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PREFALCE

This study considers zpatial equilibrium theory and thes
practice of price discrimination in the spatial market. The
first objective of the stud? was the development of
mathematical means to the determination of optimal price and
quantity vectore for a discriminator opsrating in a spatial
maéket. The second objective was the development b% a trade
policy whereby the discriminator could influence the
dynamics of the markKet such that it would converge upon and
equilibrate at the optimél price and quantity uectofs.

Since the price discrimination models are derivatives of the
ordinary spatial equilibr}um'model, spétial.equilibrium
theory is a maJoP topic in this work. Also, since all
economic theory of this work is exprsssed in terms of
nonlinegar programming models, one chapter is dedicated to
the preszntation of nonlinear programming theory.

The topic was originally suggested by Dr. L.V. Blakiey.
It was ftelt that the present deterioraticon in the U.S.
balance of trade demanded further investigations into
international trade policy. Particular concern was had for
policies which could improve the ftrade situation for
agricul tural cnmmoditiesf The original intents included the
measursment of potential gains from a discriminatory pricing

pelicy in U.5. international wheat trade. However, since
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the theory pertaihing to such policy proved to be more
inuo]uéd than anticipated, the study was confined to
theoretical investigation.

I extend aratitude to my adviser, Dr. L.V. Blakley, for
suggesting this topic ana for the degree of latitude that
was granted in this and other graduate work., A better
adviser could not have been had. I am appreciative to Dr.
J.3. Plaxico for his efforts, which were more than would be

ected of a committee member. &Also, Dr, Flaxico
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encouraged academic training which proved =2ssential to the
dynamic analv¥ses in this work. I also extend thanks o Dr.
Dan Tilley ana Or. Michael Edgeman +or their contributioﬁs.

I am appreciative to the faculty and staff of the
Department of égricultdéé] Economics of this university for
its efforts toward an ouistanding academic program. I
extend unending thanks to all émerican taxparers for their
financial contributidns, which ar2 too frequently unnoticed,
but which have made this and all other of my academic
endeavors possible.

Finally, 1 dedicate this work to mr parents, who are to
be credited to the fulleét extent. Indeed, I reckon this
and all other écademic éccamplishmenta as being no less

theirs than mine.
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CHAPTER 1
INTRODUCTION

Whenever the conteﬁt of price discrimination is
encounterad in sconomic literature, it is almost alwayrs
found under the assumptions that the discrihinator is a pure
manopolist, and that the varigus markets into which it sells
are or can be perfectly separated. Howewver, it is evideqt
that these assumptions are unnecessarily restrictive. Pure
monopol is-seldomly it ever observed, and the incidence of
perfect market 5eparatiE; is equally infreguent., Yet few
‘wouIH question that pricé discrimination does actually occur
in practice., -

The possibilities of gains from price discrimination in
the absence of these assumptions is illustrated by the
spatial market. Here, it is assumed that the aggregate
market is composed of several regional markets with possibly
numerous buyers and sellers in each., It is also assumed
that at least some of the regional markets are at liberty to
trade with one anotheﬁ, but that there are nonzero costs of
transporting the product between regions. Now, consider a
spatial market consisting of three regional marksts that are
situated on a line. Thus, the market map might appear as

follows:
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where A, B, and C represent the three regional markets.
Suppose that interregional trade occurs in th; directions of
the arrows shown., Morsover, suppose B-incurz a %1 per—-unit
transzsportation charge on shipments to & and on shipments to
C, and that tﬁe costs of shipping between A and C are $2
per-unit,

In an ordinary spatial equilibrium, the price
differences between trading markets will be exactly equal to
the per-unit costs of transporting the product between
regions. Hence, in the market described above, the price in
A and C will be exactly %1 gbeater than the price in B.

Now, it is apparent thazuthe spatial equilibrium prices and
quantities are not necessarily optimal insofar as the
maximization of B's expoﬁt revenue i3 concernsd. If the
excess demand in & is more elastic than the excess demand in
C, then B can increase its export revenue with a proper
price reduction to A and price in;rease to C. Moreoguer, B
is capable of making such price adjustments to a limited
'extent, for it can charge prices to & and C differing by as
much as %2 without inducing arbitrage. Thus, the partial
degres of market separation in the spatial model can permit
suyccesstul price discrimination. However, ﬁbserue that B is
not nécesaarily a monopolist, nor are its markets perfectly
separated.

The primary objectives of this study are the

determination of optimal price and gquantity vectors for a
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revenue-maximizing discriminator or cooperative of
discriminators operating in a spatial market, and the
formulation of a trade policy whereby the discriminator or
cooperative of discrim{nators may impose such price and
quantity.uectors upon the market. Hence, concern is
directed toward problsms such as the one described above.
Consideration is also directéd toward those cases where a
group. of regions exercises discrimination in a cooperative
fashion. Theres are basically two gussticns to be addressed.
First, what are the optimal price and gquantity vectors?
Second, after having determined the optimal vectors, how
does the discriminator then cause the actual guantities and
prices in the market to equal the chosen values?

As allleconomic moaéls in this work are farmulatgd as
" nonlinear programming problems, the second chapter is
dedicated to a thorough'§nd\rigorous derivation of general
nonlinear programming theory. @As the price discrimination
models are derivatives of the ordinary spatial egquilibrium
model, pursuit of the objectives necessitates a thorough
development of ordinary spatial =squilibrium theory. Spatial
equilibrium theory is developed in the third chapter. In -
the fourth chapter, various price discrimination models are
constructed., The chapter considers the case of a single
discriminating region, and the case where several regions
exercise price discrimination in a cooperative fashion. The
chapter begins with’the construction of nonlinear

_programming models having solutions equal to the optimal



then shown how that the
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price and guantity vectors. It i
discriminator may influence the dynamic adjustment mechanism
of the sp#tial market such that the market converges to and
equilibrates at such vectors. In the fifth chapter, some
hypothetical market contigurations are constructed, and a
spatial equilibrium is calculated for 2ach configuration.

It is then assumed that one or more of the regions in the
market practices price discrimination. The models are
solved again under this assumption, and comparisons are made

be tween =zarned revenue in the former and latter situations.



CHAPTER I1
NONLINEAR PROGRAMMING THEORY!

In this chapter, nonlinear cptimization theory
necessarr to subsequent chapisrs iz developed. Primary
concern is directed toward deriving necessarr and sufficient

conditions for solutions to the problem:

maximize{yxyr: iy

subject to: G(x) 2 0

X = X
- - _ _
X1 Qq (XD
X'Z '32()(3'
where: x = |. Gex) = |.
*n :gn(x)_
f{x» is called the "objective Function." The
condition, G(x) x 0, is called the "functional constraint,”

while the condition, x € X is called the "set constraint.”
The set constraint usually serves to establish the general
domain of the functigns involved in the problem. In
practice, X ie generally taken to be the n-dimensional
euclidean space, hereafter denoted by RI,

The relation, %, and associated relations are

interpr2ted as follows: 1) 2 2 0 implies tha

(ad
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components of 2 are nonnegative. 2) 2 > 0 implies that all
components of Z are positive, and 3> z > 0 implies that
z z 0, but z = 0. Accordingly, for any two vectors, zZ and
Z;: 1> Zy 2 25 implies Z2y -2y 2 c. 2 zZy 2 2z implies
zZ; - 252 0, and 3 2, > 2, implies z; - 2y ? 0. The
relations: &, {, and £ are similarly defined.

The emphasis of the discussion is upon the

"Kuhn-TucKer" optimality conditions. For the latter

problem, these conditions are:

fx(x) + Gx<x)x =0
AG(x) =0
A2 0

where fx(x) is the gradient of f(x) and G, (x)> is an nxm
"matrix whose ith column is the gradient of 9; (x>, hereafter
denoted by Vgl(x). The vector, ), is commonly called the
vector of "Lagrangian multiplieré.“ Note that the second
condition implies that if X ? 0, then g;(x) = 0. That is,
if the Lagrangian multipliier is positive, then the
corresponding constraint is "binding" or "active." Such
relationships are cailed “complementary slackness"
relations. Accordingly, the variables involved are said to
be “"complementary."

The most important conclusions to be drawn in this
chapter concerning the Kuhn—Tucker conditions are summarized

in the following theorems:



Theorem (Kuhn-Tucker Hecessary Conditions): Let X be a
nonempty open set in Rn, and let f(x):X = R1 and

G¢x):X » R™, Consider thé problem to maximize f(x) subject
to x &€ X and GxY 2 0. Let G'(X) = [é’(x),a’(x)l-where
a(x) is affine. Let X be a local optimal solution to the

problem, and let:

€

(X = 03

[T Y
X1

s
]

{i:

> = 03

b ]

T =¢it g;¢

Suppose that f(x)> and G(x) are differentiable at X.

Moreover, suppose that the Vai(i) are linearly independent

for i € I, then there exists (Al,Az,,,Am) such that:

£,(X) + E1_ 2 Vg(X> =0
Aigl(i) = 03 i = 1,2,,,m
A2 03 = 1’2;’!‘“

Thus, under the stated assumption of the theorem, local
optimal solutions imply Kuhn-Tucker points. As a global
optimal solution is also a local optimal solution, it may be
concluded that i+ the various assumptions hold, then the
Kuhn-Tucker conditions are necessary conditions to the
global optima.'

The next theorem cites conditions under which

Kuhn-Tucker points imply global optima:

Theorem (Kuhn-Tucker Sufficlient Conditions): Let X be a
nonempty convex set in R”, and let f(x):X = rR! and

Gix):X » R™. Consider the problem to maximize f(x) subject



to G(x) : 0 and x & X. Let X be 2 feasible =olution, and

supposge that there exists ihl,Aﬁ,,,Am) such that:

X i=1""1
Algl(xJ = 0; i = 1,24,,m
A2 s i =1,2,,,m
Let I ='{i:gic§) = 03, and let g, (x) for i = I be

Ca s

guasiconcave at X with raspect to2 points in the fe2asibie
region. Moreower, et $(X) be pseudosoncave (stpicitly
pseudoconcave? at X with respect to points in the feasible

reqgion, then X is a global optimal sociution {unigue global

optimal solution? to the maximization problem.

After establishing'ﬁhe above, attention is then
directed toward the Lagrangian saddle point characterization
of the maximization probltem. It is shown that under certain
assumptions, the solutions to the Kuhn-Tucker conditiong may
he formulated as the "saddle points® of the "Lagrangian.®
The Lagrangian to the particular maximization problem at

hand is the function:
T{X a2 = FIX) + X"G(X); (Xn? & '}<aRT

wherea RT denotes the nonnegative orthant of the
m-dimensional =2uclidean space. X is called thes vector of
*Lagrangian multipliers® in this confext also. (X, Ny is

said to be a "saddle point" of 1{(x,n> if:

TERRY £ TEX, N € TR, : V (X2} = XaRT



Note that at the saddle point, 1(x,x> is maximized subJject

to x = X, and 1{(X,\) is minimized subject to \ € RT; hence

the term, "saddle point."

In subsequent chapters, the primary interest in saddle
points is their relation to the Kuhn-Tucker conditions. In
this chapter, the relation is formerly established with a

proof of the following theorem:

Theorem: Let X be a nonempty open set in Rn, and let
FCxr:X » R and G(x):X =+ R™.  Let 1¢x,n) = (x> + x’G(X)
and suppose that (X,\) € XQRT satisfies the saddle point
relation:

TEX,RY & TCR,R) & 1<K, Y (x,\) & XeR]

. Further, suppose that F(x) and G¢(x) are differentiable at
X, then X is feasible; moreover, (X,n) satisfies the

Kuhn-TucKker conditions:

fx<x> + Gx(x)x =0
AGIx) = 0

x20

Conversely, let X be {eésible, and suppose that
(X,2> satisfies the Kuhn-Tucker conditions. Let
I =(i: 9<% = 03. Moreover, let X be convex, and let
f(x) and g;<(x) for i € I be concave at X, then (X,

solves the saddle point relation.
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Hence, under the assumpftions of the theorem, saddle points
in the Lagrangian are éne—to-one with the soclutions to the
Kuhn-Tucker conditions.

The final topic considered is the case where 1
nonnegativity requirement for % is included in the

constraints to the maximization preblem. Hence, th

2 general
form of the problem becomes:
maximizeixr: +Fi0x?
subject to: G (x) 2 0
X € X
where G*(x) = [G{x),x1 . It is shown that in such cases,

an alternatiue ztatement of the Kuhn—-Tucker conditions i=:

fx<x). + Gx(x)x i 0 x"[fx(x) + Gx<x)x1 = 0
AG(xY = D
Az 0

The next four sections develop the mathematical
groundwork necessary to the formulation of the above theory,
and to other quantative analysis throughout this work. The
fifth section treats Kuhn-Tucker theory. The sixth section
is concerned with.Lagrangian saddle points. In the seventh
section, the general theory i3 appligd to those cases where
nonnegativity in x is an explicit constraint upon the

maximization problem.



il
2.1 Topological Concepts

The following definitions are frequently used in
connection with sets. Each employs the "e-neighborhood"

concept. The €-neighborhood of X is the set:
Ne(i) = {x: Ix - X| < €2
where I - X| denotes the euclidean distance from x to X.

2.1.1 Definition: Let X be a nonempty set.in R". A point,
RXs is said to be in the "closure" of X, denoted by cl X, if
XAN_¢(x) = @ for every € > 0. If X = cl X, then X is said to
be a “closed set." X is said to be in the "interior® of X,
denoted by int X, if Ne(X) c X for some € > 0. I+f

X = int X, then X is sa}a to be an "ohen set." % is said to
be on the "boundary" of X, denoted by aX, if Ne(x) contains
at least one point in X aﬁd one point not in X for every

€ >0. X is said to be "bounded" if there exists ¥ = Rl

such that Ixl £ ¥ for every w = X, X is said to be

‘“compact" if it is both bounded and closed.

Consider the set:

= 2
X = {(xl,xz)z x? + x5 £ 12

Geometrically, X is the set of all points on and within a
unit circle centered at the origin. X is closed, that is,
X = ¢l X. The interior of X consists of all points inside

the circle, so: .
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. - ) 2
int X = Clxy,x0t x2 + x5 < 1)

The boundary of X is the circle itselt, or:

aX = ((xy,x0: x2 + x5 = 1)

X is clearly bounded; moreocver, since X is closed, it is
also compact.

The following is a list of topological properties of
open, closed, and compact sets in R". The verification of
these properties can be found in most topology texts:2
1> The intersection of a finite number of open sets is open.
2> The union of open sets is open.,
3> The intersection of closed sets is closed.

4) The union of a finite-Bumber of closed sets is closed.

- 9 The intersection of a compact set and closed set is
compact.

6> The union of a finite numker of cémpact set§ is compact.

Oftentimes, sets are defined by the inverse im;ges of
functions. For example, the set, {x € R": g(x> > 03, is
defined by thg inverse image of g(xX>. The next theorem
proves useful toward determining whether such sets are open

~

or closed:

2.1.2 Theorem: Let X be a noneméty set in Rn, and let
f(x):X 2 Y be contijnuous on X, Furthermore, let S c Y,
then:

1> I¥f 8 is open, then 7 1¢s) is open.

2) 1§ S is closed, 'then +1(8) is closed.
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The +ollowing definitions are frequently used in
connection with the minimization and maximization of

functions over sets:

2.1.3 Definition: Let X be & nonempty set in R", and let
fix) X = R!. The "infimum" of f(x), denoted by inf +(x?,
is the largest real number ¢ satisfying f{(x> 2> v for all

®X e X, that is, inf f(x?> is the "greatest lower bound" of
f(x>. If #{(X) has no lower bound, then inf f(x) = -®0. I¥F
there exits X, € X such that f(x ) = ., then x,  is said to
be a "minimum point," and f(xb) ie said to be the "minimum"
of f{x>. The "supremum" of (R}, denoted by sup f(R), is
the smallest real number o satisfring f(x) ¢( o for all

X € X, that is, sup f(x> {s the “"least upper bound" of.f(x).
If (x> has no upper boun&, then sup f(x> = w. I+ there
exists Xy € X such that kaa) = g, then Xo is said to be a

"maximum point," and f(xc) is said to be the "maximum" of

FOR) .

Consider f(x> = x on x € [D0,1). Clearly, inf f{x) = 0,
and sup f(x) = 1. As f(x) attains it infimum at x = 0, zero
is a mincimum point of f(x) on x & [0,1); however, as f(x)
does not attain its supremum, then the function has no
maximum on the stated AOmain. This example illustrates that
a function may not have a minimum or maximum over a set that
is not closed. Now, consider f(x> =1 - e * on x € [0,%),

The infimum of the function is zero and is attained at

x = 0. The supremum of the function is one, but the
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supremum is not attained at any xj; consequently, the
function has no maximum. This illustrates that a function
may not have a minimum or maximum over an unbounded set.
Finally, consider (x> = {/x on x € [0,1]. The supremum of
this function is ®; however, as such subremum is clearly
unattainable, the function has no maximum. This illustrates
that a function may not have a.minimum or maximum i+ it has
points-of discontinuity on the domain.

The next theorem is a famous result due to Weierstrass,
and is proven in many topologqy texts. The theorem
establishes conditions under which a function must have a

minimum and maximum.

2.1.4 Theorem (Welerstrass Theorem): Let X be a nonempty

: compact'éet in RM, and let $¢x>:1X > R! be a continuous
function on X, then f(x) is bounded; moreover, f(x) attains
unto both inf f(x) ;nd sup f(x>, or equivalently, f(x) has

both a minimum and a maximum_on X.

2.2 Convex Sets

One of the most important concepts in mathematical
programming theory is the convex set. Such sets are

formerly defined as follows:

2.2.1 Deflnitlion: Let X be set in R". X is said to be
“convex" if Xy1Xo € X implies ax; + (l-a)x, € X for each « €
(0,1). The4null set, @#, and sets consisting of a single

point are also classified as convex sets,
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Geomefrically speaking, a set is convex if the line
segment connecting any two points in the set lies completely
within the set. A commonly encountered example of a convex
~set is the "half space." A half space consists of all
points lying on either of the two sides of a hypeﬁplane.
Hence, the hyperplane, a’x = B, defines four half spaces;
two of which are Xg =»{x: a’x > By and X; = {x: a’'x £ B2.

The other two are simply the'open variants of these. To

demonstrate the convexity of Xg, SUppose XXy € X then

g’
a'xl > B, and a’x2 2 By which implies:

a’[ocxl + (l—ur.)le > aB + ({-a2B = B

Thus, axy + <1—a>x2 e Xg for all «, and particutarly for
G.E (0,1)-
The following lemma is an immediate consequence of the

detinition of convexity:

2.2.2 Lemma: Let X; and X, be convex sets in RM", then:
13 Xlnxz is convex.
2> X1+X2 = {x; ¢ xé: Xy € Xy, Xz € X3} is convex.

3 Xy=Xg5 = {%X; - Xzt X; € Xy, Xp € Xz} is convex.

Proof: To prove part one, suppose X{sXp € xlnXZ' Since
X & Xy, and x, € X;, then by convexity of X,

ax; + (1-adxp, € X; for « € (0,1). But similar reasoning
leads to the conclusion that aX; + (1-q)x2 =] xz;

consequently, Xy + (l-a)xz =3 xlnxz.
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For part two, suppose x = Xy + Xp € X1+X2 and

X = X; + X5 & X{+X5, then:
ax * (1=a)X = [ax; + (1-2)X;] + [aXy, + (1-x)Xp)

Since X1 is convex, the first term on the right is in X, for
€ (0,1>. Simitarly, the second term is in Xz;
consequently, ax + (l-a)X = X +X5, which proves the

proposition. The proot of part three is similar.

Consider the set X = {x: AX : b} where b is an m vector
and A is an mxn matrix. Observe that X is simply the
intersection of the m half spaces defined by the rows of A
#nd b. As these half spaces are convex, and as the
intersection of convex sets is also convex, then X is
conQex. This result may also be easily proven directly.
Such sets are called "polyhedral sets." ,
The following theorem and corollaries fofmerly atfirm

some rather intuitive results concerning the interiors and

closures ot convex sets:

2.2.3 Theorem: Let X be a convex set in R” with a nonempty

interior. ‘Let X, € cl X and X, € int X, then:
%= aX, + (1-)%, € int X; Vae (0,10

Proot: Since iz € int X, there exists an € > 0 such that

Ne(iz) e X. It will be shown that:

{n: IX = Xl < (i-ade & X
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That is, there is an (l-x)e-neighborhood of X contained in
X3 therefore; X € int X by definition. First, choose any x
satisfying Ix - Xl ¢ (1-a>e. Now, since §1 € ¢l X, then
for any & > 0, there exists x; € X such that Ix; - X;| < &.

Let:
Xp = (x - axl)/(l-a) (2.1)

Using the triangular inequality (See APPENDIX), it may be

confirmed that:

IX - ax X - aX, |
lx - ; | = ' —————— 1‘ - — v — Ll i
2 2 | 1-a fma
i - - i - ob
——=Cix = X} + «IX; = x1) ¢ —==Ix - XI + === < ¢
1-a ) 1=

where the last inequality holds since IX - X1 < (l-x)e by
assumption and since 5 may be chosen arbitrarily small.
Thus, X2 is in an e—neighborhood of iz, and consequently,
Xo € X. Now, (2.1) implies that x = aXxy + (l—a)xz. It has
been shown that X, € X. By assumption, x; € X. By
convexity of X, it follows that ® € X, and subsequentiy,

{R: I - X! < (1-x)e? c X, which completes the proof.

Corollary i1: Let X be a convex set in R with nonempty

interior, then int X is convex,

Corollary 2: Let X be a convex set in R", then cl X is -

convex.



Proof: I+ int X = @, then necessarily, X = 23X and

cl X = X, so cl ¥ = X, and consequentliy, the corallary

m

holds trivially. Suppose int X = @g. Let X;,%Xs € ¢l X and

X = int X. Using the theorem, AX + (1=»)%X; = int X for

N = (0,12, and subsequentliy:
alxx + (l—hhxll + (l=a)X, = int Xj Vo= (0,12

Upon taking the Timit of the abow

)]

as »~ -+ 0, one obtains

xXy + ﬂl—a}xz = ¢l X, which compistas the proof.
2.3 Hyperplane Separation

In this section, several intuitive but critical
theorems concerning convex sets are stated and prowven.
Thece theorems are thenm used to ascertain the existence or
nonexisten;e of solutions to certain iineér s¥stems.

All results of this section are consequences oFf the

following lemma:

2.3.1 Lemma: Let X bs a nonempty convex set in R7, and let
y 2 X, then there exists a nonzero a € R such that

a’'x > a’'y for every x & cl X,

Proof: Let f(x) = Ix -~ yl. It is apparent that there
exists a v » 0 such that v = in¥ {fix>: = X3. I+ (R’
attains its infimum, fthen it clearly must do so at a2 point
in X = cl ¥X{x: Ix — yl £ £ where € > L. As X~ is
compact, and as f(x! is continuous, then it kKnown by the

Weierstrass theorem (Theorem Z.1.4) that f{x) does in fact
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have a minimum on X*, and consequently, on cl X. Let X be
a minimum point, and let x be any other point in cl X.
Since cl X is convex, ax + (l-a)X € cl X for « € (0,1)}

subsequently:

fax + (1-)% - y12 > 1% - y12

Expand the left-hand side to obtain:

a2lIx - %1% + 1% - 912 + 2aix - KICK - y> > IX - yi?
which imp]igg:

alx - %12 + 2(x - X)X -y 20

Upon taking the 1limit of the above as «o 2 0, one obtains:

(X - X>¢x - y> >0
which implies:

(R - P’X2 (R -PX-y+y =12 4+<(x-y’y

Let a = (X - y> to complete the proof.

The theorem simply asserts that for any convex set and
a single point isolated from the closure of the set, there
exists a hyperplane passing through the point and having all
of the closure of the set in one of its open half spaces.
The particular hyperplane éonstructed in the proof is the
hyperplane passing through y and perpendicular to (X - yJ.

The next theorem is a consequence of the lemma:



2.8.2 Theorem ¢Supporting Hyperplane Theorem): Let X be 3
nonempty convex set in R", and let X € aX, then there
exists a nonzero a € R" such that a’x 2> a’X for every

x € cl X.

Proof: Since X = 2X, one may construct a sequence, {yk},

not in X, satistring limkéw Y = X By the last lemma, for

every such Y, there exists a nonzero a, satisfyring:
akx>akyk; Vxxecl X

Without loss of general{ty, it may be assumed that the a,
are normalized so that Iakl = {. Hence, the 3y are bounded
and must fherefore possess a limit as Y 2 X. Let

lim, .o @ = a. Upon takfﬁg the 1imit of the above as K - o,

~

one obtains:
a’x > a’‘x; Vxxecl X
which was to be shown.

The supporting hyperplane theorem asserts that for any
X on the boundary of a convex set X, there exits a
hyperplane passing»fhrough X and having all of X in one of
its closed half spaces.

The following corollary is a generalization of Lemma

2.3.1:

Corollary: Let X be a nonempty convex set in R", and
suppose y & int X, then there exits a nonzero a = R such

that a’x 2 a’y for every x = cl X.
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Proof: If y = cl X, then the corollary follows directlyr
from Lemma 2.3.1. I+ y = ax, then the corollary follows

directly from the supporting hyperplans thsorem.

With use of the latter corollary, th2 important

zeparating hyperplane theorem may now be e2stablished:

2.3.3 Theorem (Separating Hyperplane Theorem): Let X, and
Xz be nonempty conuex sets in R" satisfying KIHKE = @, thesn

there exists a nonzero a = R” such that a’xy r a'xg ror

Proof: Let X = KI-XE = {xl - Xzt X; = Kl, Xo & XZ}' By

-

Lemma 2.2.2, X is convex. Furthermore, 0 & X, for
otherwize, X MX, would not be empty. Subsequently, by the
last corollary, there exists a nonzero a = RO such that -
a’'x > a’Q0 =10 fof éueﬁy x =cl X. But by the definition of

Xy this implies:

s
axl

(4

Thus, for any two nonintersecting convex sets, there
exits a hyperplane having one set in each of i1ts closed hal+¥
spaces.

The theorems thus derived bear important implications
for the existence of solutions in ceétain linear systems.
The next two theorems are concerned with some of these

implications:
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2.8.4 Theorem ¢(Farkas’ Theorem): Let A = R™" and ¢ & R,

then exactly one of the following systems has a solution:

system 1: Ax ¢ 0 and ¢’x > O0; x e .RD

system 2: A‘'y = ¢ 'y & RT

Proof: Suppose that y %oluea system two, and that X
satisfies AX < 0, then ¢’X-= ¥’AX ¢ 0; hence, system one
has no solution. "Now, suppose system two has no solution,
and let X = {x: x = A’y, y € R1>. Since c ngX, then by

Lemma 2.3.1, there exits a nonzero X € R" such that:

y'AX < ¢’X3 Vye hT

Since the components of y may be arbitrarily large, the
latter inequality impliéé'that AX ¢ 0. Moreover, since y
.may be equal to 0, it follows that e¢’X > 0. Thus, system

one has a solution.

2.3.5 Theorem (Gordan’s Theorem): Let A e R"*M, then

exactly one of the following systems has a solution:

system 1: Ax < 03 x € RP

system 2: A’y = 0; yeR], y=0

Proof: Sﬁppose X ié'a solution to system one and that y
is a solution to system two, then AX < 0 and ¥ > O imply
y'AX < 0. But, this contradicts the fact tﬁat A’y = 03
hence, both systemgicannot simultaneousl; have solutions.
Now , sdppose system one has no solution and consider

the following sets:



{z: z = AX, x € R™2 |

22 = {z: z £ 0%

As 21 and Z, are nonempty convex sets satisfring Z,NZ, = @,
then by the separating hyperplane theorem, there exists a

nonzero ¥ € R" such that:
FAX 2 ¥z vxeR', Vzecl 2z

Since the cohponents of 2z may be arbitrarily small, it
follows that ¥ > 0. Moreover, as 0 € cl Z5, the latter
inequality implies that y’Ax > 0 for every X € RO,
Therefore, upon setting x = -A’y, it follows that

—IA'§|2 > 0, which implies that A’Y = 0; hence system two

has a solution.

2.4 Coﬁcave Functions

One o+ thé:most essential concepts in nonlinear
programming theory is the concavity property in real
functions. Several variants of concavity could be
discussed; however, this section treats only the most
essential forms. The most essential and most frequently

encountered form of concavity is "simple concavity,” which

is formerly defined as follows:

2.4.1 Deflnition: Let X be a nonempty convex set in rRM,
and let f(x):X » R!. Moreover, let X e X. f(x) is said

to be "concave" at X if for each x € X and « € (0,1):

flax + (1-a)X] 2 af(x) + (1-x)f(X)



fix» is said to be "strictly concave™ at X if strict
inequatity holds in the above relation for all x = X. F{x?
ig said to be concave (strictly concauvel on-X i+ it is

concave (strictly concave? for every X = X.

Geometrically, these definitions imply that a2 function
is coécaue at X if it lies on or above any cord connecting
+{X> and any other point on the =zurface of the function.

I¥ the function is strictly concave, then it is strictly
above an» such cord at all points other than the 2nd points,
| fi{x? is said to be.conuex (strictly conwex) i+ —f(x> i3
con&aua {strictly concave>. In the remainder of this
gection, only concave functions are explicitly considered;
however, the ¥oregoing-reéu]ts may be easily moditied to
accomodate convex +unttioﬁi as wé]l.

The next theorem is--one of the most useful results in
mathematical programming. Before stating the theorem, some

definitions are nesdful:

2.4.2 Definition: Let X be a nonempty sef in Rn, and let
Fix)x = k!, Consider the problem to maximize +{(xX» subj=sct
tow = X. Any x =X is said to be a "feasible point.”
Accordingly, X ies called the "feasible region.” If %X = X,
and f(X» > (x> for every x = X, then X is said to be a
“global optimal solution" or simply an "optimal solution.”
If X = X and there exist an e-neighborhood, NE(R), about

X such thét F(X) > F(x> for every X & Nﬁfibﬁx, then X is

said to b= a "local optimal solution.®
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2.4.3 Theorem (Local-Global Theorem): Let X be a nonempty
convex set in R, and let f(x):iX = R, Consider the
problem to maximize (%) subject to x € X. Suppose X is a
local optimal sﬁlution to the problem, then:

1) If f(x)> is concave at X, then X is a global optimal
solution.

2) I+ f(xX) is strictly concave at X, then X is a unique

global optimal solution.

Proof: To prove part one, suppose there exists an § e X
such that (x> > f(X), then by concavity of f(x) at X, it

follows that for o = (0,1):

Flax + (1=adR] > af(x) + (1-)FCX) > (30

‘But for « sufficieﬁtly small, ax + (1-)% € Ne(i) so that
the above inequality contr;dicts the local optimality of X.
To prove part two, suppose that X and i are both
global optimal solutions. By the strict concavity of f(x?

at x:
FO5% + J5%) > J5ECR) + L5(X) = (X
which contradicts the global optimality of X.

In nonlinear programming problems, the feasible région,
X, used in the above theorem is defined by the constraints.
Frequently, the coﬁstraints will be such that X is convex.
1+ this is the case, then the latter theorem will prove S

useful.
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The next two theorems may be frequently used to
identifty constraint sets defining convex feacible regions.

First, the following definitions must be established:

2.4.4 Deflnltlon: Let X be a set in R, and let

§¢x:X » Ry, then:

1> The set {x  X: (x> > B} is called én “upper set."

2 The set {x = X: f(X> > B} is called a "strict upper set."

3) The set {x = X: f{(W BY is called a "lower set."

I~

4) The get {Xx € X: (x> < BY is called a "strict lower set."”

S5) The set {(x = X: +<{w) BY is called a "level set."

2.4.5 Theorem: Let X be a convex set in R", and let
F(x>:1X » R! be concave on X, then:
1> The upper set, 8 = {x € X: (x> » B}, is convex.

2> The strict upper set, 87 = {x € X: (X > B}, is convex.

Proof: To prove part one, suppose XgysXo = S. Thus,
f(xl) > B and ¥(x2) > B. Since f(x) is concave on X, then

for «a € (0,1)>:
*F[a.xl + (l-or.)le b qul) + (l—a){(xz) > af + (1-c2B = B
Hence, aX, + (1-a)Xx, & S. The proof of part two is similar.

A vector-valued function is said to be concave if all
of its component functions are concave. Using this
definition, the latter result may be easily extended to

include vector-valued functions with the following theorem:
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2.4.6 Theorem: Let X be a convex set in R”, and let
F¢x):X » R™ be concave on X. Let b e R", then:
1> The upper set, S = (x € X: F(xY 2 b>, is convex.

2> The strict upper set, 5 = {x € X: F(x) > b}, is convex.

Proof: The sets, S and S°, are simply the intersections of
the m upper sets or strict upper sets defined by the
component functions of F(xY and the corresponding compon;nts
of b. As each of these sets is convex by the last theorem,

and as the intersection of convex sets is convex by Lemma

2.2.2, it follows that S and S’ are convex.

If f(x?> is a differentiable function, then the

fellowing theorems affirm some useful properties of

concavity, and even offer an alternative definition of

concavity over a convex set:

3

2.4.7 Theorvem: Let X be a nonempty open~ convex set in

R, and let f(x):X = R! be concave at X e X. If f(x) is

differentiable at x, then:

£ & R+ £ (FX(x - X3 vV x e X

Proof: Since (%) is concave at %X, then for « € (D,1):
flax + (1=adX] 2 afl(x) + (1-a?F(X); VXxxeX

which implies:

—————————————————————— 2 FIR) - F(X); Y x € X



Upon taking the 1imit as « » 0, the above becomes:

£(00(x - ) 2 £~ £ vV x e X
or:
£0X) ¢ FGD + £ (XX - R VXxeX

which was to be shown.

Corollary: Let X be a nonempty open convex set in R", and
let f{x>:X = R1 be strictly concave at X € X. If +(x) is

differentiable at X, then:
- l - ‘ - -
FOR) € FCR) + £ (XX = Ry VxeX, x=X
Proof: It is kKnown from.fhe theorem that:
FCX) < F(XD + f;(i)(x - % VxeX
Suppose that there is an § € X, not equal to X, such that:

FOx) = (X + f;<§><§ - %

Multiply the latter by « and subtract from the former, and

set x = a§‘+ (1-x)X to obtain:
Flax + (1=adX] < aflx) + (1-ad (X

But, this contradicts the strict concavity of f(x} at X,

and the proof is complete.

Geometrically, the last theorem implies thxt a functi

that is concave at a point lies everywhere on or beneath t

28

on

he



29

tangent plane at that point. The corollary implies that in
the case of strict cdncavity, the function lies strictly
beneath any such tangent plane except at the point of
tangency.

1t should be observed that the last theorem and
corollary deal with concavity at a point. The next theorem

and corollary deal with concavity over a convex set:

2.4.8 Theorem: Let X be a nonempty open convex set in R",
and lTet f{y):X = Rl be differentiable on X, then +(X> is

concave on X if and only if:
- ’ - - - .
FOXO ¢ £+ £,00(x = X3 V X,X € X (2.2)

Proof: The assertion that concavity implies the latter
relation is proven in the last theorem. It remains to show
that the Jatter relation implies concavity on X. Thus,

suppose that (2.2) holds, then for any Xy 13Xy € X

FOXy ¢ FCX) + £ (XIXy - XD V XX € X

X K ~

f(xz) f(xX> + £

[N

(i)(Xz - i); A4 x2,§ g€ X
Multiply the first relation by o and the second by (1-a2 and
add the products to obtain:

af(X;) + (=) flxp) ¢ (X + £ (Olax, + (1-ad%y - XI

for every X,,X,,X € X. Now, set X = ax; + (1-a)X; to

produﬁe:

af (X, + (1=a)f(Xy) ¢ flax; + (1-adXp]; V X% € X
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which proves that (2.2) implies concavity on X,

Corollary: Let X be a nonempty open convex set in R", and
let F{R2:X = R1 be differentiable on X, then (x> is

strictly concave on X if and only if for distinct %,X € X:
£OR) < FCRY + £ (XXX - X

Proot: By the theorem, it is Known that f(x?> is concave on

X if and only if:

£OX) € R+ £ ((x = X3 V X,% & X (2.3)

Suppose there is an X € X, not equal to X, such that:

FOx) = FCX) + f;(i)ci - 3%

It follows from this equality and the strict concavity of

f{(x> that:

Flax + (1-c)%] > af(x) + (1-a)F(X) =

FOR) + af (X)X - B
Upon setting X = a§ + (1-x)X, the latter may be written:
£ > FORY + £ (R)x - B

But, this inequality contradicts (2.3), and the proof is

complete,

A vector-valued function is said to be differentiable
it all of its component functions are differentiable. The

last two theorems and corollaries extend without alteration
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to include all differentiable vector-valued functions. For
example, if X is a nonempty open convex set in R", then a
differentiable function, F¢x):X =+ R™, is concave on X if

and only if:

F(x) < F(X) + F;(§)<x - X3 Y X:X € X

where Fx(i) is an nxm'matrfx whose ith column is the
gradient of the ith component function. Here, strict
inequality holds in the case of strict concavity and
distinct x and X.

The following theorem provides perhaps the most useful

means of determining concavity:

2.4.9 Theorem: Let X-be -a nonempty open convex set in Rn,
-and let f(x>:X = R1 be twice differentiable on X, then (x>
is concave kstrictly concave) on X it and only if the
Hessian matrix, H(x), is negative semidefinite (negative

definite) over all x € X.

Proof: Suppose f(X) is concave on X and let X € X. Since
X is open, then X + axx € X for A sufficiently small. From

Theorem 2.4.8, it follows that:
- - A ’ -
BRAS SRS TR AL TR M 92 1

Using the definition of differentiability (See APPENDIX)>, it

may be concluded that:

FOX + »X) = f(X) + Af;(i)x + /2022 HCRIx +

2

N lezw(i,kx)



32

where w(X,»x?> » 0 as » 2 0. Subtract the former from the

latter to obtain:

CL/2)02% H(RIX + 22 1x1%0(R,A%) ¢ O

Divide the latter by Az, and let X 2 0 to produce

x"H(X)x ¢ 0.
Conversely, suppose that H(X) is negative semidefinite
at every point in X, and let %,X € X. Using Tarlor‘s

theorem, +(X> may be expressed as:
£000 = £OR) + £,(Rx - X+ (U/Dx - B HGOX - B

where i = aX *+ (1-a)x for some « € (0,1); consequently,
§ e X. As H(i)»is negative semidefinite by assumption, it
is Known that (% - ¥ H(X)(x - %) ¢ 03 therefore, the

latter inequality implies that:
£OX0 ¢ FGRD + £ (RIX - R

But from Theorem 2.4.8, this ineguality implies that f(x> is
-concave on X. The proof for the strictly concave case is
obtained by replacing the inequalities above with strict

inequalities.

There are otger forms of concavity that are less
restrictive than simple concavity inasmuch as simple
concavity proves to be a special cacse of these forms.
However, thesé'generalized forms share many desirable
properties with simple concavity. One of the most.common of

these forms is defined as follows:



2.4.10 Definition: Let X be a nonempty convex set in R",
and let f(x):X = R}, Moreover, let X € X.. f{(x) is said
to be "quasiconcave" at X if for every X € X and « & (0,1),

the following inequality holds:
flax + (1-«2X] 2 min[f(x),f(X)]

() is said to be "strictly quasiconcave" at ¥ if the
above holds with strict inequality for distinct (%> and
f(X). F(X) is said to be quasiconcave (strictly
quasiconcave) on X if it is quasiconcave (strictly

quasiconcave) for every X € X.

Geometrically, these definitions‘imply that a function
is quasiconcave at X ifﬁ?i lies on or above the lowest
- endpoint of any cord connecting f(X> and any other point on
the surface of the'functién. If the function is strictly
quasiconcave, then it lies strictly above any such cord that
is not perfectly horizontal. Note that every concaQe
function is also quasiconcave, and that every strictly
concave function is strictl} quasiconcave. The function,
fi{x), is said to Be "quasiconvex" ("strictly gquasiconvex")
if -f(X> is quasiconcave (strictly quasicﬁncaue).

In-Theorem 2.4.5, it was shown that the upper sets and
strict upper sets-of a concave function are convex. The
next theorem and proof demonstrate that this property also

holds for quasiconcave functions:
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2.4.11 Theorem: Let X be a convex set in R™, and let
f{R):1X = rl, (X} is quasiconcave on X if and only if the

set, S3 = {x g X: f{(x> 2> ¥}, is convex for each ¥ Rl.

Proof: Suppose f{(x} is quasiconcave on X and let
X{sXp € Sy. Observe that minlf(x;),f(x21 2 ¥. Since f(x)

is quasiconcave, then for any a«a € (0,1)1
i[ax1,+ (1-a)x21 2minlfdx;),fixx01 2 3%

which demonstrates that quasiconcavity on X implies
convexity in Su'

Conversely, suppose that SB is convex for every 3%, Set
¥ = min[f(xl),f(xz)], so fix;) 2 ¥ and f(x3) 2 3%;

subsequently, X{1Xy € Sy. The convexity of S, imples:
f[mxl + (l—u)le 2 ¥ = min[f(xl),f(xz)]; Vae (0,1

which shows that convexity of S3 implies quasiconcavity of

${w> on X.

Though strict concavity implies concavity, it does not
follow that strict quasiconcavity implies quasiconcavity.
This is illustrated by the following function:

1 if x =0

f({x) =
0 if x =0

Observe that (x> is strictly quasiconcave on Rl; however,
it is not quasiconcave, for at x = 1 and x = -1, f(x» =0

and f(x> = 0, but:
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fL.5%x + .5%x1 = $¢0> =1 > minlFf(x),f(Xx>]

However, thé next theorem affirms that strict quasconcavity

implies quasiconcavity under continuity:

2.4.12 Theorem: Let X be a nonempty convex set in R", ‘and
let (x> X = R1 be continuous and strictly quasiconcave on

X, then f(w) is quasiconcave on X. ~

Proof: Let x,X € X. It needs to be shown that if

f{R) = f(X), then:

Flag + (1-ad)X] 2> min[f(x),f{X>) = (X

To the contrary, suppose that f() f(X>, but that:

R X J
flax + (1=-2)X] < (X for some « € (0,1

Using the continuity of f(x), it may be concluded that there

exists a A & (0,1) such that:

FIx) < FIxx + (1=-2X] < (X
Py

which contradicts the fact the f(x) = (X)), and the proof -

is complete,

The following definition gives yet another variant of
concavity that proves useful in nonlinear prograﬁhing

theory:

2.4.13 Definition: Let X be a nonempty open convex set in
RM, and let f(x):X = R!. Moreover let X € X, and let

f(x) be differentiable at X. (X)) is said to be
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*pseudoconcave” at X if it is true that for every x = X,
f;(i)(x - X) ¢ 0 implies f¢(X> ¢ f(X), or equivalently,

f(x) > f(X) implies f;(a_()(x - % > 0. $(x) is said to

be "strictly pseudoconcave" at X if f;(i)(x - x> <0

implies (%> < (X)), or equivalently, f(x) > f(X) implies
f;(i)(x - X> > 0. f(x> is said to be pseﬁdoconcave
(strictly pseudoconcave) on X if it is differentiable on X
and-if it is pseudoconcave (strictly pseudoconcave) at every

X € X.

Geometrically, pseudoconcavity means that i¥ a tangent
plane approximation of f{(xX) from f(X) indicates that
f(R) ¢ f(X>, then this is indeed the case. Strict
pseudoconcavi ty means that if such tangent plane
. approximation indicates that f{(x) ¢ f(X), then in fact,
f{x) < f(X)>. Observe that the concept of pseudoconcavity
is relevent only where f(x)\is differentiable. aAlso,
observe that Theorem 2.4.8 and corollary imply that.euery
concave function is pseudoconcave, and that every strictly
concave function is strictly pgeudoconcave. Also, the
function, ¥f(x), is said to be "pseudoconvex" ("strictly
pséudotonver) it =f{(x) is pseudoconcave (strictly
pseudoconcave),.

The next theﬁrem restates the local-global theorem

(Theorem 2.4.3) in terms of pseudoconcavity.

2.4.14 Theorem: Let X be a nonempty open set in R", and

Tet f(Di1X = rRY. Moreover, let S be a nonempty convex-
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subset of X, and consider the problem to maximize f{(xX
subject to x € S. Let X be a local optima! solution to the
problem, and let f(x) be differentiable at X, then:

1> If f(x) is pseudoconcave at X, then X is a global
optimal solution.

T 2) 1f ¥(y) is strictly pseudoconcave at X, then X is a

unique global optimal solution.

A

Proof: " To prove part one, suppose there exists X = S such
that (x> > f(X>, then by pseudoconcavity of +(xX) at X it

follows that:
L - - y
fx(x)(x ~ X >0

By convexity of §, x = q; + (1=a)X € § for o« € (0,103
moreover, X £ Ne(i) for o sufficiently small. It will be
shown that there exists a 8 > 0 such that (x> > (X)> for
all « € (0,82, thus co&trad;cting the local optimality of
X. By the differentiability of (x> at X, it is Known

that:
£ = FR) + «f (B)(X - ) + «lx - XI0IX,a(x-R)]
where w[i,a(i-i)] 2 0 as o 2 0. The latter implies:

- a - a - - - - (2.-4)-
----------- = fx(x)(x - X * Ix - XlwlX,ee(x - X1
Let « + 0. There exists a & > 0 such that the right-hand
side of the latter equation is positive for « = (0,5), so

for such «, f(x) > f(X), which proves part one.
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To prove part two, suppose there exists i £ § such
that f(x) = f(X)>, then by strict pseudoconcavity of f(x>

at X, this implies:
£.(X)(x - x> >0

After following exactly the same steps in the proof of part
one, it may be concluded that (2.4) contradicts the local

optimality of X.

The next theorem and proof show that pseudoconcavity is
a special case of both quasiconcavity and strict
quasiconcavity.
2.4.15 Theorem: Let X be a nonempty open convex set in RP,

and let f(x):X = R! be béeudoconcaue over X, then f(xJ) is

both quasiconcave and strictly quasiconcave over X.

Proof: It will be shown that f(x> is strictly quasiconcave
on X. Quasiconcavity on X will then follow from continuity
over X and Theorem 2.4.12. Let Xi1Xy € X, and suppose
Fxy) < Fixzd. Let X = aXx; + (1-=)Xp, and suppose that for

some o € (0,1):

(x> < minlfix,),f{x;)] = (x>

By pseudoconcavity of f(x), this implies:
f;(§>(x¥ - % >0

Noting the definition of X, this implies:



————————————————— > 0

By pseudoconcavity of f(x), this implies f(x5) ¢ f(XJ,

thus:
f(x2> 2 FUX) < Fixg0

But, this contradicts the +act the f(xl) { fixz), and the

proof is complete.
2.5 Kuhn-Tucker Optimality Conditions
Consider the problem:

maximize(x>: +F(x0
subject to: G(x> 2 0 .

X € X

where f(x>:X = R! and G(x):X » R™. Let X be a solution
to the above. In this section, it is first shown that i+:
1 X is open.~ 2) f(x) and G{(xX) are differentiable at X,
and 3> G(x) satisfies certain regularity conditions at X,
then there exists X such that (N.X) will solve the

following set of conditions:

£4(x) + Gy CxOn = 0 | (2.
AG(x) =0 | (2.
A20 ‘ (2.

The above conditions were first introduced by Kuhn and

Tucker (1951), and have since been further developed by

3¢

S
&)

7
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numercus mathematicians. Much attention has beén directed
toward determining regularity conditions upon G{(x) that are
sufficient to ensure the existence of X such that the
Kuhn-Tucker conditions are solvable. The vector; Ay IS
commonly Known 3s the vector of “Lagrangian multipliers.”
Likewise, the emphasis heré is upon regularity conditiﬁns,
or “"constraint qualifications," as they are commonly called.
After treating the necessity of the Kuhn-Tucker conditions,
it is then shown that under certain concavity assumptions,
such condftions are also suftticient for the optimal
solutions to the problem above.

The necessary conditions herein developed for the
solutions to’ the problem above are actually necessary for
all local optimal solu;?bns. However, as a global optimum
is a local optimum, then necessary conditions to the latter
also prove-necessary to theAformer.

| The foregoing theorem establishes necessary conditions

to unconstrained local maxima:

2.5.1 Theorem: Let f(x):R" > R! be differentiable at %.
I there is a vector d such that f;(i)d > 0, then there
exists a & > 0 such that (X + Ad> > (%> for each

Ne (D,8).
Proof: Using the differentiability of (x> at X:
FIR + ad) = £ + A (RO + Aldl (R, ad)

The latter implies:
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FOX + »add - £(XO ;- -
__5____9 ________ = fx(x)d + ldlw(xX,»xd’
PN

Since f;(f)d > 0, and since w(X,xd> » 0 as x » 0, there
exists a &8 > 0 such that f;(i)d + Idiw(X,ad> > 0 for all

N e ¢0,8), which implies fC(X + xd) — ¢(X> > 0.

Any vector, 2, gatisfying F(X + AZ) > f{X) is said to
be an "ascent direction" of f(x) at X. By the latter
theorem, any d such that f;(i)d >0 is an ascent
direction. If D, denotes the set of all such d for the
point X, then the theorem clearly implies that a necessary
condition for X to be a local maximum is that Da = g@g. O0OFf
cour;e, this can only be true if f;(i) = 0, which is the
familiar first—-order coqdition for unconstrained
maximfzatioh.

The next theorem uses the last result to obtain

necessary conditions for constrained maximization problems:

2.5.2 Theorem: Let X be a nonempty open set in R™, and 1et
()X = R! and G(x)>:X » R™. Consider the problem to
maximize Ff(x) subject to G(X) 2 0 and x € X. Let X be a
focal optimal solution, and let +(x} and G¢(x) be
differentiable at X. Furthermore, lét I = (it g, (X> = 03,

then DaﬂD; = @, where: | -

D, = {d: fx(§>d > 03

Dy = (d: Vgi¢X>d >0 Vi eI . ‘

and where Vgl(i) denotes the gradient of g; (x> at X.



Froof: Suppose DaﬁD; = @ and let d = DanD;. Since X is

open, .there exists a 84 such that:
X + »xd & X3 VA e (0,80

Since the g, (x> are continuous at X, and since gi(i) > U

for i & I, then there exists a 85 such that:

Qi(i + Ad> > 03 vV xe (0,62) and V i & @

Also, since the 9;(x) are differentiable at X, then br

Theorem 2.5.1, there exists a 8o such that:

9;¢(X + Ad) > g; (X VA& (0,85 and V i I
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Finally, from Theorem 2.5.1, it is Known that there exists a

Y such that:
Fix + Ad) > F(X); V X e (0,8p

Now, 12t 5 = min(51,62,63,64). It is apparent from the
above that f{(x> can be feasibly increased by movement to

X + xd for any X = (0,8), but this contradicts the fact

that X is a local optimal solution.

The constraints satisfying gici) = 0D are said to be
*active" at X. The last theorem leads to fhe following
result due to Fritz John (1%948), which also utilizes the

concept of active constraints:

2.9.3 Theorem (Fritz John Necessary Conditiong): Let X be a

nonempty open set in RY, and let f(x):X 2 R! and



G¢x):X 2 RM™. Consider the problem to maximize f{(x? subject
to GCx) 2 0 and X € X. Let X be a local optimal solution,
and let f(x) and G(x) be differentiable at X. Furthermore,
tet I = {i: gi(i) = 0}, then there exist nonnegative

scalers, ug and (”1’”2"’”m)’ not all zero, such that:

MigiCX> = 0; i = 1,2,,,m

Proof: Since X is a local optimal solution, then by the
last theorem, there does not exist a vector, d, such that
£,(%)d > D and Vg (X>)d > 0 for i & I. Let A be the

matrix whose rows are f;<§) and Vg}(i) for every i € 1.

The tast theorem implies that the §ystem, Ad > 0, is
fnconsistent; sdbsequen%ly, by Gordon‘s theorem (Theorem
2,é.5>, there exists a'y 2 0 such that A’y = 0. Set-ug

and u; for i € 1 equal to their corresponding components in

¥, and set M= 0 for i & I to complete the proof.

Note that the second of the Fritz John conditions
implies that if g; (X> >AO then u; = 0. Such variables are
said to be "complementary." Accordingly, the relation is
commonly called a “complementary slackness” relation.

The Fritz John conditions in conjunction with a
constraint qualification lead immediately to the famous

Kuhn-Tucker necessary conditions:

2.5.4 Theorem (Kuhn-Tucker Necessary Conditlions): Let X he

a nonempty open set in R", and let f¢(x>:X » R} and
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G(x):¥X » RM™, Consider the problem to maximize (x> subject
to G(X) 2 0 and x = X. Let X be a local optimal solution,
and let f(%x) and G(X) be differentiable at X. Furthermore,

tet I ="{i:

o

j¢X> = 03, and let Vg(X) for i =1 be

tinearly independent, then thers exists ihl,h 2

2 143 '}"'m

satisfving:

- =M - -
fx(x) + .-di=1,\ngi_(x) 0
’\i?‘i(’-‘) = 3 i = 1,2,,.,m

ANy 03 i = 1,2,,,m

Prootf: 3Since X i€ open, and since +{(x> and GI(X) are
differentiable at X, it is Known from the former theorem
that there exist nonnegative scalers, u, and CMy sl s s My 2y

not all zero, such that:

My £.,(X) + ET_ u,Vg,(X) = 0

Mig.i(x) = 03 i = 1,2,,,m

Moreover, it may be concluded that u, = 0, for Dtherwise,-
the first condition would contradict the assumption that the
Vgl(i) are2 linearly independent for | = . Let No= “ifMO

to complete the proof.

Hence, under the stated assumptions, the Kuhn-Tucker
condi tions #re necessary conditions for the solutions to the
maximization problem. It will be observed that the scaler
variant of thesé conditions as stated in the latter theaorem
is equivalent to the matrix variant as stated in conditions

C2.3» through (2.7,
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The constraint qualification described in the previous
theorem is Known as the "linear independence"” qualitication.
While the Kuhn-Tucker conditions follow immediatély upon the
assumption of this qualification, the linear independence
requiremenf is unnecessarily restrictive, For example; it
may be shown.that the Kuhn-Tucker conditions are alwayrs
necessary conditi;ns when X is open and when the constraints
are affine, even when the grédients of the active
constraints are not linearly independent. Numerous other
constraint quatlifications have been proposed in nonlinear
programming literature; nearly all of which are less
restrictive than the linear independence requirement. By
"less restrictive®” is meant that the constraint
qualification speci%ies—g broader range of circumstances

under which it may be concluded that local optima imply
AKuhn—Tucker points.

One of the most general constraint qualifications

utilizes a‘concept Known as the "cone of tangents,” which is

formerly defined with the following:

' 2.5.5 Definition: Let S be a nonempty set in R". S is
said to be a "cone" i¥f x = S implies that xx € § for all

A ) Ol

2.5.6 Deflnitlon: Let S be a nonempty set in R7, and let
%X € cl 5. The "cone of tangents" of S at %X is the set,

N

Dy, consisting of all d such that:

d=lim o alx, = X/Ix% - X
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for all «

v

0 and all sequences, {X,¥, in S satisfying

]imkaw Xg = X

Hence, the cone of tangents of S at X is the set of
all directions from which X may be approached from within
S. Observe that if X € int S, then X may be so approached
from all directions; thus, Dt = R". Also, note that if for
some 5 > 0, X + xd = S for all A = (0,8>, then necessarily
de Dt’ as may be seen by simply setting X = X + (a/kK)d in
the definition above.

The next two theorems establish the general constraint

qualifications:

2.5.7 Theorem: Let X be a nonempty open set in R™, and let
_¥(x)=x = RI.‘ Consider ¥he problem to maximize +(x) subject
to x € S where S is a nonempty subset of X. Let X be a
local optimal solution to.the problem. Moreover, suppose
that f(x> is differentiable at X, then D,MD, = @, where

D, = {d: f;(i)g > 0}, and D, is the cone of tangents of S

at x.

Proof: Let €xk} be any sequence in § satisfring
limkqw Xy = X, and let d = Vimy o0 (X - i)/lxk - Xi.

Observe that d Dt' By the differentiability of f(x)> at

X:

Fx) = FOR) = £ (R(x, - K + 1w — RI0(E, %, ~%
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where w(i,xy—i) + 0 as x, =+ X. Since X is a local
optimal solution, then for sufficiently large Kk, the above

implies:
fx(i)(xk - X+ Ix, - Xla(X,x,-X> ¢ U

Divide the latter by Ix, - X! and take the l1imit as K = ®
to produce f;<§>d < 0. Hence, d e D, implies that

f;(i)d < 0, which completes the proof.

2.5.8 Theorem (Kuhn-Tucker Necessary Condlitlions): Let X be
a nonempty open set in R, and let f(x>:X = Rl and

G(x):X -» RM, Consider the problem to maximize f(x) subject
to x =2 X and G¢X) 2 0. Let X be a tocal optimal solution,
and let I = (i gi(i) =.03, Supposé that f(x> and G(x) are
differentiable at X. Further, suppose thaf Dt = D; where
D; = {d: Vgj<X>d 2 0 V i € I3, and D, is the cone of
tangents of the feasible region at X, then there exists

(A!,Az,,,km) safisfying:

£ (%) + ET=1Angl(x) =0
ng(R) = 0; i = 1,2,,,m

A 2 0y i = 1,2,,,m

Proof: Since X is a local optimal solution, then by the
former theorem, D D, = @, where D, = (d: £,(X>d > 03. As
DE = D, by assumption, it follows that D ND; = @. Hence,

the following system has no solution:
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fx(x)d > 0

Vg, (X>d > 03 Viel

Let A be a matrix whose rows consist of the —Vg}(i) for

i €I, and let ¢ = fx(i). From FarKas’ theorem (Theorem
2.3.4), there exists ¥ 2 0 such that Ay = c¢. Set »; for
i € I equal to the corresponding components in ¥, and zet

Ai =0 for i & I to complete the proof.

The constraint qualification, Dt = D4, used in the
theorem above is due to Abadie (1%947), and is commonly Known
as the "Abadie constraint qualification." The next theorem
shows that all affine constraints satisfy the Abadie
constraint qualification.. Sﬁbsequently, it X is open, it
may be concluded that tﬂe Kuhn~Tucker conditions are always
necessary conditions to the solutions of the maximization

problem if G¢(x) is affine.

2.5.9 Theorem: Let X be a nonempty open set in R", and let

A e R™N and b = RM™., Moreover, let S = {x = X: Ax z b}.

Buppose X = S satisfies AjX = b, and AzX > b, where

A’

s U4 . s, rd
(Al,Az) and b’ = (by,by?, then D, = D;, where
D¢ = {d: A;d 2 0} and D, is the cone of tangents of S at X.

~

Proof: If A; is vacuous, then D; = R". Futhermore,
X € int S, which implies that Dt = Rn; hence, Dt = Dg, and
the theorem holds. Suppose Al is not vacuous, and let {xk}

be any seguence in § satisfyring Iimkam xk‘= X, then:
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Divide the above by Ix, - Xi, and take the limit as K + ®
to obtain Ald 2 0 where d & Dy. But this implies d € D,
and subsequently, Dt c D{. Now, suppose d = D¥, that is,
A;jd 2 0. Since A2§ > by, and since X is open, there is a
8 > 0 such that both A (X + xd> > b; and X + »d € X for
all » = (0,8>. Also, Al(i + xd> 2 bl for all » d.
Hence, X + xd € S for each » € (0,8), which implies that
de Dy, so D; cDy. As D, c D; and Dy c Dy, then
necessarily, D, = Dy which was to be shown.

The foregoing lemma shows that under differentiability
assumptions, Dt o Df in all cacses; consequently, the\Abadie
constraint qualification is Know to hold if it can be shown

that Df C_Dt'

‘.

2.5.10 Lemma: Let X be a nonempty open set in RV, and 1et
Gtx):X » R™, Moreover, let § = {x & X: G(x) 2 0 and let
X € S. Suppose that g,(X> = 0 for i = I, and suppose that
the 9,(x> are differentiable at X for i & I, then D, c D,
where D; = {d: Vg;(i)d 20 Viel}and Dy is the cone

of tangents of S at X.

Proof: Let {xk} be any sequence in S satisfyring
]imkaw X, = X. Using the differentiability of the 9; (x> at

X for i e 1, it may be concluded that:
9 ¢x,> = Vgl(i)(xk - X+ X - XX, x, -X); Viel

Divide these expressions bYAlxk - X1 and take the limit as

K 2+ ¢ with the result that:
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Vg (Xyd = lim, 9;(x /1%, = XI 2 0 Viel

where d & Dt' Hence, d e Dt implies d = Df, which completes

the proo+t.

The next theorem confirms that the linear independence
constraint qualification is a special case of the Abadie

constraint gqualification:

2.5.11 Theorem:  Let X be a nonempty open set in R™, and
let GCx):X » R™, Let S = {x & X: G(x) 2 0 and 1ot X & S.
Moreover, let I = {i: gi(i) = 0. Suppose that the g,(x
are differentiable at X for i e I, and that the Vgl(i) are
tinearly independent for i = I; then D_F = Dt where

Dy = {d: Vg;(i)d i 0 Y i € 13 and Dy is the cone of

tangents of S at X.

Proof: Let A’ be a matrix whose columns consist of the
Vgl(i) for i € I. As a consequence of the linear
independence assumpfion, A’Y = 0 has no solutiong
consequeﬁtly, by Gordon’s theorem (Theorem 2.3.5), there

exists a a such that Aa > 0, or equivalently:
vg (X)d > 0; Viel

Let 2z, = ¢1/k>d + (1 - 1/k>d for any d & D; and any k > O.
Without loss of generality, it may be assumed that Idl = 1.

Observe that:

Vg (X)z, > 0; Viel andk >0
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By Theorem 2.5.1 and the openness of X, it may be concluded
that there exists a 5N > 0 such that X + xz, 5. Without
_1055 of generality, the A\, may be chosen such that
Vimy o 2 = 0. Let x, = X + NcZygs and observe that

Timy yo0 X = X. Finally, consider:
Vimy o (X = i)/lxk - Xl = Vimy o0 27121 = d

Hence, d € Dy by definition, and subsequently, D; c D.
Dy € Dy follows from Lemma 2.5.10; thus, Dy = Dy, which was

to be shown.

The next theorem develops the Kuhn-Tucker necessary .
conditions in terms that prove essential in a subsequent

chapter:

2.5.12 Theorem (Kuhn-Tucker Necessary Conditionsd): Let X be
a nonempty open set in Rn, and let f{x):X =2 R1 and

é(x):x » R™. Consider the problem to maximize +(X> subject
to x € X and GCx) 2 0. Let G (x> = [G'(x),6’(x)] where
a(x) is affine. Let X be a local optimal solution to the

problem, and let:

~

y = 02

I = ¢is éi(i
T = (it g% =03

Suppose that f(x> and G(x) are differentiable at X.
Moreover, suppose that the Vél(i) are linearly independent

for i € i, then there exists (XN 3233 32,? such that:



£,(X) + E{_» Vg (X =0
Aigi(i) = 03 i = 1,2,,,m
X2 0 i =1,2,,,m

Proof: Define the following sets:

Dy = ¢d: Vg(Xdd 2 0 for i & I3
D; = €d: Vg,(X>d 2 0 for i & I3
D; = (d: Vgj(X>d 2 0 for i e fuld
5= {x € X: G(xX) :z 02

S = {x = X1 E(x) 2 02

S = {x = X: GO

1%

0

Let Bt’ Bt’ and'Dt be the cones of tangents corresponding
to §, S, and S, respectively. By Theorem 2.5.11,

~

bfA= Dt' By Theorem 2.5.9, Bf = Bt' Hence:

a ~

Df = D{an = DtnDt = Dt
Therefore, the proposition follows from the Theorem 2.5.8.

The next theorem cites conditions under which

Kuhn-Tucker points imply global optima:

2.5.13 Theorem (Kuhn-Tucker Sufficient Conditlonsg): Let X
be a nonempty convex set in RT, and let f{(x):X = Rl and
G¢x)»:X = RM, Consider the problem to maximize (X} subject
to G¢R) : 0 and x = X. Let X be a feasible solution, and

suppoée that there exists (Al,xz,,,xm) such that:

52
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£.(%) + E (A Vg(X) =0
Xi9;¢X> = 0; i = 1,2,,,m
A 2 05 i = 1,2,,,m

Let I = {i:g;<X) = 02, and let g;(x) for i .1 be
quasiconcave at X with respect to points in the feasible
region. Moreover, let (X)) be pseudoconcave (strictly
pseudoconcave) at X with respect to points in the feasible
region, then X is a global optimal solution (unique global

optimal solution) to the maximization problem:

Proof: First, suppose that f(x) is pseudoconcave at X.
Let ﬁ be any other feasible solution to the problem, then
for i 1, gi(i) b gi(i) = 0., By quasiconcavity of 9; (x>

at X, it follows that for i € I:
gilaX + (1-a)®] = g;[X + (X - X1 2 03 Vae (0,1

This implies that the gi(x) for i & 1 do not decrease with a
movement from X in the direction of (i - X>3 therefore,

by Theorem 2.5.1:

Vg (X - %) 2 0 Viel

/

Multiply these terms by their corresponding Ai in the

Kuhn-Tucker conditions and sum over i € I to obtain:

[E.

el MVEpEX17ix - %> 2 0

~

But, since £ (X) + E,o; 2 Vg (X) = 0, the latter implies

that:
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f;(i)<§ - % <0

Consequently, by the pseudoconcavity of (x> at X, this
implies (x> ¢ f(X). The proof for the strictly
pseudoconcave case is accomplished by replacing the

inequality in the latter with strict inequality.

.2.6 Lagranglan Saddle Polnt Characterization
Consider thes problem:

maximize(xr: +F(X?
subject to: G(x> 2 0

X X
where f(x2:X » R, and G(x):x » R™. Oftentimes it becomes
convenient to 4ormulate:the solutions to such problems in
terms of the "saddle points" of the associated "Lagrangian."

The Lagrangian to the above problem is the function:

TOX,N? FIX) + XN'6G(X); (X,\) € XQRT
(X,N> is said to be a saddle point of 1(x,x> if:

](Xs)-:) ‘()-(,i)

Ky
I~

1¢X,003 YV (x,x) € X&R]

Thus, at the saddle point, 1{(%,X) is maximized with respect
to X subject to x € X, and 1{(X,n) is minimized with respect
to > subject to x = RT. The justification of the term
"saddle point" should now be appareht.

There is considerable body of theory dealing with

Lagrangians and with Lagrangian saddle points; however, the
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only concern here is the relation between such saddle points
and the solutions to the Kuhn—Tuckef conditions. It is
shown that under certain conditions, the saddlie points in
the Lagrangian are one—-to-one with the solutions to the
Kuhn-Tucker condi¥ions.

Ubserve that the Kuhn-TucKer conditions can be written

in terms of the derivatives of the Lagrangian as:

lx(x,x) = £,(x) + G (xIn = 0
x’lx(i,i) = N"G(x) = 0

X220

The following theorem establishes a connection between the
solutions to the Kuhn-Tucker conditions and the solutions to

the saddle point relatién:

2.6.1 Theorem: Let X be a nonempty open set in R™, and let
FerriX » R} and GCx)iX » R™. Let 1(x,n) = (x> + x‘G(x),
and suppose that (X,n) & XQRT satisfies the saddle point

relation:

TCx,NY € TOR,NY € 1(X,N) 3 V (X2} € XeRT

Further, suppose that f(x) and G{(x) are differentiable at
X, then X is feasible; moreover, (X,X\) satisfies the

Kuhn-Tu;ker conditions:

X
XNGIx) =0 (2.9

fx(x) + G (X =0 (2.3

x 20
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Conversely, let X be feasible, and suppose that
(X,2\) satisfies the Kuhn-TucKer conditions. Let
I'= {izs gi(i) = 0. Moreover, let X be convex, and let
f(x> and g;(x) for i & I be concave at X, then (X,X}

solves the saddie point relation.

Proof: Suppose that (X,%) satisfies the saddle point
relation. The right-hand inequality in this relation

implies:
FOX) + R7GIRY ¢ F(X) + N“GCX); vV x € R}

Since the components of » may be arbitrarily large, then the
above implies G(X) 2 0; hence, X is feasible. Since the
components of )\ may be zero, then necessarily X'G(X) = 0;

. hence, (2.9> holds. Using this result, the left-hand

inequality in the saddle boint relation becomes:
FORY + NG £ FOX) + N'G(X); VxeX

Thus, X maximizes (x> + X’G(X) subject to x € X. Since X
is open, X € int X, and since f(x)> and G(x) are

differentiable at X, then the last inequality implies:
£.(X) + G (X)X =0

Hence, (2.8> holds, and consequently, saddle points imply
Kuhn-TucKker points.
Conversely, suppose that (X,x\> satisfies the

Kuhn-Tucker conditions. Since f{(w) and gi(x) for I € 1 are

concave at X, then by Theorem 2.4.7:
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FCXY < f;(i)(x - %3 vVxeX

9;(X) ¢ (%) + Vg (Ix ~ X3 VxeXandViel

Mu]tipl} each of the inequalities in the latter by their
respective Xi and add the products to the first relation to

produce:

FOXY + Eiop Agpx) ¢ FX + TE (XD + 2,1 2Vg(X)I”

(x = X3 VxeX
Substitution of condition (2.8) into the above yields:

O+ Zigr Ny

Note that the Kuhn-TucKker conditions require: Ri = 0 +or
i 2 I, x 2 0, and X‘G(X) = 0. Hence, the above may be

. extended to:

FOXY + X7GEX) < FEX) + N7GEX) ¢ F(X)Y + A G(X)

m

for every (X,A\) = Xa@R_,

and the proof is complete.

Observe that the Ieft—hand inequality in the saddle

point relation implies:
CFOR 4+ RIGIR) ¢ FURD VxeX

Since X 2 0 and G(x) 2 0 for all feasible x, then this
inequality implies that any X satisfying the saddle point
relation must be an optimal solution to the problem‘to
maximize (x> subject to G(x) 2 0 and x € X. Hence,

solutions to the saddle point relation always imply
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zolutions to the maximization probleh. To establish the
converse, a linkage may be established through the
Kuhn=-TucKer conditions wherein it is shown: 1) Optimal.
solutions to the maximization problem imply solutions to the
Kuhn—Tucker condi tions, and 23 zolutions to the Kuhn-Tucker
conditions imply solutions to the saddie point relation.

The +irst link is established in the former section witﬁ the
yarious  theorems demonstrating the necessity of the
Kuhn-Tucker conditions. The second link is sstabiished in
the latter theorem under that assumptions that +{(x> and the

active 9;(X? are concave at the Kuhn=Tucker point.

2.7 XKuhn Tucker Condlitions Undér

Explicit Nonnegativity

In this gection, an alternative statement of the
Kuhn-Tucker conditions is derived for cases where the
condition, x 2 0, is imposed as a constraint upon the

problem. Thus, the general problem to be considered is:

maximize(xX:: Fiwn
subject to: G (x) 2 0

X s X

where G (x) = [G(x),x1", and where F{xy:xX = Rl and
Gtx):¥x - R™, Assuming that X is nonempty and open, and
that f(x» and G(R) are diftferentiable over X, the

Kuhn-Tucker conditions are:
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£ (x) + G;(x)x* =0
NG x) = 0

22 0

With the partition x* = (A,AY}’, the above may be written:

fxfx) + Gx(x)x R 0
ANGIRY = 0
AX =0

Howewer, the conditions, N, 2z 0 and A X = 1, may be

s

complietely incorporared into the first condition to obtain:

fx(x) + G (xd)» £ 0 __g’[fx(x) + Gx(x)x] =
A6k =0
» 2 0

which aré the Kuhn-Tucker conditions under explicit
nonnegativity in X.

There are frequently advantages to stating the
Kuhn-Tucker conditioni in these terms. For exampls, some
solution algorithms inherently maintain nonnegativity in X3
consequently, provisions +or such a restriction in the
functional constraint would be redundant. @Alsa, this
statement +its well within soms theoretical contexts, as

will be seen in the next chapter,



FOOTNOTES

1The material in this chapter was compiled from

several sourtes; however, the largest percentage of the
material was taken from the unsurpassed work of Mokhtar S.

Bazaraa and C.M. Shetty (1979).

2Excellent sources for these results and other
material in this section include: Lipschutz (19465, Munkres
(1975), and Kuratowski (1982).

3The openness of X is assumed here to achieve
' compatability with the differentiability assumption.



CHAPTER Il1l
SPATIAL EQUILIBRIUM THEORY

In this chapter, the concept of spatial equilibrium is
presented and discussed., The analysis begins with a basic
partial equilibrium situation. It is demonstrated that
under general conditions, the equilibrium price and quantity
vectors may be formulated as the solutionsS to a nonlinear
programming problem. Second, some of the gensral properties
of partial spatial equilibria are derived. Third, it is
shown how that many of ghe common barriers to trade may be
incorporated into the basic model. Fourth, fhe model is
retormul ated in tefma of price~dependent excess demands.
Fifth, the partial equilibria results are extended to
accomodate the multiproduct or general equilibrium case.
Finally, the stability properties of the spatial equilibrium
model are analrzed.

The foregoing theory was first presented by Enks
(1¢51). Later, Samuelson-(1952) formutated the Enke problem
in terms of a mathematical programminé model. Several more
recent authors have contibuted to the development and
extension of the theory, inclﬁding: Smith (1943), Takayama

and Judge (1944, 1970, and 19P71), and Silberberg ¢(1%70).
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3.1 The Basic Partial E_qulllbrlum Model,

Consider an aggregate market for a3 single commodity
that is composed of n spatially separated regional markets.
Suppose that the regional ﬁarkets are at liberty to trade
the product with one another, but thaf there are nonzero
costs of transferring the product between regions.

Moreouver, assume that the following static conditions hold:

1Y The commodity is homogeneous within and across the
regional markets,

2) The commodity is of uniform price within any regional
market,

3 The ith regional market ie characterized by: a demand

function, di(pi); a supply function, s;(p;?, and an
excess demand function, e;lp;?r = d;tp;r - si(pi), where
P; is the regional price.

4 The ith region may ship an arbitrary quantity, x to

iJ?

the Jjth region at the constant per-unit transportation

rate, tiJ'

Let n, denote the net imports of region i. Lat P; and

iij denote time derivatives, and suppose that the following

dynamic conditions hold:!

S a’ P; > 0 i¥f and onty it ei(pi) -n; 2 g.

b f; < 0 if and only if e;(p;> - n; <0 and p; > 0.



al %, >0 oonly if t;; - (p; - P2 <D,
by I+ tiJ - tpy; - p;? < 0 for some Jy then iiJ > 0 for
at least one such j.
e %ij ¢ 0 if and only if t;; - (p; - p;? > 0 and
;5 0 0.
The second condition ie implied by intraregional

product homogeneity and perfect product mobility within

regional bounds. Condition three necessitates conditions

one and two, for it is assumed that supply and demand ars

functions of a single regional price, and that such

functions are invariant with respect to origin or

destination of product. Condition four is implied by

perfectly elastic supply of transportation services.
The rationale for the dynamic conditions is as follows:
‘When demand exceeds supply, or egquivalently, when deficits

occur, prices are bid upwards, hence condition 3a. When a

state of excess supply exists, or equivalently, when

surpluses occur, sellers reduce prices in order to clear- the

marKet, hence condition Sb. 1If price in j exceeds price in

i by more than the costs of transporting from i to j, then

hence conditions

profits may be had b» shipping from i

$a and 8b. If the price difference

not cover the costsz of transporting
then

losses are incurred on present

condition &c. Conditions &a and &b

to J,
between two regions does
between the regions,
hence

shipments,

account for the

possibility that some profitable trade routes might be

temporarily unresponsive . if there exists other routes
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»ielding greater profitse. On the other hand, condition &c
assumeé that all active trade flows inflicting losses are
promptly reduced.

Observe that these adjustment rules imply that if the

initial p, and x;j are nonnegative, then all subsequent py

and Xij are also nonnegative; thus, the system directing

’

dynamit adjustment is positive. {0 iz disallowed

i
becausze of the way in which the term is defined. Shipments

from j to | are measured by positive X33 not by negative

®ije O+ course, X is measuresd as flow per unit of timey

thus, Xx;; measures rate of change in flow.

‘Equilibrium is attained where §, = 0 and %, = 0 for

every i and j. Conditions five and six imply that

equilibrium occurs if and only i+:

2ilpiy - nj < O, if ¢ then p; = 03 v i {3.17
tiJ - (pj —p;? 2 0, if > then x;; = D3 YV oied (3.2
P; 2 0, £ij 2 Qs Y oi,d ‘ (3.3

The latter conditions mar be expediently expressed in

matrix notation as:

E(p)> - Nx 4 0; ‘ p'LE(p) - Nx1 =0 {3.4)
t - Np 2 0; % (t - N'p) = 0 (3.5
(p,x? 2 0 (3.4)

Here, E(p) is a wvector—-valued function of dimension n having

the e ,(p;» for components. p is the n-dimensional vector of

priceé. %, t and N are defined a=s follows:



Xyo ] :12 ]
*13 13
Xtn___ ftn___
X t
21 21 .
X = | Xz3 t =1tz
*zn___ fan___
*ni :nl
Xnz n2
xn,n—l fn,n—{_
_l -llllll-_l' 1 D 0----0' 1 0 D---Ol--- 1 0 U.-nno
1 D.....-D"‘l _lnunnu_ll U 1 D.unnllln 0 1 U....U
o {+ 0....0010 { O.u..01-1 -1,....~11...10 01 0..0

. ! . ! . .
. I . | . .
LU Oullilil. D 0--....1' 0 ullllil'lll

!
|
|
N= . | | A .
L
[
f=1 =1.....-1|

The first partition of X contains exports by region one to
the other regions. Likewise, the second partition contains
the exports of region two, and so on. The X;j terms are not
included in the X vector. Their inclusion is needless since
this analysis is conducted in terms of excess demands. Of
course,’these terms may be easily recovered with use of the
regional demand functions once prices and net imports are
detéﬁmined. The t vector is identical in construction to x.

The N matrix is a most useful and expediting instrument

to this analysis. It may be contirmed that:



X21 T Xgp Teeet Xy T %12 T *13 70T *in [y

Xgg ¥ Xgz *eeot X2 T Xzp T X2z TeT X2p Nz
ux= L] = [}

Xtn ¥ Xan tret Xpoion T Xnt T *p2 7T Xn,n-t Mn

Thus, NX is equalrto the vector of net imports. Also, it

may be confirmed that:

Pz ~— Py
Pn___— Pt
51 - gz
. 3 - P2 '
N'p = .

Pn____ Pz
Py = Pp
P2 = Pp

P p

a n—1 n

Hence, N‘p is the vectoﬁ of price differentials measuring
gains or losses before transportation charges for all |
possible schemes of trade. The rationale fér the usage of N
in (3.5 should now‘be,apparent. Thus, N not oniy
facilitates the transition of (3.1) to its matrix variant in
(3.4), but also the transition of (3.2) to its matrix
variant in (3.5).

A convenient attribute of the above model is that i+f
the ei(pi) are integrable, then the equilibria values far p

and x may be formulated as the Kuhn-Tucker points of a
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nonlinear programming problem. Note that the spatial
equilibrium conditions in (3.4) through (3.4) bear
resemblance to the Kuhn-Tucker relations of the previous
chapter inasmuch as inequality conditions are'required in
conjunction with complementary slackness relations. Indeed,
it may be confirmed that these conditions are rendered as

the Kuhn-Tucker conditions to the following problem:

maximizecp>: f(p)
subject to: t-Np 20

pz20
where:
= N .
f(p) = 2i=l Ie;<piodp;.

and where ® serves as the vector of Lagrangian multipliers
on the first constraint. Here the set constraint is simply
p € R". Henceforth, the set constraint will be ignored

with the understanding that it is always taken to be the
eucl idean sﬁace. Upon observing that the gradient of f(p>
is Bp)d, it should be apparent that the Kuhn-Tucker
conditions to the above probiem are precisely conditions
(3.4 through (3.4). Also, note that the Lagrangian to this

problem is constructed as:
1(p, x> = f(p» + x°(t - N'p>; (py,x> 2 0

Observe that the necessity and/or sufficiency of the

Kuhn-Tucker conditions is of no great interest in the
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1

spatial equilibrium problem, for it is the Kuhn-TucKer
conditions themselves that are of immediate concern. As
shown above, the spatial market is‘in.equilibrium if and
only if the Kuhn-Tucker conditions to the above problem are
satisfied. Therefore, any solution to the Kuhn-Tucker
conditions is satisfactory for present purposes, even if it
does not correspond to an optimal solutiony either local or
global, to the programming problem.

However, it will be noted that the programming problem
does have many desirable\properties. First, if B(p) i=s
continuous at some p, then f(p) will be differentiable at
p. Second, the constraints are linear. Using Theorem
2.5.12, the differen&iabi]ity of +(p) and the linearity of
the constraints ensures—ghat the Kuhn-TucKker conditions are
indeed necessary conditions to the local optimal solutions.
Moreover, f(p) is typicafly'concaue. Using Theorem 2.4.9,

f(p> is concave on R" if its Hessian matrix is negative

semidefinite on the same. The Hessian matrix of f(p) is:

dey/2py O « . O
0 aez/apz 0 . 0
Hpd) =] . 0 . .
L ’ L] L] ' 0 i .
0 1] . O de /op,

' .
I+ the aei('pi)/api { 0, as is usually the case, then the

Hessian matrix is indeed negative definite, and _
consequently, by the same theorem, f(p) is strictly concave
on RV, @&s the constraints are also concave, then by

Theorem 2.95.13, the Kuhn-Tucker conditions are sufficient
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for the global optimé,,and by Theorem 2.46.1, the Kuhn—Tucker
points are one—to;one with the saddle points of the
Lagrangian.

The concavity or differentiability of f{(p) over
negafiQe prices is of no real concern. Observe that as the
e;(p;? are irrelevant on p; < 0, these +uncti;ns may be
defined in any way one chooses over negative pfices.
However, even this is not necessary. Theorem 2.5.12
(Kuhn-Tucker necessary conditions) requires
difterentiability only at the local optimal solutions, and
Theorem 2.5.13 (Kuhn-Tucker sufficient conditions?> merely
requires that the Kuhn-Tucker point be concave with regpect
to the other points in the feasible regioqu As for Theorem
2.46.1, the set constrai;t could be defined here as p € RE;
consequently, if f(p? is>differentiable at all saddle points
over nonnegative pricesz,-and if it is concave at all
Kuhn-TucKer points with respect to to all other points in
RQ y then the Kuhn-Tucker points are'one-to—one with the
saddle points of the Lagrangian over nonnegative p.

Unfortunately, since the feasible region to the spatial
equilibrium probliem is not bounded, the Weierstrass theorem
(Theorem 2.1.4) does not guarantee the existence of a
selution.> Indeed, it is not difficult to construct market
configurations for which no equilibrium exists, For
exampte, if the excess demand functions are equal to
constantg summing to some value greater fhan zero, then an

equilibrium solution cannot exist.



The programming problem considered above was developed
in & rather peculiar fashion. Typically, one tirst
specif¥ies the objective function and constraints, and then
derives the appropriate Kuhn-Tuckzsr conditions. Here, a set
of spatial equiiibrium conditions was viswed as a set of
Kuhn-Tucker conditions, and then a programming problem
¥vielding these conditions was +ound. The conftrived
Dbie;tiue function, f(p’, is of interest only in that it
serves to render the spatial equilibrium criteria as a set
af Kuhn-Tucker conditions. Geometrically, F(p) is some
zonstant plus the sum of the areas lying to the le+ft of the
excess demand functions ana beneath their respective price
-lines. However, it ianot apparent that any profound
intference concerning m%kket behavior is to be drawn from
this observation. Hence; no interpretive significance is
attached to the fuhction; It should be observed that f{p)
is simitar to the “quasi—indirect welfare function®" of
Takayama and Judge'(19?1). bther formulations of the
spatial egquilibrium problem also utilize such instrumental
functions. These include thé "guasi welfare" function of
the same authors and fhe "net social payot+f" function of
Samuelson (1952,

An advantage of the approach taken here is that spatial
equilbria calculation can usually be accomplished using
general nonlinear programming élgorithms. In particular, i+
the excess demand functions are linear, then F{(p) will be

guadratic so that any on2 of several quadratic programming
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routines may be used. Also, the spatial equilibrium problem
is made accessible to a large body of mathematical
programming theory. For exampie, since the constraints are
quasiconcave, then it is Known from Theorem 2.5.13 that the
equilibrium price vector is uniquely determined if F(p> is
strictly pseudoconcave. Also, it will shortly be seen that
the mathematical programming formul&tion greatly facilitates

A

the examination of the stability of the model.

3.2 Properties of Spatlal Equilibria

As noted before, if f(p) is strictly pseudoconcgve,
then it is Known from Theorem 2.5.13 that an equilibrium
solution is unique with respect to p. éAs shown in the
previous section, f(p ?s_strict]y concave on R” i+
aei(pi)/ap‘i { 0 for every i. Thus, if the excess demands
have negative slopes, then it may be conciuded that an
equifibrium price vector is unique. |

Though an equilibrium price vector is unique when +{(pJ
is strictly concave, this is not necessarily the case +for %.
It should be observed that X serves as a vector of
Lagrangian multipliers to the programming problem, and that
strict concavity in the objective function does not imply
uniqueness for such vari;bles. Consider an aggregate market
consisting of three regional market; thét are situated on a

- line. Thus, the market map appears as follows:
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Suppose that a spatial equilibrium exists wherein & ships to
C. Moreover, suppose that the costs of shipping & to C are
equal to the sum of'the costs of shipping froﬁ A to B and
from B to C. It should be apparent that the quantities from
A& that are ultimately destined to C may be shipped either
directly to C, or from & to B and then from B to C, or in
any combination of these two schemes. Prices and net
imports are the same in all scenarios; consequently, the
spatial esquilibrium conditions are satisfiedzby any one of
an infinite number of trading arrangements. However, each
arrangement c}early'implies a distinct x. This conclusion
clearly holdsiregard]ess of the forms of the excesé demands;
therefore, strict concavity in f{(p> does not impiy
uniqueness in X. This éggument can also be illustrated with
other market configuratidns.

Spatial equilibria afe economically efticient inasmuch
as interregional trade neceséary to equilibraée the market
is accomplished at minimal transportation costs.? In the
previous section, the conditions for spatial equilibrium

were +ound to be:

E<p> - Nx £ 0; p'LE(p> — Nx1 =0 ; _ (3.8
t - Np 2 0; (Lt - Np> =0 ’ (3.9
(p,x> 2 0 (3.10)

Now, consider the programming model:
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maximize(p,x’: p'[B{(p) - Nxl - ¢t - N'p
subject to: E(p) - Nx £ 0
t-Np20

(pyx> 2 0

Here, the objective function has begen constructed from the
complementary slackness conditions in (3.8) and (3.9). Let
(p,X’ be any spatial equilibrium solution, and observe

that the objective function to the problem is equal to zero
when evaluated at (§,X). Also, observe that this
obJe&tive function can be no greater than zero over the
feasible region; hence, (p,X)> is a solution to the

problem. Moreover, it is apparent that any solution to the
problem must also be a spétial equitibrium. Now, given an
eqﬁilibrium price of p, any corresponding equilibrium x may
be found by fixing p at §'in the above problem, and by then
solving the problem for the optimal %x. After eliminating
constants from the objective function, and after deleting

the automatic constraints, the problem becomes:

maximized(xr»: -tx
subject to: E(p) - Nx £ O

x 20

from which it may be seen that the equilibria X minimize t°x
for given quantities of excess demands.

A property satisfied Ey a typical spatial market is
that there alwarys exists an equilibrium wherein no

transshipments occur, or equivalently, there will always



exist an egquilibrium wherein no region simul taneously

imports and exports. This property is valid if the

following condition concerning transportation rates holds:
tiJ LR P tjki v oi.d,k (2,11

Thét iz, the costs of shipping indirectly are not less than
the costs of shipping directly. Henceforth, this relation
shall be referred to as the "triangular inequality of ¢."
It is difficult to imagine a situaticon in which thiiv
condition would not hold. Indeed, if the‘tiJ are measured
from least cost routes, then the condition must hold. Now,
suppose there exists an eguilibrium solution in which i
ships to k, which in turn ships to j. Since equilibrium

prevails, it is Known that t,, = p, - p, . and that

tKJ =P; T Pg- Substitution of these equalities into (3.112
yields:
tiJ ipJ-pl

I+ the latter holds with-striﬁt inequality, then potential
exists for profitable ftrade so that the market could not be
in equilibrium as supposed. Thus,itiJ =Ppj - Py But i¥
this be the case, then it is possible to reroutes shipments
without disrupting the egquilibrium conditicons and such that
no transshipments occur. Observe that if the triangular
inequality of t holds with strict inequality,'then it may be
"concluded that there is no equi1§brium wherein

transshipments occur.,
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Under all circumstances, it may be concluded that there
exists an equilibrium solution in which no two exporters
share two importers. Consider the following market

configuration:

B
N

!

1

Here, A and C both export to D and B. However, a seéond
equilibrium solution may be obtained by transferring an
exported unit from A to B into D, and by transferring an
exported unit from C to D into B. Such rearrangement does
not effect prices or net imports; consequently, the
éguilibrium condi tions are not disrupted. The transfers may
" be repeated until at least one of the trade flows is reduced
to zero. Hence, an equilibrium solution must exist wherein
no two exporters share two importgrs.'

As a consequence of the last observation and the
observation concerning transshipments, one should gkpect a
typical spatial equilibrium to have very few trade +flows, or
equivalently, that the equilibrium x veétor largely consists
of zero components. In fact, there will alwayrs exist a
spatial equilibrium having not more than n - 1 trade flows .9
This assertion is verified with use of the following

theorem:

3.2.1 Theorem: Let A be an nxm matrix having rank, p. Let

b be an m vector and cansiqer the system:
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x 0

Suppose that X solves the system, then there exists an

; 2 0 of dimension less than or equal to p such that

8& = b where the columne of A consist of a set of

linearly independent columns from A.

Proof: Let A be partitioned as A = (al,aé,,,an). Since X 7

solves the s?stem:

Without loss of generality, it may be assumed that only the

firet 1 components of X are nonzeroj subsequently:

CXja; t Xod, tu.ut X A, = b

I+ (al,az,,,a]) are linearly independent, then the theorem
holds immediately. Suppose (al,az,,,a]) are linearly’
dependent, then there exists (cl,cz,,,c]), not all zero,

such that:

Without loss of generality, it may be assumed that at least

‘one €; > 0. Multiply the lTatter relation by A and subtract

the product from the former relation to produce:

(;(.1 - ‘\ci)al + (§2 - Ac-z)az +...% (§] - }\C])a] = b
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Hence, a second solution is obtained. Moreover, if one
chooses A = min(?i/ci: c; > 0>, then the second solution is
nonqegative and consists of not more than 1 - { nonzero
components., The pfocess may be repeated until a positive
solution involving only linearly independent columns of A is

obtained. Let § equal the terminal solution to complete

the proo+t.

i
Corollary: Let A be an nxm matrix hawving rank, .p. Let b be

an m vector, and consider the system:

Ax = b

x :x0

Let X solve the system, then there exists an ; which also
solves the system and which has not more that p positive

components.

The fact that there exists a spatial equilibrium having
not more than n - | trade flows follows from the +tact that
the matrix, N, has rank equal ton - 1. #rnm (3.7, it may
be seen that the matrixy, N, is a linear transformation that
calculates all-possible differences betwesn the components
of an n-dimensional vector. As there are only n - 1 ways in
which such differences can be independently taken, ﬁhen N/
must be of rank n - 1. Of course, this implies that N has
rank n — 1 also; Observe that x enters spatial equilibrium
conditions [conditions (3.87 throughA(S.lo)J only through

the term Nx. Suppose X is an equilibrium solution, then by
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the last corollary, thers exists an ; having not more that
n - 1 positive components such that N;‘= NX. Thus, ; is
also an equilibrium x.

Under usual circumstances, spatial equilibrium prices

will be greater than zero. A sufficient condition ensuring

positive prices isn
e; <0 > 03 Vo

That is, each regional excess demand is greater than zero
when evaluated at zero price. In efach region for which this
condition holds, the commodity is said to be “"desirable,"
Now suppose the commodity is desirable in all regions, and
that there is a spatial eguilibrium in which Pj = 0. It is

known from condition (3.8) that:

and from the desirability assumption it may be concluded:

0 < e;¢03 ¢ n;

Hence, any region with zero price must be a net importer.

Suppose that region | imports from region i. From condition

(3.9, P; must satisfy:

tig =0 - Py

But, since t;; > 0, this requires p; < 0, which cannot hold.
Hence, if the commodity is desirable in every region, then

equilibrium prices must be greater than zero.
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3.3 Implementation of Trade Barriers

An advantageous féature of the precented model is that
it allows the incorporation of several commonly enforced
trade re;trictions. Some of these restrictions are
discussed here, and tﬁe compensating modifications to the
model are explained.

A common restriction to trade is the specific tarif+f,
which is a per—unit tax levied by an importing region on
imports. Sﬁppose region j imposes an & specific tarif+
against imports from region i. The effect of such tariff
ypon thé equilibrium solution is in no respect different
from an increase in the per-unit transportation charge on

shipments from i to J; t Therefore, compensation for the

St
tariff is accomplished simply by adding the tariff rate to
the transportation thargg. I¥f o« is the vector of specific

tariff rates, then the appropriate Lagrangian would be:
1(p, x> = F(p> + X'(t + o« - NP3} (pyX? 2 0

A specitic export subsidy is a per—unit subsidy paid by
an.exporting region to exporters. Suppose region i pays a
siJ per—unit subsidy on exports to region j. The effect of
such subsidy is the same as an equiualent reduction in the

transportation charge, t Let 6§ denote the vector of

id*
specific subsidies, then the following Lagrangian
-incorporates both specific tariffs and specific export

subsidies:
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1(p.x?» = ¥(p» + X'{t + o« = 8 — N'p’i (p.x* 2 0

Taritts are fregquently assessed as a percentage-of-
value rafher than on a per—-unit basis. In such cases, the
tariff is said to be an "ad-valorem" taritf. Here, it is
assumea that the tari++ is applied to the c.i.f. price
(delivered pri;e). Also, it ie assumed that a common tax
rate is applied to imports of all origins. Suppose region i
imposes a ¥; percent tariff on-imports. I p; is the
"border price," then the "internal price” is {1 + Ei)pi.
The quantity of excess demand is derived from this internal
price. Border prices must still be such that profitable
trade is not possibie. Th;s, the follawing Lagrangian is

7

implied: -
1{p,x) = [<(I + Topl + x"'(t - N’'p’; (p,x> 2 0

Here, I is the nxn identitylmatrix, and T is an nxn diagonal
matrix with the tariff rates situated along the diagonal. p
is now-interpreted as the vector of border prices. Internal
prices are given by (I + TO)p. It should be observed that

the Kuhn—Tu;Ker conditions for the abouve will regquire:

i - (pj — P;? 2@, if > then x;; = 0 Yo,

Thus, if %4 > 0, then P;j = Pj + tiJ' That is, the border
price in Jj is equal to the c.i.f or delivered price for
cshipments from i. Let ;J = (1 + Bj)pj be the internal

price in Jj. If x;; > 0, then it follows that:
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»

P; = (1 + BJ)(pi + tij>

which shows that the tariff assumed here is effectively
applied to both the commodity and the services required to
transport it. If the tariff were in fact assessed only
against f.0.b price, then the approach outlined here may
still be emplo}ed; however, the tiJ should be Eeplaced in
the Lagrangian with tiJ/(l + BJ) g0 that the effect of the
tariff on the transportation charge is cancelled.

An ad valorem subsidy is a percentage-ot—-value subsidy
paid by an exporting region to exporters. It is assumed
that the subsidy is based upon f.0.b. price, and that a
common subsidy rate applies to exports to all destinations.
Suppose a subsidy of ni_percént is paid.by region i. Let Pi

be the border price and ﬁi be the internal price in region
i, then Bi = pi/<1 - "i)' In a spatial equilibrium, border
prices must still be such that possibilities for profitable

trade are removed. Hence, the following Lagrangian for the

spatial equilibrium problem is implied:
1<p,x? = §ICI - M Ip)1 + %t - N'p>3 (pyX? 2 O

where: 1 is the nxn identity matrix; II is an nxn diagona]_

matrix with the subsidy rates on the diagonal, and p is the

t

vector of border prices. The constraints will regiure:

[E%
p=!
-a

-~

In terms of the internal price, Pis this becomes:
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tiJ - mP; - Py — Py 2 0y Vo,

From this relation, it is apparent that pnssibifities for
profitable trade are indeed removed.
A Lagrangian incorporating both ad valorem tariffs and

subsidies is given by:
1(p,> = FICT + I¢1 - M~ 1p1 + x7 <t - N'p>; (psX> 2 O

However, the model assumes that no one region imposes both a
tariff and a subsidy. As the region is either an importer
or .an exporter, but not both, then 2ither the subsidy is of
force, or the tariff is of force, but not both.‘

The model will also accomodate variable levies. By a
"variable levy" is meant a scheme wherein a region sets a
_ target price, and then implements tariffs or subsidies to
attéin anh'sustain the target. The programming model.may be
modified to account for the variable levy without explicit
congideration of the tariffs or subsidies involved. Suppose
region i sets a target price of ﬁi, then the variable levy
is incorporated simply by fixing the internal price in
region i at this level. MWith internal price fixed, excess
demand becomes a constant at ei(ﬁi). The equilibria should
Ee solved using this constant as the excess demand function
for the ith region. The solution value for Pi will be the
border price.

Import quotas may be incorporated if the.quota pertains
to the sum of imports from all origins. Supposing this to

be the case for the ith region, then the reqional excess



demand becomes Kinked at the gquota. Lest the quota be fixed
at ai’ and suppose eiiai) = ai! then the sxcess demand

function must be redefined as:

X 2 (p;23 P, P
e ipyd =1, R
q; 4 P < Pi
where P; is the border price.
To determine the spatial equilibria with gquotas

imposed, one must determine the relevant sections of the
excess demand ¥antion5. The model should first be soived
using the 2,(p,) for excess demands. The solution should
then be examined to see if any quotas are exceeded. IFf so,
then it is Known that the.equilibria occur in the lower
vsegments o+ the excess~aemand functions for those regions in
which quotas are being uioléted. Thus, the 51 should be
2ntered as the esxcess deﬁands for these regions, and the
model should be solwved agaih. In the second solution, the
enforcaed quotas will cause shipments to be diverted ihto
other Eegions of the model; cpnsequently, quotas not
exceeded in the ¥iD§£ solution could possibly be exceeded in
the second. 1In this case, the process should be repeated
until an equilibriumvis obtained. &An equilibrium P; will be
both the border pr;ce and the internal price for every
region not having a quota, and for regions whose quota is
nonbinding. For regions having binding quotas, the Py will

be the border prices, and the internal prices will be the

A

pi-.
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I+ an ad valorem tariff and a gquota are simultaneocusly
imposed, then the modifications described above may be
employed in combination. Suppose region i imposes a quota
of ai and an ad valorem tariff of ¥ Moreover, let
ei(si) ='ai- The solution value of Pi will be the border
price. flf the quota is nonbinding, then (1 + ¥,0p; will be

the internal price. If the quota is binding, then the

internal price will be Bi'
3.4 Prilce Dependent Formulatlon

Until now, the spatial model has been formulated using
quantity—-dependent excess demands. Here, the model is
reconstructed using price—~dependent functions. The primary
advantage of the price—&épéndent model is its compatability
wi th a large variety of trade policies, particutarly those
involving restrictions uﬁbn quantities.

~The equilibrium conditions for the quantity-dehendent

model were found to be:

E<p)> - Nx £ 0; p’lE(p) - Nx1 =0 (3.12>
t-Np2 0; XL -Np) =0
(p,x? 2 0

Now, let g = B(p). If the e;(p;> are monotonic on p; 2 O,
then p may be solved as p = E-l(q), where E-I(q) is a
vector-valued function whose components are the e?l(qi).

Also, condition (3.12) may be expressed as:

q - Nx ¢ 03 P'¢q - Nx> =0
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With this observation, it should be apparent that the former

set of conditions is equivalent to:

Nx - g2 0; p'(lx - @ =0

t - Np2z2 03 x‘¢t -~ Np)> =20

El<e) -p=o0 (3.13)
(pyx> 2 0 |

Suppose the e?l(qi) are integrable and define:
fleq = 27 1 eTl¢q.>d
i=1 i -9i799

f-l(q) is not, strictly speakKing, the inverse of f{(p) as

formerly defined; however, this notation is chosen for the
sake of consistency and clarity. It may be confirmed that
the latter conditions aFelthe Kuhn-Tucker conditions to the

following problem:

maximize(qg,xJ: f_l(q) - t'x
subject to: Nx - d 2 0

X 20
where the Lagrangian to the probliem is constructed as:
1¢pyX,@ = fl¢q - t'x + p'CNx - Q; (pyx> 2 0

As before, the necessity and/or sufficiency of the
Kuhn-Tucker conditions is of no concern insofar as
equilibrium determinatioq is concerned. The Kuhn-Tucker
points are one—to-one with the equilibria regardless of

whether such points imply or are implied by the optima of



g8é

the above problem. However, the programming model does havs
several desirable properties. First, i+f E-l(q) is
continuous at some q, then f-l(q) is differentiable at q.
Second, the constraints are linear. Hence, by Theorem
2.5.12, the Kuhn-Tucker conditions are Known to be necessary
to the optimal solutions. Third, if the excess demands have
negative slopes, then it may be easily confirmed that the
Hessian matrix of the objective function is negative
definite, and consequently, the objective function is
strictly concave. As the constraints are also concave,
Theorem 2.5.13 guarantees that tﬁe Kuhn-Tucker conditions
are also suf;icient for the global optima, and Theorem 2.4.1
guarantees that. the Kuhn-Tucker pointes are one-to-one with
the saddle points of thénLagrangian.

All of. the formerly‘discussed tr;de restrictions may be
incorporated into this moﬁel and in much the same fashion as
before. In particular, specific tariffs and specitic
subsidies are treated exactly the same. An ad valorem
tariff by region i may be incorporated by replacing‘
el¢q,> in (3.13) with e7lCq;)/¢1 + ), where 3, is the
tarif¥ rate. The solution values for the P; will be- the
border prices, as before. The internal prices will be the
Bi = e?l(qi) = (1 + ¥;2p;. The treatment of ad valorem
subsidies is similaf.

A variety of restrictions may be imposed upon X,

including both gquotas upon total imports and quotas upon
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imports of a specitic origin or combination of origins.

Suppose the restrictions upon X are comprehended in:

q-0Gx 20
A spatial equilibrium solution satisfying these conditions

may be solved using the Lagrangian:
1(psXsQsm? = Fl¢q@ - t'x + p/(Nx - @ + p°¢q - Gx

on (p,X,u? 2 0. Here, the solution value for'ﬁ will be the
equilibrium vector of internal prices. In this formulation,
the optimal Q‘y becomes a vector of per-unit tariff and/or
subsidy equivalents to the quotas. -

A\variab]e levy may also be implemented in the form of
a restriction upon x. édppose region i installs a variable
levy with target price, p,. Let q, = e7l(p;>. The
variable levy may be incofporated b} including a constraint
requiFing the net imports of i to squal ai' The solution
will yield p,;, = Bi; thus, p; will be the internal price of
region i.

An ad valorem tariff and quota may be simul taneousily
imposed by implementing the above modifications in
combination. The.internal prices become 5 = E—l(q);
however, the border prices are indeterminate without

gspecific Knowledge of the construction of Q.
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3.5 General Equlillibrium

The partial squiltibrium model is easily extended to
accomodate Qenesral eguilibrium problems. Suppose there are
n countries and m commodities. The aggoregate market for
each individual commodity is assumed to satisf} the same
static and dynamic conﬁitions as before; however, it is now
recognhized that the domestic excess demands are functions
the m internal prices corresponding to =ach commodity.
Thus, if P} denotes the price of the ith commodity in the

Jth region, then the excess demand for the same takes the

. . -
e:j = eii(Pjsp‘js s sp?)-

It will be sﬁown that the general spatial equilibrium model
is effectively m partial equilibrium models that are
connected through the arguments of the excess demands.

Let Pi = (P{,p%,,,p;) be the wvector of prices for
the ith commodity. the that pi is analogous to p in the
previous sections. Let p now be the wector of all prices in
all regions. That is:
(bt ]
p:_‘

Let xi be the trade vector of the ith commodity. xi is

analogous to X of the previous sections. Let ti be the
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vector of transportation rates for the ith commodity. ti
is analogous to t of the previous sections. Let El(p) be
the vector of excess demands for the ith commodity. Agaiﬁ,
El(p) is analogous to E(p) g+ the previous sections. Now,

redefine ®,t, and B(p) as:

x;_ rt; ’-Eé(p)

X te E“<(p)
X = |. t=|. B(pd) =| .
. .m . »

| X 4 A | E™¢p)

Finally, define N exactly as before and let:

N o . .0

. 0 NO . O

N =|. o . .
.. .0 -
0 0 . 0 N

Using these definition, the conditions for general

gpatial equilibrium may be briefly expressed as:

E(p) - Nx £ 03 p’LE(P) - Nx1 = 0 €3.14)
t - N'p 2 03 x’Ct - Np> = 0 | ¢3:15)
(p,x> 2 0 ' ' (3.16)

Here, the inequality relations are:

rEl(p)-l N O . . 0 Fx‘
Ez(p) c N O . 0O %2

. -1. 0o . Al ] <o
. . . . oll.
EM™(p)> 0 0 . 0 N x'“_J




%0

t! N O . . o]lpt

t< 0 N 0 . o0]lp?

-1, o . . [ 2o

. . . . 0 il.

" |0 o . o N|P" ,

From these, it may.be observed that the set of general
equilibrium conditions is much likKe m sets of partial
equilibrium conditions stacked on top of each other. The m
"partial equilibrium" models are linked only through the
arguments of the excess demand functions,

The general equilibrium problem could be formulated as
a programming problem if a function, f(p), could be found
having gradient EB(p). Were this the case, then the

appropriate programming model would be:

maximize(p>: F(p>
subject to: t - ﬁ’p 20

P20

and the Lagrangian would be constructed as:
1(p, x> = F(p) + X' (t ~ N'p>; (psx> 2 0

In general, f(p> will not be eaéy to determine. UF
course, Knowledge of this function is not essential to the
determination of the spatial equilibria. The equilibria may
still be found by solving (3.14> through (3.1é&> as though
they were a set of Kuhn-Tucker conditions, and B¢p) may be
treated as though it were the gradient of a function being

maximized.
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It shoutd be apparent that fthe Hessian matrix of +tips
iz simply +the Jacobian matrix of E(pd). By Theorem 2.4.7, it
may be concluded that f(p* is concave (strictly concave) i+
and oniy i+ fthe Hessian matrix is negative semidefinite
(negafiue definited, Lot Pi be the vector of m commodity
prices +or the ith reqgion, and let Ei(pi) be the wector o% m
excess demands for the same., With a proper rearrangement of
rows and columns in the Hessian matrix of fip2, one obtains
a block-diagonal matrix with blocks corresponding to the
Jacobian matrices of the Ei(pi)' Hence, 1t may be concluded
that the Hessian matrix is negative semidefinites (negative
definitey i+ and only i+ the n Jacobians of the E1<pi) arse
negative semidetinite (negative detinite),

Some of the prope;ties.a+ partial equilibria atso
pertain to gensral equilibria. In particular, i+ F(p) is
strictly concave, then a general equilibrium price vector is
unigque. IFf the costs of shipping indirsctly are not less
than the costs of shipping directliy, then it remains that
there must exist a spatial eqgquiltibrium wherein no
transshipments occur. It’also remain; that in all cases,
there-must_exist an 2quilibprium wherein no two exporters
ghare two importers. The proot of the last two assertions
is in no respect different from the proofs presented for the
partial equilibrium model. @lso, as the matrix, ﬁ, is of
rank m(nA— 13, then with use of Theorem 32.2.1, it may be

concluded that there exists an equilibrium having not more

than m{(n - 1 trade +iows. HMHoreover, upon disassembling the



disassembling the block diagonal structure of conditions
(3.14) through (3.14), it may be seen that the same theorem
implies that there exists an equilibrium having not more
than n - {1 trade flows for any one commodity.

1f E-l(p) exists, then a price-dependent formulation
of the general equilibrium model may also be constructed.
The steps of derivation are s2xactly those taken with the
partial equilibrium model.

Trade restrictions may be implemented in both the
quanti ty~dependent and price-~dependent versions of the
general equilibrium model. The installation of such
restrictions is accomplished in the same manner as in the
partial eguilibrium models. 11t should be observed that the
price-dependent versionﬁé4 the general equilibrium model
wiil allow restrictions not only upon quantities of a single

commodity, but also upon combinations of commodities.

3.6 Stabllity®

Until now, thg discussion has dealt with the
determination of equilibrium points and the propeﬁties
characterizing such points. However, it has not been
established that the dynamics of the model are such that
these equilibrium paints are stable. I+ there is no
inhérent tendency of the markKet to converge toward the
equilibria, then such points are indeed of little
significance, and Knowledge of such points or of their

properties is of little if any practical value. For this
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reason, the question of stability is now addressed.
Attention is centered upon the partial equilibrium model of
the first sectionj; however, it will shortly become apparent
that the logic applies equally wei] toward establishing the
stability of the general equilibrium model also.

It will be recalled that the dynamic assumptions of the

partial equilibrium model are:

Sa> p; >0 if and only if e;p;> - n; > 0.

b> ﬁi < 0 if and only i+ ei(pi) - n, < 0.

é aj X > 0 only i+ tiJ - (pJ - p;2 < 0.

b if t (pJ - p;? <0 for some j, then x.. > D for

iJ Pd

at least one such j.

c? Xjj <0 if andonly if t;; - (p; - p;> > 0 and

It was noted that (p,x? satisfies the above conditions if

and only if:

lp(p,x) = EC(p) - Nx £ 03 /p’[E(p) - Nx1 =20
lx(p.x) =t - Np 2 0; x(t - Np> =0
(pyx> 2 0

It was then noted that if f(p) is differentiable at all the
Lagrangian saddle points, and concave at all points
satisfying the above, then the spatial equiltibrium sﬁlutions
are one—-to-one with the saddle points of the Lagrangian.

Recall that the Lagrangian is:

1(p,x> = F(p) + x’'(t -~ N'p>; (pyx? 2 0
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Un#ortunately, the dynamic specifications above are
alone insufficient to ensure convergence to the equilibrium
points, or to the saddle points of l(p,x’. However, under
more restrictive but blausible specificationé, global
stability with respect to the saddle points may be
establ ished.

In particular, suppose that prices and interregional

trade flows adjust according to the following system:

. 0 if P; =0 and e;(p;)> - n;, <0
p. =
' ai[ei(pi) - niJ otherwise

_biJ[tiJ - (ﬁj - P21 otherwise

where the a; and biJ are positive constants. Thus, the rate
of price adjustment is prbportional to the deficit, unless
such adjustment would lead to a negative price.

Accordingly, the rate of adjustment in interregional trade
flow is proportional to profits, unless such adjustment
would lead to a negative flow. Observe that this system may

be expressed in terms of the Lagrangian as:

P = .
aial(p,x)/api cotherwise
. 0 i+ Xij = 0 and a]/axiJ > 0

-b”al(p,x)/axiJ otherwise
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The foregoing theorem and proof show that the abowve
process does in fact converge upon a saddie point of 1{(p,x’
it this function is linear in X and strictly concave in p.
The function is clearly linear in X; moreover, it is
strictly concave in p if f(p) is strictly concave, and it
has beep shown that f{(p) is strictly concave if the excess
demands have negative slopes. The theorem is a
generalization of theorems presentéd by Arrow, Hurwicz, and
Uzawa (138> in connection with gradient-metﬁod optimization
a]gorithms.? The theorem is presented here in general

terms rather than in terms of the pressnt model.

3.6.1 Theorem: Let 1(x,y):R"aR™> R! be 1linear in y and
strictly concave and differentiable in % over all X = RQ.
Moreover, let (X,y? € R:SRT be a saddle point of 1(x,y>.

Consider the system:

FD if x;, =0 and 31/2x; < 0 (2.17>
X, =
aial(x,y)/axi otherwise
] 0 ' if y, =0 and 2172y, >0 _ (3.18
Y, =
! -bial(x,y)/ayi otherwise

where the a, and b; are positive constants. From any
initial t; and (xg,yy> in RJeR}, (x,y> satisfies
1im e [X(t),yC(t)>] = (X,y> where (X,y> is a saddle point

of 1(x,y> on R]eR].
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Proof: As 1(x,y? is strictly concave in ® and linear in y,
then with use of the corollary to Theorem 2.4.8, it mar be

concluded that:

(R, p) < 1Cy) + 1 (X, 9)(K ~ X0 x e R, x = %

1(R,¥> = 1{x,y> + 1;(x.y)<§ -y

As (X,y> is a saddle point of 1(x,y>, then:
1(x,§> < 1R,y < “§’¥’5 -V (x,y) = RleRT]
Tﬁe last three relations imply:

(X = x)71, - (y - yrly 2 1¢(X,y> - 1(x,y> > 0

for all (x,y) & R?aﬂ?, angd where the first inequality is

strict if X = X3 hence:

(X = x>0, = (¥ -y, >0, if x =X, then > 0. (3.19)

for all (w,y> = REQRT. Now, let:

al U L] [] 0 bl 0 . - 0
g 3, 0 . 0 b2 0 . 0
A= . 0 a - B= . - [}
L] L 3 L ] 0 L ] 1 ] L] 0
0 0 . 0 a. 1] Q . 0 bmd
P
i 1 if X; = 0 and a]/bxi < 0
- =
X g otherwise
rl if Y = 0 and a]/ari > 0
5)',= ]
Q otherwise




97

[ 1 ] 1 7]
s! o . . 0 sl o . . o
0 2 0 . 0 0” 53 o . 0
Ax = L ] U 1 ] AY = . 0 L]
. [ ) L ] O n 1 ] L ] L 0
m
o 0 . 0 & o 0o . o &

Finally, let:
D(x,y) = 1/2[(x - A lix - % + (y - B iy - 91

Note that A-1 and B-1 are positive definite and symmetric.
Also note that the system in (3.17) and (3.18) can be

written in terms of the matrices above as:

x-
I

ALl - Ax]lx

e
]

-B[I -
BLI Ay]ly
Consider:
— _-/-1' -1-1'
D =(x=-XIA "X+ (y-yY)B"Y
Substitution of the former relations into the latter vields:

D=(x = X071, - (y - y)’ly + XA, - y’Ay]y (3.20)

where x’Ax = 0 and y’AY = 0 have been used. Now, from the

definitions of Ax and A, and from (3.1%), it may be

Y

concluded that D ¢ 0, and is strictly less than zero if

X = X. As D > 0, and as D ¢ 0, it follows that D must
/

converge upon a limit, D*, as t - 0w, That is:

. *
llmt*N D=2D

Therefore, (X,y’ must converge to a limit cycles,

[XCr),y(r)] satisfying DIXCr),yC¢rd>] = D* for all r.



98

Now, at all points along the limit cycle, D =0

-e

consequently, x(r) = %X for all r.

Hence, it is known that x does converge to X. It
remains to show tﬁat Yy converges to ; such that (§,§) is
a saddle point of 1{(,y>. It will be shown that every point
on [i,§(r)] is a saddle point of 1(x,y>; consequentiy, as
saddle points are equilibrium points, the limit cycle must
in fact eonsist of only one point.

At all points on the 1imit cyrclie, X = D: consequentiy,
it is Known from the definition of X in (3.17) that

[i,g(r)] must satisfy:

1, I%,yCr)] ¢ 0 X1, [X,y(r>1 = 0

for all r. Moreover, aé D=0 at all points on the limit

cycle, it is’known from (3.20) that [§,§(r)] must satisfy:

Ly(r) - y171 —yAyly=0; vor

4

However, as 1{(x,y» is linear in y, it follows that 1y is a

function of x onlty; consequently, 1 is constant at ly(i).

b 4
Therefore, the above becomes:

[A -y 4 Ve — l-" < n
ydrd y171<x)> ¥ Ayly(x), v r

f

But-y is complementary to 1,(X) by assumption, so this

b4
reduces to:

§'<r)1y<§> = 0 Y r

Also, by assumption:



e
ly<x) 2 0

Finally, it is Known that ;(r) cannot exit thé nonnegative
orthant, for the adjustment process forbids otherwise.
-“Thus, summarizing, it may be said that for all r, [§,§(r)]

satisties:

1, [%,¥¢r>] ¢ 05 X1, [%,y¢r)] = 0
1,¢%> 2 05 y (1 (%) = 0

[X,y¢(r>]1 e RTeRT

But, these are precisely the Kuhn-Tucker conditions for
saddlie points in 1{(x,y?>. It follows that the limit cycle
must consist of the single point, (§,§), that is also a

saddle point of 1(x,y? on>R20RT.
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FOOTNOTES

1The dynamic perspective of this work is largely due
to the encouragements of Dr. J.S5. Plaxico.

2A5 the set of nonnegative prices is closed, and as
differentiability cannot be defined on closed sets, a more
accurate requirement here is that f(p> be differentiabtle
over some open set containing all nonnegative prices.
Accordingly, the set constraint in Theorem 2.é6.1 should
actually be defined as some open set containing the
nonnegative orthant,.

3Takayama and Judge (19271) assert that a solution does
exist; however, this conclusion is based on a peculiar and
erroneous corolltary which they append to the Weierstrass
theorem on page 13. Here, it is said: "As a corollary to
this theorem we can prove: +F(¥) defined on a closed set
attains a maximum (minimum) if it is bounded from above
(below).” Note that this corollary is clearly contradicted
by f(x) =1 - (1/x) on x € [1,%0),

4This observation was originally emphasized by
Samuelson (1932).

5It appears thaf this observation was first made by
Silberberg (1%970).

6Silberberg (1970> also presents a proof of stability,
but under the unrealistic assumption that interregional
trade flow adjustment is instantaneous.

7Here, the primary modification of the Arrow, Hurwicz,
and Uzawa theorems is in the generalization of the distance
function, D.

BA "1imit cycle" is a closed curve towards which the
state vector of a system converges.



CHAPTER IV

PRICE DISCRIMINATION IN THE SPATIAL
MARKET

In this chapter, the practice of price discrimination in
the spatial market i3 considered. Mathematical programming
modeis are developed dealing with discrimination by a single
regfcn, and by a cooperative consisting of a group of
reqions. I; both cases, models are developed for the
maximization of net export revenue and for the maximization
of total net revenue. &n all cases, discrimination is
exeprcised in a single product; hence, the analysis is
partial. Here and herea%ter, the term, "net revenue,’
raters to total revenues less transportation charges. By
“total net revenue" is meant the sum of net revenues on
#oreign sales and domestic sales.

The first section considers the single—-discriminator
case, while the second section treats the cooperative
discrimination models., In each section, mathematical
programming models baving solutions equal to the optimal
price and gquantity vectors are developed. It is then shown
that the solutionz to these problems may be found as the
salutions to the associated Kuhmn—-Tucker conditions. Also,

it is shown that in some cases, the Kuhn-Tucker conditions

101.
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are sufficient conditions for the optima. Finally, in the
third section, 2 trade policy is formulated whereby the
discriminator may impose fthe optimal price and gquantify

vectors upon the spatial market.
4.1 Discrimination by a Single Region

In this section, the case of a2 single region practicing

price discrimination in a single product is considered.

m

First, the general nature of the discrimination problem i
axamined. Second, a3 model is developed wherein thg
dis;riminator maximizes net reuenué on exports., Thus in the
first model, it i€ assumed that discrimination i; practiced
only in the export market, Finall}, a model is developed
wherein the discriminafsr maximizes the sum of net rewvenpues
¥fom the export markKet and the domesstic market., Here, it is
assumed that discriminat;on\is exercised not only in the*
export market, but alsoc between the export market and the
domestic markst.

Suppose that a2 single region in a spafial market seeks
to price and allocate its exports such that net revenue from
trade is maximized. Obviously, in determining the optimal
aliocation and pricing scheme, the discrimfnator must
consider the responsea»of competing sellers to its policy.
Moreover, two typeé of competition must be considerad;
namely, that of arbitragers; and the direct competition of
other producers. Here, the implications of both types of

competition are examined under the assumption that all
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buvers and sellers in the export market beﬁave in accordance
with the rules of ordinary Epétial adjustment. These rules
are mathematically expressed in assumptions five and six of
the spatial model nfrthe previcus chapter. In words, the
adjustment processes arg such that: {72 ﬂeficita cauyse price
increases, 2) surpluses cause price decreases, 3
interrzgional trade flows increase when pra?its from such
trade aré forthcoming, and 4> interregional trade flows
decreasze when such ftrade resuifs in losses.

The\possibilities of arbitrage will limit the extent to
which prices set by the discriminator mar differ. Were the
discriminator to set two regional prices at values differing
by more than the per—unit costs of ftransporting between the
regions, then jts direéé_shipments tp the region of higher
price would sventually be terminated. Instead, this region
would be supplied by arbfthagers via transshipments through
the region of lower price. ¥

Suppose region i is the discriminator, and that i has

set prices 04'5.

i and Ek on ite sxports to regions j and K.

ﬁrﬁitragers in j will supply buyers in Kk at any price in
2xcess of EJ +-thl f+or this sum reprecents the

arbitragers‘ total costs in the purchase and transport of a
commodity unit. At this point, it is assumed that the
discriminator requires that all its sales be shipped to the
region of pufchase. Consequently, it is not possible for an
arbitrager in j to arrange a trade wherein it ships directly

from the discriminator to region k. That is, if the
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discriminator®s sales are to be arbitraged, then they must
firet be shipped to the region of the arbitrager and from
there to the ragion of the arbitrager s buver. Now, if the
discriminator sets B, > p; + tiks then buvers in K will

turn to arbitragers in j for their foreign supplies. The
arbitragers will continue to purchase from the discriminator
at the +fixed price, EJ! and resell these duantities to K
until the price in K is reduced to p, = Ej * by at which
paint, arbitrage i3 no longer profitable. Thus, i+ the

discriminator sets any EK > p. + tis then Ek will not in

J
fact be the realized price in Kk, but rathsr, #rbitrage will
cause the actual price to be P = Pj + th.

Under general conditions, it can be said that the

discriminator is never aduvantaged by allowing its shipments

to be arbitraged. This will always be true it:
Bl &t * tygs Y ik (4.1)

it will be obserwved that this same inequality was assumed in .
the spatial equilibrium model of the previous chapter. Now,
it the discriminator’s shipments are being arbitraged

through Jj to K, then as noted abowe, the price in K will be

P * tJK' For 2ach unit transshipﬁed, the discriminator

nets EJ - t... Suppose the discriminator brpasses the

id
arbitragers by reducing Ek to EJ + tik' K would then
purchase the same quantity as before, but directly from the

digscriminator. The discriminator would then net



iEJ + to) =t per unit. The difference between the

latter rate and the former rate is:
(p-j + t- - t-- . P t~-j = ti._i + tjk - tlk i D

where2 the ineguality follows from (4.1>. This shows that
the discriminafor’s total revenue at prices inducing
arbitrage can always be equaled or exceeded with a price
P .
adjustment causing arbitrags to cease.
It should be apparent that no price discrimination

scheme can succeed i+ arbitrage is allowed through the

W

region of discriminator itself. With arbitragers operating
within the region of the discriminator, prices aﬁd trade
flows invariably degenerate to values dictated by ordinary
spatial eqqilibriuﬁ. .fﬁus, the dizcriminator must prohibit
arbitrage through its own region.

In addition to arbf%rage, the discriminator must
cbncern itself with the reaction of competing producers.
Whereas arbitragers can inflict revenue losses when prices
are set with excessive disparify, competing producesrs can
inflict losses when priceaiare z2t at improper levels. Were
the discriminator to s=2t a regional price too high, its
share of the market’s imports could be significantly if not
Eompletely lost to such competition. On the other hand, a
reduction in regional price in the pﬁeaence of competition
could result-in an insupportable lewvel of demand for ths
discriminator‘s exports. OFf course, improperly fixed prices

could lead to such consegquences even in the absence of
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competitiony howsuver, the pressnce of competition will

i
=

generally cause the consequences to be more severe.,
To illustrate the response of compeftition o
digcriminator price policy, consider the market

configuration below:

Assume that the market is initially at a spatial equilibrium
and that the equilibrium is such that trade occurs in the
directions of the arrows shown. However, suppose that trade
be tween A and the other'region is prohibited by large
transportation charges: . Suppose that D is the
discriminator, and that it implements its scheme by
increasing its price to é and by reducing its price to E.
When D reduces its price to E, £E will initially respond
by diverting all of its excess demand towards D. That is, F
will be underpriced, and subsequently, guantities formerly
obtained from F will now be sought from . However, this
wi][ cause a surplus in F, and conesequentiy, producsrs in
the same will match the reduced price of D in order to clear
the market. At the reduced pricé, excess demand in E will
b2 increased, but excess supply in F will be reduced;
subsequently, shipments from F to E will be reduced as well,
Thus; if the diicriﬁinator is to support its beduced‘price,

it must not only accomodate the increased demand in E, but
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must al

1]

o replace shipments formerly obtained by E from F.
Thie illustrates that a price reduction may prompt
considerable increase in demand +or one’'s expofts in the
agresence of competition. Indeed, large price reductionz may
prove insupportabie=,

Consider the increase in price offered to C.
Initially, C will respond by d{uerting all of its excess
demand towards Bi however, deficits in B will cause its
price to be bid upwards until it matches the increased price
of D. &t the increased price, the excess demand of T is
redu:ea; howevyer, the 2xcess supply of B is increassd so
that shipments from B to C will rise. Thus, exports +rom D
to C will be reduced not only as a result of the reduced
excess demand in C, bugha]so because B will capture a

greatsr percentane of C’s market. D i

w

further supplanted
in C i+ its price iﬁcreaée is sufficiently large to allow A
to overcome the ftransportation barrcier. The discriminator
must fthen camﬁete with both & and B, which will generally
imply that any further increases in price will cause even
greater reductions in exports. This illustrates that in the
presence of competition, price increases may lead to rapid
and accelerating loss of the discriminator’s export market.
It might'appear that potential gains from price
discrimination in a typical spatial market must be small
with such volatility in export demand. Howevepr, it is not
the absoluts sensitivities of demands that counts toward

successtul discrimination, bﬁt rather, it is the relative
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sensitivities of the demands for thoses markets in which the
discriminatcr\lowers price to those markets for which the
price is increased. For example, while it may be true that
a price increase to C recultes in a large reduction in demand
for the discriminator‘s esxports, it may also be true that a
vyery small price reduction to E results in a more than
offsetting increase in 2xport demand. That is, shipments to
E may be esvuen more:price sensitive than shipments to L.
Hznce, the guantities that I cannot 3211 fto C because o+ the
increased price to the same may be disposed in E at a very
small pricé reﬁuction. The net Eesult could be a
considerable increase in revenue. As a practical matter,
one could ﬁrobably expect the presence of arbitragers o
impose more severe ]imfé&tions to gains from price
discfimination than fhe presence of competing producers.

If remains to matheﬁatically formulate the problem
described abowe. To this end, the fterms, "markst" and
"aggregate market," shall henceforth refer ta the collection
of all regions otﬁer than the discriminator. Thus, the
discriminator is treated as a distinct entity. Accordingly,
n is now the number of all regions other than the
discriminator., The discriminator’s export velumn to region
i is denoted b¥ ¥,, 0OFf course, the discriminator is assumed
to be strictly an exporter; hence, Yy oz .

The aggregate market is assumed to satisty all of the

conditions of an ordinary spatial market. In addition to

these, certain assumption are made of the discriminator and
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ite relation to the market. The market iz assumed to

~+

‘catisfy the following static conditions:

(]

1> The commodity is homogeneous within and across the
regionai markets,

2) The commodity is of un}fnrm price within any regiconal
markest, ‘

3 The ith reqional market is characterized by: a demand

function, di(pi}; a suppl» function, s,4ip;?, and an

eXcess demand function, #ilp;r = d;ip;¥ - 5,(p,;?, where
P is the regional price,
43 The ith reqgion may ship an arbitrary guantity, X tn

the jth reqion at the constant per—unit ftransportation

rate, tii' -

To these, add the following static assumptions pertaining to

the discriminator:

S The product of the discriminatoer and the product of the
aggregate market are hémogeneous.

&) Sales by the discriminator are r2quired to be shipped to
the region of purchase.

7y Aarbitragers are torbidden to operate within the reginn'of
the discriminator.

8> The discriminator may ship an arbitrary quantity, Yy to

region i at the constant per-unit fransportation rate,

I"i.

The dynamic assumptions are!
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Sa p, >0 if and only if e, (p;> - n; - y, > O.

b> 5i <0 if and only if e, (p;> - n; - ¥; <0 and p; > 0.

§ al Xij > 0 only if tiJ - (pJ - pi) < 0.
b)Y If t;; - (pj = p;> < 0 for some j, then iij > 0 for
at least one such j.
c) X5 {0 if and onty i+ tiJ - ‘(p‘j - p? > 0 and
X > 0.

where the n; measure nef imports from all regions other than
the dfscriminator. For the moment, the Y, are taken as
given constants; consequently, no adjustment rules +or these
are yet specified.

The dynamic assumptions imply that for given Yis the

market is at a spatial equilibrium if and only if:

e;{py? - ny — ¥y £0, if < then p; = 0; v i
t;; = <pj = P> 20, if > then x;; = 0; v i,
Pi 2 0y x;j 2 03 Yoi,d

These conditions may be expressed in matrix notation as:

E<p) -~ Nx -y £ 0O; p'IE(P) - Nx -yl =20 (4.2
t - WNp 2 0; X't - N'p> =0 (4.3
(p,x> 2 0 (4.4)

where y is the discrimfnator’s export vector, and where p,
E(p), %X, and N are defined as in section 3.1 except that
components corresponding to the region of the discriminator

are not included.
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Trpically, there will be an infinite number of (p,X,y’
that will qualify as equilibria. The discriminator has some
degree aver coqtrol over equilibrium determination inasmuch
as it can control the components of y, and in that it can
gselect its own offer prices. The objective here is to
determine the particular equilibria or equilibrium that
renders maximal net revenue on exports. Hence, the problem

could be informally stated as follows:

maximize{(p,X,y>: discriminator’s net export revenue

subject to: the market is in spatial equilibrium

The equilibrium requiremept is imposed because of the static

nature of the problem and the fact that nonequilibrium

- .

points are unsustained.

The discriminator’s net revenue on exports is measured
by f{(p,y> = (p - ©>‘y, where ¢ is tﬁe vector of
transportation rates ftor shipments from the discriminator,
For given y, the conditions for equilibrium are summarized
in (4.2) through (4.4>. In addition to these, it is assumed
that the sum of the discriminator’z exports cannot exceed
some constant, say ¥. Let u = (1,1,,,1>7, then this
condition may be expressed as ¥ - u‘y 2> 0. Therefore, the
problem to maximize discriminator nét expobt revenue may be

formerly stated as:
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Problem One

maximize(p,k,y): (p - )’y

subject to: BCp) - Nx -y £ 0 _ ' (4.5
t-Np20O (4.6
y —uw'y 20 €4.7)
p’LE(P) - Nx - yl = 0 | (4.8
x(t - Np> =0 (4.9
(psX;y? 2 0 " : (4,100

Let S be the set of all (p,x,y’ satisfyinQ the first,

second, and last constraints. That is:

S = {(pyx,y’ 2 0: E(p) - Nx -y £0,t-Np2:2 02

Observe that the complehéntary slackness ralations in (4.9

" and (4.9 satisfy:

p'LB(PY - Nx - yl ¢ 03 Y (p,x,;¥) € S

-x‘(t - N'p> ¢ 03 V (PyXsy) € S
Upon summing these two expressions, one obtains:
P'E(p) - t'x - p’y ¢ 0 ¥V (p;X,y?> = S

where equality holds if and only if both of the
-complementary slackness conditions hold. Hence, given that
{(p;R,¥y> = 5, that is; given that (4.5), (4.46) and (4.10» are
satisfied, then (4.8) and (4.9) are both satisfied with

either of the following conditions:

p'Ep) - t'x - p’y = O ' (4.11)



or:

p’E(p) - t'x - p’y 2 0 (4.122

Thus, the two constraints requiring the complementary
slackness conditions may be collapséd into one constraint.

I+ B(p) is continuous on the nonnegative orthant, and
i+ there exists a Py such that p’E(p) < 0 for all p > py,
then the Weierstrass theorem (Theorem 2.1.4) guarantees the
existence of a soiution to Problem One provided that ﬁhe
feasible region is nonempty. UObserve that the objectiwve
function is cﬁntinuous if B(p) is continuous. If the
constraints are continuous on the nonnegative orthant, then
with use of Theorem 2.1.3, it may be confirmed that the
feasible region is closéﬁ, The nonnegativity requirément
fmposes a lower bound upon all variables. From (4.7>, there
is clearly an upper>boundAon y. Condition (4.8 implies
that i+ one P ig increased without bound, then all Pi must
be increased without bound; hence, if there exists a py such
that p"E(p) < 0 for all p » Py then condition (4.12) imposes
an upper bound on p. As the set of all feasible p is closed
and bounded, and since E(p) is continuous, then p‘E(p)
attains a maximum over the feasible regionj consesquentiy,
from condition ¢(4.12) it may be concluded that X is bounded.
Therefore, the feasible region is compact; thus, it follows
that if the feasible region is nonempty, then the

Weierstrass theorem atfirms the existence of a solution.
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Rather than imposing the complementary slackness
‘conditions as constraints upon the problem, first consider
the possibilty of incorporating (4.11) into the objective

function through a penalty function of the form:
PP, ¥ @) = alp’BC(P) - t'%X - p'y]

where o is some positive constant. UObserve that p < 0 on

the set, S.. The problem is now_expressed as:
Problem Two

maximize(p,x,y): (p -’y + «[p’E(p) - t'x -'p’yl
subject to: E<p> - Nx -y 2 0

t-Np20

9-\1;.920

0

o~
o
b
<
7
I~

Suppose that nm is the optimgl value of Proﬁlem One.
Since an optimal solution to Problem One is feasiblé to
Problem Two, then for any «, the optimal value to Problem
Two must be gr#ater than or equal m. Hence, if there exists
an « sutticiently large that the optimal solutions to
Problem Two are such that the penalty function is equal to
zero, then as such ;olutions afe feasible to Problem One,
they must also be optimal to Problem One. Moreover, it is
apparent that at such «, optimal solutions to Problem One
ar; also optimal to Problem Two.

It can be shown that p » 0 as « » ®, that is, the

penalty function does in fact approach zero with increasing



ot 4However, to prove that the generated sequence of
solutions actually converges to a solution of Problem One,
it must be shown that ap 2 0 as « @ 0, To demonstrate this,
it hust generally‘be shown that the sequence of solutions is
contained within a &ompact subset of the feasible region to
Problem Two. The proof follows immediately if the ferasible
Eegion is itsel¥ compact, and genesrally, this s the way in
which convergence must be proven. It may be confirmed that
the +easible region to Problem Two is not compact;
consequently, converqgence cannot be guaranteed,.

NMonetheless, in practice, convergence is typically observed,
and generally for finite values of «.

With minor modifications, the last problem may be
extended to cover the c;se where discrimination is not only
exercised in- the export market, but also between the export
markKet and the domestic m;rket. Let p denote the price in
the region of the discriminator, and let d{(p) and e{p) be
the demand and excess demand for the same. The present
objective is the maximization of the sum of net.reuenues for

domestic sales and foreign sales; subsequently, the

appropriate programming model is:

maximize(p,p,X,¥>: pdi(p) + (p - )’y + «[p’E(p) - t'x -
Pyl
.subject to: ‘ ECp) - Nx -y £ 0
t -Np22O
-e{p) - u'y 20

- (p,PsX,¥> 2 0
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wﬁich ditfers from the last problem only in that domestic
revenue has been added to the objective function, and ¥ has
been replaced with the ex&ess supply function of the
discriminator. Indeed, the former pfob]em is the special
case of this problem where d{p) =0 and -e(p) = ¥,

Note that this model possesses some of the features of
the traditional price discrimination prpb]em. In
particular, the discriminator’s region is perfectly
separatedgfrom the regions in the markKet. Also, with sych

separation, the discriminator effectively becomes a
moﬁopolist to buyers in its own region.

Let the Lagrangian to the latter problem be constructed

as:

1(PsPsXsYslsn,3)> = pdi{p) + (p - )’y + «<{p’B(pP) - t'x - p’'y]

- w’TE(P) - Mx - y1 + A’Ct - NP> - 3ledp) + u’'yl

* ‘on (PsX,¥sa:70:%> 2 0. The corresponding Kuhn-Tucker

conditions are:

(p> ¢ 03 pl_. =10

lp = d{p) + pdpﬁp) - Bep p

lp= (1 - x)y + «<E(p) + Ep(p)(o:p—n) - Nx £ O; p’lp=0
ly = —at + N'a & O3 X'l =10
1y=‘p-r-ocp+n-‘6u§0;_ Y’ly=0
ln=-E(p)+Nx+y;0; ,u’lu=0

I, =t-NpP20; Al =0

1y = -e(p) —u’y 2 U; ¥ly =0
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s shown in Theorem 2.3.12, the Kuhn-Tucker conditions are
necessary for the optimal solutions if the gradients of the
active nonlinear constraints are linearly independent at
such‘solutions. If the excess demand functions are linear,
then all the constraints are linear; consequently, the
necessity of the Kuhn-TucKker conditions holds automatically.
However, suppose B(p) and\e(p)lare nonlinear. It may be
confirmed that the columns of the following matrix comprise

the gradients of all the nonlinear constraints to the ltatter

problem: -
0 I—Eb(p) (4.13)
-Ep<p) I 0 .
A= !
N i-0
I I u

" where I is the nxn identity matrix, and Ep(p) is a diagonal
matrix whose ith column is the gradient of e,(p,>. The
first partition of A contains the gradients in

-EBE<{p) + Nx + y, and the second partition contains the
gradfent of ~e(p) — u’y. It is apparent that the columns in
A are linearly independent over all (p,p,®,y> if ep(p) 2= 0.
Now, suppose ep(p)r=f0, and suppose there exists

¢ = (Cy,cz), not equal to zerﬁ, such that Ac = 0. With this
being the case, the third row partition of the above

implies:

Nlcl =0
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It may be confirmed that the construction of N is such that
this can occur only i+ all of the components of C; are equal
to a single constant. However, the second row partion then

implies:
 Eglpidey = 0

If the components ¢y are indeed equal to a constant, and if
the slope of at least one regional excess demand is unequal
to zero, then the latter equation impiies that c = 0. But,

if this be the case, then the last row partition impiies:
uc, = 0

which can occur only if c, = 0. But, this contradicts the
assumption that ¢ = 0; éﬁnsequently, the gradients of ailil
- nonlineér constraints to the problem are Ijnearl&
independent i+ the slopes‘of the excess demands do not all
simul taneocusly go to zero.

An interesting case occurs when a«a =1 is sdfficient to
drive the penalty funciion to zero. At « = 1, the objective

function reduces to:
f(p,pyX,y> = pd(p) + p'E(pP) - t'X - r’Y

I+ f(p,p, X,y is pseudoconcave over the feasible region, and
if the constraints are quasiconcave over the same, then by
Theorem 2.5.13, the thn—Tucker conditions are suftficient
conditions for the optimal solutions. It may be confirmed

that all of these conditions hold i¥f the excess demands are
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linear with nonpositive slopes. However, f(p,p,%X,¥’ caﬁ
never be pseudoconcave if « = |,

Now, consider the case where the complementary
slackness conditions are imposed by including condition
(4.12) as a constraint to the problem. The problem then

becomes:

maximize(p,p,X,y’>: pdip) + (p -~ 'Y
subject to: E<p> ~Nx -y £ 0
t-Np:2O
-e(p)> - w'y 2> 0
p’E(p) - t'x - p’'y >0

(p,PyX,y?> 2 0

Again, using Theorem 2.5.12, the Kuhn-Tucker conditions to
this problem are Known to be necessary for the optimal
solutions if the gr#dients of the active nonlinear
constraints are linearly iﬁdependent at such solutions. The
columns of the foillowing matrix comprise the gradients of

all the nonlinear constraints:

0 l—ep(p) I 0
-E (p) | O I E<p> + E.(p)p - ¥
a=| P 7 | P
N 1 0 e 4
1 l=-u |

-P

The first two partitions are the same as in (4.13). The
last partition contains the gradient of p'E(pd - t'% - p'VY.

Suppose there is a nonzero ¢ = (¢,,C~,c5) such that Ac = 0,
1'-2*'"3
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then using the third row partition of A, it may be

concluded:
NICI - tc3 = 0

Note that the components in each column of N’ sum to zero.

Hence, upon summing the rows of the above, one obtains:

But, this implies €3 = 0, and as noted betfore, tﬁe columns
in the first two partitions are linearly independent owver
all <p,p;X,y’ it the slopes of the excess demaﬁds do not all
simul taneously go to zero., Hence, provided that the slopes
do not simultaneousiy go to zero, then Ac = 0 implies ¢ = Q.

Obserye tha; as th;'SSIutions to all the problems of
this section are consistent with spatial equilibrium in the
markKet, then all of the p}operties of such equilibria |
discussed in the previous chapter pertain here also. It has
been shown that if the triangular inequality of Yt holds,
then there must exist a solution wherein the discriminator‘s
exports are not transshipped; thus, it remains that there
must exist an equilibrium wherein no region simul taneousliy
imports and exports. By the same reasoning used in the
former cﬁapter, it may be shown that there must exist an
equilibrium wherein no two exporters, including the
discriminator, share two importers.

It was shown in the previous chapter that.if the

commodity is desirable in every region of the market, then
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in an ordinary spatial equilibrium, prices must be positive,.
In the present models, desirability does not ensure positive
prices; however, it does ensure another important property;
namely, that the equilibria must be such that market excess
demands are exactly equal to net imports. From the
complementary slackness condition, pi[ei(pi) -n; - Y.l = 0,
it may be seen that if P; > 0, then the result must hold.
Now, suppose P; = 0, then by the desirability assumption,
region i must be an importer. Ho@euer, as shown in the
previoue chapter, it cannot import from other regions in the
market; consequently, it must import from the discriminator.

Now, if ¥, > ei(O); then y; could be reduced such that

Y.

i = ;¢0) without affecting total revenue; however,

transportation expenses-would be reduced, and consegquently,

" net revenue would be increased. Thus, ¥,

i > ei(O) cannot be

optimal, and consequently; under the desirability
assumption, market excess demands must equal net imports.

It should be apparent that all the trade restrictions
discussed in the former chapter may also be incorporated
into the discrimination models. However, it must be assumed
that the trade policies of the wvarious regions are invariant
with respect to the actions of the discriminator. If this
wereinot the case, then thé excess demand functions could

A

not be safely regarded as being stable.
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4.2 Discrimination by a Cooperative

It is 1iKely that a single region could accomplish
greater gains through price discrimination if it could
persuade otherwise competing sellers to cooperate in a Jjoint
price discrimination scheme. Moreover, it is certéin that
several price discriminators can accomplish greater total
gains working jointly than on an independent basis. In this
section, models are developed wherein it assumed that a
group ot regions exercise price discrimination cooperatively
with the objective of maximizing net revenue to the
cooperative,

The assumptions of the foregoing models are exactly the
same as thosé in the modeis of the previous section;
however, statements that are there made of a single
discriminator are now made-of the cooperative. The terhs,
“markKet" and “aggregate market,“ shall now refer to all
regions other than those contained in the cooperative.

Suppose there are n regions in the market and m regions

in the cooperative. Let ¥;; denote shipments from the ith

J
cooperative-member to the jth region in the market.

Accordingly, let r;; denote the per-unit transportation
charge +or shipments from the ith cooperative member to the

>Jth region in the market, and define the following matrices:

Yit Fit

Yiz Fi2
y' = . rl = .

Y. r



123

Yy ry
Yz L2
y=1. c=1.
Yn Cm
[+ o . . 011 0 . . 01 ...011 0 . 0
9 1 0 . 04D 1t 0 . 01 ...10 1 0 . 0
c=|. o . 0. 0 . A T T S
.. 0. . A T T j . 0
.00 1410 0 . 0 1 f ...10 .01
- .
i 1t 1 . 110 0 91 .. .10 @ .0
o0 . . 1 1t « 11 ...10 0 . . D
u=|0o o . . .10 0 . . i |
T S S T R 0
. . 0100 . . B ...ttt

Finally, let ;i be the exportable quantity in the ith
cooperative member and let y = (;1,§2,,,§m)’.

With these constructions, the net export revenue to the
‘cooperative is given by f(p,y> = (C’p - r>‘y. The spatial

equilibrium conditions for given y become:

E¢p) - Nx - Cy £ 0; p'[EB(p) - Ne - Cyl =0
t - Np 2 0; x'(t - Np> =0
(py,x? 2 0

wheres p, E(p), N, and ¥ are deftined as before except that
components corresponding to the discriminating regions are
not included. The constraint timiting cooperative member
shipments is y - Uy 2 0. Thus, the problem to maximize
cooperative net export revenue subject to the condition that
the market be in spatial equilibriumlmay be formerly stated

as: -
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maximize(p,x,y>: <(C’p - 'y

subject to: E<p> - Nx - Cy 2 0
t-Npzx2O
y-Uy 20

p'IB(pY - Nx - Cyl =0
xX‘Ct - N'p> =0

(PsX,¥> 2 0

I+ B(p) is continuous, and if there exists Py such that
p’'E(p) < 0O for all p > Pg: then using the arguments of the
previous section, it.may be seen that the feasible region is
compact. Consequently, since the objective function is
continuous, the Weierstrass theorem (Theorem 2.1.4) ensures
the exis£ence of a solution if the feasible region is
nonempty.

Observe that if S denotes the set of all (p,x,y’
satisfying the first, second and last constraints, then the
complementary slackness conditidns in the fourth and fifth

constraints must satis+y:

p’'LE(p) - Nx - Cyl < 0; vV (p;X,y? € S

=

-t - N'p> £ 03 Y (p;sX,y> € S
Upon adding these two conditions, one obtains
p'B(P) - t'x - p’Cy & 03 V (p;X,;¥> € S

where equality holds if and only i+ the complementary

slackness conditions both hold. Thus, given that
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(py%x,;y? € S, the tourth and fifth constraints are both

implied by eithertof the following conditions:

p'EB(p) - t'x - p°'Cy =10 ' (4.14)

or i
p'ECp) - t'x - p°'Cy 20 - (4.15)

As before, the complementary slacKness ;onditions may
be imposed either by substituting (4.13) for the fourth and
fifth constraints in the latter problem, or by the
incorporation of (4.14) into the ;bJectiue funﬁtion through

a penalty function. I¥ the penalty function technique is

chosen, then ths model becomes:

maximize(p,X,y*: <(C’p - f)’y + «lp’B(p) - t'x - p’Cyl
subject to: ECp> - Nx - Cy £ 0

t-Np:2O

y-U 20

(p,x,Y)- 2 0

AS befor;, the model may be extended with little
ditficulty to maximize the total net revenue of the
cooperative., Let 6 denote the vector of prices for the
regions in the cooperative, and let ﬁ(s) and ﬁ(a) denoteh
the vectors of demands and. excess demands for the

cooperative. The problem may then be formally stated as:
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maximize(ﬁ,p,x,y)i‘ B’ﬁ(é) + (C'p -~y +
«[p'B(pd - t'x - p"'Cyl

subject to: E(p> -~ Nx - Cy £ 0

t - Npzx 0
-E¢p) - Uy 2 0

(psPsX,¥> 2 0

It may be confirmed that the former model is the special
case of this model where D(p) = 0 and B(P) = -y.
Indeed, even the prob]ems of the previous section may be
considered as special cases of this problem where the
cooperative consists of only one region.

Supposing that the excess demands are nonlinear, the
' in the

gradients of the nonlinear constraints latter model

are given by the columns o+f:

- a A-
0 I-E_ (p>
PP
—Ep(p) i 0
A= |
N- L 0
{ -0

CI

-

It may be confirmed that A has full

slopes ot the excess demands do not all
zero.

' 2.5.12, the Kuhn-Tucker conditions are necessary conditions

Provided that this does not occur,

for the solutions to last problem.

function to zero,

the

Suppose «

is sufficient to drive the penalty

then at « = 1,

last problem becomes:

column rank
simul taneously go to

then by Theorem

the objective function to



f(ﬁ,p,x,y> = ﬁ’ﬁ(ﬁ) + p°E(pP) - t'x -’y

I+ f(ﬁ,p,x,y) is pseudoconcave over the feasible region,

and if the constraints are qdasiconcave over the same, then

by Theorem 2.5.13, the Kuhn-Tucker'cbnditions are sufficient

for the optima. All of these conditions will hold if the

demands and excess demands are linear. However, as before,

the objective function can never be pseudoconcave if = = 1.
I¥f the complementary slackness conditions are enforced

by the inclusion of (4.15) as a constraint, then the problem

becomes:

maximize(ﬁ,p,x,y): S’ﬁ(s) + (C'p - ri’y
subject to: ECp) - Nx - CY £ 0
t-Np2:oO
-Bp> - Uy 2 0
p'B(p) - t'x - p’'Cy 20

(PsPsX,y> 2 0

Assuming that the excess demands are nonlinear, then the

agradients of the nonlinear constraints are contained in:

0 i-E ¢p) t O
| P |
- |- i | + E, -
A = Ep(p> | 0 | E(p> Ep(p>p Y
Nf | O -t
L.C i-uU |~-p J

Using the same reasoning as that of the previous section, it
may be confirmed that any ¢ = (ci’CZ’CS) such that Ac¢ = 0

must have cg = 0, but it has already been noted that the
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first two partitione of this matrix are linearly independent
it the slopes of the excess demands do not all

simul taneousiy go to zero.

4.3 Policy Implementation

In the former sections, programming models were
developed having solutions equal to the optimal price and
quantity vectors for a'discriminator or group ot
discriminators operating in a spatial market. These
solutions were constrained to be consistent with spatial
equilibrium in that given the discriminator’s export vector,
Yy, the optimal p and x vectors had to be such that the
markKet would be Iin spatial equilibrium. Now, suppose that
the optimal vectors are—s, X, and ¥. The equilibriuh
constraints that were imposed in the determination ot these
vectors ensure that i+ ﬁ,-i, and ¥ were simultaneously
realized, then the market would in fact be in equilibrium.
However, there is no assurance as of yet that such vectors
will actually be reatized. Thus, it rémains to determine i+
there is a trade policy whereby the discriminator can impose
its chosen prite and quantity vectors upon the market,.

Of course, the equilibrium value of X is of no
consequence to the discriminator‘s net revenueyj therefore,
any equilibrium of the form, (§,§,§), is optimal. To
demonstrate that a particular trade policy will cause the
marKet to cbnverge upon a (ﬁ,i,?), it must first be shown

that such policy forbids all equilibrium points other than
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those of this +form. That is, it the natural dyvnamic
adiustment process is such that more than one equilibrium
exists, then the trade policy of the discriminator must
influence this process so that the only equilibria that
exist are those involving p and y. Second, it must be
shown that given the discriminator‘s policy, the market does
converge to equilibrium. In this section, a policy is
aeueloped th%t satistfies both conditions under general
assumptions. The foregoing derivations treat the single
discriminator model of the first section; howewer, the
theory extends to cover the cooperative discrimination model
with almost no modification.

It will be recalled that the dynamic assumptions of the

discrimination model are:

S a) Pi >0 if and only i+ ei(pi) - n; =Yy > 0,

B> p.

; <0 if and only if e;(p;) - n;, = ¥; <0 and p; > 0.

4 ar X > 0 only if tiJ - (pJ - p;) <0,

b I+ t (pJ - pi) L 0 for some j, then Xx.. >0 for

iJ LJ

at least one such j.

c? Xij {0 if and only i+ tiJ - (pJ - pi) > B and

These adjustment rules say nothing of y, for until now, it
has been sufficient to take y as given. Subsequently,

suppose that y adjusts according to the following rules:

>0 if and only if Ei -p; < 0.

<0 if and only if p; - p; > 0 and ¥; > O.



where it is assumed that the d(scriminator has fixed its
offered prices at p. These adjustment rules could be
somewhat further generalized as were the rules for Xxj
however, as such generalizations do not ef+ect the
equilibria of the system, they are neglectea here. Also,
the fact that thié adjustment process could produce
insupportable values of y is ignored for the moment.

Provisions excluding such possibilities will be made
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shortly.
Assumptions five through seven imply that the syetem is

at equilibrium i+ and only if:

ei(pi) -n; -y 8 0, if < then p; = 03 v i

tiJ - (pJ - p;> 20, if > then Xij = 0; Vo iy
P; - Pp; 20, if > then ¥, = 0 Yo

Piz_D! xiilos Yi'?..oi YV oi,d

The matrix variants of these are:

E(p) - Nx - y & 0; P’'IE(pP) - Nx yl1 =0 (4,18
r - Wp 2 0; x(t - Wp> = 0 ‘ (4.17)
B-p 2 0; y'¢p - p» =0 (4.18)

(psX,y> 2 0 : C(4.19)

It may be confirmed that these conditions are the

Kuhn-Tucker conditions to the following problesm:
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maximize(pr: F(p2

subject to: t-NpzxO
P-p:0O
P20

where:

= =N »
fipr = Ei=1 i e;<¢p;2dp,

and where the Lagrangian is constructed as:
1{p,X,y> = f(p) + xX’Ct -~ N'p?» + y'(p - p); (PsX:y? 2 0

It has been shown that if the ei(pi) have\negative
slopes, then F(p» is strictly concave. Henceforth, it shall
be assumed that this is_.the case; moreover, it is assumed
that +(p) is everywhere diftferentiable. Cohsequently, since
the constraints are concave, Theorem 2.5.13 determines that
any solution to the Kuhn-Tucker conditions corresponds to a
global optfmal solution that is unique with respect to p.
Moreover, by Theorem 2.46.1, it may be concluded that the
Kuhn-Tucker points are one-to-one with the saddle points in
the Lagrangian. Now, observe that (p,X,y> is the
solution to a mathematical programming problem whose
constraints require satisfaction of conditions (4.14)
through (4.19); hence, (E,i,?); solves the problem above,
and the uniqueness property guarantees that p is the only
equilibrium price. Therefore, it may be concluded that the

discriminator can in fact force market equilibrium prices to



equal to its chosen price vector. 1t may do so by simply
fixing its own vector of offered prices at p.

Though the equilibrium price is uniquely determined at
p, there may be any number of X and y that sclve the
Kuhn-Tucker conditions to the problem above, and
consequently, (p,X,y> is not necessarily a unique
equilibrium solution. Thus, a policy wherein the
discriminator merely fixes its offer prices at p is
insufficient to guarantee convergence of y to y. Howsver,
suppose p > 0. That is, there'are no zero prices in the
discriminator’s optimal price vector. If such is the case,
then it may be concluded that at any equilibrium soldtion,

(§,§,§), condition (4.1§) holds with equality. That is:
EGF) - Nx - ¢ = 0

Sum the Fows of the lattef system.to obtain:
zei<5i>=z;i

where the fact that the columns of N sum to zero has been
used. Now, the right-hand side of the latter equation is
unique to all equilibrias conseguentliy, it may be concluded
that the sum o% the discriminator’s exports is the same
regardless of the particular equilibrium that occurs.
Moreover, as ¥ is an equilibrium y, then it may be

concluded that an? equilibrium ; must satisfy:
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Now, suppose that in conjunction with fixing its offer

prices at p, the discriminator were to impose an export

quota requiring Y Ly for every i. I+ y were at an

i
equilibrium to the system under such a quota, then it must

be true. that ; satisfies both of the tollowing conditions:

Ty =3%

But, these together imply that ; = y. Thus, by fixing its
offer prices at p, and by imposing an export quota
requiring y £ y, the discriminator can prohibit all
equilibria other than those of the form (5,%,?).

Observe that if the commodity is desirable in svery
region of the market, taen the conclusions of the latter
analysis holds even i+ some P = 0. It was‘shown in the
previous section, that unaer the desirability assumption,
the discriminator will be the sole supplier to any region
having zero price; moreover, if Ei = 0, ghen ;i =_ei(0).

I+ ;i is the realized equiltibrium value, then condition
(4.14) ensures that ;g cannot be less that ei(0>. On the

other hand, if the discriminator imposes an export quota,
then ;i cannot be greater.than ;i = e;¢0); hence,

;i = e;<(0). Thus, the export quota itself ensures that
equality will hold in condition (4.14), so the above
analysis is still valid.

It remains to show that the market price and gquantity

vectors will actually converge to (5,§,§). I+ it is



assumed that the discriminator can prohibit all other
equilibria with use of an export quota, then it is
sufficient to show that the system directing market .
adjustment is stable when the discriminator‘s guota is
enforced.

The dynamic adjustment rules in assumptions five
through seven are not sufficient to guarantee stability:
howeuér, it can be shown that the foregoing special case of

these assumptions is stable. Suppose that:

) 0 ifp, =0andep,>-n, -y <0
p. = |
l ai[ei(pi) -n; - yiJ otherwise
. 1] if Xij = 0 and tij - (pJ - pi) >0
_bithiJ - (pJ - pi)J otherwlse
0 ify, =0andpi~p; >0
yi=|0 ify =% andp; -p; <O
-C,(P; - Py otherwise

where the a,, biJ’ and c; are positive constants. Thus, the
rate of price adjustment is proportional to the deticit,
unléss such adjustment would lead to a negative price. The
rafe of market interregional trade flow adjustment is
propdrtional to profits, unltess such adjustment would tead
to a negative flow, and the rate of discriminator 2xport
flow adjustment is proportional to the discriminator’s

discount, unless such adjustment would lead to negative
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export +low or quota violation. Observe that this system

may be expressed in terms of the Lagrangian as:

. 1] if P; = 0 and al(p,x,y)/api < u
P, =

' a;21(p,x,y)/0p; otherwise
' 0 if Xij = 0 and al(p,x,y)/axiJ > 0
X. . =

" -biJal(p,x,y)/axiJ otherwise

0 if ¥, =0 and 21(p,x,y)7/2ay; > 0
y, = 10 ify, =% and 2l(p,x,y)/ay; < 0O
L—cial(p,x,y)/ayi otherwise

The following theorem shows that the above process
converges upon a saddle point of 1(p,xX,y”> if this function
is strictly concave and—ﬁifferentiable in p, and if the
process is initiated at some y £ ¥. Again, 1(p,x,y> is
strictly concave in p if fhe excess demands have negative
slopes. Since the saddle points are one~to-one with the
equilibrium points under the concavity and differentiability
assumptions,'then it may be concluded that the model is
indeed stable. The theorem is stated in general terms

rather than in terms of the problem above:

4.3.1 Theorem: Let 1(x,y,2):R"@RMsr! » R! be linear in
y and 2, and strictly concave and differentiable in x over
all x = RE. Moreover, let (X,¥,Z> = REQRT@RL be a

saddle point of 1(x,y,2>. Consider the system:



)
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0 i x; = 0 and al(x,y,z)/axi <0 (4.202
LaiaICx,y,z)/axi otherwise
[ o if ¥y, =0 and 21(x,y,2)/2y; > 0 (4,215
—bialfx,y,z)/ayi otherwise
=
0 if z, = 0 and 21(x,y,2>/2z; > 0 (4.,22>
a if z; =z, and 21¢x,y,2)/2z; < 0
‘—cial(x,y,z)/azi otherwise

—

where the a., B and c; are positive constants. From any

intial

tU and (xD’YD’ZU) =3 RQ@RT@Rl such that zg £ z,

(X,y,2) satisfies lim,,, [X(),y(t),2(t>] = (X,y,2) where

(%,y,2> is a saddle point of 1(x,y,2z) on RfaRTaRl.

FProot:

and 2z,

As 1(X,y:2> is sirictly concave in X and linear in y

then with use of the corollary to Theorem 2.4.8, it

may be confirmed that:

1(X,y,2> < 1{x,y,2) + l;(x,y,z><§ - X)3 X = X

J(x!gii) = 1(X,¥,2? + 1

(z

s’

y(x,y,z)<§ -y + lz(x,y,z)

-2

“for every (X,¥,2’ such that x = R". as (X,¥,27 is a

saddle point of 1(x,y,2)?, then:

1(%,7,2> ¢ 1(X,¥,2) & 1(X,¥,2

for every (R,y,2) € R:BRTGRl. The 1ast three relations

imply:



(x - x)’lx- - (y - y)"ly - (z - zlt’.lz > 03
it x = X, then > O (4.23)
Now, iet:
p— ﬂ L
24 1] . . 0 !:>1 0 . . g
0 an ] . ] 0 b2 1] . 0
A= a 0 [ ) B= [] 0 [ ] a
L] . L] 0 . t ] . 0
_U 0 . 0 aEJ | a 1] . Q qﬂ
cy o . . 0
0 € 0 . Q
C = ] .
L] L ] L 0
0 0 . 0 c]J
. (1 if x, =0 and al/2ax; < 0
s; =
. 1] otherwise
i i if Y, = 0 and al/ayi > 0
5 =
Y L_Cl otherwise
P .
, 1 if z; =0 and a]/azi > 0
5. = '
| O otherwise
. 1 if zi=ii and 21/3z; < 0
sl =
0 otherwise
. 1 7] .1 7
& 0 . . 0 ] Q . . Q
x o
0" 82 o . o o” 82 0 . 0
Ax =1 . 0 . . Ay = |. 0 . .
a a L] On L ] a L Om
Q 0 . & 0 0 . Q &
L X | | |
—— r_ —
57 0, . . 0| 5, 0 . . 0
0 8, 0 . 0 0 85 0 . 0
A = [ ] 0 a L] A = L] 0 . [ ]
z 4
] [ - 0] 1 ] L ] L] -0_]
|_0 0 . 64 _P 1] . Q Sz_
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Finally, let:

DIX,¥,2) = 1/72[(x - X)'A (x - % + ¢y - B iy -9

+ (2 - Clez - D13

Note that A~!, B™!, and C™! are positive definite and
symmetric. Also note that the system in (4.20) through

(4.22) can be written in terms of the matrices above as:

x = All - Ax]lx
y = -BLI - AY:Hy
z = -CLI - Az - Az]lz

‘Consider=
D=(x-%'Alx+y=9Bly+<z-mClsz
Substitution of the former relations into the latter yields:

D=«(x - x> 1x -({y - ly - (2 - z>’lz + x’Axlx -

;IAYIY - i,Azlz (Z£.24’i .

where the tollowing substitutions have been used:

X Ax =0
fA -
Y y 0
z Az = 0

(2 - z>’Az = q

Now, from the definitions of Ax, Ay’ and Az, and from

(4.23>, it may be concluded that D £ 0, and is strictly



less than zero if x = X. As D > 0, and as D ¢ 0, it
follows that D must converge upon & limit, D*, as t = o0,

That is:

. #*
llmt%N D=D

Therefore, (X,yY,2Z> must converge to a limit cycle,
[i(r),ﬁ(r),%&r)], satisfying D[i(r),Q(r),i(r)ﬂ = p*

for all r. As 6 = 0 at all points on the 1imit cycle, then
necessarily x(r) = X.

Hence, it is Known that X does converge to X. It
remains to show that y and 2 converge to ; and ; such that
<§,§,2> is a saddle point of 1(x,y,2>. It will be shown
that every point on the limit cycle, [i,;(r),i(r)], is a
saddle point of 1(R, 9,20 consequently, as saddle points are
equilibrium points, the 1imit cycle must in fact consist ot
only one point.

&t all points on the limit cycle, x = 03 consequently,

it is Known from the definition of i in (4.20> that for all

ry [i,;(r),i(r)] must satisfy:

1,[X,y(r,2z¢r)] ¢ 0; X1, [X,9¢r),2¢r3] = 0

Moreover, as D = 0 on the limit cycle, it is Known from

(4.24> that for all r, [§,§(P),£(r>] must satisfy:

- (y - Y)’ly - (z - 221, - yY'A,l, - z’A 1, =10
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However, as 1{(xX,y,2y is linear in y and 2, it follows that

ly and lz are functions of X onlyi consequently, on the

limit cycle, the ébove becomes:

_( -y’ ~ I— Y - U’ Y
Y Yy’ ly(x) (2 z) lz(x) Y Ayly(x) _

z’Azlz(x) =0

By assumption, y is complementary to ly(i), and Z is

complementary to lz(§>, so this reduces to:
- y’(r)ly(x) - z’(r)lz(x) =0

Also, by assumption, ly(i) 2 0 and lz(i) 2 0. As the
adjustment process regquires §(r) 2 0 and i(r) 2 0, then

the latter equation can hold only if both terms are equal to

Zero. -
~

Thus, summarizing, it may be said that [i,;(r),i(r)]

satisfies:

1xt§,§<r>,£<r>1 < 0; i*lxt§.§<r),£<r>1 =0
ly(x> 2 03 y’(r)ly<x> = P
lz(x) 2 03 z'(r)ly(x) =g

[X,y¢r),2¢r)] & RTeRTaR)

But, these are precisely the Kuhn-Tucker conditions for
saddle points in 1(xX,¥y,2>. It follows that the limit cycie
must consist of the single point, <§,§,£>, that is also a

saddle point of 1{x,y,Z? on R?aRTaRl.

Thus, if either p » O or the commodity is desirable in

every regional market, then the discriminator can prohibit
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all equilibria other than those involving p and y by
fixing its offer prices at p and by imposing a quota
requiring exports to be less than or equal to y. Moreover,
it such policy is entorced, éﬁd it the excess demands all
have negative slopes, then the market will indeed

equilibrate at some (5,;,?).



CHAPTER V

SOLVING THE SPATIAL EQUILIBRIUM AND
PRICE DISCRIMINATION PROBLEMS

In thirs chapter, the determination of solutions +or
spatial equilibrium problems and price discrimination
problems is considered. The +irst section contxins a
general discussion of conventional noniingar programming
algorithms. #@Also, a specific algorithm capable of solving
all nonlinear programming problems of the previous chapters
is presented and ualidééed. In the second section,.several
hwvpothetical spatial equilibrium pgoblems and price

discrimination problems are constructed and solved.

5.1 Solution Algorithms

Numerous algorithms have been designed for sclwvinag
nonlinear programming problems. &g might be expected, each
algorithm requires ‘its own set of asaumptfcna,‘and the
rel#tive performances of the various algorithms will depend
upon the general structure of the problem to ke solved.
Common assumptions upon which many algorithms depend are:
1> a quadratic objective function, 2 a concave objective
function, 3> linear constraints, 4> concave constraints,

andsor 3) constraints with linearly independent gradients.

142 .
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Also, nearly all algorithms will regquire differentiability
N

in both the objective function and the constraints.
Oftentimes, constraint characteristics such as concavity,
linear independence in the gradients, and ditferentiability
are required only of those constraints that become active in
the course of the algorithmic process.

The zpatial equilibrium prﬁglem will satisfy most the
criteria above., It will be recalled that the |
quantity-dependent, partial equilibrium variant of this

probtem was:

maximize(pr: +F(pJ
subject to: t-Npz: O

p20 .
where f(Pb = E?=1 I e ¢p;rdp,

The objective function fs nearly alwars differentiable. The
constraints are lineaf, and the objective function will
nearly always be concave if not strictly concave. Moreover,
it the excess demands are linesar, as i3 commonly the case,
then the objective function will be quadratic.

AsS a consequence,of these characteristics, the spatial
equilibrium problem can usually be szclved with any one of a
targe number of algorithms. ©One possible difficulty with
this problem is that thé constraints are not linearly
independenty however, under usual circimstances, there will
be few if any linearly independent combinations of

constraints that can bs feasibly actiwe at the same time.
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Observe that the same conclusions generaliy hold for the
price—dependent prablem and the general eguilibrium problems
also.

1f the excess demands are Iinear,-then the
simplex-based gquadratic programming routines will probably
be ﬁmong the best algorithms for solving the spatial
equilibrium problem. BSuch routines inciude the well-Known
Wol+e algorithm ¢195%9), or Lemke s complementary pivoting
algorithm (19453.01 These algorithms wirtually guaranteé
convergence to an exact solution in 3 finite number of
iterations, wHereas other algorithms are asymptotically
convergent as a rule, and are much more subj2ct to |
algorithmic break-down. The biggest difficulty with the
simplex routines is théévwith increasing problem size, the
regqiured computer storage grows at a rapid and increasing
réée. Aalso, the simplex'methods are subject to cumulative
computational errdr, which will often necessitate the
inclusion of 2 reinversion subroutine fQF large problems.

In the case o% nonlinear excess demands, several
algorithms could be used for the spatial eguilibrium
problem. Perhapes one of the best of these is the Zoutendijk
algarithm-(l?én) discussed below. Howewver, for extremely
large problems, with either linear or nonlinear excess
demands, the gradient method should be considered. This
me thod is commonly discussed in nonlinear programminé texts.

The primary difficulty with the price discrimination

problems is the imposition of the complementary slackness
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constraints. These constraints should probably be handled
with the penalty function technigue, in which case, the

-problem becomes:

a " ~

maximize(ﬁ,p,x,y): p'D¢(p) + (C'p - )y +
«[p'B(PY — t'% - p’'Cyl
subject to: EC¢p) -~ Nx - Cy ¢ O

t-Npz: 0

-ECp) - Uy 2 0

(pspPsX,¥y* 2 0

The attribﬁtes of the problem largely hinge uﬁon the
required size of the péna]ty parameter, &. A= shown in the
previous chapter, when the penalty parameter is set to
unity, the objective fﬁ;ction collapses into a simple
expression that is very possibly concave, and is definately
concave if the excess demands are linear and with
nonpositive slopes. Moreover, if the excess demands are
linear, and i+ the penalty parameter is e2qual to one, then
the constraints are also lineaf, and the objective function
is quadratic,

However, the objective function is not concave (nor
pseudoconcave? for any value of the penalty parameter other
éhan unitr. Consequently, if « > ! is required, then the
Kuhn-Tucker conditions are no longer sufficient for the
global optima. I+ the excess demands are nonlinear, then
the constraints to the di;crimination probiem will also be

nonlinear; moreover, there are no a-priori theoretical
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grounds for expecting the constraints to be concave. Aalso,
the gradients of the constraints are not linearly
independent, although it Qemains improbable that a feasible
active combination of the constraints should have linearly
dependent gradients.

Hence, the disc}imination problem is potentially one
having few desirable features. Indeed, if the excess
demands are nonlinear; and if « > 1 is required, then about
the only desirable characteristic that the ﬁrob]em can
possibly have is differentiability. Consequently, most of
the conventional solution algorithms can handle this probiem
only over a very narrow range of scenarios.

The best poséible scenario occurs when the excess
demands are linear and ;'= 1 is a sufficient penalty
parameter. In this case, the problem reduces to a qpadratic
programming problem; consequently, the reliable Wolfe
algorithm or Lemke algorithm may be used. Again, 2 primary
advantage to these procedures is that an exact solution is
rendered in a finite number of steps. Hﬁweuer, these
algérithms will require extremely large amounts of computer
storage for‘large problems.

One of the most powerful solution aigorithms is the one
due to Zoutendijk (1940, The algorithm is capabie of
solving the spatial equilibrium problem and all variants of
the price discrimination problem as well. The only major

assumption necessary to qualify the procedure is
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differentiability in the objective function and the

constraints. The algorithm is as follows:
Zoutendijk Algorithm

Problem: Maximize f(x) subject to G(x) 2 0 and X € R",

where f{w):R" = Rl and G¢x):R" » R™,

Assumptions: f{(x» and G(R) are difterentiable over the

feasible region, or {x = R": G(x) 2 03.

Initialization Step: Choose X, such that G(x,> 2z 0. Let

K =1 and go to main step.

Main Step

1) Let I = (i

9;(Xy?> =03, and solve the following problem:

maximizel(d,z>: =z

-subject to: f;(xk)d'— z >0 i} (5.1)
Vg (x,>d - z 2 0; Viel (5.2)
d;, = [-1,133 v o ‘ (5.37

Let (dk,zk) be an optimal solution. I+ zZ = @, then stop;

Xy is a Fritz John point. I+ Zy > 0, then go to step two.
2) Let . be an optimal solution to the following problem:

L Y. .
maxnm(zekxk,. +(xk + Akdk)

subject to: AN [D,A*i

where A* = sup{x: gi(xk + Akdk) > 0 ¥V i}. Next, let

X1 = X ¥ A . Replace K with kK+1 and go to step one.



Observe that the X, are feasible at every iteration,
and that f(xk) is strictly increasing in K. Also, observe
that if the optimal solution to the problem in step one has

z = 0, then the following system has no sclution:

fx<xk )d > 0

Vg (x,d > 0; Viel

The fact that x, is a Fritz John point then follows
immediately from Gordan‘s theorem (Theorem 2.3.35).

Step one of the latter algorithm may be accomplished
with an ordinary simplex routine. However, the problem must
first be expressed in terms of nonnegative variables. This
may be accomplished with a simple coordinate transtation
where d is replaced in ?5.1) and (5.2) with (d° - u, where
u= <(1,1,,,12. Also, (5.3) is replaced with 0 ¢ d% & 2u.
One should solve the modified problem for d*, and then set
d=d" - u. i

The rate of convergence in the Zoutendi.jk algorithm can
be slow if at certain iterations there are constraints that
are nearly but not exactly binding. Such constraints force
A* to be small, thus limiting the step length.

Consequently, the algorithm might be improved by redetining
the set of active consﬁrain;s such that I = {i: gi(xk) < €2
for some =mall € > 0. The generated dk will then allow
greater stép iengths. As a practical matter, this must be

done anyway since computational errors will generally

prevent exact equality even where it should occur.
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I+ the constraints are linear, then the Zoutendijk
algorithm may be modified such that termination occurs at a

Kuhn=TuckKer point. The modified'algorithm is as follows:
Zoutendijk Algorithm (Linear Constraints)

Problem: Maximize f(x) subject to b - Ax 2 0 and x = R"

where f(x>:R" = Rl, be Rm, and A € R™*N,

Assumptions: F(x) is ditferentiable over the feasible

region, or {x € R": b ~ Ax 2 0>.

Initiatization Step: Choose X4 such that b - Ax1 2 0. Let

K =1 and go to main step.

Main Step
1) For given Xxs partition b and A into (bi,bé) and
<A;,Aé) such that A;Xx, = b; and Azx, < by. Solve the

probiam:

maximize(d): fx(xk)d
subject to: Ajidz 0

di € [~1,11; Vo

1

I+ the optimal value of the above problem is zero, then

stop; Xy is a Kuhn-Tucker point. Otherwise, let dk denote

the optimal solution and go to step two.
2) Let N be an optimal solution to the following problem:

maximize(hk): f(xk + Akdk)

subject to: A € [0,»"3
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*® _ o . . _
where X7 = sup{x: Al(xk + xdp) £ 0. Let Xigpp = Xt Xd .

Replace K with K+1 and go to step one.

As before, the generated sequence, {xk},:is feasible
for every k, and f(xk) is strictly increasing in K. MNote
that if¥ the optimal value to the probiem in step one is

zero, then the following system has no solution:

£ .(x,>d > 0

Ald i 03 Vil

The fact that x, is a Kuhn-Tucker point then follows from
F§rkas’ theorem (Theorem 2.3.4).

The ZodtendiJk algorithms are not only versatile, but
can also solve the spatjal equilibrium and price
discrimination problems with less computer storage than most
other routines. This follows from the fact that the
algorithm employs only active constraints, which are apt to
be relatively few in number, and the fact that the binding
constrainte to these problems can be easily assembled into
computer—-usable matrices as the algorithm proceedsf That
is, it ie not necessary to store the entire system of
constraints in matrix forﬁit, but rather, the constraints
can be constructed from the basic data as they become
actiQe, and can then be discaraed upon becoming inactive,

Convergence in the Zoutendijk algorithms is not
guaranteed. The algorithm is subject to "jamming," which is
a phenomenon where the generated step lengths tend towards

zero as a nonoptimal point is approached. Problems for
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which the algorithm does not converge have been contrived by
Wolfe (1%72»; however, such counterexamples are difficult to
construct.?

Finally, note that if the‘complementar} glackness

conditions are imposed with a constraint, then the model

becomes:

maximize(ﬁ,p,x,y): s’ﬁ(s) + (C’p — )Y
subject to: E¢p) - Nx - Cy £ 0
t-Np2O
- . -Epy - Uy 20
p'B(pY - t'x - p'Cy > 0

(pspPsX;y> 2 0

The objective function of this model can never be quadratic,
or concave, nor can the constraints be linear or concave.
Consequentty, the Zoutendijk algorithm or an algorithm of

equal flexibility must be used to solve the problem.
5.2 Example Problems

In this section, several spatial equilibrium énd price
discrimination problems are constructed and solved. Linear
excess demands are assumed; consequently, in all cases but
one, Lemke’s complementary pivoting algorithm is used to
find the solutions. However, a case is considered wﬁere a
penalty parameter greater than unity is needed in a price
discriﬁination problem. Here, the Zoutendijk methed is

emplored.
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Consider the spatial market described by the excess
demand functions and transportation cost matrix in Table
S.1, which is situated at the end of the chapter. The
markKet consists of seven regions. assuming that the

zame for

ip

transportation charge per unit of distance is th

all shipment routes, the market map appears as follows:

(1. (42
(72
(2. . L1350
(3. P
A set of spatial equilibrium prices and trade flows for

this market are recorded in Table 3.2. Observe that regions
three, five, and sewen are the exporters at the equilibrium.
Region seven is the largest exporter, having almost S0
percent of the interregional trade market.

Suppose that Pegion-seuen adopts a price discrimination
policy wherein it seeks to maximize net export revenue.

Observe that region seven’s excess demand function (s simply

&

Ew(p?) = -1010, It is assumed that d7{p?) = 0. Theretores,
the discrimination model! maximizes sxport revenue to 100
exportable units. The optimal price and quantity vectors
ar=2 recorded in Table 5.3. By comparing this table with

Table S.2, it may be seen that the discrimination policy

n

increases r2gion seven’s net export revenues by 151.07, which

represents a 3.57 percent improvement over ordinary spatial
equilibrium. Comparisons between the spatial and

discrimination equilibria are also recorded in Table 5.5.
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ASs a group, the three markets to the right of the
discriminator are more elastic than the three markKets on the
left by virtue of the steeper slope of region five’'s excess
demand. Hence, the discriminator would be expected to lower
prices to the markets.on its right and raise prices to the
markets on its left. From Table 5.3, it may be seen that
this iz precisely the case. Prices on the right are
unitormly lower than under ordinary spatial equilibrium, and
prices on thé lett are uniftormiy higher.

Now, suppose that region seven and reqion five exercise
discrimination cooperatively such that net export revenue to
the cooperative is maximized. If is assumed that the
cooperative agreement is such that region five’s potential
export volumn is fixed ;t 74.97 units, which was the
‘ quantity exported by region five in the former model. Thus,
the demands and excess dehands for the cooperative are:
ds(ps) =0, egipg? = —74.97, ds(p3;> = 0, and e,(p;) = -100.
The optimal price and quantity vectors for this scheme are
recorded in Table 5.4.

A comparison between the cooperative policy and the
pﬁeuiously considered policies is made in Table 5.5. DNMote
that the net export revenue of region seven is lower under
the cooperative agreement than when it practices
discrimination independently. Of course, the reqgions in the
cooperative could enter {nto a revenue sharing agreement
wherein net revenues would not necessarily equal direct

receipts, However, observe that if region five were to
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compensate region seven

[[]]

0 as to restore its net export
revenue to the lewvel earned under independent
discrimination, then region tive’s net export revenue would
be reduced to 3471.34, This value is less than region
five’s earnings in the ordinary spatial equilibrium model,
but greater than its earnings when regQion ssven .
independently discriminates. This illustrates that an
independent discriminator mignt not be advantaged by a
cooperative agreement if such agreement has no revenue
sharing provision. [t alsc illustrates that a region in the
market might be wil]ing to join & cpoperative, but not to
increase its net revenus ower the ordinary %patial

equilibrium level, but to avoid the detrimental impacts of
the other discriminato;s upon its own trade.

In both of the discrimination models above, a penalty
parameter e2qual to unify'ie‘suf¥icient to drive the penalty
function to zero. Apparently, it is ditficult to construct
a hypothetical market for which this is not the case. #After
considerable but fruitless effort to syvstematically
construct a counterexample, a randomizing algorithm was
written, and market configurafions were randomly generated
until a counterexample was found, The resulting market
consists of five régions and is discribed by the excess
demands and transportation cost matrix in Table 5.4.
Assuming that the transportation charge per unit of distance

is the same along all routes, the market map appears as

follows:
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Cid

(3 (3

(437

A spatial equilibrium solution for this market is
recorded in Table 5.7. Under the assumption that region
tive practices indepenﬁéﬁt discrimination, the solution of
the Lemke algorithm +or o« = 1 i€ recorded ip Table 5.8.
Mote that f5ipg)r = —1250:‘ Region five’s demand function is
set at dsips) = 03 h=nce, the model attempts to maximize
. region five‘s net export revenus. Observe that the penalty
function is equal to —-142.93 for this solution;
consequently, o must be increased to attain feasibility.
Upon settingAa = 10, and solving the model with the
Zoutendijk algorithm, the solution recorded in Table 5.9 is
obtained atter 32 iterations. The discrimination policy
increases region five’s net export’reuenue by 5857.52 over
the ordinary spatial equilibrium level, which repressnts a

14.63 percent improvement.



SPECIFICATIONS

TABLE 5.1 -

FOR MARKET 1

15&

Excess Demand Functions

region

1

hJ

intercept

100.00

100.90

10.040

100.20

10.00

100.00

-i00.00

Transportation Cost Matrix

region

1

11}

w

~l

3.00

&.00

5.00

8.54

8.00

3.54

3.00

3.00

&

10.00

2.54

2.00

4.00

[0}

00

0.00

=.00




TABLE 5.2

SPATIAL EQUILIBRIUM (MARKET I)
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JTrade Matrix .

region

1

z

7

imports:

0.00 0.00
0.00 0©.0D
0.00 33.2%
.00 0.00
0.00 0.00
0.00 0.00
52.71 20.43

52.71 S53.71

0.00 26.86 0.00

0.00 32.71 ©0.00

Price§; Net Imports, and Net Revenue

region

1

2

price
47 .28571
44.28571
43.28571
47 .28571
44 ,28371
47.28571

42.28571

net imports
52.71429%
53.7142%
-33.28571
52.7142¢%
-78.57143
5z.7142¢%

~100.00000D

é 7
.00 ©0.0D
g.00 0.00
0.00 0.00
.00 0.00

net revenue

—2492.43
~2486.20
1440 .80
—2492.43
3479 .59
-2492. 43

4228.57

exports

100.00




TABLE 5.3

EQUILIBRIUM UNDER DISCRIMINATION BY
REGION SEVEN (MARKET I)
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Trade Matrix

region
1

2

é

7

imports:

48.98

43.98

16.95

S1.%7

3 4 S
g.00 0.00 0.00
.00 ©0.00 o0.00
0.00 ©9.00 0.00
g.00 ©.00 0.00
0.00 54.52 0.00
.00 ©0.00 0.00
.00 0.00 0.00
0.00 54.52 0.00

Prices, Met Imports, and Net Revenue

reqion
1

2

price
51.02236
48,02288
45.02286
45,48286
42,48286

45.4828¢6

43.796372

net imports
48.%7714
S1.97715
-35.02284
54.51714
-74.98571
54.51714

-100.00000

é 7
0.00 0.00
g.00 0.00
Q.00 U.0D
0.00 Q.00
20.45 0.00

g.o00 0.00
34.07 0.00
54.32 0.00

net revenue

-2498.%5

~-24%s.0%

1576.83

—247% .50

3184.74

=2479.&0

4379 .64

100.00

a

average net revenue



TABLE 5.4

EQUILIBRIUM UNDER JOINT DISCRIMINATION
BY REGIONS FIVE AND SEVEN (MARKET 1>
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Trade Matrix

region i 2
1 0.00 ©O.00
2 .00 0.00
3 D.00 31.61
4 g.00 0.00
) 0.00 0.00
é 0.00 0.00
7 52.3%9 23.79
imports: S2.39 55.39

3 4 5
0.00 0.00 0.00
0.00 0.00 0.00
D.00 0.00 0.00
0.00 0,00 0.00
0.00 24.58 0.00
0.00 0.00 0.00
0.00 23.82 0.00

.00 48.3% 0.00

Prices, Net Imports, and Net Revenue

&

0.0 ©0.00
0.00 0.00
0.00 V.00
0.00 0.00
50.3% ©0.00
g.00 Q.00
oo 0.00

3¢ 0.00

reqion price net imports net revenue
1 47 .60400 48.97714 -2331.41
2 44, 80800 51.97715 -2318.4%
3 41.40800 -35.02284 1457.16
4 S51.80800 54.51714 -2813.41
5 47.28142%2 -74.97000 3543.20

é . 49.60600 54.51714 -2704.38
7 43.08294% £100.00000 4308.30

a

average net revenue



TABLE 5.5

COMPARISON OF POLICIES

140

Reoion Fiusa

exports

avg. net rev,

net revenue

Fegion Seven

exports

avg. net rev.

net revenue

Cooperative

exports

avg. net rew,

net revenue

spatial

78.35%

4

44, 2%

347%.5¥%

100.00

4228.57

178.5%
43.14

P708.16

reg. 7 disc.

100.00
43.80

4377 .44

174.97
43.23

7344.40

coop disc.

74.97
47 .25

3543.20

100.00
43.08

43208.30 .

174.97
44 .37

7851.50




" SPECIFICATIONS FOR MARKET II

TABLE 5.4

r=gion
i

2

region
1

2

Excess Demand Functions

Transp

ihterﬁept
433.38
274£.0%9
P51 .28
332.353

-1250.00

ortation Cost Matrix

i

D-DO -

h
w

slope
-¢.85

-8.74&

1.00

141



TABLE 5.7

SPATIAL EQUILIBRIUM (MARKET II>

182

Trade Matrix

reqgion
1
2
3
4

5

imports:

271.78

271.98

14

851.84 12

851.44 12

Prices, Net Imports, and Net Revenue

reqion
1

2

price
34.4%9062
31.51712
34.91062
35.42042

32.03062

net imports
271.97737

0.00000
851 .484045
124.381%8

-1250.00000

&.38

net revenue

-

-9979.02

0.00

-29731.30

-4474.53

40038.28

exports

0.00




TABLE 5.8

SOLUTION TO DISCRIMINATION PROBLEM WITH
VIOLATED PENALTY FUNCTION <(MARKET II>

163

Trade Matrix

re2gion

1

2

3

4

S

imports:

1 2 3
¢.00 0.00 0.00
55.23 Q.00 0.00
0.00 0.00 0.00
0.00 0.00 0.00

165.99 0.00 314.30 ¢

222.22  0.00 814.30 - %

Prices, Net Imports, and Net Revenue

reqion

1

2

price net imports
41.74184 222.22285
37.82184 ~-55.22934
44,80184 814.30221
41.21184 92.47708
42,33189%2 -10732.97280

Value of Penalty Function: -1482.%26

/

4 S
0.00 0.00
0.00 0.00
0.00 0.00
¢.00 0.00

2.88 ¢.00

net revenue

~2275.9%

20eg.88

-38110.84

-381%.3%

45443 .30

S5é

1073.03

2average net revenue
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TABLE 5.9

EQUILIBRIUM UNDER DISCRIMINATION B?
REGION FIVE (MARKET II)

Trade Matrix '

reqgion i 2 3 4 S expaorts
1 0.00 0.00 0.00 0.00 0.00 0.00
2 0.00 51.%98 ¢.00 g.00 ¢.00 S1.98
3 0.00 0.00 0,00 0.00 0.00 Q.00
4 0.00 0.00 g.ao0 0.00 0.00 0.00
S 225.87 0.00 7&3.48 24.83 0.00 in84.1%

imports: 225.87 0.00 783.48 24.83. 0.00

Prices, Net Imports, and Met Revenue

region price --net imports net revenue
1 41 ,37124 225.87310 -9344,65
2 37.45124 4 -51.98303 1944.83
3 44.43124 ->’ 763.48282 -3544%.47
4 40,84126 ?4.83387 -3873.13
5 42.33189% -1084.18980 458%5.80

®average net revenue
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FOOTNOTES

1For a discussion of the Wolfe algorithm, see Bazaraa
and Shetty (197%), Sposito (1973), or Martos (i1975». The
Lemke algorithm is thoroughly developed in Bazaraa and
Shetty. '

2For a more thorough treatment of the convergence
properties of the Zoutendijk algorithm, or of algorithms in
general, see Bazaraa and Shetty (1%79) or Luenberger (1%84).



CHAPTER VI

SUMMARY

Thouoh price discrimination modeis are generally
constructed under the assumptions of monopoly and perfect
market separability, gainful price discrimination can be

practiced when neither of fhese assumptions hold. In

patial markst can

m
u
T

particular, a region operating in

typically increase its net revenue through a pric

M

discrimination scheme. The possibilities for successful
price discrimination result from the fact that the regions

in a spatial market ar

4]
=l
i
5
~+
0

11y

1]

eparated by the nonzero
costs of transzporting betwesn the regions. Also, perfect
Eeparatian'may be achieved between the discriminator’s own
region and the other regions in the market. Consequently,
gains can be had through discrimination within the sxport
market and through djscrimination between the export market
and the domestic market.

The discriminator must consider the re

ut

ponse of
competition when determining its optimal price and gquantity
yectors, Improperl? set prices may result in loss of the
dizscriminator s market shares to competing producers in
other regions, or may induce detrimental arbitrage of the

discriminator’s own supplies. Such possibilities are

166
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avoided by imposing certain constraints upon the selection

(]

of the price and guantity vectars. In particular, the

choice set |

(1]

zontined to those price and guantity vectors
that are consistent with spatial egquilibrium. The
discriminator {s capable of a certain degres of control over
the determination of spatial equilibrium points inasmuch as
it can control its own ‘exports and its own offer priceaz

Hence, the discriminator typically has an infinite number of

patial equilibrium points from which to choose. It then

i1}

chooses the particular squilibria or equilibrium rendering
maximal net revenus.

The optimal price and gquantity u?ctors may b=
formulated as the solufions to a nonlinear programming
problem. In particulaﬁ; the discriminatar’a.reuenue
function i= maximized sﬁbject to constraints requiring that
the chosen vectors be in accord with spatial egquilibrium.

Among the imposed spatial eguilibrium conditions, ther

1]
g
w
~
/]

Ul

certain compiementary slackness conditions., These
conditions may be imposed as consitraints upon the problemy

however, the constraints are nonlinear and nonconcave. A

orce such constraints with

—+

possibly better approach is tp 2n
a penalty function. In either case, the resulting nonlinear
programming problem is such that the Kuhn-Tucker conditions
are necessary conditions for the oﬁtimai solutions in all
but uer?‘unlikely circumstances., However, the Kuhn-Tucker
conditions are sufficient for the optima only when the

penalty function approach is taken, and when a penalty
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parameter 2qual to unity is sufficiently large to achisve
feasibility.

Th; models described above are easily generalized to
accomodate a group of discriminators operating in a
cooperative fashion. In these models, it is assumed that'
the objective is the maximization of net revenue to the
cooperatiue.’ The resulting programming models are of the
same character as those pertaining to the single-
discriminator cases. Indeed, the single-discriminator
modelis are special cases of the cooperative models where the
cooperative consists of only on; reqion.

Under certain assumptions, the discriminator may
influence the dynamic adjustment mechaniesm of the spatial
market such that the mé?ket will in fact converge upon the
chosen pﬁice and guantity vectors. These assumptions ars

that the excess demands are ditferentiable and have strictly

n

D

gative slopes, and that either the commodity is desirable
in ;very markst, or the optimal prices are strictiy greatsr
than zero. If such is .the case, then the discriminator may
impose its chosen vectors upon the market simply by fixing
its offer pricéa at the optimal prices, and by imposing, an
export quota such that the exports to any one region cannot
exceed the optimal export level,

Unfortunately, the nonlinear programming problems do
not necessarily possess many of the properties required by
most conventional solution al'gorithms. #&s before noted,

certain of the constraints are nonlinear and nonconcave. If
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such constraints are enforced with a penalty function, then
the properties of the resulting problem depend upon the
required size of the penalty parameter. I+ fthe excess
demands are lin=2ar, and if a penalty parameter egual to
unity is sufficient to achisve feasibility, then the problem
reduces to a guadratic programming problem. If the excess
demands are nonlinear, then the objective function is very
possibly concave i+ the penalty parameter i= =2gual - to one.
However, the objective function is neither guadratic nor
concave (nor pseudoconc%ueh for any value o+ the‘penalty
parameter other than unity. Also, if the excess demaﬁds are
nonlinear, then the constraints will b2 nonlinear; moresover,
there is litftle reason.to expect the constraints to be
concave, ’

Hawever, the Zoutendijk optimization algorithm onily
requires that the objective function and constraints be
differentiabie. Consequently, this algorithm should handle
the discrimination problems under most circumstances.
Another attribute of the algorithm is that it requires less
computer storage than most other routines., Glso, simplex-
based quadratic programming routines may be used in some
cases, and probably should be used where possible. Howewver,
a possible difficulty with these routines is their large
computer storage reguirements,

Ther= are several areag in which further thecorestical
research into the price discrimination problem is needed.

In particultar, the implications of retaliation against the
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discrimination scheme is in need of further study. In its
present form, retaliatory trade policies can be incorporated
into the model, and the optimal solutions under a given
s¥stem of trade policies can then be found. Howewver, the
model does not anticipate the adjusiments that might b2 made
in such policies in résponse to the discriminator’s actions.
& more realistic model would be one in which mathematical
provisions were made for the retéliatorw behavior of
importers and exporters in the markstf.

The poscsibilities of a more efficient solution
algorithm +or the discrimination problem need fto be
investigated. The conventional solution algorithhs will
regquire tremendous and possibly prohibitive quantities of
computer storage for pgﬁblems involyving numerous regions,

It is perhaps possible that a less demanding algorithm could
be designed by exploitiné the peculiar characteristics of
the problem.

In this study, the comparative static properties of the
discrimination models have been neglected. Since the
constraints used in the models are not equality constraints,
a comparatiue'static analysis would require the assumption
that the static adjustments in the exogenous variables would
not alter the set of active constraints. With this
assumptioﬁ, a mﬁde] lending itself to comparative static
analysis could be constructed by discarding the inactiuve
canstraints and by treating the active constraints as

equality constraints. In ;ituations where this modifisd
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model would be reasonablie, a comparative static analysis
might b2 of interest.

The most useful applicaticons of the model would occur
in the formulation of international trade policr. For
example, the international markets for several agricul tural
commodities sre reasonably described by the assumptions of
the model. Empirical studies invesztigating the
possibilities of gains to the United States from a
gdigeriminatory poticy in certain agricultural products
appear to be warranted.

Muﬁh recent discussion has centered upon the
possibilities of a cartel arrangement in the international
wheat market involvwing the United States and other major
whgat exporters., This Earket appears to be a prime example
of one in which a discriminatory policy could prove gainful,
particulariy if such pa]{cw could be cooperatively exsrcisesd
by seweral wheat exporters. The potential for gains +rom
discrimination in the wheat markKet is furthered by the fact
that it is likely that some countries would be willing to
enter into an arrangement with a discriminator wherein it
would e agreed that imports from the discriminateor would
not be arbitraged. Sych arrangements would give the
discriminator greater liberty to divert shipments from
relatively inelastic markets, 3Since there is much question
as to whether a wheat cartel could effectively control

production, it is possible that greater gains could be
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reasonably expected from discriminatory pricing than from

quantity contrel.

—
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APPENDIX
MISCELLANEOUS THEOREMS AND DEFINITIONS
Theorem (Schwartz Inequgllty): Let X{,%2 & RN, then
ix;:;.zi < Ixglixgl
Corollary (Triangular Inequallty)i Let Xy ,x; = rM, then:
txy + Xzl 2oIxy b+ Ixsl -

Definition (Limlt of a Function): Let X be a nonempty

subset of RN, and let f(x2:xX = R}, +i(x) iz said to

approach the *1imit," 1, as ® approaches a, denoted as

1imxﬁa fixr» = 1, if for svery» € > 0 there is a &6 » 0 such
that:
bfdx> = 11 < =

for all x = ¥ satistring:

ix — ai < 8

M+ X is unbounded, then f(x» is said to approach the 1imit,

1, as ® approaches intinity, denoted as Iimx_.’oo fFix» =1,

+or every € » U there is a & » 0 such fthat:

i Fi(x> = 11 € €
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for all x = ¥ satisfying:
Ixt » s

Definltion (Limit of a Sequence): & sequence, {X,3, is said
to converge to the limit X, denoted as ]imkam X, = X, if

for every £ » 0 there is an integer, K, such that:

ix, - Xl ¢ &3 v oK

~

[
?C

Definition (Continuity): Let ¥ be a nonempty subset of RT,
and let Fixr:¥ = R, +(x» is said to be "continuous" at

ae X i+:

]lmxéa Fix) = f(a{

fix» is said to be continuous on X 'i+ it is continuous at

ayR2ryY a € X.

Definition (Differentiability): Let X be a nonempty open
subset of RV, and let fix»:X =+ R!, ﬁenote the gradient of
Finr by VE(R)Y. F(xF is said to be "differentiable® at a € X
itf its gradient exists at a, and i+ there oxists a function,

mla,Xx—-ar, satisfying

and:
fix) = ¥Car» + V€7 (a)ix - a» + Ix - alw(a,x—-ar; Ve X

Let HC(X) denote the Hessian matrix of Ff{x). Fiwr is

said to be "twice differentiable” at a = X i¥ its gradient



and Hessian matrix exist at a, and if there exists a

tunction, w(a,x—a), satisfr¥ing

and:

fix) = f(ar + V£7¢alix - ar + (1/72)(x - ar’‘H(a){x - ar +

lx — al“wia,x-a’: ¥ x = X

Fix» is z=aid to be ditferentiabie {twice differentiabie) on
X it it is differentiable {twice dif+ferentiable) at svery

a = X.

Theorem (Taylor’s Theorem, Second Order): Let X be a
nonempty ope2n convex set in R“, and let F(x):x = rl be

twice differentiable on X. For every X{ Xy = K1

FXp) = F£0xg) + VECx(d(Xy = X7 + (1/27(x5 = X, 27 HC(X)

L-x; - xi\-'

a

where X = aX; + (l-=x)xy for some « = (0,12,



Y

VITA
David Allan Pyles
Candidate for the Degree of

Doctor of Philosophy

Thesis: SPATIAL EQUILIBRIUM THEORY AND PRICE DISCRIMINATION
IN THE SPATIAL MARKET

Major Field: Acricultural Economics

Biographical:

Fersonal Data: Born in Memphis, Tennesseej August &4,
1958; the son of Mr. and Mrs. W.A. Pyles.

Education: Graduated from Graham High Schoolj Graham,
Texas; May 1974. Received Bachelor of Science
degree in Agricultural Economics at Texas Tech
University in December 1980. Received Master of
Science degree in Agricultural Economics from
Ok1ahoma State University in December 1933.
Completed requirements for Doctor of FPhilosophy
degree in Agricul tural Economics at OKlahoma State
University in December 1984,

Professional Experience: Research Assistant and
Associate at Texas Tech University, Department of
fgricul tural Economicsy January 1979 through
December 1980, Research Assistant at Oklahoma
State University, Department of Agricul tural
Economicsy January 1981 through Auqust 1%86.



