SOFT-SERVE ICE MILK A UNITED STATES DEPARTMENT

OF AGRICULTURE BONUS COMMODITY PRODUCT FOR USE IN THE NATIONAL SCHOOL

LIJNCH PROGRAM

By
REBECCA KIEFFER PAZOURECK
Bachelor of Science James Madison University Harrisonburg, Virginia 1967
Master of Science University of Oklahoma Norman, Oklahoma 1980

Submitted to the Faculty of the Graduate College of the Oklahoma State University
in partial fulfillment of the requirements
for the Degree of
DOCTOR OF PHILOSOPHY
December, 1986

Mrasis
1776
限美徨
copr2

SOFT-SERVE ICE MILK A UNITED STATES DEPARTMENT OF AGRICULTURE BONUS COMMODITY PRODUCT FOR USE IN THE NATIONAL SCHOOL LUNCH PROGRAM

Thesis Approved

C OPYRIGHT

by

Rebecca Kıeffer Pazoureck December, 1986

ACKN ONLEDGMENTS

Sincere appreciation is extended to Dr Lea Ebro for her guidance and encouragement throughout my graduate studies and the research project I also express my appreciation to Dr Esther Winterfeldt, Dr Stanley Gilliland, Dr Beulah Hirschlein, and Dr Richard Dodder for their assistance with the research project

A special note of thanks goes to Dr John Martinez for giving unselfishly of his time and expertise in analyzing the data, to Professor Jack Orr for his assistance in the bacterıological analysis, to Maria Borah for preparing the computer program, and to Bonnie Bowman of the Lawton Public Schools for providing the nonfat dry milk and butter to the project

Grateful appreciation is extended to my students, to the Lawton Public school foodservice personnel, and to my colleagues at Cameron University The services and support provided by these individuals contributed greatly to the research project

Deepest thanks are offered to my family, my husband Joe and my children Trı and Leslie, whose support and encouragement made this goal possible.

TABLE OF CONTENTS

Chapter Page
I THE RESEARCH PROBLEM 1
Introduction 1
Statement of the Problem $?$
Purpose of the Study 3
Objectives and Hypotheses 3
Assumptions 4
Limitations 4
Definition of Terms 5
Format of Dissertation 5
II REVIEW OF LITERATURE 7
Characteristics of Ice Milk 7
Physical Structure of Ice Milk 9
Functions of Ice Milk Ingredients 11
Defects in Ice Mılk 19
Summary 24
III PREPARATION AND SENSORY EVALUATION OF BONUS COMMODITY SOFT-SERVE ICE MILK 25
Abstract 25
Introduction 25
Methods 26
Results 32
Discussion 33
Summary 36
References 46
IV ACCEPTANCE OF SOFT-SERVE ICE MILK MADE FROM USDA BONUS COMMODITY NONFAT DRY MILK AND BUTTER 49
Abs tract 49
Introduction 50
Method 51
Results and Discussion 54
Applications and Implications 57
References 65
Chapter Page
V SUMMARY AND RECOMMENDATIONS 67
Summa ry 67
Recommendations for Further Research 69
LITERATURE CITED 71
APPENDIXES 76
APPENDIX A - PREL IMI NARY EXPERIMENTS 77
APPENDIX B - INSTRUMENTS 83
APPENDIX C - TRAINING SESSION FORMULAS 88
AP PENDIX D - DEFINITION OF SENSORY PROPERTIES 90
AP PENDIX E - GALLONS OF ICE MILK PREPARED FOR EACH SECONDARY SCHOOL BASED ON ENROLLMENT 93
AP PENDIX F - ANNOUNCEMENT MADE IN SECONDARY SCHOOLS 95
APPENDIX G - RAW DATA 97

LIST OF TABLES

Table Page
CHAPTER III
1 Composition of Vanilla Soft-Serve Ice Milk Mixes 37
2 Basic Formula and Modifications for Triangle Tests 38
3 Analysis of Variance Among Percentages of Overrun inSoft-Serve Ice Milk Mixes39
4 Analysis of Varıance Between Soft-Serve Ice Mılk Overall Quality Scores From Tasting Sessions 1-6 and 7-12 40
5 Analysis of Variance Among Sensory Property Mean Scores for Soft-Serve Ice Milk Mixes 41
6 Frequency of Descriptive Terminology for Sensory Proderties Judged by Panelists to be Less Than Desirable 42
7 Analysis of Varıance Among Overall Qualıty Scores of Soft-Serve Ice Milk Mixes 43
8 Panelısts' Personal Preferences Among Soft-Serve Ice Mılk Mixes 44
9 Selected Nutritional Values in Bonus Commodity Soft-Serve Ice Milk 45
CHAPTER IV
1 Composition of Soft-Serve Ice Milk Mixes 58
2 Secondary Students' Predicted Soft-Serve Ice Mılk Preferences 59
3 Secondary Student Preferences Between Soft-Serve Ice Mılk Mixes 60
4 Soft-Serve Ice M11k Preference Between Ages of Secondary Students 61
5 Soft-Serve Ice Milk Preference of Junior and Senior High Students 62
Table Paqe
6 Soft-Serve Ice Milk Preference of Male and Female Juntor and Sentor High Students 63
7 Standard Plate and Colıform Counts of Frozen Soft-Serve Ice Milk 54
APPENDIXES
I Gallons of Ice Milk Mix Prepared for Each Secondary School Based on Enrollment 94

CHAPTER I

THE RESEARCH PROBLEM

Introduction

The National School Lunch Program (NSLP) was enacted on June 4, 1946 by the Food and Nutrition Service of the United States Department of Agriculture (USDA) The objectives were to safeguard the health and well being of the Nation's children and to encourage the domestic consumption of nutritious agricultural commodities by providing an adequate supply of foods and otner facilities in the establishment and mantenance of a non-profit school lunch program (United States Statutes at Large, 1946)

Funds for the NSLP come from federal cash reimbursements and agricultural commodity donations, state and local monies, and children's payments In 1982, Federal cash and commodity donations accounted for 514 percent of the total NSLP budget, local and children's payments provided 202 and 284 percent respectively The 514 percent from federal sources included 2,1970 million dollars total cash rembursements and 4140 million dollars in agricultural commodities (Hiemstra, 1983) Federal cash payments and commodity entitlements are specified by legislation based on the number and type of meals served In addition, schools receive bonus commodities not charged against their legislated commodity entitlements In 1982, the value of bonus commodities totaled 3400 million dollars Bonus commodities
totaled 3400 millon dollars Bonus commodities are foods that are in substantial surplus, primarıly dairy foods The foods provided to schools by USDA cost less than locally purchased food of the same qual1 ty, however, some of these donated foods are reportedly difficult to use in preparing meals and can increase the operating cost of the NSLP due to the high cost of transporting, storing, handling, and processing donated commodities into usable products (Puma and St Dierre, 1983)

The success of the NSLP in meeting its stated objectives relies greatly on keeping the cost of the lunch from rising The charge to the student for the school lunch has been reported to be a strong influence on participation in the NSLP Ottman (1956) concluded that high participation in the NSLP required the charge per lunch be as low as is consistent with good food and service Lunch price was also reported by Akın, Guilkey, Popkın, Bass, and Haınes (1981) to significantly reduce the NSLP participation of low income children Keeding the student's payment from rising forces the NSLP to rely greatly on federal funding sources, however, possible budget cuts and rising food and equipment costs due to inflation threaten the adequacy of these sources The continuation of the NSLP requires wiser food purchases, better inventory control, and improved managerial skills (Applebaum, 1932)

Statement of the Problem

The use of commodity foods for the on-site preparation of school foodservice menu items currently being purchased in pre- or partially prepared convenience forms could save money to offset inflationary food costs and help create a more self-supported NSLP (Ne111, 1981) On-site grinding of wheat and bread bakıng has been successfully tried
(Anonymous, 1979) and the concept could be apolied to other school foodservice menu items Greater reliance upon uncommitted bonus commodities currently available has great potential in the attempt to control food costs As of May, 1985, Commodıty Credıt Corporation (CCC) uncomm tted stocks of butter, cheese, and nonfat dry milk (NFDM) totaled 163 5, 601 1, and 9678 million pounds respectively (USDA, 1985) NFDM is, however, one of the commodities many schools report difficulty in using without paying to have it processed into a more usable form (VanEgmondPannel1, 1981)

Purpose of the Study

The purpose of the study was to develod a soft-serve ice milk mix utilizing USDA bonus commodity NFDM and butter to be mixed and frozen on-site in school foodservice operations The ice milk developed needed to be acceptable to secondary students and within suggested sanitation standards for soft-serve products

Objectives and Hypotheses

The objectives tested were as follows
1 To develop a vanilla soft-serve ice milk mix utilizing USDA commodity nonfat dry milk (NFDM) and USDA commodity butter that can be prepared on-site in school foodservice operations

2 To test the acceptability of the two highest quality soft-serve ice milk mixes in seven junior and senior high schools in Lawton, Ok1anoma

3 To have the product meet commercial product standards for total pacterial count and collform count

The hypotheses tested were as follows
H1 There will be no significant differences among the quality scores of the soft-serve ice milk mixes when descriptively evaluated by a trained taste panel

H2 There will be no significant difference between the accentabllity of the soft-serve ice milk mixes when evaluated by secondary students

As sumptions

The following assumptions were made for this study
1 The supply of bonus commodity NFDM and butter w111 continue to be avallable to the NSLP

2 Foodservice employees will have time during their respective work shifts to prepare the 1ce milk mix

3 On-site preparation of the soft-serve 1ce milk made from bonus commodity NFDM and butter will be less expensive than utilizing a commercially pre-prepared soft-serve 1ce milk mix

4 All ice cream freezers used in the study will freeze the ice $\mathrm{molk} \mathrm{m} x \mathrm{xes}$ in the temperature range of 18 to $22^{\circ} \mathrm{F}\left(-8\right.$ to $\left.-55^{\circ} \mathrm{C}\right)$

5 The majority of school foodservices participating in the NSLP w111 have a soft-serve ice cream freezer and are currently serving a commercially prepared soft-serve product

Limitations

In conducting this study, the following limitations were taken into consideration

1 The population was 11 mot ted to those university students enrolled in one Food Principles class in the fall semester of 1985 and
to those secondary students enrolled in public school in Lawton, Oklahoma in the spring semester of 1986

2 The environmental temperature was not controlled in the unairconditioned school foodservice cafeterias, changes in environmental temperatures could introduce bias into the acceptability findings

3 The soft-serve ice milk mixes tested were prepared in a university food laboratory that was not equipped with quantity food equipment

Definition of Terms

The major terms used in this study are defined as follows
1 Ice Milk - frozen dairy product containing not less than 2 nor more than 7 percent milkfat, not less than 11 percent nonfat milk solids, and not less than 13 pounds total solids per gallon (Code of Federal Regulations, 1984)

2 Ice Cream - frozen dairy product containing not less than 10 percent milkfat and nonfat milk solids, and not less than 16 pounds total solids per gallon (Code of Federal Regulations, 1984)

3 Soft-Serve - frozen product consumed when drawn from the ice cream freezer as a flowable sem-solid mass at temperatures between 18 and $22^{\circ} \mathrm{F}\left(-8\right.$ and $-55^{\circ} \mathrm{C}$) (Keeney and Dahle, 1950)

4 Bonus Commodity - primarily daıry foods (milk, butter, cheese) that have been in substantial surplus since 1978 (Hiemstra, 1983)

5 Nonfat Dry Milk (NFDM) - dried skim mik containing not over 5 percent molsture and 15 percent milkfat (Rubis, 1974)

6 Butter - the natural fat of milk containing not less than 30 percent milkfat and not more than 16 oercent molsture (Rubis, 1974)

7 Nonfat Milk Solids (NFMS) - nonfatty portion of milk including mılk sugar, milk proteins, and meral salts (Keeney and Dahle, 1960)

8 Serum Solids - nonfat milk solids (Keeney and Dahle, 1960)
The typical factors for scoring dairy products are defined as follows

9 Color - visual perception or appearance readily associated with tne flavor (Arbuckle, 1972)

10 Flavor - blend of taste, smell, and temperature sensations evolved in the mouth (Amerıne, Pangborn, and Roessler, 1965)

11 Texture - the way the product handles and feels in the mouth (Szczesnıak, 1963)

12 Body - consistency of the product and the way the product benaves when it begins to warm and melt (Charley, 1970)

Format of Dissertation

Chapter III was written according to the Guide1ines for Authors of the School Food Service Research Review Chapter IV followed the Guide for Authors, Journal of the American Dietetic Association

CHAPTER II

REVIEW OF LITERATURE

Characteristics of Ice Milk

Ice milk is a frozen dairy food produced by freezing, with continuous agitation, a combination of daıry ingredients, sweeteners, water, and flavoring, with or without eggs and/or stabilizers or emulsifiers (Arbuckle, 1972) Ice milk differs from ice cream in the composition of the mix Exoressed as a percentage of its ingredients, ice milk contains not less than 2 percent nor more than 7 percent butterfat, and not less than 11 percent nonfat milk solids (NFMS) (Code of 「ederal Regulations, 1984) Soft-serve ice milk differs from hardened ice milk and ice cream as it has only a one-step freezing process Soft-serve products are consumed when drawn from a batch-type ice cream freezer as a flowable semi-frozen mass at temperatures between 18 and $22^{\circ} \mathrm{F}(-8$ and $-55^{\circ} \mathrm{C}$) (Keeney and Dahle, 1960) Hardened products are frozen solid during a second freezing period in a cold-storage room at $0^{\circ} \mathrm{F}\left(-18^{\circ} \mathrm{C}\right)$

Like ice cream, ice milk is evaluated by the organoleptic properties of color, flavor, texture, and body (Collıns, 1980) A high qual1 ty soft-serve ice milk possesses the following characteristics

Color

The color needs to be attractive, evenly distributed, and characteristic of the flavor An ideal vanilla flavored product is an
off-yellow, the color of cream produced in spring and early summer due to the high content of carotene in the grass at these times (Sommer, 1951) Maintaining uniform color throughout the year usually requires the addition of imitation colorings

Flavor

Flavor is identifiable by taste, color, and pieces of ingredients, (1 e, fruits, nuts, or chocolate) dispersed in the product High qual1 ty flavor should be pleasing with sufficient flavoring to yield a distinctive, full-flavor to the product (Collins, 1980) The flavor of vanilla ice milk depends, to a great extent, on the quality of its darry 1 ngredients Milk flavor is subject to the individuality of the cow, the period of lactation, the feed, the barn atmosphere, bacterial action, and/or chemical changes in the milk (Walstra and Jenness, 1984) Ice milk should also be sweet with the degree of desirable sweetness varying considerably between consumers Sommer (1951) suggested that children and younger people prefer a sweeter product than do older individuals Colder temperature sensations characteristic of ice milk compared to ice cream are attributed to the lower percentages of butterfat in ice milk

Texture

Texture characteristics include a smooth and creamy feel in the mouth with no detectable granules on the palate Tactile sensations of thickness and richness also indicate a quality product (Keeney and Kroger, 1974) High quality texture is reported to be due to uniformly dispersed, small, angular-shaped ice crystals, jagged tavering air cell configurations, (Reid and Hales, 1934), and the sensation of smoothness

1 mparted by the lubricating properties of butterfat (Cole and Boulware, 1940)

Body

A desirable body needs to be dry and stiff Dryness is associated with a low gloss and a melt-resistant product (Keeney and Josephson, 1958) Since soft-serve products are not hardened, stiffness implies a product that will stand up properly in the container and retain its shape and consistency untıl eaten (Knightly, 1963) High quality body depends on some butterfat agglomeration (Sherman, 1965), 1 ow draw temperatures (Keeney and Dahle, 1950), fine, unıform air cell structure (Keeney and Josephson, 1958), and use of the proper emulsifier and/or stabılızer (Bassett, 1969)

Physical Structure of Ice Milk

The quality characteristics of ice milk are attributed to the physical and chemical functions of the ingredients combined with the freez1 ing process Collectively the ingredients and the freezing process produce a complicated foam of air bubbles trapped in a continuous liquid phase which represents a partially frozen emulsion (King, 1950) Water, frozen and unfrozen, functions as the continuous phase Ice crystals are embedded in the frozen continuous phase while the unfrozen continuous phase contains emulsified fat globules, collodial dispersions of milk proteins and insoluble salts, and solutions of sucrose, lactose, and soluble salts (Valaer and Arbuck1e, 1961) The structural elements of $1 c e$ crystals, air cells, and unfrozen materials are separated by three interfaces The air-milk plasma interface, covered by a thin
absorptive film or lamellae, the fat-milk plasma interface, covered by a protein-emulsifier film, and the ice-milk plasma interface (king, 1950)

During freezing, continuous agitation incorporates air producing a foam $S l$ ow freezer speeds with extended agitation periods favor the dispersion of very small, uniformly distributed air cells which promote a smooth texture and stiff body The foaming of the mix ts due chiefly to milk proterns which are absorbed by the lamellae and stabilize the entrapped air (Atherton and Newlander, 1977) The mux increases in volume due to foam formation and the expansion of water as it freezes, this increase in volume during freezing is referred to as overrun It is expressed in percentage as follows
$\%$ overrun $=\frac{\text { weight of mix }- \text { weight of ice milk }}{\text { weight of ice milk }} \times 100$
where the weight of each product is the weight of the same unit of volume (Keeney and Kroger, 1974) Ice milk of insufficient or excessive overrun is soggy and heavy or snowy or fluffy respectively Soft-serve ice milk is dispensed at overruns of $30-50$ percent (Kenney and Dahle, 1960)

The temperature of the ice ml 1 k mix in the freezer is quickly lowered to $21-23^{\circ} \mathrm{F}\left(-6--5^{\circ} \mathrm{C}\right)$ to enhance the formation of small ice crystals necessary for smooth texture and stiff body As small ice crystals separate from the water of the mix, the viscosity of the unfrozen water increases Ice crystals remain small because water molecules, slowed by the increase in viscosity, are unable to unite with existing crystal nuclei but instead form new ice crystals The separation of pure ice crystals from the mix increases the concentration of
the remaining unfrozen mix and, consequently, decreases the freezing temperature The continuous decrease in the freezing temperature prevents all of the water from freezing In soft-serve oroducts, approx1 mately one-half of the water in the $m i x$ is frozen (Lampert, 1970)

Functions of Ice Mılk Ingredıents

Basic ingredients in ice milk include butterfat, NFMS, sweetener, stabilizer and/or emulsifier, and flavoring

Butterfat

The butterfat globules, covered by a protein-emulsifier film at the fat-milk plasma interface, are dispersed in the unfrozen phase of the mix as single globules and/or aggregates of globules Chain-like arrangements of globules are found around the air cells and throughout the unfrozen phase Studies by Cremer (1954) indicated that the chainlike arrangements of butterfat on the surface of alr cells are more easily tasted than those dispersed in the unfrozen phase, and yield a subtle creamy flavor Fresh sweet cream is the preferred source of butterfat as it imparts the best flavor, however, sweet, unsalted butter may be used (Sommer, 1951) Improperly stored butter develons flavor defects due to oxidation, however, Price and Whitaker (1931) studied the flavor of butter frozen up to eight months and detected no odor or taste of oxidation in ice cream made from the frozen butter Acting as a mechanical barrier, butterfat contributes to the smooth texture by preventing the growth of ice crystals In addition, smoothness repends on the total air cell surface area and the amount of fat surrounding the air cells (Cremer, 1954) An ootimum ratio of fat to air appears to
impart a lubricating effect and the sensations of thickness and richness Sherman (1965) reported smooth texture to result from initial small butterfat globules in the mix and the coagulation of solidified butterfat particles into small aggregates distributed throughout the unfrozen phase between the air cells and ice crystals In the ice milk mix , butterfat globules are fluid, sticky spheres that require emulsifiers to keep the globules separated and lonk the surface of the butterfat with the water (Bassett, 1959) During freezing, applied pressure ruptures the protein-emulsifier film around some of the globules, adjacent de-emulsified globules aggregate throughout the unfrozen ohase between the air cells and ice crystals (Shama and Sherman, 1966) The controlled formation of small butterfat aggregates enhances air retention and results in a dry stıff body (Knıghtly, 1963), while uncontrolled butterfat de-emulsification, or churning, results in clumps of butterfat large enough to be detected in the mouth The rate of agglomeration and churning is a function primarily of the degree of agitation (Knıghtly, 1959), however, Keeney and Josephson (1958) suggested that polyoxyethylene emulsifiers enhance butter agglomeration by promoting controlled fat de-emulsification Churning is a more serious problem in soft-serve versus hardened products as soft-serve mixes may be agitated in the batch type freezer for periods of 12 hours or longer (Knightly, 1963)

Nonfat Milk Solids (NFMS)

The nonfat solids of milk, referred to as skim milk solids and serum solids, include lactose, oroteins, and mnerals salts (Arbuckle, 1972) Fresh skim mik and fresh spray process nonfat dry milk (NFDM)
are the most frequently used sources of NFMS The flavor these milks 1 mpart to ice milk depends on any unpalatable odors or flavors the milk may absorb from the feed or may result from chemical, microbial, and/or enzymatic reactions during the manufacture or storage of the milk Fresh skim mik produced under ideal conditions has a bland (low acid), slightly sweet, clean flavor Low fat milks taste somewhat flat in comparison to milks with higher percentages of fat which have fuller flavors The flavor of dried skim mik depends uoon the quality of the raw material from which it is made, the process of manufacturing, the conditions of storage, and the age of the product (Price and Whitaker, 1931) A quality NFDM powder should be of fine flavor, light in color, free from darkened particles, fluffy, and easily soluble (Arbuckle, 1972). Door quality NFDM is characterized by an old ingredient flavor (van der Zant and Moore, 1954) and of ten produces a cooked or "serum solids" offflavor in ice cream (Arbuckle, 1972) A "powdery" flavor has been reported due to NFDM powders that do not dissolve well (Piper, 1955) Hedrick, Armitage, and Stine, (1964) studied the flavor effect of pasteurization temperatures on dried mik and concluded that milks pasteur1zed by high-heat ($185^{\circ} \mathrm{F}\left(85^{\circ} \mathrm{C}\right.$) for 20 minutes) produced ice milk mixes with more pronounced "cooked" flavors than mixes made using low-heat $\left(143^{\circ} \mathrm{F}\left(615^{\circ} \mathrm{C}\right)\right.$ for 30 min nes) pasteurization The differences, however, were slight and, in vanilla ice cream, would probably not he noticeable to the average consumer Williams (1929) reported that ice cream made from NFDM heated to $1814^{\circ} \mathrm{F}\left(83^{\circ} \mathrm{C}\right)$ produced a better flavor than NFDM heated to $1454^{\circ} \mathrm{F}\left(63^{\circ} \mathrm{C}\right)$ Flavor differences are also reported between ice creams made from different types of dried skim milk When comparing drum dried to soray dried, 663 percent of sensory
evaluators preferred the flavor of ice cream made from spray dried NFDM (Williams and Hall, 1931) Price and Whitaker (1931) compared spray, flake, vacuum-roll, and atmospheric-roll dried skim mik and reported the best flavor in ice cream made from spray dried miks stored for less than 3 months at temperatures of 46 and $0^{\circ} \mathrm{F}$ (8 and $-18^{\circ} \mathrm{C}$) A stale flavor may develop in NFDM during storage due to molsture absorption Molsture contents of 3 percent or below wlll 11mit the oroduction of stale flavors, however, NFDM is hygroscopic and will absorb moisture from the atmosphere, consequently, dry storage is necessary (Sommer, 1951)

NFMS 1 mprove ice milk texture by favoring the formation of small ice crystals and air cells Formation of small ice crystals is attributed to the nydrophylic properties of milk proteins The smooth texture 1 s partially due to the size and distance between ice crystals Milk proteins' affinity for water reduces the amount of water converted into ice and hydrated protein particles mechanically obstruct ice crystal growth by deflecting water molecules from uniting with existing crystals so more numerous smaller crystals are formed (L1ttle, 1948) As the concentration of NFMS in the unfrozen phase increases, the freezing point lowers, thus preventing all of the water from freezing The greater the amount of unfrozen phase, the greater the distance between ice crystals (Arbuckle, 1940) Smoothness is also attributed to air cell size and distribution which is affected by the freezing mechanism, the viscosity of the $m i x$, and the strength of the lamellae surrounding the air cells As the mix is agitated during freezing, air is incorporated and sub-divided into small air cells Mix vicosity increases due to the collodial properties of milk proteins and due to the increased
concentration of NFMS in the unfrozen phase of the product The viscos1 ty of the $m \mathrm{x}$ is responsible for the retention of the air cells The strength of the lamellae affects ice milk texture by resisting air cell deformation (Sheman, 1965) and the resultant loss of air as the cells run together during agitation and freezing As the amount of air incorporation or overrun increases, compression of the foam causes the form of the foam to change (Kıng, 1950) from spherıcal to honeycomb-like to poylhedric With increased compression, the lamellae become very thin and are increasingly suscentible to rupture or to piercing by ice crystals (Dahlberg, 1925) High levels of total solids strengthen the protein-emulsifier film surrounding butterfat globules, and theraby lessen the churning of butterfat (Kloser and Keeney, 1959) During freez1 ng , applied pressure is sufficient to rupture the film around some of the globules, consequently, the ratio of NFMS to fat is one factor in controlled fat de-emulsification Mixes with total solid concentrations less than 85 percent of that of the fat are particularly unstable and susceptible to churning (Knightly, 1959) High levels of NFMS also increase $m_{1 x}$ viscosity and strengthen the lamellae surrounding the air cells Strong lamellae enable the mix to retain a given amount of air in the form of small cells (Sommer, 1932) The amount of air incorporated or the percentage of overrun is not reported to be affected by the level of NFMS (Lucas and Roberts, 1927), but to be the result of the amount and speed of agitation

Sweetener

The sweetness of 1 ce milk results from sucrose, corn sweetener, and, to a slight degree, from lactose Sucrose is always used in ice
milk and most products utilize corn sweetener at levels of 4-6 percent solids (Keeney and Dahle, 1960) Sugar increases the acceptance of ice milk by making it sweeter In addition, sugar lowers the freezing point of the mix which increases the viscosity of the unfrozen phase Lower freezing temperatures and increased viscosity promote smoothness in the frozen product by enhancing the formation of small ice crystals and 1 ncreasing distances between ice crystals Lower freezing temperatures also require a lower drawing temperature in order to obtain a dry stiff product, soft-serve mixes usually contain less sugar than mixes to be hardened (Kloser and Keeney, 1959)

Emulsifier/Stabilizer

Most ice milk mixes contain an emulsifier, or surfactant, in order to produce an emulsion of the 1 mm scible liquids As esters of long chain fatty acids and alcohol (Potter and Williams, 1950), emulsifiers are both hydrophilic and lipophilic Oriented at the fat-milk serum 1 nterface, emulsifiers permit a fine dispersion of butterfat in the mx by reducing interfacial tension Consequently, butterfat agglomeration is controlled and a dry, stiff body results Two types of emulsifiers are approved by the Food and Drug Administration (FDA) for use in ice milk and ice cream Fat soluble emulsifiers, referred to as "monos", are mixtures of mono- and diglycerides derived from hydrogenated vegetable and animal fats Water soluble polysorbate emulsifiers, referred to as "polys" are formed from dehydrated sorbitol esterified with a fatty ac1d to produce compounds known as Spans (Kloser and Keeney, 1959) Reacting Spans with ethylene oxide produces polyoxyethylene derivatives referred to as Tweens Polyoxyethylene derivatives of sorbitan
tristearate and sorbitan monooleate are commonly known as Dolysorbate or Tween 65 and 80 respectively (Bassett, 1969) The monos primary function is to improve the whipping ability of the ice milk mix by reducing the fat-mılk serum interfacial tension which stabilizes the fat dispersion and retards butterfat agglomeration (Arbuckle, 1972) A dry, stiff body is reportedly due to the polys' ability to promote fat deemulsification, probably by impairing the cohesion of the proteinemulsifier film surrounding butterfat globules (Mulder and Walstra, 1974) During freezing and agitation, the butterfat globules beqin to clump together in agglomerates, continued agitation causes the butterfat to coalesce into visible and tactile particles When the globules have agglomerated but before they coalesce, the ice milk possess the maximum dryness and stiffness due to the mechanical viscosity imparted by the butterfat agglomerates In soft-serve ice milk, approximately 005 percent poly and up to 02 percent mono is recommended to control butterfat agglomeration due to extended agitation periods (Bassett, 1969) Legal maximums of emulsifiers in ice cream and ice milk are 010 percent poly plus 02 percent mono

Known as hydrophilic colloids, stabilizers are thickening agents that promote ice milk mix viscosity which improves aeration and body, restricts ice crystal growth during storage, and controls the rate of melt-down (Cottrell, Pass, and Phillips, 1980) Stabilizers are polysaccharides obtained from various sources, including seaweed extracts, seed gums, tree gum exudates, and chemically modified celluloses (Cottrell, Pass, and Phillips, 1979) The major stabilizers used in ice milk are sodium carboxymethylcellulose (CMC), locust bean gum, quar gum, carrageenan, and sodium al ginate (Bassett, 1969)

In addition to using emulsifiers and/or stabilizers in the promotion of a dry, stiff body, soft-serve mixes may contain certain salts as drying agents Soft-serve products are more prone to the churning of butterfat than hardened products due to extended periods of agitation Frazeur (1959) reported that the precautions of proper freezer temperatures, correct mix temperature as the mix enters tne freezer, and the use of emulsifiers may not prevent butterfat churning Salts employed as drying agents include sodium citrate, di sodium phosphate, tetrasodium pyrophosphate, sodium hexometaphosohate, and calcium sulfate Arhuckle (1952) reported that the addition of 008 to 020 percent calcium sulfate produced a dry, stiff oroduct with a reduced rate of melting The salts are reported to function by retarding butterfat churning due to their ability to increase the electrostatic charge on the surface of butterfat globules and/or to stabilize proterns in the butterfat globule memb rane

Flavoring

Flavor in an ice milk mix may come from the plain $m i x$ and from an added flavoring material Over 75 percent of ice cream is flavored with vanilla, chocolate, or strawberry Vanilla accounts for over 50 oercent of the total production (Keeney and Dahle, 1960) Extracts are the most popular form of vanilla flavoring, however, due to price considerations, most vanilla flavorings are combinations of natural vanilla extract and
 good quality vanilla flavoring complements the natural mik flavor Imitation vanillas of ten do not duplicate a true vanilla flavor or odor and may strongly dominate the $1 c e \mathrm{~m} 1 \mathrm{lk}$ Sampling studies by D_{p} erce,

Combs, and Borst (1924) reported that Judges were unable, however, to identify true and $1 m$ tation vanilla flavors in ice cream samples

Defects in Ice Milk

The quality of ice milk is judged on the basis of its color, flavor, texture, body, and bacterıal count If the product deviates from the commonly recognized standards, it is said to be defective

Color

A natural color is desirable in ice milk An unnatural color may be insufficient or pale, excessive or intense, or not a true shade for the flavor (Arbuckle, 1972) Defective vanilla colors include chalky, pale, dull and grayısh, unevenly colored, or colored to an unnatural shade (Sommer, 1932) Kıng (1950) reported a "whiter" color in products with finely dispersed ice crystals and air cells than products with course textures

Flavor

Flavor defects may be due to excessive or deficient sweetness, excessive, deficient, or atypical flavorings, and poor quality dairy products Lack of sweetness produces a flat taste while excessive sweetness overs'nadows desirable flavors Vanilla flavoring defects most frequently occur from the use of imitation vanilla extract which imparts a pronounced coumarin flavor in vanilla flavored ice cream (Sommer, 1951) The flavor of the da1ry products depends on any unpalatable odors or flavors absorbed by the feed or that may result from chemical, microbial, and/or enzymatic reactions during manufacture or storage

Feed off-flavors may be inhaled or digested by the cow and transferred to the milk In addition, a "cowy" flavor may occur from the transfer of feed or stable taints or from ketosis which produces increased concentrations of acetone in the milk (Salstra and Jenness, 1984) Chemically induced off-flavors include defects from oxidation, storage, heat, Maillard reactions, and light exposure. Oxidation of milks' lipid fraction produces a variety of flavor defects Flavors described as olly, cardboard, tallowy, and metallic occur as the concentration of carbonyl compounds increase from the oxidation of unsaturated fatty aclds (Forss, Pont, and Stark, 1955) Storage or stale flavors develop in NFDM due to high moisture contents and high storage temperatures High quality NFDM has a morsture content of 3 percent or below (Sommer, 1951), however, NFDM is hygroscopic and, with improper storage, the absorbed moisture content increases NFDM stored at improper temperatures $\left(110^{\circ} \mathrm{F}\left(43^{\circ} \mathrm{C}\right)\right.$ or higher) is reported to develod a coconut flavor (Walstra and Jenness, 1984) Heat treatment of milk during high or ultra-high pasteurization, $180^{\circ} \mathrm{F}\left(82^{\circ} \mathrm{C}\right)$ for 10 seconds and $285^{\circ} \mathrm{F}$ $\left(1405^{\circ} \mathrm{C}\right)$ for 1 second respectively, produces the tactual flavor defects of chalky, rough, powdery, or astringent (Patton and Josephson, 1952) Milk pasteurized at low temperatures $\left(165^{\circ} \mathrm{F}\left(74^{\circ} \mathrm{C}\right)\right.$ for 10 seconds) is free of heat-induced flavors Milks heated at higher temperatures impart a cooked flavor due to the production of free sulfhydryls from the breakage of disulfide bonds NFDM produced by high heat drying $\left(185^{\circ} \mathrm{F}\left(85^{\circ} \mathrm{C}\right)\right.$ for 20 minutes$)$ contains a greater cooked flavor than low heat processed NFDM ($143^{\circ} \mathrm{F}\left(625^{\circ} \mathrm{C}\right.$) for 30 min nutes) (Hedrıck et al, 1964) Off-flavors may develop due to Malllard reactions during storage, heating, and drying of milk Characteristic flavors include
caramel, malty, and roasted A typical Maillard reaction flavor in dried milk is a gluey-stale flavor (Walstra and Jenness, 1984) Excessive exposure to light during fluid mik storage produces a sunlight flavor due to the photolysis of methionine in the presence of riboflavin (Patton, 1954) The sunlight flavor is described as burnt or cabbagev (Jenness and Patton, 1959) Off-flavors produced by the growth of microorganisms or the action of bacterial or milk enzymes include unclean, frulty, malty, phenolic, bitter, and rancid

Texture

Ice milk texture is directly related to the size, shape, number, and arrangement of the air cells, ice crystals, lactose crystals and fat clumps, when these structures are detectable in the mouth, the texture is defective Common texture defects are described as coarse or icy, snowy or fluffy, buttery, and sandy (Sommer, 1932) A coarse or 1cy texture indicates the presence of large ice crystals or air cells. Dpen textures due to the incorporation of excessive air are referred to as snowy or fluffy Ice milk is buttery when clumps of butterfat, due to churning, are easily seen or detected on the palate Lactose crystallization produces a sandy sensation that remains as the product melts in the mouth Lampert (1970) indicated that mixes with NFMS concentrations of 11 percent or higher were prone to lactose crystallization, however, storage time and temperature are reported to be additional factors (Sommer, 1932) When the product is consumed within 5-7 days and stored 1 n reasonably constant temperatures, mixes with 11 percent of NFMS do not become sandy Keeney and Kroger, (1974) indıcated more frequent sandiness in products stored at temperatures above $0^{\circ} \mathrm{F}\left(-18^{\circ} \mathrm{C}\right)$ and

Nickerson (1962) reported higher percentages of lactose crvstallization 1 n mxes drawn from the freezer at $10 \mathrm{~m}\left(23^{\circ} \mathrm{F}\left(-5^{\circ} \mathrm{C}\right)\right)$ draw temperatures than mixes drawn at 'ngher $\left(25-26^{\circ} \mathrm{F}\left(-4--35^{\circ} \mathrm{C}\right)\right)$ temperatures Body

Characteristic body defects include crumbly, soggy, gummy, and weak A crumbly or brittle body lacks cohesion and pulls apart easily, it is associated with low total solids, insufficient stabilizer, excessive overrun, or large air cells (4rbuckle, 1972) A dense consistency that appears somewhat wet is described as soggy or heavy which results from low overrun especially in mixes with high total solids Sommer (1932) considered a product wh th 38 percent total solids and an overrun below 80 percent to be soggy A product with a gummy or nasty body appears as a doughy mass upon serving and resists melting Fxcessive concentrations of stabilizers produce this defect A weak or watery body results from low total solids and insufficient stabilizer The product lacks firmness or chewn ness and melts quickly

Bacterial Count

Suggested bacterıological standards for soft-serve ice milk state tnat the finished product shall have a bacterial plate count not to exceed $50,000 / \mathrm{g}$ and a collform count not to exceed $1 \mathrm{l} / \mathrm{g}$ (Weckel, 1966) Satisfying these standards requires care in the selection of raw materials, pasteurization of the $m i x$, storage of the $m i x$ and sanitation of equipment (Ryan and Gough, 1982) In selecting NFDM for ice milk $\mathrm{m} 1 \times \mathrm{s}$, bacterıal counts are specified for Extra and Standard Grades based on 10 g of powder suspended in 100 cc of sterıle water The
bacterial count must be less than 30,000 and $100,000 / \mathrm{g}$ for Extra and Standard Grades respectively (Sommer, 1951) Due to sugar's protective effect on the destruction of microorganisns, a minimum of $155^{\circ} \mathrm{F}\left(68^{\circ}\right)$ for 30 minutes or $175^{\circ} \mathrm{F}\left(79^{\circ} \mathrm{C}\right)$ for 25 seconds is advised for pasteurization treatments with ice cream mxes Other temperature-time combinations that are reported equal to or in excess of the above minmal include $176^{\circ} \mathrm{F}\left(80^{\circ} \mathrm{C}\right)$ for 22 seconds and $185^{\circ} \mathrm{F}\left(85^{\circ} \mathrm{C}\right)$ for 61 seconds Thermophilic organisms may produce a high plate count in mixes held at too high temperatures for extended times during cooling or storage (Sommer, 1951) The mix should be stored at $45^{\circ} \mathrm{F}\left(7^{\circ} \mathrm{C}\right)$ or below until the mix enters the freezer-dispenser (Weckle, 1966) Van der Zant and Moore, (1955) reported considerable increases in bacterial counts in $\mathrm{m} x$ xes stored above $41^{\circ} \mathrm{F}\left(5^{\circ} \mathrm{C}\right)$ and considerable increases in coliform counts in mixes stored at $48^{\circ} \mathrm{F}\left(9^{\circ} \mathrm{C}\right)$. Storing mxes between 41 and $464^{\circ} \mathrm{F}$ (5 and $8^{\circ} \mathrm{C}$) resulted in small increases in total count and coliform after two days Adequate cleaning and sanitizing of equipment are essential in avoiding recontamination of a mix with initially low bacterial counts Equipment used in storing and freezing should be dismantled, washed, rınsed, and left to alr dry after each day's use and sanitized with solutions containing not less than 100 ppm avallable chlorine before subsequent use (Weckle, 1966) Data from 71 samples collected from soft-serve retail stores revealed 625 to 926 percent of all mx samples contaıned $\leq 50,000 / \mathrm{ml}$ total bacterıa and 697 to 765 percent contained $\leq 10 / \mathrm{ml}$ coliform (Martin, Roberts, and Sheuring, 1968) Once frozen, however, only 36 to 50 percent and 449 to 558 percent met the standards for total bacteria and coliform respectively Ryan and Gough, (1982) tested soft-serve samples from fast food chains,
local retail outlets, and institutional cafeterias and found significant (P 〔 01) differences in the distribution of total bacteria and coliform counts between mixes and frozen products $\operatorname{Df} 252 \mathrm{mix}$ samples, 107 percent contained $>50,000 / \mathrm{g}$ total bacteria and 75 contained $>10 / \mathrm{g}$ colıform The results from 817 frozen samples showed 385 and 512 percent exceeded the standards for total bacteria and collform respectively

Foley and Sheuring (1966) concluded that agitation during freezing in a soft-serve ice cream freezer causes death to mcrobial cells due to the abrasive action of rapidly moving extracellular ice crystals Significant (P < 01) reductions in Escherichia colı, Saccharomyces lactis, and Pseudomonas fluorescens occurred between the fifth and eighth mute of freezing (Foley and Sheuring, 1965)

Summary

Soft-serve ice milk is a frozen dairy product that is consumed when drawn from the ice cream freezer without hardening Characteristics of high quality vanilla soft-serve ice milk satisfy the following standards off-yellow color, pleasant sweet vanilla flavor, smooth and creamy texture, body stiff enough to retain shape until eaten, and a bacterial and collform count $\leq 50,000 / \mathrm{g}$ and $\leq 10 / \mathrm{g}$ respectively The quality characteristics are attributed to the physical and chemical functions of the ice milk ingredients combined with the freezing process Basic ingredients in ice milk include 2-7 percent butterfat, not less than 11 percent NFMS, sweetener, stabilizer and/or emulsifier, flavoring, and water The production of high quality soft-serve ice milk depends on the selection of high quality ingredients, especially the dairy ingredients, proper storage of the mix, and adequate sanitation of the ice cream freezer

CHAPTER III

PREPARATION AND SENSORY EVALUATION OF BONUS COMMODITY SOFT-SERVE ICE MILK

Rebecca K Pazoureck, Lea L Ebro, Esther A Winterfeldt, and Stanley E Gilliland

Abstract

Four vanilla soft-serve ice milk mixes utilizing USDA commodity nonfat dry milk (NFDM) and butter were developed for on-site preparation in the National School Lunch Program (NSLP) The mixes differed in the percentages of NFDM and butter and contained equal amounts of granulated sugar, imitation vanilla, and a combination emulsifier/stabilizer A trained taste panel descriptively evaluated the mixes for color, sweetness, flavor, freshness, texture, and body using an equal interval scorecard One mix scored significantly different ($P \leq 01$) than all others, no significant differences were found among the remaining three mixes

Introduction

A purpose of the National School Lunch Program is to safeguard the health and well being of the Nation's children and to encourage the domestic consumption of agricultural commodities Schools receive entitlement commodities based on the number and type of meals served

While bonus commodities of cheese, butter, and NFDM are provided freely Of the commodity foods received, schools frequently report difficulty in 1 ncorporating NFDM into menu items without paying to have the NFDM processed into a more usable product (1)

Dried skim mlk and butter can be successfully used as the sole sources of nonfat milk solids (NFMS) and butterfat in ice cream or ice milk mixes (2) In formulating the mix, the quality of ingredients is more important than the source of the ingredients and, when properly handled, high grade butterfat and NFDM combined with sugar, stabilizer, flavor, and possibly color can produce a good product (3) Arbuckle (2) recommends the use of Extra Grade NFDM in ice cream production Requirements for Extra Grade specify a molsture content of 4 percent and that the dry and reliquified products be entirely free from storage or scorched flavor or odor In addition, Extra Grade powders have solubil1 ty indices of 125,20 , and 150 for spray, vacuum-roll, and atmospheric-roll dried miks respectively Sweet unsalted butter is preferred in ice cream and should be very mild in flavor or almost flavorless (4)

The purpose of the study was to develop a soft-serve ice milk mix utilizing bonus commodity NFDM and butter to be mixed and frozen on-site in school foodservice operations and served in the NSLP

Methods

Research Design In order to evaluate the bonus commodity softserve ice milk when prepared with high and low levels of NFDM and butter, four vanilla mixes (Table 1) were developed from a series of pre11mınary experıments (Appendix A) The four frozen mixes were
descriptively evaluated by a sensory panel to determine the two best quality mixes, two mixes of highest quality were selected to be evaluated for acceptability by secondary students in another study (CHAPTER IV) In each soft-serve ice milk mix, the percentages of sugar, imitation vanilla, and emulsifier/stabilizer combination were held constant The percentages of bonus commodity NFDM and butter in each mix were the manipulated independent variables Data were collected in a random balanced incomplete block design with replications (5) The ice cream freezer used in the study was designed to freeze two mixes simultaneously, consequently, the $1 c e \mathrm{milk}$ mixes were randomly assigned to the tasting sessions in combinations of twos To assess panel reliability, each combination was evaluated twice, reversing the serving position of each mix within each combination

Ice Milk Mixture Preparation USDA bonus commodity NFDM and butter, donated to the study through the USDA Regional Dffice in Dallas, Texas, provided the sole sources of NFMS and butterfat in each mix The NFDM was spray process Extra Grade produced between March and June of 1984, the butter was salted and produced in March and June of 1985 The NFDM was packaged in 50 pound paper bags with plastic $11 n e r s$ and was stored tightly closed and away from light One pound packages of butter were stored frozen in a home size refrigerator/freezer at $18^{\circ} \mathrm{F}\left(-8^{\circ} \mathrm{C}\right)$ The mixes were sweetened with granulated sugar (sucrose) and flavored with imitation vanilla flavoring Southern Soecial Emulsifier Combination, donated to the study by Go Products of San Antonio, Texas, was used as the emulsifier/stabilizer Ingredients selected for use are permissible according to the Federal Standards for Frozen Desserts (6) One gallon of each $m i x$ to be evaluated was prepared the afternoon of
the day before the tasting session The dry ingredients and butter were measured by weight, lıquid ingredients were measured by volume The water, frozen butter, and emulsifier/stabilizer combination were combined and heated to $185^{\circ} \mathrm{F}\left(85^{\circ} \mathrm{C}\right)$ in order to dissolve the locust bean gum component of the emulsifier/stabilizer (7) The hot mixture was stirred with a wire whisk and removed from the heat once the above spec1 fied temperature was reached The NFDM and sugar were combined in order to minimize lumping of the NFDM when added to the liquid ingred1 ents (8). The dry ingredients were added to the liquid ingredients and mixed with a wire whisk until no lumps of NFDM remained The vanilla was then added and thoroughly blended into the $m \mathrm{~m}$. The prepared ice milk mixes were cooled to $40^{\circ} \mathrm{F}\left(4^{\circ} \mathrm{C}\right)$ in identical ?-gallon containers that were placed in identical styrofoam ice chests Each 2 gallon container was surrounded with a mixture of three quarts of ice cubes and one quart of water in order to bring the depth of the ice and water equal to the depth of the re milk mix in the container The cooled mixtures were removed from the ice chests, the containers were covered with tight fitting 11 ds , and refrigerated at $40^{\circ} \mathrm{F}\left(4^{\circ} \mathrm{C}\right)$ overnight

Freezing Procedure The mixes were frozen in a model \#733 Taylor soft-serve ice cream freezer loaned to the study by Jeff Thomas Enterprises, Oklanoma City, OKlahoma Model \#733 is a continuous console model with twin heads allowing two mixes to be frozen and dispensed simultaneously For each tasting session, the ice cream freezer was assembled and sanitized for two minutes with a $78^{\circ} \mathrm{F}\left(255^{\circ} \mathrm{C}\right)$ solution containing 100 ppm available chlorine Two ice milk mixes, at $40^{\circ} \mathrm{F}$ $\left(4^{\circ} \mathrm{C}\right)$, were added to the sanitized freezıng chambers and agıtated until frozen, approximately 12-15 minutes The ice mılk was dispensed
between 18 and $22^{\circ} \mathrm{F}\left(-8\right.$ and $\left.-55^{\circ} \mathrm{C}\right)$ After freezing, the percentage of overrun for the soft-serve mixes was calculated by the formula reported by Keeney and Kroger (9) At the completion of each tasting session, any remaining ice milk was drawn-off and discarded The ice cream freezer was thoroughly rinsed with water, disassembled, and all parts were washed with a detergent solution, rinsed, covered with kitchen towels, and allowed to air dry

Subjects In the fall of 1985, a university Food Principles class of nine students was used as a convenience sample Students were accepted as panel members by a triangle test screening process (10) All nine students correctly identified the odd sample in nine or more of 14 triangle tests ($P \leq 05$) (11) and were accepted as taste panel members Prior to data collection, one taste panel member moved out of state, leaving a taste panel of eight members All panelists were female, predom nately in their early 20's except two who were in their 30's and 40's

The triangle tests were conducted using a basic vanilla ice milk formula (12) (Table 2), frozen in 4-quart electric home-style ice cream freezers The ice milk was evaluated immediately after freezing, without addıtional hardening, in order to approxımate a soft-serve product The basic formula was modıfied (Table 2) to create three-fold differences in the sensory property being tested in order to eliminate those individuals who could not detect large differences in the properties (10) Triangle screening sessions were conducted on seven consecutive Mondays, Wednesdays, and Fridays Two triangle tests were conducted per screening session for a total of 14 tests Each sensory property was evaluated twice by each potential panelist In each test, the basic
formula comprised the two matching samples and the odd sample was randomly selected from the modified formulas During the triangle screen1 ng sessions, potential panelists were seated in pairs at tables, 4-feet in diameter, separated from vien of each other by white, folding cardboard screens Samples were served in 3 5-ounce white oaper cubs and stainless steel teaspoons were used for tasting Each potential panel1 st was requested to rinse her mouth with distilled water between samples $\operatorname{Triangle}$ test results were recorded on the Triangle Test for $\mathrm{D} \boldsymbol{\mathrm { f }} \mathrm{f}$ ference form (10) (Appendix B).

Taste Panel Training Taste panel members were trained to recognize and to quantify the desirable sensory properties of soft-serve ice milk during four training sessions During each session, the researcher attempted to demonstrate one of the study's sensory properties by using a commercial vanilla soft-serve ice milk mix (Appendix C) as a standard product compared to one of two ice milk mixes developed by Arbuckle (2) (Appendix C) Arbuckle's two mixes were alternated between the training sessions, all ice milk mixes were frozen in the Taylor \#733 ice cream freezer Taste panel members sampled two soft-serve ice milk mixes dur1 ng each training session, the standard and one of Arbuckle's mixtures In order to secure agreement on the meaning of descriptive terms, taste panel members were acquainted with the definition and related desirable and undesirable characteristics of each sensory property by disolaying this information (Appendix D) on an overhead prolection during the entire training session Panel members were also introduced to the measurement instrument to be used for descriptively evaluating the study's soft-serve ice milk mixes and used the instrument to evaluate the training session mixes

Taste Panel Evaluation The trained taste oanel descriptively evaluated the four soft-serve ice milk mixes in combinations of twos With all possible combinations during the first six tasting sessions During the second six tasting sessions, the combinations were retested, reversing the testing position of each combination (13) Each panelist tasted the same combination during each of the 12 tasting sessions, the samples were coded with a circle or a square The tasting sessions were conducted on consecutive Tuesdays and Thursdays from 1200 to 1230 pm During the tasting sessions, panelists followed the same procedures used during the triangle testing sessions

Data Collection The quality of the sensory properties of the soft-serve ice milk mixes was measured by means of an equal interval scorecard (Appendix B) developed by Stone, Sidel, Oliver, Woolsey, and Singleton (14) The scorecard was modified to include the following sensory properties identified (15) as being typical factors for scoring dairy products color, sweetness, flavoring, freshness, texture, and body Descriptive terminology used on the scorecard was adopted from the Ice Cream Scorecard used in the Intercollegiate Dairy Products Evaluation Contest sponsored by the American Dairy Products Association and the Dairy and Food Industries Suoply Association Sensory properties were listed on the scorecard in the sequential order that they were encountered by the taste panel members (15) Taste panel members rated each sensory property by placing a verticle line at the point on the scorecard that best reflected the magnitude of the panelists' perceived 1 ntensity of that property Resoonses on the scorecards were converted to three-digit numbers by use of a template marked in tenths of an inch (14) The overall quality score for each mix was calculated as the
total of all six sensory property means Personal preferences of the taste panel members between each pair of soft-serve ice milk mixes were recorded on the Ice Mılk Evaluation form developed for this study (Appendix B) Internal validity of the taste panel was assessed by comparing the taste panelists' ranked overall quality scores for each ice molk to the ranking of their personal preferences

Data Analysis. Taste panelists' sensory evaluation scores were analyzed by analysis of variance Tests for significant differences among the soft-serve ice milk scores were done by Duncan's multiple range tests (16) Tests for significant differences among panelists' personal preferences were done by Chi square. All hypotheses were tested for significance at the 5 percent ($P \leq 05$) level

Results

Percentage of Overrun All four ice milk mixes dispensed at overruns between 30 and 46 percent (Table 3) The highest overruns were found in mixes two and four which contained lower percentages of butter than mixes one and three However, they were not significantly higher ($P>00$) than the mixes w th the higher content of butter

Taste Panel Reliability and Validity A significant difference ($P \leq 001$) was found between the two tasting sessions for overall qual1 ty scores for $m 1 x$ one (Table 4) No signıficant differences were found between the tasting session for overall quality scores for mixes two, three, and four In addition, no significant difference was found between the tasting session means of the overall mean quality scores

Descriptive Evaluation Mean scores for the sensory properties of the four ice milk mixes revealed no significant differences among any of
the mixes when evaluated for color, sweetness, freshness, flavor, and texture (Table 5) $\quad M_{1} x$ two scored significantly different ($P \leq 001$) for body than the other mixes. Panelists reported the body of mix two to be "watery" (Table 6) In comparing the overall quallty score for each mix (Table 7), no significant differences were found among the scores of mixes one, three, and four, however, mix two scored significantly different from the other mixes Mix two scored lower than mixes one, three, and four

Internal Validity Significant ($P \leq 05$) differences were found among the panelists' personal preferences for the ice milk mixes (Table 8) Ranked in order of personal preferences, panelists oreferred mxes one, three, four, and two Ranked in order of overall quality scores (Table 7), panelists scored $m x$ one the highest, followed by four, three, and two

Discussion

Percentage of Overrun 411 four ice milk mixes dispensed at overruns between 30 and 50 percent, the usual percentage found in high qual1 ty soft-serve ice milk (17) The percentage of overrun is not reported to 've affected by the viscosity of the mix (2) nor the level of NFMS (18) but is the result of the amount and speed of agitation The degree of agitation affects the rate of fat agglomeration (19), and, as fat globules aggregate, the lamellae surrounding the air cells weakens and, consequently, 11m1ts the percentage of overrun (20) Low overrun is reported with the use of frozen butter (21) and high overrun is reported W1 th the use of spray type NFDM (8) In this study, the amount, and possibly the frozen state, of the butter appeared to be the major
factors affecting the percentage of overrun in the soft-serve ice milk mixes. Mixes one and three were lower in percentage of overrun than mixes two and four These data suggest that the higher percentages of butter in mixes one and three produced greater fat aggregation and subsequent greater weakening of the lamellae

Taste Panel Reliability and Valıdity For descriptive sensory analysis, no absolute number of panelists is recommended, 10 have been suggested (22) or between δ and 12 subjects are reported to be adequate (23) Trained judges have been reported to be more sensitive to visual and tactile factors in sensory evaluation than untrained judges (24), and to be able to evaluate designated flavor defects in ice cream and other dairy foods comparatively close to evaluations of expert judges (25) The eight panelists in this study were selected by appropriate triangle tests (10) and trained according to suggested gurdelines (24) Significant differences between taste panel scores are expected in quantitative descriptive analysis, however, consistent panelist performance 1 s critical (14) Consistent scoring was reported for mixes two, three, and four as no significant differences were found between each mix's overall qualıty scores from tasting sessions $1-6$ and $7-12$ (Table 4) Inconsistent scoring was found, however, for mix one $M_{1 x}$ one's overall quality score was significantly (P < 001) different between tasting sessions 1-6 and 7-12 The means of the overall quality scores for tasting sessions 1-6 and 7-12 were not significantly different, consequently, the taste panel was concluded to be rellable. Taste panel validity was also established Of the four mixes, oanelists scored mixes one and two the highest and lowest respectively (Table 7), and reported the greatest and least preferences for $m 1 x e s$ one and two
respectivey (Table 8) Mix four scored the second highest of the four mixes but was third in preference and mx three scored third highest but was second in preference However, no significant differences were reported among the overall quality scores for mixes one, three, and four

Descriptive Evaluation Differences in the sensory properties of the ice milk mixes revealed a significantly different mean ($\mathrm{P} \leq 001$) for the body of m 1 x two (Table 5) Panelists reported the body of mix two to be watery (Table 6) Watery body may be due to low total solids and/or insufficient stabilizer in the mix In this study, all mxes contained 03 percent emulsifier/stabilizer combination and, mixes one, two, three, and four contalned $331,307,301$, and 277 percent total solids respectively (Table 1) The body in mixes two, three, and four were reported to be watery more frequently than in mlx one (Table 6), however, only mix two scored significantly different for body High quality body is also associated with some butterfat agglomeration (26) which would be lessened in mixes two and four due to lower percentages of butterfat in those mixes Consequently, the watery body observed in mix two could be partially due to low total solids plus low butterfat agglomeration

In determining the two mixes of highest quality, the overall qual1 ty scores were considered (Table 7) The range of possible scores was 0 to 2400 If scores above and below 1200 are considered desirable and undesirable respectively, all four mixes were acceptable with mix two the least acceptable. Mix two was eliminated, however, due to the significantly different overall qualıty score (Table 7) and significantly different mean score for body (Table 5) compared to the other mixes

While no significant quality differences were reported oetween mixes one, three and four (Table 7), mixes one and four were selected as the two highest quality mixes because they scored the highest overall qual1 ty scores Additional factors considered in this determination 1 ncluded the percentage of butter and NFDM utilized in mix one, and $m x$ four's nutritional values (Table 9) Mx one contains a larger nercentage of NFDM than $m 1 x$ three and, therefore, provides a greater potential to use the vast uncomm tted stocks of NFDM Mix four, with onlv three percent butterfat, contains fewer calories and fat than $m i x$ three and more closely approximated the caloric and fat composition of commercial ice milk (27) Mixes one and four also represent the greatest differences in percentage of butterfat and NFDM and are expected to produce more easıly detectable differences when judged for acceptabilıty by secondary students in another study (CHAPTER IV) Difficulty in scoring is expected when the products are not very different from each other (14) and judges are reported to prefer to find differences (24) and may grow discouraged or lose interest when no differences can be detected

Summary

Descriptive quantitative analysis revealed no significant differences among any of the sensory properties of soft-serve ice milk mixes one, three, and four Mix two scored significantly different than the other mixes for body Mixes one and four were determined to be the two highest quality mixes based on their overall quality scores Mix one was also selected due to its potential for using more USDA bonus commod1 ty NFDM and butter than mixes three and four Mix four was favored due to its lower caloric and fat values than mixes one and three

Table 1
Composition of Vanilla Soft-Serve Ice Milk Mixes

	Ice Milk Mixes			
	1	2	3	4
USDA butter (\%)	60	30	60	30
USDA NFDM (\%)	140	140	110	110
sugar (\%)	140	140	140	140
emulsifier/stabilizer (\%)	03	03	03	03
total solids (\%) ${ }^{\text {a }}$	331	307	301	277
water (\%)	657	637	687	717
vanilla (ml/gallon)	180	180	180	180

Table 2
Basic Formula and Modifications for Trıangle Tests

Basic Formula
375 ml fluid whole milk (32% fat)
55 g granulated sugar
2 mf 1 mp tation vanilla
07 g salt
Color Modification
basic formula
2 drops yellow food coloring
Sweetness Modification
375 ml fluld whole milk (32% fat)
165 g granulated sugar
2 ml 1 mltation vanilla
07 g salt
Salt Modification
375 ml fluid whole milk (32% fat)
55 g granulated sugar
2 ml 1 m tation vanilla
2 g salt
Flavoring Modification
375 ml fluid whole mik (32% fat)
55 g granulated sugar
6 ml 1 m tation vanilla
07 g salt
Freshness Modification (cooked flavor)
basic formula heated to bolling and bolled for two minutes with continuous stirring

Texture Modification
375 ml fluid skim mik ($\leq 05 \%$ fat)
55 g granulated sugar
2 ml 1 mitation vanilla
07 g salt
Body Modification
basic formula allowed to stand at room temperature for five minutes after freezing

Freezing Directions
Pour mix into 4-quart freezer can, adjust dasner and lid, place in freezer bucket Add salt and ice in proportions of 112 by volume Add one third of ice to bucket before adding any salt, alternate layers of salt and remaining ice Keep the level of salt and ice slightly higher tnan the level of $m \mathrm{~m} x$ in the can
Table 3
Analysis of Variance Among Percentages of Overrun in Soft-Serve Ice Mılk Mixes

Mix Number	\% Fat-\% NFDM	Meana \% Overrun
1	6\%-14\%	3153
2	3\%-14\%	4537
3	6\%-11\%	3534
4	3\%-11\%	4388
Between Mean Squares (3df)		9471
Within Mean Squares (4df)		21038
F Ratio		0113
P > F		NS ${ }^{\text {b }}$

Table 4
Analysis of Variance Between Soft-Serve Ice Milk Overall Quality Scores From Tasting Sessions 1-6 and 7-12

Table 5
Analysis of Variance Among Sensory Droperty Mean Scores ${ }^{\text {a }}$ for Soft-Serve Ice Milk Mixes

Sensory Property	$\begin{aligned} & \mathrm{Mix} \\ & \mathrm{No} \\ & \hline \end{aligned}$	Mean	Between Mean Squares	$\begin{aligned} & \text { Within } \\ & \text { Mean } \\ & \text { Squares } \end{aligned}$	$\begin{gathered} F \\ \text { Ratio } \\ \hline \end{gathered}$	P>F
Color	1	3473	17710	32589	544	vs ${ }^{\text {b }}$
	2	3401				
	3	3488				
	4	3549				
Sweetness	1	3127	13750	67803	203	Ns ${ }^{\text {b }}$
	2	3138				
	3	3216				
	4	3232				
Freshness	1	3325	59315	80723	735	NS ${ }^{\text {b }}$
	2	3089				
	3	3294				
	4	3313				
Flavor	1	3144	41594	5955 ¢	698	NS ${ }^{\text {b }}$
	2	3250				
	3	3203				
	4	3364				
Texture	1	3502	141623	78898	1795	NS ${ }^{\text {b }}$
	2	3159				
	3	3298				
	4	3123				
Body	1	3349	135644 8	19293021	13148	001
	2	217 9C				
	3	313.5				
	4	3226				

$\overline{\mathrm{a} N}=48$ (6 evaluations $\times 8$ panelists)
b Not significant
c Significantly different from other mixes

Table 6
Frequency of Descriptive Terminology for Sensory Properties Judged by Panelists To Be Less Than Desirable

	Frequency			
	Mix	Vix	Mix	Mix
Sensory Properties		2	3	Δ
Color				
pale	8	9	6	6
dark	0	0	0	0
Sweetness				
insufficient	1	0	1	3
excessive	9	5	6	6
Flavoring				
weak	3	3	0	2
excessive	5	5	4	3
Freshness				
stale	0	0	0	1
Texture				
sandy	5	8	10	13
1 cy	0	0	1	3
Body				
foamy	1	3	2	2
watery	5	24	9	10

Table 7 Analysis of Varıance Among Overall Qualıty Scores of Soft-Serve Ice Milk Mixes				
	1	2 MIX 3		4
Quallty Score ${ }^{\text {a }}$	199198	1817 19 b	196333	198063
Between Mean Squa	(3 df)			3194764375
Within Mean Squa	(188 df)			1093193594
F Ratio				2922
P > F				05

$\bar{a} N=48$ (6 evaluations $\times 8$ panelists)
b Significantly different than other mixes

Table 8
Panelists' Personal Preferences Among Soft-Serve Ice Milk Mixes
$\left.\begin{array}{ccc}\hline \text { M1x Number } & \begin{array}{c}\text { Frequency of } \\ \text { Personal }\end{array} & \text { Preference }\end{array}\right]$
a $N=96$ (12 evaluations $\times 8$ panelists)
b Significant at the 05 level of confidence

Table 9

> Selected Nutritional Valuesa in Bonus Commodity Soft-Serve Ice Milk

Values per cup	Ice Milk Mixes		
	1	3	4
Calories	2952	2695	2190
Protein (g)	103	85	79
Fat (g)	98	94	45
Carbohydrate (g)	431	389	374
Cholesterol (mg)	312	294	159
Calcium (mg)	3560	2920	2790

a Nutrient values for the NFDM, butter, and sugar we re taken from posat and Orr (27), Reeves and Welhrauch*(28), and Watt and 'lerrill (29) respectively

References

(1) VanEgmond-Panne11, D 1981 School foodservice Westport, CN Avi Publishing Company, Inc
(2) Arbuckle, W S 1972 Ice cream, 3rd ed Westport, CN The Av1 Publishing Company
(3) Darling, C S 1927 The butter and dry skım mx The Ice Cream Trade J 23(10) 92
(4) Sommer, H H 1951 Theory and practice of ice cream making, 6th ed Madison, WI H H Sommer
(5) Cochran, W G , and Cox, G M 1957 Experimental designs New York John Wiley \& Sons, Inc
(6) Food and Drug Administration 1984 Food and drugs Code of Federal Regulations 21 CFR 100102 252-256
(7) Bassett, H J 1969 Use the proper emulsifiers and stabilizers Am Daıry Rev 31(2) 44
(8) Price, W V , and Whitaker, R. 1931 Dry skim mik in ice cream Cornell Agric Exper Stat Bull 516
(9) Keeney, P G , and Kroger, M 1974 Frozen daıry products In Fundamentals of daıry chemistry, eds B H Webb, A H Johnson, and J A Alford, pp 873-913
(10) American Meat Science Association 1978 Guidelines for cookery and sensory evaluation of meat Chicago, IL
(11) Roessler, E B , Warren, J , and Guymon, J F 1948 Significance 1 n triangle taste tests Food Res 13503
(12) Charley, H 1982 Food study manual New York John Wiley \& Sons, Inc
(13) Sidel, J L , and Stone, H 1976 Experimental design and analysis of sensory tests Food Tech 30(11) 33
(14) Stone, H , Side1, J L , Oliver, S , Woolsey, A, and Singleton, R C 1974 Sensory evaluation by quantitative descriptive analysis Food Tech 28(11) 24
(15) Bodyfelt, F W 1980 Dairy product scorecards are they consistent with principles of sensory evaluation? J Dairy Sci 642303
(16) Steel, R.G D , and Torrie, J H 1980 Principles and procedures of statistics. New York McGraw-H111 Book Company
(17) Keeney, P G , and Dahle, C.D 1960 Commercial ice cream and other frozen desserts Penn State Exten Serv Circular 495
(18) Lucas, P S , and Roberts, W J 1927 The relation of milk solids not fat to overrun and quality of ice cream Mich Agric Exper Stat Tech Bull 86
(19) Knightly, WH 1959 The role of the liquid emulsifier in relation to recent research on ice cream emulsification The Ice Cream Trade J 55(6) 24
(20) Campbell, J R , and Marshall, R T 1975 The science of providing mılk for man New York McGraw-Hill Book Company
(21) Whitaker, R 1930 The influence of the use of butter on the freezing properties of ice cream mx J Dairy Sci 131
(22) Prell, P A 1976 Preparation of reports and manuscripts which 1 nclude sensory evaluation data Food Tech 3040
(23) Side1, J L , Stone, H, and B1nomquist, J 1981 'Jse and m suse ofsensory evaluation in research and quality control J Dairy Sci642296
(24) Amerıne, M A , Pangborn, R Q , and Roessler, F B 1965
Principles of sensory evaluation of food New York AcademicPress
(25) Trout, G M , Donns, P A , Mack, M J , Fouts, E L , and Babcock,C J 1943 Comparative standardization of butter, cheese, $m i l k$,and ice cream flavor scoring J Dairy Sc1 2663
(26) Lampert, L M 1970 Modern dairy products New York ChemicalPublishing Company, Inc
(27) Posatı, L.P , and Orr, ML 1976 Composition of foods dairyand egg products - raw, processed, prepared Rev USDA AgricHandbook No 8-1
(28) Reeves, J B , and Weihrauch, J L 1979 Composition of foodsfats and olls - raw, processed, prepared Rev ISDA AgricHandbook No 8-4(29) Watt, R K , and Merril1, A L 1963 Composition of foods - raw,processed, prepared USDA Agric Handbook No 8

ACCEPTANCE OF SOFT-SERVE ICE MILK MADE FROM
USDA BONUS COMMODITY NONFAT DRY
MI LK AND BIJTTER

Rebecca K Pazoureck, Lea L Ebro, and Esther A Winterfeldt

Abs tract

Two vanilla soft-serve ice milk mixes utilizing USDA commodity nonfat dry milk (NFDM) and butter were developed for on-site preparation in the National School Lunch Program (NSLP) Both mixes contained 14\% sugar, 03% emulsifier/stabilizer combination, and $18 \mathrm{ml} 1 \mathrm{~m} \boldsymbol{t a t i o n}$ vanilla per gallon The high butter/high NFDM mix contained 6% butter and 14% NFDM, in contrast to the low butter/low NFDM mix which contained 3\% butter and 11% NFDM The mixes were evaluated for consumer acceptability by a convenience sample of 2014 junior and senior high school students Consumer acceptability evaluation revealed that 541% of the students preferred the low butter/10w NFDM mix 411 but one sample met the regulatory standards for commercial ice milk for total bacterıa ($\leq 50,000 / \mathrm{g}$), all samples met the standards for collform ($\leq 10 / \mathrm{g}$)

Introduction

The success of the National School Luncn Program (NSLP) in provid1 ng nutritious lunches for school age children and in utilizing USDA commodities depends on student participation Competitive foods rival the NSLP for student participation If school foodservice operations are to succeed in maintaining and increasing student participation, they need to serve good tasting nutritious foods that are popular with school age children The purpose of this study was to test the acceptability of soft-serve ice milk, made from USDA commodity NFDM and butter, wi th secondary students in the NSLP

With a per capita consumption of 22 quarts annually, ice cream ranks as a popular American dessert (1) Nine out of 10 children, through age 12, reported ice cream to be their number one favorite food (2) Ice milk, however, has grown in popularity due to consumer concerns for cost and nutrition (3) Ice milk retails at a lower price than ice cream because of lower butterfat percentages, and nutrition conscious consumers prefer the lower caloric and fat levels of ice milk over ice cream Since 1978, ice milk has been produced primarıly as a soft-serve product (4) and is widely avallable in fast food outlets, soft-serve stores, and schools The service of soft-serve ice milk in schools is a result of efforts to offer greater menu variety in order to attract student participation A larger variety of choices is available within each of the lunch components, however, milk choices offer the greatest variety and include lowfat, nonfat, buttermilk, chocolate low fat, regular homogenized, and soft-serve ice milk shakes (5)

In the production of an ice milk product, the selection of amounts and types of ingredients and the sanitary conditions of mixing and

Abstract

freezing are of paramount importance The final test $1 s$, however, the reaction of the consumer (6) Intrained individuals, representative of the average consumer, can rank samples from best to poorest on the basis of their own standards

Method

Research design
In a previous study (CHAPTER III), a traıned taste panel selected two soft-serve vanilla ice milk mixes (Table 1) to be evaluated for acceptability by secondary students Students evaluated the ice molk mixes by paired comparisons To assess the external valıdity of the taste panel's selections, the taste panelists predicted which one of four original mxes would be preferred by secondary students Taste panel predictions were recorded on the Ice Milk Evaluation Form (Appendix B)

Subjects

During the spring of 1986 , secondary students were selected by convenience sampling from students purchasing the school lunch in four junfor high and three senior high schools in Lawton, Oklahoma The approx1 mate enrollment in these seven schools as of April 1986 was 7500 students (Appendix E) All students were invited to evaluate the softserve ice molk by means of an announcement (Appendix F) read over the school's public address systems or in individual classrooms on each specified evaluation date Despite not being randomly selected, the study's sample was appropriate for the study as the subjects were untrained, members of the target population, and consumers of the test product (7)

The sample consisted of 2199 students who completed the evaluation, however, due to m ssing data, only 2014 (915%) of the evaluations were usable for analysis Adequate sample size is reported to be between 50 and 100 members (7)

Ice milk preparation

The vanilla soft-serve ice milk mixes were prepared utilizing IISDA bonus commodity Extra Grade NFDM and butter, donated to the study tnrough the USDA Regional Office in Dallas, Texas, as the sole sources of nonfat milk solids (NFMS) and butterfat respectively The mixes were sweetened with granulated sugar (sucrose), flavored with imitation vanilla flavoring, and emulsified with an emulsifier/stabilizer combination The NFDM was spray processed and produced between March and June of 1984, the butter was salted and produced in March and June of 1985 The NFDM was packaged in 50 pound paper bags with plastic liners and was stored tightly closed and away from light One pound packages of butter were stored frozen in a home size refrigerator/freezer at $18^{\circ} \mathrm{F}\left(-8^{\circ} \mathrm{C}\right)$ The mixes were prepared the afternoon of the day before the evaluation in 6-, 7- or 10-gallon volumes, depending on each school's enrollment (Appendix E) The dry ingredients and butter were measured by weight, 11quid ingredients were measured by volume The mixes were prepared according to the mixing directions shown in Table 1 The prepared ice milk mixes were cooled in 4-gallon containers, lined with plastic bags, at room temperature $\left(70^{\circ} \mathrm{F}\left(21^{\circ} \mathrm{C}\right)\right)$ until the mixes thickened sufficiently to prevent the butterfat from separating The plastic bags were tnen sealed, the containers were covered with tight fitting plastic lids, and refrigerated at $36-38^{\circ} \mathrm{F}\left(2-35^{\circ} \mathrm{C}\right)$ overnight in an institutional walk-in refrigerator The cooled mxes were transported to each junior and
senior high school and immediately frozen in identical Taylor ice cream freezers Prior to freezıng, each ice cream freezer was assembled and sanitized for two minutes with 100 ppm chlorine solution (8)

Data collection

Students were simultaneously served one sample of each mix in 2-ounce white paper cups accompanied by a wooden spoon Samples were coded with a circle or a square and the coding of samples was alternated at each school The students were not instructed on whether to evaluate the ice milk before or after eating lunch or on which sample to evaluate first The students reported their ice milk preference, age and sex on the Soft-Serve Ice Milk Evaluation form (Appendix B) developed for this study Students' preferences for the high butter/high NFJM mix and the 10 w butter/ 10 w NFDM m 1 x were coded as one and four respectively, age was coded as the actual two-dıg1t response, boys and girls were coded one and two respectively, and the schools were coded one through seven One sample of each soft-serve ice milk mix was collected from each school and tested for total bacterıa count and colıform count by procedures outlined in Standard Methods for the Examination of Dairy Products (9)

Data analysis
Students' acceptability responses between the two soft-serve ice milk mixes were analyzed for statistical significance by Chi square (10) All hypotheses were tested for significance at the 5 percent ($P \leq 05$) level

Results and discussion

External validity

Taste panelists who evaluated the ice milk mixes for quality (CHAPTER III) predicted a significant ($P \leq 01$) difference among the ice milk preferences of the secondary students (Table 2). Ranked in order of preference, taste panelists oredicted secondary students would orefer mixes three, one, four and two In the acceptability evaluation by secondary students, however, only the two highest quality mixes, mixes one, high butter/high NFDM, and four, low butter/1ow NFDM, were tested A significant difference ($P \leq 001$) was found between the students' preference for $m i x$ one, $h i g h$ butter/high NFDM, and $m x$ four, 1 ow butter/1 ow NFDM (Table 3), wn th the majority (657%) of the secondary students preferring $m x$ four, low butter/low NFDM The external valid1 ty assessment was concluded to be invalid because the taste panel was unrepresentative of the secondary school population (11) Taste panel1 sts had been trained to recognize the desirable sensory properties of soft-serve ice milk, secondary students did not receive this training and evaluated the mixes based only on their own preferences (5)

Consumer acceptability evaluation
Approximately 65% of the students $(P \leq 001)$ indicated a preference for the low butter/low NFDM $m \mathrm{mx}$ (Table 3) A greater sensation of coldness in the low butter/low NFDM mix may provide one possible explanation for the students' preference as consumers report preferences for ice cream served at $10^{\circ} \mathrm{F}\left(-12^{\circ} \mathrm{C}\right)$ over ice cream at 6,14 , or $18^{\circ} \mathrm{F}(-145$, $-10,-8^{\circ} \mathrm{C}$) (12) Low fat ice cream reportedly feels colder in the mouth tnan high fat ice cream (13), correspondingly, ice milk containing 3\%
butterfat would feel colder than ice milk containing 6% butterfat A greater sensation of warmness is also associated w th serum solids at 155% concentrations (12) The high percentage of fat together $w 1$ th 14% NFDM may have produced a noticeable difference in the sensations of coldness between the two mixes even when dispensed between 18 and $22^{\circ} \mathrm{F}$ (-8 and $-55^{\circ} \mathrm{C}$) Another explanation for the students' preference for the low butter/low NFDM $m \times$ may be the degree of perceived sweetness The low butter/low NFDM mx, containing fewer total solids than the high butter/high NFDM $m \mathrm{x}$ x would be expected to taste sweeter Sommer (14) reported younger individuals prefer sweeter ice cream The composition of the low butter/low NFDM mx may further explain the students' preference for the low butter/low NFDM mx over the high butter/high NFDM m 1 x The composition of the low butter/1ow NFDM $\mathrm{m} x \mathrm{x}$ closely approximates the composition of commercial ice milk (15) and may, therefore, have tasted famılor to the students

Ice cream body is a determining influence on consumer preference and, subjects preferring lighter ice cream were expected to prefer samples with lower concentrations of either fat or serum solids and vice versa (6) At $18^{\circ} \mathrm{F}$, consumers oreferred the body of ice creams containing 9 and 11% serum solids and 14 and 18% fat (13) The sensations of richness and heaviness due to the concentrations of butter and serum solids in the body of the high butter/high NFDM mix would not be preferred by students preferring lighter products

Age was found to significantly ($P \leq 0001$) affect ice milk preferences (Table 4) All ages preferred the low butter/low NFDM mix, and, for ages 12-16, the percentage of students preferring the low butter/low NFDM mix increased with age In comparing junior high to
senior high students (Table 5), 617 and 745% of Junior high and senior high students respectively preferred the low butter/1ow NFDM mix ($\mathrm{P} \leq 0001$) A greater percentage of sentor high students preferred the low butter/low NFDM $m 1 x$ than junior high students These data suggest that older students have a greater preference for low butter/1 ow NFDM soft-serve ice milk than younger students Sex was also found to have an effect on the preference for the low butter/low NFDM $m 1 x$ (Table 6) While both males and females preferred the low butter/low NFDM mix, the preference was significantly ($P \leq 0001$) higher for females than males The differences due to age and sex could be related to the students' level of nutrition awareness. 01 der students and female students are expected to be more conscious of fat and caloric values in rich, heavy bodied ice cream and, therefore, would be expected to prefer the product w1 th a lighter body due to lower concentrations of butterfat and NFDM

Bacteriological testing
Bacterıological data (Table 7) revealed that all but one of the samples tested were below the suggested regulatory standards of $\leq 50,000 / \mathrm{g}$ for total bacteria Colıform counts, excluding the spreaders, were all within the suggested standards of $\leq 10 / \mathrm{g}$ (16) Previous studies (17-18) report the greatest variation for total bacteria and collform counts to occur between the soft-serve mix versus the frozen product The higher bacteria and coliform counts found in the frozen samples, compared to the unfrozen mixes, were concluded to result from 1 nadequate cleaning and sanitizing of the soft-serve freezer and/or fallure to keep the ice milk mix properly refrigerated In the current study, bacterial data from the unfrozen ice milk mixes were not collected, however, excluding the spreader plates, 90% of the frozen
samples met the suggested sanitation guldelines for total bacteria and 100% met the standards for collform These data suggest that all but one of the unfrozen mixes were within the suggested standards Samples 494 and 491 were collected from 10-galion quantities of mix Ten gal1 ons of each mlx was the largest quantity mixed during the study The cooling time for 10 gallons of $m i x$ was longer than for the other quantities of 4 to 7 gallons and could account for the larger total bacterial counts for these two samples In actual foodservice operations, prolonged cooling times could be avolded due to the availability of quantity food equipment and institutional refrigerators cadable of accommodating the volume of mix It is recommended that the mix be cooled at a depth of 2-4 inches in covered stainless steel modular pans, refrigerated on wire shelving at $38-40^{\circ} \mathrm{F}\left(35-45^{\circ} \mathrm{C}\right)$ Frequent stirring during the cooling process would hasten lowering the temperature of the mix

Applications and implications

Results of this study indicate the feasibility of producing a softserve ice milk, mixed and frozen on-site in school foodservice operations, made from USDA bonus commodity NFDM and buttor that is acceptable to secondary students From a bacteriological standpoint, it appears possible to produce the soft-serve ice milk within the suggested sanitary guidelines when the mix is stored properly and the soft-serve freezer is properly sanitized Consequently, the study implies that the soft-serve ice milk is one way of utilizing bonus commodity NFDY and butter in the NSLP A further implication of the study is the possibil1 ty of increasing the calcium content of the school lunch menu Consumption of bonus commodity NFDM, in the form of soft-serve ice milk, would add to the calcium 1 ntakes of school age children

Table 1 Composition of soft-serve ice milk mixes

1 ngredients	high butter/high NFDM	1 ow butter/1 ow VFDM
USDA Butter (\%)	6.0	30
USDA NFDM (\%)	140	110
sugar (\%)	140	140
emulsifier/stabilizer (\%)*	03	03
total solıds (\%) \dagger	331	777
water (\%)	657	717
vanilla (ml/gallon)	180	180
$\overline{m 1 \times 1} \mathrm{ng}$ directions over high heat, heat water, frozen butter, and emulsifier/stabilizer to $185^{\circ} \mathrm{F}\left(85^{\circ} \mathrm{C}\right)$. Mix NFDM and sugar together and add gradually to hot mixture Stir with wire whisk or electric mxer until thoroughly mixed, add vanilla and $m x$ Chill to $40^{\circ} \mathrm{F}\left(4^{\circ} \mathrm{C}\right)$ before freezing		

*Southern Special donated by Go Products, San Antonio, TX tOn the basis of butter containing 20% water

Table 2 Secondary students' predicted soft-serve ice milk preferences

$\underline{m 1 x}$	frequency of predicted preferences*	χ^{2} (3df)
1 (high butter/high IFFDM)	30	$1659 \dagger$
2 (10w butter/high NFDM)	7	
3 (high butter/1 ow NFDM)	32	
4 (1ow butter/1 ow NFDM)	27	

Table 3 Secondary student preferences between soft-serve ice milk mixes

mix	count	\%	$\chi^{2}(1 \mathrm{df})$
high butter/high NFDM	673	343	194 45*
1 ow butter/1 ow NFDM	1291	657	
total	1964 \dagger	1000	

Table 4 Soft-serve ice milk preference between ages of secondary students

age	mix						```total count```		\%	$\chi^{2}(7 \mathrm{df})$
	high butter/ high NFDM			low butter/ low NFDM						
	count	\%	\%	count	\%	\%				
12 \& under	57	40		85	59		142	7	2	1985 39*
13	191	40	0	287	60		478	24	3	
14	141	36	2	248	63	8	389	19	8	
15	104	29	6	247	70	4	351	17	9	
16	74	27	8	192	72	2	266	13	5	
17	53	29	4	127	70	6	180	9	2	
18 \& over	53	33	8	105	66		158	8	0	
total							$1954 \dagger$		$9+$	

*significant at the 00001 leve of confidence
$\dagger 50$ students did not prefer e1ther mix ($n=2014$)
ttotal does not equal 100% due to rounding

Table 5 Soft-serve ice milk preference of Junior and senior high students

school	mix					$\begin{aligned} & \text { total } \\ & \text { count } \end{aligned}$		$\chi^{2}(1 d f)$
	high butter/ high NFDM			low butter/ low NFDM				
	count			count	$\%$			
junior								
high	516	38	3	832	617	1349	687	31 18*
senior high	157	25		459	745	615	313	
total						$1964 \dagger$	1000	

*significant at the 00001 leve of confidence
t50 students did not prefer et ther mix ($n=2014$)

Table 6 Soft-serve ice milk preference of male and female junior and senior high students

sex	mix				$\begin{aligned} & \text { total } \\ & \text { count } \\ & \hline \end{aligned}$		$\chi^{2}(1 d f)$
	high butter/ high NFDM		low butter/ low NFDM				
	count	\%	count	\%			
males	414	384	563	616	1077	548	23 57*
females	259	291	628	708	387	452	
total					$1964 \dagger$	1000	

*signtficant at the 00001 level of confidence
†50 students did not prefer either mix ($n=2014$)
Table 7 Standard plate and coliform counts of frozen soft-serve icemilk

sample no	standard plate	collform
	count	count
420	1300	10
441	4000 Est	---- spr *
444	---- spr *	10
471	4000	<10
474	28000	<10
494	>65000 Est	---- spr *
491	20000 Est	10
4111	80	<10
4114	<10 Est	<10
4144	200	---- spr *
4141	3000	<10
4160	2700	<10

Percentage ${ }^{\dagger}$ within suggested sanitary guidelines
standard plate 90
collform 100
*spreader and adjoining area of repressed growth covering more than one half of plate \dagger excluding spreaders

References

(1) Reiter, MA Ice cream it tastes great, but is it good for you? ACSH News \& Views 7(2) 12, 1986
(2) Campbell Soup Company The foods children like School rood Serv J 38(1) 44, 1984
(3) Keeney, P G , and Dahle, C D Commercial ice cream and other frozen desserts The Penn State University College of Agriculture Extension Service Circular 495, 1960
(4) Tobias, J, and Much, G A Ice cream and frozen desserts J Dairy Sc1 64 1077, 1980
(5) Neill, C A The role of school food service in child nutrition Food Nutr News 52(3), 1981
(6) Bliss, C.I , Anderson, E 0 , and Marland, RE A technique for testing consumer preferences, with a soecial reference to the constituents of ice cream Storrs Agricultural Experiment Station Bulletin 251, 1943
(7) Prel1, P A Preparation of reports and manuscripts which include sensory evaluation data Food Tech 30 40, 1976
(8) Arbuckle, W S Ice Cream 3rd ed Westport, CT The Av1 Publishing Company, 1972
(9) Marth, E H , ed Standard Methods for the Examination of Dairy Products 14 th ed Washington, D C American Public Health Association, 1978
(10) Stee1, R G D , and Torrie, J H Principles and Procedures of Statistics New York McGraw-Hill Book Company, 1980
(11) Schultz, H G Sources of invalidity in the sensory evaluation of foods Food Tech 25 53, 1971
(12) Reid, WH , Drew, R J , and Arbuckle, W S The effect of composition and serving temperature upon consumer acceptance and dispensing qualities of ice cream Missouri Agricultural Experiment Station Research Bulletin 303, 1939
(13) Keeney, P G , and Kroger, M Frozen daıry products In Webb, B H , Johnson, A H, and Alford, J A , eds Fundamentals of Dairy Chemistry 2nd ed Westport, CT The Avi Publishing Combany, Inc, 1974
(14) Sommer, H H The Theory and Practice of Ice Cream Making 6th ed Madıson, WI H H Sommer, 1951
(15) Posatı, L P , and Orr, M.L Composition of Foods Dairy and Egg Products - Raw, Processed, Prepared Rev USDA Agriculture Handbook No 8-1, 1976
(16) Wecke1, K G A suggested sanitary standard for freezer-dispensed ice mılk, malted mik, and shakes J Milk and Food Tech 29 180, 1966
(17) Martin, J H , Roberts, R E , and Sheuring, J J Bacteriological quality of soft-serve frozen products J Mılk Food Tech 31 31, 1968
(18) Ryan, J J , and Gough, R H Bacterıological qualıty of soft-serve mixes and frozen products J Food Protec 45 279, 1982

CHAPTER V

SUMMARY AND RECOMMENDATIONS

Summary

The objective of this study was to investigate the possibility of utilizing USDA commodity NFDM and butter to produce a soft-serve ice milk mix to be prepared on-site in school foodservice operations and to evaluate the acceptability of this ice milk by secondary students Two hypotheses related to the study were made prior to the start of the experiments (CHAPTER I) Each hypothesis will be discussed individually

Hypothesis one stated that the soft-serve ice milk quallty scores would not differ significantly among the mixes when descriptively evaluated by a trained taste panel No sıgnıficant differences were found between three of the mixes, however, one mix scored significantly different than the others for body and overall quallty (CHAPTER III) Based on these results, the first null hypothesis was rejected

Hypothesis two stated that secondary students would not prefer one soft-serve ice milk mix significantly over the other A signifcant difference was found between the number of students preferring the low butter/low NFDM mix and the high butter/high NFDM mix (CHAPTER IV) This difference was confirmed by all age groups and by both males and females Consequently, the second null hypothesis was rejected

These two experiments (CHAPTER III and CHAPTER IV) positively support the possibility of individual school foodservice operations utiliz1 ng USDA bonus commodity NFDM and butter in a soft-serve ice milk mix that is acceptable to secondary students The highest quality mix preferred by secondary students contained the following ingredients

NFDM	110%
butter	30%
granulated sugar	140%
emulsifier/stabilizer	03%
imitation vanilla	$180 \mathrm{ml} /$ gallon
water	$717 \% 2$

Production of bonus commodity soft-serve ice milk would assist the NSLP achieve the objectives of providing nutritious meals to the Nation's children and encouraging the consumption of agricultural commodities

Nutritional value of menu items is a major focus in the NSLP Martin (1984) criticized processing commodities into high fat, sugar, and salt foods due to concern over tooth decay, obesity, and heart disease The bonus commodity soft-serve ice milk provides a concentrated source of food energy due to its fat and sugar contents, however, Reiter (1986) reported that ice milk is easily rinsed from the mouth Therefore, the bonus commodity soft-serve ice milk is less likely to cling to the tooth's surface and promote decay than many other sweet treats In addition, the bonus commodity ice milk developed contains three percent butterfat and, consequently, is more acceptable than ice cream which contains 10-16 percent butterfat (Posati and Orr, 1976) for routine inclusion in the diet While bonus commodity ice milk is not sufficiently nutritious to replace more nutrient dense foods, one cud adds 279 mg (Table 9, CHAPTER II) of calcium to the diet, and calcium 1 ntakes for most school-age children fall below their respective RDAs (Putnam and Van Dress, 1982)

In addition to its nutritional merits, bonus commodity soft-serve ice milk could increase the positive market support for commodity foods Commodity support is computed by comparing the amounts of each commodity prepared for school feedings with estimated amounts of what would be used if the children brought their lunches from home, ate at home, or in commercial restaurants (Nelson, and Zellner, 1981) For the school year 1977-78, positive support for ice cream, ice milk, and sherbet totaled 1839 mll 1 l on pounds, however, NFDM accounted for only one cent out of each 32 cents spent on dairy foods used in the Nation's schools Incorporation of bonus commodity soft-serve ice milk into school menus would 1 ncrease the use of NFDM

Recommendations for Further Research

The findings of this dissertation suggest the need for additional research in three areas First, it is recommended that the research be conducted in a laboratory equipped with institution size equioment Preparing the $m i x$ in quantity food equipment would allow refinement of the mixing and cooling procedures

A second recommendation is the need to investigate the impact of mlxing the soft-serve re milk on the labor hour cost in school foodservice operations One factor accounting for the low use of NFDM in the NSLP is the number of labor hours involved in producing acceptable menu items from NFDM (Pannel1, 1985) Labor hours increase when less convenience foods are used in menu preparation School foodservices preparing food on-site with 1 mited use of convenience foods and few disposables need to average a labor hour cost between 30 and 35 percent of the total income (VanEgmond-Pannell, 1981)It is further recommended tnat flavored varieties of the bonuscommodity soft-serve ice milk be developed using other commodity foods,such as fruits and peanut butter Flavored options will enhance menuvariety and will promote additional commodity market support

Literature Cited

Akın, J , Guilkey, D , Popkın, B , Bass, J , and Haines, P Who benefits from school feeding?--An analysis of participation in the National School Lunch Program Food Tech 35(9) 70, 1981

Alexander, B Personal communication November 1, 1981
Amerine, M A , Pangborn, R M, and Roessler, F B Principles of Sensory Evaluation of Foods New York Academic Press, 1965

Anonymous Problem how to create a self-supporting school lunch program Solution purchase, grind, and bake food yourself Food Mngt 14(March) 85, 1979

Applebaum, G School lunch changes and challenges Nutr News 45(1) 1, 1982

Arbuckle, W S A Microscopic and Statistical Analysis of Texture and Structure of Ice Cream as Affected by Composition, Physical Droperties, and Processing Methods University of Missouri Agricultural Experiment Station Research Bulletin No 320, 1940

Arbuckle, W S. Calcium sulfate in ice cream Ice Cream Field 60(3) 132, 1952

Arbuckle, W S Ice Cream Westport, CT The Avi Dublishing Comoany, Inc, 1972

Atherton, H V , and Newlander, J A Chemistry and Testing of nairy Products Westport, CT Avı Dublishing Company, Inc , 1977

Bassett, H J Use the proper emulsifiers and stabilizers A Dairy Rev 31(2) 44, 1969

Charley, H Food Science New York John Wiley \& Sons, 1970
Code of Federal Regulations Food and drugs 21 CFR 100102 252, 1984
Collıns, W F Ice cream quality A Dairy Rev 42(12) 34A, 1980
Cole, W C , and Boulware,] H Influence of some mix components upon the texture of ice cream J Dairy Sc1 23 149, 1940

Cremers, L G M The distrioution and arrangement of fat globules in the internal structure of ice cream and the effect of the fat-air
orientation upon the smoothness of ice cream Unpublished M S Thesis, University of Maryland, 1954

Cottrell, J I L , Pass, G, and Phillıps, G 0 Assessment of polysaccharides as ice cream stabilizers J Sci Food Agri 30 1085, 1979

Cottrell, J I L , Pass, G , and Phillıps, G 0 The effect of stabilızers on the viscosity of an ice cream mx J Scı Food Agrı 31 1966, 1980

Dahlberg, A C The Texture of Ice Cream New York Agricultural Experiment Station (Geneva) Technical Bulletin No 111, 1925

Foley, J , and Sheuring, J J Microbial destruction in solf-serve ice cream during freezing J Daıry Scı 48 1191, 1965

Foley, J , and Sheuring, J J Cause of microbial death during freezing 1 n a soft-serve ice cream freezer J Daıry Scı 49 929, 1966

Forss, D A , Pont, E G , and Stark, W The volatile compounds associated with oxidized flavour in milk J Dairy SC1 22 91, 1955

Frazeur, D R Some factors affecting churning of butterfat in softserve ice cream Ice Cream Field 73(3) 18, 1959

Hedrıck, T I , Armitage, A V , and Stine, C M A Comparison of HighHeat and Low-Heat Nonfat Dry Milk as the Sole Source of Serum Solids in Ice Cream and Ice Milk Michigan State University Agricultural Experiment Station, The Quarterly Bulletin 47(7), 1964

Hiemstra, S J National School Lunch Program trends School Food Serv Res Rev 7(1) 6, 1983

Jenness, R , and Patton, S Principles of Daıry Chemistry New York John Wiley \& Sons, Inc , 1959

Kenney, P G , and Dahle, C D Commercial Ice Cream and Other Frozen Desserts The Penn State University College of Agriculture Extension Service Circular No 495, 1960

Keeney, P G , and Kroger, M Frozen dairy products In Webb, B H , Johnson, A H, and Alford, J A , eds Fundamentals of Dairy Chemistry 2nd ed Westport, CT The Avi Publishing Company, Inc , 1974

Kenney, P G , and Josephson, D V A measure of fat stability in ice cream and its relationship to dryness The Ice Cream Trade J 54(5) 32, 1958

King, N The Physical structure of ice cream Dairy Ind 15 1052, 1950

Kloser, J J , and Keeney, P G A study of some variables that affect fat stability and dryness in ice cream The Ice Cream Qev 42(10) 36, 1959

Knightly, WH. The role of the liquid emulsifier in relation to recent research on ice cream emulsification The Ice Cream Trade J 55(6) 24, 1959

Knightly, W H Surfactants in food manufacturing - 2 applications and mode of action Food Manu 38 661, 1963

Lampert, L M Modern Dairy Products New York Chemical Publishing Company, Inc , 1970

Little, L L Emulsifying and stabilizing agents for ice cream Milk Plant Monthly 37(6) 42, 1948

Lucas, P S , and Roberts, W J The Relation of Mrik Solids Not Fat to Overrun and Quality of Ice Cream Michigan State Agricultural Experiment Station Technical Bulletin No 86, 1927

Martin, J A future for school lunch? Food Mngt 19(Mar) 41, 1984
Martin, J H , Roberts, R.E , and Sheuring, J J Bacteriological qual1 ty of soft-serve frozen products J Milk Food Tech 3131,1958

Mulder, H , and Walstra, P The Milk Fat Globule. Farnham Royal, Bucks, England Commonwealth Agricultural Bureaux, 1974

Nickerson, T A Lactose crystallization in ice cream IV Factors responsible for reduced incidence of sandiness J Dairy Sci 45 354, 1952

Neill, C A The role of school food service in child nutrition Food Nutr News 52(3), 1981

Nelson, P E , and Zellner, J A Commodity support generated by school feeding programs Nat Food Rev Fall 12, 1981

Ottman, S R Factors affecting school lunch program in Calıfornia Dissertation Abstracts International 15 17699, 1985

Pannell, D Alternatives to the commodity program Food Mngt 20(Apr) 35, 1985

Patton, S The mechanism of sunlight flavor formation in milk with special reference to methionine and riboflavin J Dairy Sci 37 446, 1954

Patton S , and Josephson, D V Observations of the tactile flavor qual1 ties of heated mik J Dairy Sci 35 161, 1952

Pierce, H B , Combs, W B , and Borst, WF The use of true and imitation vanilla extracts in ice cream J Dairy Sci 7 585, 1924
Piper, P B ProDlems of the soft-serve operator (Part IV) common defects of soft-serve products The Ice Cream Rev 38(12) 82, 1955
Posatı, L P , and Orr, ML Composition of Foods Dairy and Eqg Products - Raw, Processed, Prepared Rev USDA Agriculture Handbook No 8-1, 1976
Potter, FE , and Williams, D H Stabilizers and emulsifiers in ice cream Milk Plant Monthly 39(4) 76, 1950
Price, W V , and Whitaker, R Dry skim mlk in ice cream Cornell Agricultural Experiment Station Bulletin 515, 1931
Duma, MJ, and St Pierre, R G National demonstration evaluation of alternatives to commodity donation in the National School Lunch Program School Food Serv Res Rev 7(2) 79, 1993
Putnam, J J, and Van Dress, M G The changing food mxin the Nation's schools Nat Food Rev Spr 16, 1982
Reid, WHE , Drew, R J, and Arbuckle, W S The Effect of Composition and Serving Temperature Upon Consumer Acceptance and Dispensing Qualities of Ice Cream Missouri Agricultural Experiment Station Research Bulletin 303, 1939
Reid, WHE , and Hales, M W The Relation of the Freezing Procedure and the Composition of the Mixture to the Physical and Crystalline Structure of Ice Cream University of Missouri Agricultural Experıment Station Research Bulletin 215, 1934
Reiter, M A Ice cream it tastes great, but is it good for you? ACSH News \& Views 7(2) 12, 1986
Rubis, J A Milk and mik products In USDA 1974 Yearbook of Agriculture Washington, D C US Government Printing Office, 1974
Ryan, J J , and Gough, R H Bacterıological qualıty of soft-serve mixes and frozen products J Food Protec 45 279, 1982
Savoie, L P Personal communication June 11, 1985
Shama, F , and Sherman, P The texture of ice cream 2 Rheological properties of frozen ice cream J Food Sc1 31 699, 1966
Sherman, P The texture of ice cream J Food Sci 30 201, 1965
Sommer, H H The Theory and Practice of Ice Cream Makıng Madıson, WI H H Sommer, 1932
Sommer, H H The Theory and Practice of Ice Cream Making Madison, WI 'H H Sommer, 1951

Szczesniak, AS Classification of textural characteristics J Food Sc1 28 385, 1963

United States Statutes at Large 60(1) 230, 1946
United States Department of Agriculture CCC milk price supoort program activities announced for May 1985 Agricultural Stabilization and Conservation Service, 1985

Valaer, E P , and Arbuckle, W S The state of dispersion of butterfat 1 n ice cream Ice Cream Field 75 10, 1961
van der Zant, W C , and Moore, A V Organoleptic, chemical, and bacteriological examination of soft-serve ice milk The Ice Cream Rev 38 48, 1954

VanEgmond-Panne11, D School Foodservice Westport, CT Avi Publish1 ng Company, Inc , 1981

Walstra, P, and Jenness, R Dairy Chemistry and Physics New York John Wiley \& Sons, 1984

Weckel, K G A suggested sanitary standard for freezer-dispensed ice milk, malted mlk, and shakes J Milk Food Tech 29 180, 1966

Williams, $0 \mathrm{E} \quad \mathrm{High}$ heat treatment as a factor in value of dried skim mllk Ice Cream Trade J 25(2) 77, 1929

Williams, 0 E , and Hall, S A Effect of heat treatment upon the quality of dry skim mlk and condensed skim mlk for ice cream United States Department of Agriculture Circular 179, 1931

APPENDIX A

PREL IMI NARY EXPERIMENTS

Preliminary Experıments

Experıment 1

The following ice milk mixes were tested using USDA bonus commodity NFDM and butter as the sole sources of NFMS and fat respectively Each $m 1 x$ was sweetened wo th granulated sugar (sucrose), stabilized with unflavored gelatin, and flavored with imitation vanilla ($18 \mathrm{ml} / \mathrm{g}$)

	M1x	$M \times 2$	$M \times 3$	$M 1 \times 4$
fat	60%	30%	40%	20%
NFDM	130%	140%	110%	110%
sugar	130%	140%	140%	140%
gelatin	05%	05%	035%	05%

Mixing directions - mix sugar, NFDM, and gelatin together Add sugar mixture gradually to water, stirring constantly over low heat Heat $m i x t u r e ~ t o ~ 95^{\circ} \mathrm{F}$ Refrigerate overnight Remove approximately 2 quarts of the chilled mxture, add the frozen butter, and heat until butter $1 s$ melted Beat the butter moxture wo th an electric mxer until thoroughly $m i x e d$, quickly add the butter moxture to the remaining chilled mxture, stirring constantly Add the $1 m$ tation vanilla and freeze

Findings
1 Occasional butter clumps were found in the soft-serve 1 ce milk It was concluded that a more satisfactory emulsifier and/or stabilizer is needed for complete emulsification of the butter and to simplify the moxing procedure

2 The amounts of sugar, flavoring and emulsifier need to be held constant in all mxes, allowing only the butter and NFDM to vary

3 An off-flavor was detected, consequently, a more recent issue of NFDM needs to be tested

A revien of the literature revealed wide variation in the amounts of ingredients used in ice milk mixes

Butterfat - Keeney and Dahle (1960) and Arbuckle (1972) reported the most common range of butterfat in ice milk to be 3-6 percent

NFMS - Keeney and Dahle (1960) reported the range of NFMS to average 12-14 percent, Arbuckle (1972) suggested $115-14$ percent

Sugar - Concentrations of sugar in ice milk were reported as follows Arbuckle (1972) - 13-14 percent, Keeney and חahle (1960) -11-13 percent, Kloser and Keeney (1959) - 13 percent, and Lampert (1970) - 14-18 percent Reid, et al, reported ice cream, served at $18^{\circ} \mathrm{F}$, containing 12 percent sugar to be the preference of consumers, however, Sommer (1951) stated that younger people prefer a sweeter ice cream than older individuals

Emulsifier/Stabilizer - Legal maximums of emulsifiers in ice cream and ice milk are 01 percent for polys and 0 ? percent for monos (Bassett, 1969)

Flavoring - Alexander (1981) utilized 12 ml vanılla per gallon of ice mılk mix, Arbuckle (1972) reoorted 4-6 ounces per 5 qallons of mixes containing 12 percent butterfat and suggested additional vanilla for mixes of lower butterfat concentrations

The following percentages of ingredients were selected for testing in the study butter 3-6 percent, NFDM 11-14 percent, sugar 14 percent, emulsifier/stabilizer - to be decided, vanilla $19 \mathrm{ml} / \mathrm{g}$

Experiment ?

The following products were tested for use as the emulsifier/stabilizer in the ice milk mixes

CENTROPHASE HR-2 - a highly concentrated, medium viscosity, heatresistant lecithin, donated to the study by

Central Soya
P 0 Box 1400
Ft Wayne, Indı ana 46801

SOUTHERN SPECIAL EMULSIFIER/STABILIZER COMBINATION - mono and digivcerides, cellulose gum, guar gum, calcium sulfate, carrageenan, oolysorbate 80, locust bean gum, and polysorbate 65, standardized w1 th dextrose, donated to the study by

Go Products
San Antonio, Texas

Centrophase HR-2 and Southern Special were used as the emulsifier 1 n an ice m 1 lk m 1 x containing 60 percent butter and 14 percent NFDM

Findings
1 The Centrophase HR-2 mix was combined, heated to $185^{\circ} \mathrm{F}$, and cooled to $40^{\circ} \mathrm{F}$ During the cooling period, the butter did not remain emulsified, consequently, the mix was discarded without freezing

2 The Southern Special was combined with the water and frozen butter, and heated to $185^{\circ} \mathrm{F}$, the NFDM and sugar were combined and gradually added to the Southern Special mxture until thoroughly blended, the vamila was added and the mix chilled to $40^{\circ} \mathrm{F}$ The mix remained emulsified during cooling and subsequent solf-serve freezing

Experiment 3

Using Southern Special as the emulsifier and varying the issue date of the NFDM, an ice milk mix containing 60 percent butter and 140 percent NFDM was tested as follows

Southern Special (\%) NFDM (date)

M1x A	0	3
M1x B	0	3
M1x C	0	2
M1x D	0	4
M1x E	05	1983
	1984	
		1984

Findings
1 In comparing mxes A and B, mix B was judged superior in flavor It was concluded that the more recent issue NFDM would produce the highest quality flavor in the soft-serve ice milk

2 In comparing mxes B-E
a) C was eliminated as it produced a wetter product $w 1$ th an unsatisfactory melt-down
b) E was eliminated as the mix was too viscous to satisfactor1ly flow into the soft-serve freezer's freezing chamber and the frozen product was too melt resistant
C) Mixes B and D produced satisfactory products

Experiment 4

Using the following concentrations of butter and NFDM, the concentration of Southern Special was varied between 03 and 04 percent

	M1× A	M1 \times B	M1 $\times C$
butter	60%	30%	60%
NFDM (1984)	140%	110%	110%

Mix D was prepared using 03 percent Southern Special, 50 percent butter, and 140 percent commercial (Carnation) NFDM

Findings
1 In comparing mixes A and 7 , no discernable differences were noted in flavor It was concluded that the flavor of the ice milk is not due entirely to the age of the NFDM

2 In comparing the two levels of Southern Special, no advantages were apparent in the soft-serve product with 04% The viscosity of the 04% mixes was judged to be a disadvantage It was concluded to use 03% Southern Special in all mxes to be tested

APPENDIX B

INSTRUMENTS

TRIANGLE TEST FOR DIFFERENCE

NAME \qquad

PRODUCT FROZEV ICE MILK MIXTURE

TEST FOR

Samples Presented \qquad

Two of the samples are identical, one is the odd or different
sample Test to determine the odd sample If you are not sure, guess Different/Odd Sample is \qquad

Describe difference(s) in quantitative terms (e g , "Sample 25 is ")
\qquad DATE \qquad CODE \qquad

Please taste the ice milk sample and answer each question in sequence, placing a vertical line across the horizontal line at the point that best describes that property in the sample For those properties you judge to be less than desirable, please circle the appropriate descriptive term

After you have answered all the questions for the sample, return the sample and the scorecard and wait for the next sample

If you have any questions or need more water, ask the experimenter Thank you

1 COLOR

2 FLAVOR
a) Sweetness

b) Flavoring
we ak/excessive
 pleasing
c) Freshness
stale

fresh

3 TEXTURE
sandy/1cy
 smo oth

4
BODY
fo amy/wa tery

cohesive

ICE MILK EVALUATION

NAME
DATE \qquad

1 Between the two ice milk samples evaluated today, which one did you prefer? Please circle your choice

2 Between these same two samples, which one would you oredict to he preferred by secondary level school children? Please circle your chorce

SOFT-SERVE ICE MILK EVALUATION

1 Please place a checkmark beside your age and sex

AGE	SEX
12 or under	male
13	female
14	
15	
16	
17	
18 or over	

2 One cup of ice milk is marked with a circle the other is marked with a square To show which one you like the best check inside the square or carcle below

(Please check only one)

APPENDIX C

TRAINING SESSION FORMULAS

TRAINING SESSION FORMULAS

COMMERCIAL FORMULA (BORDEN)

Butterfat	$3 \mathrm{5} \mathrm{\%}$
Nonfat Milk Solids	128%
Nutrative carbohydrate	
Sweetener (sucrose	
and/or corn syrup)	138%
Stabilizer (gum	
extractives)	054%
Emulsifier	none

ARBUCKLE (1972) FORMULAS

Formula 1

USDA butter	60%
USDA NFDM	130%
granulated sugar	130%
gelatin	05%
imitation vanilla	$120 \mathrm{ml} / \mathrm{gal}$ lon

Formula 2

USDA butter	30%
USDA NFDM	140%
granulated sugar	140%
gelatin	05%
imitation vanilla	$120 \mathrm{ml} / \mathrm{gal}$ lon

APPENDIX D

DEFINITIONS OF SENSORY PROPERTIES

DEFINITIONS OF SENSORY PROPERTIES

COLOR

```
DEFINITION - vוsual perception or appearance readıly associated with
    the flavor
DESIRABLE COLOR CHARACTERISTICS
    delicate, true in shade
    appropriate, natural for the flavor
    uniform, even
    VANILLA off white
        color of cream
UNDESIRABLE CHARACTERISTICS
```

```
too pale
too intense
not true in shade
VANILLA egg yellow
    grayosh
```

FLAVOR
DEFINITION - blend of taste and smell sensations evolved in the mouth
DESIRABLE FLAVOR CHARACTERISTICS
rıch, full flavor
creamy
delicate, natural flavoring slightly sweet

UNDESIRABLE CHARACTERISTICS
SWEETNESS excessive deficient, flat
FLAVORING excessive, harsh or bitter deficient, low flavor percention not typical of flavor sharp or 11ngering artificial, not fine or delicate
FRESHNESS old, stale oxidızed, cardboard taste cooked metallic unclean rancid

TEXTURE

DEFINITION - feel of the product in the mouth from pressures exerted on the tongue and the roof of the mouth

DESIRABLE TEXTIJRE CHARACTERISTICS

```
smooth, uniform
solid particles too small to be detected
clean, does not coat the mouth
```

UNDESIRABLE CHARACTERISTICS

```
1cy
coarse - large ununiform icy crystals
fluffy, snowy - large alr cells, oden texture
sandy - roughness like sand when rubbed against the roof
of the mouth
buttery - lumps of butterfat easıly detected
greasy - leaves an olly mouth-coating
```

BODY
DEFINITION - the way the product behaves when it begins to warm and melt DESIRABLE BODY CHARACTERISTICS
melts fairly rapidly at room temperature to a smooth
11quid
stands up well, firm and resistant to melting
UNDESIRABLE CHARACTERISTICS
fo amy
curdy - finely divided particles in watery liquid
soggy - dense and somewhat "wet" in appearance resists melting
weak - lacks fimness, melts rapidly
crumbly - lacks cohesion, pulls or breaks apart very easily, dry

APPENDIX E

GALLONS OF ICE MILK MIX PREPARED FOR EACH SECONDARY SCHOOL BASED ON ENROLLMENT

TABLE I
GALLONS OF ICE MILK MIX PREPARED FOR EACH SECONDARY SCHOOL BASED ON ENROLLMENT*

Date	School	Gallons of M1x	Enrollment
$4 / 2 / 86$	Central Jr	7	1080
$4 / 4 / 86$	Lawton Sr	5	1242
$4 / 7 / 86$	El senhower Sr	6	1465
$4 / 9 / 86$	El senhower Jr	10	1497
$4 / 11 / 86$	MacArther Sr	4	599
$4 / 14 / 86$	MacArther Jr	7	713
$4 / 16 / 86$	Tomlinson Jr	7	860

*Enrollment as of Apr11 $1986=7457$

APPENDIX F

ANNOUNCEMENT MADE IN SECONDARY SCHOOLS

ANNOUNCEMENT MADE IN SECONDARY SCHOOLS

"Today our school is part of an ice milk research project At lunch you will be served two samples of 1 ce m11k and asked to pick the one you like the best There is no charge to participate "

APPENDIX G

RAW DATA

RAW DATA FOR SENSORY EVALUATION (CHAPTER III)

The data are arranged as follows

Column 1-3	Panelist ID number
4-5	Tasting Session No (01-12)*
6-7	Color mean first mix
9-10	Color mean second mx
12-14	Sweetness mean first mix
15-17	Sweetness mean second mx
18-20	Flavoring mean firstmix
21-23	Flavoring mean second max
24-26	Freshness mean first mix
27-29	Freshness mean second mx
30-32	Texture mean first mix
33-35	Texture mean second mx
36-38	Body mean first mix
39-41	Body mean second mx
42	Personal preference
43	Predicted student preference

*First and second mxes were randomly assigned to the tasting sessions in the following combinations

Session No
01
02
03
04
05
06
07
08
09
10
11
12

First Mix
Second Mix

1 1
3
3
4
4
4
1
3
2
2
1
2

2
2
1
3
1
2
4
4
1
3
3
4


```
*4:4
```


RAW DATA FOR ACCEPTABILITY EVALUATION (CHAPTER IV)

The data are arranged as follows
Column 1-2
3
4
5

Age
Sex
Preferred Mix No School Code No

15c4	$4 \cdot 14$
	， 114
1ヵ－43	：4114
12：13	－ E_{14}
1E：43	\cdots－
！	：4， 14
	：5114
－	\％${ }_{9}$
1 － 5	； 4114
－${ }_{4}$	，
$1:-43$	$\cdots=14$
1－14 ${ }^{18}$	－＝14
$1: 24$	－¢＝14
－	$1+514$
$19 \times 4 \frac{}{2}$	「ごご
$1 \leq 43$	1514
比4＝	14114
10こ4	ご14
15143	ご14
$18=43$	14：14
10143	14：14
$5{ }^{2} 4$	E114
13145	ここ14
15143	14.14
1545	13114
$17{ }^{4}$	$4-14$
13×4	14×14
$1 \mathrm{E}=13$	13114
1312	14：14
151504	［4：14
1）	－514
	1519
17204	14.14
）${ }^{\text {c }}$	－14
1214	ご14
15114	
さミ14	： $3: 14$
－4シ14	14， 14
5114	14114
3114	121．14
125i4	13714
4 －14	1414
＇til	－$=114$
$\div \frac{1}{4} 14$	$1{ }_{1}^{5}+14$
¢114	$\stackrel{3}{3}$

 $+$

[^0]

和

fよ

$$
\begin{gathered}
\text { VITA } \\
\text { Rebecca Kıeffer Pazoureck } \\
\text { Candidate for the Degree of } \\
\text { Doctor of Philosonhy }
\end{gathered}
$$

Thesis SOFT-SERVE ICE MILK A UNITED STATES DEPARTMENT OF AGRICILTURE BONUS COMMODITY PRODUCT FOR USE IN THE NATIONAL SCHOOL LIJNCH PROGR AM

Major Field Home Economics - Food, Nutrition and Institution Administration

Bıographical
Personal Data Born in Washington, D C, October 3, 1945, the daughter of Willıam L and M Lourse Kıeffer

Education Graduated from Wakefield High School, Arlington, Virginıa, 1 n May, 1963, receıved Bachelor of Science in Instıtutional Management degree from Madı son College, Harrisonburg, Virginia in May, 1967, completed Dietetic Internship at The Medical College of Virginia in September, 1968, received Master of Science degree from University of Oklahoma in July, 1980, completed requirements for the Doctor of Philosophy degree at Oklahoma State University in December, 1986

Professional Experience Dietitian, United States Air Force, May, 1967, to April, 1970, Therapeutic Dietıtian, Memorial Hospital, Lawton, Oklahoma, June, 1970, to January, 1971 , Consultant Dietitian, McMahon-Tomlinson Nursing Center, June 1970, to January, 1973, Adjunct Faculty, Cameron University, Lawton, Oklahoma, 1975 to 1978, Assistant Professor, Dedartment of Home Economics, Cameron University, August, 1978 to present

Organizations American Dietetic Association, American Home Economics Association, Omicron Nu

[^0]: 13こ44

