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PREFACE 

Th·is study considers spatial equil i"brium theory and the 

practice of price discrimination in the spatial market. The 

first objective of the study was the development of 

mathematical means to the d•termination of optimal price and 

quantity vectors for a discriminator operating in a spatial 

market. The second objective was the development of a trade 

pol icy whervby the discriminator could influence the 

dynamics of the mar Ket ·such that it wou 1 d conr.,•erge upon and 

equilibrate ·at the opti~al price and quantity vectors. 

Since the price discrimination models are derivatives of the 

ordinary spatial equilibrium model, spatial.equilibrium 

\ 
theory is a major topic in this work. Also, since all 

economic theory of this work is expressed in terms of 

nonlinear programming models, one chapter is dedicated to 

the presentation of non 1 i ne.ar progr.amm i ng theory. 

The topic was originally suggested by Dr. L.V. Blakley. 

It was felt that the present deterioration in the U.S. 

balance of trade demanded further investigations into 

intern at i on a 1 trade po 1 i c y. Particular concern was had for 

policies which could improve the trade situation for 

agricultural commodities. The original intents included the 

measurement of potential gains from a discriminatory pricing 

policy in ;U.S. international •1Jheat trade. However, since 
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the the•::ir-y per-ta in i n•;i tc• -:.uch pol i •=Y pr-oved to be mor-e 

involved than anticipated, the study was confined to 

theor-e ti ca.1 i ntJest i ga ti on. 

I extend gr-atitude to my adviser-, Dr-. L.V. Blakley, for-­

suggesting this topic and for the degree of latitude that 

was granted in this and other graduate wor-k. A better-

adviser could not have been had. I am appreciative to Dr. 

J.S. Plaxico for his effor-ts, which were more than would be 

expected of a committee member. Also, Dr. Plaxico 

encouraged academic training which pr-oved essential to the 

dynam i •: ana 1 yses in this r,<,1ork. I also extend thanks to Dr. 

Dan Tilley and Dr. Michael Edgeman for their contributions. 

I am appreciative to the faculty and staff of the 

De par tmen t of Agr i cu 1 tural Ec•::inom i cs of this university for 

its efforts toward an outstanding aca.dem i ·= pro•;iram. I 

extend unending thanks to all American taxpayers for their 

f i nanc i a 1 con tr i but ions, wh i·ch are too frequent 1 y unnoticed, 

but which have made this and al 1 other of my academic 

endeavors possible. 

Finally, I dedicate this work to my pa.rents, who are to 

be credited to the fullest extent. Indeed, I rec Kon this 

and a 11 other academic acc.omp 1 i shmen ts as being no 1 ess 

theirs than mine. 
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CHAPTER I 

INTRODUCTION 

Whenever the concept of price discrimination is 

encountered in economic 1 iterature, it is almost always 

found under the assumptions that the discriminator is a pure 

monopolist, and that the various markets into which it sells 

are. or can be perfectly ·separated. Ho•A1ever, it is evide-nt 

that these assumptions are unnecessarily restrictive. Pure 

monopol ~~ is se 1 doml y if ever obser•Jed, and the incidence of 

perfect market separation is equally infrequent. Yet few 

woul~ question that price discrimination does actually occur 

· i n pr ac t i c e • 

The possibilities of gains from price discrimination in 

the absence of these assumptions is illustrated by the 

spatial market. Here, it is assumed that the aggregate 

market is composed of several regional markets with possibly 

numerous buyers and sellers in each. It is also assumed 

that at least some of the regional markets are at 1 iberty to 

trade with one another, but that there are nonzero costs of 

transporting ·the product between regions. Now, consider a 

spatial market consisting of three regional markets that are 

situated on a 1 ine. Thus, the market map might appear as 

follows: 

1 
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A <--------- 8 ---------1 C 

where A, 8~ and C represent the three regional ~arkets. 

Suppose that interregional trade occurs in the directions of 

the arrows shown. M6reover, suppose 8 ·incurs a Sl per-unit 

transportation charge on shipments to A and on shipments to 

C, and that the costs of shipping between A and C are $2 

per-unit. 

In an ordinary spatial equi I ibrium, the price 

differences between trading markets will be exactly equal to 

the per-unit costs of transporting the product between 

regions. Hence, in the market described above, the price in 

A and C will be .exactly $1 greater than the price in 8. 

Now, it is apparent that the spatial equilibrium prices and 

quantities are not necessar i I y optima 1 insofar as the 

maximization of s~s export revenue is concerned. If the 

excess demand in A is more elastic than the excess demand in 

C ,. then B can increase its export revenue W·i th a proper 

price reduction to A and price increase to C. Moreover, 8 

is capable of making such price adjustments to al imited 

extent, for it can charge prices to A and C differing by as 

much as $2 without inducing arbitrage. Thus, the partial 

degree of market separation in the spatial model can permit 

successful price discrimination. However, observe that 8 is 

not necessarily a monopolist, nor are its markets perfectly 

separated. 

The primary objectives of_ this study are the 

determination of optimal price and quantity vectors for a 
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revenue-maximizing discrimihator or cooperative of 

discriminators operating in a spatial market, and the 

formulation of a trade pol icy whereby the discriminator or 

cooperative of discriminators may impose such price and 

quantity vectors upon the market. Hence, concern is 

directed toward problems such as the one described above. 

Consideration is also directed toward those cases where a 

group of regions exercises discrimination in a cooperative 

fashion. There are basically two questions to be addressed. 

First, what are the optimal price and quantity· vectors? 

Second, after having determined the optimal vectors, how 

does the d.iscriminator then cause the actual quantities and 

prices in the market to equa 1 the chosen va 1 ues? 
-

As all economic models in this work are formulated as 

nonlinear programming problems, the second chapter is 

dedicatwd to a thorough· an~ rigorous derivation of general 

non 1 i near programming theory·. As the price di scrim i nation 

mod~ls are derivatives of the ordinary spatial equilibrium 

model, pursuit of the objectives necessitates a thorough 

development of ordinary spatial equilibrium theory, Spatial 

equilibrium theory is developed in the third chapter. In 

the fourth chapter, various price discrimination models are 

constructed. The chapter considers the case of a single 

discriminating region, and the case where several regio~s 

exercise price discrimination in a cooperative fashion. The 

chapter begins with the construction of nonlinear 

_programming mode 1 s having solutions equa 1 to· the optima 1 



4 

price and quantity vectors. It is then shown how that the 

discriminator may influence the dynamic adjustment mechanism 

of the spatial market such that the market converges to and 

equilibrates at such vectors. In the fifth chapter, some 

hypothetical market configurations are constructed, and a 

spatial equilibrium is calculated for each configuration. 

It is then· assumed that one or more of the regions in the 

market practices price discrimination. The models are 

solved again under this assumption, and comparisons are made 

between earned revenue in the former and latter situations. 



CHAPTER II 

NONLINEAR PROGRAMMING THEORY1 

In this chapter, nonlinear· optimization theory 

necessary to subsequent chapters is developed. Primary 

concern is directed toward deriv-ing necessary and sufficient 

conditions for solutions to the.problem: 

maximizeCx\: f<x> 

·subject to: 

where: x= 

G(X) ?: 0 

x e X 

x n 

G<x> = 
91 ( X) 

'~2 ( X) 

f(X) i·s called the "ob~iective function." The 

•:ondition, G(X)?, O, is called the "function.al •:onstr·aint," 

while the condition, x e X is called the "set constraint." 

The set constraint usually serves to establish the general 

domain of the functions involved in the problem. In 

practice, Xis generally taken to be then-dimensional 

euclidean space, hereafter denoted by Rn, 

The relation, ~' and associated relations are 

interpreted as follows: 1) z f 0 impl_ies that all 

5 



components of z are nonnegative. 2) z > 0 implies that all 

components of z are positive, and 3) z > O implies that 

z 6 O, but z ¢ O. Accordingly, for any two vectors, z 1 and 

z2 : 1) z 1 6 z 2 implies z 1 - z 2 ~ 0. 2) z 1 > z 2 implies 

Z1 - Z2 ~ o, and 3) Z1 > Z2 implies Z1 - Z2 > o. The 

relations: ~' i, and< are similarly defined. 

The emphasis of the discussion is upon the 

"Kuhn-Tucker" optimality conditions. For the latter 

problem, these conditions are: 

fx<x> + Gx<x>x = O 

x"G<x> = o 

x ~ 0 

where fx<x> is the grad·i ent of f<x> and Gx<x> is an nxm 

matrix whose ith column is the gradient of gi<x>, hereafter 

denoted by Vg1<x>. The vector, x, is commonly called the 

vector of "Lagrangian multipliers." Note that the second 

condition implies that if A.i > O, then gi<x> = O. That is, 

if the Lagrangian multiplier is positive, then the 

corresponding constraint is 0 binding" or "active." Such 

relationships are called "complementary slackness" 

relations. Accordingly, the variables involved are said to 

be "complementary." 

6 

The most important conclusions to be drawn in this 

chapter concerning the Kuhn-Tucker conditions are summarized 

in the following theorems: 



'll\eorem <Kuhn-Tucker Necessary Conditions): Let X be a 

nonempty open set in Rn, and let f<x>:X ~ R1 and 

G(x):X ~Rm. Consider the problem to maximize f<x> subject 

... -to x e X and G<x> ~ O. Let G~<x> = CG~<x>,G~<x>l where 

G<x> is affine. Let x be a local optimal solution to the 

problem, and let: 

.. .. 
I = { i : g i < x> = 0} 
.y ,.., 
I = {- i : gi <x> = 0) 

Suppose that f<x> and G(x) are differentiable at x . 
... 

Moreover, suppose that the Vg1cx> are 1 inearly independent 
.. 

for i e I, then there exists o,1 ,>-..2 ,, ,>-ra> such that: 

i = 1,2,,,m 
~ 

= 1,2,,,m 

7 

Thus, under the stated assumption of the theorem, local 

optimal solutions imply Kuhn-Tucker points. As a global 

optimal solution is also a local optimal solution, it may be 

concluded that if the various assumptions hold, then the 

Kuhn-Tucker conditions are necessary conditions to the 

g 1 oba 1 op t i ma • 

The next theorem cites conditions under which 

Kuhn-Tucker points imply global optima: 

Theorem <Kuhn-Tucker Sufficient Conditions>: Let X be a 

nonempty convex set in Rn, and let f<x>:X ~ R1 and 

G(x):X ~ Rm. Consider the problem to maximize f<x> subject 
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to G(x) ; 0 and x e X. Let x be a feasible solution, and 

suppose that there exists CA. 1 ,A.2 ,,,Am) such that: 

= 1,2,,,m 

A.- > 0; 
I 

= 1,2,,,m 

quasiconcave at i with respect to points in the feasible 

region. Moreover, let f(X) be pseudoconcave (strictly 

pseudoconcave) at x with respect to points in the feasible 

region, then i is a global optimal solution (unique global 

optimal solution) to the maximization problem. 

After establ ishing_the above, attention is then 

directed toward the Lagrangian saddle point characterization 

of the maximization problem. It is shown that under certain 

assumptions, the solutions to the Kuhn-Tucker conditions may 

be formulated as the "saddle points" of the "Lagrangian." 

The Lagrangian to the particular maximization problem at 

hand is the function: 

1cx,x> = f<x) + x'GCx>; 

where R: denotes the nonnegative orthant of the 

m-dimensional euclidean space. xis called the vector of 

"Lagrangian multipliers" in this context also. <i,i> is 

said to be a "saddle point" of l <x,x) if: 

l<x,i> < l<i,i) < l<i,x>; 'r/ <x,x> e XeR~ 



Note that at the saddle point, l<x,~> is maximized subject 

to x e X, and l<x,~> is minimized subject to~ e R'!'; hence 

the term, "saddle point." 

In subsequent chapters, the primary interest in saddle 

points is their relation to the Kuhn-TucKer conditions. In 

this chapter, the relation is formerly established with a 

proof of the following theorem: 

Theo~em: Let X be a nonempty open set in Rn, and let 

f<x> :X ~ R 1 and GCx):X ~ Rm. Let 1 <x,~> = f<x> + ~"G(X) 

and suppose that <x,i> e XeR! satisfies the saddle point 

relation: 

l<x,~> < l<x;i> < l<x,~>; V <x,~> e Xe~ 

Further, suppose that f<x> and G(x) are differentiable at 

x, then x is feasible; moreover, <x,i> satisfies the 

Kuhn-TucKer conditions: 

fx<x> + Gx<x>~ = O 

~"G<x> = o 

~ ~ 0 

Conversely, let x be feasible, and suppose that 

<x,i> satisfies the Kuhn-TucKer conditions. Let 

I= <i: gi<x> = 0}. Moreover, let X be convex, and let 

f<x> ·and gi<x> for i e I be concave at x, then <x,i> 

solves the saddle point relation. 

9 
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Hence, under the assumptions of the theorem, saddle points 

in the Lagrangian are one-to-one with the solutions to the 

Kuhn-TucKer conditions. 

The final topic considered is the case where a 

nonnegativity requirement for~ is included in the 

constraints to the maximization problem. Hence, the general 

form of the problem becomes: 

m.ax i mi z e ( x ;r : 

subject to: G*c ) l 0 x -

x e X 

It is shown that in such cases, 

an alternative statement of the Kuhn-Tucker conditions is: 

f x C x > + Gx C x > >.. ~ 0 ; 

>..~· G<x> = O 

>.. !: 0 

The next four sections develop the mathematical 

groundworK necessary to the fi:irmu lat ion of the above theory, 

and to other quantatiue analysis throughout this worK. The 

fifth section treats Kuhn-Tucker theory. The sixth section 

is concerned with Lagrangian saddle points. In the seventh 

section, the general theory is applied to those cases where 

nonnegativity in x is an explicit constraint upon the 

maximization problem. 



2.1 Topologlcal Concepts 

The following definitions are frequently used in 

connection with sets. Each employs the "e-neighborhood" 

concept. The e-neighborhood of i is the set: 

Ne<x> = <x: Ix - xi < e} 

where Ix - ii denotes the euclidean distance from x to x. 

11 

2.1.1 Definition: Let X be a nonempty set. in·Rn. A point, 

x, is said to be in the "closure" of X, denoted by cl X, if 

XnNe<x> ~~for every e > O. If X =cl X, then X is said to 

be a "closed set.u x is said to be in the uinterioru of X, 

denoted by int X, if Ne<_x> c: X for some e > o. If 

X = int X, then X is said to be an "open set.u x is said to 

be on the uboundaryu of X, denoted by bX, if Ne<x> contains 

at least one point in X and one point not in X for every 

e > O. X is said to be ubounded" if there exists ~ e R1 

such that lxl < ~ for every x e X. X is said to be 

acompact" if it is both bounded and closed. 

Consider the set: 

Geometrically, X is the set of ·all points on and within a 

unit circle centered at the origin. X is closed, that is, 

X =cl X. The interior of X consists of all points inside 

the circle, so: 
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The boundary of X is the circle itself, or: 

X is clearly bounded; moreover, since X is closed, it is 

a 1 so comp ac t • 

The fol 1 owing is a 1 i st of topological properties of 

open, closed, and compact sets in Rn. The verification of 

these properties can be found in most topology texts: 2 

1 ) The intersection of a. finite number of open- sets is open. 

2) The union of open sets is open. 

3) The intersection of closed sets is closed. 

4) The union of a finite· number of closed sets is closed. 

5) The intersection of a compact set and closed set is 

compact. 

6) The union of a finite num~er of compact sets is compact. 

Oftentimes, sets are defined by the inverse images of 

functions. For example the •et <x e Rn•. g<x> ~ 0), r·s 
. ' ~ ' 

defined by the inverse image of g<x>. The next theorem 

proves useful toward determining whether such sets are open 

or closed: 

2.1.2 Theo~em: Let X be a nonempty set in Rn, and let 

f<x>:X ~ Y be continuous on X. Furthermore, let Sc Y, 

then: 

1) If S is open, then f°"". 1 < S> is open. 

2> If S is closed, 'then f- 1<S> is closed~ 



The following definitions are frequently used in 

connectton with the minimization and maximization of 

functions over sets: 

2.1.3 Deflnltlon: Let X be' a nonempty set in Rn, and let 

f<x>:X ~ R1 • The "infimum" of f<x>, denoted by inf f<x>, 

is the largest real number ~satisfying f<x> ~ ~for all 

x ex, that is, inf f<x> is the ugreatest lower bound" of 

f < x>. If f(X) has no lower bound, then inf f<x> = -oo. If 

13 

there exits x~ e X such that f<x~> = ~, then x~ is said to 

be a "minimum point," and f(X~) is said .to be the "minimum" 

of f<x>. The "supremum" of f'Cx>, denoted by sup f<x>, is 

the smallest real number a satisfying f<x> i a for all 

x e X, that is, sup f<x>- is the "1 east upper bound" of f<x>. 

If f<x> has no upper bound, then sup f<x> = oo. If there 

exists xa e X such that f(xa> = a, then Xa is said to be a 

"maximum point," and f<xa> is said to be the "maximum" of 

f <.x> • 

Consider f < x) = x on x e [ 0, 1 >. Cl ear 1 y, inf f < x) = 0, 

and sup f(x) = 1. As f(x) attains it infimum at x = O, zero 

is a minrimum point of f(x) on x e
1
[0,1>; however, as f(x) 

does not a-t ta in i ts supremum, then the function has no 

maximum on the stated domain. This example illustrates that 

a function may not have a minimum or maximum over a set that 

is not closed. Now, consider f(x) = 1 - e-x on x e ro,oo>. 

The infimum of the function is zero and is attained at 

x = O. The supremum of the function is one, but the 
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supremum is not attained at any x; consequently, the 

function has no maximum. This illustrates that a function 

may not have a minimum or maximum over an unbounded set. 

Finally, consider f<x> = 1/x on x E CO,lJ. The supremum of 

-
this function is co; however, as such supremum is clearly 

una.ttai nabl e, the function has no maximum. This i 11 ustrates 

that a function may not have a minimum or maximum if it has 

points of discontinuity on the domain. 

The next theorem is a famous result due to Weierstrass, 

and is proven in many topology texts. The theorem 

establishes conditions under which a function must have a 

minimum and maximum. 

2.1~4 Theorem <Welerstraee Theorem): Let x be a nonempty 

compact set in Rn, and let f<x>:X' R1 be a continuous 

function on X, then f<x> ~s bounded; moreover, f<x> attains 

unto ~oth inf f<x> and sup f<x>, or equivalently, f<x> has 

both a m i n i mum and a max i mum.._ on X • 

2.2 Convex Sets 

One of the most important concepts in mathematical 

programming theory is the convex set. Such sets are 

formerly defined as follows: 

2.2.1 Deflnltlon: Let X be set in Rn. X is said to be 

11 convex" if x 1 ,x2 e: X imp 1 i es cx.x1 + < 1-cx.) x2 e: X for each ex. E 

<0,1). The null set, e, and sets consisting of a single 

point are also classified as convex sets. 
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Geometrically speaking, a set is convex if the I ine 

segment connecting any two points in the set 1 ies completely 

within the set. A commonly encountered example of a convex 

set is the "half space." A half space consists of all 

points lying on either of the two sides of a hyp•rplane. 

Hence, the hyperplane, a'X = S, defines four half spaces; 

two of which are Xg = <x: a'x ~ S) and x1 = <x: a'x ~ S), 

The other two are simply the open variants of these. To 

demonstrate the convexity of x
9

, suppose x 1 ,x2 e Xg' then 

a~xl ~ e, and a~x2 ~ eJ which implies: 

Thus, a.x1 + <1-a.>~~ e Xg for all a., and particularly for 

a. e <0,1>. 

The following lemma Is an immediate consequence of the 

definition of convexity: 

2.2.2 Lemma: Let Xl and X2 be convex sets in Rn' then: 

1 ) X1nx 2 is convex. 

2) X1+X2 = <x1 + x2= X1 e X1' X2 e X2> is convex. 

3) X1-X2 = <x1 xz: X1 e: x 1 ' X2 e X2) is convex. 

Proof: To prove part one, suppose x 1 ,x2 e x1nx 2 • Since 

x 1 _e x1 , and x 2 e x1 , then by convexity of x1 , 

a.x1 + <l-a.>x2 e x1 for a. e <0,1>. But similar reasoning 

leads to the conclusion that a.x1 + <l-a.>x2 e x2 ; 

consequently, a.x1 + <1-a.>x2 e x1nx 2 • 



For part two, suppose x = x 1 + x2 e x 1+x 2 and 

x = x1 + x2 e x1+x2 , then: 

16 

Si nee x1 is convex, the fir-st term on the right i -s in x1 for 

~ e <0,1). Similarly, the second term is in x2 ; 

consequently, ~x + <1-~>x e x1+x2 , which prove-s the 

proposition. The proof of part three is -similar. 

Con-sider the -set X = <x: Ax ~ b} where b j,s an m vector 

and A is an mxn matrix. Ob-serve that X is simply the 

intersection of the m half space-s defined by the row-s of A 

and b. As these half space-s are convex, and a-s the 

inter-section of convex sets is also convex, then X is 

convex. Thia result may also be easily proven directly. 

Such sets are called "polyhedral sets." 

The following theorem and corollaries formerly affirm 

some rather intuitive results concerning the interiors and 

closures of convex sets: 

2.2.3 Theorem: Let X be a convex set in Rn with a nonempty 

interior. 'Let x1 e cl X and x2 e int X, then: 

v~e<0,1> 

Proof: Since x2 e int X, there exists an e > 0 such that 

Ne< x2 ) e X • I t w i l 1 .be sh own that : 

<x: Ix - xi < <1-~)e} c x 
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That is, there is an <1-«)e-neighborhood of x contained in 

X; therefore, x e int X by definition. First, choose any x 

satisfying Ix - xi < <1-«)e. Now, since Xi e cl x, then 

for any 6 > O, there exists ~ 1 e X such that lx1 - x1 I < 6. 

Let: 

( 2. 1) 

Using the triangular inequality <See APPENDIX), it may be 

confirmed that: 

< 

where the last inequality holds since IX - xi < <1-«)e by 

assumption and since & may be chosen arbitrarily small. 

Thus, x2 is in ~n e-neighborhood of x2 , and consequently, 

x2 e X. Now, <2.1) implies that x =«Xi + <1-«>x2 • It has 

been shown that x2 e X. By assumption, x 1 e X. By 

convexity of X, it follows that x e X, and subsequently, 

{X: IX - XI < (1-«)E} c X, which completes the proof. 

Corollary 1: Let X be a convex set in Rn with nonempty 

interior, then int X is convex. 

Corollary 2: Let X be a convex set in Rn, then cl Xis ' 

convex. 



Proof: If int X = ¢, then necessarily, X = ax and 

cl X =ax, so cl X = X, and consequently, the corollary 

holds trivially. Suppose int X ~ ~. 

x e int X . Using the' theorem, ,'>...X + (1->-.)x 1 e int X for 

.A. e C0,1), and subsequently: 

cc.[.A.X + Cl-.A.)X1J + (1-o:.)X2 e int X; "rf o:. E (1),1) 

Upon taking the 1 imit of the above as .A.~ O, one obtains 

. o:.x1 + C1-o:.)x2 e cl X, which completes the proof. 

2.3 Hyperplane Separation 

In this section, several intuitive but critical 

theorems concerning convex sets are stated and proven. 

These theorems are the~·osed to ascertain the existence or 

nonexistence of solutions to certain 1 inear systems. 

All results of this section are consequences of the 

fol 1 ciw i n g 1 emma: 

n 2.3.1 Lemma: Let. X be a nonempty convex set in R , .3.nd let 

y ~ X, then there exists a nonzero a e Rn such that 

Proof: Let f(X) = Ix - yl. It i ·s app.aren t that there 

exists a~ > 0 such that ~ = inf {f(X): x e X>. If f < x> 

attains its infimum, then Jt clearly must do so at a point 

in x* = cl XnCx: Ix - yl ~ el where e ~ ~. As x* is 

compact, .and .as f(X) is continuous, then it Kno•,-m by the 

Weierstrass theorem (Theorem 2.1.4) that f(X) does in fact 

18 
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have a minimum on x*, and consequently, on cl X. Let x be 

a minimum point, and let x be any other point in cl X. 

Since cl Xis convex, a.x + <1-a.>x e cl X for« e <0,1>; 

subsequently: 

Expand the left-hand side to obtain: 

a.2 I X - x I 2 + I x - y I 2 + 2a. ( x - x) "' < x - y) > I X - y I 2 

which imp l i es: 

a.Ix - xl 2 +. 2<x - x>"'<x - y> > 0 
" 

Upon taking the limit of the above as a.' O, one obtains: 

- <x - x>,. <x - y> ~ o 

which imp l i es: 

<x - y>"'x ~ <x - y>"'<x - y + y> = ~2 + <x - y>"'y 

Let a= <x - y> to complete the proof. 

The theorem simply asserts that for any convex set and 

a single point isolated from the closure of the set, there 

exists a hyperplane passing through the point and having all 

of the closure of the set in one of its open half spaces. 

_The particular hyperplane constructed in the proof is the 

hyperplane passing through y and perpendicular to <x - y>. 

The next theorem is a consequence of the lemma: 
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2.S.2 'll\eorem <Supporting Hyperplane 'll\eorem): Let x be a 

nonempty convex set in Rn, and let x E oX, then there 

exists a· nonzero a E Rn such that a'x ~ a'x for every 

XE cl X. 

Proof: Since x E ax, one may construct a sequence, <yK)' 

not in X, satisfying l imK~oo yK = x. By the last lemma, for 

every such yk there exists a nonzero~ satisfying: 

V X E Cl X 

With out 1 oss of genera 1 i ty, it may be assumed that the ~ 

are normalized so that lakl = 1. Hence, the~ are bounded 

and must therefore possess a 1 imit as yk ~ x. Let 

1 imK~oo ak =a. Upon tak~ng the 1 imit of the above ask~ oo, 

one ob ta i n·s: 

V X E cl X 

which was to be shown. 

The supporting hyperplane theorem asserts that for any 

x on the boundary of a convex set X, there exits a 

hyperplane passing through x and having all of X in one of 

its closed half spaces. 

The following corollary is a generalization of Lemma 

2.3.1: 

Corollary: Let X be a nonempty convex set in Rn, and 

suppose y •int X, then there exits a nonzero a E Rn such 

that a'x ~ a'y for every x E cl x. 



21 

Pr•:::>of: If y ~ cl ... ,,,· 
... , ' then the corollary fol lows directly 

from Lemma 2.3.1. If ye ~X, then the corollary follows 

directly fr-om. the support i rig hyper-plane the or-em. 

With use of the latter cor-ollary, the important 

separating ~yperplane theorem may now be established: 

2.3.3 Theorem <Separating Hyperplane Theorem>: Let x1 and 

><2 be nonempty cont)ex sets in Rn sat i sf)'·i ng ><1 llX2 = 121, then 

there exists ·3. nonzero a e Rn such th.3.t a-·x, :> a'·x.-. T 1.Ji' 
.L .:;. 

Proof: By 

Lemma 2.2.2, X is convex. Further-more, O ~ X, for 

otherwise, x 1nx2 1,.,ould -not be empt)'·. Subsequently, by the 

last corollary, there exists a nonzero a e Rn such that. 

But by the definition of 

X, this. imp 1 i es: 

Thus, for any two nonintersecting convex sets, there 

exits a hyperplane having one set in each of its clQsed half 

spaces. 

The theorems thus derived bear important implications 

for the existence of solutions in certain 1 inear systems. 

The next two theorems are concerned with some of these 

implications: 



2.3.4 'llteorem <Farkas' Theorem): Let A e Rmxn and c e Rn, 

then exactly one of the following systems has a solution: 

system 1: Ax! 0 and c"x > o; 

system 2: A"y = c; y e R~ 

Proof: Suppose that y solves system two, and that x 
satisfies Ax ! O, then c"x·= y"Ax i O; hence, system one 

has no solution. -Now, suppose system two has no solution, 

and let X = <x: x = A"y, ye ~). Since c • X, then by 

Lemma 2.3.1, there exits a nonzero x e Rn such that: 

y"Ax < c"x; v ye:~ 

Since the components of y may be arbitrarily large, the 
-

latter inequality implies ·that Ax! Q. Moreover, since y 

may be equal to O, it follows that c"x > o. Thus, system 

one has a solution. 

2.S.5 Theorem <Gordan's Theorem>: Let A e Rnxm, then 

exactly one of the following systems has a solution: 

system 1: Ax< O; 

system 2: A"y = O; y e: R~, y ;II! 0 

' 
Proof: Suppose x is a solution to system one and that y 

is a solution to _system _two, then AX< 0 and y ~ 0 imply 

y"AX < O. But, this contradicts the fact that A"y = O; 

hence, both systems cannot simultaneously have solutions. 

Now, suppose system one has no solution and consider 

the following sets: 

22 



Z1 = {z: z = Ax, x e Rn) 

Z2 = <z: z < O> 
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As z1 and z2 are nonempty convex sets satisfying Zinz2 = ~' 
then by the separating hyperplane theorem, there exists a 

nonzero ye R"' such that: 

. 
Since the components of z may be arbitrarily small, it 

follows that y ~ O. Moreover, as 0 e cl z2 , the latter 

inequality implies that y'Ax ~ O for every x e Rn. 

Therefore, upon setting x = -A'y, it follows that 

-IA'yl 2 ~ o, which implies that A'y = O; hence system two 

has a solution. 

2.4 Concave Functions 

One of the most essential concepts in nonlinear 

programming theory is the· concavity property in rea 1 

functions. Several variants of concavity could be 

discussed; however, this section treats only the most 

essential forms. The most essential and most frequently 

encountered form of concavity is "simple concavity," which 

is formerly defined as follows: 

2.4.1 Definition: Let X be a nonempty convex set in Rn, 

and let f<x>:X' R1 • Moreover, let x e X. f<x> is said 

to be "concave" at x if for each x e X and« e <0,1>: 
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f(x) is said to be "strictly concave" at i if strict 

inequality holds in the above relation for al 1 x ~ i. 

is said to be concave <strictly concave) on-X if it is 

concave <strictly concave) for every x e X. 

Geometrically, these definitions imply that a function 

is concave at i if it 1 ies on or above any cord connecting 

f<i> and any other point on the surface of the function. 

If the f •Jn ct i on i s st r i •: t 1 y concave , then i t i s st r i ct I y 

above any such cord at all points other than the end points. 

f(X) is said to be convex <strictly convex) if -f(x) is 

concave (strictly concave). In the remainder of this 

section, only concave functions are explicitly considered; 

however, the foregoing -~esults may be easily modified to 

accomodate convex functio~s as well. 

The next theorem is-one of· the most usefu 1 resu 1 ts in 

mathematical programming. Before stating the theorem, some 

definitions are needful 

2.4.2 Definition: Let X be a nonempty set in Rn, and let 

f < x> :X ~ R 1 • Consider the problem to maximize f(X) subject 

to x e X. Any x e X is said to be a "feasible point." 

Accordingly, Xis calted the "feasible region." If x e X, 

and f<i> ? f(X) for every x e X, then x is said to be a 

"g 1 ob.a. 1 op t i ma l sol u t i on " or s imp I y an "op t i ma l so 1 u t i on • " 

Ifie X and there exist an e-neighborhood, Ne<x>, about 

x such that f<x> ? f<x> for every x e Ne<x>nX, then i is 

said to be a "local optimal solution." 
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2.4.S Theorem <Local-Global Theorem): Let X be a nonempty 

convex set in Rn, and let f<x>:X ~ R1 • Consider the 

problem to maximize f(X) subject to x e X. Suppose x is a 

local optimal solution to the problem, then: 

1) If f(X) is concave at x, then x is a global optimal 

solution. 

2) If f<x> is strictly concave at x, then x is a unique 

global optimal solution. 

... 
Proof: To prove part one, suppose there exists an x e X 

... 
such that f<x> > f<x>, ~hen by concavity of f<x> at x, it 

follows that for~ e <0,1>: 

... ... 
fC«x + <1-«>il > «f<x> + Cl-«>f<i> > f<x> 

... 
·But for~ sufficiently small, «X + <1-«>x e Ne<x> so that 

the above inequality contradicts the local optimality of x • 
... 

To prove part two, suppose that x and x are both 

global optimal solutions. By the strict concavity of f<x> 

at x: 
' ... ... 

f< .sx + .sx> > .sf<x> + .sf<x> = f<x> 

which contradicts the global optimal i'ty of x. 

In nonlinear programming problems, the feasible region, 

X, used in the above theorem is'defined by the constraints. 

Frequently, the constraints will be such that X is convex. 

If this is th~ case, then the latter theorem will prove 

usefu 1 • 
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The next two theorems may be frequently used to 

identify constraint sets defining convex feasible regions. 

First, the following definitions must be established: 

2.4.4 Deflnltlon: Let X be a set in Rn 
' 

and 1 et 

f <x> :X ' R1 ' 
then: 

1 ) The set <x e X: f(X) > f3) is called an "upper set." 

2) The set <x e X: f(X) > f3) is called a "strict upper 

3) The set <x e X: f <x> < f3) is called a 11 1 ower set. II 

4) The set <x e X: f<x> < f3) is called a "strict lower 

5) The set <x e X: f <x> = S) is ca 11 ed a 11 1eve1 set. II 

2.4.5 Theorem: Let X be a convex set in Rn, and let 

f<x> :X ' R1 be cQ,ncave on· X, then: 

1> The upper set, S = <x e X: f<x> ~ f3), is convex. 

set. 

set. 

2> The strict' upper set, S' = <x e X: f<x> > f3>, is convex. 

Proof: To prove part one, suppose x1 ,x2 e S. Thus, 

f<x 1 > > f3 and f<x2 > > e. Since f<x> is concave on X, then 

for a. e < 0 , 1 ) : 

II 

u 

Hence, a.x1 + <1-a.>x2 e S. The proof of part two is similar. 

A vector-valued function is said to be concave if all 

of its component functions are concave. Using this 

definition, the latter result may be easily extended to 

include vector-valued functions with the following theorem: 



2.4.6 Theorem: Let X be a convex set in Rn, and let 

F(x):X ' Rm be concave on X. Let be R"', then: 

1> The upper set, S = Cx e X: F<x> ~ b), is convex. 
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2) The strict upper set, S" = <x e X: F<x> > b), is convex. 

Proof: The sets, Sand S", are simply the intersections of 

them upper sets or strict upper sets defined by the 

component functions of F<x> and the corresponding components 

of b. As each of these sets is convex by the last theorem, 

and as the intersection of convex sets is convex by Lemma 

2.2.2, it follows that Sand S" are convex. 

If f(X) is a differentiable function, then the 

following theorems affirm some useful properties of 

conca~ity, and even offer an alternative definition of 

concavity over a convex set: 

2.4.? 'ft\eorem: Let X be a nonempty open 3 convex set in 

Rn, and let f<x>:X' R1 be concave at x e X. If f<x> is 

differentiable at x, then: 

" -f<x> < f<x> + fx<x><x - x>; V x e X 

Proof: Since f<x> is concave at x, then for ex. e <0,1>: 

f [ cx.X + < 1-a.> x1 > cd(X) + <1-a.>f<x>; v x e x 

which imp 1 i es: 

fcx + ex.( x - x>l - f<x> ---------------------- > f(X) - f<x>; v x e x 
ex. 



Upon taking the ·1 imit as«' O, the above becomes: 

_, 
fX(X)(X - X) > f(X) - f(X); 'V x e X 

or: 

f<x> .. -
< f<x> + fx<x><x - x>; 'V x e X 

which was to be shown. 

Corollary: Let X be a nonempty open convex set in Rn, and 

let f<x>:X' R1 be strictly concave at x e X. If f<x> is 

differentiable at x, then: 

.. -f<x> < f<x> + fx<x><x - x-> r 'Ir/ x e X, x ;11: x 

Proof:· It is Known from . the theorem that: 

f<x> < f<i> + f~<x><x - x>; 'Ir/ x e X 

... 
Suppo?e that there is an x e X, not equal to x, such that: 

... , - ... 
f<x> = f<x> + fx<x><x - x> 

' .• 

Multiply the 1 at ter by « and subtract from the former, and 
... 

set x = «X. + < 1-«>x to obtain: 

... ... 
f[«x + <1-«>xJ < ~f<x> + <1-~>f<x> 

But, this contradicts the strict concavity of f<x> at x, 

and the proof is complete. 

28 

Geometrically, the last theorem implies th~t a function 

that is concave at a point lies everyWhere on or beneath the 
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tangent plane at that point. The corollary implies that in 

the case of strict concavity, the function 1 ies strictly 

beneath any such tangent plane except at the point of 

tangency. 

It should be observed that the last theorem and 

corollary deal with concavity at a point. The next theorem 

and corollary deal with concavity over a convex set: 

2. 4.8 Theorem: Let X be a nonempty open convex set in Rn, 

and let f<x>:X ~ R1 be differentiable on X, then f<x> is 

concave on X if and only if: 

f<x> .. -
< f<x> + fx<x><x - i>; v x,x e: x > (2.2) 

Proof: The assertion that concavity implies the latter 

re 1 at ion is proven in th·e 1 ast theorem. It remains to show 

that the latter relation implies concavity on X. Thus, 

suppose that (2.2) holds, then for any Xl ,x2 e: x: 

f <x1 > f<x> .. - - x>; 'rt X1,X x < + fx<x><x1 e: 

f<x2 > f-< x> .. - x>; v X2,X < + fx<x><x2 e: x 

Multiply the first relation by~ and the second by <1-~) and 

add the p~oducts to ~btain: 

produce: 



which proves that <2.2) implies concavity on X. 

Corollary: Let X be a nonempty open convex set in Rn, and 

let f<x>:X' R1 be differentiable on X, then f<x> is 

strictly concave on X if and only if for distinct x,x e X: 

, -
f(X) < f(X) + fX(X)(X - X) 
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Proof: By the theorem, it is Known that f<x> is concave on 

X if and only if: 

' 

f(X) , -< f<x> + fx<x><x - x>; V x,x e X (2.3) 

A 

Suppose there is an x e X, not equal to x, such that: 

A ~ - A 

f<x> = f<x> + fx<x><x - x> 

It follows from this equality and the strict concavity of 

f<x> that: 

A A 

f[«X + <1-«>xl > «f<x> + <1-«>f<x> = 

~ - A -f<x> + «fx<x><x - x> 

A 

Upon setting x = «X + <1-«>X, the latter may be written: 

, - . 
f<x> > f(x) + fx<x><x - x> 

But, this inequality contradicts <2.3), and the proof is 

complete. 

A vector-valued function is said to be differentiable 

if all of its component functions are differentiable. The 

last two theorems and corollaries extend without alteration 
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to include all differentiable vector-valued functions. For 

example, if X is a nonempty open convex set in Rn, then a 

differentiable function, F<x>:X ~Rm, is concave on X if 

and only if: 

F<x> 
,. -

< F<x> + Fx<x><x - x>; 'ff x,x e X 

where Fx<x> is an nxm matrix whose ith column is the 

gradient of the ith component function. Here, strict 

inequality holds in the case of strict concavity and 

distinct x and x. 

The following theorem provides perhaps the most useful 

means of determining concavity: 

2.4.9 Theorem: Let X· be· a nonempty open convex set in Rn, 

and let f<x>:X ~ R1 be twice differentiable on X, then f<x> 

is concave <strictly concave) on X if and only if the 

Hessian matrix, HCx), is negative semidefinite <negative 

de>f in i te) over a 11 x e X. 

Proof: Suppose f<x> is concave on X and let x e X. Since 

X is open, then x + .>..x e X for >-. suff i c i en.t 1 y sma 11 • From 

Theorem 2.4.8, it follows that: 

f<x + >-x> 

Using the definition of differentiability <See APPENDIX>, it 

may be concluded that1 

f<x + >-x> = f<x> + >--f~<x>x + <t/2>>-2x"H<x>x + 

>-2 1x1 2w<x,>-.x> 



32 

where w<x,AX) '0 as A' O. Subtract the former from the 

latter to obtain: 

Divide the latter by A2 , and let A' 0 to produce 

x"H<x>x i o. 

Conversely, suppose that H<x> is negative semidefinite 

at every point in X, and let x,x e X. Using Taylor"s 

theorem, f<x> may be expressed as: 

,. - A 

f<x> = f<x> + fx<x><x - x> + C.1/2)CX - x>'H<x><x - x> 

.. 
where x = cx.X -t < 1-cx.>x for some ex. e CO, 1 >·; consequently, 

A A 

x e X. As H<x>- is negative semidefinite by assumption, it 
A 

is Known· that <x - x> 'H<x><x - x> .! 0; therefore, the 

latter inequality implies that: 

. ,. -
f<x> i f<x> + fx<x><x - x> 

But from Theorem 2.4.8, this inequality implies that f<x> is 

concave on X. The proof for the strictly concave case is 

obtained by replacing the inequalities above with strict 

inequalities. 

There are other forms of concavity that are less 

restrictive than simple concavity inasmuch as simple 

concavity proves to be a special case of these forms. 

However, these generalized forms share many desirable 

properties with simple concavity. One of the most common of 

these forms is defined as follows: 



2.4.10 Deflnltlon: Let X be a nonempty convex set in Rn, 

and let f<x>:X-+ R1 • Moreover, let x e X •. f<x> is said 

33 

to be "quasi concave" at x if for every x e X and~ e <0,1), 

the following inequality holds: 

f<x> is said to be "strictly quasiconcave" at x if the 

above holds with strict inequality for distinct f(X) and 

f<x>. f<x> is said to be quasiconcave <strictl)f" 

quasiconcave> on X if it is quasiconcave <strictly 

quasiconcave) for every x e X. 

Geometrically, these definitions imply that a function 

is quasic;oncave at x if-·it 1 ies on or above the lowest 

endpoint of any cord connecting f<x> and any other point on 

the surface of the function. If the function i.s strictly 

quasiconcave, then it 1 ies strictly above any such cord that 

is not perfectly horizontal. Note that every concave 

function is also quasiconcave, and that every strictly 

concave function is strictly quasiconcave. The function, 

fCx>, is said to be "quasiconvex" <"strictly quasiconvex"> 

if -f<x> is quasiconcave <strictly quasiconcave>. 

In Theorem 2.4.5, it was shown that the upper sets and 

strict upper sets of a concave function are convex. The 

next theorem and proof demonstrate that this property_ also 

holds for quasiconcave functions: 



2.4.11 Theorem: Let X be a convex set in Rn, and let 

f<x>:X ~ R1 • f<x> is quasi·concave on X if and only if the 

.set~ S~ = <x e X: f<x> ! ~>, is convex for each ~ e R1 • 

Proof: Suppose f<x> is quasiconcave on X and let 
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X1,x2 e S 1 • Observe that min[f<x1 >,f<x2 >J > ~. Since f(X) 

is quasiconcave, then for any« e <0,1>: 

which demonstrates that quasiconcavity on X imp.1 ies 

convexity in S~. 

Conversely, suppose that s
1 

is convex for every ~. Set 

~ = minCf<x1?,f<x2 >J, so f<x 1 > > ~and f<x2 > ! 1; 

subsequently, x 1 ,x2 e Sir The convexity of S1 imples: 

'V « e <0,1> 

which shows that convexity of s 1 implies quasiconcavity of 

f <x> on X. 

Though strict concavity implies concavity, it .does not 

follow that strict quasiconcavity implies quasiconcavity. 

This is illustrated by the following function: 

f<x> -- [01 
if x = 0 

if x ~ 0 

Observe that f<x> is strictly quasiconcave on R1 ; however, 

it is not quasiconcave, for at x = 1 and x = -1, f<x> = 0 

and f<x> = o, but: 

/ 
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f{.5x + .5iJ = f<O> = 1 > minCf<x>,f<i>J 

However, the next theorem affirms that strict quasconcavity 

implies quasiconcavity under continuity: 

2.4.12 Theorem: Let X be a nonempty convex set in Rn, 'and 

let f<x>:X ~ R1 be continuous and strictly quasiconcave on 

X, then f<x> is quasiconcave on X. 

Proof: Let x,x e X. It needs to be shown that if 

f<x) = f<x>, then: 

fC«X + <1-«>xl > minCf<x>,f<x>l = f<x> 

To the contrary, suppose that f<x> = f<x>, but that: 

fc«x + c1-~>x1 < f<x>; for some « e <0,1> 

Using the continuity of ~<x>, it may b~ concluded that there 

exists a A e <0,1) such that: 

/ 

' 
which contradicts the fact the f<x> = f<x>, and the proof· 

is complete. 

The following definition gives yet another variant of 

concavity that proves useful in nonlinear programming 

theory: 

2.4.13 Deflnltlon: Let X be a nonempty open convex set in 

Rn, •nd let f<x>:X ~ R1 • Moreover let x e X, and let 

f<x> be differentiable at x. f<x> is said to be 
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"pseudoconcave" at x if it is true that for every x e X, 
,. 

fx<x><x - x) ! o impl ies_f<x> i f<x>, or equivalently, 
,. 

f<x> > f(x) implies fx<x><x - x> > o. f<x> is said to 

, -
be "strictly pseudoconcave" at x if fx<x><x - x> i 0 

implies f<x> < f<x>, or equivalently, f<x> !. f<x> implies 
,. 

fX(X)(X -, X) > 0. f(X) is said to be pseudoconcave 

<strictly pseudoconcave> on X if it is differentiable on X 

and-if it is pseudoconcave <strictly pseudoconcave> at every 

x e X. 

Geometrically, pseudoconcavity means that if a tangent 

plane approximation of f<x> from f<x> indicates that 

f<x> ! f<x>, then this is indeed the case. Strict 

pseudoconcavity means tnat if such tangent plane 

approximation indicates that f<x> i f<x>, then in fact, 

f<x> < f<x>. Observe that the concept of pseudoconcavity 

is relevent only where f<x> is differentiable. Also, 

observe that Theorem 2.4.8 and corollary imply that every 

concave function is pseudoconcave, and that every strictly 

concave function- Is strictly pseudoconcave. Al so, the 

function, f<x>, is said to be "pseudoconvex" <"strictly 

pseudo~onvex"> if -f<x> is pseudoconcave <strictly 

pseudoconcave). 

The next theorem restates the local-global theorem 

<Theorem 2.4.3> in terms of pseudoconcavity. 

2.4.14 Theot'em: Let X be a nonempty open set in Rn, and 

let f<x>:X' R1 • Moreover, let S be a nonempty convex 
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subset of X, and consider the problem to maximize f<x> 

subject to x e S. Let x be a local optimal solution to the 

probl·em, and let f<x> be differentiable at x, then: 

1) If f<x> is pseudoconcave at x, then x is a global 

optimal solution. 

2> If f<x> is strictly pseudoconcave at x, then x is a 

unique global optimal solution. 

A 

Proof: · To prove part one, suppose there exists x e S such 
A 

that f<x> > f<x>, then by pseudoconcavity of f<x> at x it 

follows that: 

A· 

By convexity of S, x = ~x + <1-«>X e S for« e <0,1>; 

moreover,, x e Ne<x> for·« sufficiently small. It will be 

shown that there exists a 6 > 0 such that f<x> > f<x> for 
I 

all « e <O,a>, thus contradicting the local optimality of 

x. By the di,fferent i abi 1 i ty of f <x> at x, it is Known 

that: 

f<x> ~-A A - - A-

= f<x> + «fx(X)(X - x> + «IX - XlwCx,«<x-x>J 

A 

where wCx,«<x-x>J 'o as«' o. The latter implies: 

f<x> - f<x> ~ A A A 

= fx<x><x - x> + Ix - xlwCx,«<X - x>l 
( 2 ;...4 )~ 

Let «' O. There exists a 6 > 0 such that the right-hand 

side of the latter equation is'positive for= e <O,o>, so 

for such«, f<x> > f<x>, which proves part one. 
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.. 
To prove part two, suppose there exists x e S such 

... 
that f(X) = f<x>, then by strict pseudoconcavity of f<x> 

at x, this imp 1 i es: 

,. ... 
fx<x><x - x> > 0 

After following exactly the same steps in the proof of part 

one, it may be concluded that <2.4) contradicts the local 

op t i ma 1 i t y of 5C. 

The next theorem and proof show that pseudoconcav i ty is 

a special case of both quasiconcavity and strict 

quasi concavity. 

2.4.15 Theorem: Let X be a nonempty open convex set in Rn 
' 

and let f<x> :X ~ R1 be pseudoconcave over x, then f(X) is 

both quasiconcave and strictly quasi concave over X. 

Proof: It will be shown that f<x> is strictly quasiconcave 

on X. Quasiconcavity on X will then follow from continuity 

over X and Theorem 2.4.12. Let x1 ,x2 e X, and suppose 

~<x 1 > < f<x2 >. Let x = «><1 + <1-~>x2 and suppose that for 

some~ e <0,1): 

By pseudoconcavity of f<x>, this implies: 

Noting the definition of x, this implies: 



" - -
:~:=~~!x~~~:~2-=-~~ > o 

a. 

By pseudoconcavity of f<x>, this implies f<x2 ) < f<x>, 

thus: 

But, this contradicts the fact the f<x 1> < f<x2 >, and the 

proof is complete. 

2.5 Kuhn-Tucker Optimality Conditions 

Consider the problem: 

maximize<x>: f<x> 

subject to: G<x> ~ 0 

XE X 

where f<x>:X ~ R1 and G<x>:X ~ R"l. Let x be a solution 

to the above. In this section, it is first shown that if: 

1) X is open. 2> f<x> and G<x> are differentiable at x, 
and 3) G<x> satisfies certain regularity conditions at x, 
then there exists~ such that <~,x> will solve the 

following set of conditions: 
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fx<x> + Gx<x>>.. = O 

>..,.G<x> = o 

(2.5) 

(2.6) 

(2.7) 

The above conditions were first introduced by Kuhn and 

Tucker (1951), and have since been further developed by 
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numerous mathematicians. Much attention has been directed 

toward determining regularity condi~ions upon G<x> that are 

sufficient to- ensure the existence of ~such that the 

Kuhn-Tucker conditions are solvable. The vector,~' is 

commonly Known ~s the vector of "Lagrangian multipliers." 

LiKewise, the emphasis here is upon regularity conditions, 

or "constraint qualifications," as they are commonly called. 

After treating the necessity of the Kuhn-TucKer conditions, 

it is then shown that under certain concavity assumptions, 

such conditions are also sufficient for the optimal 

solutions to the problem above. 

The necessary conditions herein developed for the 

solutions. to· the problem ~bove are actually necessarr for 
-

all local optimal solutions. However, as a global optimum 

is a local optimum, then necessary conditions to the latter 

also prove necessary to the former. 

The foregoing theorem establishes necessary conditions 

to unconstrained local maxima: 

2.5.1 'llleorem: Let f<x>:Rn-+ R1 be differentiable .at 5C. 
,. 

If there is a vector d such that fx<x>d > O, then there 

exists a s > O such that f<x + Ad) > f<x> for each 

A e <O,s>. 

Proof: Using the differentiability of f<x> at x: 

f ( X + Ad) 

The latter implies: 
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f<x + A.d> - f <x) 

I' 

Since fx<x>d > o, and since w<i,Ad) 'O as A' o, there 

I' - -exists a 6 > 0 such that f (X)d + ldlw<x,Ad) > 0 for all x -
A e <O,o>, which implies f<x +Ad> - f<x> > o. 

Any vector, z, satisfying f<x + AZ) > f<x> is said to 

be an "ascent direction" of f<x> at x. By the latter 

" -theorem, any d such that fx<x>d > 0 is an ascent 

direction. If D~ denotes the set of all such d for the 

point x, then the theorem clearly implies that a necessary 

condition for x to be a local maximum is that Da = ¢. Of 

I' -course, this can only be true if fx<x> = O, which is th~ 

fa.mi 1 i ar first-order condition for unconstrai n-ed 

maxim rza ti on. 

The next theorem uses the last result to obtain 

necessary conditions for constrained maximization problems: 

2.5.2 Theorem: Let X be a nonempty open set in Rn, and let 

f<x>:X' R1 and G<x>:X' Rm. Consider the problem to 

maximize f<x> subject to G(X) ~ O and x e X. Let x be a 

local optimal solution, and let f<x> and G(X) be 

differentiable at x. Furthermore, let I= {i: gi(X) = 0), 

Da = Cd: 
I' -

fx<x>d > 0) 

Df = Cd: 
I' -

Vgl (X)d > 0 e I) 

and where Vg1<x> denotes the gradient of gi<x) at x. 
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Proof: Suppose DanDf ~~and let de DanDf. Since X is 

open, .there exists a 61 such that: 

X + .>..d e X; 

Since the 9i<x> are continuous at x, and since 9i<x> > 0 

for i ~I, then there exists a 52 such that: 

9 i ( x + .>..d) > 0 ; 

Also, since the 9j<x> are differentiable at x, then by 

Theorem 2.5.1, there exists a 53 such that: 
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Finally, from Theorem 2.5.1, it is Known that there exists a 

6 4 such that: 

f<x + .>..d> > f<x>; 

Now, let 5 = min<5 1 ,6 2 ,o 3 ,5 4 >. It is apparent from the 

above that f(X) can be feasibly increased by movement to 

x + .>..d for any.>.. e <0,6), but this contradicts the fact 

that x is a local optimal solution. 

The constraints satisfying gi (X) = 0 are said to be 

uactive 11 at x. The last theorem leads to the following 

result due to Fritz John <1948>, which also utilizes the 

concept of active constraints: 

2.5.3 Theorem <Fritz John Neceesary Conditions>: Let x be a 

nonempty open set in Rn, and let f<x>:X ~ R1 and 
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~. G(x):X' Rm. Consider the problem to maximize f<x> subject 

to G(x) ~ O and x e X. Let x be a local optimal solution, 

, and let f<x> and G<°x> be differentiable at x. Furthermore, 

let I= Ci: gi<x> = 0), then .there exist nonnegative 

scalers, ,u0 and C,u 1 ,,u2 ,,,~>, not all zero, such that: 

,u.g.<x) = O; 
I I . 

i = 1,2,,,m 

Proof: Since x is a local optimal solution, then by the 

last theorem, there does not exist a vector, d, such that 
, , -fx<x>d > o and Vg1<x>d > O for i e I. Let A be the 

, - / -matrix whose rows are fx<x> and Vg1cx> for every i e I. 

The 1 ast theorem implies that the system, Ad > O, is 

i·nconsistent; stibsequently, by Gordon's theorem <Theorem 

2.3.S>, there exists a·y? Osuch that A'y = o. Set-,u0 

and ,ui for i e I equal t~ their corresponding components in 

y, and set ,u. = 0 for' i fit i to-complete the proof. 
I 

Note that the second of the Fritz John conditions 

implies that if gi(X) > 0 then ,ui = O. Such variables are 

said to be "complementary." Accordingly, the relation is 

commonly called a "complementary slacl<ness" relation. 

The Fritz John conditions in conjunction with a 

constraint qualification lead immediately to the famous 

Kuhn-TucKer necessary conditions: 

2.5.4 Theorem <Kuhn-Tucker Necessary Conditions>: Let x be. 

a nonempty open set in Rn, and let f<x>:X' R1 and 
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G<x>:X ~ Rm. Consider the problem to maximize f(X) subject 

to G<x> 6 0 and x e X. Let x be a local optimal solution, 

and let f<x> and G<x> be differentiable at x. Furthermore, 

l ine.arly independent, then there exists (> .. 1 ,,'l-...2 ,, ,.:> .. m) 

sati·:s.fying: 

fx<x> + ~- 1 A.Vg.<x> = 0 
I- I 1 

A.1::::).(X) = O; 
I - I 

= 1,2,,,m 

/ 

Proof: Since X is open, and since f<x> and G<x> are 

dif~erentiable at x, it is Known from the former theorem 

that there exist nonnegative scalers, ..Llo and <..Ll1 ,..Ll2 ,,,.!.'.m), 

not all zero, such that: 

..Ll·g-<x>=O; 
I I 

i = 1,2,,,m 

Moreover, it may be cone 1 uded that .. u,) :;e O, f•:ir other•AJ i se, 

the first condition would contradict the a~~umption that the 

Vg1<x> are 1 inearly independent for i e I. Let .:"-. = .u. / .u.0 I · I · 

to complete the proof. 

Hence, under the stated assumptions, the Kuhn-Tucker 

conditions are necessary conditions for the solutions to the 

maximization problem. It will be observed that the scaler 

variant of these conditions as stated in the latter theorem 

is equivalent to the matrix variant as stated in conditions 

('2.5) thro•.Jgh (2.7)·. 
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The constraint qualification described in the previous 

theorem is Known as the "linear independence" qualification. 

While the Kuhn-TucKer conditions follow immediately upon the 

assumption of this qualification, the 1 inear independence 

requirement is unnecessarily restrictive. For example~ it 

may be shown that the Kuhn-TucKer conditions are always 

necessary conditions when X is open and when the constraints 

are affine, even when the gradients of the active 

constraints are not linearly independent. Numerous other 

constraint qualifications have been proposed in nonlinear 

programming l .i tera tu re; nearly al 1 of which are 1 ess 

restrictive than the 1 inear independence requirement. By 

"less restrictive" is meant that the constraint 
-

qua l·i f i cation specifies a broader range of circumstances 

under which it may be concluded that local optima imply 

Kuhn-TucKer points. 

One of the most general constraint qualifications 

utilizes a concept Known as the "cone of tangents," which is 

formerly defined with the following: 

2.5.5 Definition: Let S be a nonempty set in Rn. S is 

said to be a "cone" if x e S implies that >-..x e S for al 1 

A. > 0. 

2.6.6 Definition: Let S· be a nonempty set in Rn, and let 

x e cl S. The "cone of tangents" of S at x is the set, 

Dt, consisting of all d such that: 
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for all ~ > 0 and all sequences, {XK}, in S satisfying 

Hence, the cone of tangents of S at x is the set of 

all directions from which x may be approached from within 

S. Observe that if x e int S, then x may be so approached 

from all directions; thus, Dt =Rn. Also, note that if for 

some a > O,. x + A.de S for all A. e <O,o), then necessarily 

de Dt, as may be seen by simply setting XK = x + (5/K)d in 

the definition above. 

The next two theorems establish the general constraint 

qua Hf i cation: 

2.5.7 Theo~em: Let X be a nonempty open set in Rn, and let 

f<x>:X' R1 • Consider the problem to maximize f<x> subject 

~o x e S where S is a nonempty subset of X. Let x be a 

local optimal solution to the problem. Moreover, suppose 

that f<~> is differentiable at x, then Danot = ~' where 

~ -= Cd: fx<x>~ > 0), and Dt is the cone of tangents of S 

at x. 

Proof: Let {XK) be any sequence in S satisfying 

1 imK-+oo XK = x, and 1 et d = 1 imK-+OO <xK - )()/IXI< - XI. 

Observe that de Dt· By the differentiability of f<x> at 

x: 
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where w<x,xK-x) ~ 0 as xK ~ x. Since x is a local 

optimal solution, then for sufficiently large K, the above 

imp 1 i es: 

Divide the latter by IXK - xi and take the 1 imit as K 'oo 

,. -
to produce fx<x>d ~ O. Hence, de Dt implies that 

,. 
fx<x>d ~ o, which completes the proof. 

2.5.8 Theorem CXuhn-Tucker Necessary Conditions>: Let X be 

a nonempty open set in Rn, and let f<x>:X' R1 and 

G(x):X 'Rm. Consider the problem to maximize f<x> subject 

to x e X and G(X) ~ Q. Let x be a local optimal solution, 

and let I= Ci: gi<x> =_.Q}. Supp·ose that f<x> and GCx> are 

differentiable at x. Further, suppose that Dt = Df where 

V i e I}, and Dt is the cone of 

tangents of the feasible region at x, then there exists 

A.i ! 0; = 1,2,,,m 

Proof: Since x is a local optimal solution, then by the 

former theorem, DanDt ~ ~' where Da = Cd: f~C~)d > 0}. As 

o·t = Df by assumption, it follows that DallDf = ~. Hence, 

the fol 1 owing system .has no solution: 
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,/ -Let A be a matrix whose rows consist of the -Vg1Cx) for 

i e I, and let c = fxCx). From FarKas" theorem <Theorem 

2.3.4>, there exists y ~Osuch that A"y = c. Set Ai for 

i e I equal to the corresponding components in y, and set 

Ai = 0 for i • I to complete the proof. 
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· The constraint qualification, Dt = Df, used in the 

theorem above is due to Abadie <1967>, and is commonly Known 

as the "Abadie constraint qualification." The next theorem 

shows that all affine constraints satisfy the Abadie 

constr-a. int qua l if i c.a ti.on.. Subsequent 1 y, if X is open, i t 

may be concluded that the Kuhn-TucKer conditions are always 

necessary conditions to the solutions of the maximization 

problem if G(X) is affine. 

2.5.9 Theol"em: Let X be a nonempty open set in Rn, and let 

A e Rmxn and be.Rm. Moreover, let S = <x e X: Ax ~ b}. 

, ~ ,;- , 
A'. = <A1 ,A2 > and b,. = <b1 ,b2 >, then Dt = Df, where 

Df = {d: A1d ~ 0) and Dt is the cone of tangents of S at x. 

Proof: If A1 is vacuous, then Of= Rn. Futhermore, 

x e int S, which implies that Dt = Rn; hence, Dt = Df, and 

the theorem holds. Suppose A1 is not vacuous, and let {XK) 

be any sequence in S satisfying 1 imK~oo xK·= x, then: 



Divide the above by txK - xi., and ta.Ke the limit asK -too 

to obtain Aid! O where de Dt• But this implies de Df, 

and subsequently, Dt c Df. Now, suppose de Df' that is, 

A1d ! O. Since A2x > ~' and since X is open, there is a 

o > o such that both A2 <x + Ad) > ~ and x + Ad e X for 

all A e <O,o). Also, A1<x +Ad) ! bi for all A> o. 

Hence, x +Ade S for each A e <O,o>, which implies that 

necessarily, Dt = Df, which was to be shown. 
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The foregoing lemma shows that under differentiability 
\ 

assumptions, Dt c Df in all cases; consequently, the Abadie 

constraint qualification is Know to hold if it can be shown 

2.5.10 Lenma;_ Let X be a nonempty open set in Rn, and let 

. m 
G(x):X -t R • Moreover, let S = <x e X: G<x> ! Q} and let 

x e S. Suppose that gi<x> = O for e I, and suppose that 

the gi<x> are differentiable at x for i e I, then Dt c Df, 

,. -
where Df = {d: Vgi(X)d > 0 V i e !} and Dt is the cone 

of tangents of S at x. 

Proof: Let <xK} be any sequence in S satisfying 

1 imK-too xK = x. Using the differentiability of the gi<x> at 

x for i e I, it may be.concluded that: 

e I 

Divide these expressions by.lxK - xi and take the 1 imit as 

K -too with the result that: 
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e I 

where de Dt• Hence, de Dt implies de Df, whJch completes 

the proof. 

The next theorem confirms that the 1 inear independence 

constraint qualification js a special case of the Abadie 

constraint qual ificatiqn: 

2.5.11 Theorem:· Let X be a nonempty open set in Rn, and 

let G(x):X' Rm. Let S = <x e X: G<x> ~ Q) and let x e S. 

Moreover, let I = {i: gi<x> = 0). Suppose that the gi<x> 

are differentiable at x for e I ' and that the Vgl Cx> 

1 i near 1 y independent for e I ' then Df = Dt wher'e 

Df 
~ -= {d: Vgl (x)d > 0 '1- e I) and Dt is the cone of 

tangents of s at x. 

Proof: Let A' be a matrix whose columns consist of the 

Vg1cx> for i e I. As a consequence of the 1 inear 

independence assumption, A'y = O has no solution; 

are 

'consequently, by Gordon's theorem <Theorem 2.3.5), there 
A A 

exists a d such that Ad > O, or equivalently: 

, - A 

Vg1<x>d > O; e I 

... 
Let ZK = (1/k)d + (1 '- 1/k)d for any de Df and any k > O. 

Without loss of generality, it may be assumed that ldl = 1. 

Observe that: 

e I and k > 0 
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8y Theorem 2.5.1 and the openness of X, it may be concluded 

that there exists a AK > 0 such that x + AKZK ES. Without 

loss of generality, the AK may be chosen such· that 

1 imK,~ xK = x. Finally, consider: 

Hence, d E Dt by definition, and subsequently, Df c D~. 

Dt c Df follows from Lemma 2.5.10; thus, Df = Dt, which was 

to be shown. 

-
The next theorem develops the Kuhn-TucKer necessary , 

conditions in terms that prove essen ti a 1 in a subsequent 

chapter: 

2.6.12 Theorem <Kuhn-Tucker Necessary Condltlone>: Let x be 

a nonempty open set in Rn, and let f<x>:X' R1 and 

G(x):X' Rm. Consider the problem to maximize f<x> subject 
... 

to x EX and G<x> ~ Q. Let G~<x> = CG~Cx>,G~Cx>J where 

-GCx> is affine. Let x be a local optimal solution to the 

problem, and let: 

.. 
9 i <x> I = < i : = 0) 

~ ~ 

I = < i : gi <x> = 0) 

Suppose that f<x> and GCX) are differentiable at x . 
... 

Moreover, suppose that the Vg1cx> are 1 inearly independent 
.. 

for i EI, then there exists <A1 ,A2 ,,,>m> such that: 
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fx<x> + :tr=iAivgi<x> = o 
A·Q·<x>=O; i=1,2,,,m 

I I 

.>.i .?, 0; = 1,2,,,m 

Proof: Define the following sets: 

.. ,. ,. - .. 
Df = {d: Vg1 <x>d > 0 for e I) 
,.., _,. ,.,,. 

Df = <d: Vg1 Cx>d > 0 for e I) 

Df = <d: 
,. -

Vgl <x>d > 0 for e IUD 
.. ,. 
s = <x e X: G<x> ~ 0) 
,.., 
s = <x e X: G<x>. ~ 0) 

s = <x e X: G<x> ~ Q) 

... ,., 
Let Dt, Dt, and Dt be the cones of tangents corresponding 

,, ,., 
to s, s, and s, respec t_i.ve 1 y. By Theorem 2.5.11, 
.. .. 

Theorem 
,., ,., 

Df = Dt. By 2.5.9, Df = Dt. Hence: 

.. ,.,. .. ,., 

Df = ofnof = otnot = Dt 

Therefore, the proposition follows from the Theorem 2.5.8. 

The next theorem cites conditions under which 

Kuhn-Tucker points imply global optima: 

2.5.13 Theorem <Kuhn-Tucker Sufficient Conditions>: Let x 

be a nonempty convex set in Rn, and let f<x>:X ~ R1 and 

G(x):X ~Rm. Consider the problem to maximize f<x> subject 

to G<x> ~ 0 and x e X. Let x be a feasible solution, and 

suppose that there exists <>-1 ,.>.2 ,,,>-m> such that: 

\, 



Ai !_ 0; = 1,2,,,m 

Let I= {i:gi(X) = 0), and let g 1<x) for i e.I be 

quasiconcave at x with respect to points in the feasible 

region. Moreover, let f(X) be pseudoconcave <strictly 

pseudoconcave) at x with respect to points in the feasible 

region, then x is a global optimal solution <unique global 

optimal solution) to the maximization problem: 

Proof: First, suppose that f<x> is pseudoconcave at x. 

Let x be any other feasible solution to the problem, then 
... 

for e I, gi(X) > gi (X) = O. By quasiconcavity of gi(X) 

at x, it follows that for i e I: 

... ... 
gi[«X + <1-«>iJ = g 1tx + «<X - x>J > O; 'V « e <0,1) 

53 

This implies that the gi(X) for i e I do not decrease with a 
... 

movement from x in the direction of <x - X); therefore, 

by Theorem 2.5.1: 

,. ... 
Vg1<x><x - x> > O; e I 

Mu 1tip1 y these terms by their corresponding Ai in the 

Kuhn-Tucker conditions and sum over i e I to obtain: 

But, since fx<x> + ~ieI A1Vg1cx> = O, the latter implies 

that: 



,. ... 
fx<x><x - x) < o 

Consequently, by the pseudoconcavity of f<x> at x, this 

implies f<x> ~ f<x>. The proof for the strictly 

pseudoconcave case is accomplished by replacing the 

inequality in the 1 atter with strict inequality. 

2.6 Lagrangian Saddle Point Characterization 

Consider the problem: 

maximize<x): f(X) 

subject to: G<x> ~ 0 

x e X 

where f<x>:X' R1 , and G<x>:X '~. Oftentimes it becomes 

convenient to formulate the solutions to such problems in 

54 

terms of the "saddle points" of the associated "Lagrangian." 

The Lagrangian to the above problem is the function: 

<x,)..) e XeR! 

<x,~> is said to be a saddle point of l<X,)..) if: 

'V <x ,)..) e XeR~ 

Thus, at the saddle point, l<x,~> is maximized with respect 

to x subject to x e X, and l<x,)..) is minimized with respect 

to).. subject to).. e R~. The justification of the term 

"saddle point" should now be apparent. 

There is considerable body of theory dealing with 

Lagrangians and with Lagrangian saddle points; however, the 
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only concern here is the relation between such saddle points 

and the solutions to the Kuhn-TucKer conditions. It is 

shown that under certain conditions, the saddle points in 

the Lagrangian are one-to-one with the solutions to the 

Kuhn-TucKer conditions. 

Observe that the Kuhn-TucKer conditions can be written 

in terms of the derivatives of the Lagrangian as: 

lx<x,x> = fx<x> + Gx<x>x = o 

x~lx<x.~> = x~G<x> = o 

A ' 0 

The following theorem establishes a connection between the 

solutions to the Kuhn-TucKer conditions and the solutions to 

the saddle point relation: 

2.6.l Theorem: Let X be a nonempty open set in Rn, and let 

f<x):X' R1 and G<x>:X' R"'. Let l<x,x) = f<x> + x~G<x>, 

and suppose that <x,~> e X•R~ satisfies the saddle point 

relation: 

1<x,~> < T<x,~> < 1<x,x>; 

Further, suppose that f(X) and G(X) are differentiable at 

x, then x is feasible; moreover, <x,~> satisfies the 

Kuhn-TucKer conditions: 

fx<x> + Gx<x>x = o 
x~G<x> = o 

(2.8) 

(2.9) 



Conversely, let x be feasible, and suppose that 

<x,x> s4tisfies the Kuhn-Tucker conditions. Let 

I = {i: gi<x> = 0). Moreover, let X be convex, and let 

f<x> and gi<x> for i e I be concave at x, then <x,~> 

solves the saddle point relation. 

Proof: Suppose that <x,x> satisfies the saddle point 

relation. The right-hand inequality in this relatio~ 

imp 1 i es: 

f<x> + x'G<x> < f<x> + ~·G<x>; 
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Since the components of~ may be a~bitrarily large, then the 

above implies G<x> ~ O; hence, x is feasible. Since the 

components of~ may be %ero, then necessarily ~·G<x> = O; 

hence, <2.9) holds. Using this result, the left-hand 

inequality in the saddle point relation becomes: 

V x e X 

Thus, x maximizes f<x> + ~'G<x> subject to x e X. Since X 
I 

is open, x e int X, and since f(X) and G<x> are 

d i f f'e re n t i ab 1 e at x , then the 1 as t i n e qua 1 i t y i mp 1 i es : 

Hence, <2.8) holds, and consequently, saddle points imply 

Kuhn-Tucker points. 

Conversely, suppose that <x,x> satisfies the 

Kuhn-Tucker conditions. Since f(X) and gi<x> f~r 

concave at x, then by Theorem 2.4.7: 

e I are 
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I' - -f<x> i fx<x><x - x); 'V x e X 

,. -
gi<x> i gi<x> + Vg1Cx><x x>; 'V x e X and 'V e I 

Multiply each of the inequalities in the latter by their 

respective Ai and add the products to the first relation to 

produce: 

<x - x); 'V x e X 

Substitution of condition (2.8) into the above yields: 

f<x> + ~- 1 3'-Q· <x> < f<x> ae 1 -1 

Note that the Kuhn-TucKer conditions require: ~i = O for 

i ~I, x ~ O, and ~'G(X) = O. Hence, the above may be 

extended to: 

f(X) + ~"G(x) < f(X) + ~'G(X) < f(X) + x"GCx> 

for every <x,x> e X~R~, and the proof is complete. 

Observe that the left-hand inequality in the saddle 

point re 1 at ion imp 1 i es: 

f<x> + ~"G<x> < f<x>; 'V x e X 

Since~~ 0 and GCx> ~ 0 for all feasible x, then this 

inequality implies that any x satisfying the saddle point 

relation must be an optimal solution to the problem to 

maximize f(X) subject to G<x> ~ 0 and x e X. Hence, 

solutions to the saddle point relation always imply 



solutions to the maximization proble~. To establish the 

converse, a 1 inkage may be established through the 

Kuhn-Tucker conditions wherein it is shown: 1) Optima 1 
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solutions to the maximization problem imply solutions to the 

Kuhn-Tucker conditions, and 2) solutions to the Kuhn-Tucker 

conditions imply solutiona to the saddle point relation. 

The first link is established in the former section with the 

uarious~theorems demonstrating the necessity of the 

Kuhn-Tucker conditions. The second link is estabi ished in 

the latter theorem under that assumptions that f<x> and the 

active gi<x> are concave at the Kuhn-Tucker point. 

2.7 Kuhn Tucker Conditions Under 

Exp~lcit Nonnegatlvlty 

In this section, an alternative statement of the 

Kuhn-Tucker conditions is d~riued for cases where the 

condition, x ~ O, is imposed as a constrain~ _upon the 

problem. Thus, the general problem to be considered is: 

maximize(x): fCx> 

sub~iect to: G*Cx> ~ 0 

x e X 

where G*<x> = CGCx>,xJ', and ~here f<x>:X ~ R1 and 

G<x>:X ~Rm. Assuming that X is nonempty and open, and 

that fCx) and G<x> are differentiable over X, the 

Kuhn-Tucker conditions are: 



fx<x> + G~<x>)..* = 0 

(),. *) ,. G* < x > = o 
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* With the partition)... = ()..,"'x);, the above may be written: 

fx~x> + Gx<x>x + Xx = 0 

x;G<x> = o 
,. 

" x = 0 "'x 

,· 
Hor,..ie•.•er, the cond i ti on·s, >-x :f O and >-xx = O, may be 

completely incorporared into the first condition to obtain: 

fx<x> + Gx<x>).. ~ O; 

x;G<x> = o 

which are the Kuhn-TucKer ~onditions under explicit 

nonnegatiuity in x. 

There are frequently advantages to stating the 

Kuhn-Tucker conditions in these terms. For example, some 

solution algorithms inherently maintain nonnegativity in 

consequently, provisions for such a restriction in the 

functional constraint would be redundant. Also, this 

statement fits well within some theoretical contexts, as 

will be seen in the next chapter. 

X . 
' 



FOOTNOTES 

1The material i.n this chapter was compiled from 
several sour~es; however, the largest percentage of the 
material was ta.ken from the unsurpassed work of Mokhta.r S. 
Ba.za.ra.a. and C.M. Shetty (1979). 
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2Exce11ent sources for these 
mater i a.1 in this section include: 
(1975), and Kuratowski (1962>. 

results and other 
Lipschutz <1965), MunKres 

3The openness, of X is assumed here to a.chi eve 
compatabil ity with the differentiability assumption. 



CHAPTER Ill 

SPATIAL EQUILIBRIUM THEORY 

In this chapter, the concept of ·:.patial eq•Ji1ibrium is 

presented and discussed. The a~alysis begins with a basic 

partial equilibrium situation. It is demonstrated that 

under general conditions, the eQuil ibrium price and quantity 

vectors may be formulated as the solutioni to a nonlinear 

programming problem. Second, some of the general p·roper ti es 

of partial spatial equili-bria are derived. Third, it is 

shown how that many of the common barriers to trade may be 

incorporated in to the basic mode 1 • Four th, the mode 1 is 

reformulated i~ terms of price-dependent excess demands. 

Fifth, the partial equ i l i br i a resu 1 ts are e~dended to 

accomodate the multiproduct or general equilibrium case. 

Finally, ·the sta.bil ity properties of the spatial equilibrium 

model are analyzed. 

The foregoing theory was first presented by Enke 

<1951), Later, Samuelson <1952) formulated the Enke problem 

in terms of a ma thema ti ca 1 programm i rig mode 1 . Severa 1 more 

recent authors have contibuted to the development and 

extension of the theory, including: Smith (1963), Takayama 

and Judge (1964, 1970, and 1971>, and Silberberg <1970). 
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3.1 The Basic Partial Equilibrium Model 

Consider an aggregate marKet for a single commodity 

that is composed of n spatially separated regional markets. 

Suppose that the regional markets are at 1 iberty to trade 

the product with one another, but that there are nonzero 

costs of transferring the product between regions. 

Moreover, assume that the following static conditions hold: 

1) The commodity is homogeneous within and across the 

regional markets. 

2) The commodity is of •Jn i form price within any re•;i i ·~na l 

market. 

3) The ith regional market is characterized by: a demand 

function, dj(pi); a supply function, si(pi)' and ar1 

excess demand function, e-(p.) = d-(p.) - s-(p.), wher~ 
I I I I I I -

Pi is the regional price. 

4) The ith region may ship an arbitrary quantity, xij' to 

the Jth region at the constant per-unit transportation 

rate, tij. 

Let ni denote the net imports of region i. Let 
. 
pi and 

iij denote time derivatives, and suppose that the following 

dynamic conditions hold:! 

5 a) 
. 
pi > 0 if and only if ei(pi) - ni > O • 

b) . 
Pj < 0 if and only if ei<pi) - ni < 0 and pi > O. 
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6 a) • x i j > O on 1 y i f t i .j - ( p j - p i ) < 0 • 

b) If t .. 
. 

- (p. - p i ) < 0 for ·s.ome j ' then x .. > 0 for 
IJ . J . I J 

at least one such j . 

c) . 
0 if and only if tij (p. pi ) > 0 and x .. < - -I J ~' 

x .. 
I .J > 0 • 

The second condition is implied by intraregional 

product homogeneity and perfect product mobility within 

regional bounds. Condition three necessitates conditions 

one and two, for it is assumed that supply and demand are 

functions of a single regional price, and that such 

functions are invariant with respect to origin or 

destination of product. Condition four is implied by 

perfectly elastic suppl~ of transportation services. 

The rationale for the dynamic conditions is as follows: 

When demand exceeds supply, or equivalently, when deficits 

occur, prices are bid upwards, hence condition Sa. When a 

state of excess supply exists, or equivalently, when 

surpluses occur, sellers reduce prices in order to clear-the 

market, hence condition Sb. If price in j e~<ceeds price in 

i by more than the costs of transporting from i to J, then 

profits may be had by shipping from to J, hence conditions 

6a and 6b. If the price difference between two regions does 

not cover the costs of transporting between the regions, 

then losses are incurred on present shipments, hence 

condition 6c. Conditions 6a and 6b account for the 

possibility that some prof'itable trade routes might be 

temporarily unresponsive. if there exists other routes 



yielding greater profits. On the other hand, condition 6c 

assumes that all active trade flows inflicting losses are 

promptly reduced. 

Observe that these adjustment rules imply that if the 

in it i a 1 Pj and xij are nonnegative, then all subsequent pi 

and xij are also nonnegative; thus, the system directing 

dynamic adjustment is positive. x . . < 0 i ·:. di sa 1 1 owed 
IJ 

.:,4 

because of the way in which the term is defined. Shipments 

from j ti:~ i -3.re measured by po-:. it i ve x j i ; not by nega ti •,ie 

xi j. Of course, xi j is measured as f 1 ow per unit. 1:->f t. i me; 

thus, xi j measures rate •=->f chan·~e in f 1 ow. 

Equilibrium is attained where 
. . 
P i = 0 and x i .j = 0 for 

every i and j, Conditions five and six imply that 

equilibrium occurs if and only if: 

e i < p i) - n i ~ 0, if < then pi = 0; ( 3. 1) 

t .. - (p· - p-"> :> o, 
I J J. I. - if > then xij = O; '.j (3.2) 

'i i 'j (3.3) 

The latter conditions may be expediently expressed in 

matrix notation as: 

E<p> - Nx ~ O; p'[E(p) - NxJ = o (3.4) 

t - N,.p ~ O; x,. < t - N'. p) = o (3.5) 

<p,x) ~ O <3.6) 

Here, ECp) is a vector-valued function of dimension n having 

the ei(pi) for components. pis then-dimensional vector of 

prices. x, t and N are defined as follows: 



x = 

N= 

x12 
X13 

x1n ------
X21 
X23 

x2n ------

-1 -1 ••••• -_1 I 1 
1 o ••.••• 01-1 
0 1 o •••• 01 0 

t = 

0 o ••.. 01 1 
-1 ••••• -11 0 

1 0 •••• 01-1 
- • I 

I 
I 

t12 
t 13 

t1n ------
t21 
t23 

t2n ------

0 0 ••• 01. •• 11 
10 ••• 01 ••• 10 

-1 •••• -11 ••• 10 
I 

• I . 

• I 
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0 0 •••• 0 
1 0 •••• 0 
0 1 0 •• 0 

0 0 •••••• 11 0 0 •••••• 11 0 0 ••••• 11 ••• 1-1 -1 ••••• -1 

The f~rst partition of x contains exports by region one to 

the other regions. Likewise, the second partition contains 

the exports of region two, and so on. The xii terms are not 

included in the x vector. Their inclusion is needless since 

this analysis is conducted in terms of excess demands. Of 

course, these terms may be easily recovered with use of the 

regional demand functions once prices and net imports are 

determined. The t vector is identical in construction to x. 

The N matrix is a most useful and expediting instrument 

to this analysis. It may be confirmed that: 
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X21 + X31 + ••• + xn1 - X12 - X13 - - X1n n1 
X12 + x 3:2 + ••• + xn:2 - X21 - X23 - - X2n n2 

Nx = = 

x1n + X2n + ••• + xn-1,n - xn1 - xn2 - .. - xn,n-1 nn 

Thus, Nx is equal to the vector of net imports. Also, it 

may be confirmed that: 

(3.7) 

a··p = 

. . 

Hence, N~p is the vector of price differentials measuring 

gains or losses before transportation charges for all 

possible schemes of trade. The rationale for the usage of N 

in <3.5) should now be _apparent. Thus, N not only 

facilitates the transition of (3.1) to its matrix variant in 

(3.4); but also the transition of (3.2) to its matrix 

variant in (3.5). 

A convenient attribute of the above model is that if 

the ei(pi) are integrable, then the equilibria values for p 

and x may be formulated as the Kuhn-Tucker points of a 



nonlinear programming problem. Note that the spatial 

equilibrium conditions in (3.4) through <3.6) bear 
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resemb 1 ance to the Kuhn-Tucker rel.at ions of the previous 

chapter inasmuch as inequality conditions are required in 

conjunction with complementary slackness relations. Indeed, 

it may be confirmed that these conditions are rendered as 

the Kuhn-Tucker conditions to the following problem: 

maximize(p): f(p) 

subject to: t N'°p?: 0 

p ?: 0 

where: 

f < p) = ~~ = 1 I e i < p i ) dp i - . 

and where x serves as the vector of Lagrangian multipliers 

on the first constraint. Here the set constraint is simply 

p e Rn. Henceforth, the set constraint will be ignored 

with the understanding that it is always taken to be the 

euclidean space. Upon observing that the gradient of f(p) 

is E(p), it should be apparent that the Kuhn-Tucker 

conditions to the above problem are precisely conditions 

<3.4) through (3.6). Also, note that the Lagrangian to this 

problem is constructed as: 

<p,x> ?: O 

Observe that the necessity and/or sufficiency of the 

Kuhn-Tucker conditions is of no great interest in the 
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spatial equil ibriu~ problem, for it is the Kuhn-Tucker 

conditions themselves that are of immediate concern. As 

shown above, the spatial marKet is in equilibrium if and 

only if the Kuhn-TucKer conditions to the above problem are 

satisfied. Therefore, any solution to the Kuhn-TucKer 

conditions is satisfactory for present purposes, even if it 

does not correspond to an optimal solution, either local or 

gl oba 1 , to the. programming problem. 

However, it will be noted that the programming problem 

does have many desirable properties. First, if E(p) is 
\ 

continuous ~t.some ~' then f(p) will be differentiable at 

p. Second, the constraints are 1 inear. Using Theorem 

2.5.12, the differentiability of f(p) and the 1 inearity of 

the constraints ensures that the Kuhn-TucKer conditions are 

indeed necessary conditions to the local optimal solutions. 

Moreover, f(p) is typically concave. Usjng Theorem 2.4.9, 

f(p) is concave on Rn if its Hessian matrix is negative 

semidefinite on the same. The Hessian matrix of f(p) is: 

ae 1/ap 1 0 0 
0 aei/C>P2 0 0 

ft(p) = 0 
·o 

0 0 0 aen/opn 

If the ae i (pi )/op i < O, as is usual 1 y the case, then the 

Hessian matrix is indeed negative definite, and_ 

consequently, by the same theorem, f<p> is strictly concave 

on Rn. As the constraints are also concave, then by 

Theorem 2~a.13, the Kuhn-TucKer conditions are sufficient 
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for the global optima,. and by Theorem 2.6.1, the Kuhn-Tucker 

points are one-to-one with the saddle points of the 

Lagrangian. 

The concavity or differentiability of f(p) over 

negative prices is of no real concern. Observe that as the 

e i (pi ) are i rre 1 evan t on pi < 0, these functions may be 

defined in any way one chooses over negative prices. 

However~ even this is not necessary. Theorem 2.5.12 

<Kuhn-TucKer necessary conditions) requires 

differentiability only at the local optimal solutions, and 

Theorem 2.5.13 <Kuhn-Tucker sufficient conditions> merely 

requires that the Kuhn-Tucker point be concave with re~pect 

to the other points in the feasible region·. As for Theorem 

2.6.1, the set constraint could be defined here asp e Rn• 
. +' 

consequently, if f(p) is differentiable at all saddle points 

~ver nonnegative pr i ces2 ,- and if it is concave at a 11 

Kuhn-TucKer points with res~ect to to all other points in 

R~ , then the Kuhn-Tucker points are one-to-one with the 

saddle points of the Lagrangian over nonnegative p. 

Unfortunately, since the feasible region to the spatial 

equilibrium problem is not bounded, the Weierstrass theorem 

<Theorem 2.1.4) does not guarantee the existence of a 

solution. 3 Indeed, it is not difficult to construct marKet 

configurations for which no equilibrium exists. For 

example, if the excess demand functions are equal to 

constants summing to some value greater than zero, then an 

equilibrium solution cannot exist. 
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The progr.;;..mmi ng problem •:onsi dered ab•::ive •J.Jas de\Jel oped 

in a rather pec•Jliar fashion. T;..-pically, one first 

specifies t~e objective function and constraints, and then 

derives the appropriate Kuhn-TucKer conditions. Here, a set 

of spatial equii ibrium conditions was viewed· as a set of 

Kuhn-Tucker conditions, and then a programming problem 

yielding these conditions was found. The contrived 

objective functi·on, f(p), is •:if interest only in th.3.t it 

serves to render the s~atial equilibrium criteria as a set 

of Kuhn-Tucker conditions. Geometrically, f(p) is some 

constant plus the sum of the areas lying to the left of the 

excess demand functions and beneath their respective price 

l i nes. However, it is no.t apparent that any profour11j 

inference concerning mar Ket behavior is to_ be drawn from 
-

this observation. Hence, no interpretive significance is 

attached to ~he fuhction. lt should be obs~rved that f(p) 

is simi'lar to the "quasi-ind-irect t.velfare function" of 

Takayama and Judge <1971). Other formulations of the 

spatial equilibrium problem also utilize such instrumental 

functions. Th~se include the "quasi welfare" function of 

the sam~ authors and the "net social payoff" function of 

Samuelson (1952). 

An advantage of the approach. taken here is th.at spat i a 1 

equilbria calculation can usually be accomplished using 

general nonlinear programming algorithms. In part i cul ar· , i f 

the excess demand functions are 1 inear, then f(p) will be 

q•Jadra.tic so that any one of several quadratic programming 
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routines may be used. Also, the spatial equilibrium problem 

is made accessible to a large body of mathematical 

programming theory. For example, since the constraints are 

quasi concave, then it is known ·from Theorem 2.5.13 that the 

equilibrium price vector is uniquely determ.ined if f(p) is 

strictly pseudoconcave. Also, it will shortly be seen that 

the mathematical programming formulation greatly facilitates 

the examination of the stability of -the model. 

S.2 Properties of Spatial Equilibria 

As noted before, if f(p) is strictly pseudoconcave, 

then it is known from Theorem 2.5.13 that an equilibrium 

solution is unique with respect top. As shown in the 

previous section, f(p) is strictly concave on Rn if 

aei(pi)/~pi < 0 for every i. Thus, if the excess demands 

have negative slopes, then it may be concluded that an 

equilibrium price vector is.unique. 

Though an equilibrium price vector is unique when f(p) 

is strictly concave, this is not necessarily the case for x. 

It should be observed that x serves as a vector of 

Lagrangian multipliers to the programming problem, and that 

strict concavity in the objective function does not imply 

uniqueness for ~uch variables. Consider an aggregate market 

consisting of three regional markets that are situated on a 

line. Thus, the market map appears as follows: 

A ---------> 8 --------> C 
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Suppose that a spatial equilibrium exists wherein A ships to 

C. Moreover, suppose that the costs of shipping A to Care 

equal to the sum of the costs of shipping from A to 8 and 

from 8 to C. It should be apparent that the quantities from 

A that are ultimately destined to C may be shipped either 

di raoc t 1 y· to C, or from A to B and then from 8 to C, or in 

any combination of these two schemes. Prices and net 

imports are the same in all scenarios; consequently, the 

spatial equilibrium condition~ are satisfied by an~ one of 

an infinite number of trading arrangements. However, each 

arrangement clearly implies a distinct x. This conclusion 

clearly holds regardless of the forms of the excess demands; 

therefore, strict concavity in f(p) does not imply 

uniqueness in x. This argument can also be illustrated with 

other marKet configurations. 

Spatial equilibria are economically efficient inasmuch 

as interregional trade necessary to equilibrate the marKet 

is accomplished at minimal transportation costs. 4 In the 

previous section, the conditions for spatial equilibrium 

were found to be: 

E<p> - Nx ~ O; 

t - N'°p ~ O; 

<p,x> ~ 0 

p'°[E<p> - Nxl = o 

x,. < t - N'° p> = o 

Now, consider the programming model: 

(3.8) 

(3.9) 

(3.10) 



maximize<p,x): p"[£(p) - .Nxl - x"<t - N"p) 

subject to: ECp) - Nx ~ 0 

t - N"p ~ 0 

<p,x) ~ o 
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Here, the objective function has been constructed from the 

complementary slackness conditions in (3.8) and <3.9). Let 

<p,x> be any spatial equilibrium solution, and observe 

that the objective function to the problem is equal to zero 

when evaluated at <p,x>. Also, observe that this 

objective funct.ion can be no greater than zero over the 

feasible region; hence, <p,x> is a solution to the 

problem. Moreover, it is apparent that any solution to the 

problem must also be a ?Patial equilibrium. Now, given an 

equilibrium price of p, any corresponding equilibrium x may 

be found by fixing pat p in the above problem, and by then 

solving the problem for the optimal x. After eliminating 

constants from the objective function, and after deleting 

the automatic constraints, the problem becomes: 

maximize<x): -t"x 

subject to: ECp> - Nx ~ 0 

x ~ 0 

from which it may be seen that the equilibria x minimize t"x 

for given quantities of excess demands. 

A property satisfied by a typical spatia) marKet is 

that there always exists an equilibrium wherein no 

transshipments occur, or equivalently, there will always 
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exist an equilibrium wherein no region simultaneously 

imports and exports. This property is val id if the 

following condition concerning transportation rates holds: 

t 1 .. < t.K· + t.k; 'cfi,J,k (3.11) 
J - I . J . 

That is, the costs of shipping indirectly are not less than 

the costs of shipping directly. Henceforth, this relation 

shall be referred to .:o.s the "tri.:o.ngular ineq1.i.:o.lity oft." 

It is difficult to imagine a situation in which this 

condition would not hold. Indeed, if the tij are measured 

from least cost routes, then the condition must hold. Now, 

suppose there exists an equilibrium solution in which 

ships to K, 1,1.Jh i ch in _turn_ ships to ,i. Si nee equ i l i br i um 

pre v a i 1 s, i t i s Kn 011.m th a _t t i K = p K - p i , and that 

tK. = p. - p.K. Substitution of these equalities into (3.11) J· . J 

yields: 

If the 1 atter holds with strict inequality, then potential 

exists for profitable trade so that the market could not be 

in equ i l i br i um as supposed. Thus, ti j = p j - pi • But if 

this be the case, then it is possible to reroute shipments 

without disrupting the e~uil ibrium conditions and such that 

no transshipments occur. Observe that if the triangular 

inequality oft holds with strict inequality, then it may be 

concluded that there is no equilibrium wherein 

transshipments occur. 
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Under all circumstances, it may be concluded that there 

exists an equilibrium solution in which no two exporters 

share two importers. Consider the following marKet 

configuration: 

A ---------> B 
I 11\ 
I I 

\V I 
D <--------- C 

Here, A and C both export to D and 8. However, a second 

equilibrium solution may be obtained by transferring an 

exported unit from A to B into D, and by transferring an 

exported uni t from C to D. in to 8. Such rearrangement does 

not effect prices or net imports; consequently, the 

equilibrium conditions are not disrupted. The transfers may 

be repeated un ti 1 at 1 east one of the t'rade f 1 ows is reduced 

to zero. Hence, an equilibrium solution must exist wherein 

no two exporters share two importers. 

As a consequence ·of the last observation and the 

observation concerning transshipments, one should expect a 

typical spatial equilibrium to have very few trade flows, or 

equivalently, that the equilibrium x vector largely consists 

of zero compone.n ts. In fact, there will always exist a 

spatial equilibrium having not more than n - 1 trade flows.5 

T~is assertion is verified with use of the following 

theorem: 

3.2.1 Theorem: Let A be an nxm matrix having rank, p. Let 

b be an m vector and consider the system: 



Ax = b 

x ~ 0 

Suppose that x solves the system, then there exists an 
A 

x ~ O of dimension less than or equal to p such that ' 
AA A 

Ax= b where the columns of A consist of a set of 

1 inearly independent columns from A. 

Proof: Let A be partitioned as A= <a1 ,a2 ,,,an>· Since x 

solves the system: 
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x 1 al + x 2 a2 + ••• + x nan = b 

Without loss of generality, it may be assumed that only the 

first l components of x are nonzero; subsequently: 

-x1a1 + x2a2 + ••• + xlal = b 

I~ <a1 ,a2 ,,,a1 > ar• linearly independent, then the theorem 

holds immediately. Suppose <a1 ,a2 , ,,a1 ) are 1 inearly 

dependent, then there exists <c 1 ,c 2 ,,,c 1>, not all zero, 

such that: 

Without loss of generality, it may be assumed that at least 

one ci > O. Multiply the fatter relation by>... and subtract 

the product from the former relation to produce: 
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Hence, a second solution is obtained. Moreover, if one 

chooses A= min<xi/ci: ci > 0), then the second solution is 

nonnegative and consists of not more than 1 - 1 nonzero 

components. The process may be repeated unt i 1 a· positive 
) . 

solution involving only 1 inearly inde~endent columns of A is 
... 

obtained. Let x equal the terminal solution to complete 

the proof. 

Corollary: Let A be an nxm matrix having ranK, .p. Let b be 

an m vector, and consider the system: 

Ax= b 

x ~ 0 

Let x solve the system, . then there exists an x which al so 

solves the system and whfch has not more that p positive 

components. 

The fact that there exists a spatial equilibrium having 

not more than n - 1 trade flows follows fr.om the fact that 

the matrix, N, has rank equal ton - 1. From (3.7), it may 

be seen that the matrix, N~, is al inear transformation that 

calculates all possible differences between the components 

of an n-dimensional vector. As there are only n - 1 ways in 

which such differences can be independently taken, then N~ 

must be of rank n -. 1. Of course, this implies that N has 

rank n - 1 also. Observe that x enters spatial equilibrium 

conditions [conditions <3.8) through (3.10)J only through 

the term Nx. Suppose xis an equilibrium solution, then by 



the last corollary, there exists an x having not more that 

n - 1 positive component~ such that N; = Nx. Thus, xis 

also an equilibrium x. 

Under usual circumstances, spatial equilibrium prices 
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will be greater than zero. A sufficient condition ensuring 

p os i t i v e pr i c es i s : ' 

That is, each regional excess demand i~ greater than zero 

when evaluated at zero price. In each region ~or which this 

condition holds, the commodity is said to be "desirable." 

Now suppose the commodity is desirable in all regions, and 

that there is a spatial equilibrium in which Pj = o. 

Known from cond i ti on < 3-."a> that: 

e.(Q) < n. 
J - J 

It is 

and from the desirability assumption it may be concluded: 

Hence, any region with zero price must be a net importer. 

Suppose that region j imports from region i. From condition 

<3.9>, pi must satisfy: 

But , s i n c e t i j > 0 , th i s re q u i res p i < 0 , wh i ch cannot ho 1 d. 

Hence, if the commodity is desirable in every region, then 

equilibrium prices must be greater than z~ro. 
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3.3 Implementation of Trade Barriers 

An advantageous f ea tul"e of the pl"esen ted mode 1 is that 

it allows the incol"pOl"ation of sevel"al commonly enfol"ced 

tl"ade !"estl"ictions. Some of these l"estl"ictions al"e 

discussed hel"e, and the compensating modifications to the 

model al"e explained. 

A common l"estl"iction to tl"ade is the specific tal"iff, 

which is a pel"-unit tax levied by an impol"ting l"egion on 

impol"ts. Suppose l"egion j imposes an «ij specific tal"iff 

against impol"ts fl"om l"egion i. The effect of such tal"iff 

upon the equil ibl"ium solution is in no l"espect diffel"ent 

fl"om an incl"ease in the pel"-unit tl"anspol"tation chal"ge on 

sh-i pmen ts fl" om i to j , t ..• 
- · l.J 

Thel"efol"e, compensation fol" the 

tal"iff is accomplished simply by adding the tal"iff l"ate to 

the tl"anspol"tation chal"g~. If « is the vector' of specific 

ta~iff ~ates, then the appl"Opl"iate Lagl"angian would be: 

l<p,x> = f<p> + x~<t + « - N~p>; <p,x> ~ O 

A specific expol"t subsidy is a pel"-unit subsidy paid by 

an expol"ting l"egion to expol"tel"s. Suppose l"egion i pays a 

6ij pe!"-unit subsidy on expol"ts to l"egion j. The effect of 

such subsidy is the same as an equivalent !"eduction in the 

tl"anspol"tation chal"ge, tij. Let 6 denote the vector' of 

specific subsidies, then the following Lagl"angian 

- incol"pol"ates both specific tal"iffs and specific expol"t 

subsidies: 



l<p,x> = fCp) + x'<t + ~ - s - N'p>; 

Tariffs are frequently assessed as a percentage-of-

valu• rather than on a per-unit basis. In such cases, the 

tariff is said to be an "ad-valorem" tariff. Here, it is 

assumed that the tariff is applied to the c.i .f. pr(ce 

(delivered price). Also, it is assumed that a common tax 

rate is applied to imports of all origins. Suppose region 

imposes a ~i percent tariff •:in ·imports. 

"border price," then th~ "internal price" 

If pi is the 

is (1 + :s. ) p .• 
I I 
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The quantity of excess demand is derived from this internal 

price. Border prices must still be such that profitable 

trade is not possible. Thus, the following Lagrangian is 

imp 1 i ed: 

<p,x) ~ O 

Here, 1 is the nxn identity matrix, and r is an nxn diagonal 

matrix with the tariff rates situated along the diagonal. p 

is now interpreted as the vector of borde~ prices. Internal 

prices are given by <I + f)p. It should be observed that 

the K~hn-TucKer conditions for the above will require: 

'rf i ,j 

Thus, if xij > O, then Pj = p 1 + tij' That is, the border 

price in .j is equal to the c. i .f or delivered price for 

·' 
shipments from i. Let pj = (f + ~j)Pj be the internal 

I 

price in j • If xij > O, then it iollows that: 



which shows that the tariff assumed here is effectively 

app 1 i ed to both the commod i ty and t.he services required to 

transport it. If the tariff were in fact assessed only 

against f.o.b price, then the approach outlined here may 

still be employed; however, the tij should be replaced in 

the Lagrangian with tij/(1 + ~j) so that the effect of the 

tariff on the transportation charge is cancelled. 
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An ad valorem subsidy is a percentage-of-value subsidy 

paid by an exporting region to exporters. It is assumed 

that the subsidy is based upon f.o.b. price, and that a 

common subsidy rate applies to exports to all destinations. 

Suppose a subsidy of rri percent is paid by region i. Let pi 
.. 

be the border price and p 1 be the internal price in region 
.. 

i, then pi= pi/(1 - rri.>. In a spatial equilibrium, border 

prices must still be such that possibilities for profitable 

trade are removed. Hence, the following Lagrangian for the 

spatial equilibrium problem is implied: 

<p,x> ~ 0 

where: 1 is the nxn identity matrix; Dis an nxn diagonal 

matrix with the subsidy rates on the diagonal, and p is the 

~ector of border prices. The constraints will reqiure: 

In terms of the internal price, pi, this becomes: 
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.. 
tij - TTiPi - (pj - pi)> O; v i 'j 

From this relation, it is apparent that possi bi 1
1 

it i es for 

profitable trade are indeed removed. 

A Lagrangian incorporating both ad valorem tariffs and 

subsidies is given by: 

<p,x> :?: a 

However, the model assumes that no one region imposes both a 

tariff and a subsidy. As the region is either an importer 

or .an exporter, but not both, then e i ther the subsidy is of 

force, or the tariff is of force, but not both. 

The model wi 11 also accomodate 'Jariable levies. By a 

0 variable levy 0 is meant a scheme wherein a region sets a 

target price, and then implements tariffs or subsidies to 

attain and-sustain the target. The programming model may be 

modified to account for the variable levy without explicit 

consideration of the tariffs or subsidies involved. Suppose 
.. 

reg•on i sets a target price of pi, then the variable levy 
I 

is incorporated simply by fixing the internal price in 

region i at this level. With internal price fixed, excess 
.. 

demand becomes a constant at ei<pi>. The equilibria should 

be solved usfng this constant as the excess demand function 

for the ith region. The solution value for pi will be the 

border price. 

Import quotas may be incorporated if the quota pertains 

to the sum of imports from a)l origins. Supposing this to 

be the case for the ith region, then the regional excess 
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demand becomes Kinked at the quota. Let the quota be fixed 
h ,. 

-9.nd suppose ei (pi) = qi, then the excess demand 

function must be redefined as: 

p­
l 

> pi 

< P· I 

i,.1here pi is the border price. 

To determine the spatial equilibria with quotas 

imposed, one must determine the relevant sections of the 

excess demand functions. The model should first be solved 

using the ei (pi) for excess demands. The solution should 

then be examined to see if any qu•::it.as -are exceeded. If so, 

then it is Known that the equilibria occur in the lower 

segments of the excess demand functions for those regions in 
~ 

which quotas are being violated. Thus, the qi should be 

entered as the ~xcess deman~s for ~hese regions, and the 

model should be solved again. In the second solution, the 

enforced quotas will cause shipments to be diverted into 

other regions of the model; consequently, quotas not 

exceeded in the first solution could possibly be exceeded in 

the second. In this case, the process should be repeated 

until an equilibrium is obtaine1j, An equilibrium pi ~\Jill be 

both the border price and the internal price for every 

region not having a quota, and for regions whose quota is 

nonbinding. For regions having binding quotas, the pi will 

be the border prices, and the internal prices will be the 

p i • -
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If an ad valorem tariff and a quota are simultaneously 

imposed, then the modifications described above may be 

emp 1 o·yed in combination. Suppose region i imposes a quota 
.. 

of qi and an ad valorem tariff of ~i. Moreover, let 
... 

ei<pi) =-qi. The solution value of pi will be the border 
' 

price. If the quota is nonb ind i ng, then < 1 + ~ i) pi w i 11 be 

the internal price. If the qu~ta is binding, then the 
.. 

i n tern a 1 pr i c e w i 1 1 be p i • 

3.4 Price Dependent Formulation 

Until now, the spatial model has been formulated using 

quantity-dependent excess demands. Here, the model is 

reconstructed using price-dependent functions. The primary 
-

advantage of the price-dependent model is its compata~il ity 

with a large variety of trade policies, particularly those 

involving restrictions upon quantities. 

_The equilibrium cond.itions for the quantity-dependent 

model were found to be: 

E<p> - Nx ~ O; 

t - N"p ~ O; 

<p,x> ~ 0 

p'CE<p> - Nxl = O 

x" < t - N" p> = o 

( 3. 12) 

Now, let q = E(p). If the ei<pi) are monotonic on pi > o, 

then p may be solved asp= E- 1<q>, where E- 1(q) is a 

vector-valued function whose components are the ej1 <qi). 

Also, condition (3.12) may be expressed as: 

q - Nx ~ O; p'<q - Nx> = o 
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W i th this observa.t ion, i t shou 1 d be apparent that the former 

set of conditions is equivalent to: 

Hx - q ~ O; 

t - N"p 6 O; 

E- 1 <q> - p = 0 

<p,x> ~ O 

p" <Nx - q> = 0 

X" ( t N"p> = o 

-1 Suppose thee. (q.) are integrable and define: 
I I 

( 3. 13) 

f- 1 <q> is not, strictly speaking, the inverse of f(p) as 

formerly defined; however, this notation is chosen for the 

sake of consistency and clarity. It may be confirmed that 

the latter conditions are the Kuhn-Tucker conditions to the 

fol 1 owing probl. em: 

maximize<q,x>: f- 1 <q> - t"x 

subject to: Nx - q 6 0 

x 6 0 

where the Lagrangian to the problem is constructed as: 

<p,x> 6 0 

As before, the necessi~y and/or sufficiency of the 

Kuhn-Tucker conditions is of no concern insofar as 

equilibrium determination is concerned. The Kuhn-Tucker 

points are one-to-one with the equilibria regardless of 

whether such points imply or are implied by. the optima of 
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the above problem. However, the programming model does have 

several desirable properties. First, if E- 1 (q) is 

continuous at some q, then f- 1 <q> is differentiable at q. 

Second, the constraints are 1 inear. Hence, by Theorem 

2.5.12, the Kuhn-Tucker conditions are Known to be necessary 

to the optimal solutions. Third, if the excess demands have 

negative slopes, then it may be easily confirmed that the 

Hessian matrix of the objective function is negative 

definite, and consequently, the objective function is 

strictly concave. As the constraints are also concave, 

Theorem 2.5.13 guarantees that the Kuhn-Tucker conditions 

are also sufficient for· the global optima, and Theorem 2.6.1 

guarantees that.the Kuhn-Tucker points are one-to-one with 

the saddle points of the Lagrangian. 

All of. the formerly discussed trade restrictions may be 

incorporated into this model and in much the same fashion as 

before. In particular, specific tariffs and specifi:c 

subsidies are treated exactly the same. An ad valorem 

tariff by region i may be incorporated by replacing 

e j 1 < q i ) i n < 3. 13) w i th e j 1 < q i ) / ( 1 + ~ i ) , where ~ i i s the 

tariff rate. The solution values for the pi will be· the 

border prices, as before. The internal prices will be the 

.. -1 
pi ~ ei <qi) = (1 + ~i)pi. The treatment of ad valorem 

subsidies is similar. 

A variety of restrictions may be imposed upon x, 

including both quotas upon total imports and quotas upon 
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imports of a specific origin or combination of origins. 

Suppose the restrictions upon x are comprehended in: 

A 

q - Qx ~ 0 

A spatial equilibrium soluti~n satisfying these conditions 

may be solved using the Lagrangian: 

' on <p,x,~) ~ O. Here, the solution value for p will be the 

equilibrium vector of internal prices. In this formulation, 

the optimal a~~ becomes a vector of per-unit tariff and/or 

subsidy equivalents to the quotas. 

A variable levy may also be implemented in the form of 

a restriction upon X· Suppose region installs a variable 
... 

levy with target price, pi. 

variable levy may be incorporated by including a.constraint 
.. 

requiring the net imports of i to equal qi. The solution 
. 

will yield pi= pi; thus, pi will be the internal price of 

region i. 

An ad valorem tariff and quota may be simultaneously 

imposed by implementing the above modifications in 

combination. The in ter·na 1 prices become p = E-l (q); 

however, the border prices are indeterminate without 

specific knowledge of the construction of Q. 
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3.5 General Equlllbrlum 

The par:tiar equilibr:ium model is easily extended to 

accomodate general equilibrium problems. Suppose there are 

n countr:ies and m commodities. The aggregate market for 

each individual commodity is assumed to satisfy the same 

static and ·dynamic conditions as before; however, it is now 

recognized that the domestic excess demands are functions 

them internal prices corresponding to each commodity, 

Thus, if P J denotes the pr i o:e of the i th commo:1d i ty in the 

Jth region, then the excess demand for the same takes the 

form: 

e! = ei<p1 p2 pm) 
J j J' j'" j • 

It will be shown that the general spatial equilibrium model 

is effectively m partial equilibrium models that are 

connected through the arguments of the excess demands. 

L t i ( i i i ) . . . e P = .p 1 ,p 2 ,,,pn be the vector ot prices tor 

the i th commodity. Note that pi is analogous top in the 

previous sections. Let p now be the vector of all prices in 

.:i.11 regions. That is: 

p = 

Let xi be the trade vector of the i th commodity. xi is 

analogous to x of the previous sections. Let ti be the 



vector of transportation rates for the ith commodity. ti 

is analogou~ to t of the previous sections. Let El(p) be 
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the vector of excess demands for the ith commodity. Again, 

El(p) is analogous to ECp) of the previous sections. Now, 

redefine x,t, and E<p> as: 

x1 t1 E~Cp) 
x2 t2 E <p> 

x = t = E<p> = 

. . . 
.;ri tm E°1<p> 

Finally, define N exactly as be~ore and let: 

... 
N = 

N 0 
0 N 0 

0 

0 0 

0 
0 

0 
0 N 

Using these definition, the conditions for general 

spatial equilibrium may be briefly expressed as: 

... ... 
ECp) - Nx of O; p~CE(p) - Nxl = 0 -(3 .-14) 

(3.15) 

<p,x> ~ O <3.16) 

Here, the inequality relations are: 

. 
E°!Cp) 

N 0 
0 N 0 

0 

0 0 0 

O x1 

_o x2 

0 
N 

. 
.;ri 

:f 0 
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t1 N'° 0 0 pl 
t2 0 N'° 0 0 p2 

0 ~ 0 . . 0 . 
tm 0 0 0 N'° pm 

From these, it may be observed that the set of genera 1 

equilibrium conditions is much 1 i Ke m sets of partial 

equilibrium conditions stacked on top of each other. The m 

"partial equilibrium" models are 1 inKed only through the 

arguments of the excess demand functions. 

The general equilibrium problem could be formulated as 

a programming problem if a function, f<p>, could be found 

having gradient £(p). Were this the case, then the 

appropriate programming model would be: 

maximize<p>: f(p) 

... 
subject to: t - N'°p ~ 0 

p ~ 0 

and the Lagrangian would be constructed as: 

<p,x> ~ 0 

In general, f<p> will not be easy to determine. Of 

course, Knowledge of this function is not essential to the 

determination of the spatial equilibria. The equilibria may 

still be found by solving (3.14) through <3.16) as though 

they were a set of Kuhn-TucKer conditions, and E(p) may be 

treated as though it were the gradient of a function being 

maximized. 
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It should be apparent that the Hessian matrix of f(p) 

is simply the Jacobian matrix of E(p). By Theorem 2.4.9, it 

may be con•:lrJded that f(p) is conca.tJe <strictly con.cave) if 

and only if the Hessian matrix is negative semidefinite 

(negative definite>. Let pi be the vector of m commodity 

prices f•::>r the, i th region, .and 1 et E1 Cpi) be the vector of m 

excess demands for the same. With a proper rearrangement of 

rows and columns in the Hessian matrix of f(p), one obtains 

a block-diagonal matrix with blocks corresponding to the 

Jacobian matrices of the E1Cpi ). Hence, it may be concluded 

that the Hessian matrix is negative semidefinite <negative 

definite) if and only if the n Jacobi ans of the E1 Cpi) are 

negative semidefinite <negative definite). 

Some of the properties.of partial equilibria also 

pertain to general equi 1 Lbria. In particular, if f(p) is 

strictly concave, then a general equilibrium price vector is 

•Jnique. If th• costs of shipping indirectly are not less 

than the costs of shipping directly, then it remains that 

there must exist a spatial equilibrium wherein no 

transshipments occur. It also remains that in all cases, 

there must exist an equilibrium wherein no two exporters 

share two importers. The proof of the last two assertions 

is in no respect different from the proofs presented for the 
... 

partial equilibrium model. Also, as the matrix, N~ is of 

ranK m<n - 1), then with use of Theorem 3.2.1, it may be 

concluded th~t there exists an equilibrium having not more 

than m<n - 1) trade flows. Moreover, upon disassembling the 
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disassembling the block diagonal structure of conditions 

<3.14) through <3.16>, it may be seen that the same theorem 

implies that there exists an equilibrium having not more 

than n - 1 trade flows for any one commodity. 

If E- 1 (p) exists, then a price-dependent formulation 

of the general equilibrium model may also be constructed. 

The steps o~ derivation are exactly those taken with the 

partial equilibrium model. 

Trade restricti~ns may be implemented in both the 

quantity-dependent and price-dependent versions of the 

general equilibrium model. The installation of such 

restrictions is accomplished in the same manner as in the 

partial equilibrium models. It should be observed that the 

price-dependent version of the general equilibrium model 

will allow restrictions not only upon quantities of a single 

commodity, but also upon combinations of commodities. 

3.6 Stablllty6 

Until now, the discussion has dealt with the 

determination of equilibrium points and the properties 

characterizing such points. However, it has not been 

established that the dynamics of the model are such that 

these equilibrium points are stable. If there is no 

1nherent tendency of the market to converge toward the 

equilibria, then such points are indeed of little 

significance, and Knowledge of such points or of their 

properties is of 1 ittle if any practical value. For this 
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reason, the question of _stability is now addressed. 

Attention is centered upon the partial equilibrium model of 

the first section; however, it will shortly become apparent 

that the logic applies equally well toward establishing the 

stability of the general equilibrium model also. 

It w i 1-1 be rec a 11 ed that the dynamic assumptions of the 

partial equilibrium model are: 

5 a) . 
pi > 0 if and only if 0. e. < P.) - ni > I I . 

b) 0 if and only if e. < P.) < 0. pi < - ni I I 

6 a> 
. 

0 only if t .. 0. xij > - (p. - pi) < I J J 

b) if tij (pj pi) < 0 for then 
. 

> 0 for - - some j ' x .. 
I J 

at least one such j • 

c) . 
< 0 if and on l_y if tij (pj p. ) > 0 and xij - - ,, 

xij > 0. 

It was noted that <p,x> satisfies the above conditions if 

and only if: 

lPCp,x> = E<p> - Nx ~ O; 

lx<p,x> = t - N~p ~ O; 

<p,x> ~ O 

,~ rE<p> - NxJ = O 

x~<t - N~p> = o 

It was then noted that if f(p) is differentiable at all the 

Lagrangian saddle points, and concave at all points 

satisfying the above, then the spatial equilibrium solutions 

are one-to-one with the saddle points of the Lagrangian. 

Recall that the Lagrangian is: 

<p,x> ~ O 
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Unfortunately, the dynamic specifications above are 

alone insufficient to ensure convergence to the equilibrium 

points, or to the saddle points of l<p,x>. However, under 

more restrictive but plausible specifications, global 

stability with respect to the saddle points may be 

established. 

In particular, suppose that prices and interregional 

trade flows adjust according to the following system: 

. 
x .. 

I J = 

< 0 

otherwise 

[ 

0 if x .. = 0 and t .. 
I J I J 

-b i j [ t i j - q; J - p i ) J 

- <pj - pi) > 0 

otherwise 

where the ai and bij are positive constants. Thus, the rate 

of price adjustment is proportional to the deficit, unless 

such adjustment would lead to a negative price. 

Accordingly, the rate, of adjustment in interregional trade 

flow is proportional to profits, unless such adjustment 

would lead to a negative flow. Observe that this system may 

be expressed in terms of the Lagrangian as: 

and a 1 /ap~ < 0 

otherwise 

r 0 if x i j = 0 and () 1 /()xi j > 0 

~bijal<p,x>/axij otherwise 
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The foregoing theorem and proof show that the above 

process does in fact converge upon a saddle point of l<p,x> 

if this functton is 1 inear in x and strictly concave in p. 

The function is clearly 1 inear in x; moreover, it is 

strictly concave in p if f(p) is strictly concave, and it 

has been shown that f(p) is strictly concave if the excess 

demands have negative slopes. The theorem is a 

genera11zation of theorems presented by Arrow, Hurwicz, and 

Uzawa <1958> in connection with gradient-method optimization 
... 

algorithms.' The theorem is presented here in general 

terms rather than in ~erms of the present model. 

3.6.1 Theorem: Let l<x,y>:RnsR"'' R1 be 1 inear in y and 

strictly concave and dif~erentiable in x over all x e R~. 

Moreover, let <x,y> e R~sR~ be a saddle point of l<x,y>. 

Consider the system: 

[:;•I <x,y>/ox i 

if xi = 0 and al/oxi < 0 . 
xi = 

otherwise 

[~b 1 ol<x,y>/oy; 
if Yi = 0 and al/ayi > 0 . 

Yi = 
otherwise 

where the a 1 and bi are positive constants. From any 

initial t 0 and <x0 ,y0 > in R~s~, <x,y> satisfies 

( 3. 1 7) 

( 3. 18) 

... - ... 
1 imt,co Cx<t>,y<t>l = <x,y> where <x,y> is a saddle point 

of l<x,y> on R~s~. 
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Proof: As l<x,y> is strictly concave in x and linear in y, 

then with use of the corollary to Theorem 2.4.8, it may be 

concluded that: 

l<i,y> < l<x,y> + , -
lx<x_.Y.><X - X); x e R~, x ..e i 

l<x,y> = l<x,y> + 
, -

ly<x.y><y - y> 

As <i,y> is a saddle point of l<x,y>, then: 

l<x,y> < i<x,y> < l<x,y>; 

The last three relations imply: 

<i - x>'°lx - <y - y>'°ly z. l<i,y> - 1<x,y> > o 

for all <x,y> e R~s~, and where the first inequality is 

strict if x ~ x; hence: 

< i - x>,. I - < y - y>,. I > 0, if x ..i: x, then > 0. x y 
( 3. 19) 

for all <x,y> e R~s~. Now, let: 

a1 0 0 bl 0 0 
0 a:2 0 0 0 b2 0 0 

A = 0 B = 0 
0 0 

0 0 0 an 0 0 0 bm_ 

[: 
if x. = 0 and C> 1 /C>x i < 0 

6i I 
::::; 

x otherwise 

[: if Yi = 0 and C>l/oyi > 0 
6i = y 

otherwise 
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51 o ... 0 61 02 0 ox oz 0 0 oY oy 0 0 

Ax = ox Ay = 0 
0 0 

0 0 0 &n 
x 0 0 0 &m y 

Finally, let: 

D<x, y> = 1/2[ <x - x>,. A-l <x - x> + < y - y> "B-l < y - y) J 

Note that A- 1 and B-l are positive definite and symmetric. 

Also note that the system in (3.17) and <3.18) can be 

written in terms of the matrices above as: 

. J\[I Axllx x = -

. -B[I Aylly y = -

Consider: 

. 
x>,. A-1 . y> "B-1 y A) = <x - x + <y -

Substitution of the former relations into the latter yields: 

(3.20) 

where x"Ax = o. and y'°Ay = 0 have been used. Now, from the 

definitions of AX and Ay and from <3.19>, it may be 
. 

concluded that D ! o, and is strictly less than zero if 
. 

x ;.= x. As D ~ O·, and as D ! 0, it fol 1 ows that D must 
I 

conve~ge upon a 1 imit, o*, as t ~ oo. That is: 

Therefore, <x,y> must converge to a 1 imit cycle8 , 

Cx(r),y(r)J satisfying DCx(r),y(r)J = o* for all r. 
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. 
Now, at all points along the limit cycle, D = O; 

... 
consequently, x(r) = x for all r. 

Hence, i t is Known th.a. t x does converge to x. It 
... ... 

rem.a.ins to show that y converges to y such that <x,y) is 

a saddle point of l<x,y). It will be shown that every point 
... 

on [X,y(r)J is a saddle point of l<x,y>; consequently, as 

saddle points are equilibrium points, the 1 imit cycle must 

in fact consist of only one point. 

At a.11 points on the limit cycle, 
. 
x = O; consequently, 

it is Known from the definition of x in <3.17) that 
... 

[i,y(r)J must satisfy: 

... 
lxCx,y<r>l < O; 

• 
for all r. Moreover, as D = 0 at all points on the 1 imit 

. ... 
cycle, it is Known from <3.:20) that [x,y(r)J must satisfy: 

However, as l<x,y> is 1 inear in y, it follows that ly is a 

function of x only; consequently, ly is constant at ly<x>. 

Therefore, the above becomes: 

But·y is complementary to ly<x> by assumption, so this 

reduces to: 

Also, by assumption: 



... 
Finally, it is Known that y(r) cannot exit the nonnegative 

orthant, for the adj~stment process forbids otherwise. 

-Thus, summarizing, it may be said that for all r, Cx,y(r)J 

satisfies: 

- A - - A lxCx,y<r>l ~ O; x~lxCx,y<r>l = o 

Iy<x> ~ o; y~<r>ly<x> = o 

But, these a~e precisely the Kuhn-TucKer conditions for 

saddle points in l(x,y>. It follows that the 1 imit cycle 
.. 

must consist of the single point, <x,y>, that is also a 

saddle point of l<x,y> on. R~•~· 
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FOOTNOTES 

1The dynamic perspective of this worK is largely due 
to the encouragements of Dr. J.S. Plaxico. 
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2As the set of nonnegative prices is closed, and as 
differentiability cannot be defined on closed sets, a more 
accurate requirement here is that f(p) be differentiable 
over some open set containing all nonnegative prices. 
Accordingly, the set constraint in Theorem 2.6.1 should 
actually be defined as some open set containing the 
nonnegative orthant. 

3TaKayama and Judge <1971) assert that a solution does 
exist; however, this conclusion is based on a peculiar and 
erroneous corollary which they append to the Weierstrass 
theorem on page 13. ~ere, it is said: "As a corollary to 
this theorem we can prove: f<x> defined on a closed set 
attains a maximum <minimum) if it is bounded fr.om above 
(below)." Note that this corollary is clearly contradicted 
by f(x) = 1 - (1/x) on x E Ci,~). 

4This observation was originally emphasized by 
Samuelson <1952). 

5 It appears that this observation was first made by 
Silberberg <l970). 

6Silberberg <1970> also presents a proof of stability, 
but under the unrealistic assumption that interregional 
trade flow adjustment is instantaneous. 

7Here, the primary modification of the Arrow, Hurwicz, 
and Uzawa theorems is in the generalization of the distance 
function, D. 

9A 11 1 imit cycle" is a closed curve towards which the 
state vector of a system conNerges. 



CHAPTER IV 

PR.ICE DISCRIMINATION IN THE SPATIAL 

MARKET 

In this chapter, the p~actice of price discrimination in 

the spatial marKet is considered. Mathematical programming 

models are developed dealing with disc~imination by a single 

regfon, and by a cooperative consisting of a group of 

In both cases, models are developed for the 

maximization of net export revenue and for the maximization 

of total net revenue. In all cases, discriminaticin is 

exercised in a single product; hence, the analysis is 

partial. Here and hereafter, the term, 11 net re1,,•enue, 11 

refers to total revenue les• transportation charges. By 

"total net revenue" is meant the sum of net revenues on 

foreign sales and domestic s.ales. 

The first section consi·ders the single-dis•:riminator 

case, while the second section treats the cooperative 

discrimination models. In each section, mathematical 

programming models having solutions equal to the optimal 
' 

price and quantity vectors are developed. It is then shown 

that the solutions to these problems may be found as the 

solutions to the associated Kuhn-TucKer conditions. Also, 

it is shown that in some cases, the Kuhn-Tucker conditions 

101. 
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are sufficient conditions for the optima. Finally, in the 

third section, a trade pol icy is formulated whereby the 

discriminator may impose the optimal price and quantity 

vectors upon the spatial market. 

4~1 Discrimination by a Single Region 

In this section, the case of a single region practicing 

pri~e discrimination in a single product is considered. 

First, the general nature of the discrimination problem is 

examined. Seci;:md, .~. mode 1 i ·:;. deve 1 oped t.AJhere in the 

discriminator maximizes net revenue on exports. Thus in the 

first model, it is assumed that discrimination is practiced 

only in the export market. Finally, a model is developed 

wherein the discriminator maximizes the sum of net revenues 

from the export market and the domestic market. Here , i t i s 

assumed that di scrim i na ti om i ·:;. exerc i ·:;.ed not on 1 y in the 

export market, but also between the export market and the 

domestic ma.rl<et. 

Suppose that a single region in a spatial market seeks 

to price and allocate its exports such that net revenue from 

trade is maximized. Obviously, in determining the optimal 

allocation and pricing scheme, the discriminator must 

consider the responses of competing sellers to its pol icy. 

Moreover, two types of competition must be considered; 

namely,· that of arbitragers, and the direct competition of 

other producers. Here, the implications of both types of 

competition are examined under the assumption that all 
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buyers and sellers in the export market behave in accordance 

with the rules of ordinary spatial adjustment. These rules 

are mathematically expressed in assumptions five and six of 

the spatial model of.the previous chapter. In words, the 

adjustment processes are such that: 1) deficits cause price 

increases, 2) surpluses cause price decreases, 3) 

interregional trade flows i ncrea.·se when profits from s•Jch 

trade are forthcoming, and 4) interregional trade flows 

decrease when such trade results in losses. 

The possibilities of arbitrage will limit the extent to 

which prices set by the discriminator may differ. Were the 

discriminator to set two regional prices at values differing 

by more than the per-unit costs of transporti~g between the 

regions, then its direct shipments to the region of higher 

price wo•J 1 d even tua 11 y be _ _terminated. Instead, this region 

would be supplied by arbit~agers via t~ansshipments through 

the region of lower price. 

Suppose region is the discriminator, and that i has 

set prices of~- and ~Kon its exports to regions j and K • 
. J 

Arbitragers in j will supply buyers in Kat any price in 

excess of -PJ- +· t - for this sum represents the 
J K' 

arbitragers' total costs in the purchase and transport of a 

commodity unit. At this point, it is assumed that the 

discriminator requires that all its sales be shipped to the 

region of purchase. Consequently, it is not possible for an 

arbitrager in j to arrange a trade wherein it ships directly 

from the discriminator to region k. That is, if the 
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discriminator/s sales are to be arbi t~aged, then they must 

first be shipped to the region of the arbitrager and from 

there to the region of the arb i'trager / s buyer. Now, if the 

discriminator sets pK > Pj + tjK' then buyers in K will 

turn to arbitragers in j for their foreign supplies. The 

arbitragers will continue to purchase from the discriminator 

at the fixed price, ~j, and resell these quantities to K 

1Jn ti l the price in K is reduced to PK = p. + t ·K· at which 
' .J .J . 

point, arbitr.a•;,e i·:;. no lon·~er pr·~fita.ble. Thus, .if the 

discriminator sets any PK > Pj + tjK' then pK will not in 

f.:i.ct be the realized price in I<:, but rather, arbitrage v.Jill 

-cause the actual price to be PK= Pj + tjK' 

Under general conditions, it can be said that the 

discriminator is never advantaged by al lowing its shipments 

to be arbitraged. This will al~ays be true if: 

t.K < t· · + t-K'' 'r/ J,K (4.1) 
I - I J J 

It v.i i 1 l be obser1Jed that th i ·:;, same i neq•J.a 1 i ty was assumed in _ 

the spatial equilibrium model of the previous chapter. Now, 

if the discriminator/s shipments are being arbitraged 

through j to K, then as noted above, the price in K will be 

Pj + tjK' For each unit transshipped, the discriminator 

nets Pj - tij' Suppose the discriminator bypasses the 

arbitragers by reducing ~K· to~- + t .K, K would then 
J ~' 

purchase the same quantity as before, but directly from the 

discriminator. The discriminator would then net 
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(~j + t~v> - tiK per unit. The difference between the 

latter rate and the former rate is: 

t · K > 0 I . 

1>Jhere the i neq1.Ja 1 i t.y follows fr•::im ( 4. 1). This ·:s.how·:s. that 

the discriminator's total revenue at prices inducing 

arbitrage can always be equaled or exceeded with a price 
/" 

adjustment causing arbitrage to cease. 

It should be apparent that no price discrimination 

scheme can succeed if arbitrage is allowed through the 
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region of discriminator itself. With arbitragers operating 

within the region of the discriminator, prices and trade 

f 1 ows i nvar i abl >"' degenerate to values di•= t.a ted by ordinary 

spatial equilibrium •. Thus, the discriminator must prohibit 

arbitrage through its own region. 

In addition to arbitrage, the discriminator must 

concern itsel~ with the reaction of competing producers. 

Whereas arbitragers can inflict revenue losses when prices 

are set with excessive disparity, competing producers can 

inflict losses when prices are set at improper levels. Were 

the discriminator to set a regional price too high, its 

share of the market's imports could be significantly if not 

completely lost to such competition. On the other hand, a 

reduct i on i n reg i on al pr i c e i n the pre ·:s.e n c e of comp et i t i orr 

could result- in an insupportable level of demand for the 

discriminator's exports. Of course, improperly fixed prices 

could lead to such consequences even in the absence of 



competition; however, the presence of competition wil 1 

generally cause the consequences to be more severe. 

To illustrate the response of competition to 

discriminator price pol icy, consider the market 

configuration below: 

A 
I 
i 
~ 

8 ----> C <---- D ----> E <---- F 
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Assume that the market is initfally at a spatial equilibrium 

and that the equilibrium is such that trade occurs in the 

directions of the arrows ·ah own. However, suppose that trade 

between A and the other region is prohibited by large 

transportatlon charges. Suppose that D is the 

discriminator, and that it implements its scheme by 

increasing its price to C and by reducing its price to E. 

When D reduces i ts price to E, E ~" i 11 in i ti a 11 y respond 

by diverting all of its excess demand towards D. That is, F 

will be underpriced, and subsequently, quantities formerly 

obtained from F wi 11 now be ·aou•;iht from D. However, this 

will cause a surplus in F, and consequently, producers in 

the same will match the reduced price of D in order to clear 

the market. At the reduced price, excess demand in E will 

be increased, but excess supply in F will be reduced; 

subsequently, shipments from F to E wi 11 be reduced as well. 

' Thus, if the discriminator is to support its ~educed price, 

it must not only accomodate the increased demand in E, but 
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must also replace shipments formerly obtained by E from F. 

This illustrates that a price reduction may prompt 

considerable increase in demand for one's exports in the 

presence of competition. 

prove insupportable. 

Indeed, large pric~ reductions may 

Consider the increase in price offered to C. 

Initi.:dly, C will re·spond by diverting all of its excess 

demand towards B; however, deficits in 8 will cause its 

price to be bi ,j upt<.1-3.rds until i t matches the i n•:r·eased price 

of D. At the increased price, the excess demand of C ts 

reduced; however, the excess supply of B is increased so 

th.at shipmen ts from B to C '"' i l 1 rise. Thus, exp or ts from D 

to C will be reduced not only as a result of the reduced 

excess demand ·in C, but also because B will capture a 

greater percentage of C's market. D is further supplanted 

in C if its price i.ncrease is sufficiently large to allow A 

to overcome the transportation barrier. The discriminator 

must then compet• with both A and B, which wi 11 generally 

imply that any further increases in price will cause even 

greater reductions in exports. This illustrates that in the 

presence •:::>f competition, price i ncre.ases may 1 e.ad to rapid 

and accelerating loss of the discriminator's export marKet. 

_It might appear that potential gains from price 

discrimination in a typical spatial market must be small 

with such volatility in export demand. However, it is not 

the absolute sensitivities of demands that counts toward 

successful discriminatiori, but rather, it is the relative 
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·sensitivitie·s of the dem.ands for· th•::ise m.:!.rkets in 1,vhich the 
I 

discriminator lowers price to those markets for which the 

price is increased. For example, while it. may be true that 

a price increase to C results in a large reduction in demand 

for the discriminator?s exports, it may also be true that a 

very small price reduction to E results in a more than 

offsetting· increase in export demand. Th.at is, shipments to 

E may be even more price sensitive than shipments to C. 

Hence, the quan tit i e·s that Ci 1:.annot ·se l 1 t•::i C because of· the 

increased price to the same may be disposed in E at a very 

small price reduction. The net result could be a 

considerable increase in revenue. As a practical matter, 

one could probably expect the presence of arbitragers to 

impose more severe 1 imitations to gains from price 

discrimination than the presence of competing producers. 

It remains to mathematically formulate the problem 

described above. To this end, the terms, "market" and 

"aggregate market~" shall henceforth refer to the collection 

of all regions other than the discriminator. Thus, the 

dis~riminator is treated as a distinct entity. Accordingly, 

n is now the number of all regions other than the 

discriminator. The dis~riminator?s export volumn to region 

is denoted by Yi • ,Of course, the di scrim i na tor is assumed 

to be strictly an exporter; hence, Yi ? O. 

The aggregate market is assumed to sati~fy all of the 

conditions of an ordinary spatial market. In addition to 

these, certain assumption are made of the discriminator and 



its relation to the market. The market is assumed to 

'satisfy the following static conditions: 

1) The commodity is homogeneous within and across the 

regional markets. 

2) The commodity is of uniform price within any regional 

mar Ket. 

3) The ith regional market is characterized by: a demand 

pi is the regional price. 

4) The ith region may ship an arbitrary quantity, xiJ' to 

the Jth region at the constant per-unit transportation 

rate, t ..• 
I ~I 
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To these, add the ~allowing static assumptions pertaining to 

the discriminator: 

5) The product of the discriminator and the product of the 

aggregate ma~Ket are homogeneous. 

6) Sales by the discriminator are required to be shipped to 

the region of purchase. 

7) Arbitrager.s are forbidden to operate within the region of 

the discriminator. 

8) The discriminator may ship an arbitrary quantity, Yi, to 

region i at the constant per-unit transportation rate, 

The dynamic assumptions are: 
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5 a) 
. 
pi > 0 if and only if e. < P. > - n. - Y· > 0. 

I I I I 

b) 
. 

< 0 if and only if e. < P. > < 0 and > 0. pi - ni - Yi P· I I 1, 

6 a> 
. 

0 only if xij > tij - ( p j - pi) < 0. 

'b) If tij - (pj - pi) < 0 
. 

for some j ' then xij > 0 for 

at least one such j • 

C) 
. 

< 0 if only if xij and tij - ( p j - pi) > 0 and 

xij > o. 

where the ni measure ne~ imports from all regions other than 

the discriminator. For the moment, the yi are taken as. 

given constants; consequently, no adjustment rules for these 

are yet specified. 

The dynamic assumptions imply that for given yi, the 

market is at• spatial ~quil ibrium if and only if: 

e i <Pi> - ni - Y· < 0' if < then Pi = 0; v 
I 

tij - (pj - pi) > 0' if > then xij = 0 ; v i 'J 

pi > 0' xij > O; v i 'j 

These conditions may be expressed in matrix notation as: 

E<p> - Nx - y ~ O; p'CE(p) - Nx - yl = O (4.2) 

t - N,.p ~ O; x' < t - N" p> = O (4.3) 

<p,x> .?: O (4.4) 

where y is the discriminator's export vector, and where p, 

E(p), x, and N are defined as in section 3.1 except that 

components corresponding to the region of the discriminator 

are not included. 
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Typically, there will be an infinite number of <p,x,y> 

that will qualify as equilibria. The discriminator has some 

de-gree over con tro 1 over equ i 1 i br i um de termination inasmuch 

as it can control the components of y, and in that it can 

select its own offer prices. The objective here is to 

determine the particular equilibria or equilibrium that 

renders maximal net revenue on exports. Hence, the problem 

could be informally stated as follows: 

maximize<p,x,y>: discriminator's net export revenue 

subject to: the market is in spatial equilibrium 

The equilibrium requirement is imposed because of the static 

nature of the problem and the fact that nonequil ibrium 

points are unsustained. 

The discriminator's net revenue on exports is measured 

by f(p,y> = <p - r>'y, where r is the vector of 

transportation rates for shipmen ts from the di scrim i·na tor. 

For given y, the conditions for equilibrium are summarized 

in <4.2> through <4.4). In addition to these, it is assumed 

that the sum of the discriminator's exports cannot exceed 

some constant, say y. Let u = <1,1,,,1>', then this 

condition may be expressed as y - u'y l O. Therefore, the 

problem to maximize discriminator net export revenue may be 

formerly stated as: 
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Problem One 

maximize<p,x,y>: <p - r>"y 

subject to: E<p> - Nx - y ~ 0 - (4.5) 

t - H"p ~ 0 (4.6) 

-y - u"y ) 0 ~ 4. 7) 

p" t E<i» - Nx - yl = 0 (4.8) 

x" <t - H"p> = 0 (4.9) 

<p,x,y> ' 0 (4.10) 

Let S be the set of all <p,x,y> satisfyin~ the first, 

second, and last constraints. That is: 

S = <<p,x,y> ~ 0: ECp) - Nx - y ~ O, t - N"p ~ 0) 

-
Observe that the complementary slackness relations in <4.8> 

and -(4.9) satisfy: 

p"tE(p) - Hx - yl '< O; V <p,x,y> e S 

-x" < t - N" p> < o; 

Upon summing these two expressions, one obtains: 

p"ECp) - t"x - p"y < O; V <p,x,y> e s 

where equality holds if and only if both of the 

-complementary slackness conditions hold. Hence, given that 

(p,x,y> es, that is, given that <4.5), (4.6) and (4.10) are 

satisfied, then <4.8) and (4.9) are both satisfied with 

either of the following conditions: 

p"E(p) - t"x - p"y = o <4.11) 
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or: 

(4.12) 

Thus, the two constraints requiring the complementary 

slacKness conditions may be collapsed into one constraint. 

If E(p) is continuous on the nonnegative orthant, and 

if there exists a p0 such that pJECp) < O for all p > p0 , 

then the Weierstrass theorem <Theorem 2.1.4) guarantees the 

existence of a solution to Problem One pro~ided that the 

feasible region is nonempty. Observe that the objective 

function is continuous if ECp) is continuous. If the 

constraints are continuous on the nonnegative orthant, then 

with use of Theorem 2.1.3~ it may be confirmed that the 

feasible region is closed. The nonnegativity requirement 

imposes a lower bound upon all variables. From <4.7), there 

is clearly an upper bound on y. Condition (4.6) implies 

that if one pi is increased without bound, then all pi must 

be increased without bound; hence, if there exists a Po such 

that pJECp) < O for all p >Po then condition (4.12) imposes 

an upper bound on p. As the set of all feasible pis closed 

and bounded, and since E(p) is continuous, then pJE(p) 

attains a maximum over the feasible region; consequently, 

from condition (4.12) it may be concluded that x is bounded. 

Therefore, the feasible region is compact; thus, it follo~s 

that if the feasible region is nonempty, then the 

Weierstrass theorem ~ffirms the existence of a solution. 
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' 
Rather than imposing the complementary slackness 

conditions as constraints upon the problem, first consider 

the possibilty of incorporating <4.11) into the objective 

function through a penalty function of the form: 

where« is some positive constant. Observe that p < 0 on 

the set, S •. The problem is now expressed as: 

maximize<p,x,y>: 

subject to: 

Problem Two 

<p - r>'y + «[p'E<p> - t'x - p'yJ 

E<p>. - Nx - y ~ 0 

t - N'p ~ 0 

Y u"y > o 

<p,x,y>_~ 0 

Suppose that rr is the optimal value of Problem One. 

Since an optimal solution to Problem One is feasible to 

Problem Two, then for any«, the optimal value to Problem 

Two must be greater than or equal rr·. Hence, if there exists 

an «sufficiently large that the optimal solutions to 

Problem Two are such that the penalty function is equal to 

zero, then as such solutions are feasible to Problem One, 

they must also be optimal to Problem One. Moreover, it is 

apparent that at such «, optimal solutions to Problem One 

are also optimal to Problem Two. 

It can be shown that p ~ 0 as « ~ oo, that is, the 

penalty functiori does in fact approach zero with increasing 
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~. However, to prove that the generated sequence of 

solutions actually converges to a solution of Problem One, 

it must be shown that «P ~ 0 as«~ oo. To demonstrate this, 

it must generally be shown that the sequence of solutions is 

contained within a compact subset of the feasible region to 

Problem Two. The proof follows immediately if the feasible 

region is itself compact, and generally, this \is the way in 

which convergence must be proven. It may be confirmed that 

the feasible region to Problem Two is not compact; 

consequently, convergence cannot be guaranteed. 

Nonetheless, in practice, convergence is typically observed, 

and generally for finite values of«· 

With minor modifications, the last problem may be 

extended to cover the case where discrimination is not only 

exercised in the export market, but also between the export 

market and the domestic market. Let p denote the price in 

the region of the discriminator, and let d<p> and etp> be 

the demand and excess demand for the same. The present 

objective is the maximization of the sum of net revenues for 

domestic sales and foreign sales; subsequently, the 

appropriate programming model is: 

maxtmize<p,p,x,y>: pd(p) + <p - r>'y + «Cp'E(p) - t'x -

p'yl 

subject to: E<p> - Nx - y f 0 

t - N'p ~ 0 

-e(p) - u'y > 0 

<p,p,x,y> ~ 0 
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which differs from the last problem only in that domestic 

revenue has been added to the objective fu~ction, and y has 

been replaced with the excess supply function of the 

discriminator. Indeed, the former problem is the special 

case of this problem where d(p) =·O and -e<p> -= y. 

Note that this model possesses some of the features of 

the traditional price discrimination problem. In 

particular, the discriminator's region is perfectly 

separated from the regions in the marKet. Also, with such 

separation, the discriminator effectively becomes a 
. 

monopolist to buyers in its own- region. 

Let the Lagrangian to the latter problem be constructed 

as: 

l<p,p,x,y,J1,x,~> = pd<p> + Cp - r>'y + cx.Cp'E<~> - t'x - p'yJ 

. - Jl'CE(p) - Hx - yl + x'<t - H'p> - ~Ce<p> + u'yl 

on <p,x,y,J1,,X,~) ~ Q. The corresponding Kuhn-TucKer 

conditions a.re: 

lp = d(p) + pdp ( p) - lep < p) < 0; plp = 0 

IP = ( 1 - a.)y + a.ECp> + ~(p)(cx.p - Jl) - N>. ~ O; p'l = 0 p 

Ix = -a.t + N'Jl ~ O; x'l = 0 x 

ly = 'p - r -a.p + Jl -lu ~ O; y'l = 0 y 

1 Jl = -E<p> + Nx + y ~ O; Jl .I 1 = 0 
Jl 

lx = t - N'p ~ O; x" 1 = 0 x 

1 ~ = -e(p) - u'y > O; lll = 0 
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As shown iB Theorem 2.5.12, the Kuhn-Tucker co~ditions are 

necessary for the optimal solutions if the gradients 6f the 

active nonlinear constraints are 1 inearly independent at 

such solutions. If the excess demand functions are 1 inear, 

then all the constraints are 1 inear; consequently, the 

necessity of the Kuhn-Tucker conditions holds automatically. 

However, suppose E(p) and _e < p) ,are non 1 i near. It may be 

confirmed that the columns of the following matrix comprise 

the gradients of all the nonlinear constraints to the latter 

problem: 

A= 

1-ep(p) 
I 0 
I 
I· 0 
I u 

( 4. 13) 

where I is the nxn identity matrix, and Ep<P> is a diagonal 

matrix whose ith column is the gradient of ei<pi). The 

first partition of A contains the gradients in 

-E(p) + Nx + y, and the second partition contains the 

gradient of -e<p> - u--y. It is apparent that the columns in 

A are linearly independent over all Cp,p,x,y) if ep(p) ~ o. 

Now, suppose ep<~) = :o, and suppose there exists 

c = <c1 ,c 2 >, not equal to zero, such that Ac= Q. With this 

being the case, the thi~d row partition of the above 

imp 1 i es: 

N,.c = 0 1 
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It may be confirmed that the construction of N' is such that 

this can occur only if all of the components of c 1 are equal 

to a single constant. However, the second row partion then 

imp 1 i es: 

If the components c 1 are indeed equal to a constant, and if 

the sl~pe of at least one regional excess demand is unequal 

to zero, then the latter equation implies that c1 = Q. But, 

if this be the case, then the last row partition implies: 

which can occur· only if c 2 = O. But, this contradicts the 

assumption that c ~ O; consequently, the gradients of all 

nonlinear constraints to the problem are 1 inearly 

independent if the slopes of the excess demands do not all 

simultaneously 90 to zero. 

An interesting case occurs when ~ = 1 is sufficient to 

drive the penalty function to zero. At~= 1, the objective 

function reduces to: 

f<p,p,x,y> = pd<p> + p'E<p> - t'x - r'y 

If f<p,p,x,y> is pseudoconcave over the feasible region, and 

if the constraints are quasiconcave over the same, then by 

Theorem 2.5.13, the Kuhn~TucKer conditions are sufficient 

conditions fo·r the optimal solutions. It may be confirmed 

that all of these conditions hold if the excess demands are 
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1 inear with nonpositive slopes. However, f(p,p,x,y) can 

never be pseudoconcave if~~ 1. 

Now, consider the case where the complementary 

slackness conditions are imposed by including condition 

(4.12) as a constraint to the problem. The problem then 

becomes: 

maximize<p,p,x,y>: pd<p> + <p - r>~y 

subject to: E(p) - Nx - y ~ 0 

-e<p> - u~y ! O 

p~E<p> - t~x - p~y > o 

<p,p,x,y> ~ O 

-
Again, using Theorem 2.5.12, the Kuhn-Tucker conditions to· 

this problem are Known to be necessary for the optimal 

solutions if the gradients of the active nonlinear 

constraints are 1 inearly independent at such solutions. The 

columns of the following matrix comprise the gradients of 

all the nonl.inear constraints: 

0 1-ep(p) 0 
-Ep<P> I 0 I ECp) + Ep<P>P - y 

A= I I 
N~ I 0 1-t 
I 1-u 1-p 

The first two partitions are the same as in (4.13). The 

last partition contains the gradient of p~E(p) - t~x - p~y. 

Suppose there is a nonzero c = <c 1 ,c 2 ,c 3 > such that Ac= O, 



then •Js i.ng the third row partition of A, it may be 

concluded: 
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Note that the components in each column of N~ sum to zero. 

Hence, upon summing the rows of the above, one obtains: 

But, this implies c 3 = O, and as noted before, the columns 

in the first two partitions are linearly independent over 

all <p,p,x,y> if the slopes of the excess demands do not all 

simultaneously go to zero. Hence, provided that the slopes 

do not simultaneously go to zero, then Ac= 0 implies c = Q, 

Observe that as the solutions to all the problems of 

this section are consistent with spatial equilibrium in the 

marKet, then all of the properties of such equilibria 

discussed i·n the previous chapter pertain here a 1 so,. It has 

been shown that if the triangular inequality oft holds, 

then there must exist a solution wherein the discriminator's 

exports are not transshipped; thus, it remains that there 

must exist an equilibrium wherein no region simultaneously 

imports and exports. By the same reasoning used in the 

former chapter, it may be shown that there must exist an 

equilibrium wherein no two exporters, including the 

discriminator, share two importers. 

It was shown in the previous chapter that. if the 

commodity is desirable in every region of the marKet, then 
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in an ordinary spatial equilibrium, prices must be positive. 

In the present models, desirability does not ensure positive 

prices; however, it does ensure another important property; 

namely, that the equilibria must be such that marKet excess 

demands are exactly equal to net imports. From the 

it may be seen that if pi > O, then the result must hold. 

Now, suppose pi = o, then by the desirability assumption, 

region i must be an importer. However, as shown in the 

previous chapter, it cannot import from other regions in the 

marKet; consequently, it must import from the discriminator. 

Now, if Yi > ei (0), then· yi could be reduced such that 

Yi= ei(O) without affecting total revenue; however, 
-

tran·spor tat ion expenses wou 1 d be reduced, and consequent 1 y, 

net revenue would be increased. Thus, Yi > ei<O> cannot be 

optimal, and consequently, under the desirability 

assumption, marKet excess demands must equal net imports. 

It should be apparent that all the trade restrictions 

discussed in the former chapter may also be incorporated 

into the discrimination models. However, it must be assumed 

that the trade policies of the various regions are invariant 

with respect to the actions of the discriminator. If this 

were not the case, then the excess demand functions could 

not be safely regarded as being stable. 



12:2 

4.2 Dlscrlmlnatlon by a Cooperative 

It is 1 ikely that a single region could accomplish 

greater gains through price discrimination if it could 

persuade otherwise competing sellers to cooperate in a joint 

' price discrimination ·scheme. Moreover, it is certain that 

several price discriminators can accomplish greater total 

gains working jointly than on an independent basis. In this 

section, models are developed wherein it assumed that a 

group of regions exercise price discrimination cooperatively 

with the objective of maximizing net revenue to the 

cooperative. 

The assumptions of the foregoing models are exactly the 

same as those in the models of the previous section; 

however, statements that are there made of a single 

discriminator are now made~of the cooperative. The terms, 

"market" and "aggregate marKet," shall now refer to all 

reg•ons other than those contained in the cooperative. 

Suppose there are n regions in the market and m regions 

in the cooperative. Let Yij denote shipments from the ith 

cooperative ~ember to the jth region in the marKet. 

Accordingly, let rij denote the per-unit transportation 

charge for shipments from the ith cooperative member to the 

jth region in the marKet, and define the following matrices: 

y i 1 r i 1 
yi2 ri2 

Y; = ri = 

Yin rin 



Y1 
Y2 

y = 

Ym 

1 0 
0 1 0 

c = 0 

0 0 

1 1 1 
0 0 

u = 0 0 

0 0 

0 

0 
0 

0 
1 

1 
0 

0 

1 0 
0 1 0 

0 

0 0 

0 0 
1 1 1 
0 0 

0 0 

r = 

0 

rl 
r2 

rm 

0 
0 

0 
1 

0 I 
1 I 

I 
• I 
0 I 

. . . I 1 0 . I 0 1 
I -0 
I . I 0 0 

I 0 0 
• I 0 0 

I 
I 0 0 

0 

• I 1 1 1 

Finally, let Yi be the exportable quantity in the ith 

cooperative member and let y = <Y 1 ,Y2 ,,,ym)~. 

0 
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0 
0 

0 
1 

0 
0 

0 
1 

With t~ese constru~tions, the net export revenue to the 

cooperative is given by f(p,y) = <C'p - r>~y. The spatial 

equilibrium conditions for given y become~ 

E(p)'- Hx - Cy ~ O; p~CE(p) - Nx - CyJ = O 

<p,x) ~ 0 

where p, E(p), N, and x are defined as before except that 

components corresponding to the discriminating regions are 

not included. The constraint 1 imiting cooperative member 

shipments is ~ - Uy ~ Q. Thus, the problem to maximize 
-

cooperative net export revenue subjec~ to the condition that 

the marKet be in spatial equilibrium may be formerly stated 

as: 



maximize<p,x,y): <C'p - r)"y 

subject to: E<p> - Nx - Cy ~ O 

t - N"p ~ 0 

y - Uy ~ 0 

p'CE(p) - Hx - CyJ = O 

x"<t - N"p> = o 

(p,x,y> ~ O 
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If ECp) is continuous, and if' there exists Po such that 

p"E(p) < 0 for all p > p 0 , then using the arguments of the 

previous section, it may be seen that the feasible region is 

compact. Consequently, since the objective function is 

continuous, the Weierstrass theorem <Theorem 2.1.4) ensures 

the existence of a solution if the feasible region is 

nonempty. 

Observe that if S denotes the set of all <p,x,y> 

satisfying the first, second and last constraints, then the 

complementary slackness conditions in the fourth and fifth 

constraints must satisfy: 

p'CECp) - Nx - CyJ < O; ¥ <p,x,y) e s 

v <p,x,y> e: s 

Upon adding these two conditions, one obtains 

p·· !(p) - t" x - p" Cy < 0 ; ¥ <p,x,y> e s 

where equality holds if and on~y if the complementary 

slackness conditions both hold. Thus, given that 
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<p,x,y) ES, the fourth and fifth constraints are both 

implied by either~of the following conditions: 

(4.14) 

or: 

. (4.15) 

As before, the complementary slacKness conditions may 

be imposed either by substituting <4.15) for the fourth and 

fifth constraints in the latter problem, or by the 

incorporation of <4.14) into the objective function through 

a pena11y functio~. If the penalty function technique is 

chosen, then the model becomes: 

maximize<p,x,y>: <C'p 

subject to: E<p> - Nx - Cy ~ 0 

y - Uy ~ 0 

<p,x,y> ~ O 

As before, the model may be extended with I ittle 

difficulty to maximize the total net revenue of the 
A 

cooperative. Let p denote the vector of prices for the 
A A A A 

regions in the cooperative, and let DCp) and ECp) denote 

the vectors of demands and.excess demands for the 

cooperative. The problem may then be f~rmally stated as: 



A A A A· 

maximize<p,p,x,y>i p'D(p) + <C'p - r>'y + 

subject to: 

cx.[p'.E(p) - t'x - p··eyJ 

E<p> - Nx - Cy ~ 0 

t - N'p ! 0 
A A 

-E<p> -. Uy ! 0 
A 

<p,p,x,y> ! 0 

I.t may be confirmed that the former model is the spe•: i al 
A A A A 

case of this model where D(p) = O and E(p) = -y. 

Indeed, even the problems of the previous sectton may be 

considered as special cases of this problem where the 

cooperative consists of only one region. 

Supposing that the excess demands are nonlinear, the 
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gradients of the non I i ne-~r constrain ts in the I at ter mode 1 

are given by the columns of: 

A A 

0 1-~(p) 
I 

-~(p) 0 
A= 

N,. I 0 
C' 1-U' 

It may be confirmed that A has full column ranK if the 

slopes of the excess demands do not all simultaneously go to 

zero. Provided that this does not occur, then by Theorem 

2.5.12, the Kuhn-Tucker conditions are necessary conditions 

for the solutions to last problem. 

Suppose ex.= 1 is sufficient to drive the penalty 

function to zero, then at ex.= 1, the objective function to 

the last problem becomes: 
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jl\ A A A 

f<p,p,x,y> = p'DCp> + p'ECp> - t'x - r"'y 

A 

If f<p,p,x,y> is pseudoconcave over the feasible region, 

and if the constraints are quasiconcave over the same, then 

by Theorem 2.5.13, the Kuhn-Tucker ·conditions are sufficient 

for the optima. All of these conditions will hold if the 

demands and excess demands are 1 inear. However, as before, 

the objective function can never be pseudoconcave if~~ 1. 

If the comp 1 emen tary s 1 acKness conditions .ar-e enforced 

by the inclusion of <4.15) as a constraint, then the problem 

becomes: 

A A A A 

maximize<p,p,x,y>: p"'DCp) + <C'p - r>"'y 

subject to: ECp) - Nx Cy ~ 0 

t - N'p ~ O 
...... 

-E<p> - Uy ~ 0 

p"'E(p) - t"'x p"' Cy > 0 

... 
<p,p,x,y> ~ O 

Assuming that the excess demands are nonlinear, then the 

gradients of the nonlinear constraints are contained in: 

... ... 
0 1-Ep<P> I 0 

I I 
-Ep<P> 0 I E<p> + Ep<P>P - Y 

A = I 
N"' 0 1-t 
c·· 1-U"' 1-p 

Using the same reasoning .as that of the previous section, it 

may be confirmed that any c = <c1 ,c2 ,c 3 > such that Ac= 0 

must have c 3 = O, but it 'has already been noted that the 
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first two partitions of this matrix are 1 inearly independent 

if the slopes of the excess demands do not all 

simultaneously go to zero. 

4.3 Polley Implementation 

In, the former sections, programming mode 1 s were 

developed having solutions equal to the optimal price and 

quantity vectors for a discriminator or group of 

discriminatoPs operating in a spatial market. These 

solutions were constrained to be consistent with spatial 

equilibrium in that given the discriminator~s export vector, 

y, the optimal p and x vectors had t~ be such that the 

marKet would be in spatial equilibrium. Now, suppose that 

the optimal vectors are p, x, and y. The equilibrium 

constra•nts that were imposed in the determination of these 

vectors ensure that if p, i, and y were •imultaneously 

realized, then the market would in fact be in equi 1 i·brium. 

However, there is no assurance as of yet that such vectors 

will actually be realized. Thus, it remains to determine if 

ther~ ts a trade pol icy whereby the discriminator can impose 

its chosen price and quantity vectors upon the market. 

Of course, the equilibrium value of xis of no 

consequence to the discrlminator~s net revenue; therefore, 

- .. -any e q.u i 1 i br i um of the form , < p, x , y) , i s op t i ma 1 . To 

demonstrate that a particular trade pol icy will cause the 

market to converge upon a <p,x,y), it must first be shown 

that such pol icy forbids all equilibrium points other than 
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those of this form. That is, if the natural dynamic 

adjustment process is such that more than one equilibrium 

exists, then the trade pol icy of the discriminator must 

influence this process so that the only equilibria that 

exist are those involving p and y. Second, it must be 

shown that given the discriminator~s pol icy, the marKet does 

converge to equilibrium. In this section, a pol icy is 

developed that satisfies both conditions under general 

assumptions. The foregoing derivations treat the single 

dLscrimrnator model of the first section; however, the 

theory·extends to cover the cooperative discrimination model 

with almost no modification. 

It will be recalled that the dynamic assumptions of the 
' 

discrimination model are: 

5 a> 
. 

> 0 if and only if e i <pi> 0. pi - ni - Yi ) 

b) . 
< 0 if and only if 0. pi e. < P.) - ni - Yi < 0 and P· ) 

I I I 

6 a) 
. 
xij ) 0 only if tij - (pj - pi) < 0. 

. 
b) If t .. - (pj - pi ) < 0 for· some j ' then x .. > 0 for 

I J I J 

at le.?.st one such j • 

. c) xij < 0 if and only if t .. 
I J - (pj - p. ) ) 0 and 

I 

xij ) 0. 

These adjustment rules say nothing of . 
y, for unti 1 now, it 

has been sufficient to taKe y as given. Subsequently, 

suppose that y adjusts according to the following rules: 

7 a) 
. 
y i > 0 if and on 1 y if pi - pi < 0 • 

b) 
. 
y i < 0 i f and on 1 y i f p i - p i > 0 and y i > 0 • 
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where it is assumed that the discriminator has fixed it• 

offered prices at p. These adjustment rules could be 

somewhat further generalized as were the rules for x; 

however, as such generalizations do not effect the 

equilibria of the system, they are neglected here. Also, 

the fact that this adjustment process could produce 

insupportable values of y is ignored for the moment. 

Provisions excluding such possibilities will be made 

shortly. 

Assumptions five through seven imply that the system is 

at equilibrium if and only if: 

e. <p-) 
I I 

- y. < O, if < then p. 
I - I 

= O; 

t .. - (p. 
IJ J 

pi) > O, if_.> then xij = O; 

-Pi - Pi > 0, if > then yi = O; v 

Pl- > o, X·. > o, Y· > O· 
I J - I - ' 

v i ,j 

The matrix variants of these are: 

E<p> - Nx - y ~ O; p"'CE(p) - Nx yl = 0 

t - N"p f O; x"' < t - N"' p> = o 

P - P ~ O; y"'<p - p) = 0 

<p,x,y> ~ 0 

v i ,j 

It may be confirmed that these conditions are the 

Kuhn-Tucker conditions to the following problem: 

( 4. 16) 

( 4. 1 7) 

(4.18) 

(4.19) 
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max i mi z e < p> : f (p) 

subject to: t N"p ~ 0 

p - p ~ 0 

p ~ 0 

, 
where: 

.f < p) = ~~ = 1 J e i < P i ) dp i 

and where the· Lagrangian is constructed as: 

l<p,x,y> = f<p> + x"<t - N"p> + y"<p - p>; <p,x,y) ~ O 

It has been shown that if the ei(pi) have'negative 

s 1 opes, then f Cp) is strict 1 y concave. Henceforth, it sha 11 

be assumed tha.t this i s_.the case; moreover, it is assumed 

that f(p) is everywhere differentiable. Consequently, since 

the constraints are concave, Theorem 2.5.13 determines that 

any solution to the Kuhn-Tucker conditions corresponds to a 

global optimal solution that is unique with respect top. 

Moreover, by Theorem 2.6.1, it may be concluded that the 

Kuhn-Tucker points are one-to-one with the saddle points in 

the Lagrangian. Now, observe that <p,x,y) is the 

sol u ti.on to a ma thema ti ca 1 programming problem whose 

constraints require satisfaction of conditions (4.16) 

through <4.19>; hence, <p,x,y>, solves the problem above, 

and the uniqueness property guarantees that p is the only 

equilibrium price. Therefore, it may be concluded that the 

discriminator can in fact force market equilibrium prices to 



132 

equal to its chosen price vector. It may do so by simply 

fixing its own vector of offered prices at p. 

Though the equilibrium price is uniquely determined at 

p, there may be any number of x and y that solve the 

Kuhn-TucKer conditions to the problem above, and 

consequently, <p,x,y) is not necessarily a unique 

equilibrium solution. Thus, a pol icy wherein the 

discriminator merely fixes its offer prices at p is 

insufficient to guarantee convergence of y to y. However, 

suppose p > o. That is, there are no zero prices in the 

discriminator's optimal price vector. If such is the case, 

then it may be concluded that at any equilibrium solution, 

< p, x, y) , con di t i on < 4. 16) ho 1 ds w i th e qua 1 i t y. That i s: 

... ... 
E<p> - Nx y - 0 

Sum the r·ows of the 1 atter system to obtain: 

}; e.(p.) = B Y
1
• 

I I 

where the fact that the col~mns of N sum to zero has been 

used. Now, the right-hand side of the latter equation is 

unique to all equilibria; consequently, it may be concluded 

that the sum of the discriminator's exports is the same 

regardless of the particular equilibrium that occurs. 

Moreover, as y i~ an equilibrium y, then it may be 
... 

concluded that any equilibrium y must satisfy: 
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Now, suppose that in conjunction with fixing its offer 

prices at p, the discriminator were to impose an export 

quota requiring Yi i Yi for every i. 
A 

If y wer-e at an 

equilibrium to the system under- such a quota, then it must 
A 

be tr-ue. that y satisfies both of the following conditions: 

A 

But, these together- imply that y = y. Thus, by fixing its 

offer- pr-ices at p, and by imposing an expor-t quota 

r-equir-ing y ~ y, the discr-iminator- can prohibit all 
A 

equilibria other than those of the form <p,x,y>. 

Observe that if the commodity is desir-able in ever-y 

r-egion of the mar-Ket, then the conclusions of the latter-

analysis holds even if some pi = O. It was shown in the 

pr-evious section, that under the desirability assumpti·on, 

the discriminator- will be the sole supplier- to any region 

having zero pr-ice; moreover-, if ~i = O, then Yi = ei(O). 
A 

If Yi is the realized equ i l i br- i um va-1 ue, then condition 

(4.16) ensures that Yi cannot be less that ei<O>. On the 

other hand, if the discriminator- imposes an export quota, 
A 

then Yi cannot_ be greater than Yi = e i < 0); hence, 

Yi = ei<O>. Thus, the export quota itself ensures that 

equality will hold in condition <4.16>, so the above 

analysis is sti 11 val id. 

It r-emains to show that the market price and quantity 
A 

vectors will actually converge to <p,x,y>. If it is 
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assumed that the discriminator can prohibit all other 

equilibria with use of an export quota, then it is 

sufficient to show that the system directing market. 

adjustment ts stable when the discriminator's quota is 

enforced. 

The dynamic adjustment rules in assumptions five 

through seven are not sufficient to guarantee stability; 

however, it can be shown that the foregoing special case of 

these assumptions is stable. Suppose that: 

[O if P; = 0 and e i <Pi) - ni - Yi < 0 . 
pi = 

a. [ e,. < p.) - ni - y.] otherwise 
I I I I 

[0 if Xij = 0 and ti j - (pj - pi) > 0 . 
xij = 

-b,i j [' t j j - (pj - pi ) ] otherwise 

0 if Yi = 0 and -pi - pi > 0 

. 
0 if and < 0 Yi = Yi = Yi P· - Pj I 

-c i (pi - pi) otherwise 

where the ai, bij' and ci are positive constants. Thus, the 

rate of price adjustment is proportional to the deficit, 

unless such adjustment would lead to a negative price. The 

rate of market interregional trade flow adjustment is 

proportional to_ profits, unless such adjustment would lead 

to a negative flow, and the rate of discriminator export 

flow adjustment is proportional to the discriminator's 

discount, unless such adjustment would lead to negative 



export flow or quota violation. Observe that this system 

may be expressed in terms of the Lagrangian as: 

• = [o i f p i = o and 
pi 

aiol<p,x,y)/api 

( 0 

otherwise 

[ 

0 if x .. = 0 and 
I J 

-bijol<p,x,y>/oxij 

ol <p,x,y>/oxi j > o 

otherwise 

O if Yi = o and ol <p,x,y)/oyi > o 
. 
)' i = 0 -if yi =Yi and ol<p,x,y)/oyi < o 

-cial<p,x,y>/oyi otherwise 

The following theorem shows that the above process 
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.converges upon a saddle point of l<p,x,y> if this function 

is strictly concave and differentiable in p, and if the 

process is initiated at some y ~ y. Again, l<p,x,y) is 

strictly concave in p if the excess demands have negative 

slopes. Since the saddle poi.nts are one-to-one with the 

equilibrium points under the concavity and differentiability 

assumptions, then it may be concluded that the model is 

indeed stable. The· theorem is stated in general terms 

rather than in t~rms of the problem above: 

y and z, and strictly concave and differentiable in x over 

n --- Rn m 1 all x e R+. Moreover, let <x,y,z> e +~R+~R+ be a 

saddle point of l<x,y,z>. Consider the system: 
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[o if x. = o and al <x,y,z)/axi < 0 . 
aial <x,y:z)/ax i 

X- = I 
otherwise 

(4.20) 

[ o i f y 1 = O and al <x,y,z)/ayi > 0 . 
y i = 

-b i a 1, ( x' y' z) /a y i otherwise 

(4.21) 

0 if zi = 0 and al <x,y,z>/azi > 0 (4.22) 

. 
al <x,y,z>,/azi < 0 Z- = 0 if zi = z i and 

I 

-c i a 1 ( x' y ' z) /a z i otherwise 

where the ai, b., and c. 
I , I 

are positive constants. Fr-om any 

intial t 0 and <x0 ,y0 ,z0> e R~m~mR! such that z0 ~ i, 

<x,y,z) satisfies 1 imt~~ Cx<t>,y<t>,z<t>J = <x,y,z) where 
A A 1 

<x,y,z> is a saddle point of l<x,y,z> on R~m~EBR+. 

Proof: As l<x,y,z> is strictly concave in x and 1 inear in y 

and z, then with use of the corollary to Theorem 2.4.8, it 

may be confirmed that: 

,. -
l<x,y,z> < l<x,y,z> + Jx<x,y,z><x - x>; x,..e x 

,1 ( x, y 'i> 
,. - ,. 

= l<x,y,z> + ly<x,y,z><y - y> + lz<x,y,z> 

< i - z> 

, for every <x,y,z> such that x e R~. As <x,y,z) is a 

saddle point of l<x,y,z>>, then: 

l<x,y,z> ~ l<x,y,z> ~ 1<x,y,z> 

for every <x,y,z> e R~e~mR!. The last three relations 

imply: 
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<x - x),. I . - <y - > ,. I - <i - z),. I > 0. x y y . z ' 
if x ;.: x, then ) 0 (4.23) 

Now, 1 et: 

al 0 0 bl 0 0 
0 a2 0 0 0 b2 0 0 

A= 0 B= 0 
0 0 

0 0 0 an 0 0 0 bm 

c 1 0 0 
0 c :2 0 0 

C= 0 
0 

0 0 0 cl 

[: if xi = 0 and al/Clxi < 0 
6i = x 

othel"'wise 

[: if Yi = 0 a.nd Cll/Clyi ) 0 
oi = y 

othel"'wise 

[: 
if zi = 0 and Cll/Clzi ) 0 

5i = z 
othel"'wise 

[: if zi = z. a.nd Cl 1 /az i < 0 
-i I 
6z = 

othel"'wise 

51 
02 0 61 

02 0 
ox 

~x 0 0 oY 6y 0 0 
Ax = Ay = 0 

0 0 
0 0 0 5n 

x 0 0 0 5m 
y 

51 o· 0 -1 
22 0 6z oz 62 0 0 0 6z 0 0 

AZ = oz AZ = 0 
0 ~1 

0 0 0 51 0 0 0 z 6z 



Finally, let: 

D<x,y,z) = 1/2[<x - x)'A-1 <x - x) + <y - y)'"B- 1 <y - y) 

+ < z - i) , c- 1 < z - i > J 

Note that A- 1 , B-1 , and c- 1 are positive definite and 

symmetric. Also note that the system in <4.20) through 

<4.22) can be written ln terms of the matrices above as: 

. 
x = A[! - AxJlx . y = -B[! - Aylly 
. 
z = -C[! - AZ - Azllz 

Consider: 

. x> 'A- 1 . D = <x - x + <y y>, B-1 . i>, c-1 . -: y + <z - z 
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Substitution of the former relations into the latter yields: 

. 
D = <x - x>'lx - <y y>' 1 y - < z - i>,. I + x' A I -z x x 

y'Ayly - i'"Azlz 

where the following substitutions have been used: 

x"A = 0 x 

y'"A = 0 y 

z"A = 0 z 

<z - i>'' A = 0 z 

Now, from the definitions of Ax, AY' and AZ, and from 
. 

(ZL24) 

<4.23>, it may be concluded that D ~ O, and is strictly 
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. 
1 ess than zero if x ~ x. As D ! 0, and as D i O, i t 

* follows that D must converge upon a 1 imit, D , as t 'oo. 

That is: 

Therefore, <x, y, z> must converge to a 1 _i mi t eye 1 e, 
A A A~ A A A • * 

Cx(r),y(r),z(r)J, satisfying DCx(r),y(r),z(r)J = o· 
. 

for a 1 1 r • As D = 0 at a 1 1 points on the 1 i mi t c ye 1 e , then 
.. 

necessarily x(r) = x. 

Hence, it is Known that x does converge to x. It 
.. ... 

remains to show that y and i converge to y and z such that 
.... 

<x,y,z> is a saddle point of l<x,y,z>. I t w i 1 1 be sh own 

that every point on the 1 !mit cycle, Cx,y(r),z(r)J, is a 

saddle point of l<x,y,zSi consequently, as saddle points are 
. I 

equilibrium points, the 1 imit cycle must in fact consist of 

only one point. 

At all points on the 1 imit cycle, x = O; consequently, 

i t is Known from the def in i ti on of x in ( 4. 20) that for a 11 
.. .. 

r, Cx,y(r),z(r)J must satisfy: 

.. .. 
x~lxCx,y<r>,z<r>l = o 

. 
Moreover, as D = 0 on the 1 i mi t eye 1 e, i t is Known from 

.. .. 
<4.24) that for all r, Cx,y(r),z(r)l must satisfy: 
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However, as l<x,y,z> is 1 inear in y and z, it follows that 

ly and lz are functions of x only; consequently, on the 

1 imit cycle, the above becomes: 

-<y - y>"'l ex> - <z - z>"l <x> - y"'A 1 ex> -y z y y 

i"'Azlz<x> = o 

By assumption, y is complementary to lyCx>, and z is 

complementary to lzCx>, so this reduces to: 

Also, by assumption, lyCx> ~ O and .•z<x> ~ o. As the 
A A 

adjustment process requires y(r) ~ O and z(r) ~ O, then 

the latter equation can hold only if both terms are equal to 

zero. · 

Thus, summar i z i n g, i t may be sa i d that C x , y ( r ) , z ( r ) J 

satisfies: 

A A A A 

lxCx,yCr>,zCr>l ~ O; x"'lxCx,yCr>,zCr>J = 0 

A 

1 y<x> ~ O; y"' Cr >I y<x> = 0 

.. 
lz<x> ~ O; z"Cr>lyCx> = 0 

.. A 

RneRmEBR l [5(,y(r),z(r)l e + + + 

But, these are precisely the Kuhn-Tucker conditions for 

saddle points in l<x,y,z>. It follows that the limit cycle 
...... 

must consist of the single point, <x,y,z>, that is also a 

saddle point of l<x,y,z> on R~EB~eR!. 

Thus, if either p > 0 or the commodity is desirable in 

every regional market, then the di~criminator can prohibit 
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all equilibria other than those involving p and i by 

fixing its offer pri~es at p and by imposing a quota 

requiring exports to be less than or equal to y. Moreover, 

if ·such pol ic~ is enforced, and if the excess demands all 

have nega.t i ve slopes, then the marKet wi 11 indeed 

equilibrate at some <p,~,y>. 



CHAPTER V 

SOLVING THE SPATIAL EQUILIBRIUM AND 

PRICE DISCRIMINATION PROBLEMS 

In th~s chapter, the determination of solutions for 

spatial equilibrium problems and price discrimination 

problems is considered. The first section contains a 

general di -=·c•Jss ion of convent i c'na l non l i near programming 

algorithms. Also, a specific algorithm capable of solving 

.:i.11 nonlinear pro•;;ir.:i.mmi ng problems of the prev i ou·s chapters 

is presented and validated. In the second section, several 

hypothetical spatial equilibrium problems and price 

di scr imi nation problems are· constructed a.nd sol !Jed. 

5.1 Solution Algorithms 

Numerous algorithms have been designed for solving 

non 1 i near programm i n•;;i prob 1 ems. As mi •;;ih t be expected, each 

a 1 gor i thm requires 'its own set of as-=-ump t i'ons,. and the 

relative performances of the various algorithms will depend 

upon the general structure of the problem to be solved. 

Common as·sump ti ons upon which many a 1 gor i thms depend are: 

1> a quadratic objective function, 2) a concave objective 

function, 3) 1 inear constrai·nts, 4) concave cc•nstraints, 

and/or 5) constraints with 1 inearly independent gradients. 
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Also, nea.rly all .algorithms f/.Jill require differentiability 

in both the obj~ctive function and the constraints. 

Oftentimes, constraint characteristics such as concavity, 

~ 1 inear independence in the gradients, and d~fferentiabil ity 

are required only of those constraints that become active in 

the course of the algorithmic process. 

The spatial equilibrium problem will satisfy most the 

criteria .abo•.;e. It will be. recalled that the 

quantity-dependent, part i .:c. l equ i l i br i 1.Jm \).:c.r i .ant •:if th i ·:s 

prob 1 em r,...ias: 

maximize ( p) : f (p) 

sub.ject to: t 

p .?r 0 

•JJhere: f(p) = -..n 
"'i=l 

The objective function is nearly always differentiable. The 

constraints are 1 inear, and the objective function will 

nearly always be concave if not strictly concave. Moreover, 

if the excess demands are 1 inear, as is commonly the case, 

then the objective function wil 1 be quadratic. 

As a consequence of these characteristics, the spatial 

equilibrium problem can usually be solved with any one of a 

large number of algorithms. One possible difficulty with 

this problem is that the constraints are not linearly 

independent; however, under usual circimstances, there will 

be few if any 1 inearly independent combinations of 

constraints that can be feasibly active at the same time. 
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Observe that the same conclusions generally hold for the 

price-dependent problem and the general equi 1 ibrium problems 

also. 

If the excess demands are linear, then the 

simplex-based quadratic programming routines will probably 

be among the best algorithms fr::ir solving the spatial 

equilibrium problem. Such routines include the well-Known 

Wolfe algorith~ C1959), or Lemke's complementary pivoting 

algorithm (1968).1 These algorithms virtually guarantee 

convergence to an exact solution in a finite number of 

iterations, whereas other algorithms are asymptotically 

convergent as a rule, and are much more subject to 

algorithmic break-down. The biggest difficulty with the 

simplex routines is that with increasing problem size, the 

reqiured computer storage grows at a rapid and increasing 

rate. Also, the simplex m•thods are subject to cumulative 

computational error, which will often necessitate the 

inclusion of a r•inversion subroutine for large problems. 

In the case of nonlinear excess demands, several 

algorithms could be used for the spatial equilibrium 

problem. Perhaps one of the best of these is the Zoutendijk 

algorithm (1960) discussed below. However, for extremely 

large problems, with either linear or nonlinear excess 

demands, the gradient method should be considered. This 

method is commonly discussed in nonlinear programming texts. 

The primary difficulty with the price discrimination 

problems is the imposition of the complementary slackness 
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cqnstraints. These constraints should probably be handled 

with the penalty function technique, in which case, the 

problem become·:;.: 

A A A A 

maximizeCp,p,x,y>: p'D(p) + <C'p - r>'y + 

subject to: E<p> - Nx - Cy ~ 0 

...... 
-ECp) - Uy ; 0 

... 
<p,p,x,y;r ~ O 

The attributes of the problem largely hinge upon the 

required s i-ze of the pen a 1 ty parameter, cc.. As shown in the 

previous chapter, when the penalty parameter is set to 

unity, the objective function collapses into a simple 

expression that is very possibly concave, and is definately 

concave if the excess demands are 1 inear and with 

nonpositive slopes. Moreover, if the excess demands are 

1 i near, and if the penalty parameter is e-qual to ·~ne, then 

the constraints are also 1 inear, and the objective function 

is quadratic. 

However, the objective function is not concave <nor 

p·::s.eudoconcaue) for any va 1 ue of the pen a 1 ty parameter other 

than unity. Consequent 1 y, if cc. > 1 is required, then the 

Kuhn-TucKer conditions are no longer sufficient for the 

g 1 oba 1 op t i rria • If the excess demands are nonlinear, then 

the constraints to the discrimination problem will also be 

nonlinear; moreover, there are no a-priori theoretical 
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grounds for expecting the constraints to be concave. Also, 

the gradients of the constraints are not 1 inearly 

independent, although it remains improbable that a feasible 

active combination of the constraints should have 1 inearly 

dependent gradients. 

Hence, the discrimination problem is potentially one 

having few desirable features. Indeed, if the excess 

demands are nonlinear, and if « > 1 is required, then about 

the only desirable characteristic that the problem can 

possibly have is differentiability. Consequent·ly, most of 

the conventional solution algorithms can handle this problem 

only over a very narrow range of scenarios. 

The best possible scenario occurs when the excess 
-

demands are 1 inear and«= 1 is a sufficient penalty 

parameter. In this case, the problem reduces to a quadratic 

programming pr.ob I em; conse.quen t 1 y, the re 1 i able Wolfe 

algorithm or Lemke algorithm may be used. Again, a primary 

advantage to these procedures is that an exact solution is 

rendered in a finite number of steps. However, these 

algorithms will require extremely large amounts of computer 

storage for large problems. 

One of the most powerful solution algorithms is the one 

due to Zoutendijk <1960). The algorithm is capable of 

solving the spatial equilibrium problem and all variants of 

the price discrimination problem as well. The only major 

assumption necessary to qualify the procedure is 



differentiability in the objective function and the 

constraints. The algorithm is as follows: 

2outendijK Algorithm 

Problem: Maximize f(X) subject to G(X) ~ O and x e R0
, 

where f(x):Rn' R1 and G<x>:Rn 'Rm. 

Assumptions: f <1x> and G<x> are di ff eren ti ab 1 e over the 

feasible region, or {x e Rn: G<x> ~ Q}. 
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Initialization Step; Choose Xi such that GCx1 ) ~ Q. Let 

K = 1 and go to main step. 

Main Step 

1) Let I= Ci·: gi<xK> =-·o}, and solve the following problem: 

max i mi z e < d, z > : z 

·subject to: 
,. 

Vg1CxK>d - z > O; 

die C-1,ll; 

e I 

( 5. 1) 

(5.2) 

(5.3) 

Le t ( dK , z k ) be in op t i ma 1 so 1 u t i on • I f z k = 0 , then st op ; 

xK is a Fritz John point. If zK > O, then go to step two. 

2) Let AK be an optimal solution to the following problem: 

subject to: 

f ( XK + AK di< ) 
*'• A e ro,A l 

V i } • Next , 1 et 

XK+l = xK + XKdi<· Replace K with K+l and go to step one. 
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Observe that the XK are feasible at every iteration, 

and that f(XK) is strictly increasing in K. Also, observe 

that if the optimal solution to the problem in ste~ one has 

z = O, then the following system has no solution: 

,. 
fx<xK >d > o 
. ,. 

Vg1Cxk>d > O; e I 

The fact that XK is a Fritz John point then follows 

immediately from Gordan,.s theorem <Theorem 2.3.5). 

Step one of the latter algorithm may be accomp1 ished 

with an ordinary simplex routine. However, the problem must 

first be expressed in terms of nonnegative variables. This 

may be accomplished with a simple coordinate translation 

where dis replaced in <5.1) and (5.2) with <d* - u), where 

u = <1,1,,,1),.. Also, <5.3) is replaced with 0 ~ d* ~ 2u. 

One should solve the modified problem for d*, and then set 

d = d* - u. 

The rate of convergence in the ZoutendijK algorithm can 

be slow if at certain iterations there are constraints that 

are nearly but not exactly binding. Such constraints force 

A* to be small, thus 1 imiting the step length. 

Consequently, the algorithm might be improved by redefining 

the set of active constraints such that I = (i: gi <xk) < e) 

for some small e > O. The generated dk will then al low 

greater step lengths. As a practical matter, this must be 

done anyway s i nee compu tat i ona 1 errors w i 11 gen_era 11 y 

prevent exact equality even where it should occur. 
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If the constraints are 1 inear, then the ZoutendijK 

algorithm may be modified such that termination occurs at a 

Kuhn-Tucker point. The modified algorithm is as follows: 

ZoutendijK Algorithm (Linear Constraints) 

Problem: Maximize f(X) subject to b - Ax~ O and x e Rn 

where f(xj:Rn ~ R1 , be Rm, and A e Rmxn. 

Assumptions: f(X) is differentiable over the feasible 

region, or <x e Rn: b - Ax ~ Q}. 

Initialization Step: Choose x 1 such that b - Ax1 ~ Q. Let 

K = 1 and go to main step. 

Main Step 
,. ,. 

1) For given xK, partition band A into <b1 ,b2 ) and 
,. ,. 

<A1 ,A2 ) such that Ai xi< = bi and A2 xK < ~. Solve the 

problem: 

,. 
maximize(d): fx(XK)d 

subject to: A1d ~ 0 

die C-1,ll; 'Ir/ 

If the optimal valu~ of the above problem is zero, then 

stop; XK is a Kuhn-Tucker point. Otherwise, let c\ denote 

the optimal solution and go to step two. 

2) Let "'I< be an optimal s·ol ut ion to the following problem: 

maximize(AK): f<xK +AK'\) 

subject to: AK e CO,A*l 
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where A*= sup{A: A1 <xk + Adk) ~ Q}. Let xk+l = xk +AK~· 

Replace K with K+l and go to step one. 

As before, the generated sequence, <xK}, is feas i b 1 e 

for every K, and f(XK) is strictly increasing in K. Note 

that if the optimal value to the problem in step one is 

zero, then the following system has no solution: 

.I' 

fX(Xk )d ) 0 

A1d ~ O; e: I 

The fact that xK is a Kuhn-Tucker point then follows from 

Farkas' theorem <Theorem 2.3.4). 

The Zoutendijk ~lgorithms are not only'versatile, but 

can also solve the spatJ~l equilibrium and price 

discrimination problems with less computer storage than most 

other routines. This follows from the fact that the 

algorithm employs only active constraints, which are apt to 

be relatively few in number, and the fact that the binding 

constraints to these problems can be easily assembled into 

computer-usable matrices as the algorithm proceeds. That 

is, it is not necessary to store the entire system of 

' 
constraints in matrix format, but rather, ;he constraints 

can be constructed from the basic data as they become 

active, and can then be discarded upon becoming inactive. 

Convergence in the Zoutendijk algorithms is not 

guaranteed. The algorithm is subject to 0 jamming," which is 

a phenomenon where the generated step lengths tend towards 

zero as a nonoptimal point is approached. Problems for 
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which the algorithm does not converge have been contrived by 

Wolfe (1972); however, such counterexamples are difficult to 

construct. 2 

Finally, note that if the complementary slacKness 

conditions are imposed with a constraint, then the model 

becomes: 

A A A .A 

maximize<p,p,x,y): p/D(p) + <C'p - r>/y 

subject to: Cy ~ 0 

A A 

-E<p> - Uy ~ 0 

p/E(p) - t~x - p~Cy > o 
A 

<p,p,x,y) ~ O 

The objective function of this model can never be quadratic, 

or concave, nor can the constraints be linear or concave. 

Consequentry, the Zoutendijk algorithm or an algorithm of 

equal flexibility must be used to solve the problem~ 

5.2 Example Problems 

In this section, several spatial equilibrium and price 

discrimination problems are constructed and solved. Linear 

excess demands a~e assumed; consequently, in all cases but 

one, LemKe/s complementary pivoting algorithm is used to 

find the solutions. However, a case is considered where a 

penalty parameter greater than unity is needed in a price 

discrimination problem. Here, the ZoutendijK method is 

employed. 
/ 
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Consider- the ·:.p.a ti .al mar-Ket- des•:r· i bed by the excess 

demand functions and tr-anspor-tation cost matr-ix in Table 

5.1, which is situated at the end of the chapter-. The 

mar-Ket consists of seven r-egions. Assuming that the 

transportation char-ge per unit of distance is the sam~ for-

all shipment routes, the market map appears as follows: 

<1) • .(4) 
(7) 

( -";• '• _, . • < 5) 

(3) . • ( 6) 

A set of spatial equil ibr-ium prices and trade flows for 

this market are recorded in Table 5.2. Observe that regions 

three, five, and seven are the exporters at the equilibrium. 

Region seven is the 1 ar-gest exporter, having al most 50 

percent of the in terreg i ona l trade mar-Ket. 

Suppose that region seven adopts a price discrimination 

pol icy wher-ein it seeks to maximize net export revenue. 

Observe that region sev~n's excess demand function is simply 

It is assumed that d7 <p 7 > = O. Therefore, 

the discrimination model maximizes export revenue to 100 

exportable units. The optimal price and quantity vectors 

are recorded in Table 5.3. By comparing this table with 

Table 5.2, it may be seen that the discrimination pol icy 

increases region seven's net export revenue by 151.07, which 

represents a 3.57 percent improvement over ordinary spatial 

equ i 1 i br i um. Comparisons between the spatial and 

discrimination equilibria are also recorded in Table 5.5. 
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As a group, t~e three markets to the right of the 

discriminator are more elastic than the three markets on the 

left by virtue of the steeper slope of region five/s excess 

demand. Hence, the discriminator would be expected to lower 

prices to the markets on its right and raise prices to the 

markets on its left. From Table 5.3, it' may be seen that 

this is precisely the case. Prices on the right are 

uniformly lower than under ordinary spatial equilibrium, and 

prices on the left are uniformly higher. 

Now, suppose that region seven and region five exercise 

discrimination cooperatively such that net export revenue to 

the cooperative is maximized. It is assumed that the 

cooperative agreement is such that region five/s potential 

export volumn is fixed at 74.97 units, ·which was the 

quantit~ exported by region five in the former model. Thus, 

the demands and excess demands for the cooperative are: 

d 5 <p 5> = o, e 5 <p 5 ) F -74.97, d7 <p 7 > = o, and e 7 <p 7 > = -100. 

The optimal price and quantity vectors for this scheme are 

recorded in Table 5.4. 

A comparison between the cooperative pol icy and the 

previously considered policies is made in Table 5.5. Note 

that the net export revenue of region seven is lower under 

the cooperative agreement than when it practices 

discrimination independently. Of course, the regions in the 

cooperative could enter into a revenue sharing agreement 

wherein net revenues would not necessarily equal direct 

receipts. However, observe that if region five were to 
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compensate region seven so as to restore its net export 

revenue to the level earned under independent 

discrimination, then region five's net export revenue wo~ld 

be reduced to 3471.86. This value is less than region 

five's earnings in the ordinary spatial equilibrium model, 

but greater than its earnings when region seven 

independently discriminates. This illustrates that an 

independent discriminator might not be advantaged by a 

cooperative agreement if such agreement has no revenue 

sharing provision. It also illustrates that a region in the 

market might be willing to join a cooperative, but not to 

increase its net revenue over the ordinary spatial 

equilibrium level, but to avoid the detrimental impacts of 

the other discriminators upon its own trade. 

In both of the discrimi~ation models above, a penalty 

parameter equal to unity i~ sufficient to drive the penalty 

function to zero. Apparently, it is difficult to construct 

a hypothetical market for which this is not the case. After 

considerable but fruitless effort to systematically 

construct a counterexample, a randomizing algorithm was 

written, and market configurations were randomly generated 

until a counterexample was found. The resulting market 

consists of five regions and is di scribed by the excess 

demands and transportation cost matrix in Table 5.6. 

Assuming that the transportation charge per unit of distance 

is the same along all routes, the market map appears as 

follows: 
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( 1 ) 

(2) 

(5) (3) 

(4) 

A spatial equilibrium solution for this market is 

recorded in Table 5.7. Under the assumption that region 

five practices independent discrimination, the solution of 

the LemKe algorithm for~= 1 is recorded in Tible 5.8. 

Note that escp5 ) = -1250. Region five's demand function is 

set at d 5 cp 5 ) = O; hence, the model attempts to maximize 

region five's net export revenue. Observe that the penalty 

function is equal to -162.93 for this solution; 

consequently,~ must be increased to attain feasibility. 

Upon setting~= 10, and solving the model with the 

ZoutendiJK algorithm, the solution recorded in Table 5.9 is 

obtained after 32 iterations. The discrimination pol icy 

increases region five's net export revenue by 5857.52 over 

the ordinary spatial equilibrium level, which represents a 

14.63 percent improvement. 



TABLE 5.1 · 

SPECIFICATIONS FOR MARKET I 

Excess Demand FtJnc ti ons 

region intercept slope 

1 100.00 -1. 00 

2 100.00 -1.00 

:3 10.00 -1. 00 

4 100.00 -1 .oo 

5 10.00 -2.00 

6 100.00 -1 . 00 

7 -100.00· o.oo 

Tr.anspor t.a ti on C•::)St M.a t-r ix 

region 1 2 3 4 5 6 7 

1 0.00 3.00 6.00 8.00 8.54 10.00 5.00 

2 3. 00 o.oo 3.00 8.54 8.00 8.54 4.00 

-
3 6.00 3.00 o.oo 10.00 8.54 8.00 5.00 

4 8.00 8.54 10.00· o.oo 3.00 6.00 5.00 

5 8.54 8.00 8.54 :3.00 o.oo 3.00 4.00 

6 10.00 8.54 8.00 6.00 3.00 o.oo 5.00 

7 5.00 4.00 5. oo 5.00 4.00 5.00 o.oo 
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TABLE 5.2 

SPATIAL EQUILIBRIUM <MARKET I> 

Tr-ade Matr-ix /< 

r-egion 1 2 3 4 5 6 7 expor-ts 
I 

1 o.oo o.oo o.oo o.oo o.oo o.oo o.oo o.oo 

2 o.oo o.oo o.oo o.oo o.oo o.oo o.oo o.oo 

3 o.oo 33.29 o.oo o.oo o.oo o.oo o.oo 33.26 

4 o.oo o.oo o.oo 0.00 o.oo o.oo 0.00 o.oo 

5 o.oo o.oo o.oo 25.86 o.oo 52.71 o.oo 78.59 

6 o.oo o.oo o.oo o.oo o.oo o.oo o.oo o.oo 

7 52.71 20.43 o.oo 26.86 o.oo o.oo o.oo 100.00 

impor-ts: 52.71 53.71 0~00 52.71 o.oo 52.71 o.oo 

Pr-ices, Net Imports, and Net Revenue 

r-egion pr-ice net imports net revenue 

1 47.28571 52.71429 -2492.63 

2 46.28571 53.71429 -2486.20 

3 43.28571 -33.28571 1440.80 

4 47.28571 52.71429 -2492.63 

5 44.28571 -78.57143 3479.59 

6 47.28571 52.71429 -2492.63 

7 42.28571 -100.00000 4228.57 



TABLE 5.3 

EQUILIBRIUM UNDER DISCRIMINATION BY 
REGION SEVEN <MARKET I> 

Trade Matrix 

region 1 2 3 4 5 6 7 

1 o.oo o.oo o.oo o.oo o.oo ·o. oo o.oo 

2 o.oo o.oo o.oo o.oo o.oo o.oo o.oo 

3 o.oo 35.02 o.oo 0.00 o.oo o.oo o.oo 

4 o.oo o.oo o.oo o.oo o.oo o.oo o.oo 

5 o.oo o.oo o.oo 54.52 o.oo 20.45 0.00 

6 o.oo o.oo o.oo o.oo o.oo o.oo o.oo 

7 48.98 16.95 o.oo o.oo o.oo 34.07 o.oo 

imports: 48.98 51 .97 0 .• 00 54.52 o.oo 54.52 o.oo 

Prices, Net Imports, .and Net Revenue 

region price net imports net revenue 

1 51.02286 48.97714 -2498.95 

2 48.02286 51.97715 -2496. 09 

3 45. 02286 -35.02286 1576.83 

4 45.48286 54.51714 -2479.60 

5 42.48286 -74.96571 3184.76 

6 45.48286 54.51714 -2479.60 

7 43.79637a -100.00000 4379.64 

aaverage net revenue 
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exports 

o.oo 

o.oo 

:35. 02 

o.oo 

74.97 

o.oo 

100.00 



TABLE 5.4 

EQUILIBRIUM UNDER JOINT DISCRIMINATION 
BY REGIONS FIVE AND SEVEN <MARKET I> 

Trade Matrix 
I 

region 1 2 3 4 5 6 7 

1 o.oo o.oo o.oo o.oo o.oo 0. 00 o.oo 

2 o.oo o.oo o.oo o.oo o.oo o.oo o.oo 

3 o.oo 31.61 o.oo o.oo o.oo o.oo o.oo 

4 o.oo o.oo o.oo o.oo o.oo o.oo o.oo 

5 o.oo o.oo o.oo 24.58 o.oo 50 .• 39 o.oo 

6 o.oo o.oo o.oo o.oo o.oo o.oo o.oo 

7 52.39 23.79 o.oo 23.82 o.oo 0.00 o.oo 

imports: 52.39 55.39 o-. 00 48.39 o.oo 50.39 o.oo 

Prices, Net Imports, and Net Revenue 

region price net imports net revenue 

1 47.60600 48.97714 -2331.61 

2 44.60600 51.97715 -2318.49 

3 41.60600 -35.02286 1457. 16 

4 51.60600 54 .• 51714 -2813.41 

5 47.26162a -74.97000 3543.20 

6 49.60600 54.51714 -2704.38 

7 43.08296a ....:·100. 00000 4308.30 

a.average net revenue 
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exports 

0. oo 

0. 00-

31 • 61 

o.oo 

74.97 

o.oo 

100.00 



Re9i•:>n Fi t_.1e 

exp or ts 

a!..' •;I. net r-ev. 

net reven•.Je 

Region Seven 

expor-ts 

avg. net rev. 

net r-evenue 

Cooperative 

expor-ts 

.avg. net re1,•. 

net revenue 

TABLE S.5 

COMPARISON OF POLICIES 

spat i a 1 reg. 7 disc. 

78.59 74. •77 

44.29 42.48 

3479.59 3184.76 

100.00 100.00 

42.29 43.80 

4228.57 4379.64 

178.59 174.97 

43 .16 43.23 

7708.16 7564.40 
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coop disc. 

74.97 

47.26 

354:3. 20 

100.00 

43 .08 

4308.30. 

174.97 

44.87 

7851. 50 
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TABLE 5.6 

SPECIFICATIONS FOR MARKET II 

Excess Dem.and Fune ti ons 

re9i•::in in ter•:ep t slope 

633.38 -9.85 

2 276.09 -8.76 

3 961.26 -3.41 

4 332.53 -5.82 

5 -1250.00 o.oo 

Transp•:ir tat ion Co·st Matrix 

region 1 2 3 4 5 

1 o.oo 6.87 5. 06 7.83 4.66 

2 6.87 o.oo 8.98 6.39 6.26 

3 5. 06 -8.98 o.oo 5.59 2.88 

4 7.83 6 .-.o • .::J, 5.59 0. 00 ' :3. 39 

5 4.66 6.26 2.88 3.39 o.oo 



TABLE 5.7 
162 

SPATIAL EQUILIBRIUM CMARKET II> 

Trade Matrix 

region L 2 3 4 5 exports 

1 o.oo o.oo o.oo o.oo o.oo o.oo 

2 o.oo o.oo o.oo o.oo o.oo o.oo 

3 o.oo o.oo o.oo o.oo o.oo o.oo 

4 o.oo o.oo o.oo o.oo o.oo o.oo 

5 271.98 o .. 00 851.64 126.38 o.oo 1250.00 

imports: 271.98 o.oo 851 .64 126.38 o.oo 

I 

Prices, Net Imports, and Net Revenue 

region price net imports net revenue 

1 36.69062 271.97737 -9979.02 

:2 31.51712 0.00000 o.oo 

3 34.91062 851.64065 -29731.30 

4 35.42062 126 ._38198 -4476.53 

5 32.03062 -1250.00000 40038.28 



TABLE 5.8 

SOLUTION TO DISCRIMINATION PROBLEM WITH 
VIOLATED PENALTY FUNCTION <MARKET II> 

Tr.ade Matrix 

region 1 2 3 4 5 

1 o.oo o.oo o.oo o.oo o.oo 

2 55.23 o.oo o.oo o.oo o.oo 

3 o.oo o.oo o.oo o.oo o.oo 

4 o.oo 0.00 o.oo o.oo o.oo 

5 166.99 o.oo 814.30 92.68 o.oo 

imports: 222.22 o.oo 814.30 92.68 o.oo 

Prices, Net Imports, and Net Revenue 

region price net imports net revenue 

1 41.74184 222.22285 -9275.99 

2 37.82184 -55.22934 2088.88 

3 46.80184 814.30221 -38110.84 

4 41.21184 92.67708 -3819.39 

5 42.33189a -1073.97280 45463.30 

Value of Penalty Function: -162.92656 

a.average net revenue 
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exports 

o.oo 

55.23 

O·. 00 

o.oo 

1073.03 



TABLE 5.9 

EQUILIBRIUM UNDER DISCRIMINATION BY 
REGION FIVE {MARKET II> 

Trade Matrix 

region 1 2 3 4 5 

1 o.oo o.oo o.oo o.oo 0. 00 

.2 o.oo 51.98 o.oo o.oo o.oo 

3 o.oo o.oo 0.00 o.oo o.oo 

4 o.oo o.oo o.oo o.oo o.oo 

5 225.87 o.oo 763.48 94.83 o.oo 

imports: . .225.87 o.oo 763.48 94.83- o.oo 

Prices. Net Imports, and Net Revenue 

region price net imports net revenue 

1 41.37126 225.87310 -9344.65 

2 37.45126 -51.98303 1946.83 

3 46.43126 763.48282 -35449.47 

4 40.84126 94.83387 -3873.13 

5 42.33189.a -1084 .18980 45895.80 

a.average net revenue 

164 

exports 

o.oo 

51.98 

I). 00 

0.00 

1084.19 
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FOOTNOTES 

1For a discussion of the Wolfe algorithm, see Bazaraa 
and Shetty (1979), Sposito <1975), or Martos <1975). The 
Lemke algorithm is thoroughly developed in Bazaraa and 
She tty. 

2 For a more thorough treatment of the convergence 
properties of the ZoutendijK algorithm, or of algorithms in 
general, see Bazara~ and Shetty <1979) or Luenberger (1984). 



CHAPTER VI 

SUMMARY 

Though price discrimination models are generally 

constructed under the assumptions of monopoly and perfect 

m.?.r·ket ·::.ep.:..r.:i.bi 1 it~--, g.:i.in-ful price di·::.crimin.oi.tion c~.n be 

practiced when neither of these assumptions hold. In 

particular, a region operating fn spatial market can 

typically increase its net revenue through a price 

discrimination scheme. The possibilities for successful 

price discrimination result from the fact that the regions 

in a spatial market are partially separated by the nonzero 

costs of transporting between the regions. Also, perfect 

separation may be achi~ved between the discriminator~s own 

region and the other regions in the.market. Consi:?quen t 1 >', 

gains can bi? had through discrimination within the export 

market and through discrimination between the export market 

and the domestic market. 

The discriminator must consider the response of 

competition when determining its optimal price and quantity 

'·..' e c t o r -: .. Improperly set p~ices may result in loss of the 

discriminator~s market shares to competing producers in 

other regions, or may induce detrimental arbitrage of the 

di sc r· i mi n .::i. tor· / ·=- m•m supp 1 i es. Such possibilities are 
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avoided by imposing certain constraints upon the selection 

of the price and quantity vectors. In particular, the 

choice set is confined to those price and quantity vectors 

that are conststent with spatial equilibrium. The 

discriminator is capable of a certaih degree of control over 

the determination of spatial equilibrium points inasmuch as 

it •:a.n •:on trol its 0•1.Jn 'exp or ts and i t·:s •:llJ.Jn offer prices. 

Hence, the discriminator typically has an infinite number of 

sp.~. ti.:;.. l eq•J i l i br'i um points fr•:im •,\lh i ch to •:ho·:i·:se. It then 

chooses the particular equilibria or equilibrium rendering 

max~mal net revenue. 

The optimal price and quantity vectors may be 

formulated as the solutions to a nonlinear programming 

problem. In particular, the discriminator's revenue 

function is maximized subject to constraints requiring that 

the chosen vectors be in accord with spatial equilibrium. 

Among the imposed spatial equilibrium conditions, there are 

certain complementary slackness conditions. These 

conditions may be imposed as constraints upon the problem; 

however, the constraints are nonlinear and nonconcave. A 

possibly better approach is to ~nforce such constraints with 

a penalty function. In either cas€', the res•Jl ting nonl i'near 

programming probl~m is such that the Kuhn-Tucker conditions 
' ' 

are necessary conditions for the optimal solutions in all 

but very 'unl iKely circumstances. However, the Kuhn-Tucker 
r 

conditions are sufficient for the optima only when the 

penalty function approach is taken, and when a penalty 



parameter equal to unity is sufficiently large to achieve 

feasibi 1 i ty. 

The models described above are easily generalized to 

accornodate a group of discriminators operating in a 

cooperative fashion. In these models, it is assumed that 

the objective is the maximization of net revenue to the 

cooperative. The resulting programming models are of the 

same character as those pertaining to the single-

discriminator cases. Indeed, the single-discriminator 
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models ar~ special cases of the cooperative models where the 

cooperative consists of only one region. 

Under certain assumptions, the discriminator may 

influence the dynamic adJ~stment mechanism of the spatial 

market such that the market w i 11 in fact cont,•erge upon the 

chosen p~ice and quantity vectors. These assumptions are 

that the excess ·demands are· different i ab! e and hatJe strict 1 y 

negative slopes, and that either the commodity is desirable 

in every market, or the optimal prices are strictly greater 

than zero. If ·such is .the case, then the discriminator may 

impose its chosen vectors upon the market simply by fixing 

its offer prices at the optimal prices, and by imposing, an 

export quota such that the exports to any one region cannot 

exceed the optima 1 export 1etJe1 • 

Unfortunately, the nonlinear programming problems do 

not necessarily possess many of the properties required by 

most conventional solution al~orithms. As before noted, 

certain of the constraints are nonlinear and nonconcave. If 
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such constraints are enforced with a penalty. function, then 

the properties of the resulting problem depend upon the 

required size of the penalty parameter. If the e~<cess 

demands are 1 inear, and if a penalty parameter equal to 

unity is sufficient ti::i achie1,1e fea.·sibility, then the problem 

reduces to a quadratic programming problem. If the excess 

demands are nonlinear, then the ob.jective functi•::in is i..•ery 

possi bh· concave if the penalty p.ar.ameter is '3'qua.1 ·to one. 

However, the objective function is neither quadratic: nor 

concave <nor pseudoconcave) for any value of the penalty 

parameter other than unity. Also, if the excess demands are 

nonlinear, then the constraints will be nonlinear; moreover, 

there is 1 ittle reason to expect the constraints to be 

However, the Zoutendijk optimization algorithm only 

requires that the objective function and constraints be 

di ff ere n t i .~b 1 e. Consequent)y, this algorithm should handle 

the discrimination problems under most circumstances. 

Another attribute of the algorithm is th~t it requires less 

computer storage than most other routines. Also, simplex­

based quadratic programming routines may be used in some 

cases, and probably should be used where possible. Hot\lever, 

a possible difficulty with these routines is their large 

computer storage requirements. 

There are several areas in which further theoretical 

research into the price discrimination problem is needed. 

In particul~.r, the impl icat.ions •:if retaliation against the 
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discrimination scheme is in need of further study. In its 

present f•:irm, ret.al i.atory trade policies can be incorporated 

into the model, .and the op.t imal solutions under a •;ii ven 

system of trade policies can then be found. However, the 

model does not anticipate the adjustments that might be made 

in such policies in response to the discriminator~s actions. 

A more realistic model would be one in which mathematical 

provisions were made for the retaliatory behavior of 

importers and exporters in the market. 

The possibilities of a more efficient ·:.oluti·on 

algorithm for the discrimination problem need to be 

investigated. The conventional ~elution algorith~s will 

require tremendous and possibly prohibitive quantities of 

computer storage for problems involving numerous regions. 

It is perhaps possible that a less demanding algorithm could 

be designed by exploiting the peculiar characteristics of 

the problem. 

In this study, the comparative static properties of the 

discrimina.tion models h.at.•e been ne•;ilected. Since the 

constraints used in the models are not equality constraints, 

a comparative static analysis would require the assumption 

that the static adjustments in the exogenous variables would 

not alter the set of active constraints. With this 

assumption, a model lending itself to comparative static 

analysis could b~ constructed by discarding the inactive 

constraints and by treating the active constraints as 

e qua 1 i t ~,... cons tr .a i n ts. In situations where this modified 
./ 
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model would be reasonable, a comparative static analysis 

might be of interest. 

The most useful applications of the model would occur 

in the formulation of international trade pol icy. For 

example, the international markets for several agricultur4l 

commodities ~re reasonably described by the assumptions of 

the model • Empirical studies investigating the 

possibilities of g~ins to the ·United States from a 

discrimin~tory pol icy in certain agricultural products 

appear to be warranted. 

Much recent discussion has centered upon the 

possibilities of a cartel arrangement in the international 

~heat market i.nvolvin~ the United States and other major 

wheat exporters. This market appears to be a prime example 

of one in which a discr·iminatory pol icy could prove gainful, 

particularly if such pol ic~ could be cooperatively exercised 

by several wheat exporters. The potential for gains from 

discrimination in the wheat market is furthered by the fact 

that it is 1 ikely that some countries would be willing to 

enter into an arrangement with a discriminator wherein it 

would be agreed that imports from the discriminator would 

not be ~rbitraged. Such arrangements would give the 

discriminator greater liberty to divert shipments from 

relatively inelastic markets. Since there is much question 

as to whether a wheat cartel could effectively control 

production, it is possible that greater gains could be 



reasonably expected from discriminatory pricing than from 

quantity control. 
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APPENDIX 

MISCELLANEOUS THEOREMS AND DEFINITIONS 

Theorem CSchwartz Inequality>: Let x 1 ,x2 e Rn, then 

Corollary <Triangular Inequality>: Let x 1 ,x~ e Rn, then: . ~ 

Definition <Limit of a Function>: Let X be a nonempty 

subset of Rn, and let f<x>:X-" R1 • f(x) is s.aid to 

approach the ·"limit," l, as x approaches a, denoted as 

1 imx_,.a f<x> = l, if for e•.,iery e > 0 there i ·:;. .a 5 > 0 such 

th.at: 

I f(X) - 1 I < i: 

for all x e X satisfying: 

ix - ai < e. 

\If Xis unbounded, then f(X) is s.3.id to a.ppr•:ia.ch the limit, 

l, as x approaches infinity, denoted as 1 imx-"oo f(x) = l, if 

for every e > 0 there is a 6 > 0 such that: 

If ( X) - 1 I < e 
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for all x e X satisfying: 

I xi > o 

Definition CLlmlt of a Sequence): A sequence, CxK}, is said 

to converge to the 1 imit x, denoted as l imK~oo xK = x, if 

for every e > 0 there is an integer, K, such that: 

i XI< - XI < e; V I< > K 

Deflnl t ion CCont lnul ty): Let X be· a nc•nemp t;...- subset of Rn, 

a.nd let f(x):X ~ R 1 • f(X). is said to be "c•::intinuous" at 

aeX if: 

1 imx~a f<x> = f<a> 

f<x> is said to be continuous on X 'if it is continuous .~t 

eo.,•ery a e X. 

Definition CDifferentlablllty): Let X be a nonempty open 

subset of Rn, and let f<x>:X ~ R1 • Denote the ~radient of 

f<x> by Vf(x). f<x> is said to be "differentiable" at a e X 

if its gradient exists at a, and if there exists a function, 

w<a,x-a>, satisfytng 

1 imx~a w<a,x-a> = o 

and: 

f<x> = fCa) + Vf'Ca><x - a> + Ix - alw<a,x-a>; 'v' x e X 

Let H<x> denote the Hessian matrix of f(x). f(x) is 

said to be "twice differentiable" at a e X if its gradient 
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and Hes·:;i..:1.n ma.tr ix exist at a, and' if there exists a. 

function, wc:a,x-a), satisfying 

and: 

fCx> = fCa> + Vf'Ca><x - a> + C1/2><x - a>'H<a><x - a> + 

Vxe:>< 

f(X) is said to be differentiable (twice differentiable) on 

X if it is differentiable (twice differentiable) at every 

a e: x. 

Theorem <Taylor's Theorem, Second Order>: Let X be a 

nonempty open convex s~t in Rn, and let fCx>:X ~ R1 be 

twice differentiable on X. For every x 1 ,x~ e: X: . .t:. 

(X2 - Xl) 

where i = ~x1 + (1-~>x2 for some~ e: C0,1). 
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