \mathrm{a}, \mathrm{b}$ as well as the bicyclic ketones $27 a, b$ from reaction mixtures realized from the Mannıch condensations of ketones 16c,d with benzylamine and paraformaldehyde. While compounds containing 1,3-oxazine rings have been obtained via Mannich reactions with precursors possessing phenolic groups, ${ }^{75}$ ketals 103 are apparently the first case of oxazine ring systems being derived from simple ketones. Possible mechanisms to explain the formation of the products of these reaction will be discussed. As the tricyclic ketals 103a,b do possess


16c $X=S$ $\mathrm{d} X=S e$


27a $X=S$
b $X=S e$


103 a $x=s$
b $X=S e$
c $X=S \cdot 2 \mathrm{HClO}_{4}$
d $X=0$
e $\mathrm{X}=\mathrm{CH}_{2}$


104 a $x=s$
$b x=S e$
the 3-hetera-7-azabicyclo[3.3.1]nonane ring system as a structural morety, it was thought that these compounds might display antiarrhythmic activity. Therefore, dihydroperchlorate 103 c was also submitted to Dr. Scherlag for antiarrhythmic screening.

## Synthetic Procedures

As discussed in the previous chapter, cyclic ketones such as l-het-eracyclohexan-4-ones 16 , as well as the aryl substituted analog $20 b$, have been employed in Mannich condensations with aromatic aldehydes and ammonium acetate to arrive at aryl-substituted 3-hetera-7-azabicyclo-[3.3.1]nonan-9-ones $17 a, b, 18 a$, and $66 b$. It $1 s$ interesting to note that these reactions are recorded as giving only products with cis-aryl substituents on the prperidine ring. Depending on the l-heteracyclohex-


16


17


18a
a. $\mathrm{X}=\mathrm{CH}_{2}$
b. $X=0$
c. $X=S$
d. $X=S e$

a. $\mathrm{CH}_{2} \mathrm{Ph}$
b. $0 \quad$ o- $-\mathrm{ClC}_{6} \mathrm{H}_{4}$
an-4-one precursor, the configurations (chair or boat piperidine ring) of the products with of these reactions are those shown.

Reports in the literature about the 1 solation of both types of products from the same reaction mixture are very rare. Concurrent with the present study, Thompson ${ }^{106}$ synthesized the isomeric ketones 17 c and 18c from reaction of 4-selenanone (16d), p-chlorobenzaldehyde and ammonium acetate. These ketones were then reduced to the isomeric



30a



18c


31a


33a
amines 30a and 3la, which were converted to the hydroperchlorates 32a, 33a. Quast and co-workers ${ }^{73}$ have recently reported obtaining the 1someric ketones $66 a$ and $67 a$ from a Mannich reaction involving cis-diphenylcyclohexanone, benzaldehyde and ammonium acetate, as well as the amines 105, 106 from reduction of these ketones. Another incidence of isomeric ketones (however, not from the same reaction) was reported ${ }^{71}$ by the same authors. When cis-diphenylpiperidin-4-one was treated with p-tolualdehyde and ammonium acetate 1 n ethanol, ketone 66c
(mp $252-254^{\circ} \mathrm{C}$ ) was the only product isolated. In contrast, a similar reaction of bis(p-tolyl)pıperıdin-4-one with benzaldehyde and ammonium acetate afforded ketone 67c (apparently as a mixture, mp 192-209 ${ }^{\circ} \mathrm{C}$ ). Mass spectral data on the two products indicated they were isomeric, however, no additional spectral evidence was presented for 67c. Initial indications ${ }^{73}$ were that the overall conformation was CC in both isomers with the phenyl groups in axial positions in 66c (as in structure 66c'), while in 67c the p-methylphenyl groups were in the axial positions (as in 67c'). Subsequent work ${ }^{72}$ by the same authors indicated that they now favor conformers 66c and 67c.




105
a. $\mathrm{X}=\mathrm{CH}_{2}$, $\mathrm{Ar}=\mathrm{Ph}$
c. $X=N H$, Ar $=p-T o l$

$66{ }^{\prime}$


67c'


106

In the present study, the 1 someric ketones $17 d$ and $18 d$ have been prepared by the Mannich reaction of l-benzylpıperidin-4-one (16f), o-chlorobenzaldehyde, and ammonium acetate. These products initially formed when an ethanolic solution of the reactants was warmed to $70^{\circ} \mathrm{C}$


$$
\mathrm{o}^{-} \mathrm{ClC}_{6} \mathrm{H}_{4} \mathrm{CHO} \text { (2 eq.) }
$$

$$
\mathrm{NH}_{4} \mathrm{OAC}, \mathrm{EtOH}
$$


18d
over fifteen minutes, followed by cooling to room temperature. Ketone 18d precipitated from the reaction mixture and could be filtered directly. Dilution of the mother liquor with ether, followed by standing at $-10^{\circ} \mathrm{C}$ for several hours, afforded additional 18d. Removal of the solvent gave a yellow-orange oll which was treated with ether. Upon standing at $-10^{\circ} \mathrm{C}$, ketone 17 d precipitated from this solution. Both products were recrystallized from 2-propanol/chloroform (3:1). By this method pure isomers 18d (long needles, mp 184.0-184.5 ${ }^{\circ} \mathrm{C}$ ) and 17d (short needles, mp $209.5-210.0^{\circ} \mathrm{C}$ ) were isolated in low yields of $16 \%$ and 4\%, respectively.

Subsequently, specific conditions to give predominantly either isomer were developed. For example, if the reaction mixture was allowed to stir at room temperature for 5 days, 17 d and 18 d were 1 solated in respectıve yields of $2 \%$ and $30 \%$. If, however, the reaction was carrıed out in boiling ethanol over 1.3 h , the yield of 18 d was only $4 \%$ while
that of 17d was $16 \%$. Also isolated from the high temperature reaction was the 3,5-bisarylidenylpıperidin-4-one 19 b in a yield of $2 \%$. The Yield of this latter product relative to the bicyclic compounds usually increased if longer reaction timers were permitted.


19
a. $\mathrm{Ar}=0-\mathrm{ClC}_{6} \mathrm{H}_{4}$
b. $\mathrm{Ar}=\mathrm{Ph}$

Several attempts to prepare the 2,4-diphenyl analogs 17e and 18e were unsuccessful under either set of conditions. When the reaction was attempted at room temperature for 11 days, the only isolatable product was the bright yellow ketone 19c, obtained in a yleld of $38 \%$ after column chromatography. The high temperature reaction also afforded this product in a yield of $60 \%$ after column chromatography. Along these same lines, an early attempt at the synthesis of ketone 107 by treatment of ketone $16 f$ with benzaldehyde, benzylamine, and acetic acid in boiling

$17 e$


18e


107
methanol afforded 19c in a yield of $96 \%$.
Ketone 17d was reduced under Wolff-Kishner conditions (Huang Minlon modification ${ }^{44}$ ) to give the diamine $30 b$ in a yıeld of $61 \%$ as cubic crystals (mp 149-151 ${ }^{\circ} \mathrm{C}$ ). This diamine was in turn treated with perchloric acid to give $32 b$ as the monohydroperchlorate [74\%, mp $260-262^{\circ} \mathrm{C}$ (dec)]. In a similar manner, ketone 18 d was reduced to afford the diamine $31 b$ in a yıeld of $69 \%$ as white plate-like cystals (mp 136.4-137.0 ${ }^{\circ} \mathrm{C}$ ) followed by conversion to the monohydroperchlorate 33b [81\%, mp 246-247 ${ }^{\circ} \mathrm{C}$ (dec)].


$$
\mathrm{Ar}=\mathrm{o}-\mathrm{ClC}_{6} \mathrm{H}_{4}
$$

TEG = Triethylene glycol


Hydroperchlorates 29a,d were prepared by the following reaction scheme. Ketone 16 f was treated in a Mannich condensation with paraformaldehyde, benzylamine and acetic acid to afford 28d. The latter has been prepared by two somewhat different procedures given in the literature. The first, by Binnig and coworkers, ${ }^{16}$ employed two equivalents of paraformaldehyde in a reaction held at reflux for 3.5 h .


16
c. S
f. $\mathrm{NCH}_{2} \mathrm{Ph}$
$\left\lvert\, \begin{aligned} & \mathrm{PhCH}_{2} \mathrm{NH}_{2} \\ & \left(\mathrm{CH}_{2} \mathrm{O}\right)_{n} \\ & \mathrm{HOAC}, \mathrm{MeOH}\end{aligned}\right.$


HOAc, MeOH


1) $\mathrm{N}_{2} \mathrm{H}_{4} \cdot \mathrm{H}_{2} \mathrm{O}$ KOH, TEG
2) $\mathrm{HClO}_{4}$
ether


a. $\mathrm{X}=\mathrm{S}$
d. $\mathrm{X}=\mathrm{NCH}_{2} \mathrm{Ph}$

These authors report that, after an aqueous workup, the crude product was distilled twice at $185^{\circ} \mathrm{C}$ under vacuum followed by recrystallization (hexanes) to afford the pure ketone 28d in a yield of 60\%. In our hands the yield was significantly lower (32\%). Following the aqueous workup the crude product was obtained as an orange oll in a yield of $\sim 80 \%$. Preliminary distillation at either 1 mm Hg or at $10^{-6} \mathrm{~mm} \mathrm{Hg}$ (diffusion pump) resulted in substantial decomposition of the product, although the second distillation generally proceeded without mishap. After dissolution in Skelly B, 28c precipıtated in spectroscopically pure form upon standing at $-10^{\circ} \mathrm{C}$.

Smıssman and Ruenitz ${ }^{92}$ report a procedure wherein the reaction was
performed at room temperature over 30 days with an excess of paraformaldehyde ( 8 equivalents) being employed. A varıation in this second procedure was actually employed in our work and was found to be more practical than either literature method. The reaction was carried out at reflux for 24 hours followed by the standard aqueous workup. The crude ketone was then digested in Skelly B for 30 mınutes. Decantation of the supernatant from the orange-brown residue, followed by removal of the solvent, provided the ketone as a spectroscopically pure white oil, which did not solidify upon standing. The yıeld for this varıation was 85\%, and the product in this form proved quite satisfactory for use in subsequent reactions.
N-Benzyl-3-thia-7-azabicyclo[3.3.1]nonan-9-one (27a) was prepared
from 16c by the method of Bailey and coworkers ${ }^{14}$. This reaction will be discussed later in more detail. Ketone 16c is commercially available (Aldrich Chemical Co., Milwaukee, WI); however, it is relatively expensive. It was found to be more economical to prepare ${ }^{48}$ it from l-methylpiperidin-4-one (16e) via the methyl lodide salt $\mathbf{1 6 g}$. Treatment of the quaternary ammonium salt with aqueous sodium sulfide afforded 16d in moderately large quantities, albeit in relatively low yields (32-53\%).


Heterocyclic bıcyclo[3.3.1]nonan-9-ones ketones have been reported to give geminal diols on treatment with strong acid. $5,15,41,107$ These diols are, of course, the result of the acid catalyzed addition of $\mathrm{H}_{2} \mathrm{O}$ across the carbonyl double bond. Diol 70d was obtained by treatment of ketone 28d in benzene or ether with $60 \%$ perchloric acıd. The most satisfactory procedure involved slow addition of the acid, as a 2-propanol solution, to a benzene solution containing the ketone. Upon vigorous agitation the diol salt precipitated as a white powder. Careful addition of the acid directly to either a benzene or ether solution resulted in the formation of a gummy orange semisolid which proved difficult to purıfy. Recrystallızation of the crude diol from isopropyl alcohol was straightforward while recrystallızation from methanol afforded the dimethoxy ketal 102a in low yield.


28d


A derivative of bıcyclic ketone 27 a was also synthesized. The oxime 108 was prepared by treatment of the ketone with hydroxylamine hydrochloride and sodium acetate in ethanol. Other than the hydrazones prepared in situ as intermediates in Wolff-Kıshner reductions, derivatives of heterocyclic bıcyclo[3.3.1]nonan-9-ones are relatively uncommon. ${ }^{3,10,71}$ By the same method the oxime (109a) of tetrahydro-thiapyran-4-one, was also prepared for comparison of the NMR spectra.

Hydroperchlorate 29d was obtained by a procedure similar to that described in the 11 terature ${ }^{16,92}$ wherein ketone $28 d$ was treated with hydrazine hydrate and potassium hydroxide in triethylene glycol (TEG). The crude amıne obtained from this Wolff-Kıshner reduction was not isolated in pure form but treated as crude material with perchloric acid to afford 29d as white crystals (mp $220-221^{\circ} \mathrm{C}$ ). The salt described in the literature preparation ${ }^{92}$ was not pure [mp $210-217^{\circ} \mathrm{C}$ (dec)], nor was It well characterized. 91 Hydroperchlorate 29 a was prepared from by a similar literature method. ${ }^{14}$

Ketone 28d was treated in with perchloric acid in boiling methanol to afford the dimethoxy ketal 102b. If the water was removed from the reaction mixture via the use of Molecular Sieve 3 A in a Soxhlet extractor, the reaction was found to proceed in a yreld of 69\%. While this process was recognized as being inherently dangerous due to potential formation of explosive methyl perchlorate, ${ }^{83}$ when the reaction was performed without the dryıng agent the yield was substantially reduced. Conversion of ketone 27a to ketal 102a was accomplıshed in a simılar way.



a. $X=S$
b. $\mathrm{X}=\mathrm{NCH}_{2} \mathrm{Ph}$



I6



109
a. $\mathrm{X}=\mathrm{S}$
b. $\mathrm{X}=\mathrm{CH}_{2}$

As will be discussed later, it proved desirable to obtain the tetradeuterated ketone $\mathbf{1 6 h}$. This compound was obtained by treating ketone 16 d with $\mathrm{K}_{2} \mathrm{CO}_{3}$ in $\mathrm{D}_{2} \mathrm{O}$. When the reaction mixture was heated to $100^{\circ} \mathrm{C}$ substantial decomposition of the starting material occurred as noted by the deposition of red elemental selenium along the walls of the flask. Performance of the reaction at $57^{\circ} \mathrm{C}$ proved satisfactory, although some decomposition was noted at this temperature.


$\left\lvert\, \begin{aligned} & \mathrm{PhCH}_{2} \mathrm{NH}_{2} \\ & \mathrm{HOAC} \\ & \mathrm{CH}_{2} \mathrm{O} \\ & \mathrm{MeOH}\end{aligned}\right.$

$\mathrm{OCH}_{3}$
103 a $\mathrm{x}=\mathrm{s}$ b $X=S e$


104 a. $X=S$
b. $X=S e$


110 a $\mathrm{R}=\mathrm{PhCH}_{2}$
b $\mathrm{R}=\mathrm{CH}_{3}$
c $\mathrm{R}=\mathrm{C}_{2} \mathrm{H}_{5}$
repeat the synthesis of the selenium-containing ketone 27 b , we initially (and rather inadvertantly) found that if ketone l6d was treated with an excess of benzylamine and acetic acıd (1.4 equivalents of each) the only product isolated was the novel tricyclic ketal 103a in a yield of $22 \%$ (relative to the amount of benzylamine). The structure of this rather complex molecule was deduced by a combination of spectroscopic techniques and then confirmed by a crystal structure.
the sulfur analog 27a by a simılar procedure. While attempting to repeat the synthesis of the selenıum-containing ketone 27b, we inıtially (and rather inadvertantly) found that, if ketone 16 was treated with an excess of benzylamine and acetic acid (1.4 equivalents each) the only product isolated was the novel tricyclic ketal 103b in a yreld of 22\% (relative to the amount of benzylamine). The structure of this rather complex molecule was deduced by a combination of spectroscopic techniques and then confirmed by a crystal structure.

Subsequently, it was found the a third product could be isolated from this reaction mixture. In a reaction where 16 d was treated with benzylamine and acetic acıd (2 equivalents each) along with an excess of paraformaldehyde in methanol, the precipıtation of a white solid from the reaction mixture was noted. Thıs was filtered and recrystallızed (2-propanol) to afford the spiro ketone 104b in a yield of $1.7 \%$. Removal of the solvent from the reaction mixture, followed by partitioning of the reaction mixture between equal amounts of ether and water, permitted the separation of the tricyclic ketal 103b from the bicyclic ketone 27b. The bulky ketals apparently are poorly soluble in water under the mildiy acidic ( pH 6.0-6.5) conditions of the extraction. Ketal 104b then crystallızed from the ether layer upon standing. The bicylic ketone 27 b was then 1 solated from the aqueous phase by the method described by Thompson. 107 Repetition of the reaction under the original conditions described by Thompson afforded the tricyclic ketal 103b in a yleld of $14.3 \%$ while the 3-selena-7-azabicyclo[3.3.1]nonan-9-one 27b was isolated in a yield of $28.5 \%$ (crude).

In similar reactions the sulfur analogs of these products (27a, 103a, 104a) were obtained. Under the original conditions of the
reaction, ${ }^{14}$ treatment of $\mathbf{1 6 c}$ with benzylamıne ( 1 equivalent), acetic acid (1.5 eqivalents), and paraformaldehyde ( 8 equivalents) in methanol afforded the tricyclic ketal 103a and the bicyclic ketone 27a in a yield of $5.9 \%$ (relative to benzylamine) and $33.7 \%$, respectively. If the reaction was carried out with two equivalents of benzylamine and a slight excess acetic acıd, the yields of ketal l03a increased but were quite variable. In one experıment 103 a was isolated in a yield of $45 \%$ (as the only product isolated in pure form), however, typıcal yıelds for this product were 12-35\%. Maximum yield for spıro compound 104a was obtained when a methanolic solution of ketone 16 c and benzylamine (2 equivalents) was added dropwise to a boiling suspension of paraformaldehyde and acetic acid (2.2 equivalents). In this reaction the spiro ketone 104b was obtained in a yield of $8.6 \%$, while ketal $103 a$ and bıcyclic ketone 27a were obtained in yields of $10 \%$ and $48 \%$, respectively.

Attempted preparations of analogous ketals 103d,e were not successful under the conditions described. While there was evidence that the ketals are formed, separation by fractional crystallization or by preparative thin layer chromatography was not achleved. However, ${ }^{13} \mathrm{C}$ NMR spectra of the crude ether extracts (obtained during the workup)


were found to have peaks in the range of $90-100 \mathrm{ppm}$. From our own experience, peaks in this range are due to carbons singly-bonded to two oxygens, l.e., ketals and geminal diols. The primary impurity of these mixtures (in fact, the primary constituent) was the hexahydrotriazine 110a. Other evidence for the formation of 110 in these reaction mixtures was obtained in a reaction where, under essentially the same conditions as the above Mannıch reactions but in the absence of a ketone substrate, ll0a was obtained in pure form in a yield of 57.3\%. Hexahydrotriazine ll0a was also prepared by a procedure similar to that described in the literature ${ }^{34 a}$ from benzylamine and aqueous formaldehyde in yields of 93\%. Repetition of this latter reaction employing methanol as a cosolvent afforded ll0a in a slightly improved yield of $95 \%$.

It interesting to note the similarity of the ring junctures in tricyclic ketals l03a,b with those of the central three rings of morphine. This is most effectively visualızed in 109', the enantiomer of 109. Not withstanding the different conformation of the cyclohexene rings of morphine (as compared to the piperidine and l,3-oxazine rings of 109') and the difference in heteroatom content and placement, it can

be seen that the central ring junctures are quite analogous. This three-ring juncture is also observed in a few opiate isosteres (see sulfonium salt above) examined for analgesic activity. ${ }^{61}$

## Mechanistic Considerations

The formation of the novel tricyclic ketals $103 \mathrm{a}, \mathrm{b}$ and spiro ketones l04a,b can be explained in terms of essentially two different mechanistic pathways, which, for convenıence, we will call the stepwise iminium ion route (A) and the nucleophılıc displacement route (B). As shall be discussed, both pathways are initiated by an amınoalkylation, but differ in the processes required to achieve the cyclization.





The mechanism commonly cited ${ }^{105,110}$ in the literature for the Mannich reaction involves the initial generation of 111 (Scheme I). Formation of hexahydrotriazine lloa can be easily envisioned simply by the sequential reaction of this species with additional amine, and formaldehyde (Scheme II). Cyclıc triamınes and diamines (such as 110, 112, 114) are known to be formed via the Mannich reaction under basic conditions, but are reportedly unstable under acidic conditions, 105,110 affording the reversible reactions to iminium ions 111,113 , and 115.

$$
\begin{aligned}
& \text { Scheme I ( } \mathrm{R}=\text { Benzyl) }
\end{aligned}
$$

Scheme II (R = Benzyl)



110

However, the reaction conditions for our experiments were only mildy acidic ( pH 6.0-7.0). The mild acidity may be the major factor that permitted the isolation of 110a. Presumably, all three imınıum species are present to some extent at equilıbrium. The crucial question here is which species (111, 113, 115) is the principle alkylating species and by what pathway does it lead to the cyclızed products. As shall be shown, the products found in our work can be conceived as being formed by either route A or B.

Presuming the literature mechanism ${ }^{46,71}$ is correct, alkylation of enol 37 by 111 will generate monoalkylated intermediate ll6a (Scheme III). Cyclization to afford the bıcyclic ketone 27 (Scheme IV-A) proceeds by the route shown in Scheme V-A. Attack on 118a (1dentical to 116a) by formaldehyde and subsequent dehydration affords the 1 minium $10 n$ 119. Cyclization then ensues by a second Mannich-type aminoalkylation to give 120a (Identical to 27).

Scheme III ( $\mathrm{R}=$ benzy1)


Scheme IV - A (R = benzyl)


The presence of the 3-hetera-7-azabicyclo[3.3.1]nonane moiety with a quaternary carbon in the ketals 103 suggests that these compounds arise from dialkylated ketone ll7a (Scheme III). A stepwise cyclization similar to that described previously affords the substituted

3-hetera-7-azabicyclo[3.3.1]nonan-9-one 120b (Scheme IV-A, 118b to 120b). The formation of the l,3-oxazine ring can then be envisioned (Scheme V-A) from 121 (ıdentical to 120b) via the formation of iminıum ion 122. Subsequent nucleophilic attack by the oxygen affords a carbocation (123, stabilized by electron delocalization from oxygen), which is trapped by methanol to give the ketal functionality as in 103.

Scheme V-A ( $=$ Benzyl)



If one presumes that the initial alkylating species in Scheme III (page 68) is 113 or 115 an alternative mechanistic pathway is possible. By this route, the formation of bicylic ketones 27 (Scheme IV-B) arises
from 124a or 124b. Protonation at $N(2)$ followed by nucleophilic displacement of RZNH by the transition state enol generates the bicyclic ketone 120a (identical to 27). Cyclization of 124c,d by a similar route affords the substituted analogs 120c,d The 1,3-oxazine ring can then be envisioned as being formed (Scheme V-B) from 125 or 125 via protonation [at $N(2)$ ] and subsequent nucleophilic displacement of RZNH to give carbocation 123. As before, entrapment by methanol affords 109.

Scheme IV-B (R = Benzy1)


124


H
a. $R^{\prime}=H, Z=H(=116 b$, Scheme III)
b. $\mathrm{R}^{\prime}=\mathrm{H}, \mathrm{Z}=\mathrm{CH}_{2} \mathrm{NRH}(=116 \mathrm{c})$
c. $\mathrm{R}^{\prime}=\mathrm{CH}_{2} \mathrm{NR}-\mathrm{Z}, \mathrm{Z}=\mathrm{H}(=117 \mathrm{~b})$

d. $\mathrm{R}^{\prime}=\mathrm{CH}_{2}^{2} \mathrm{NR}-\mathrm{Z}, \mathrm{Z}=\mathrm{CH}_{2} \mathrm{NHR}(=117 \mathrm{c})$


120
a. $R^{\prime}=H(=27)$
c. $\quad \mathrm{R}^{\prime}=\mathrm{CH}_{2} \mathrm{NRCH}_{2} \mathrm{NRH}$
d. $\mathrm{R}^{\prime}=\mathrm{CH}_{2} \mathrm{NRCH}_{2} \mathrm{NRCH}_{2} \mathrm{NRH}$

Scheme V-B (R = Benzyl)


$\begin{array}{ll}-\mathrm{N}-\mathrm{Z} & \frac{125}{\text { a. } Z=\mathrm{H}(=120 \mathrm{c})} \\ & \text { b. } Z=\mathrm{CH}_{2} \mathrm{NRH} \quad(=120 d)\end{array}$
$\begin{array}{ll}-\mathrm{N}-\mathrm{Z} & \frac{125}{\text { a. } Z=\mathrm{H}(=120 \mathrm{c})} \\ & \text { b. } Z=\mathrm{CH}_{2} \mathrm{NRH} \quad(=120 d)\end{array}$



Formation of the hexahydropyrimidine rings in 104 can be envisioned by either mechanistic route. By the stepwise imminium route (Scheme VI-A), the formation of the hexahydropyrimidine ring from 118 (identical to 116a and 117a from Scheme III) can be visualized as occurring by formation of imminium ion 119 and subsequent attack by RNH $_{2}$ to afford diamine 126. Cyclization then ensues by formation of 127 followed by aminoalkylation of the enol 128. The second hexahydropyrimidine ring could arise from ll8b by two such ring formations or by aminomethylation of 129 a to afford $\mathbf{1 2 9 b}$ and subsequent ring formation. Envisioned in this manner, the reaction pathway in Scheme VI-A would be competitive with the reaction pathway described in Scheme IV-A (and ultimately with that is Scheme V-A).

Scheme VI-A




The nucleophilıc displacement pathway to form the hexahydropyrimidine rings (Scheme VI-B) would be competitive with the routes described in Scheme IV-B. However, to achieve cyclization by this mechanism the
initial alkylating species (Scheme III) should be 115. The resulting intermediate 130 (Scheme VI-B) would then be protonated [at N(3)] with cyclization occurring by displacement of $\mathrm{R}-\mathrm{NH}_{2}$. As before, the formation of the second hexahydropyrimidine ring could be the result of the formation of two such rings from $130 b$ or by the sequential aminomethylation of 132 a to afford 132 b followed by cyclization.

130
a. $R^{\prime}=H$
b. $\mathrm{R}^{\prime}=\mathrm{CH}_{2} \mathrm{NRCH}_{2} \mathrm{NRCH}_{2} \mathrm{NHR}$

132 a. $R=H$

$$
\text { b. } \mathrm{R}=\mathrm{CH}_{2} \mathrm{NRCH}_{2} \mathrm{NRCH}_{2} \mathrm{NHR}
$$

104

We have no evidence that conclusively favors either mechanism for the cyclization to afford the products observed in these reactions. However, we do note that Smissman and Ruenitz ${ }^{91}$ have reported the isolation of $24 a$ and $133 a$ from a reaction mixture derived from the treatment of $N$-methylplperidin-4-one with methylamine, acetic acid and


a. $R=H$
b. $R=-\mathrm{O}_{2} \mathrm{NC}_{6} \mathrm{H}_{4} \mathrm{~S}$
paraformaldehyde. The product mixture by GC-MS analysis consisted of 24a (58\%) and 133a (42\%). Separation was achieved by treatment of the mixture with o-nitrophenylsulfenyl chloride which gave both $\mathbf{2 4 a}$ and 133b. An aqueous mixture of these latter compounds was separated by extraction (chloroform). Treatment of 133b with ethereal HCl then afforded pure 133a.

Moreover, it has been reported that diaminomethylene derivatives are the initially formed products in the Mannıch reaction of secondary amınes with formaldehyde. 105 Subsequent cleavage by acid then led to the formation of iminium ions. Furthermore, l,3,5-trialkylhexahydro-1,3,5-triazines 110 have been treated with 134 under acıdic

$\begin{gathered} \mathrm{EtO}_{2} \mathrm{CCH}_{2}-\mathrm{X} \\ 134 \end{gathered}$			
a. $\mathrm{X}=\mathrm{CO}_{2} \mathrm{Et}$			$\underline{135}$
b. $\mathrm{X}=\mathrm{CN}$	$\frac{110}{\text { a. } \mathrm{R}=\mathrm{CH}_{2} \mathrm{Ph}}$		$\mathrm{X}=\mathrm{CO}_{2} \mathrm{Et}, \mathrm{CN}$
	b. $\mathrm{R}=\mathrm{CH}_{3}$		$\mathrm{R}=\mathrm{CH}_{2} \mathrm{Ph}, \mathrm{CH}_{3}$
	c. $\mathrm{R}=\mathrm{CH}_{3} \mathrm{CH}_{2}$		$\mathrm{H}_{3} \mathrm{CH}_{2}$


conditions to afford 3,7-diazabicyclo[3.3.1]nonan-2,6-diones 135. ${ }^{25}$ The authors reported that the reaction proceeds with either stoichiometric or catalytic amounts of acid and that the initially formed intermediate is the hexahydropyrimidine 136.

Structural and Conformational Analysis

The determinations of the identity and conformations of ketones 17d,18d, diamines 30b, 31b and hydroperchlorates 32b, 33b were based upon the comparison of their ${ }^{13} C, 1_{H}$ and ${ }^{15} N$ NMR spectra as well as upon X-ray crystal structures for $18 \mathrm{~d}, \mathbf{3 2 b}$ and 33 b . Since each ketone isomer 17d and 18d had only four aliphatic signals in the ${ }^{13} \mathrm{C}$ NMR spectrum, $a$ trans arrangement of the o-chlorophenyl substituents relative to each


17d


30b


32b

$$
\mathrm{Ar}=\mathrm{O}-\mathrm{ClC}_{6} \mathrm{H}_{4}
$$



18d


31b


33b

$$
\mathrm{Ar}=\mathrm{o}-\mathrm{ClC}_{6} \mathrm{H}_{4}
$$

other for either 1 somer was precluded. Thus, the configurational and conformational possibilities for these compounds were :



R BC


$$
R, R=0 \quad \text { or } R=H
$$

The crystallographic analysis of l8d indicated that this ketone possessed the structure and conformation indicated for the $B C$ form in the solid state. Since the configuration about the aryl-substituted
evidence suggests that the predominant conformations of $\mathbf{1 7 d}$ and $\mathbf{3 0 b}$ are CC. The arguments for this conclusion follow. Ketones 17c, 18c, 66a and 67a; the analogous amines 30a, 31a, 105 and 106; and the hydroperchlorates $32 \mathrm{a}, 33 \mathrm{a}$ served as the primary model isomeric systems in this study. ${ }^{73,106}$ The allphatic ${ }^{13} \mathrm{C}$ spectral data for the ketones are summarized in Table $X$ while that for the amınes are summarized in Table XI. Table XII lists the aliphatic ${ }^{13} \mathrm{C}$ NMR data for hydroperchlorates 33 and 34.





31a

33a


ring is locked, this BC conformation was also presumed to be the predominant species in solution. The significant contribution of the BB conformer was dismissed from consıderation as the benzyl group on $N(7)$ was probably not bulky enough to force this conformation. Since a trans arrangement of the 0 -chlorophenyl substituents had already been precluded, the structure for 18 d mandated that the aryl-substituted ring in the isomeric ketone l7d be in a chair conformation. Determination of the exact conformation of 17d (CC or CB) by way of crystallograph1c examination was not possible as suitable crystals could not be obtained. The determination of the predominant conformation of this ketone in solution via NMR analysis will be discussed later.

Given the established configurations of ketones 17 d and 18d, the structures of isomeric amines 30b and 31b, obtained via Wolff-Kishner reduction of the respective ketones, were examined. While epimerization of $C(2,4)$ might be conceivable under the strongly alkaline and hot $\left(195^{\circ} \mathrm{C}\right)$ conditions of the reduction, this was not found to be the case. Crystal structures of the salts (32b, 33b) derived from 30b and 31b indicated that the relative stereochemistry of the aryl-substituted piperidine rings remained unchanged from that found for the ketones. The crystal structure of hydroperchlorate 32 b (derived from 30b) indicated chair conformations for both rings in this salt. Hydroperchlorate 33b, derived from amine 3lb, was found to adopt the BC conformation with the aryl-substituted ring in the boat form.

After consideration of the crystal structures of ketone 18 d and salt 33b, the $\operatorname{BC}$ conformation of amine 31 b could be assigned with some degree of confidence. The question remained as to the conformations ( $B C$ or $C C$ ) of ketone $17 d$ and amine 30b. A review of the spectroscopic


105


106

Carbon-13 NMR spectroscopy has been used quite effectively in the conformational analysis of several 3-hetera-7-aza- and 7-azabicyclo[3.3.1]nonane systems. $14,46,47$ Berlin and co-workers ${ }^{14}$ noted that, in a series of 3-hetera-7-azabicyclo[3.3.1]nonan-9-ones, the ${ }^{13}$ C NMR shifts for the carbonyl carbons [ $C(9)$ ] in systems where both rings were in the charr form were usually downfield of those in systems where one ring was in the boat form. For example, the carbonyl peak ( 217.2 ppm) in ketone $17 a^{47}$ was observed downfield of carbonyl peaks in $18 a(212.7 \mathrm{ppm})^{47}$ and


17


18a


66b
a. $\mathrm{X}=\mathrm{CH}_{2}, \mathrm{Ar}=\mathrm{Ph}$
b. $X=0,{ }^{2} \mathrm{Ar}=\mathrm{O}-\mathrm{ClC}_{6} \mathrm{H}_{4}$

66b (211.5 ppm). 5 Thıs trend may not be diagnostic in all cases, however. The carbonyl carbon in 66a (with the piperidine ring in the boat) had a chemıcal shift of 212.6 ppm (Table X) while the analogous
carbon in isomer 67 (with the cyclohexane ring in the boat) occurred at 215.3 ppm. The shift for $C=0$ in ketone 17 c (presumed to be CC, see Table $X$ ) was reported as occurring slightly upfield (by 0.5 ppm ) of that for isomeric ketone 18c (presumed to be CB). Moreover, the shift of this carbon in 17b (known to be CC from a crystal structure ${ }^{5}$ ) was reported at 209.7 ppm . The trend was certainly not diagnostically conclusive in ketones $17 d$ and $18 d$ synthesized in this project. The difference in the positions (212.0, 212.2 ppm ) of the $\mathrm{C}=0$ was quite small, which might suggest that these are BC and CB conformers. However, as the chemical shift of the carbonyl is apparently not a sound criterion for the assignment of conformations in these systems, a CC cannot be ruled out.

In amınes 31b and 30b, however, a significant difference exists in the ${ }^{13} C$ NMR shifts for $C(9)$ (see Table XI). The shift for this carbon in 30 b was found to be 11.3 ppm downfield of that in 31b. This suggested that these carbons are in quite different magnetic environments, and since 31 b is presumed to be $B C$, this was considered strong evidence for a CC conformation for 30b. This trend was also observed in the ${ }^{13}$ C NMR spectra of the hydroperchlorates $32 b$ and $33 b$ derived from these amines (see Table XII) where the shift for $C(9)$ in the CC salt 32 b occurred downfield of that in the BC salt 33 b . Reinforcement for this conclusion could be seen in the reported shifts for this carbon in 1 somerıc amınes 30a, 3la and 105, 106 (see Table XI). The chemical shift ${ }^{106}$ for $C(9)$ in CC isomer 30 was downfield of that in BC isomer 3la by 8.1 ppm while the difference in BC. and CB isomers 105 and 106 was only $0.8 \mathrm{ppm}($ see Table X$)$. Similarly, $C(9)$ for the $C C$ salt 32a (see Table XII) was also downfield by 5.5 ppm from that for the BC

TABLE X
${ }^{13} C^{\text {NMR }}{ }^{\mathrm{a}}$ CHEMICAL SHIFTS ${ }^{\mathrm{b}}$ OF ISOMERIC 2,4-DIARYL-7-HETERA-3-AZABICYCLO[3.3.1]NONAN-9-ONES


17


18



	$C(1,5)$	$C(2,4)$	$C(6,8)$	C(9)	other
$17 c^{c, d}$	51.5	63.8	20.9	212.9	
$18 c^{\text {c,d }}$	53.9	63.4	29.0	213.4	
17d	50.9	62.1	55.5	212.2	62.5 ( $\mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{H}_{5}$ )
18d	55.2	59.0	58.8	212.0	$61.0\left(\mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{H}_{5}\right)$
$66 a^{e}$	$60.4{ }^{\text {f }}$	$59.7{ }^{\text {f }}$	46.2	212.6	24.2 [C(7)]
$67 a^{e}$	60.5	63.8	41.2	215.3	38.4 [C(7)]

a. Aliphatic and carbonyl regions only.
b. Downfield from $\left(\mathrm{CH}_{3}\right)_{4} \mathrm{Si}$ in ppm ( $\mathrm{DCCl}_{3}$ ).
c. Reference 106.
d. Position numbers changed from systematic numbering to aid comparison.
e. Reference 73.
f. Assignment may be reversed.

TABLE XI
${ }^{13} \mathrm{C} \mathrm{NMR}^{\mathrm{a}}$ CHEMICAL SHIFTS ${ }^{\mathrm{b}}$ OF ISOMERIC 2,4-DIARYL-7-HETERA-
3-AZABICYCLO[3.3.1]NONANES

30    31 $\frac{30,31}{\text { a. } \frac{\mathrm{Xe}}{\mathrm{Se}} \frac{\mathrm{Ar}}{\mathrm{p}^{-\mathrm{ClC}_{6} \mathrm{H}_{4}}}}$   b. $\mathrm{NCH}_{2} \mathrm{Ph} \quad \mathrm{O}-\mathrm{ClC}_{6} \mathrm{H}_{4}$				105	
	C ( 1,5 )	C $(2,4)$	C $(6,8)$	C(9)	other
$30 a^{c, d}$	30.4	64.0	17.7	35.0	
$31 a^{\text {c,d }}$	33.8	60.9	25.1	26.9	
30b	31.5	61.6	54.9	35.9	64.3 ( $\mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{H}_{5}$ )
31b	36.1	56.1	58.8	24.6	62.9 ( $\mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{H}_{5}$ )
$105{ }^{\text {e }}$	42.5	55.9	45.7	28.5	24.5 [C(7)]
$106{ }^{\text {e }}$	38.2	64.3	41.5	30.3	36.1 [C(7)]

a. Aliphatic region only.
b. Downfield from $\left(\mathrm{CH}_{3}\right){ }_{4} \mathrm{Si}$ in ppm ( $\mathrm{DCCl}_{3}$ ).
c. Reference 106.
d. Position numbers changed from systematic numbering to aid comparison.
e. Reference 73.

TABLE XII
${ }^{13}{ }^{1}$ NMR a CHEMICAL SHIFTS ${ }^{\text {b }}$ OF ISOMERIC 2,4-DIARYL-7-HETERA-3-AZABICYCLO[3.3.1]NONANE HYDROPERCHLORATES

a. Aliphatic region only.
b. Downfield from $\left(\mathrm{CH}_{3}\right)_{4} \mathrm{Si}$ in ppm ( $\mathrm{DMSO}-\mathrm{d}_{6}$ ).
c. Reference 106.
d. Position numbers changed from systematic numbering to ald comparison.
salt 33a. Spartiene (2a) and $\alpha$-isospartiene (2e) are also isomeric systems with the two center rings in $B C$ and $C C$ conformations, respectively. The shift for the bridge carbon $C(8)$ in $B C$ spartiene is reported ${ }^{20}$ to be upfield of that in CC $\alpha$-isospartiene by 9.1 ppm . Furthermore, the relative ${ }^{13} \mathrm{C}$ NMR shifts of this carbon in $2 a$ ( $B C, 27.6$ $\mathrm{ppm})$ and $2 \mathrm{e}(\mathrm{CC}, 36.7 \mathrm{ppm})$ were quite similar to those observed in the isomeric bispidines 30b (CC, 35.9 ppm ) and 31b (CB, 24.6 ppm ).


Additional evidence could observed in the ${ }^{15} \mathrm{~N}$ NMR spectra of isomeric ketones 17c, 18c and isomeric amines 30b, 31b. The ${ }^{15} \mathrm{~N}$ NMR spectral data are given in Table XIII. It was noted that upon reduction of BC 18d to amine BC 31b, the peak for $N(3)$ was shifted upfield by 7.7 ppm. The greater steric interactions between a methylene group at $C(9)$, as opposed to a carbonyl, with $N(3)$ could account for this upfield shift. In addition, the position of $N(7)$ was only shifted upfield by 0.2 ppm. This was not unexpected as $N(7)$ in the chair ring suffers no transannular steric interaction with the group at $C(9)$, while $N(3)$ in the boat ring does suffer this type of interaction. Upon reduction of

TABLE XIII
$15 \mathrm{~N}^{\mathrm{a}}$ NMR CHEMICAL SHIFTS ${ }^{\mathrm{b}}$ OF ISOMERIC 3-HETERA-7-AZABICYCLO[3.3.1]NONANE DERIVATIVES

a. In ppm downfield from $\mathrm{NH}_{3}(1)$ using $8.0 \mathrm{M}^{15} \mathrm{NH}_{4} \mathrm{NO}_{3}$ (19.73 ppm) as a
secondary reference. Samples run at ambient temperature.
b. Amines 17, 18, 30, and 31 run in $\mathrm{DCCl}_{3}$. Salts 32, 33 run in DMSO- ${ }_{6}$.
c. Assignments may be reversed.
d. Reference 106.
e. Position numbers changed from systematic numbering to aid comparison.

17d to 30b, however, both $N(3)$ and $N(7)$ experienced only small changes in chemical shift ( 0.6 ppm upfield and 0.5 ppm downfield, respectively). Thus, these nitrogens apparently experienced only small changes in their magnetic environment. This was thought to be rather strong evidence that: (1) there was no substantial change in the conformation of the ring system upon reduction; and (2) nitrogens $N(3)$ and $N(7)$ suffer no significant transannular steric interaction with the group at $\mathrm{C}(9)$. A CC conformation for ketone 17 d and amine 3lb best explained these observations.

A rather surprising observation was made in the ${ }^{15} \mathrm{~N}$ NMR spectrum of hydroperchlorate 33b. The crystal structure for this compound clearly indicated that the tertiary nitrogen $N(7)$ was protonated in the solid state. The ${ }^{15} \mathrm{~N}$ NMR spectrum, however, affords a chemical shift for $\mathrm{N}(7)$ that is identical to that for $N(7)$ in ketone 18d and almost identical (only 0.2 ppm downfield) to that observed for this nitrogen in the amine precurser 31b. On the other hand, the peak for $N(3)$ is shifted downfield by 4.1 ppm upon protonation ( $\mathbf{5 0 . 5} \mathrm{ppm}$ in amine $\mathbf{3 l b}$ versus 54.6 ppm in salt 33b). This suggests that, in solution, secondary nitrogen $N(3)$ is protonated while $N(7)$ exists in an unprotonated state. For


33b


33b'


33b"

$$
\mathrm{Ar}=\mathrm{O}-\mathrm{ClC}_{6} \mathrm{H}_{4}
$$

comparison, $N(3)$ is shifted downfield by 3.3 ppm upon protonation in going from the selenium analog 3la to 33a.

Additional evidence that protonation had occurred in solution at the secondary nitrogen rather than at the tertiary nitrogen in salt 33b was the observation of coupling between an amino proton $\mathrm{H}(3)$ and the vicinal protons $H(2,4)$ in the proton NMR. In addition to peaks readily assignable to other alıphatic and aromatic protons, this spectrum exhıbited a large doublet ( $2 \mathrm{H}, \mathrm{J}=8.3 \mathrm{~Hz}$ ) at $\delta 5.00$, which was assigned to $H(2,4)$; and two broad singlets (1 H each) at $\delta 8.10$ and $\delta 9.84$, assigned to the amino protons. Selective decoupling of the signal at ©8.10 resulted in the collapse of the signal at $\delta 5.00$ to a singlet, but no detectable change in the broad singlet at $\delta \mathbf{9 . 8 4}$. Irradiation of the broad singlet at $\delta 9.84$ resulted in no detectable change in the peaks at $\delta 8.10$ and $\delta 5.00$.

Two possible structures that are consistent with the data observed in the ${ }^{l_{H}}$ NMR spectrum are $33 b^{\prime}$ and $33 b^{\circ}$. The size of the coupling constant at $\delta 5.00$ is suggestive of an axial $N-H$ bond. However, as previously mentioned, the crystal structure of this salt clearly shows that $H(3)$ is 1 n an equatorial position with protonation to give the salt having occurred at $N(7)$ (as in structure $33 b$ ). It would seem unlikely an axial $N-H$ bond (as in $33 b^{\prime}$ ) would predomınate in solution (in spıte of atomic inversion at $n i t r o g e n$ ) when an equatorial $N-H$ bond is observed In the solid state, therefore structure $33 b^{\prime}$ did not seem tenable. In contrast, structure $33 b^{\prime \prime}$ fits the observations in the $1_{H}$ NMR and ${ }^{15} N$ NMR spectra quite well. The difference in structure in solution (33b") compared to that found in the solid state (33b) might arise from the enhanced solvation of the positive charge by the polar solvent (DMSO)
that is possible when the charge is at the peripheral nitrogen [N(3)] (1.e. 33b"). We have no explanation as to why tautomer 33b is the observed species in the solid state, other than to note that in this tautomer, the positive charge is more effectively "masked" in the cavity between the rings of the molecule and this might be a factor in the packing forces operating in the solid state.

Two-dimensional heteronuclear-correlated (HETCOR) $\delta\left({ }^{13} \mathrm{C}\right)-\delta\left({ }^{1} \mathrm{H}\right)$ NMR spectra ${ }^{35}$ were obtained for the aliphatic carbons and protons in 17d, 18d, 30b, 31b, 32b and 33b. These HETCOR NMR spectra supply direct information regarding the connectivities of protons and carbons, thereby making peak assignments in the ${ }^{13} \mathrm{C}$ and ${ }^{l_{H}}$ NMR spectra much more certain. The HETCOR spectrum 18d (Figure 1) will serve as an example. The ${ }^{13} \mathrm{C}$ NMR spectrum of the region of interest (52-65 ppm) is plotted along the horizontal axis of the $H E T C O R$ spectrum while the appropriate region ( $\delta 2.1-6.0$ ) of the proton spectrum $1 s$ plotted along the vertical axis. A vertical line taken from a peak on the HETCOR spectrum established which peak in the carbon spectrum correlates with a given peak in the HETCOR while a horizontal line established the correlation to a peak in the proton spectrum. Thus, in the HETCOR spectrum of 18 d , the peak labelled "A" correlates with the carbon peak at 59.0 ppm and with the proton peak at $\delta 5.50$. This indicates that the proton from which the signal at $\delta 5.50$ arises $1 s$ bonded to the carbon giving the peak at 59.0 ppm . In a simılar fashion, the overlapping singlet and doublet at $\delta 2.55$ in the proton spectrum were easily determined to arise from the axial (upfield) protons connected to the carbons responsible for the ${ }^{13} \mathrm{C}$ signals at $58.8[C(6,8)]$ and $55.2 \mathrm{ppm}[C(1,5)]$.


Figure 1. HETCOR NMR Spectrum of 18d

Proton NMR has been effectively employed to determine the conformational preferences of heterocyclic ${ }^{46}$ and carbocylic ${ }^{66,74}$ bicyclo[3.3.1]nonane derivatives, usually by examınation of the coupling constants. Unfortunately, compounds 17d, 18d, 30b, 31b, 32b and 33b all afforded proton spectra characterized by relatively broad peaks for all ring protons. This broadening effectively obscured most vicinal coupling constants. However, the geminal couplings were usually quite pronounced, typıcally on the order of $10-12 \mathrm{~Hz}$.

One interesting aspect of the proton spectra for $\mathbf{1 7 d}, \mathbf{1 8 d}, \mathbf{3 0 b}$ and 3lb was the observation that the signals for the amıno protons in 18d and $31 b$ were upfield relative to those in $17 d$ and $30 b(\delta 1.61$ and 1.18 versus 4.70 and 4.44 , see Table XIV). Moreover, these peaks in amines (30b and 31b) with a 9-methylene group, were upfield of those in the ketones (17d and 18d) from which they were derived. Thıs is likely a manifestation of the greater steric interaction between the group at the 9-position and the $N-H$ in the structures with the aryl-substituted piperidine ring in the boat configuration (as opposed to when this ring is in the chalr), as well as the greater transannular interaction of the 9-methylene protons with the $\mathrm{N}-\mathrm{H}$ group over that of the ketone. This trend may be of some diagnostic use in determining the configurations of stereochemically-fixed plperidine rings in 3-hetera-7-aza- or 7-azabicyclo[3.3.1]nonane derıvatives as it could also be observed in the shifts of ketone 1 somers $17 \mathrm{c}, 18 \mathrm{c}$, amıne 1 somers $30 \mathrm{a}, 31 \mathrm{a}$, and in other systems (Table XIV).

Ketone 28d has been reported to exist predominantly in the CC conformation in solution. ${ }^{32}$ Our data did not afford complete agreement
$1_{\text {H NMR CHEMICAL SHIFTS }}{ }^{\text {a }}$ FOR N-H IN SELECTED $3-$ HETERA-7-AZABICYCLO[3.3.1]NONANE DERIVATIVES


a. In ppm downfield from $\left(\mathrm{CH}_{3}\right){ }_{4} \mathrm{Si}$. All samples run in $\mathrm{DCCl}_{3}$.
b. Reference 5 .
c. Reference 106.
d. Reference 63.
e. Reference 73.
with this conclusion. The ${ }^{13}$ C NMR spectrum of 28d had only three alıphatıc peaks (46.7, 58.0 and 61.1 ppm, see Table XV) assignable to the bridgehead $[C(1,5)]$, ring methylenes $[C(2,4,6,8)]$ and benzylic carbons. The ${ }^{15} \mathrm{~N}$ NMR spectrum exhibited only one peak ( 39.2 ppm ). However, there was nonequivalence visible in the upfield signal of the $1_{H}$ NMR. Thıs signal (at $\delta 2.76$ and 2.78) was two doublets $[J=10.5$ and $10.7 \mathrm{~Hz}, 4 \mathrm{H}$, assigned to $\mathrm{H}(2,4,6,8) \mathrm{ax}]$. The downfield signal at $\delta 3.00$ $(4 \mathrm{H})$ was a broadened doublet $(J=10.7 \mathrm{~Hz})$ with no fine structure. The upfield signals did not display the classic symmetry of an $A B$ quartet. Rather, the relative peak heights of the two upfield doublets suggested that the overall spin system for the peaks at $\delta 2.76,2.78$ and 3.00 consisted of two separate upfield $A B$ quartets with the downfield signals being nearly coincident. This might indicate the substantial contribution of a BC conformer. As discussed in the first chapter, labile 3,7-diazabicyclo[3.3.1]nonan-9-ones often exhibit $B C \underset{\leftarrow}{\leftrightarrows}$ CB or $\mathbf{C C} \underset{\mathrm{CB}}{ }$ equilibria in solution.


28d (CC)


27d (BC)

Ketones $27 a, b$ are known to exist in the $B C$ conformation in the solid state and predominantly as the BC in solution. $13,14,107$ HETCOR NMR spectra of these compounds exhibited a rather interesting anomaly. While the cardons alpha to selenium or sulfur $[C(2,4)]$ afford the most

TABLE XV

> 13 C AND ${ }^{1} \mathrm{H}$ NMR CHEMICAL SHIFTS OF 7-BENZYL-3-BETERA 7 -AZABICYCLO[ 3.3 .1$] N O N A N-9-O N E S ~$


27a. $x=S$
b. $\mathrm{X}=\mathrm{Se}$

	27a	27b	28d
$C(1,5)$	47.1 ppm	46.2 ppm	46.7 ppm
$C(2,4)$	34.8	25.5	$58.0^{\text {c }}$
$C(6,8)$	58.4	59.0	$58.0^{\text {c }}$
C(9)	212.8	213.9	214.0
$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{2}$	61.4	61.5	61.1
H(1,5)	2.80	2.73	2.52
H( 2,4 ) ax	3.12	3.23	$2.76{ }^{\text {d }}$
H( 2,4 ) eq	3.23	3.23	3.00
H( 6,8$) \mathrm{ax}$	2.71	2.71	$2.78{ }^{\text {d }}$
H( 6,8$)$ eq	3.08	3.10	3.00
$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{2}$	3.57	3.58	3.53

a. All samples run in $\mathrm{DCCl}_{3}$. See Chapter III for coupling constants.
b. Proton spectrum correlated with carbon spectrum in $27 a, b$ via BETCOR NMR spectrum.
c. One peak for $C(2,4,6,8)$
d. Assignment may be reversed.
upfield peaks in the ${ }^{13} C$ NMR spectra of these compounds, the protons (both axial and equatorial) alpha to $S$ or $S e[H(2,4) a x$ and $H(2,4) e q]$ are downfield of the protons alpha to nitrogen $[H(6,8) a x$ and $H(6,8) e q]$ in the ${ }^{l_{H}}$ spectrum. These observations in the ${ }^{l_{H}}$ NMR spectra are the opposite of what simple electronegativity or electron-cloud polarization arguments would predict. As a simple experiment to gather information concerning the ${ }^{l_{H}}$ and ${ }^{13} C$ NMR shielding/deshıelding characteristics of the selenıum atom, the tetradeuterated species 16 h was synthesized from 16d. The ${ }^{1_{H}}$ and fully-decoupled ${ }^{13} \mathrm{C}$ NMR spectra of the deuterated compound 16 h were then compared with the spectra of 16 d . Upon deuteration, the downfield ${ }^{13}$ C peak ( 43.6 ppm ) became a multiplet, thus assuring that the upfield signal (19.2 ppm) could be assıgned to the carbons alpha to selenium $[C(2,6)]$. The proton spectrum, on the other hand, indicated the loss of the upfield triplet ( $\delta \mathbf{2} .88$ ) upon deuteration and the collapse of the downfield triplet ( $\delta \mathbf{3 . 0 0}$ ) to a singlet. Thus, $H(2,6)$ were determined to be downfield of $H(3,5)$. We currently have no rationalization for the dichtonomous behavior observed in the proton and carbon-13 NMR spectra.

a. $X_{=}=S$
b.. $X=S e$


16
c. $\mathrm{R}=\mathrm{H}$
h. $R=D$

The aliphatic ${ }^{13}$ C NMR data for oxime 108 are presented in Table XVI. Substitution of the carbonyl with the ketoxime functionality introduced an element of asymmetry into the ring system as could be easily seen by the increase in the number of aliphatic peaks (seven) in the ${ }^{13}$ C NMR spectrum of the oxime as compared to the number of such peaks (four) present in the spectrum of the ketone precursor 27a. ${ }^{13} \mathrm{C}$ NMR spectral data for ketones $16 a, c$ and their oxime derivatives 109a,k are given for comparison. Relative to the ${ }^{13}$ C NMR shifts for the bicyclic-ring carbons of ketone 27a, nearly all carbons in the bicyclic ring of oxime 108 were shifted upfield. Carbons syn to the

hydroxyl group $[C(1,2,8)]$ were shifted upfield to a greater extent than those anti to this group $[C(4,5,6)]$. For example, $C(1)$ was shifted upfield by 17.3 ppm while $C(5)$ was only shifted upfield by 10.4 ppm . This effect was also visible, although to a lesser degree, at the ring methylenes. The same trend was observed in comparing the shifts of monocyclic ketones 16a,c those of their oxıme derıvatives 109a,b. The general upfield shift in the oximes was thought to be primarily due to the loss of the inductive and, to some extent, the anisotroplc shielding effects of the carbonyl. The greater steric interactions between the hydroxyl group and the syn atoms of the molecule may be invoked to

TABLE XVI
${ }^{13}$ C NMR a CHEMICAL SHIFTS ${ }^{\text {b }}$ OF N-BENZYL-3-THIA-7-AZABICYCLO-[3.3.1]NONAN-9-ONE OXIME (108) AND RELATED OXIMES

a. Aliphatic region only.
b. Downfield from $\left(\mathrm{CH}_{3}\right)_{4} \mathrm{Si}$ in ppm $\left(\mathrm{DCCl}_{3}\right)$.
c. Reference 89.
d. Reference 21.


29
a. $X=S$
b. $X=S e$
d. $\mathrm{X}=\mathrm{NCH}_{2} \mathrm{Ph}$

a. $X=S$
b. $X=S e$
d. $\mathrm{X}=\mathrm{NCH}_{2} \mathrm{Ph}$

a. $X=S$
b $\mathrm{X}=\mathrm{NCH}_{2} \mathrm{Ph}$
explain the greater upfield shifts of these atoms. The ${ }^{15} \mathrm{~N}$ NMR spectrum of oxime 108 indicated that the benzylic nitrogen also experienced a slight upfield shift of relative to the ketone ( 36.3 versus 37.4 ppm , respectively).

From spectroscopic and X-ray data, it was concluded that salts 29d, 70d, and 102a,b adopt a CC conformation in the solid state as well as in solution. As discussed in the first chapter, the salts of 3-hetera-7-azabicyclo[3.3.1]nonane derivatives exist prımarily in this conformation in the absence of structural features that fix the stereochemistry in a boat form. The two-fold structural symmetry in the diaza ring systems was quite obvious upon examınation of the ${ }^{13} \mathrm{C}$ NMR spectra (see Table XVII). Salt 29d possessed, in its ${ }^{13}$ C NMR spectrum, only four aliphatic peaks which were assigned to the bridge methylene $[C(9)]$, bridgehead methines $[C(1,5)]$, ring methylenes $[C(2,4,6,8)]$ and benzylic carbons. Similarly, the spectrum of diol 70b afforded only four aliphatic carbon peaks while that of ketal $\mathbf{1 0 2 b}$ afforded a very similar spectrum but with the addition of the signal for the methoxy groups. The ${ }^{15} \mathrm{~N}$ NMR spectra of the 3,7 -diaza-salts 29d, 70d, 102b all exhibited only one peak with shifts in the $52.5-54.6 \mathrm{ppm}$ range which were quite similar to those exhibited by the 3-thia-7-aza- and

TABLE XVII
${ }^{13}$ CNMR a CHEMICAL SHIFTS ${ }^{b}$ OF N-BENZYL-3-HETERA-7-AZABICYCLO[3.3.1]NONANE HYDROPERCHLORATE DERIVATIVES

a. Aliphatic region only.
b. Downfield from $\left(\mathrm{CH}_{3}\right)_{4} \mathrm{Si}$ in ppm (DMSO-d ${ }_{-}$).
c. Sulfur side (assignment uncertain).
d. Nitrogen side (assignment uncertain).
e. Reference 14.

TABLE XVIII
15 N NMR CHEMICAL SHIFTS ${ }^{\text {a }}$ OF N-BENZYL-3-HETERA-7-AZABICYCLO[3.3.1]NONANE GYDROPERCHLORATE DERIVATIVES

a. $X=S$   b. $X=S e$   d. $X=\mathrm{NCH}_{2} \mathrm{Ph}$	a. $X=S$   b. $X=S e$   d. $\mathrm{X}=\mathrm{NCH}_{2} \mathrm{Ph}$	$\begin{aligned} & \text { a. } X=S \\ & \text { b } X=\mathrm{NCH}_{2} \mathrm{Ph} \end{aligned}$
	$\delta\left({ }^{15} \mathrm{~N}\right)$	
$29 a^{\text {b }}$	54.2	[ $\mathrm{N}(7)$ ]
$29 b^{\text {c }}$	51.6	[ $\mathrm{N}(7)$ ]
29d	54.6	[ $N(3,7)$ ]
$70 a^{\text {b }}$	54.0	[ $\mathrm{N}(7)$ ]
$70 b^{\text {c }}$	51.6	[ $\mathrm{N}(7)$ ]
70d	52.9	[ $\mathrm{N}(3,7)$ ]
102b	52.5	[ $\mathrm{N}(3,7)$ ]
102a	53.5	[ $\mathrm{N}(7)$ ]

a. Downfield from $\mathrm{NH}_{3}(1)$ in ppm. All samples run in $D M S O-d_{-6}$ using $\mathrm{NH}_{4} \mathrm{NO}_{3}$ ( 19.73 ppm ) as a secondary reference.
b. Shiftes tor $29 a$ and $70 b$ from reference 14.
c. Shifts for 29b and 70b from reference 107.

3-selena-7-aza- salts 29a,b,d and 70a,b (see Table XVIII). These data were in agreement with what was expected for such compounds with the CC conformation. A crystal structure of ketal 102b confirmed this conclusion for the solid state. The 3-thia-7-aza- ketal 102a also was determined to be in this conformation based upon the analysis of the ${ }^{13} \mathrm{C}$ NMR spectral data. The analogous diol 70d and 9-methylene derivative 29b have previously been proven to exist as CC conformers in the solid state as well as in solution. 14,15

The structures of the tricyclic ketals $103 \mathrm{a}, \mathrm{b}$ and hydroperchlorate 103c were elucidated from the fully decoupled and off-resonance ${ }^{13} \mathrm{C}$ NMR and the ${ }^{1}$ H NMR spectra. $\quad \delta\left({ }^{1} H\right)-\delta\left({ }^{13} C\right)$ HETCOR NMR spectra proved to be indespensible in the interpretation and complete assignment of the ${ }^{13} \mathrm{C}$ and ${ }^{1}$ H NMR spectra. These $H E T C O R$ spectra are shown in Figures 2 and 3. The ${ }^{13}$ C NMR data for $103 a, b, c$ are given in Table XIX while the $I_{H}$ NMR data for these tricyclic ketals are given in Table XX.

a. $X=S$
b. $X=S e$
c. $X=S \quad \cdot 2 \mathrm{HClO}_{4}$


Figure 2. HETCOR NMR spectrum of 103a.


Figure 3. HETCOR NMR spectrum of 103b.

TABLE XIX
${ }^{13}$ C NMR CHEMICAL SHIFTS ${ }^{\mathrm{a}, \mathrm{b}}$ FOR 103a,b,c

${ }_{2}^{12}$		a. $X=S$   b. $X=S e$   c. $\mathrm{X}=\mathrm{S} \quad \cdot 2 \mathrm{HClO}_{4}$	
	103 a	103b	103c
C(2)	78.8 (t)	78.8 (t)	78.0 (t)
C(4)	55.4 ( $t$ )	56.1 (t)	52.3 ( $t$ )
C(4a)	37.8 (s)	36.8 (s)	37.4 (s)
C(5)	55.8 ( $t$ )	56.7 (t)	55.4 (t)
C(7)	34.6 (t)	25.1 (t)	31.8 (t)
C(8)	33.3 (d)	33.2 (d)	31.3 (d)
C(8a)	96.9 (s)	97.6 (s)	93.7 (s)
C(9)	30.0 (t)	20.1 (t)	28.3 (t)
C(11)	34.6 (t)	25.1 (t)	31.8 (t)
C(12)	59.9 (t)	60.5 (t)	56.2 (t)
c(13)	62.6 (t)	62.6 ( $t$ )	60.2 (t)
$\mathrm{CH}_{3} \mathrm{O}$	46.3 (q)	46.5 (q)	46.4 ( $t$ )

a. In ppm from ( $\mathrm{CH}_{3}$ ) ${ }_{4}$ Si. 103a,b run in $\mathrm{DCCl}_{3}$. lo3c run in DMSOd ${ }^{\text {. }}$ Aliphatic carbons only.
b. Letters in parentheses indicate off-resonance multiplicities: swsinglet, d=doublet, t=triplet, q=quartet.

## TABLE XX

$1_{\text {H NMR CEEMICAL SHIFTS }}{ }^{a}$ of 103a,b,c

a. Proton NMR assignments as based on HETCOR spectrum. 103a,b run in $\mathrm{DCCl}_{3}{ }^{\circ} \quad$ 103c run in $\mathrm{DMSOd}_{6}{ }^{\circ}$

As this was a rather involved procedure, the selenıum ketal 102b will serve as an example of the methodology used in making the ${ }_{H}$ and ${ }^{13}$ C NMR assignments. The off-resonance singlet at 97.7 ppm had a chemical shift quite similar to that observed in other ketals (e.g., see positions for $C(9)$ in ketals 102a,b, Table XVII). Thus, this peak was assigned to $C(8 a)$. The off-resonance quartet at 46.5 ppm was assigned to the methoxy carbon while the singlet at 36.8 ppm and the doublet at 33.2 ppm were assigned to $\mathrm{C}(4 \mathrm{a})$ and $\mathrm{C}(8)$, respectively. All remaining aliphatic peaks were triplets in the off-resonance spectrum (1.e. methylenes). The downfield peak at 78.7 ppm was presumed to be that of $C(2)$, as this carbon is bonded with the electron-withdrawing oxygen and nitrogen.

The upfield peaks at 20.1 and 25.1 ppm were assigned to the carbons alpha to selenium $[C(7,9)]$ due to the tendency of selenium to shield attached carbons and thus result in upfield chemical shifts. The HETCOR spectrum (Figure 3) indicated that the ${ }^{13} \mathrm{C}$ peak at 20.1 ppm correlated with an $A B$ quartet with an upfield doublet at $\delta 2.53$ and a downfield doublet that was part of the complex pattern centered at $\delta 3.50$. Careful comparison of the coupling constant $\left({ }^{2} J=11 \mathrm{~Hz}\right)$ of the upfield doublet with various peaks in the downfield multiplet permitted an exact assignment for the shift ( $\delta 3.47$ ) of the downfield doublet. A similar treatment of the proton $A B$ quartet associated with the ${ }^{13}$ c peak at 25.1 ppm permitted assignment of the ${ }^{l_{H}}$ signals at $\delta 2.13$ and $\delta 3.29$ to the protons attached to this carbon. It was presumed that the axial protons of a given methylene group would be upfield of the equatorial proton. Examination of a model (ball and stick) indicates that $\mathrm{H}(11) \mathrm{ax}$ is gauche to both $C(8 a)$ and $C(4)$ while $H(9) a x$ is gauche to only $C(8 a)$. It could

a. $X=S$
b. $X=S e$

103
therefore be expected that $H(11) a x$ would be upfield of $H(9) a x$. A similar argument can be made for $H(11)$ eq [gauche to both $C(4)$ and $C(5)]$ and $H(9)$ eq [gauche to $C(7)]$. The $l_{H}$ shift of the axial proton ( $\delta 2.13$ ) correlated with the 25.1 ppm carbon-13 signal is at higher field of that for the axial proton ( $\delta 2.53$ ) correlated with the ${ }^{13} \mathrm{C}$ NMR signal at 20.1 ppm. The same was found to be true in the case of the equatorial protons assocıated with these carbons ( $\delta 3.29$ and $\delta 3.47$, respectively). Thus the upfield axial proton was assigned to $H(l l) a x$, the upfield equatorial proton signal to $\mathrm{H}(11)$ eq and the carbon peak at 25.11 ppm to $C(11)$. This meant that the ${ }^{l_{H}}$ signals at $\delta 2.53$ and 3.47 were assignable to $H(9) a x$ and $H(9) e q, ~ r e s p e c t i v e l y$, with the carbon peak at 20.1 being assigned to $C(9)$.

The five remaining methylene carbons ${ }^{13}$ C peaks (56.1, 57.3, 56.7, 60.5, 62.6 ppm$)$ were all assigned to carbons alpha to nitrogen $[C(4,5,7,12,13)]$. The two benzylic methylenes $[C(12,13)]$ could be assigned to the two downfield peaks $(60.5,62.6 \mathrm{ppm})$ due to the anisotropic deshielding from the aromatic rings these carbons would experience. The HETCOR spectrum indicated that the benzylic protons
associated with the 60.5 ppm carbon were diastereotopic, giving an $A B$ quartet with the upfield doublet at $\delta 2.58$ and the downfield doublet at 83.44. The coupling constant for each doublet was 11 Hz . The benzylic protons associated with the 62.6 ppm carbon signal are apparently ıdentical or very nearly so. A small (4 Hz) splıtting of this peak ( $\delta \mathbf{3 . 5 3}$ ) is observable in the proton spectrum but the HETCOR spectrum indicates no other ${ }^{1} H$ NMR peaks coupled to this proton signal. As the molecular structure is inherently chiral, this may be the separate signals for what should be diastereotopic protons. It is not apparent from examining a model (ball and stick) which set of benzylic protons should exhibit the greatest degree of nonequivalence. The peak at 60.5 ppm was tentatively assigned to $C(12)$ as the nitrogen adjacent to this carbon experıences two upfield-shifting $\gamma$-gauche interactions with $C(9)$ and $C(11)$ which might result in an upfield shift for this carbon. However, this assignment is debatable.

The carbon-13 peaks at $56.1,56.7$ and 57.3 ppm remain to be assigned. The upfield signal was assigned to $C(4)$ as this carbon has gauche interactions with two $C-0$ bonds while both $C(5)$ and $C(7)$ are gauche to one $C-C$ and one $C-O$ bond. The greater shielding of the gauche interactions with the two $C-O$ bonds could result in a greater upfield shift than the the gauche interaction induced by a $C-C$ and $C-O$ bond. The assignments for $C(5)$ and $C(7)$ were then made on simılar criteria as the assignments of $C(9)$ and $C(11)$. As the relative stereochemistry about $C(8 a)(1 . e .$, the orientation of the methoxy group relative to the thiane ring or the piperidine ring) could not be deduced from the NMR analysis for either 103a or 103b, these ketals were submitted for crystallographıc analysis.

## Single Crystal X-ray Dıffraction Crystallography

Ketone 18d, 1 someric salts $\mathbf{3 2 b}$, 33 b , dımethoxy ketal 102b, and tricyclic ketal 103b were submitted to Dr. Elizabeth M. Holt (Dept. of Chemistry, Oklahoma State University) for crystallographic analysis while tricyclic ketal $103 a$ was submitted to Dr. Dick van der Helm (Dept. of Chemistry, Unıversıty of Oklahoma) for simılar analysis. Crystal data for these compounds are glven in Tables XXI and XXII.

Ketone 18d existed in a boat-chair conformation in the solid state With the $N$-benzyl-substituted piperidine ring assuming the chair form. The stereochemically-fixed o-chlorophenyl-substituted piperidine ring was in the boat form with the aryl groups in equatorial positions. The proton at $N(3)$ was also in an equatorial position and was not involved in hydrogen bonding. Bond distances and bond angles are given in Tables XXIII and XXIV.


Figure 4. Perspective drawing of 18d.

TABLE XXI

CRYSTAL DATA FOR 18d, 32b AND 33b

	18d	$32 b^{\text {a }}$	33b
Formula	$\mathrm{C}_{26} \mathrm{H}_{24} \mathrm{Cl}_{2} \mathrm{~N}_{2} \mathrm{O}$	$\mathrm{C}_{26} \mathrm{H}_{27} \mathrm{Cl}_{3} \mathrm{~N}_{2} \mathrm{O}_{4}$	$\mathrm{C}_{26} \mathrm{H}_{27} \mathrm{Cl}_{3} \mathrm{~N}_{2} \mathrm{O}_{4}$
MWT	451.4	537.87	537.87
a b c	$\begin{aligned} & 11.452(3) \AA \\ & 9.951(4) \AA \\ & 113.097(4) \AA \end{aligned}$		$\begin{aligned} & 14.654(10) \AA \\ & 13.036(6) \AA \AA \\ & 13.512(9) \AA \end{aligned}$
	$\begin{aligned} & 99.05^{0} \\ & 66.27(2)^{0} \\ & 68.44(2)^{0} \end{aligned}$		$\begin{aligned} & 90.0^{\circ} \\ & 98.48(5)^{\circ} \\ & 90.0^{\circ} \end{aligned}$
Cell Volume	1143 (6) $\AA^{3}$		2552.7(27) $\AA^{3}$
F(000)	472		1120
$\mu \mathrm{MoR}_{\alpha}$	$3.025 \mathrm{~cm}^{-1}$		$3.930 \mathrm{~cm}^{-1}$
$\lambda \mathrm{MoR}_{\alpha}$	0.71069 A		0.71069 A
Calcd. Density	$1.311 \mathrm{~g} / \mathrm{cm}^{3}$		$1.399 \mathrm{~g} / \mathrm{cm}^{3}$
Z	2		4
Obs. Reflections	3036		1544
R/Rw	4.7\% -		8.8\%/11.0\%
Space Group	$\mathrm{P}_{1}$		$\mathrm{P}_{2} / \mathrm{n}$

a. Analysis of crystal data still in progress.

TABLE XXII

CRYSTAL DATA FOR 102b, 103a and 103b

	102b	$103 a^{\text {a }}$	103b
Formula	$\mathrm{C}_{27} \mathrm{H}_{31} \mathrm{ClN}_{2} \mathrm{O}_{6}$	$\mathrm{C}_{24} \mathrm{H}_{30} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}$	$\mathrm{C}_{24} \mathrm{H}_{30} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{Se}$
MWT	467.0	410.6	457.5
a $b$ $c$	$\begin{aligned} & 15.026(3) \AA \\ & 10.568(3) \AA \\ & 14.774(6) \AA \end{aligned}$	$\begin{aligned} & 17.395(6) \AA \AA \\ & 7.596(3) \AA \\ & 16.959(7) \AA \end{aligned}$	$\begin{aligned} & 17.155(7) \AA \\ & 7.600 \AA \\ & 17.633(7) \AA \end{aligned}$
	$\begin{aligned} & 90.0^{\circ} \\ & 97.97(2)^{\circ} \\ & 90.0^{\circ} \end{aligned}$	$\begin{aligned} & 90.0^{\circ} \\ & 106.87(2)^{0} \\ & 90.0^{\circ} \end{aligned}$	$\begin{aligned} & 90.0^{\circ} \\ & 106.48(3)^{\circ} \\ & 90.0^{0} \end{aligned}$
Cell Volume	2323.3(12) $A^{3}$	$2144.39 \AA^{3}$	2204.5(16) $\AA^{3}$
F(000)	992		952
${ }^{\text {M M }}{ }_{\text {R }}{ }_{\alpha}$	$2.01 \mathrm{~cm}^{-1}$		$17.05 \mathrm{~cm}^{-1}$
${ }^{\text {MoR }}{ }_{\alpha}$	0.71069 \&		
Calcd. Density	$1.335 \mathrm{~g} / \mathrm{cm}^{3}$		$1.378 \mathrm{~g} / \mathrm{cm}^{3}$
Z	4	4	4
Obs. Reflections	2123	4406	1500
R/Rw	7.6\%/ -	4.57\%/4.19\%	7.38/9.2\%
Space Group	$\mathrm{P}_{2}{ }_{1} \mathrm{n}$		$\mathrm{P}_{2} / \mathrm{C}$

a. Analysis of crystal data still in progress.

## TABLE XXIII

SELECTED BOND DISTANCES ( $\AA$ ) FOR KETONE 18d AND ISOMERIC HYDROPERCHLORATES 32b, 33b ${ }^{\text {a }}$

BOND	18d	32b	33b
$\mathrm{C}(1)-\mathrm{C}(2)$	1.565 (6)	1.59 (2)	1.57 (2)
$\mathrm{C}(2)-\mathrm{N}(3)$	1.509 (3)	1.48 (2)	1.49 (1)
$\mathrm{C}(2)-\mathrm{ArC}{ }^{\text {b }}$	1.534 (6)	1.50 (2)	1.53 (2)
$\mathrm{N}(3)-\mathrm{C}(4)$	1.488 (5)	1.47 (2)	1.49 (1)
$\mathrm{C}(4)-\mathrm{C}(5)$	1.558 (5)	1.56 (2)	1.55 (1)
$C(4)-A r C^{C}$	1.557 (4)		1.50 (2)
$\mathrm{C}(5)-\mathrm{C}(6)$	1.540 (6)	1.49 (2)	1.52 (2)
$\mathrm{C}(6)-\mathrm{N}(7)$	1.480 (4)	1.52 (2)	1.52 (1)
$\mathrm{N}(7)-\mathrm{C}(8)$	1.497 (6)	1.52 (2)	1.51 (1)
$\mathrm{N}(7)-\mathrm{C}(10)$	1.474 (6)	1.48 (2)	1.54 (1)
$c(8)-C(1)$	1.538 (6)	1.50 (2)	1.49 (1)
$\mathrm{C}(9)-\mathrm{C}(1)$	1.530 (4)	1.53 (2)	1.55 (2)
$C$ (9) $-\mathrm{C}(5)$	1.561 (6)	1.56 (2)	1.50 (2)
$C(10)-A r C^{\text {d }}$	1.552 (7)	1.53 (2)	1.46 (2)
C(9) - 0 (1)	1.209 (5)		

a. Values in parentheses are estimated standard deviations (E.S.D.).
$b . \operatorname{ArC}=C\left(1^{\prime \prime}\right)$ in 18d, $C(23)$ in 32b, $C(17)$ in 33b.
c. $A r C=C\left(1^{\prime \prime}\right)$ in 18d, $C(17)$ in 32b, $C(23)$ in 33b.
d. $\operatorname{ArC}=C\left(l^{\prime}\right)$ in 18d, $C(11)$ in $32 b, C(11)$ in 33b.

TABLE XXIV
SELECTED BOND ANGLES $\left({ }^{\circ}\right)$ FOR RETONE 18d AND ISOMERIC
HYDROPERCHLORATES 32b, 33ba

	18d	32b	33b
$C(2)-C(1)-C(9)$	105.1 (2)	106 (1)	107.9 (9)
$\mathrm{C}(8)-\mathrm{C}(1)-\mathrm{C}(9)$	107.6 (3)	112 (1)	110.6 (9)
$C(8)-C(1)-C(2)$	113.8 (3)	115 (1)	116.2 (9)
$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{N}(3)$	109.3 (2)	107 (1)	109.9 (8)
$C(1)-C(2)-A r C^{\text {b }}$	109.4 (3)	113 (1)	110.7 (9)
$\operatorname{ArC}^{\mathrm{b}}-\mathrm{C}(2)-\mathrm{N}(3)$	111.0 (3)	112 (1)	109.9 (9)
$\mathrm{C}(2)-\mathrm{N}(3)-\mathrm{C}(4)$	115.4 (3)	111 (1)	113.8 (8)
$\mathrm{N}(3)-\mathrm{C}(4)-\mathrm{C}(5)$	106.0 (3)	108 (1)	107.8 (8)
$\mathrm{N}(3)-\mathrm{C}(4)-\mathrm{ArC}{ }^{\text {C }}$	111.0 (3)		108.4 (8)
$\operatorname{ArC}^{C}-\mathrm{C}(4)-\mathrm{C}(5)$	113.8 (2)		114.2 (9)
$C(4)-C(5)-C(6)$	112.2 (3)	116 (1)	112.2 (8)
$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(9)$	108.6 (3)	106 (1)	112.2 (8)
$\mathrm{C}(6)-\mathrm{C}(5)-\mathrm{C}(9)$	106.1 (3)	109 (1)	109.3 (9)
$C(5)-C(6)-N(7)$	108.2 (3)	113 (1)	111.1 (9)
$\mathrm{C}(6)-\mathrm{N}(7)-\mathrm{C}(8)$	113.1 (3)	111 (1)	112.0 (8)
$\mathrm{C}(6)-\mathrm{N}(7)-\mathrm{C}(10)$	110.7 (4)	110 (1)	110.0 (8)
$\mathrm{C}(8)-\mathrm{N}(7)-\mathrm{C}(10)$	111.4 (3)	112 (1)	109.9 (8)
$\mathrm{N}(7)-\mathrm{C}(8)-\mathrm{C}(1)$	110.5 (3)	111 (1)	112.8 (9)
$\mathrm{C}(1)-\mathrm{C}(9)-\mathrm{C}(5)$	112.4 (3)	107 (1)	106.1 (9)

TABLE XXIV continued

$O(1)-C(9)-C(1)$	$122.5(4)$	
$O(1)-C(9)-C(5)$	$125.1(3)$	
$N(7)-C(10)-A r C^{d}$	$110.9(4) \quad 112(1)$	

a. Values in parentheses are estımated standard deviations (E.S.D.).
b. $\operatorname{ArC}=C\left(1^{\prime \prime}\right)$ in 18d, $C(23)$ in 32b, $C(17)$ in 33b.
$C . A r C=C(1 *)$ in 18d, $C(17)$ in 32b, $C(23)$ in 33b.
d. $A r C=C(1 ')$ in 18d, $C(11)$ in 32b, $C(11)$ in 33b.

Hydroperchlorate 33b also existed in the boat-chair conformation with the bis(o-chlorophenyl)-substituted piperidine ring in the boat form. Like ketone 18d, the o-chlorophenyl substituents were in equatorial positions. The nitrogen $[N(7)]$ in the $N$-benzyl-substituted ring is clearly protonated with the proton in an axial or endo position. The nitrogen in the diaryl-substituted ring is secondary with the proton on this nitrogen [N(3)] in an equatorial position. Tables XXIII and XXIV list selected bond distances and bond angles for this salt.


Figure 5. Perspective drawing of 33b.

```
Isomeric hydroperchlorate 32b, in contrast to 33b, existed in a chair-charr conformation. The bis(o-chlorophenyl)-substituted plperidine ring in this molecule was in the chair form with the aryl groups in equatorial positions. The tertiary nitrogen \(N(7)\) was protonated with intramolecular hydrogen bonding occuring between the proton and the free electron pair of the secondary nitrogen \(N(3)\).
```



Figure 6. Perspective drawing of 32 b .

Tne 9,9-dimethoxy-ketal $\mathbf{1 0 2 b}$ was found to be 1 n the charr-charr conformation with $N(3)$ clearly bonded to the proton of $\mathrm{HClO}_{4}$. Intramolecular hydrogen-bonding between this proton and the unshared pair at $N(7)$ was quite evident upon consideration of the $N(3)-H$ and $N(3)-H$... $N(7)$ interatomic distances of $1.02 \AA$ and $1.82 \AA$. The sum of the van der Waals radi1 ${ }^{64}$ of $n 1 t r o g e n(1.5 A)$ and hydrogen (1.2 A) is considerably larger than the observed $N-H . . . N$ interatomic distance. While a hydrogen bond might normally be expected to be linear, steric considerations make this impossible in this system as is evidenced by the $N(3)-H$ ...N(7) bonding angle of $138.8^{\circ}$. Similar nonlinear intramolecular hydrogen bonding behavior has been reported in related systems $29 a$ and 29b where the $\mathrm{N}-\mathrm{H} . . \mathrm{X}$ bonding angles were $128.8^{\circ}$ and $119.0^{\circ}$,


Figure 7. Perspective drawing of 102b.


29
a. $X=S$
b. $X=S e$
respectively. 107 The bıcyclic ring system displayed no internal crystallographic symmetry elements. Despıte the existence of one nitrogen as a quaternary cation while the other is uncharged with the unshared pair involved in a hydrogen bond, $C-N$ bond distances for the two piperidine rings both averaged 1.51 \& while the bond angles about the nitrogen were similar.

Upon examination of the perspective drawing (Figure 4), the methoxy groups can be seen to be bent to the opposite sides of bridging carbon $C(9)$. The benzyl groups, however, are twisted to the same side of the bicyclic ring system. Relief from crowding is achieved by twisting about the $C(21)-C(22)$ and $C(14)-C(15)$ bonds. The perchlorate anion is well removed from the bicyclic ring system. No intermolecular hydrogen bonding is present as all 0...H distances are in excess of $2.36 \AA$.

TABLE XXV
SELECTED BOND DISTANCES ( $\AA$ ) FOR KETAL $102 \mathrm{~b}^{\mathrm{a}}$

$C(1)-C(2)$	1.518 (9)
$\mathrm{C}(2)-\mathrm{N}(3)$	1.513 (8)
N(3)-C(4)	1.499 (8)
$N(3)-C(14)$	1.492 (8)
$C(4)-C(5)$	1.527 (9)
$C(5)-C(6)$	1.522 (9)
$\mathrm{C}(6)-\mathrm{N}(7)$	1.474 (9)
N(7)-C(8)	1.546 (9)
N(7)-C(21)	1.472 (8)
$C(8)-C(1)$	1.517 (9)
$C(9)-C(1)$	1.531 (9)
$C(9)-C(5)$	1.538 (9)
$C(9)-0(10)$	1.412 (8)
$C(9)-0(12)$	1.405 (8)
O(10)-C(11)	1.417 (9)
O(12)-C(13)	1.454 (9)

a. Values in parentheses are estımated standard deviations (E.S.D.).

TABLE XXVI
SELECTED BOND AND DIHEDRAL ANGLES ( ${ }^{\circ}$ ) FOR KETAL 102b ${ }^{\text {a }}$

Bond Angles ( ${ }^{( }$)				
$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{C}(9)$	110.0		$\mathrm{C}(6)-\mathrm{N}(7)-\mathrm{C}(21)$	112.5 (5)
$\mathrm{C}(8)-\mathrm{C}(1)-\mathrm{C}(9)$	109.5		$\mathrm{C}(8)-\mathrm{N}(7)-\mathrm{C}(21)$	107.0 (5)
$\mathrm{C}(8)-\mathrm{C}(1)-\mathrm{C}(2)$	113.8		$\mathrm{N}(7)-\mathrm{C}(8)-\mathrm{C}(1)$	108.9 (5)
$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{N}(3)$	110.6		$\mathrm{C}(1)-\mathrm{C}(9)-\mathrm{C}(5)$	105.7 (5)
$\mathrm{C}(2)-\mathrm{N}(3)-\mathrm{C}(14)$	110.6		$\mathrm{C}(1)-\mathrm{C}(9)-0(10)$	106.1 (5)
$\mathrm{C}(2)-\mathrm{N}(3)-\mathrm{C}(4)$	111.0		$\mathrm{C}(1)-\mathrm{C}(9)-\mathrm{O}(12)$	114.2 (5)
$\mathrm{C}(4)-\mathrm{N}(3)-\mathrm{C}(14)$	113.2		$\mathrm{C}(5)-\mathrm{C}(9)-0$ (10)	113.3 (5)
$N(3)-C(4)-C(5)$	110.5		$\mathrm{C}(5)-\mathrm{C}(9)-0$ (12)	106.0 (5)
$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(6)$	112.4		O(10)-C(9)-O(12)	111.5 (5)
$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(9)$	109.4		$\mathrm{C}(9)-0(10)-\mathrm{C}(11)$	115.5 (5)
$\mathrm{C}(6)-\mathrm{C}(5)-\mathrm{C}(9)$	110.4		$\mathrm{C}(9)-0(12)-\mathrm{C}(13)$	116.7 (6)
$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{N}(7)$	110.6		$\mathrm{N}(3)-\mathrm{C}(14)-\mathrm{C}(15)$	113.2 (6)
$\mathrm{C}(6)-\mathrm{N}(7)-\mathrm{C}(8)$	109.2		$N(7)-C(21)-C(22)$	112.7 (5)
Dihedral Angles ( ${ }^{\circ}$ )				
$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{N}(3)-\mathrm{C}(4)$	59.6		$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{N}(7)-\mathrm{C}(8)$	55.7 (6)
$\mathrm{C}(2)-\mathrm{N}(3)-\mathrm{C}(4)-\mathrm{C}(5)$	58.4		$\mathrm{C}(6)-\mathrm{N}(7)-\mathrm{C}(8)-\mathrm{C}(1)$	55.2 (6)
$\mathrm{N}(3)-\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(6)$	61.4		$\mathrm{N}(7)-\mathrm{C}(8)-\mathrm{C}(1)-\mathrm{C}(2)$	63.4 (7)
$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(7)$	62.1	(7)	$\mathrm{C}(8)-\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{N}(3)$	60.7 (7)

a. Values in parentheses are estimated standard deviations (E.S.D.).

Tricyclic ketals l03a,b were submitted for X-ray diffraction analysis to establish the conformations of the 1,3-oxazine, piperidine, and l-thracyclohexane (or l-selenacyclohexane) rings as well as the relative stereochemistry at $C(8 a)$ in each molecule. As can be seen in the perspective drawings (Figures 8 and 9) of these molecules, both consist of three fused heterocyclic six-membered rings with the $C(4 a)-C(8 a)$ bond common to all three rings. In ketal 103a the thiane ring is fused to the l,3-oxazine ring with a trans ring juncture about the $C(4 a)-C(8 a)$ bond, while the piperidine ring is fused with a cis ring Juncture about the same bond. The thiane and pıperidine rings were fused with two common bonds $[C(4 a)-C(8 a)$ and $C(8)-C(8 a)]$ to afford, for this end of the molecule, a ring system simılar to the cc conformer of the N-alkyl-3-thia-7-azabicyclo[3.3.1]nonane ring system. The selenium derivative 103b was also arranged in a similar manner. In both ring systems the plperidine ring was trans to the methoxy group while the thiane (or selenane) ring was cis to this group. While the relative stereochemistry in both systems was identical, the perspective drawing of the selenium derivative 103b is actually that of the enantromeric molecule 103b' found in crystal analysis.


103

$103 b^{\prime}$
a. $X=S$
b. $X=S e$


Figure 8. Perspective drawing of 103a.


Figure 9. Stereo drawing of 103a.

Examination of the torsional angles (see Table XXVIII) about sulfur in 103a indicated that the $C(9)-S(10)-C(11)$ plane of the thiane ring is flattened relative to the $C(4 a)-C(11)-C(9)-C(8)$ plane while the $C(4 a)-C(8 a)-C(8)$ plane is somewhat puckered. The C-C-S-C torsional angles averaged $39.6^{\circ}$ while the two $C-C-C-C$ torsional angles for this ring were both $70.6^{\circ}$. A similar examination of the torsional angles about selenıum in 103b indicated that the se atom induced greater flattening of the selenane ring compared to that of the thiane ring in 103a. The C-C-Se-C torsional angles averaged $33.2^{\circ}$ while the two $C-C-C-C$ torsional angles $\left(\sim 69.7^{\circ}\right)$ for the selenane ring were similar to that seen in the sulfur analog.


Figure 10. Perspective drawing of 103b.

TABLE XXVII
SELECTED BOND DISTANCES ( $\AA$ ) IN 3,6-DIBENZYLHEXAHYDRO-8a-METHOXY-5H-4a,8(METHANOHETEROMETHANO) -2H-PYRIDO[3,4-e]-1,3-OXAZINES 103a,b

Bond	$103 a^{a}$   (S)	$\begin{aligned} & 103 b^{b} \\ & (\mathrm{Se}) \end{aligned}$	Bond	$\begin{gathered} 103 a^{a} \\ (S) \end{gathered}$	$\begin{aligned} & 103 b^{b} \\ & (\mathrm{Se}) \end{aligned}$
$O(1)-C(8 a)$	1.427	1.40 (1)	N(6)-C(7)	1.460	1.45 (2)
$O(1)-C(2)$	1.427	1.41 (2)	$C(7)-C(8)$	1.528	1.53 (2)
$\mathrm{C}(2)-\mathrm{N}(3)$	1.454	1.45 (2)	$C(8)-C(8 a)$	1.527	1.50 (2)
$N(3)-C(14){ }^{\text {d }}$	1.466	1.44 (2)	$C(8)-C(9)$	1.540	1.52 (2)
$N(3)-C(4)$	1.473	1.46 (2)	$C(8 a)-0(12)$	1.416	1.44 (1)
$C(4)-C(4 a)$	1.534	1.57 (2)	$C(9)-X(10)^{c}$	1.824	1.96 (2)
$C(4 a)-C(5)$	1.538	1.57 (2)	$x(10)-C(11)^{c}$	1.819	1.95 (1)
$C(4 a)-C(11)$	1.532	1.53 (2)	O(12)-C(13)	1.433	1.45 (1)
$C(4 a)-C(8 a)$	1.540	1.55 (2)	$C(14)-C(15){ }^{\text {d }}$	1.509	1.53 (3)
$C(5)-N(6)$	1.459	1.43 (2)	$C(21)-C(22)^{\text {d }}$	1.509	1.52 (2)
$N(6)-C(21)^{\text {d }}$	1.450	1.46 (2)			

a. Range of estimated standard deviations (E.S.D) in 103a = 0.1-0.4.
b. Values in parentheses indicate E.S.D for 103b.
c. $X(10)=S(10)$ in 103a and $S e(10)$ in 103b.
d. $C(14)$ and $C(21)$ in the perspective drawing are identical to $C(13)$ and C(12), respectively, in the structural and conformational analysis sections.

TABLE XXVIII
SELECTED BOND AND DIHEDRAL ANGLES IN 3,6-DIBENZYLHEXAHYDRO-8a-METHOXY-5H-4a,8-(METHANOHETEROMETHANO) -2HPYRIDO[ $\overline{3}, 4$-e $]-1,3-O X A Z I N E S$ 103a,b

	$103 a^{a}$   (S)	$\begin{aligned} & 103 b^{b} \\ & (\mathrm{Se}) \end{aligned}$	
Selected Bond Angles ( ${ }^{\circ}$ )			
$C(8 a)-0(1)-C(2)$	112.7	114	(1)
$O(1)-C(2)-N(3)$	110.8	110	(1)
$C(2)-N(3)-C(4)$	109.0	109	(1)
$\mathrm{C}(2)-\mathrm{N}(3)-\mathrm{C}(14)^{\mathrm{C}}$		112	(1)
$C(4)-N(3)-C(14)$	110.8	109	(1)
$N(3)-C(4)-C(4 a)$	110.1	110	(1)
$C(4)-C(4 a)-C(5)$	108.5	108	(1)
$C(4)-C(4 a)-C(8)$	108.0	108	(1)
$C(4)-C(4 a)-C(11)$	107.5	108	(1)
$C(5)-C(4 a)-C(8 a)$	109.2	107	(1)
$C(5)-C(4 a)-C(11)$	112.6	113	(1)
$C(8 a)-C(4 a)-C(11)$	110.9	113	(1)
$\mathrm{C}(4 \mathrm{a})-\mathrm{C}(5)-\mathrm{N}(6)$	114.1	114	(1)
$C(5)-N(6)-C(7)$	110.7	110	(1)
$\mathrm{C}(5)-\mathrm{N}(6)-\mathrm{C}(21)^{\text {C }}$	109.9	109	(1)
$C(7)-N(6)-C(21)^{C}$	111.6	113	(1)
$\mathrm{N}(6)-\mathrm{C}(7)-\mathrm{C}(8)$	109.4	113	(1)
$C(7)-C(8)-C(8 a)$	110.3	108	(1)
$C(7)-C(8)-C(9)$	115.2	113	(1)
$C(8 a)-C(8)-C(9)$	109.9	114	(1)


O(1)-C(8a)-C(4a)	109.8	111	(1)
O(1)-C(8a)-C(8)	107.5	108	(1)
O(1)-C(8a)-0(12)	110.5	111	(1)
$C(4 a)-C(8 a)-C(8)$	109.3	111	(1)
$\mathrm{C}(4 \mathrm{a})-\mathrm{C}(8 \mathrm{a})-0$ (12)	107.0	105	(1)
$\mathrm{C}(8)-\mathrm{C}(8 \mathrm{a})-0(12)$	112.7	111	(1)
$\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{X}(10)^{\text {d }}$	116.2	116.2	(10)
$\mathrm{C}(9)-\mathrm{X}(10)-\mathrm{C}(11)^{\text {d }}$	100.9	98.7	(6)
$\mathrm{X}(10)-\mathrm{C}(11)-\mathrm{C}(4 \mathrm{a})$	115.9	116.2	(9)
$\mathrm{C}(8 \mathrm{a})-\mathrm{O}(12)-\mathrm{C}(13)$	115.4	116	(1)
$N(3)-C(14)^{\text {a }}$-C(15)	111.8	114	(1)
$\mathrm{N}(6)-\mathrm{C}(21)-\mathrm{C}(22)$	114.1	111	(1)

## 1,3-Oxazine ring:

$C(8 a)-O(1)-C(2)-N(3)$	$62.0(2)$	$62.9(16)$
$O(1)-C(2)-N(3)-C(4)$	$61.3(2)$	$62.9(15)$
$C(2)-N(3)-C(4)-C(4 a)$	$59.4(2)$	$59.5(16)$
$N(3)-C(4)-C(4 a)-C(8 a)$	$55.8(2)$	$53.0(15)$
$C(4)-C(4 a)-C(8 a)-O(1)$	$54.1(2)$	50.1 (14)
$C(4 a)-C(8 a)-O(1)-C(2)$	$58.1(2)$	$56.6(16)$

Piperidine ring:

$C(8 a)-C(4 a)-C(5)-N(6)$	$54.8(2)$	$55.0(13)$
$C(4 a)-C(5)-N(6)-C(7)$	$56.2(2)$	$57.2(13)$
$C(5)-N(6)-C(7)-C(8)$	$57.3(2)$	$58.7(13)$
$N(6)-C(7)-C(8)-C(8 a)$	$59.1(2)$	$59.6(13)$
$C(7)-C(8)-C(8 a)-C(4 a)$	$57.1(2)$	$57.9(14)$

$$
C(8)-C(8 a)-C(4 a)-C(5) \quad 54.0(2) \quad 54.6 \text { (12) }
$$

TABLE XXVIII continued
1-Heteracyclohexane ring:

$C(8 a)-C(8)-C(9)-X(10)^{d}$	$58.1(2)$	53.6 (16)
$C(8)-C(9)-X(10)-C(11)^{d}$	$40.1(2)$	$33.5(12)$
$C(9)-X(10)-C(11)-C(4 a)^{d}$	$39.1(2)$	$34.8(12)$
$X(10)-C(11)-C(4 a)-C(8 a)^{d}$	$56.6(2)$	$54.7(14)$
$C(11)-C(4 a)-C(8 a)-C(8)$	$70.6(2)$	$69.9(14)$
$C(4 a)-C(8 a)-C(8)-C(9)$	$70.6(2)$	$69.6(16)$

a. Estimated standard deviation (E.S.D.) for 103 a was 0.1-0.4.
b. Values in parentheses indicate E.S.D. for each angle in 103a,b.
c. $C(14)$ and $C(21)$ in the perspective drawing are identical to C(13) and C(12), respectively, in the structural and conformational analysis sections.
d. $X(10)=S(10)$ in 103a or $S e(10)$ in 103b.

## Antlarrhythmic Properties

The antiarrhythmıc properties of several 3-thıa-7-aza- and 3,7-diazabicyclo[3.3.1]nonane hydroperchlorates were assessed in 24-hour Infarcted-heart mongrel dogs by Dr. Benjamin J. Scherlag of the Veterans Administration Hospital in Oklahoma City, Oklahoma. The compounds tested were salts 32b, 33b, 70d, 102a,b, and 103c.



a. $X=S$
b. $X=\mathrm{NCH}_{2} \mathrm{Ph}$

Dogs have been used extensively as models for humans in the testing of cardioactive drugs due to the great similarities in the biochemistry and physiology of the cardiovascular system of dogs and humans. ${ }^{53}$ A commonly used dog model employed for the assessment of potential antiarrhythmic agents is the 24 -hour infarcted-heart dog. As this was
the model used in the testing of the compounds developed in this study, a short description 86,87 of the preparation of these dogs is in order.

Mongrel dogs of weights between 12 and 25 kg were anesthesized (sodium pentobarbitol, $30 \mathrm{mg} / \mathrm{kg}, \mathrm{i} . \mathrm{v}$. ) and connected to a respırator. 85,86 A thoracotaomy was performed in the fourth intercostal space. The left atrium was reflected to expose the left anterior descending coronary artery. A two-stage ligation of this artery was performed in which the artery was constricted for a period of thirty minutes before finally closing it completely and permanently. This procedure induces a myocardial infarction quite similar to that seen in humans. 53 The thoracotomy was then repaired and the dog allowed to recover for 24 hours. After this time the dog was reanesthesized the chest cavity was reopened at the site of the first thoracotomy. A series of electrogram and pacing electrodes were then set in place. A multipolar composite electrode was placed on the epicardium over the infarcted zone and a similar composite electrode was positioned on the posterior wall to record from normal tissue. A common carotid artery was exposed in the neck and a cathode electrode slowly advanced to the aortic root to monitor $\mathrm{H}_{\mathrm{l}} \mathrm{s}-\mathrm{bundle}$ activity. Blood pressure was monitored at a second carotid artery exposed for this purpose. A stainless-steel pacing electrode was inserted into the right ventricular myocardıum.

The experimental procedure 14,107 for the determination of antiarrhythmic activity involved the induction by ventricular pacing of sustained ventricular tachycardia (SVT) in the test anımal. This was accomplished by subjecting the heart to 3-5 electrical pulses (2-10 V) of 2 ms duration at a rate corresponding to $240-420$ beats per minute
（bpm）．The rate of the resultant SVI in an animal that had been previously treated with a prospective antiarrhthmic agent was compared directly with the SVI rate obtained in the same animal in the absence of any antiarrhythmic agent；the latter experiment serving as a control． The prospective agents were tested at doses of three and six $\mathrm{mg} / \mathrm{kg}$ with the activity of lidocaine（76）at these doses serving as a benchmark for the comparison of the antiarrhythmic properties．Lidocaine is currently the drug of choice in the treatment of SVI．


A portion of the electrogram obtained from one experiment is shown in Figure 11．In this experiment salt $102 b$ was administered at a dose of $6 \mathrm{mg} / \mathrm{kg}$ ．A normal sinus rhythm was observable in the top trace（L－2） for the first two beats on the left of the electrogram．Associated with this were bursts of electrical activity observable in the third，fourth and fifth traces for the $⿴ 囗 ⿱ 一 一 廾 彡$－bundle（ $B_{b e g}$ ），infarcted zone（IZ）and normal zone（NZ）of the myocardium，respectivelyl．Ventricular pacing （arrows）at a rate of 390 bpm induced ventricular tachycardia（VT，beats 3－13）characterized by the irregular wave form observed in $L-2$ as well as the continuous electrical activity observed for the Iz trace．The effect of salt $102 b$ was apparent in the nonsustained nature of the VT． After only eleven beats the heart returned to its normal sinus rhythm （beats 14，15），while in a control experiment（no antiarrhythmic agent

present), pacing at 360 bpm induced a sustained VT with a rate of 390 bpm.

The effect of the VT on the measured blood pressure could be seen in the lower trace (BP). The blood pressure drops almost continually throughout the VT, but returns to the normal pattern as the heart recovers from the VT.

If one were to establish a hierarchy of desirable properties for a prospective antiarrhythmic agent, the relative order could be the ability to: (1) entirely prevent the induction of any VT; (2) prevent the induction of sustained VT; and (3) substantially reduce the rate of sustained VT. Undesirable characteristics would include increasing the rate of the observed SVT as compared to that observed in the absence of the drug (the proarrhythmic effect) and, of course, the drug having no observable effect on the SVT. Another important factor in the determanation of the utility of any prospective drug is the toxicity of the compound. As the goal of the present study was to synthesize and make prellminary assessments of the antiarrhythmic properties, no toxicity data was acquired. However, this type of data must eventually be acquired if the development of the more active of these compounds is to be pursued.

As observed in Figure ll, blood pressure drops quite markedly during a VT epısode. As blood pressure can drop to dangerously low levels during SVT, 53 a desirable secondary characteristic of an antiarrhythmic compound might be the ability to elevate the mean blood pressure during the SVT.

The observed antiarrhythmic properties of $32 b, 33 b, 70 d, 102 a, b$ and 103c as determined by the above assay are summarized on Table XXIX. As

TABLE XXIX
ANTIARRHYTHMIC PROPERTIES OF 32b, 33b, 70d, 102a, 102b, 103c ${ }^{\text {a }}$


TABLE XXIX continued

a. Each division represents experiments on one dog.
g. No effect.
b. Pacing Rate (beats/min).
h. Proarrhythmic effect.
c. Rate of sustained ventricular tachycardia (beats/min).
i. Nonsustained VT.
d. Mean blood pressure during ventricular tachycardia (VT) episode (mm Hg ).
e. Percent change in rate of SVT relative to control experiment.
j. VT not inducible.
k. Multiple VT forms.
f. Percent change in mean blood pressure during VT episode.


32b


33b


70d


102


76

a. $X=S$
b. $\mathrm{X}=\mathrm{NCH}_{2} \mathrm{Ph}$
discussed in the first chapter, hydroperchlorate 29 has previously been found to possess excellent antiarrhythmic properties. ${ }^{14,85}$ This compound has been found to inhibit the induction of ventricular tachycardia in a majority of animals tested. While none of the
compounds developed in the current study displayed this type of activity, several exhibited otherwise excellent properties. Ketal 102a was found in one anımal to inhibit the induction of sustalned ventricular tachycardia (SVT) at a dose of $6 \mathrm{mg} / \mathrm{kg}$. At the lower dose ( $3 \mathrm{mg} / \mathrm{kg}$ ), it reduced the rate of SVT by $46.2 \%$. In contrast, lidocaine (75) in the same animal only permitted a reduction in the rate of the SVT at the higher (10\%) and lower doses (9.1\%). In another dog, ketal 102b was found to decrease the SVT rate by $27.3 \%$ at the higher dosage and $18.2 \%$ at the lower dosage. In this respect ketal $102 b$ was similar in effect to 28d. (In anımals where SVT was inducıble, 28d has been determined to reduce the SVT rate by aproximately 30\%). 85 Ketal 102b was found to enhance the mean blood pressure during VT at both dosage levels in the second animal while having only slight effects in the first.

The related ketal 102a was determıned to have properties similar to those of 102b. Ketal l02a was found to inhibit the induction of SVT in three anımals at the lower dosage. At the higher dosage in two animals, the induction was also inhibited. However, in an animal where both ketals 102a,b ( $6 \mathrm{mg} / \mathrm{kg}$ ) were tested, 102 a was found to exhibit a proarrhythmic effect at high rates (390 bpm) of ventricular pacıng. At lower rates $(300,330$ and 360 bpm) of cardiac stimulation the compound was quite effective. Ketal 102a was more effective than lidocalne in all anımals at both dosage levels. It was also found to elevate the mean blood pressure in all animals at both dosages.

Diol 70d was found to be as effective as lidocalne (75) at $3 \mathrm{mg} / \mathrm{kg}$ in one animal, both compounds reducing the SVT rates by $15.4 \%$ as compared to the control experiment. However, at the higher dosage
lidocalne was more effective. Diol 70d was found to have a negative effect on the mean blood pressure at the higher dosage but essentially no effect at the lower dosage.

Tricyclic ketal 103c was determined to be proarrhythmic at both dosages in experiments on one dog. Lidocaine (76) was quite effective at both dosages in this animal.

The isomeric salts $\mathbf{3 2 b}$ and $\mathbf{3 3 b}$ were found to give rather ambivalent results. At the lower dosage in one animal isomer $33 b$ was found to have relatively weak-to-moderate antiarrhythmic activity, causing an approximately $15.9 \%$ reduction in the rate of SVT. At this dosage in this anımal lidocaine (76) was found to have no effect. At the higher dosage 33b was found to have no effect in this dog. In another dog this compound was found to be proarrhythmic at both dosages. Isomer 32b was found to have no effect in one dog at either dosage. In other experiments, 32b was found to have only very weak activity. These negative results were not entirely conclusive, however, as lidocaine was also relatively Ineffective in these dogs.

As several of these compounds showed promise as potential antiarrhythmic agents, experiments to examine the antiarrhythmic properties are continuing. To summarize the results to date, ketal 102b exhibited execellent properties, being more effective than lidocaine and nearly as effective as 28a. Related ketal 102a was generally more effective than lidocarne, but did display proarrhythmic properties at high rates of ventricular stimulation. Diol 70d was more effective than lidocalne, but not as effective as those compounds with the more nonpolar ketal group at the 9-position. Tricyclic ketal 103a, which might be regarded as a 5-dialkylaminomethyl-derıvatıve of 102a,
exhibited proarrhythmic effects at both dosage levels. Given the data acquired to date, 1 somers $33 b$ and $32 b$ do not show promise as antiarrhythmic agents, however, the data was not conclusive in this regard.

## Suggestions for Future Work

As noted in the first chapter, work by Ruenitz and Mokler ${ }^{62}$ has
suggested that $\mathbb{N}$-alkylbıspıdinebenzamides may show generally better
antiarrhythmic activity than the $N$-benzyl derivatives. Since
N-benzyl-3-thia-7-azabıcyclo[3.3.1]nonane hydroperchlorate 29a has a



#### Abstract

good track record in the animal studies to date, it might be worthwhile to test benzamide derivatives of this compound. The most likely route to these compounds involves the catalytic debenzylation of hydroperchlorates $29 a$ or $70 d$ with palladium on charcoal in acetic acid to afford, after treatment with base, the amınes 137. Ruenitz and Mokler ${ }^{94}$ have 1 ndicated that $N-a l k y l-N^{\prime}-b e n z y l b i s p i d ı n e s$ and the $9-k e t o$ derivatives can be treated under similar conditions to obtain N-monoalkylbispidines and related bispidones. Amınes 138 then can be converted to aryl amıdes 139 by treatment with the appropriate acid halide. Several $\mathbb{N}$-alkylbispıdinebenzamıdes possessing these aryl groups have been shown to have marked antiarrhythmic properties (see pages 37-40), therefore, it might be most profitable to select the arylamide groups associated with the best activity as the inıtial target compounds.


Amınes 138 can also be converted to other $N$-alkyl derivatives 140, which may also have good activity. Work by Binnig and coworkers ${ }^{17}$ has indicated that $\mathbb{N}$-benzylbispidınes with these $N$-alkyl-substituents also show some activity.

## General Information

All Mannich reactions and Wolff-Kıshner reductions were performed under an atmosphere of nitrogen with magnetic stirring. Solvents were removed with a rotary evaporator connected to an aspirator. The following reagents were obtalned from commercial sources and used without further purification: acetic acıd (DuPont), deuterıum oxide (100 atom \%, Aldrich), formaldehyde (37\%, Fısher), hydrazine hydrate (85\%, Fisher), hydroxylamine hydrochloride (96\%, Fisher), paraformaldehyde (Eastman), perchloric acid (60\%, Baker), potassium carbonate (anhydrous, Baker), potassium hydroxide (pellets, 85\%, Fisher), sodium acetate trihydrate (Mallinckrodt), and sodium sulfide (60\%, Curtin). The following requared distillation prior to use: benzaldehyde (Eastman, bp $26-27^{\circ} \mathrm{C} / 1 \mathrm{~mm} \mathrm{Hg}$ ), benzylamıne (Eastman, $35-36^{\circ} \mathrm{C} / 0.1 \mathrm{~mm} \mathrm{Hg}$ ), N-benzylpıperıdin-4-one (16f, Lancaster, bp $\left.111-112^{\circ} \mathrm{C} / 0.3 \mathrm{~mm} \mathrm{Hg}\right)$, O-chlorobenzaldehyde (bp $39-40^{\circ} \mathrm{C} / 0.1 \mathrm{~mm} \mathrm{Hg}$ ), methyl lodide (Lancaster, bp $35-36^{\circ} \mathrm{C}$ ), and N-methylpıperidin-4-one (16e, Lancaster, bp $\left.49-50^{\circ} \mathrm{C} / 0.3 \mathrm{~mm} \mathrm{Hg}\right)$. Tetrahydrothıapyran-4-one (16c, mp 61-62 ${ }^{\circ} \mathrm{C}, 11 \mathrm{t}{ }^{48}$ ) was prepared by from $16 e$ by known methods 48 and was sublimed $\left(45^{\circ} \mathrm{C} / 0.5\right.$ mm Hg) before use. 4-Selenanone (16d, mp $55-56^{\circ} \mathrm{C}$ ), previously prepared ${ }^{106,109}$ in our laboratory, was sublimed ( $\left.43^{\circ} \mathrm{C} / 0.1 \mathrm{~mm} \mathrm{Hg}\right)$ prior
to use. Hydroperchlorate 29 was prepared by known methods ${ }^{14}$ from $27 a$. All solvents were reagent grade. Silıca gel (Davıson Chemical "Davısil 62") and alumina (neutral, Merck) were employed for chromatographic separations. All solvents were reagent grade. In the Mannich reactions, ethanol and methanol were heated at reflux under a stream of $N_{2}$ for $0.5-1.0 \mathrm{~h}$ prior to use. "RT" refers to room temperature. Melting points were acquired on a Thomas Hoover capıllary apparatus and were uncorrected. Infrared spectra were obtained with a PerkinElmer 681 IR spectrophotometer. High resolution mass spectral data were acquired with a CEC Model $21-110 B$ HR spectrometer while unit-mass spectral data was obtained with an LKB-2091 GC-MS spectrometer. ${ }^{13}$ C NMR spectra were acquired at 25.20 MHz on a Varian XL-100(15) NMR spectrometer with a Nıcolet TT-100 PFT accessory, or at 75.43 MHz on a Varian XL-300 NMR spectrometer. $1_{H},{ }^{15} N,{ }^{77}$ Se NMR spectra were obtained on the $\mathrm{XL}-300$ operating at $299.94,30.41,57.22 \mathrm{MHz}$, respectively. $\mathrm{I}_{\mathrm{H}}$ and ${ }^{13}$ C NMR data are reported in parts per million (ppm) downfield from $\left(\mathrm{CH}_{3}\right)_{4} \mathrm{Si} . \quad{ }^{15} \mathrm{~N}$ NMR data are reported in ppm downfield from $\mathrm{NH}_{3}\left(\ell, 20^{\circ} \mathrm{C}\right.$, $0 \mathrm{ppm})$ using ${ }^{15} \mathrm{NH}_{4} \mathrm{NO}_{3}(8.0 \mathrm{M}, 19.73 \mathrm{ppm})$ or formamide (neat, 112.4 ppm$)$ as external secondary standards. ${ }^{77}$ Se NMR data are reported in ppm downfield from $\left(\mathrm{CH}_{3}\right)$ Se ( 0 ppm ) using $\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{2} \mathrm{Se}_{2}(481 \mathrm{ppm})$ as an external secondary standard. Elemental analyses were obtalned from Galbraith Laboratories, Inc., Knoxville, Tennessee.

3,3,5,5-Tetradeutero-4-selenanone (16h)

A jacketed, two-necked flask was fitted with a condenser and a heating mantle. This flask was charged with freshly sublimed 4-selenanone $106,109(16 \mathrm{~g}, 0.2500 \mathrm{~g}, 1.533 \mathrm{mmol})$, anhydrous $\mathrm{K}_{2} \mathrm{CO}_{3}(0.9322$
g, 6.743 mmol$)$ and $\mathrm{D}_{2} \mathrm{O}(5 \mathrm{~mL})$. The mixture was heated at $56^{\circ}$ for 12 h with bolling acetone in the jacket to maintaln this temperature. As the reaction proceeded, some decomposition of the starting material (as indicated by the deposition of red elemental selenium on the walls of the flask) was noted. The reaction mixture was cooled to RT and dry NaCl ( 0.5 g ) was added. The mixture was then extracted ( $\mathrm{DCCl}_{3}, 3 \times 10$ $m L)$, dried $\left(\mathrm{K}_{2} \mathrm{CO}_{3}\right)$, filtered, and evaporated (aspırator with drying tube contalning Mol. Sieve $3 A$ ) to afford a yellow oll that solidified upon standing. Sublimation ( $\left.50^{\circ} \mathrm{C} / 0.01 \mathrm{mmHg}\right)$ then afforded the tetradeuterated ketone 16 h ( $95 \mathrm{mg}, 37 \%$ ): mp $54-55^{\circ} \mathrm{C}$; IR (melt) 2910 $(C-H), 2100,2090(C-D), 1700(C=0) ; 1_{H} \operatorname{NMR}\left(D C C l_{3}\right) \delta 3.00 ;{ }^{13} \mathrm{C}$ NMR ( $\mathrm{DCCl}_{3}$ ) (fully-decoupled) ppm $19.2[\mathrm{~s}, \mathrm{C}(2,6)], 43.6[\mathrm{~m}, \mathrm{C}(3,5)], 211.1$ [C(4)]. Mass spectral m/e calcd. for $\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{D}_{4} \mathrm{O}^{78}$ Se: $167.9990\left(\mathrm{M}^{+}\right)$. Found: 167.9990. Integration of the ${ }^{I_{H}}$ NMR spectrum indicated greater than 90\% deuteration.

Upon deuteration the triplet at $\delta 2.88$ in the $l_{\text {H NMR spectrum of }}$ the starting material (16d) was lost while the triplet at $\delta 3.00$ collapsed to a singlet. This requires a correction in the ${ }^{l_{H}}$ NMR assignments given in the literature. ${ }^{109}$ The correct ${ }^{1}{ }_{H}$ NMR assigments should be: $\delta 2.88[t, J=6.1 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{H}(3,5)], 3.00[t, J=6.1 \mathrm{~Hz}, 4$ H, $H(2,6)]$. An earlier attempt to prepare this compound under the same conditions, but at $100^{\circ} \mathrm{C}$, resulted in severe decompositon of the ketone with no recovery of $16 d$ or 16 h .

7-Benzyl-2,4-bıs(2-chlorophenyl)-3,7-diazab1cy-
clo[3.3.1]nonan-9-ones 17d, 18d

Method A. A three-necked, 50-mL round-bottomed flask was fitted with a condenser, an addition funnel, a thermometer, and a heating mantle. This flask was charged with ammonium acetate (2.31 g, 30.0 mmol ) and ethanol (10 mL), and the flask was flushed with $\mathrm{N}_{2}$. The slurry was warmed to $40^{\circ} \mathrm{C}$ with stirring until all $\mathrm{NH}_{4}$ OAC dissolved, then the solution was cooled to RT. A solution of 2-chlorobenzaldehyde $(5.67 \mathrm{~g}, 40.3 \mathrm{mmol})$, ketone $16 \mathrm{f}(3.78 \mathrm{~g}, 20.0 \mathrm{mmol})$, and ethanol (15 ml) was added in one portion. The resulting solution was slowly warmed to $70^{\circ} \mathrm{C}$ over 30 min . Upon cooling to RT , a white precipitate (solid A) formed which was filtered and washed with anhy ethyl ether ( 20 mL ). These washings were combined with the original filtrate and this solution was cooled at $-10^{\circ} \mathrm{C}$ for 1 h giving a second solid precipitate (solid B) which was also filtered and set aside. Evaporation of the filtrate afforded an oily orange solid which was dissolved in ether ( 10 mL ). Upon standing for 1 h at $-10^{\circ} \mathrm{C}$, a third white solid (solid C ) precipitated. This too was filtered and set asıde. Upon standing for 24 h , a fourth white solid (solid D) was precipıtated, which was also filtered and set asıde. Upon standing for 22 days at $-10^{\circ} \mathrm{C}$, a small amount of a fifth solid (solid E) precipitated.

Solıd A was recrystallızed (2-propanol/ $\mathrm{HCCl}_{3}, 3: 1,40 \mathrm{~mL}$ ) to afford pure ketone $18 \mathrm{~d}(1.06 \mathrm{~g})$ as long white needles: mp $184-185^{\circ} \mathrm{C}$; IR (KBr) $\mathrm{cm}^{-1} 3340(\mathrm{~N}-\mathrm{H}), 1733(\mathrm{C}=0) ; \mathrm{l}_{\mathrm{H} \operatorname{NMR}\left(\mathrm{DCCl}_{3}\right) \delta 1.61[\mathrm{~s}, 1 \mathrm{H}, \mathrm{N}-\mathrm{H}], 2.54 \text {, }, ~(1)}$ 2.56 [overlapping $d, J=12 H z$, and br $s, 4 H, H(1,5)$ and $H(6,8) a x]$, $3.49[\mathrm{~d}, \mathrm{~J}=12 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}(6,8) \mathrm{eq}], 3.73\left[\mathrm{~s}, 2 \mathrm{H}, \mathrm{PhCH}_{2}\right], 5.50[\mathrm{br} \mathrm{s}$, $2 \mathrm{H}, \mathrm{H}(2,4)], 7.14-7.80[\mathrm{~m}, 13 \mathrm{H}, \mathrm{ArH}] ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{DCCl}_{3}\right) \mathrm{ppm} 55.2[\mathrm{~d}$,
$C(1,5)], 58.8[t, C(6,8)], 59.0[d, C(2,4)], 61.0\left[t, \mathrm{PhCH}_{2}\right], 127.4$, 127.5, $128.3_{8}, 128.4_{3}, 128.6,129.1_{6}, 129.1_{1}, 132.2,138.4,142.6[$ Arç], $212.0[\mathrm{~s}, \mathrm{C}(9)] ;{ }^{15} \mathrm{~N} \operatorname{NMR}\left(\mathrm{DCCl}_{3}\right) \mathrm{ppm} 38.3[\mathrm{~N}(7)]$, $58.2[\mathrm{~N}(3)]$. Anal. of 18d calcd. for $\mathrm{C}_{26} \mathrm{H}_{24} \mathrm{Cl}_{2} \mathrm{~N}_{2} \mathrm{O}$ : C, 69.18; $\mathrm{H}, 5.36$; Cl, 15.71; $\mathrm{N}, 6.21$. Found: C, 69.31, H, 5.20; Cl, 15.83; N, 6.18.

Solids B, C and E were combined and recrystallized (2-propanol/ $\mathrm{HCCl}_{3}, 3: 1,15 \mathrm{~mL}$ ) to afford additional ketone $18 \mathrm{~d}(0.50 \mathrm{~g}, 17.3 \%$ total), mp $184-185^{\circ} \mathrm{C}$. Solid D was also recrystallızed from an identical solvent system ( 15 mL ) to afford ketone $17 \mathrm{~d}(0.36 \mathrm{~g}, 4.0 \%$ ) as short white needles: mp 207-208 ${ }^{\circ} \mathrm{C}$; IR (KBr) $\mathrm{cm}^{-1} 3270(\mathrm{~N}-\mathrm{H}), 1717$ (C=O); $\mathrm{I}_{\mathrm{H}}$ $\operatorname{NMR}\left(\mathrm{DCCl}_{3}\right) \delta 2.54[\mathrm{~d}, \mathrm{~J}=12 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}(6,8) \mathrm{ax}], 2.76[\mathrm{br} \mathrm{s}, 2 \mathrm{H}$, $\mathrm{H}(1,5)], 3.12[\mathrm{~d}, \mathrm{~J}=12 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}(6,8) \mathrm{eq}], 3.32\left[\mathrm{~s}, 2 \mathrm{H}, \mathrm{PhCH}_{2}\right], 4.70$ [br s, 1 H, N- He], $4.80[b r s, 2 \mathrm{H}, \mathrm{H}(2,4)], 7.15-7.60[\mathrm{~m}, \mathrm{ArH}] ;{ }^{13} \mathrm{C}$ NMR $\left(D C C l_{3}\right) \operatorname{ppm} 50.9[d, C(1,5)], 55.5[t, C(6,8)], 62.1[d, C(2,4)], 62.5$ $\left[t, \mathrm{PhCH}_{2}\right], 126.6,127.4,128.4,128.6,129.8,129.8,129.9,132.3$, 136.6, 137.2[ArC], $212.2[s, C(9)] ;{ }^{15} N \operatorname{NMR}\left(\operatorname{DCCl}_{3}\right) \operatorname{ppm} 46.9[N(7)]$, 54.4[N(3)]. Anal. of 17d calcd. for $\mathrm{C}_{26} \mathrm{H}_{24} \mathrm{Cl}_{2} \mathrm{~N}_{2} \mathrm{O}$ : C , 69.18; H , 5.36; Cl, 15.71; N, 6.21. Found: C, 69.33; H, 5.53; Cl, 15.97; N, 6.09.

Method B: reaction performed at RT. A one-necked, 50-mL round-bottom flask was fitted with a condenser. The flask was charged with $95 \%$ ethanol ( 50 mL ) and the apparatus flushed was with $\mathrm{N}_{2}$. Ketone 16f (4.73 g, 25.0 mmol$), 2$-chlorobenzaldehyde ( $7.03 \mathrm{~g}, 50.0 \mathrm{mmol}$ ), and ammonium acetate $(5.78 \mathrm{~g}, 75.0 \mathrm{mmol})$ were added to the flask. The apparatus was flushed with $N_{2}$ and the mixture was allowed to stir at RT. The $\mathrm{NH}_{4} \mathrm{OAC}$ slowly dissolved over 1 h and the formation of a small amount of white precipitate was noted shortly thereafter. Continued stirring at $R T$ for 5 d gave additional white precipitate while the supernatant
slowly developed a bright red-orange color. The precipitate (solid A) was filtered and washed with ethyl ether ( 50 mL ) ; the washings were combined with the orıginal filtrate. This solution was cooled at $-10^{\circ} \mathrm{C}$ for 2 d, thus precıpitatıng additional white solıd (solid B) which was filtered and washed with ether. The filtrate was evaporated (aspirator) to give an orange gum. Ethyl ether ( 100 mL ) was added and the mixture heated on a steam bath until a third, almost white solid separated from the orange supernatant. This was filtered, washed with ether and recrystallızed (2-propanol/ $\mathrm{HCCl}_{3}, 3: 1,10 \mathrm{~mL}$ ) to afford 17d (0.1983 g, 1.8\%) as tiny needles, mp 207-209 ${ }^{\circ} \mathrm{C}$.

Solid A was recrystallized (2-propanol/ $\mathrm{HCCl}_{3}, 3: 1,110 \mathrm{~mL}$ ) to afford 18d (3.14 g) as long white needles, mp $184.0-184.5^{\circ} \mathrm{C}$. Solid B was recrystallized in the same solvent system ( 15 mL ) to give additional $18 \mathrm{~d}\left(0.40 \mathrm{~g}, 31.38\right.$ total), mp $184-185^{\circ} \mathrm{C}$. The $I R,{ }^{l_{H}}$ and ${ }^{13} \mathrm{C}$ NMR spectra for these products were identical to that given previously.

Method $C$ : reaction perfurmed in boiling ethanol. A three- necked, 25-mL round-bottomed flask was fitted with a condenser, an addition funnel, and a heating mantle. This flask was charged with ammonium acetate ( $1.16 \mathrm{~g}, 15.0 \mathrm{mmol}$ ) and ethanol (10 mL) and the flask flushed with $\mathrm{N}_{2}$. The slurry was heated to reflux and the $\mathrm{NH}_{4}$ OAC allowed to dissolve. The resulting solution cooled to RT and then treated in one portion with a solution of l-benzylpıperidin-4-one (1.89 g, 10.0 mmol ), o-chlorobenzaldehyde (2.81 g, 20.0 mmol$)$ and ethanol (10 mL). This solution was heated at reflux for 1.3 h . Upon cooling to RT, a yellow white solid precipitated from the reaction mixture. This solid was filtered, washed with ether, and recrystallızed (2-propanol/ $\mathrm{HCCl}_{3}, 3: 1$, 10 mL ) to afford $18 \mathrm{~d}(0.1871 \mathrm{~g}, 4.1 \%) \mathrm{mp} 184-185^{\circ} \mathrm{C}$.
to afford 19c (0.74 g), mp 170.5-171. $7^{\circ} \mathrm{C}$. Thin layer chramatography (silica gel, hexane/ethyl acetate, 19:l) of the brown filtrate previously set aside revealed the presence of unreacted benzaldehyde ${\left(R_{f}\right.}_{f}$ 0.53), 18c ( $\left.R_{f} 0.35\right)$ and dark polymeric materials (at the baseline). No other easily eluted materials were present in other than trace quantities. The brown filtrate was evaporated and placed onto a silica gel column. Amıne 19c was eluted (hexane/ethyl acetate, 6:1) as a yellow band. Evaporation, followed by air drying resulted in additional 19c ( $0.35 \mathrm{~g}, 60 \%$ total). The IR spectrum of this compound was identical that described elsewhere (see attempted preparation of 107).

## N,N'-Dibenzyl-3,7-diazabicyclo[3.3.1]nonan-

## 9-one (28d)

Method A. Following a procedure similar to that reported ${ }^{16}$ for this compound, a three-necked, 50-mL round-bottomed flask was fitted with a dropping funnel ( 60 mL ), a condenser and a heating mantle. This flask was charged with benzylamine (2.68 g, 25.0 mmol$)$, glacıal acetic acid (1.54 g, 25.8 mmol ) and methanol (25 mL). Paraformaldehyde ( $1.58 \mathrm{~g}, 52.5 \mathrm{mmol}$ ) was added, the apparatus was flushed with $\mathrm{N}_{2}$ and the mixture was brought to reflux with stirring. After 15 m 1 n , a solution of l-benzylpıperidın-4-one (16f, $4.73 \mathrm{~g}, 25.0 \mathrm{mmol}$ ) and glacıal acetic acid (1.50 g, 25.0 mmol ) in methanol (18 mL) was added dropwise over 0.5 h . The resulting orange solution was then heated at reflux for an addıtional 9.5 h . Upon cooling to RT, the solvent was evaporated from the reaction mixture to leave an orange 011 . Water ( 50 mL ) and KOH pellets $(85 \%, 3.30 \mathrm{~g}, 50.0$ mmole) were added and the resulting oily, orange suspension was extracted $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}, 3 \times 50 \mathrm{~mL}\right)$. The organic

The filtrate of the original reaction mixture was diluted with ether ( 20 mL ) and allowed to stand at $-10^{\circ} \mathrm{C}$ for 3 h . No additional solid was observed to precipitate. The solvent was evaporated and ether $(20 \mathrm{~mL})$ was added to the resulting orange oil. Warming on a steam bath for a few minutes resulted in the precipitation of a white solid. Filtration of this solid, washing with cyclohexane, and recrystallization (2-propanol/ $\mathrm{HCCl}_{3}, 3: 1,30 \mathrm{~mL}$ ) afforded 17d (0.7300 g, 16.2\%) mp 209.5-210 ${ }^{\circ} \mathrm{C}$.

The remaining portion or the original reaction mixture was evaportated and partitioned between ether ( 30 mL ) and water ( 30 mL ). The red-orange ether layer was dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered, an evaporated to afford an orange-red oll that solıdified. Addition of cyclohexane ( 30 mL ) followed by heating on a steam bath, resulted in the dissolution of a red impurity from the now yellow solid. This solid was filtered and recrystallized (2-propanol/ $\mathrm{HCCl}_{3}, 3: 1,10 \mathrm{~mL}$ ) to afford 19b (88.3 $m g, 2.0 \%$ : $m p 171-172^{\circ} \mathrm{C}$, $\operatorname{IR}(\mathrm{KBr}) \mathrm{cm}^{-1} 1665(\mathrm{C}=0) ; \mathrm{l}_{\mathrm{H} \operatorname{NMR}\left(\mathrm{DCCl}_{3}\right) \delta 3.63}$ $\left[\mathrm{s}, 2 \mathrm{H} . \mathrm{PhCH}_{2}\right], 3.71\left[\mathrm{~s}, 4 \mathrm{H}, \mathrm{ring} \mathrm{CH}_{2}\right], 7.06-7.50[\mathrm{~m}, 12 \mathrm{H}], 8.10[\mathrm{~s}$, 1H]: ${ }^{13} \mathrm{CNMR}\left(\mathrm{DCCl}_{3}\right) 53.5\left[t, \operatorname{ring} \mathrm{CH}_{2}\right], 60.0\left[t, \mathrm{PhCH}_{2}\right], 126.3,127.2$, 128.2, 128.9, 129.8, 129.9, 130.2, 133.5, 134.4, 135.0, 137.2, 187.2[s, $C=01$. Mass spectral m/e calcd. for $\mathrm{C}_{26} \mathrm{H}_{21} \mathrm{Cl}_{2} \mathrm{NO}$ : ( $\mathrm{M}^{+}$) 433.0994. Found: 433.1003. Anal. calcd. for $\mathrm{C}_{26} \mathrm{H}_{21} \mathrm{Cl}_{2} \mathrm{NO}: \mathrm{C}, 71.89$; $\mathrm{H}, 4.87$; $\mathrm{N}, 3.22 ; \mathrm{Cl}$, 16.32. Found: $C, 71.79 ; \mathrm{H}, 5.13 ; \mathrm{N}, 3.06 ; \mathrm{Cl}, 16.45$. The spectral properties of the bicycilc products 17 d and 18 were identical to those given previously.

Attempted Preparation of 7-Benzyl-2,4-diphenyl-
3,7-diazabıcyclo[3.3.1]nonan-9-ones 17e, 18e

By method B. Employing the apparatus and procedure described, N-benzyl-piperidin-4-one (16f, $1.50 \mathrm{~g}, 7.93 \mathrm{mmol})$ was treated with benzaldehyde ( $1.68 \mathrm{~g}, 15.9 \mathrm{mmol}$ ), ammonıum acetate ( $1.83 \mathrm{~g}, 23.7 \mathrm{mmol}$ ) in ethanol (20 mL total). The reaction mixture was allowed to stir for 21 d during which a red-brown color developed. No solid precipitate was noted to form in the reaction mixture, nor was any formed during the workup described. Finally the reaction mixture was evaporated to an orange oil. This was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$ and absorbed onto slifa gel. After evaporation of the solvent, this mixture was placed on a silıca gel chromatography column. Elution with hexane/ethyl acetate (9:1) afforded the separation of a yellow band ( $R_{f} 0.61$, same solvent system) from a dark brown band which remained at the top of the column. Evaporation of the solvent afforded a yellow solid (1.09 g, 38\%), mp $169-170^{\circ} \mathrm{C}$, that afforded an IR spectrum identical with that of 19c, (see procedure for the attempted preparation of 107).

By method C. Employing the apparatus and procedure described, N-benzylpıperidin-4-one $(0.95 \mathrm{~g}, 5.0 \mathrm{mmol})$ was treated with benzaldehyde $(1.06 \mathrm{~g}, 10.0 \mathrm{mmol})$, ammonium acetate $(0.58 \mathrm{~g}, 7.5 \mathrm{mmol})$ in ethanol (10 $m L$ total). The reaction mixture was heated at reflux for 4 h , during which the reaction mixture turned to a tan-brown color. After cooling to $R T$ the reaction mixture was diluted with ether and permitted to stand for 3 d at RT. No solid precipitate was observed. Evaporation of the solvent afforded a olly yellow solid. This was washed with ether and filtered. The solid was recrystallized (2-propanol/ $\mathrm{HCCl}_{3}, 3: 1,30 \mathrm{~mL}$ )

extracts were combined and dried $\left(\mathrm{MgSO}_{4}\right.$, overnight). Filtration of the drying agent, followed by removal of the solvent, afforded another orange oil ( 6.41 g ) which was vacuum distilled ( $8 \times 10^{-7} \mathrm{~mm} \mathrm{Hg}$, diffusion pump). At $106-108^{\circ} \mathrm{C}$, a colorless 011 ( 0.36 g ) was collected, the ${ }^{13} C$ NMR of which was identical to that of the starting material $16 f$. A second fraction (bp $180-205^{\circ} \mathrm{C}$ ) was collected as a yellow oll but with substantial decompositon of the residue. Redistillation (180-185 ${ }^{\circ} \mathrm{C}$, $\left.1.0 \times 10^{-6} \mathrm{~mm} \mathrm{Hg}\right)$ of this second fraction again afforded a yellow oil, however, no significant decomposition was noted in this second distillation. The distillate from the second distillation was dissolved in hot skelly $B(80 \mathrm{~mL})$. Upon cooling to $-10^{\circ} \mathrm{C}$, ketone $28 \mathrm{~d}(2.53 \mathrm{~g}$, 31.6\%) was precipitated as a white solid, mp $61-63^{\circ} \mathrm{C}$ (lit. ${ }^{16} 70-71^{\circ} \mathrm{C}$ ). The compound was used in the next step without further purification. Spectroscopic data for this compound were: $I R(K B r) \mathrm{cm}^{-1} 2963,2822$, 1738, 1721, 748, 703; $1_{H} \operatorname{NMR}\left(\mathrm{DCCl}_{3}\right) \delta 2.52[\mathrm{br} \mathrm{s}, 2 \mathrm{H}, \mathrm{H}(1,5)], 2.76$, 2.78 [two $d, J=10.5, J=10.7 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{H}(2,4,6,8) \mathrm{ax}], 3.00[\mathrm{br} \mathrm{d}, \mathrm{J}=$ $10.7 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{H}(2,4,6,8) \mathrm{eq}], 3.53\left[\mathrm{~s}, 4 \mathrm{H}, \mathrm{PhCH}_{2}\right], 7.23-7.30[\mathrm{~m}, 10 \mathrm{H}$, ArH]; ${ }^{13} \mathrm{CNMR}\left(\mathrm{DCCl}_{3}\right) \operatorname{ppm} 46.7[\mathrm{~d}, \mathrm{C}(1,5)], 58.0[\mathrm{t}, \mathrm{C}(2,4,6,8)], 61.1$

 [ $N(3,7)]$.

Method B. In a modification of the previous procedure, a solution of l-benzylpiperıdın-4-one (16f, $4.73 \mathrm{~g}, 25.0 \mathrm{mmol}$ ) and glacıal acetic acid ( $1.50 \mathrm{~g}, 25.0 \mathrm{mmol}$ ) in methanol ( 25 mL ) was added as before to a bolling mixture of paraformaldehyde $(6.00 \mathrm{~g}, 200 \mathrm{mmol}), \mathrm{glacial}$ acetic acıd (1.62 g, 27.0 mmol$)$, benzylamine ( $2.68 \mathrm{~g}, 25.0 \mathrm{mmol}$ ), and methanol $(100 \mathrm{~mL})$. The mixture was permitted to heat at reflux for 24 h and the
aqueous workup was as outlined above (Method A). Instead of the distillation described, the crude oll from the workup was digested in Skelly B ( 300 mL ) on a steam bath for 0.5 h . The hot supernatant was decanted from the yellow residue and evaporated (aspirator followed by vacuum pump, $\mathrm{RT}, 0.02 \mathrm{~mm} \mathrm{Hg}, 20 \mathrm{~min})$. This afforded ketone $28 \mathrm{~d}(6.84 \mathrm{~g}$, 85.48) as a white 011 that did not solidify after 3 d at $-10^{\circ} \mathrm{C}$. The $\mathrm{l}_{\mathrm{B}}$ and ${ }^{13} \mathrm{C}$ NMR spectra of this 011 were virtually identical to that described above and the material proved to be satisfactory for use in the next steps.

## N,N'-Dibenzyl-3,7-diazabicyclo[3.3.1]nonane

## Hydroperchlorate (29d)

## Following a procedure similar to those in the literature, 16,92 a jacketed, two-necked, 70-mL flask was fitted with a lower take-off condenser and a receiving flask, a thermometer, a condenser on the jacket and a heating mantle. This flask was charged with ketone 28d

 (011, $2.00 \mathrm{~g}, 6.24 \mathrm{mmol})$, hydrazine hydrate ( $85 \%, 1.10 \mathrm{~g}, 18.7 \mathrm{mmol}$ ), KOH pellets ( $85 \%, 2.06 \mathrm{~g}, 31.2 \mathrm{mmol}$ ), and triethylene glycol ( 25 mL ). The apparatus was flushed with $\mathrm{N}_{2}$ and the $m 1 x$ ture was heated at $120^{\circ} \mathrm{C}$ for 0.5 h using tetralin (bp $207^{\circ} \mathrm{C}$ ) in the jacket. The reaction mixture was then allowed to heat at reflux for 5 h . The temperature slowly increased to $207^{\circ} \mathrm{C}$ with removal of the volatile distillates and with the evolution of $N_{2}$. After cooling to $R T$, the reaction mixture was poured, along with the distillate, into cool water ( 30 mL ). The resulting white suspension was extracted (ethyl ether, $4 \times 30 \mathrm{~mL}$ ), and the combined extracts were washed successively with NaOH solution ( $10 \%, 30 \mathrm{~mL}$ ), $\mathrm{H}_{2} \mathrm{O}$ $(30 \mathrm{~mL})$, and NaCl solution (saturated, 30 mL ). After dryıng ( $\mathrm{Na}_{2} \mathrm{SO}_{4}{ }^{\prime}$overnight), the solution was filtered and evaporated to give the crude reduced amine as a yellow 011 ( $1.34 \mathrm{~g}, 70.1 \%$ ). Thıs 011 was dissolved in $C_{6} H_{6}(20 \mathrm{~mL})$ and treated dropwise over 15 min with a solution of $\mathrm{HClO}_{4}(60 \%, 2.20 \mathrm{~g}, 13.1 \mathrm{mmol})$ in 2-propanol (5 mL) to give a dark solution. This solution was stirred (magnetic) for 1 hafter which it was concentrated ( $\sim 5 \mathrm{~mL}$ ). Addition of ethyl ether ( 20 mL ) precipıtated the salt as a dark brown solid. Filtration and recrystallization (aqueous ethanol, 20 mL , decolorizing carbon) afforded a first crop of 29d ( 0.6522 g ) white crystals; mp $221-222^{\circ} \mathrm{C}$ (lıt. ${ }^{92} 210-217^{\circ} \mathrm{C}$, orange crystals). Concentration of the mother liquor to 7 mL gave a second crop ( $0.1257 \mathrm{~g}, 43.7 \%$ total), again as white crystals (mp 220-222 ${ }^{\circ} \mathrm{C}$ ). The spectral data for 29d were: IR (KBr) $\mathrm{cm}^{-1} 2960,2841$ (C-H),
 $\mathrm{H}(9)], 2.14[\mathrm{br} \mathrm{s}, 2 \mathrm{H}, \mathrm{H}(1,5)], 2.77[\mathrm{~d}, \mathrm{~J}=13 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{H}(2,4,6,8) \mathrm{ax}]$, $3.13[d, J=13 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{H}(2,4,6,8) \mathrm{eq}], 3.43$ [br s, $1 \mathrm{H}, \stackrel{+}{\mathrm{N}}-\mathrm{H}], 3.86[\mathrm{~s}$, $\left.4 \mathrm{H}, \mathrm{PhCH}_{2}\right], 7.30-7.48[\mathrm{~m}, 10 \mathrm{H}, \mathrm{ArH}] ;{ }^{13} \mathrm{C}$ NMR (DMSO-d ${ }_{-}$) ppm $27.4[\mathrm{~d}$, $C(1,5)], 29.5[t, C(9)], 56.9[t, C(2,4,6,8)], 60.4\left[t, \mathrm{PhCH}_{2}\right], 128.2$
 i-ACㅡ]: ${ }^{15}$ NMR (DMSO- d $_{6}$ ) ppm $54.6[N(3,7)]$. Anal. calcd. for $\mathrm{C}_{21} \mathrm{H}_{27} \mathrm{ClN}_{2} \mathrm{O}_{4}: \mathrm{C}, 61.99$; $\mathrm{H}, 6.69$ : $\mathrm{Cl}, 8.71 ; \mathrm{N}, 6.88$. Found: $\mathrm{C}, 61.92$; H, 6.84; Cl, 8.71, N, 6.82.

7-Benzyl-2,4-bis(2-chloropheny1)-3,7-diazabicyclo[3.3.1]nonane (30b)

A two-necked, 200-mL Jacketed flask was fıtted with a thermometer, a lower take-off condenser with receiving flask , a heating mantle, and a condenser on the jacket. This flask was charged with ketone 17d
(1.87 g, 4.15 mmol$)$ and triethylene glycol (75 mL) and the jacket charged with tetralin. The apparatus was flushed with $N_{2}$ and the mixture heated to $110^{\circ} \mathrm{C}$ with stirring to dissolve the ketone. Hydrazine hydrate $(85 \%, 1.22 \mathrm{~g}, 20.7 \mathrm{mmol})$ was added in one portion and the resulting solution heated at $110-120^{\circ} \mathrm{C}$ for 1 h . Potassium hydroxide pellets $(85 \%, 8.8 \mathrm{~g})$ were then added and the resulting mixture heated to $195^{\circ} \mathrm{C}$ over 4 h with the distillation of volatiles and the evolution of $\mathrm{N}_{2}$. After cooling to RT , the solution was poured into $\mathrm{H}_{2} \mathrm{O}(50 \mathrm{~mL})$ and the resulting suspension was extracted with ether ( $7 \times 50 \mathrm{~mL}$ ). The combined ether extracts were washed with NaOH solution (10\%, 100 mL ) and dried ( $\mathrm{K}_{2} \mathrm{CO}_{3}$, overnight). Filtration followed by evaporation (aspirator) of the filtrate gave a yellow oll which was dissolved in warm ethanol (50 mL). Trituration with ethyl ether afforded, upon cooling, white cubic crystals which were filtered, washed with ether, and dried to give amine 30b (1.11 g, 61\%) : mp $149-151^{\circ} \mathrm{C}$; IR ( KBr ) $\mathrm{cm}^{-1}$ $3250(\mathrm{~N}-\mathrm{H}) ; \mathrm{l}_{\mathrm{H} \operatorname{NMR}\left(\mathrm{DCCl}_{3}\right) \delta 2.04[\mathrm{br} \mathrm{s}, 2 \mathrm{H}, \mathrm{H}(1,5)], 2.06[\mathrm{~d}, \mathrm{~J}=}=$ $10 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}(9)], 2.17[\mathrm{~d}, \mathrm{~J}=10 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}(6,8) \mathrm{ax}], 2.29[\mathrm{~d}, \mathrm{~J}=$ $10 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}(9)], 2.82[\mathrm{~d}, \mathrm{~J}=10 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}(6,8) \mathrm{eq}], 3.10[\mathrm{~s}, 2 \mathrm{H}$, $\mathrm{PhCH}_{2}$ ], $4.44[\mathrm{br} \mathrm{s}, \mathrm{l} \mathrm{H}, \mathrm{N}-\mathrm{H}], 4.68[\mathrm{br} \mathrm{s}, 2 \mathrm{H}, \mathrm{H}(2,4)], 7.08-7.44[\mathrm{~m}$, $13 \mathrm{H}, \mathrm{ArH}] ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{DCCl}_{3}\right) \operatorname{ppm} 31.5[\mathrm{~d}, \mathrm{C}(1,5)], 35.9[t, \mathrm{C}(9)], 54.9$ $[t, C(6,8)], 61.6[d, C(2,4)], 64.3\left[t, \mathrm{PhCH}_{2}\right], 126.5,127.3,127.5$,
 $[\mathrm{N}(7)]$, $53.8[\mathrm{~N}(3)]$. Anal. calcd. for $\mathrm{C}_{26} \mathrm{H}_{26} \mathrm{Cl}_{2} \mathrm{~N}_{2}$ : C, 71.39; H, 6.00; Cl, 16.21; $N, 6.40$. Found: $C, 71.48 ; \mathrm{H}, 6.04 ; \mathrm{Cl}, 16.00 ; \mathrm{N}, 6.65$.

## 7-Benzyl-2,4-bıs(2-chlorophenyl)-3,7-diazabicy-

## clo[3.3.1]nonane 31b

A two-necked, Jacketed flask was fitted with a thermometer, a lower take-off condenser, a heating mantle, and a condenser on the jacket. The flask was charged with ketone $18 \mathrm{~d}(0.80 \mathrm{~g}, 1.8 \mathrm{mmol})$ and triethylene glycol ( 50 mL ), and the jacket charged with tetralin (bp $207^{\circ} \mathrm{C}$ ). The apparatus was flushed with $\mathrm{N}_{2}$ and warmed to 110 C with stirring to dissolve the ketone. To this solution was added in one portion hydrazine hydrate ( $85 \%, 0.52 \mathrm{~g}, 10.4 \mathrm{mmol}$ ), and the resulting solution was stirred at $110^{\circ} \mathrm{C}$ for 1 h . Potassium hydroxide pellets ( $85 \%$, 5.00 g ) were then added and the mixture heated to $195^{\circ} \mathrm{C}$ over 4.5 h with the continuous distillation of volatiles and until $N_{2}$ evolution ceased. Upon cooling to RT , the tan solution was poured into $\mathrm{H}_{2} \mathrm{O}(50 \mathrm{~mL})$ and the resulting suspension was extracted with ethyl ether ( $5 \times 30 \mathrm{~mL}$ ). The combined ether extracts were washed with NaOH solution (10\%, 50 mL ) and dried ( $\mathrm{Na}_{2} \mathrm{SO}_{4}$, overnight). Filtration followed by evaporation (aspırator) of the filtrate afforded a yellow oll which was dissolved in hot ethanol ( 25 mL ). Upon cooling, the product precipitated as white plates, which were filtered and dried to a afford amine 3lb (0.54 g, 69\%): mp $136.4-137.0^{\circ} \mathrm{C}$; IR (KBr) $\mathrm{cm}^{-1} 3300(\mathrm{~N}-\mathrm{H}) ; \mathrm{l}_{\mathrm{H} \operatorname{NMR}\left(\mathrm{DCCl}_{3}\right) \delta 1.07}$ $[d t, J=12.3,2.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}(9)$ endo], $1.18[\mathrm{br} \mathrm{s}, \mathrm{l} \mathrm{H}, \mathrm{N}-\mathrm{H}], 1.83$ $[b r s, 2 H, H(1,5)], 2.09[d, J=10 H z, 2 H, H(6,8) a x], 2.35[d, J=$ $12.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}(9) \mathrm{exo}], 3.08[\mathrm{~d}, \mathrm{~J}=10 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}(6,8) \mathrm{ax}], 3.50[\mathrm{~s}$, $\left.2 \mathrm{H}, \mathrm{PhCH}_{2}\right], 4.77[\mathrm{~d}, \mathrm{~J}=2.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}(2,4)]$, $7.09-7.92[\mathrm{~m}, 13 \mathrm{H}$, ArH]: ${ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{DCCl}_{3}\right) \operatorname{ppm} 24.6[t, C(9)], 36.1[d, C(1,5)], 56.1[d$, $\mathrm{C}(2,4)], 58.8[t, \mathrm{C}(6,8)], 62.8\left[t, \mathrm{PhCH}_{2}\right], 126.8,127.0,127.5,128.0$,

[N(7)], 50.5 [N(3)]. Anal. calcd. for $\mathrm{C}_{26} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{Cl}_{2}$ : C, 71.39; 日, 6.00; N, 6.40; Cl, 16.21. Found: C, 71.17; $\mathrm{H}, 6.25, \mathrm{~N}, 6.32, \mathrm{Cl}, 16.15$.

7-Benzyl-2,4-bis(2-chloropheny1)-3,7-diazabicyclo[3.3.1]nonane Hydroperchlorate 32b

In a one-necked, 100-mL round-bottomed flask, a solution of amine 30b ( $0.4957 \mathrm{~g}, 1.14 \mathrm{mmol}$ ) in $\mathrm{C}_{6} \mathrm{H}_{6}(20 \mathrm{~mL})$ was treated dropwise over 15 min with $\mathrm{HClO}_{4}(60 \%, 0.5 \mathrm{~mL})$ with vigorous stirring. This resulted in the precipitation of a white solid. The flask was fitted with a condenser and heated on a steam bath for an addıtional 5 min, followed by cooling to RT. The solution was filtered and the cloudy filtrate set aside. Recrystallization of this solld ( $\mathrm{CH}_{3} \mathrm{OH}, 30 \mathrm{~mL}$ ) afforded the monoperchlorate 32b (0.1050 g) as white crystals, mp 264.0-264.5 ${ }^{\circ} \mathrm{C}$ (dec). The cloudy benzene filtrate was evaporated to about 2 mL and the resulting oil was dissolved in hot $\mathrm{CH}_{3} \mathrm{OH}(30 \mathrm{~mL})$. Upon cooling to RT, additional product precipitated as a white powder. This was filtered and recrystallızed ( $\mathrm{CH}_{3} \mathrm{OH}, 65 \mathrm{~mL}$ ) to afford additonal 32 b ( $0.3575 \mathrm{~g}, 748$ total) again as white crystals, mp $260-262^{\circ} \mathrm{C}$ (dec). The spectroscopic data were as follows: $\mathrm{IR}(\mathrm{KBr}) \mathrm{cm}^{-1} 3300(\mathrm{~N}-\mathrm{H}), 2850-2700(\stackrel{+}{\mathrm{N}}-\mathrm{H}), 1090$ (C1-O); $l_{H} \operatorname{NMR}\left(D M S O-d_{-6}\right) \delta 2.19[d, J=12 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}(9)], 2.35[\mathrm{~d}, \mathrm{~J}=$ $12 \mathrm{~Hz}, \mathrm{l} \mathrm{H}, \mathrm{H}(9)]$, $2.38[\mathrm{br} \mathrm{s}, 2 \mathrm{H}, \mathrm{H}(\mathrm{l}, 5)]$ ] 3.02 [br s, $4 \mathrm{H}, \mathrm{H}(6,8) \mathrm{ax}$ and eq], 4.08 [br s, $2 \mathrm{H}, \mathrm{PhCH}_{2}$ ], 4.88 [br s, $2 \mathrm{H}, \mathrm{H}(2,4), 5.63$ [br s, $1 \mathrm{H}, \mathrm{N}-\underline{\mathrm{H}}], 7.36-7.72[\mathrm{~m}, 13 \mathrm{H}, \mathrm{ArH}], 10.13$ [br s, $1 \mathrm{H}, \stackrel{+}{\mathrm{N}}-\mathrm{H}] ;{ }^{13} \mathrm{C}$ NMR (DMSO-d ${ }_{6}$ ) ppm $29.8[d, C(1,5)], 31.4[t, C(9)], 53.0[t, C(6,8)], 60.3$ $\left[t, \mathrm{PhCH}_{2}\right], 60.8[\mathrm{~d}, \mathrm{C}(2,4)], 127.3,127.4,128.9,129.3,129.9,130.8$, 131.2, 131.3, 136.3, 142.0, [ArC]; ${ }^{15} \mathrm{~N}$ NMR (DMSO- $\mathrm{d}_{6}$ ) ppm $50.0[\mathrm{~N}(7]$,
52.6 [ $\mathrm{N}(3)$ ]. Anal. calcd. for $\mathrm{C}_{26} \mathrm{H}_{27} \mathrm{Cl}_{3} \mathrm{~N}_{2} \mathrm{O}_{4}: \mathrm{C}, 58.05 ; \mathrm{H}, 5.07$; Cl , 19.73; N, 5.21. Found: C, 58.07; H, 5.08; Cl, 19.66; N, 5.27.

7-Benzyl-2,4-bis(2-chlorophenyl)-3,7-dıazabicy-
clo[3.3.1]nonane Hydroperchlorate 33b

In a one-necked, $100-\mathrm{mL}$ round-bottomed flask, a solution of amine 31b ( $0.80 \mathrm{~g}, 1.83 \mathrm{mmol}$ ) in $\mathrm{C}_{6} \mathrm{H}_{6}(30 \mathrm{~mL})$ was treated dropwise slowly with a solution of $\mathrm{HClO}_{4}(60 \%, 1.50 \mathrm{~g}, 8.96 \mathrm{mmol})$ in 2-propanol ( 5 mL ) resulting in the formation of a white powdery precipitate. The flask was fitted with a condenser and the mixture heated warmed on a steam bath for 15 min. After cooling to RT, the precipitate was filtered and recrystallized in a minimum amount of $70 \%$ acetone to afford the monohydroperchlorate 33b ( $0.80 \mathrm{~g}, \mathrm{81} \mathrm{\%}$ ) as fine white crystals: mp $246-247^{\circ} \mathrm{C}$ (dec); IR (KBr) $\mathrm{cm}^{-1} 3330(\mathrm{~N}-\mathrm{H}), 2900-2600(\stackrel{+}{\mathrm{N}}-\mathrm{H}), 1110(\mathrm{Cl}-\mathrm{O}) ;$ $\left.1_{H \operatorname{NMR}\left(D M S O-d_{6}\right.}\right) \delta 1.70[d, J=14 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}(9)$ endo $], 2.33[\mathrm{~d}, \mathrm{~J}=$ $11 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}(6,8) \mathrm{ax}], 2.38[\mathrm{br} \mathrm{s}, 2 \mathrm{H}, \mathrm{H}(1,5)], 2.51$ [overlapping d, $J=14 \mathrm{~Hz}, \mathrm{H}(9)$ exo and $\left.\mathrm{br} \mathrm{s}, \mathrm{DMSO} \mathrm{d}_{5}\right], 2.85[\mathrm{~d}, \mathrm{~J}=11 \mathrm{~Hz}, 2 \mathrm{H}$, $\mathrm{H}(6,8) \mathrm{eq}], 3.70\left[\mathrm{~s}, 2 \mathrm{H}, \mathrm{PhCH}_{2}\right], 5.00[\mathrm{~d}, \mathrm{~J}=8 \mathrm{~Hz}, \mathrm{H}(2,4)], 7.32-7.94$ [ $\mathrm{m}, 13 \mathrm{H}, \mathrm{Ar} \underset{\mathrm{H}}{ }], 8.10$ [br s, $1 \mathrm{H}, \mathrm{N}-\mathrm{H}], 9.84$ [br s, $1 \mathrm{H}, \stackrel{+}{\mathrm{N}}-\mathrm{H}] ;{ }^{13} \mathrm{C}$ NMR (DMSO-d ${ }_{6}$ ) ppm $24.5[t, C(9)], 33.7[d, C(1,5)], 55.9[t, C(6,8)], 56.9$ $[\mathrm{d}, \mathrm{C}(2,4)], 60.9[t, \mathrm{C}(10)], 127.6-130.9[\mathrm{ArC}], 132.6,135.5,137.1$ [ArC]; ${ }^{15}{ }_{\text {NMR }}\left(\mathrm{DMSO}_{-}\right.$) ppm 38.3 [N(7)], $54.6[\mathrm{~N}(3)]$. Anal. calcd. for $\mathrm{C}_{26} \mathrm{H}_{27} \mathrm{Cl}_{3} \mathrm{~N}_{2} \mathrm{O}_{4}: \quad \mathrm{C}, 58.06 ; \mathrm{H}, 5.06 ; \mathrm{Cl}, 19.78 ; \mathrm{N}, 5.21$. Found: C , 58.16; $\mathrm{H}, 5.20, \mathrm{Cl}, 19.65 ; \mathrm{N}, 5.16$.

3,7-Dıbenzyl-3,7-diazabıcyclo[3.3.1]nonan-
9,9-dıol Hydroperchlorate (70d)

In a 50-mL Erlenmeyer flask, a vigorously stırred (magnetic) solution of ketone $28 \mathrm{~d}(1.00 \mathrm{~g}, 3.12 \mathrm{mmol})$ in $\mathrm{C}_{6} \mathrm{H}_{6}(20 \mathrm{~mL})$ was treated dropwise with a solution of $\mathrm{HClO}_{4}(60 \%, 1.56 \mathrm{~g}, 9.32 \mathrm{mmol})$ in 2-propanol ( 5 mL ) over 15 m 1 n , thus precipıtating the salt as a white powder. The mixture was stirred for an additional 1 h . The solid was filtered and recrystallızed (2-propanol/ $\mathrm{H}_{2} \mathrm{O}, \mathrm{ll}: 1$ ) to afford, after drying (Abderhalden, $82^{\circ} \mathrm{C}, 0.2 \mathrm{~mm} \mathrm{Hg}, \mathrm{P}_{2} \mathrm{O}_{5}, 24 \mathrm{~h}$ ) diol 70d ( $0.51 \mathrm{~g}, 37 \%$ ): mp $209.5-210.8^{\circ} \mathrm{C} ; \mathrm{l}_{\mathrm{H}} \operatorname{NMR}\left(\mathrm{DMSO}_{-} \mathrm{d}_{6}\right) \delta 1.96[\mathrm{~s}, 2 \mathrm{H}, \mathrm{H}(1,5)], 3.05[\mathrm{~s}, 8 \mathrm{H}$, $\mathrm{H}(2,4,6,8)], 3.89\left[\mathrm{~s}, 4 \mathrm{H}, \mathrm{PhCH}_{2}\right], 6.22[\mathrm{~s}, 2 \mathrm{H}, \mathrm{O}$ - He $]$ 7.36-7.56[m, 10 H, ArH], $9.88[\mathrm{~S}, 1 \mathrm{H}, \mathrm{N}-\mathrm{H}] ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{DMSO}-\mathrm{d}_{6}\right) \operatorname{ppm} 38.54[\mathrm{~d}, \mathrm{C}(1,5)]$, $54.3[t, C(2,4,6,8)], 59.7\left[t, \mathrm{PhCH}_{2}\right], 89.2[5, C(9)], 128.1,128.1$, 128.4, 130.0 [Arc]: ${ }^{15} \mathrm{~N}$ NMR ( $\mathrm{DMSO}_{-1} \mathrm{~d}_{6}$ ) ppm 52.9 [N(3,7)]. Anal. calcd. for $\mathrm{C}_{21} \mathrm{H}_{27} \mathrm{~N}_{2} \mathrm{Cl}: \quad \mathrm{N}, 6.38 ; \mathrm{Cl}, 8.08$. Found: $\mathrm{N}, 6.56 ; \mathrm{Cl}, 8.55$. 7-Benzyl-9,9-dımethoxy-3-thıa-7-azabicyclo[3.3.1]nonane Hydroperchlorate (102a)

Caution: The use of shields, protective goggles and gloves is very strongly recommended when performing this experiment. The formation of explosive methyl perchlorate is a likely side reaction in this experiment. No difficulty was noted in when the reaction was performed as described, but this may have been fortuitous. A one-necked, 100-mL round bottomed flask was fitted with a Soxhlet containing 3 A molecular sleves ( 30 g ), a condenser, a heating mantle, a magnetic stirrer, and a heating mantle. The effective cycling volume of the Soxhlet was approximately 15 mL . The flask was charged with a
solution of ketone $27 \mathrm{a}(1.00 \mathrm{~g}, 4.04 \mathrm{mmol})$ in methanol ( 20 mL ) and benzene $(20 \mathrm{~mL})$. To this solution was added $\mathrm{HClO}_{4}(60 \%, 2.03 \mathrm{~g}$, 12.1 mmol) in one portion. The apparatus was flushed with $\mathrm{N}_{2}$ and the pale yellow solution was heated at reflux with stirring and cycling through the Soxhlet for 24 h . The solution was cooled to RT and concentrated to about 5 mL . Ethyl ether ( 20 mL ) was added, thus precipitating the salt as a powder. This was filtered, washed with ether ( 5 mL ), and dissolved in hot methanol ( 20 mL , decolorizing carbon). Trituration with ether ( 25 mL ), followed by standing for 24 h , afforded $102 \mathrm{a}\left(0.7345 \mathrm{~g}, 46.2 \%\right.$ ) as small white crystals: mp $193-194^{\circ} \mathrm{C}$
 $2.58[b r s, 2 H, H(1,5)], 2.75[d, J=14 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}(2,4) \mathrm{ax}], 3.15-3.18$ $\left[\mathrm{m}, 8 \mathrm{H}, \mathrm{H}(2,4) \mathrm{eq}, \mathrm{CH}_{3} \mathrm{O}\right], 3.38$ (dd or br $\left.\mathrm{t}, \mathrm{J}=12 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}(6,8) \mathrm{ax}\right]$, $3.60[\mathrm{~d}, \mathrm{~J}=12 \mathrm{~Hz}, \mathrm{H}(6,8) \mathrm{eq}], 4.33\left[\mathrm{~d}, \mathrm{~J}=5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{PhCH}_{2}\right], 7.49-7.62$
 $C(2,4)], 32.2[d, C(1,5)], 46.6\left[q, \mathrm{CH}_{3} 0\right], 47.0\left[q, \mathrm{CH}_{3} 0\right], 54.5[t$, $C(6,8)], 60.2\left[t, \mathrm{PhCH}_{2}\right], 95.1[\mathrm{~s}, \mathrm{C}(9)], 129.0[\mathrm{~d}$, o- or $\mathrm{m}-\mathrm{ArC}], 129.5$
 ppm 53.5 [N(7)]. Anal. calcd. for $\mathrm{C}_{26}{ }^{\mathrm{H}}{ }_{24} \mathrm{ClNO}_{6} \mathrm{~S}$ : $\mathrm{C}, 48.79$; H, 6.14; Cl, 9.00; N, 3.56; S, 8.14. Found: C, 48.73; H, 6.09; Cl, 9.39; N, 3.54; S, 8.40.

N, $N^{\prime}$-Dibenzyl-9,9-dimethoxy-3,7-diazabicyclo[3.3.1]nonane Hydroperchlorate (102b)

Caution: The use of shields, protective goggles and gloves is very strongly recommended when performing this reaction. The formation of explosive methyl perchlorate is a likely side reaction in this
experiment. No difficulty was noted in when the experiment was performed as described, but this may have been fortuitous. A one-necked, $100-\mathrm{mL}$ round bottomed flask was equipped with a Soxhlet containing 3 A molecular sieve $(30 \mathrm{~g})$, a condenser with $\mathrm{N}_{2}$ inlet, a magnetic stirrer and a heating mantle. The effective cycling volume of the Soxhlet was approximately 20 mL . The flask was charged with a solution of ketone $28 \mathrm{~d}(1.00 \mathrm{~g}, 3.12 \mathrm{mmol})$ in $\mathrm{CH}_{3} \mathrm{OH}(25 \mathrm{~mL})$ and $\mathrm{C}_{6} \mathrm{H}_{6}$ $(25 \mathrm{~mL})$ to which was added $\mathrm{HClO}_{4}(60 \%$, $1.50 \mathrm{~g}, 8.96 \mathrm{mmol})$ in one portion. The apparatus was flushed with $N_{2}$ and the colorless solution was heated to reflux with cycling through the Soxhlet. After 24 h , the now pale yellow solution was cooled to $R T$ and concentrated to about 5 mL . Upon standing for a few minutes, a product precipıtated as a white solıd which was filtered, washed with $\mathrm{C}_{6} \mathrm{H}_{6}(10 \mathrm{~mL})$, and recrystallized $\left(\mathrm{CH}_{3} \mathrm{OH}\right.$, 80 mL ) to afford the monoperchlorate $102 \mathrm{~b}(0.9103 \mathrm{~g})$ as small white crystals, mp $223.6-224.0^{\circ} \mathrm{C}$ (dec). The mother liquor was concentrated to approximately 10 mL . Upon cooling at $-10^{\circ} \mathrm{C}$ overnight, a second crop of 102b was obtained ( $89.4 \mathrm{mg}, 68.6 \%$ total), mp $219-220^{\circ} \mathrm{C}$ (dec). The spectral data were as follows: IR (KBr) $\mathrm{cm}^{-1} 2800-2600(\stackrel{+}{\mathrm{N}}-\mathrm{H}), 1100$ (Cl-O): $\left.l_{H \operatorname{NMR}\left(D M S O-d_{6}\right.}\right) \delta 2.35[b r s, 2 \mathrm{H}, \mathrm{H}(1,5)], 2.90[\mathrm{~d}, \mathrm{~J}=13 \mathrm{~Hz}$, $4 \mathrm{H}, \mathrm{H}(2,4,6,8) \mathrm{ax}], 3.08[\mathrm{~d}, \mathrm{~J}=13,4 \mathrm{H}, \mathrm{H}(2,4,6,8) \mathrm{eq}], 3.14[\mathrm{~s}, 6 \mathrm{H}$, $\left.\mathrm{CH}_{3} \mathrm{O}\right], 3.88\left[\mathrm{~s}, 4 \mathrm{H}, \mathrm{PhCH}_{2}\right], 7.38-7.54[\mathrm{~m}, 10 \mathrm{H}, \mathrm{ArH}], 9.84[\mathrm{br} \mathrm{s}, 1 \mathrm{H}$, $\stackrel{+}{\mathrm{N}}-\mathrm{H}] ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{DMSO}_{-}{ }_{-}\right) \mathrm{ppm} 33.0[\mathrm{~d}, \mathrm{C}(1,5)], 47.0\left[\mathrm{q}, \mathrm{CH}_{3} \mathrm{O}\right], 53.8[\mathrm{t}$, $C(2,4,6,8)], 59.6\left[t, \mathrm{PhCH}_{2}\right], 95.4[\mathrm{~s}, \mathrm{C}(9)], 128.2[\mathrm{~d}, \mathrm{p}-\mathrm{Arc}], 128.4$
 ( DMSO $_{-d_{6}}$ ) ppm 52.9 [ $\left.\mathrm{N}(3,7)\right]$. Anal. calcd. for $\mathrm{C}_{23} \mathrm{H}_{31} \mathrm{ClN}_{2} \mathrm{O}_{6}$ : C, 59.16: H, 6.69; C1, 7.59; N, 6.00. Found: C, 58.98; H, 6.81; Cl, 7.86; N, 6.28.
(27a), 3,6-Dibenzylhexahydro-8a-methoxy-5H-
4a,8-(methanothiomethano)-2H-pyrıdo[3,4-e]-
1,3-oxazine (103a) and 2,4,10,12-Tetraben-
zyl-2,4,10,12-tetraaza-15-thiadispıro-
[5.1.5.3]hexadecan-7-one (104a)

Method A: 2.0 equivalents benzylamine. A three-necked, 50 mL round-bottomed flasik was fitted with a condenser and a heating mantle. This flask was charged with paraformaldehyde (1.20 g, 40.0 mmol$)$, benzylamine ( $1.07 \mathrm{~g}, 10.0 \mathrm{mmol}$ ), glacial acetic acıd (0.66 g, $11.0 \mathrm{mmol})$, and methanol ( 20 mL ). The apparatus was flushed with $\mathrm{N}_{2}$ and the mixture bolled at reflux with stirring for 15 min. To the mixture was added in one portion a solution of ketone $16 \mathrm{c}(0.58 \mathrm{~g}, 5.0 \mathrm{mmol})$ in methanol (10 mL) and the resulting mixture heated at reflux for 9 h during which the paraformaldehyde slowly dissolved and the solution turned yellow. After cooling to $R T$, the solution was allowed to stir an additional 10 h . Removal of the solvent afforded a yellow oll which was partitioned between ether ( 50 mL ) and water ( 50 mL ). The layers were separated and the pale yellow ether layer was allowed to stand for 24 h at $-10^{\circ} \mathrm{C}$. A white crystalline solid precipitated from this ether solution. This was filtered and set aside. The filtrate was concentrated to half of the previous volume and allowed to stand for 3 h . A second crop of the white solid was precipitated. This was filtered, combined with the first crop, and recrystallized (95\% ethanol, $30 \mathrm{~mL})$ to afford $103 \mathrm{a}\left(0.93 \mathrm{~g}, 45 \%\right.$ ) as white needles: mp 147.2-148. $8^{\circ} \mathrm{C}$. The aqueous phase was cooled in an lce bath and made alkaline by the addition of NaOH pellets $(0.50 \mathrm{~g}, 12 \mathrm{mmol})$ and extracted with ether
(4 x 50 mL ). The combined ether extracts from this last step were dried ( $\mathrm{Na}_{2} \mathrm{SO}_{4}$, overnight), and were evaporated to afford a yellow oll. This oil was digested in bolling Skelly $B$ for 30 min . The supernatant was decanted from the brown residue and evaporated to afford a yellow oil $(0.50 \mathrm{~g})$ that did not solidify. Although this oil was not characterized, later experıments have indicated that this oll was most likely usually crude 27b.

Method B: Dropwise Addition. A three necked, 50 mL round-bottomed flask was fitted with a dropping addition funnel, a condenser, and a heating mantle. The flask was charged with a slurry of paraformaldehyde (1.20 g, 40.0 mmol$)$ in methanol ( 20 mL ) and was heated at reflux under $\mathrm{N}_{2}$ for 15 min. To this boiling mixture was added dropwise over 3.5 h a solution of ketone $16 \mathrm{~b}(0.58 \mathrm{~g}, 5.0 \mathrm{mmol})$, benzylamine (1.07 g, $10.0 \mathrm{mmol}), ~ g l a c ı a l$ acetic acid ( $0.66 \mathrm{~g}, 11.0 \mathrm{mmol}$ ) in methanol ( 10 mL ). During the addition the paraformaldehyde slowly dissolved and the solution turned to an orange-red color. The solution was heated at reflux for an additional 3.5 h , then allowed to stir at RT for 48 h . A white solıd precipıtated from the now pink solution. This solid was filtered, washed with methanol (5 mL) and recrystallized (2-propanol, 30 mL ) to afford $104 \mathrm{a}(0.2610 \mathrm{~g}, 8.5 \%$ relative to the amount of benzylamine used) as white needles: mp $172.5-173.5^{\circ} \mathrm{C}$. The reaction mixture filtrate was evaporated to an orange-red oll which was partitioned between ether ( 50 mL ) and water ( 50 mL ). The ether layer was treated as before to afford after recrystallızation (ethanol, 25 mL ) 103a ( $0.2119 \mathrm{~g}, 118$ ), mp $146.5-148.0^{\circ} \mathrm{C}$; the ${ }^{13} \mathrm{C}$ NMR spectrum of which was identical to that given previously. The pink aqueous suspenson was made alkaline by the addition of NaOH pellets ( $0.50 \mathrm{~g}, 12.5 \mathrm{mmol}$ ) to
give a yellow suspension. Thıs suspension was extracted with ether (4 x 50 mL ) and the combined ether extracts were dried ( $\mathrm{Na}_{2} \mathrm{SO}_{4}$, overnight). The dry ethereal solution was filtered and evaporated (aspirator) and the resulting yellow oll was digested in boiling skelly B ( 200 mL ) for 30 min . The hot supernatant was decanted from the brown residue and evaporated (aspirator followed by vaccuum pump) to leave a pale yellow $011(0.59 \mathrm{~g}, \sim 47 \%)$. The ${ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{DCCl}_{3}\right)$ of this oil indicated that it was mostly ketone $27 a$ with a small amount of $103 a$ present as an impurity.

Method C: 1.0 Equivalent Benzylamine. The general procedure and ratio of reagents described by Bailey and coworkers ${ }^{14}$ was repeated. However, the relatively large scale employed here required some modifications in the procedure. A three-neck, 1000 mL round-bottomed flask was fitted with a condenser, a power stirrer, and a heating mantle. This flask was charged with benzylamine (2l.43 g, 0.2000 mol ), paraformaldehyde (48.04 g, 1.600 mol$)$, acetic acid (18.02 g, 0.3000 ) and methanol $(750 \mathrm{~mL})$. The apparatus was thoroughly flushed with $N_{2}$, and the mixture heated to reflux with stirring. Ketone l6c (23.24 g, 0.2000 mol) was then added in one portion. As before, the solution immediately developed a yellow color, changing to red as the reaction proceeded and the paraformaldehyde slowly dissolved. On cooling to RT, no solid precipitate was noted. The workup of the reaction mixture was as described previously. The red oll, afforded by removal of the solvent, was suspended in water ( 1500 mL ), and this suspension washed with ether $(4 \times 400 \mathrm{~mL})$. The aqueous layer was set aside. The combined ether layers were partially dried $\left(\mathrm{K}_{2} \mathrm{CO}_{3}, 1 \mathrm{~h}, \mathrm{~V}\right.$, gorous stirring) and filtered. Standing at RT for 3 d resulted in the formation of white crystals in
the ether solution. These were treated as before to afford 103a (2.43 g, 5.92\%), mp 147-149 ${ }^{\circ} \mathrm{C}$.

The aqueous phase was extracted with $\mathrm{H}_{2} \mathrm{CCl}_{2}(5 \times 400 \mathrm{~mL})$ and the combined organıc extracts dried (MgSO ${ }_{4}$, overnight). Filtration followed by evaportion afforded a brown oil, which was digested in boiling skelly B (1000 mL) for thirty minutes. The hot supernatant was decanted from the brown residue and evaporated to afford afford a yellow 01l. The residue was treated twice more in this manner, then once with 500 mL of Skelly B, each time combining the supernatant with the oil ( 22.5 g ) from the previous digestion process. The resulting oil solıdified on standing and was sublimed ( $104^{\circ} \mathrm{C} / 0.04 \mathrm{mmHg}$ ) to afford 28 a (16.69 g, 33.73\%), mp $92-93^{\circ} \mathrm{C}\left(11 t^{14} 90-91^{\circ} \mathrm{C}\right)$ and a residual yellow oil that did not sublime. In a previous experiment, it was found that this residual 011 consists primarily of 27a. Further efforts at sublimation $\left(90-150^{\circ} \mathrm{C}, 5 \times 10^{15} \mathrm{mmHg}\right.$, diffusion pump) of the olly residue in this earlier experiment failed to give significant quantities of 27a. However, $a{ }^{13} \mathrm{C}$ NMR of this earlier oil indicated that it consists primarily of 27a.

Analytical Data. The ${ }^{13} \mathrm{C} N M \mathrm{R},{ }^{15} \mathrm{~N}$ NMR and IR spectral data for 28 d have been previously reported ${ }^{14}$. A HETCOR NMR spectrum of this compound has permitted a greater resolution of the $l_{H} N M R$ spectrum ( $\mathrm{DCCl}_{3}$ ) in the aliphatic regıon: $\delta 2.71\left[\mathrm{dd},{ }^{2} \mathrm{~J}=11.2 \mathrm{~Hz},{ }^{3} \mathrm{~J}=5.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}(6,8) \mathrm{ax}\right]$, $2.80[\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}(1,5)], 3.08\left[\mathrm{dd},{ }^{2} \mathrm{~J}=11.2 \mathrm{~Hz},{ }^{3} \mathrm{~J}=1.3 \mathrm{~Hz}, 2 \mathrm{H}\right.$, $\mathrm{H}(6,8) \mathrm{eq}], 3.12\left[\mathrm{dd},{ }^{2} \mathrm{~J}=13.5 \mathrm{~Hz},{ }^{3} \mathrm{~J}=7.3 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}(2,4) \mathrm{ax}\right], 3.23$ $\left[\mathrm{dd},{ }^{2} \mathrm{~J}=13.5 \mathrm{~Hz},{ }^{3} \mathrm{~J}=4.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}(2,4) \mathrm{eq}\right], 3.57[\mathrm{~s}, 2 \mathrm{H}, \mathrm{H}(10)]$, 7.26-7.34 [m, 5 H, ArH].

The spectral data for 103 b were: $\operatorname{IR}(\mathrm{KBr}) \mathrm{cm}^{-1} 3030,2940,2830$, 1365, 1358, 1104, 1067, 740, 704; $\left.l_{H N M R(D C C 1}^{3}\right) \delta 2.08[d, J=12 \mathrm{~Hz}$, $1 \mathrm{H}, \mathrm{H}(5) \mathrm{ax}], 2.13[\mathrm{br} \mathrm{s}, \mathrm{lH} \mathrm{H}, \mathrm{H}(8)], 2.37[\mathrm{~d}, \mathrm{~J}=12 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}(5) \mathrm{eq}]$, $2.54[\mathrm{dd}, \mathrm{J}=12,2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}(9) \mathrm{ax}], 2.62\left[\mathrm{~d}, \mathrm{~J}=11 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{PhCH} \mathrm{H}_{2}\right]$, $2.74[\mathrm{~d}, \mathrm{~J}=10 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}(4) \mathrm{ax}], 2.95[\mathrm{~d}, \mathrm{~J}=10 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}(4) \mathrm{eq}], 3.22$ $\left[\mathrm{s}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{O}\right], 3.25[\mathrm{~d}, \mathrm{~J}=1 \mathrm{H}, \mathrm{H}(11) \mathrm{eq}], 3.31[\mathrm{~d}, \mathrm{~J}=13 \mathrm{~Hz}, 1 \mathrm{H}$, $\mathrm{H}(7) \mathrm{ax}], 3.39[\mathrm{dd}, \mathrm{J}=12,2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}(9) \mathrm{eq}], 3.49[\mathrm{~d}, \mathrm{~J}=11 \mathrm{~Hz}, 1 \mathrm{H}$, $\left.\mathrm{PhCH}_{2}\right], 3.50[\mathrm{~d}, \mathrm{~J}=13 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}(7) \mathrm{eq}], 3.55[\mathrm{~d}, \mathrm{~J}=13 \mathrm{~Hz}, 2 \mathrm{H}$, $\left.\mathrm{PhCH}_{2}\right], 4.02[\mathrm{~d}, \mathrm{~J}=8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}(2) \mathrm{ax}], 4.18[\mathrm{~d}, \mathrm{~J}=8 \mathrm{~Hz} 1 \mathrm{H}, \mathrm{H}(2) \mathrm{eq}]$, 7.22-7.38[m, $8 \mathrm{H}, \mathrm{ArH}], 7.58[\mathrm{~d}, \mathrm{~J}=8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArH}] ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{DCCl}_{3}\right)$ $\operatorname{ppm} 30.1[t, C(9)], 33.4[d, C(8)], 34.6[t, C(11)], 37.4[s, C(4 a)]$, $46.3\left[q, \mathrm{CH}_{3} \mathrm{O}\right], 55.4[t, \mathrm{C}(4)], 55.8[t, \mathrm{C}(5)], 57.3[t, \mathrm{C}(7)]$, $59.9[t$, $\left.\mathrm{PhCH}_{2}\right], 62.6\left[t, \mathrm{PhCH}_{2}\right], 78.7[t, \mathrm{C}(2)], 96.9[\mathrm{~s}, \mathrm{C}(8 \mathrm{a})], 126.5[\mathrm{~d}$, p-Arc], $127.1[d, p-A r \underline{C}], 128.2,128.3,128.3,128.5$ [ 0 - and m-ArC], $137.5[\mathrm{~s}, \underline{i-A r C]}], 139.7[\mathrm{~s}, \underset{\mathrm{i}}{\mathrm{i}} \mathrm{ArC}] ;{ }^{15} \mathrm{~N} \operatorname{NMR}\left(\mathrm{DCCl}_{3}\right) \mathrm{ppm} 46.4[\mathrm{~N}(3)]$, 35.92 [N(3)]. Anal. of 103a calcd. for $\mathrm{C}_{24} \mathrm{H}_{30} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}$ : C, 70.21; H, 7.37; N, 6.82; S, 7.81. Found: C, 69.99; H, 7.51; N, 6.64; S, 7.97.

The spectral data for $104 b$ were: $\operatorname{IR}(\mathrm{KBr}) \mathrm{cm}^{-1} 3065,3030,2950$, 2920, 2895, 2830, 2800, 1680 ( $\mathrm{C}=0$ ) , 1500, 1457, 1097, 748, 736, 703; $1_{\mathrm{H}}$ NMR $\left(\mathrm{DCCl}_{3}\right) \delta 2.17[\mathrm{~d}, \mathrm{~J}=10.8 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{H}(1,5,9,13) \mathrm{ax}], 2.50[\mathrm{~d}, \mathrm{~J}=$ $8.8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}(3,11) \mathrm{ax}], 2.77[\mathrm{~d}, \mathrm{~J}=10.8 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{H}(1,5,9,13) \mathrm{eq}], 3.15$ $[s, 4 \mathrm{H}, \mathrm{H}(14,16)], 3.33\left[\mathrm{~d}, \mathrm{~J}=13.0 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{PhCH}_{2}\right], 3.49[\mathrm{~d}, \mathrm{~J}=$ $\left.13.0 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{PhCH}_{2}\right], 3.62[\mathrm{~d}, \mathrm{~J}=8.8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}(3,11)], 7.20-7.30[\mathrm{~m}$, $20 \mathrm{H}, \mathrm{ArH}] ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{DCCl}_{3}\right) \operatorname{ppm} 36.4[\mathrm{t}, \mathrm{C}(14,16)], 51.3[\mathrm{~s}, \mathrm{C}(6,8)]$, $57.6[t, C(1,5,9,13)], 59.6\left[t, \operatorname{PhCH}_{2}\right], 76.6[t, C(3,11)], 127.1[d$,
 i-Arc] $211.7[\mathrm{~s}, \mathrm{C}(7)] ;{ }^{15} \mathrm{~N} \operatorname{NMR}\left(\mathrm{DCCl}_{3}\right) \operatorname{ppm} 43.1[\mathrm{~N}(2,4,10,12)]$. Anal.

```
of 104a calcd. for \(\mathrm{C}_{39} \mathrm{H}_{44} \mathrm{~N}_{4} \mathrm{SO}: \mathrm{C}, 75.94 ; \mathrm{H}, 7.19\); \(\mathrm{N}, 9.08 ; \mathrm{S}, 5.20\). Found: C, 75.73; H, 7.33; N, 9.10; S, 5.20.
7-Benzyl-3-selena-7-azabicyclo[3.3.1]nonan-9-
one (27b), 3,6-Dibenzylhexahydro-8a-methoxy-
5H-4a,8-(methanoselenomethano)-2H-pyrido-
[3,4-e]-1,3-oxazıne (103b) and 2,4,10,12-
tetrabenzyl-2,4,10,12-tetraaza-15-selena-
dispiro[5.3.5.1]hexadecan-7-one (104b)
```

Method A: 1.4 equivalents benzylamıne. A three-necked, 50-mL round-bottomed flask was equipped with a condenser and heating mantle. The flask was charged with benzylamine ( $0.67 \mathrm{~g}, 6.2 \mathrm{mmol}$ ), glacıal acetıc acıd ( $0.38 \mathrm{~g}, 6.3 \mathrm{mmol})$, paraformaldehyde (1.50 g, 50.0 mmol$)$, and methanol $(30 \mathrm{~mL})$. The apparatus was flushed with $\mathrm{N}_{2}$ and the mixture heated to reflux with stirring. After 0.5 h , the mixture was cooled to RT and 4-selenanone ${ }^{106}(16 d, 0.75 \mathrm{~g}, 4.6$ mmol) was added in one portion. The mixture was again heated at reflux for 5 h during which all solids dissolved and the resulting solution turned yellow. The solution was then cooled to RT and allowed to stir overnight. Evaporation of the solvent resulted in a yellow oil, which was partitioned between water (50 mL) and ethyl ether (50 mL).

The layers were separated and the ether layer was allowed to stand for two days at RT during which a white solid precipitate formed in this solution. This was filtered and recrystallızed (95\% ethanol, 25 mL ) to afford $103 \mathrm{~b}(0.25 \mathrm{~g})$ as white needles: mp $160.0-160.5^{\circ} \mathrm{C}$.

The aqueous layer was cooled (ice bath) and was made alkaline by the addition of KOH pellets $(85 \%, 1.20 \mathrm{~g}, 21.4 \mathrm{mmol})$. The resulting
suspension was extracted (ether, $5 \times 40 \mathrm{~mL}$ ) and the combined extracts were dried $\left(\mathrm{K}_{2} \mathrm{CO}_{3}\right.$, overnight). Filtration, followed by evaporation (aspirator), afforded a yellow oil which was digested in skelly B ( 50 mL ) for 0.5 h on a steam bath. The hot supernatant was decanted and evaporated to give another yellow oil. This was dissolved in hot 95\% ethanol (10 mL) which, upon coolıng, precipıtated additional 103b (67.0 $\mathrm{mg}, 22 \%$ total), mp $159-160^{\circ} \mathrm{C}$.

Method B: 2.0 equivalents benzylamine. Using the apparatus and procedure described for Method A, ketone 16d (0.83 g, 5.0 mmmol ) was treated with benzylamine ( $1.07 \mathrm{~g}, 10.0 \mathrm{mmol}$ ), glacıal acetic acid $(0.62 \mathrm{~g}, 10.3 \mathrm{mmol})$, paraformaldehyde $(1.20 \mathrm{~g}, 40.0 \mathrm{mmol})$, and methanol (25 mL). The apparatus was flushed with $\mathrm{N}_{2}$ and the mixture heated at reflux with stirring for 15 min. Ketone $16 \mathrm{~d}(0.83 \mathrm{~g}, 5.0 \mathrm{mmol})$ was then added in one portion and the mixture heated at reflux. The supernatant turned yellow upon addition of 4-selenanone. Continued heating resulted in the slow dissolution of the paraformaldehyde and the development of a brillıant pink color in the supernatant. After 3 h the formation of a White precipitate was noted. After 5 h the reaction mixture was cooled to RT and stirred an additional 13 h . The white solıd was filtered from the reaction mixture, washed with methanol (5 mL) and recrystallized (95\% 2-propanol, 20 mL ) to give 104 b ( $57.6 \mathrm{mg}, 1.9 \%$ ) as white crystals: mp $165-166^{\circ} \mathrm{C}$.

The reaction mixture filtrate was evaporated to leave a pink oil which was partitioned between ethyl ether ( 50 mL ) and water ( 50 mL ). The colorless ether layer was separated and treated as before to afford after recrystallization $103 \mathrm{~b}(0.2030 \mathrm{~g}, 8.8 \%)$, mp $159-160^{\circ} \mathrm{C}$.

The pink aqueous suspension from the partitioning was made alkaline by the addrtion of KOH pellets $(85 \%, 2.00 \mathrm{~g}, 30.3 \mathrm{mmol})$ to give an olly yellow suspension. Ether extraction (5 x 40 mL ), drying ( $\mathrm{K}_{2} \mathrm{CO}_{3}$, overnight), and Skelly B digestion as previously described resulted in a yellow oil. This was dissolved in hot $95 \%$ ethanol ( 30 mL ), decolorized with carbon, and evaporated to 10 mL . Upon standing at $-10^{C}$ for 1 d white needles precipıtated. These were filtered and air drıed to afford ketone 27 b ( $0.38 \mathrm{~g}, 25.8 \%$ ), mp $91-92^{\circ} \mathrm{C}$.

Method $C$ : 1.0 equivalent of benzylamine. The reaction was repeated using the conditions and ratios of reagents described in the earlier of work by Thompson and coworkers. 106,107 Using the apparatus described above ketone $16 \mathrm{~d}(0.58 \mathrm{~g}, 3.7 \mathrm{mmol})$ was treated with benzyamine $(0.40 \mathrm{~g}, 3.7 \mathrm{mmol})$, acetic acid $(0.23 \mathrm{~g}, 3.8 \mathrm{mmol})$, and paraformaldehyde $(0.90 \mathrm{~g}, 29.9 \mathrm{mmol})$ in methanol (25 mL). The mixture was heated at reflux for 5 h , and was stirred at $R T$ for an additional 1 h. No precipitate formation was noted from the red solution. After removal of the solvent, the resulting red 011 was partitioned between ether ( 30 mL ) and water $(30 \mathrm{~mL})$. The ether layer was treated as described above to afford, after recrystallızation, ketal 103b(0.1001 g, $11.8 \%$ relative to the amount of benzylamine) mp $161-162^{\circ} \mathrm{C}$. The aqueous layer was cooled to $0^{\circ} \mathrm{C}$ and was made alkaline by the addition of KOH pellets ( $85 \%, 0.70 \mathrm{~g}, 12.5 \mathrm{mmol}$ ) and the resulting suspension extracted with ether ( $6 \times 30 \mathrm{~mL}$ ). The combined ether extracts were dried $\left(\mathrm{K}_{2} \mathrm{CO}_{3}\right)$. Filtration, followed by evaporation afforded a yellow oll, the spectrum of which was essentially identical to 27 b ( $0.24 \mathrm{~g}, 22 \%$ relative to 4-selenanone, 16d).

Analytical Data. The IR, ${ }^{13} \mathrm{C}$ NMR, ${ }^{15} \mathrm{~N}$ NMR, and ${ }^{77}$ Se NMR spectra 27b have been previously reported. 106,107 The ${ }^{l_{H}} \operatorname{NMR}$ ( $\mathrm{DCCl}_{3}$ ) assignments have been modified in light of a HETCOR NMR spectrum: $\delta 2.71$ $[\mathrm{d}, \mathrm{J}=9 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}(6,8) \mathrm{ax}], 2.73$ [br s, $2 \mathrm{H}, \mathrm{H}(1,5)]$, $3.10[\mathrm{~d}, \mathrm{~J}=$ $9 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}(6,8) \mathrm{eq}], 3.23[\mathrm{~m}, 4 \mathrm{H}, \mathrm{H}(2,4)], 3.58\left[\mathrm{~s}, 2 \mathrm{H}, \mathrm{PhCH}_{2}\right]$, 7.24-7.32 [m, 5 H, ArH].

The spectroscopic data for 103b were: $\operatorname{IR}(\mathrm{KBr}) \mathrm{cm}^{-1} 2840,1370$, 1362, 1108, 1062, 1055, 762, 706; ${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{DCCl}_{3}\right) \delta 2.09[\mathrm{br} \mathrm{s} 1 H,$, $\mathrm{H}(8)], 2.11[\mathrm{~d}, \mathrm{~J}=11 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}(5) \mathrm{ax}], 2.13[\mathrm{~d}, \mathrm{~J}=12 \mathrm{~Hz}, 1 \mathrm{H}$, H(ll)ax], $2.37[d, J=11 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}(5) \mathrm{eq}], 2.53[\mathrm{~d}, \mathrm{~J}=11 \mathrm{~Hz}, 1 \mathrm{H}$, H(9)ax], $2.58\left[d, J=11 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{PhCH}_{2}\right], 2.72[\mathrm{~d}, \mathrm{~J}=11 \mathrm{~Hz}, 1 \mathrm{H}$, $\mathrm{H}(4) \mathrm{ax}], 2.93[\mathrm{~d}, \mathrm{~J}=11 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}(4) \mathrm{eq}], 3.25\left[\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{O}\right], 3.29$ [d, $\mathrm{J}=12 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}(\mathrm{ll}) \mathrm{eq}], 3.29[\mathrm{~d}, \mathrm{~J}=14 \mathrm{~Hz}, \mathrm{l} \mathrm{H}, \mathrm{H}(7) \mathrm{ax}], 3.44[\mathrm{~d}, \mathrm{~J}=$ $11 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{PhCH}_{2}$ ], 3.47 [d, J $\left.=11 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}(9) \mathrm{eq}\right], 3.51[\mathrm{~d}, \mathrm{~J}=14$ $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{H}(7) \mathrm{eq}], 3.53\left[\mathrm{~d}, \mathrm{~J}=4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{PhCH}_{2}\right], 3.97[\mathrm{~d}, \mathrm{~J}=8 \mathrm{~Hz}$, l H, H(2)ax], $4.21[\mathrm{~d}, \mathrm{~J}=8 \mathrm{~Hz}, \mathrm{l} \mathrm{H}, \mathrm{H}(2) \mathrm{ax}], 7.26-7.64[\mathrm{~m}, 10 \mathrm{H}, \mathrm{Ar} \mathrm{H}] ;$ ${ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{DCCl}_{3}\right) \mathrm{ppm} 20.1[t, C(9)], 25.1[t, C(11)], 33.2[d, C(8)]$, $36.8[s, C(4 a)], 46.5\left[q, \mathrm{CH}_{3} \mathrm{O}\right], 56.1[t, \mathrm{C}(4)], 56.7[t, \mathrm{C}(5)], 57.3$ $[t, \mathrm{C}(7)], 60.5\left[\mathrm{t}, \mathrm{PhCH}_{2}\right], 62.6\left[\mathrm{t}, \mathrm{PhCH}{ }_{2}\right], 78.7[\mathrm{t}, \mathrm{C}(2)], 97.7[\mathrm{~s}$, $C(8 a)], 126.5$ (d), 127.1 (d), 128.1 (d), 128.3 (d), $128.47_{7}(d), 128.5_{7}$ (d), 137.4 (s), $139.6(s)[A r C] ;{ }^{15} \mathrm{~N} \operatorname{NMR}\left(\mathrm{DCCl}_{3}\right) \mathrm{ppm} 36.2[\mathrm{~N}(12)], 47.0$ [ $\mathrm{N}(3)] ;{ }^{77}$ Se NMR ppm 126.6 [Se(8)]. Anal. calcd. for $\mathrm{C}_{24} \mathrm{H}_{30} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{Se}: C$, 63.01; H, 6.61; N, 6.12; Se, 17.26. Found: C, 62.88; H, 6.83; N, 6.02; Se, 16.91.

The spectral data for 104b were: $\operatorname{IR}(\mathrm{KBr}) \mathrm{cm}^{-1} 3062,3032,2910$, 2820, 2792, 1675, 1494, 1453, 1086, 1068, 741, 729, 697; $l_{H} \operatorname{NMR}\left(\mathrm{DCCl}_{3}\right)$ $\delta 2.27$ [d, J $=11.2 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{H}(1,5,9,13) \mathrm{ax}], 2.55[\mathrm{~d}, \mathrm{~J}=8.1 \mathrm{~Hz}, 2 \mathrm{H}$,
$\mathrm{H}(3,11) \mathrm{ax}], 2.77[\mathrm{~d}, \mathrm{~J}=11.2 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{H}(1,5,9,13) \mathrm{eq}], 3.17[\mathrm{~s}, 4 \mathrm{H}$, $\mathrm{H}(14,16)], 3.34\left[\mathrm{~d}, \mathrm{~J}=13.5 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{PhCH}_{2}\right], 3.50[\mathrm{~d}, \mathrm{~J}=13.5 \mathrm{~Hz}, 4 \mathrm{H}$, $\left.\mathrm{PhCH}_{2}\right], 3.54[\mathrm{~d}, \mathrm{~J}=8.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}(3,11) \mathrm{eq}], 7.20-7.30[\mathrm{~m}, 20 \mathrm{H}, \mathrm{ArH}] ;$ ${ }^{13} \mathrm{CNMR}\left(\mathrm{DCCl}_{3}\right) \operatorname{ppm} 26.7[t, C(14,15)], 51.1[\mathrm{~s}, \mathrm{C}(6,8)], 58.4[t$, $C(1,5,9,13)], 59.6\left[t, \mathrm{PhCH}_{2}\right], 126.9[d, \underline{p}-\mathrm{Arc}], 128.0[d$, o- or $\underline{m}-\mathrm{Ar} \underline{c}]$,
 $\left(\mathrm{DCCl}_{3}\right)$ ppm 43.6; ${ }^{77} \mathrm{Se} \operatorname{NMR}\left(\mathrm{DCCl}_{3}\right) \mathrm{ppm}$ 51.4.

## 3,6-Dibenzylhexahydro-8a-methoxy-5H-4a,8-

(methanothiomethano)-2H-pyrıdo[3,4-e]-

## 1,3-oxazine dihydroperchlorate (103c)

A 125-mL Ehrlenmeyer flask was charged with a solution of ketal 103a ( $1.00 \mathrm{~g}, 2.44 \mathrm{mmol}$ ) in benzene ( 20 mL ). To this solution was added dropwise over 15 min a solution of $\mathrm{HClO}_{4}(60 \%, 1.00 \mathrm{~g}, 5.97 \mathrm{mmol})$ in 2-propanol (5 mL) with vigorous stirring (magnetic). This precipitated the salt as a white powdery solid. Additional 2-propanol (10 mL) was added as necessary to prevent caking of the precipitate. The mixture was stirred an additional 1 h at RT . The salt was filtered, recrystallızed (ethanol, 25 mL ), and dried (Abderhalden, $\mathrm{P}_{2} \mathrm{O}_{5}, 77^{\circ} \mathrm{C}$, vacuum pump, 12 h$)$ to afford $103 \mathrm{c}(0.60 \mathrm{~g}, 40 \%$ ) as white crystais: mp $160-162^{\circ} \mathrm{C}$ (dec); IR (KBr) $\mathrm{cm}^{-1} 2760-2845(\mathrm{~N}-\mathrm{H}), 1080(\mathrm{Cl}-\mathrm{O}) \mathrm{i}^{1} \mathrm{NMR}$ $(\mathrm{DMSO}-{\underset{-}{6}}$ ) $\delta 2.17[\mathrm{~d}, \mathrm{~J}=11.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}(4) \mathrm{ax}], 2.35[\mathrm{~d}, \mathrm{~J}=11.7 \mathrm{~Hz}$, $1 \mathrm{H}, \mathrm{H}(4) \mathrm{eq}], 2.43[\mathrm{~d}, \mathrm{~J}=13.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}(11) \mathrm{ax}], 2.64[\mathrm{br} \mathrm{s}, 1 \mathrm{H}$, $H(8)], 2.76[d, J=13.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}(9) \mathrm{ax}], 3.00[\mathrm{~d}, \mathrm{~J}=13.0 \mathrm{~Hz}$, $\mathrm{H}(11) \mathrm{eq}], 3.18\left[\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{O}\right], 3.22\left[\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}(9) \mathrm{eq}\right.$ and $\left.\mathrm{PhCH}_{2}\right], 3.32[\mathrm{~d}$, $J=13.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}(5) \mathrm{ax}], 3.46[\mathrm{~d}, \mathrm{~J}=12.0 \mathrm{~Hz}, \mathrm{H}(7) \mathrm{ax}], 3.57[\mathrm{~d}, \mathrm{~J}=$ $13.6 \mathrm{~Hz}, \mathrm{l} \mathrm{H}, \mathrm{H}(5) \mathrm{eq}], 3.79[\mathrm{~d}, \mathrm{~J}=12.0 \mathrm{~Hz}, \mathrm{H}(7) \mathrm{eq}], 4.00[\mathrm{~d}, \mathrm{~J}=$
$7.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}(2) \mathrm{ax}], 4.19\left[\mathrm{~d}, \mathrm{~J}=12.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{PhCH}_{2}\right], 4.24[\mathrm{~d}, \mathrm{~J}=$ $7.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}(2) \mathrm{eq}], 4.40\left[\mathrm{dd}, \mathrm{J}=12.6,5.9 \mathrm{~Hz}, \mathrm{PhCH}_{2}\right], 4.54[\mathrm{dd}, \mathrm{J}=$ $12.6,3.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{PhCH}_{2}$ ], $7.25-7.39$ [ $\mathrm{m}, 5 \mathrm{H}, \mathrm{ArH}$ ], 7.49-7.64 [m, 5 H , ArH], 9.53 [br s, $1 \mathrm{H}, \mathrm{N}-\mathrm{B}] ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{DMSO}-\mathrm{d}_{6}\right) \mathrm{ppm} 28.3[t, \mathrm{C}(9)], 31.3$ $[d, C(8)], 31.8[t, C(11)], 37.4[s, C(4 a)], 46.4\left[q, \mathrm{CH}_{3} 0\right], 52.3[t$, $\mathrm{C}(4)], 54.2[t, C(7)], 55.4[t, C(5)], 56.2\left[t, \mathrm{PhCH}_{2}\right], 60.2\left[t, \mathrm{PhCH}_{2}\right]$, $78.0[t, C(2)], 93.8[s, C(8 a)], 127.1,128.3,129.1,129.7,130.6$, 137.0 [ArC]. Anal. Calcd. for $\mathrm{C}_{24} \mathrm{H}_{30} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S} 2 \mathrm{HClO}_{4}$ : C, 47.14; H, 5.27; Cl, 11.59; N, 4.58; S, 5.24. Found: C, 47.22; H, 5.14; Cl, 11.38; N, 4.44; S, 5.47.

Attempted Preparation of 3,7-Dibenzyl-2,4-
diphenyl-3,7-diazabicyclo[3.3.1]nonan-9-
one (107)

A three-necked, $100-\mathrm{mL}$ round-bottomed flask was $\mathrm{f}_{1}$ tted with a condenser and a heating mantle. This flask was charge with a solution of benzaldehyde ( $5.40 \mathrm{~g}, 49.9 \mathrm{mmol}$ ), benzylamine ( $1.08 \mathrm{~g}, 10.1 \mathrm{mmol}$ ), acetic acid ( $0.92 \mathrm{~g}, 15.3 \mathrm{mmol}$ ) and methanol ( 50 mL ). The apparatus was flushed with $\mathrm{N}_{2}$ and the solution brought to a boil. Ketone 16 f ( 0.96 g , 5 mmol ) was then added in one portion and resulting solution boiled for 9 h . The initially colorless solution developed an intense yellow color as the reaction proceded. Upon cooling to RT, a yellow solid precipitated from the reaction mixture, which was filtered. This yellow solid was dissolved in a minımum amount of hot ethanol and triturated with water to afford, upon cooling to RT, 107 ( $3.50 \mathrm{~g}, 96 \%$ ) : mp 152.8-153.4 ${ }^{\circ} \mathrm{C}$; IR (KBr) $\mathrm{cm}^{-1} 3060,3030,2750,1642,1623 ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{DCCl}_{3}\right) \mathrm{ppm} 54.4[\mathrm{C}(2)], 61.4\left[\mathrm{PhCH}_{2}\right], 127.4,128.3,128.5,129.0$,
130.4, 133.3, 135.2, 136.6, 137.3, 187.8 [C(4)]. Mass spectral m/e calcd. for $\mathrm{C}_{26}{ }^{\mathrm{H}} 23$ NO: 365. Found: 365 .

7-Benzy1-3-thia-7-azabıcyclo[3.3.1]nonan-9-one
oxime (108)

A $50-\mathrm{mL}$ round-bottomed flask was fitted with a condenser and a heating mantle. This flask was charged with ketone 27 (1.05 g, 4.26 mmol), $\mathrm{NH}_{2} \mathrm{OH} . \mathrm{HCl}(0.62 \mathrm{~g}, 8.57 \mathrm{mmol})$, NaOAC $.3 \mathrm{H}_{2} \mathrm{O}(1.47 \mathrm{~g}, 10.8 \mathrm{mmol})$ and ethanol ( 25 mL ). The apparatus was flushed with $\mathrm{N}_{2}$ and the mixture heated at reflux for 4 hr . The reaction mixture was cooled to RT and the unreacted NaOAC filtered. The filtrate was evaporated to leave a white solid, which was suspended in water ( 50 mL ). Extraction with ether ( $3 \times 50 \mathrm{~mL}$ ), followed by drying ( $\mathrm{K}_{2} \mathrm{CO}_{3}$, overnight), filtration, and evaporation afforded a white solid. This was recrystallized (95\% ethanol, 30 mL ) to yield the oxime 108 a ( $0.71 \mathrm{~g}, 648$ ) : mp 128.4-129.2 ${ }^{\circ} \mathrm{C}$; $\mathrm{IR}(\mathrm{KBr}) \mathrm{cm}^{-1} 3275$ (0-H), 2926, 2790, 752, 697; $\mathrm{l}_{\mathrm{H}}$ NMR $\left(\mathrm{DCCl}_{3}\right) \delta 2.26[\mathrm{dd}, \mathrm{J}=11.5,4.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}(8) \mathrm{ax}], 2.32[\mathrm{dd}, \mathrm{J}=11.0$, $4.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}(6) a \mathrm{ax}], 2.83[b r \mathrm{~s}, \mathrm{l} \mathrm{H}, \mathrm{H}(1)], 2.89[b r \mathrm{t}, \mathrm{J}=\sim 11 \mathrm{~Hz}, 2$ $\mathrm{H}, \mathrm{H}(6,8) \mathrm{eq}], 3.04[\mathrm{~m}, 4 \mathrm{H}, \mathrm{H}(2,4)], 3.52\left[\mathrm{~s}, 2 \mathrm{H}, \mathrm{PhCH}_{2}\right], 3.88[\mathrm{br} \mathrm{s}, 1$ H, $\mathrm{H}(5)$ ], 7.24-7.30 [m, 5 H, ArH], $9.28[\mathrm{br} \mathrm{s} 1 \mathrm{H}, \mathrm{OH},] ;{ }^{13} \mathrm{C}$ NMR ( $\mathrm{DCCl}_{3}$ ) ppm $29.9[d, C(1)], 32.5[t, C(2)], 34.1[t, C(4)], 36.7[d, C(5)], 57.2$ $[t, C(8)], 58.5[t, C(6)], 61.7\left[t, \mathrm{PhCH}_{2}\right], 126.9[\mathrm{~d}, \mathrm{p}-\mathrm{ArC}], 128.1[\mathrm{~d}$,
 $\mathrm{C}(9)] ;{ }^{15} \mathrm{~N}$ NMR ( $\mathrm{DCCl}_{3}$ ) ppm 36.3 [N(7), oxıme N not observed]. Mass spectral $\mathrm{m} / \mathrm{e}$ calcd. for $\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}$ : $262.1136\left(\mathrm{M}^{+}\right)$. Found: 262.1140 . Analysis calcd. for $\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{OS}: \mathrm{C}, 64.09 ; \mathrm{H}, 6.92 ; \mathrm{N}, 10.68 ; \mathrm{S}, 11.94$. Found: C, 64.26; $\mathrm{H}, 6.94 ; \mathrm{N}, 10.60 ; \mathrm{S}, 12.22$.

Employing the same procedure as described above ketone 16 d 10.50 g , 2.02 mmol ) was treated with $\mathrm{NH}_{2} \mathrm{OH} . \mathrm{HCl}(\mathrm{O} .30 \mathrm{~g}, 4.43 \mathrm{mmol})$ and $\mathrm{NaOAC} 3 \mathrm{H}_{2} \mathrm{O}$ $(0.70 \mathrm{~g}, 5.05 \mathrm{mmol})$ in ethanol $(25 \mathrm{~mL})$. After heating at reflux for 4 h , the reaction mixture was filtered, evaporated and extracted [water (30 mL), ether ( $3 \times 30 \mathrm{~mL}$ )]. Recrystallızation from $95 \%$ ethanol afforded oxime $109 \mathrm{a}(0.32 \mathrm{~g}, 56 \%)$, mp $79.5-80.0^{\circ} \mathrm{C}\left(11 t .{ }^{101} 84-86^{\circ} \mathrm{C}\right) \mathrm{l}_{\mathrm{H}}$ $\operatorname{NMR}\left(\mathrm{DCCl}_{3}\right) \delta 2.57[\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}(3)], 2.75[\mathrm{~m}, 4 \mathrm{H}, \mathrm{H}(2,6)], 2.87[\mathrm{~m}, 2 \mathrm{H}]$, $9.01[b r s, \mathrm{NH}] ;{ }^{13} \mathrm{CNMR}\left(\mathrm{DCCl}_{3}\right) \operatorname{ppm} 26.7[t, \mathrm{C}(2)], 28.3[t, C(6)]$, $29.7[t, C(3)], 33.84[t, C(5)], 205.9[s, C(4)]$.

## 1,3,5-Tribenzylhexahydro-1,3,5-triazine (110a)

Method A. A three-necked, 100-mL round-bottomed flask was fitted With a condenser and an addition funnel ( 20 mL ). The flask was charged with benzylamine ( $10.72 \mathrm{~g}, 0.1000 \mathrm{~mol}$ ) and the apparatus was flushed with $\mathrm{N}_{2}$. Formaldehyde ( $37 \%$, aq.) $12.17 \mathrm{~g}, 0.15 \mathrm{~mol}$ ) was added in a dropwise manner over 30 min . An exothermic reaction ensues, and the product separated (upper layer) from the reaction mixture as a viscous oil. Upon completion of the addition the reaction mıxture was heated at reflux for an additional 3 h to ensure completion. After cooling to RT , the mixture was diluted with NaCl solution (sat'd, 50 mL ), extracted (ether, $5 \times 50 \mathrm{~mL}$ ), and the combined extracts dried $\left(\mathrm{K}_{2} \mathrm{CO}_{3}, 5 \mathrm{~h}\right)$. This 011 was passed through a column [neutral alumina, hexane/ethyl acetate (5:1)] afforded the triamine $\left(R_{f} 0.64\right)$ as the first band. Evaporation of the solvent gave 110 a as a colorless 011 (11.09 g, 93.1\%) that solidifled on standing: mp 43.5-45. $5^{\circ} \mathrm{C}$ (lıt. ${ }^{34 \mathrm{a}} 46^{\circ} \mathrm{C}$ ); IR (film) 3058, 3024, 2905, 2804, 1600, 1570, 740, 700; $1_{\mathrm{H} \mathrm{NMR}}\left(\mathrm{DCCl}_{3}\right) \delta 3.40(\mathrm{~s}, 6 \mathrm{H}$,
ring $\mathrm{CH}_{2}$ ), $3.63\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{PhCH}_{2}\right), 7.17-7.32(\mathrm{~m}, \mathrm{ArH}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{DCCl}_{3}\right)$ ppm 56.9 ( $t, \mathrm{PhCH}_{2}$ ), 73.6 ( $t$, ring $\mathrm{CH}_{2}$ ), 126.7 ( $\mathrm{d}, \underline{\mathrm{p}-\mathrm{Arc}), 127.9(\mathrm{~d}, \mathrm{o}, ~}$
 49.2. Mass spectral m/e calcd. for $\mathrm{C}_{24} \mathrm{H}_{27} \mathrm{~N}_{3}$ : 357 ( $\mathrm{M}^{+}$). Found: 357 .
$A{ }^{13} C N M R$ spectrum $\left(\mathrm{DCCl}_{3}\right.$ of the crude oll prior to chromatography Indicated that the only significant impurity was the linear triamine $\mathrm{RNH}-\mathrm{CH}_{2}-\mathrm{NR}-\mathrm{CH}_{2} \mathrm{NHR}\left(\right.$ where $\left.\mathrm{R}=\mathrm{PhCH}_{2}\right): \quad \delta\left({ }^{13} \mathrm{C}\right)$ ppm $55.1\left(\mathrm{PhCH}_{2} \mathrm{NH}-\right), 70.8$ (other $\mathrm{PhCH}_{2}$ ), $84.7\left(\mathrm{NCH}_{2} \mathrm{~N}\right)$. Repetition of the reaction under identical conditions, but with methanol as a solvent, resulted in a slightly improved yleld of $95 \%$.

Method B. (Conditions similar to those in the preparation of 27,103,104). a three-necked, 50-mL round-bottomed flask was fitted with a condenser and a heating mantle. The flask was charged with benzylamine ( $6.42 \mathrm{~g}, 60.0 \mathrm{mmol})$, paraformaldehyde (7.21 g, 240 mmol$)$, acetic acid (3.96 g, 66.0. mmol) and methanol (360 mL). The apparatus was flushed with $N_{2}$, and mixture was heated at reflux for 12 h . The reaction was then cooled to $R T$ and unreacted paraformaldehyde was filtered. Removal of the solvent afforded an oll to which was added water ( 250 mL ) and NaOH pellets $(3.00 \mathrm{~g}, 75 \mathrm{mmol})$. Extraction $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}, 4\right.$ $x 250 \mathrm{~mL})$, subsequent drying $\left(\mathrm{K}_{2} \mathrm{CO}_{3}, 8 \mathrm{~h}\right)$, filtration, and evaporation afforded an almost colorless 011. This oll was treated as before (Method A) to afford 110a (4.10 g, 57.3\%), mp $45-46^{\circ} \mathrm{C}$. The IR and ${ }^{13} \mathrm{C}$ were 1 dentical to that reported in Method A.


Plate II. ${ }^{1}{ }_{H}$ NMR Spectrum of $16 d$ and $16 h$


Plate III. ${ }^{13}$ C NMR spectra of $16 d$ and $16 h$


Plate IV. IR Spectrum of 17d


Plate V. ${ }^{1}$ H NMR Spectrum of $17 d$



Plate VI. ${ }^{13}$ C NMR Spectrum of 17 d



Plate VII. HETCOR NMR Spectrum of 17d


Plate VIII. ${ }^{15} \mathrm{~N}$ NMR Spectrum of 17 d



Plate IX. IR Spectrum of 18d


Pldte $X . \quad{ }^{1}{ }_{H}$ NMR Spectrum of $18 d$



Plate XI. ${ }^{13}$ C NMR Spectrum of 18 d


PFT $x \mathrm{CW}_{\ldots}$; Solvent: $\mathrm{DCCl}_{3}$
; SF: 75.429 MHz ; WC: 15085 Hz ; T: amb. ${ }^{\circ} \mathrm{C}$; NT: 800
Size: $20 \mathrm{~K} ; \mathrm{PW} / \mathrm{RF}: 12$
$\mu \mathrm{s} / \mathrm{dB} ; \quad \mathrm{SO}: 1000$
Hz; FB:
DC: ; Gated off:
; Offset: 0
Hz ;
RF: 20 Hz ;

NBW
3 ;
Delay: 1
s.

PLate XII. ${ }^{15} \mathrm{~N}$ NMR Spectrum of 18 d


Plate XIII. IR Spectrum of $19 b$


Plate XIV. ${ }^{1}$ H NMR Spectrum of $19 b$


Plate XV. ${ }^{13}$ c NMR Spectrum of $19 b$



Plate XVI. IR Spectrum of 19c


Plate XVII. ${ }^{13} \mathrm{C}$ NMR Spectrum of 19 c


$\mathrm{PFT}_{\mathrm{x}} \mathrm{CW}$	-	Solven			;	SE:	75.4	MHz;	WC :
Size: 20	K;	PW/RF :	12		dB;	SO:	1000	Hz ;	FB:
DC: On	;	ted $0 f$	:	;	Off	et:	0	Hz;	RF:

$\mathrm{Hz} ; \quad \mathrm{T}:$ amb. ${ }^{\circ} \mathrm{C} ; \mathrm{NT}:$
$\mathrm{Hz} ; \quad$ Lock: $\mathrm{DCCl}_{3} ;$ Delay: 4.0
s.

NB; NBW: Hz; LB: 1.00

Plate XVIII. IR Spectrum of 27a





Plate XXI. HETCOR NMR Spectrum of 27a


Plate XXII. IR Spectrum of 27b


Plate XXIII. ${ }^{1}{ }_{H}$ NMR Spectrum of $27 b$



Plate XXIV. ${ }^{13}$ C NMR Spectrum of $27 b$


 DC: Y, N; Gated Off:A or D; DO: 45316 Hz ; RF (Power): $119 \mathrm{~W} / \mathrm{dB}$; NBW: Hz : LB: $1.0 \quad \mathrm{~Hz}$.

Plate XXV. HETCOR NMR Spectrum of 27b


Plate XXVI. IR Spectrum of 28d


Plate XXVII. $1_{H}$ NMR Spectrum of 28 d





PLATE XXIX. ${ }^{15} \mathbf{N}$ NMR Spectrum of 62 c



Plate XXXI. ${ }^{1}$ H NMR Spectrum of 29 d



Plate XXXII. ${ }^{13}$ C NMR Spectrum of 29 d






Plate XXXV. ${ }^{1}{ }_{H}$ NMR Spectrum of $30 b$



Plate XXXVI. ${ }^{13}$ C NMR Spectrum of 30 b




PFT x CW_: Solvent: $\mathrm{DCCl}_{3} \quad$; SF:30.406 MIz; WC: $2432.5 \mathrm{~Hz} ; \mathrm{T}:$ amb. ${ }^{\circ} \mathrm{C}$; NT: 6000 Size: 12 K ; PW/RF: $40 \mu \mathrm{~s} / \mathrm{dB} ; \mathrm{TO}:-11600 \mathrm{~Hz}$; FB: Hz ; Lock:DCCl ${ }_{3}$;D1,D5:8 8 . DC: Y, N ; Gated Off:A or D ; DO: $0 \quad \mathrm{~Hz}$; RF(Power): $0 \quad \mathrm{~W} / \mathrm{dB} ; \mathrm{NBW}: \quad \mathrm{Hz}$ : LB: 2.0 Hz .

Plate XXXVIII. IR Spectrum of 31b


Plate XXXIX. $\quad^{1} \mathrm{H}$ NMR Spectrum of 31 b


$$
\begin{aligned}
& \text { PFTx CW_; Solvent: } \mathrm{DCCl}_{3} \quad ; \quad \mathrm{SF}: 299.944 \mathrm{MHz} ; \mathrm{WC}: 3000 \mathrm{~Hz} ; \mathrm{T}: \text { amb. }{ }^{\circ} \mathrm{C} \text {; NT: } 8 \\
& \text { Slze: } 12 \mathrm{~K} ; \mathrm{PW} / \mathrm{RF}: 7 \quad \mu \mathrm{~s} / \mathrm{dB} \text {; } \mathrm{SO}: 0 \quad \mathrm{~Hz} \text {; } \mathrm{FB}: \quad \mathrm{Hz} \text {; Lock: } \mathrm{DCCl}_{3} \text {; Delay: } 0 \\
& \text { DC: } N \text {; Gated Off: } \quad \text {; Offset: } 0 \quad \mathrm{~Hz} \text {; RF: } 15 \mathrm{~W} / \mathrm{dB} \text {; NBW: } \mathrm{Hz} \text {; LB: - }
\end{aligned}
$$

Plate XL. ${ }^{13}$ C NMR Spectrum of 31 b



Plate XLI. ${ }^{15} \mathrm{~N}$ NMR Spectrum of 31b



Plate XLII. IR Spectrum of 32b


 $D C: Y, \underline{N} ;$ Gated Off:A or $D ; D O: 750 \quad \mathrm{~Hz} ; \mathrm{RF}$ (Power): $\mathrm{N} / \mathrm{dB} ; \mathrm{NBW} \quad \mathrm{Hz}$ LB: $1.0 \quad \mathrm{~Hz}$



Plate XLV. HETCOR NMR Spectrum of $32 b$


Plate XLVI. ${ }^{15} \mathrm{~N}$ NMR Spectrum of 32 b



Plate XLVII. IR Spectrum of 33b


Plate XLVIII. $1_{H}$ NMR Spectrum of $33 b$



Plate L. HETCOR NMR Spectrum of 33b


Plate LI. ${ }^{15} \mathrm{~N}$ NMR Spectrum of 33 b



Plate LII. IR Spectrum of 70d


Plate LIII. $\quad 1_{\mathbf{H}}$ NMR Spectrum of 70 d


PFT X CW_ ; Solvent: DMSO-d _ $_{6}$; SF: 299.944 MHz ; WC: 3000
Size: 8 K ; PW/RF: $5.0 \quad \mu \mathrm{~s} / \mathrm{dB}$; TO: $1500 \quad \mathrm{~Hz}$; FB:
DC: Y, $N$; Gated Off:A or $D$; DO: 0
Hz; RF (Power):20
$\mathrm{W} / \mathrm{dB}$; NBW: Hz ; LB: -
W/dB; NBW: Hz ; LB: -
W/dB; NBW: Hz ; LB: -

DC: Y, N ; Gated Off: A or D ; DO: 0 Hz; RF(Power):
Hz; T: amb. ${ }^{\circ} \mathrm{C}$; NT: 32
Hz ; Lock: DMSO-d $_{-6}$; D1,D5 : 0.5
Hz



Plate LV. HETCOR NMR Spectrum of 70d



Plate LVI. ${ }^{15} N$ NFR Spectrum of 70d



Plate LVII. IR Spectrum of 102a


Plate LVIII. ${ }^{1}$ H NMR Spectrum of $102 a$



P1ate LIX. ${ }^{13}$ C NMR Spectrum 102a



Plate LX. HETCOR NMR Spectrum of 102a


## P1ate LXI. ${ }^{15} \mathrm{~N}$ NMR Spectrum of 102a





Plate LXIII. ${ }^{1}{ }_{H}$ NMR of $102 b$



P1ate LXIV. ${ }^{13}$ C NMR Spectrum of $102 b$


PFTx CW_; Solvent: DMSO-d - $_{6}$; SF: $25.2 \quad \mathrm{MHz}$; WC: $5000 \quad \mathrm{~Hz}$; T: amb. ${ }^{\circ} \mathrm{C}$; NT: 1400

DC: Y, N ; Gated off: A or D ; DO: $35101 \quad \mathrm{~Hz}$; RF(Power): $4531 \mathrm{~N} / \mathrm{dB}$; NBN: Hz ; LB: 1.5 Hz

Plate LXV. HETCOR NMR Spectrum of 102b


Plate LXVI. ${ }^{15} \mathrm{~N}$ NMR Spectrum of 102 b




Plate LXVIII. ${ }^{1}{ }_{H}$ NMR Spectrum of $103 a$


Plate LXIX. ${ }^{13}$ C NMR Spectrum of 103a



Plate LXX. ${ }^{15} \mathrm{~N}$ NMR Spectrum of 103a



P1ate LXXI. IR Spectrum of 103b


Plate LXXII. ${ }^{1}{ }_{H}$ NMR Spectrum of 103 b




Plate LXXIV. ${ }^{15} \mathrm{~N}$ NMR Spectrum of 103b



Plate LXXV. ${ }^{77}$ Se NMR Spectrum of 103b



Plate LXXVI. IR Spectrum of 103c


P1ate LXXVII. ${ }^{1}{ }_{H}$ NMR Spectrum of 103c


Plate LXXVIII. ${ }^{13}$ C NMR Spectrum of 103 c



Plate LXXIX. HETCOR NMR Spectrum of 103c



Plate LXXX. IR Spectrum of 104a


Plate LXXXI. $\quad 1^{1}$ H NMR Spectrum of $104 a$



Plate LXXXII. ${ }^{13}$ C NMR Spectrum of 104 a



Plate LXXXIII. HETCOR NMR Spectrum of 104b


Plate LXXXIV. ${ }^{15} \mathrm{~N}$ NMR Spectrum of 104 a




P1ate LXXXVI. $1_{H}$ NMR Spectrum of 104b


PFT $\mathrm{x}_{\mathrm{CW}} \mathrm{CW}$ Solvent: $\mathrm{DCCl}_{3} \quad$; SF: 299.944 MHz ; WC: 3000
Hz ; T: amb. ${ }^{\circ} \mathrm{C} ; \mathrm{NT}: 8$
SIze: $8 \mathrm{~K} ; \mathrm{PW} / \mathrm{RF}: 5 \quad \mathrm{~L} / \mathrm{dB} ; \mathrm{TO}: 0 \quad \mathrm{~Hz} ; \mathrm{FB}: \quad \mathrm{Hz}$; Lock: DCCl 3 ;D1,D5: 0.5
DC: Y, N ; Gated Off:A or $D$; DO: 0
Hz ; RF(Power): 10
W/dB; NBW:
Hz; LB: 0.5
Hz.

P1ate LXXXVII. ${ }^{13}$ C NMR Spectrum of 104 b



P1ate LXXXVIII. ${ }^{15} \mathrm{~N}$ NMR Spectrum of 104b



Plate LXXXIX. ${ }^{77}$ Se NMR Spectrum of 104b



Plate XC. IR Spectrum of 108









SIze: 16 K; PN/RF: 10.0 \mus/dB; TO: 0 Hz; FB: Hz; Lock: DCCl ; ;Dl,DS: l
SIze: 16 K; PN/RF: 10.0 \mus/dB; TO: 0 Hz; FB: Hz; Lock: DCCl ; ;Dl,DS: l
DC:Y, N ; Gated Off:A or D ; DO: 0 Hz; RF(Power): 20 N/dB; NBN: Hz; LB: -
DC:Y, N ; Gated Off:A or D ; DO: 0 Hz; RF(Power): 20 N/dB; NBN: Hz; LB: -
Hz.
Hz.

Plate XCVI. ${ }^{13}$ C NMR Spectrum of 109a



Plate XCVII. IR Spectrum of 110a


Plate XCVIII. ${ }^{1}$ H NMR Spectrum of $110 a$



Plate XCIX. ${ }^{13}$ C NMR Spectrum of 110 a




Plate C. ${ }^{15} \mathrm{~N}$ NMR Spectrum of 110a





1. Agababyan, A. G.; Gevorgyan, G. A.; Mndzhoyan, O. L. Russ. Chem. Rev. 1982, 51, 387-396.
2. AMA Department of Drugs "AMA Drug Evaluations", 4th Edition, Wiley, New York, 1980.
3. Andrısano, R.; Angeloni, A.S.; Gottarelli, G. Gazz. Chim. Ital. 1967, 97, 1762-1769.
4. Aranda, G.; Bernassau, J. M.; Fetizon, M.; Hanna, I. J. Org. Chem. 1985, 50, 1156-1161.
5. Arjunan, P.; Berlın, K. D.; Barnes, C. C.: Van der Helm, D. J. Org. Chem. 1981, 46, 3196-3204.
6. Avenhaus, H.; Grohmann, H.; Z. Krelslaufforsch 1969, 58, 54-60; Biol. Abstr. 1971, 52, 62487.
7. Azerbaev, I. N.; Omarov, T. T.; Al'mukhanova, K.; Baisalbaeva, S. A. J. Org. Chem. USSR (Engl. Transl.) 1976, 12, 1213-1215; Zh. Org. Khim. 1976, 12, 1207-1209.
8. a. Baky, S. H.; Kirsten, E. B. "Verapamil" in "Pharmacological and Biochemical Properties Of Drug Substances", Vol. 3, M. E. Goldberg (Ed.), American Pharmaceutical Assocıation, Washington, D. C., 1981, pp. 226-261. b. Dean, R. R.; McDermott, D. J.; Smith, W. S. "Disopyramide" ibid. Vol. 2, 165-185. C. Lee, R. J.; Krasula, R. W.; Real, M.; Hoyt, H. J. "Bretylium Tosylate" 1 bid., Vol. 2, 148-164.
9. Baliah, V.; Jeyaraman, R. Ind. J. Chem. 1971, 9, 1020-1021.
10. Baliah, V.; Usha, R. Ind. J. Chem. 1977, 15B, 684-689.
11. Balıah, V.; Jeyaraman, R. Ind. J. Chem., 1977, 15B, 796-797.
12. Balıah, V.; Mangalam, G. Ind. J. Chem. 1978, 16B, 237-238.
13. Barley, B. R. Doctoral Dissertation, Oklahoma State Unıversity, 1983.
14. Bailey, B. R.; Berlin, K. D.; Holt, E. M.; Scherlag, B. J.; Lazzara, R.; Brachmann, J.; Van der Helm, D.; Powell, P. R.; Panteleo, N. S., Reunitz, P. C. J. Med. Chem. 1984, 27, 758767 .
15. Bailey, B. R.; Berlın, K. D.; Van der Helm, D.; Powell, P. R. Phosphorus and Sulfur 1984, 21, 121-133.
16. Binnig, F.; Raschack, M.; Treiber, H.-J. U.S. Patent 3962 449, 1976; Chem. Abstr. 1976, 84, 150675x.
17. Binnig, F; Frıedrıch; L. Hofmann, H. P.; Kreiskott, H; Mueller, C.; Raschack, M. U.S. Patent 4183 935, 1979; Chem. Abstr. 1979, 90, 121568h.
18. Blicke, F. F Org. React. 1942, I, 303-341.
19. Bohlmann, F.; Schumann, D.; Arndt, C. Tetrahedron Lett. 1965, 31, 2705-2711.
20. Bohlmann, F.; Zeisberg, R. Chem. Ber. 1975, 108, 1043-1051.
21. Breitman, E.; Haas, G.; Voelter, W. "Atlas of Carbon-13 NMR Data" Heyden and Sons, Philadelphia, Pennsylvanıa, 1979, Vol. 1, compound no. 311, Vol. 2., compound no. 1349.
22. Buchanon, G. L. in Topics in Carbocyclic Chemistry, Vol. 1 , D. Lloyd, Ed.; Logos, London, 1969, pp. 199.
23. Curran, A. C. W. U.S. Patent 3829 427, 1974; Chem. Abstr. 1974, 81, 135998z.
24. Chung, E. K. "Principles of Cardiac Arrhythmıas", 2nd Edition, Williams and Wilkıns, Baltımore, Maryland, 1977, Chapters 9, 20.
25. Darnbrough, G.; Knowles, P.; O'Connor, S. P.; Tıerney, F.J. Tetrahedron 1986, 42, 2339-2344.
26. Dıedreich, K. W.; Beeck, J.; Z. Kreislaufforsch, 1970, 59, 736743; Biol. Abstr. 1971, 52, 56383.
27. Douglass, J. E.; Ratliff, T. B. J. Org. Chem. 1968, 33, 355-359.
28. Elsenberg, M. S.; Bergner, L.; Hallstrom, A. P., Cummins, R.O. Scientific American 1986, 254(5), 37-43.
29. Elıel, E. L.; Manoharan, M.; Hodgson, D. J.; Eggleston, D. S.; Jeyeraman, R. J. Org. Chem. 1982, 47, 4353-4356.
30. Fanso-Free, S. N. Y.; Furst, G. T.; Srınıvasan, P. R.; Lichter, R. L.; Nelson, R. B.; Panetta, J. A.; Gribble, G. W. J. Am. Chẹm. Soc. 1979, 101, 1549-1553.
31. Fowler, N. O. (Ed.) "Cardıac Arrhythmias: Dıagnosis and Treatment", Harper and Row, Hagarstown, Maryland, 1977. See several articles by contributors.
32. Galvez, E.; Arıas, M. S.; Bellanato, J.; Garcıa-Ramos, J. V.; Florencio, F.; Smith-Verdier, P.; Garcia-Blanco, S. J. Mol. Struct. 1985, 127, 185-201.
33. Goncharov, A. V.; Kurkutova, E. N.; Zefirov, N. S.; Iluykhin, V. V.; Belov, N. V. Zh. Struct. Khim. 1975, 16, 154-156; Chem. Abstr. 1975, 82, 163636u.
34. Goncharov, A. V.; Kurkutova, E. N.; Zefirov, N. S.; Iluykhin, V. V.; Belov, N. V. Koor. Khim. 1976, 2, 571-574; Chem. Abstr. 1976, 82, 27566f.
35. Gray, G. A. Org. Magn. Reson. 1983, 21, 111-118.
36. Graymore, J. J. Chem. Soc. 1932, 1353-1357.
37. Haller, R. Arzneimittel-Forsch. 1965, 15, 1327; Chem. Abstr. 1966, 64, 6629d.
38. Haller, R.; Unholzer, H. Arch. Pharm. 1971, 304, 867-871.
39. Haller, R.; Unholzer, H. Arch. Pharm. 1972, 305, 855-863.
40. Hankovsky, O. H.; Hideg, K.; Bodi, I.; Frank, L. J. Med. Chem. 1986, 29, 1138-1152.
41. Hellman, H. Newer Methods Prep. Org. Chem. 1963, 2, 277-302.
42. Heumann, A.; Kolshorn, H. Tetrahedron 1975, 31, 1571-1575.
43. House, H. O.; Wickham, P. P.; Mueller, H. C. J. Am. Chem. Soc. 1962, 84, 3139.
44. Huang-Mınlon, J. Am. Chem. Soc., 1946, 68, 2487-2488.
45. Jennings, R. B.; Reimer, K. A. "The Fate of the Ischemıc Myocardial Cell" in "Myocardial Infarction: New Perspectives in Dlagnosis and Management", E. Corday and H. J. C. Swan (Eds.), Williams and Wilkins, Baltimore, Maryland, 1973, Chapter 2.
46. Jeyaraman, R.; Avila, S. Chem. Rev. 1981, 81, 149-174.
47. Jeyaraman, R.; Jawaharsıngh, C. B.; Avila, S.; Ganapathy, K.; Eliel, E. L.; Manoharan, M.; Morris-Natschke, S. J. Heterocyclic Chem., 1982, 19, 449-458.
48. Johnson, P. Y.; Berchtold, G. A. J. Org. Chem. 1970, 35, 584591.
49. Levina, O. I.; Kurkutova, E. N.; Potekhin, K. A. Cryst. Struct. Comm. 1982, 11, 1915-1919.
50. Levina, O. I.; Potekhin, K. A.; Kurkutova, E. N. Cryst. Struct. Comm. 1982, 11, 1909-1913.
51. Levina, O. I.; Potekhin, K. A.; Rau, V. G.; Struchkov, T. T. Cryst. Struct. Comm. 1982, 11, 1073-1076.
52. Lucchesi, B. "Antiarrhythmic Drugs" in "Cardiovascular Pharmacology", M. J. Antonaccio (Ed.), Raven, New York, 1977, 269335.
53. Margulıes, E. (Ed.) "Myocardial Infarction and Cardiac Death", Academic, New York, 1983. See articles by several contributors.
54. Mastryukov, V. S.; Osına, E. L.; Dorofeeva, O. V.; Popık, M. V.; Vilkov, L. V.; Belikova, N. A. J. Mol. Struct. 1979, 52, 211-224.
55. Mastryuov, V. S.; Popik, M. V.; Dorofeeva, O. V.; Golubinskii, A. V.; Vilkov, L. V.; Belikova, N. A.; Allınger, N. L. J. Am. Chem. Soc. 1981, 103, 1333-1337.
56. McEuen, J. M.: Nelson, R. P.; Lawton, R. G. J. Org. Chem. 1970, 35, 690-696.
57. Mironov, G. S.; Farberov, M. I.; Orlova, I. M. Zh. Obshch. Khım. 1963, 33, 1512-1517; Chem. Abstr. 1964, 60, 5324h.
58. Mironov, G. S.; Farberov, M. I.; Tımoshenko, G. N.; Bulgina, M. N.; Chınnikova, V.A. Khım. Prom. (Moscow) 1969, 45, 727-729; Chem. Abstr. 1970, 72, 31162v.
59. Miyano, S.; Sumoto, K.; Satoh, F.; Shima, K.; Hayashımatsu, M, Morita, M.; Aisaka, K.; Noguchi, T. J. Med. Chem. 1985, 28, 714-717.
60. Nador, K.; Gabor, K.; Katalin, S.; Parocza1, M.; Karpati, E.; Szporny, L. U.S Patent 4451 473, 1984; Chem. Abstr. 1983, 99, 5654 v .
61. Okhi, E.; Oıda, S.; Ohashi, Y.; Yoshıda, A.; Kamoshita, K.; Takagi, H. Chem. Pharm. Bull. 1974, 2, 1014-1021; Chem. Abstr. 1974, 81, 99241m. Belleau, B.; Gulinı, U.; GourSalin, B. Can. J. Chem. 1985, 63, 1268-1274.
62. Ossina, E. L.; Mastryukov, V. S.; Vılkov, L.V.; Belikova, N. A. Chem. Comm. 1976, 12.
63. Panteleo, N. S.; van der Helm, D.; Ramarajan, K.; Bailey, B. R.; Berlin, K. D. J. Org. Chem. 1981, 46, 4199-4204.
64. Pauling, Lınus "The Nature of the Chemıcal Bond", 3rd Edition, Cornell University, Ithaca, New York, 1960, p. 257.
65. Peters, J. A. Synthesis, 1979, 321.
66. Peters, J. A.; Remi jnse, J. D.; van der Weıle, A.; van Bekkum, H. Tetrahedron Lett. 1971, 3065.
67. Peters, J. A.; van der Toorn, J. M.; van Bekkum, H. Tetrahedron 1974, 30, 633-640.
68. Peters, J. A.; van der Toorn, J. M.; van Bekkum, H. Tetrahedron 1975, 31, 2273-2281.
69. Peters, J. A.; van der Toorn, J. M.; van Bekkum, H. Tetrahedron 1977, 33, 349-351.
70. Przybylska, M.; Barnes, W. H. Acta Cryst. 1953, 6, 377-384.
71. Quast, H.; Muller, B. Chem. Ber. 1980, 113, 2959-2975.
72. Quast, H.; Muller, B.; Peters, E.-M.; Peters, K.; von Schnering, H. G. Chem. Ber. 1983, 115, 2872-2891.
73. Quast, H.; Muller, B.; Peters, E.-M.; Peters, K.; von Schnering, H. G. Chem. Ber. 1983, 116, 424-437.
74. Raber, D. J.; Janks, C. M.; Johnston, M. D.; Raber, N. K. Tetrahedron Lett., 1980, 21, 677-680.
75. Reynolds, D. D.; Cossar, B. C. J. Heterocyclic Chem. 1971, 8, 605610.
76. Rice, L. M.: Grogan, C. H. J. Org. Chem. 1958, 23, 844-846.
77. Robertson, D. W.; Beedle, E. E.; Krushinski, J. H.; Polock, G. D.; Wilson, H.; Wyss, V. L. J. Med. Chem. 1985, 28, 717-727.
78. Ruenitz, P. C.; Mokler, C. M. J. Med. Chem. 1977, 20, 1668-1671.
79. Ruenitz, P. C.; Mokler, C. M. J. Med. Chem. 1979, 22, 1142-1145.
80. Ruenitz, P. C.; Smissman, E. E. J. Org. Chem. 1977, 42, 937-940.
81. Sadykov, A. S., Kamayev, F. G.; Korenevsky, V. A.; Leont'ev, V. B.; Ustynyuk, Y. A. Org. Magn. Reson. 1972, 4, 837846 .
82. Sanders, H. J. Chem. Eng. News 1982, 60(28), 26-38.
83. Schilt, A. A. "Perchloric Acıd and Perchlorates", Smith Chemical, Columbus, Ohio, 1979, Chapter 3.
84. Scherlag, B. J. Veterans Admınistration Medıcal Center, Oklahoma City, Oklahoma, personal communication.
85. Scherlag, B. J.; El-Sherif, N. Hope, R.; Lazzara, R. Circ. Res. 1974, 35, 372-383.
86. Scherlag, B. J.; Kabell, G.; Brachmann, J.; Harrison, L.; Lazzara, R. Am. J. of Cardiology 1979, 51, 207-213.
87. Schneider, W.: Gotz, H. Arch. Pharm. 1961, 294, 506-518.
88. Siebner, H. Deut. Med. Wochenschr. 1970, 95, 2203; Biol. Abstr. 1971, 52, 5151.
89. Silverstein, R. M.; Bassler, G. C.; Morrill, T. C. "Spectrometric Identification of Organic Compounds", 4th Edition, Wiley and Sons, New York, 1981, p. 270.
90. Skolık, J.; Wiewiorowski, M.; Krueger, P. J. J. Mol. Struct. 1970, 5, 461-476.
91. Smissman, E. E.; Ruenitz, P. C.; Weis, J. A. J. Org. Chem. 1975, 40, 251-252.
92. Smissman, E. E.: Ruenitz, P. C. J. Heterocyclic Chem. 1976, 13, 1111-1113.
93. Smissman, E. E.; Ruenitz, P. C. J. Org. Chem. 1976, 41, 1593-1597.
94. Smith-Verdier, P.; Florencio, F.; Garcia-Blanco, S. Acta Cryst. 1983, 39C, 101-103.
95. Speckamp, W. N.; Dijkink, J.; Dekkers, A. W. J. P.; Huisman, H. O. Tetrahedron 1971, 27, 3143-3156.
96. Stetter, H.; Merten, R. Chem. Ber. 1957, 90, 869-875.
97. Stetter, H.; Schafer, J.; Dieminger, K. Chem. Ber. 1959, 91, 598604.
98. Stout, M.; Matier, W. L.; Barcelon-Yang, C.; Reynolds, R. D.; Brown, B. S. J. Med. Chem. 1983, 26, 808-813.
99. Stout, M.; Matier, W. L.; Barcelon-Yang, C.; Reynolds, R. D.; Brown, B. S. J. Med. Chem. 1984, 27, 1347-1350.
100. Stout, M.; Matier, W. L.; Barcelon-Yang, C.; Reynolds, R. D.; Brown, B. S. J. Med. Chem. 1985, 28, 295-298.
101. Subramanian, P. K.; Ramalingam, K.; Satyamurthy, N.; Berlın, K. D. J. Org. Chem. 1981, 46, 4376-4383.
102. Takeuchi, Y, ; Schrieber, P.; Takada, K. J. Chem. Soc., Chem. Comm. 1980, 403.
103. Tanz, R. A. Ann. Rep. Med. Chem., 1965, C. A. Cain (Ed.), Academic, New York, 1966, pp. 85-91.
104. Thomis, J.; Tenthouy, P. Ann. Rep. Med. Chem., Vol. 18, H. J. Hess (Ed.), Academic, New York, 1983, pp. 99-108.
105. Thompson, B. B. J. Pharm. Sc1. 1968, 57, 715-733.
106. Thompson, M. D. Doctoral Dıssertatıon, Oklahoma State University, 1985.
107. Thompson, M. D.; Smith, G. S.; Berlin, K. D.; Holt, E. M.; Scherlag, B. J.; Van der Helm D.; Muchmore, S. W.; Fidelis, K. A. J. Med. Chem., in press (1986).
108. Thompson, M. D.; Smith, G. S.; Berlin, K. D. Org. Prep. Proc. Int., in press (1986).
109. Thompson, M. D.; Holt, E. M.; Berlin, K. D. J. Org. Chem. 1985, 50 2580-2581.
110. Tramontin1, M. Synthesis, 1973, 703-775.
111. Wiewiorski, M. Edwards, O. E.; Bratek-Wiewiorowska, M. D. Can. J. Chem., 1967, 45, 1447-1457.
112. Wınk, M.; Hartmann, T.; Witte, L. Planta Med., 1979, 18, 31-39.
113. Zefirov, N. S.; Rogozina, S. V. J. Chem. Soc., Chem. Commun. 1974, 261.
114. Zefirov, N. S.; Rogozina, S. V. Russ. Chem. Rev. 1973, 42, 190198.
115. Zefirov, N. S. Russ. Chem. Rev. 1975, 44, 196-211.
```
 VITA
 Gary Steven Smıth
 Candıdate for the Degree of
 Doctor of Phılosophy
Thesıs: SYNTHETIC METHODOLOGY, STEREOCHEMISTRY AND ANTIARRHYTHMIC
 ACTIVITY OF SELECTED 3,7-DIHETERABICYCLO[3.3.1]NONANES AND
 DERIVATIVES
Major Field: Chemıstry
Bıographıcal:
Personal Data: Born ın Bıloxı, Mıssıssıppı, Aprıl 30, 1960, the son of
 Phıllıp W. Smıth and Linda L. Wrıght.
Education: Graduated from Clınton Hıgh School, Clınton, Oklahoma, in
 May, 1978; recelved Bachelor of Science degree in Chemıstry from
 Southwestern Oklahoma State Unlversity in May, 1982. Completed
 requirements for Doctor of Phılosophy degree at Oklahoma State
 UnIversity in December, 1986.
Professıonal Experıence: Teachıng Assıstant, Department of Chemıstry,
 Oklahoma State Unlversıty, January, 1983, to July, 1984; Research
 Assıstant, August, l984 to August, 1986, Department of Chemıstry,
 Oklahoma State Unıversity.
Professional Organızatıons: Amerıcan Association for the Advancement of
 Sclece, Dlvisions of Organic Chemıstry and Medicinal Chemistry of
 the American Chemıcal Soclety, Phı Lambda Upsılon (chemıstry honor
 fraternıty), Sıgma Xı Scıentıfıc Research Soclety.
```

