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CHAPTER I 

INTRODUCTION 

The tool used 1n full waveform acoust1c or son1c logg1ng 1s a long 

narrow cyl1ndncal obJect, w1th cyl1ndncally symmetr1c source (tran

sducer} near the top of the tool, and w1th 2 or more evenly spaced 

rece1vers offset some d1stance from the source. The rece1vers are also 

cyl1ndncally symmetnc electro-acoust1c transducers. As th1s tool 1s 

pulled up a borehole, the source per1od1cally em1ts an acoust1c pulse, 

and the boreho 1 e response at each of the recewers 1 s samp 1 ed and re

corded. 

As the acoust1c pulse propagates from the source to the rece1vers, 

1t 1s attenuated. Th1s means the wave decays as 1t travels through the 

subsurface, but 1n such a manner that the h1gher frequenc1es decay more 

rap1dly than the lower frequenc1es. Attenuat1on of acoust1c energy 1n 

the earth 1 s known to occur over a broad range of frequenc 1 es, from 

earthquake frequenc1es (about 1 Hz} through the son1c logg1ng range (10-

25 kHz} on up through the ultrason1c (MHz} range. The travel1ng acous

t1c wave also decays due to other factors, 1nclud1ng geometr1cal spread-

1ng losses, scattenng and reflect1ons. These other loss factors are 

cons1dered to be separate from true 1ntr1ns1c attenuat1on. However, 1t 

may not prove to be poss1ble to measure these losses separately from 

1ntr1ns1c attenuat1on. 

1 
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The most popular attenuat1on model uses exponent1al ampl1tude decay 

where the exponent 1s l1near 1n frequency. The constant coeff1c1ent 1n 

the exponent can be wntten 1n terms of Q-1, where Q 1s the "qual1ty 

factor", commonly used to descnbe any osc1llat1ng system. For a gen-

eral osc1llat1ng system 

Q = 27TE 
~E 

( 1) 

where E 1s the peak energy stored 1n the osc1llator and~ 1s the energy 

loss per osc1llat1on. If the osc1llator 1s "perfect" (no energy loss), 

then AE 1s zero and Q 1s 1nf1n1te. AlternatlVely, the more lossy the 

med1um the lower the qual1ty factor 1s. 

For a propagat1ng acoust1c wave 1n an elast1c med1um, there are 

actually two qual1ty factors descr1b1ng two losses. The d1rectly meas-

ureable attenuat1on 1s the loss per wavelength of propagat1on (spat1al 

attenuat1on). Th1s 1s d1st1nct from the loss per stat1onary osc1llat1on 

(temporal attenuat1on) wh1ch can•t be measured d1rectly from a trav-

ell1ng wave. 

relat1onsh1p 

Indeed, Knopoff (1964) has establ1shed the follow1ng 

u Otemp = c Q spat1al (2) 

where u = group veloc1ty, c = phase veloc1ty, Qtemp = temporal Q, and 

Qspat1al = spat1al Q. If the med1um 1s d1spers1ve, that 1s 1f the group 

veloc1ty and phase veloc1t1es d1ffer, then the two Q values should also 

d1ffer. However, accord1ng to W1ll1s (1983), Otemp' somet1mes referred 

to as 1ntnns1c Q, 1s approx1mately equlValent to Q spat1al (measured 

w1th wave propagat1on techn1ques) when attenuat1on losses are fa1rly 

small (Q > 10). Fortunately, est1mates of Q for rock are nearly always 
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greater than 10. Typ1cal values of Q are 1n the range 50 to 200. 

Ham1lton (1972) concluded that d1spers1on for the Pwave 1s not s1g

n1f1cant 1n mar1ne sed1ments, so Qtemp and Qspatlal are essent1ally the 

same. Hence th1s thes1s shall assume no d1spers1on. 

Many d1fferent types of waves propagate down the borehole cor

respond1ng to d1fferent modes of propagat1on. The one of 1nterest here 

1s the P-wave (pressure or compress1onal wave). Th1s wave moves from 

the source to the recewer through the flu1d as a compress1onal wave, 

then 1s refracted to a P-wave 1n the rock and travels down through thr 

rock near the borehole. Some of th1s energy 1s refracted back 1nto the 

flu1d as another P-wave. Part of the compress1onal wave energy 1n the 

flu1d 1s converted to a refracted shear wave at the borehole wall. Th1s 

wave travels down the borehole at the shear veloc1ty, and 1s also con

verted back 1nto the flu1d as a P-wave. These two modes, the com

press1onal and shear (also known as 11 body-waves••) are both cons1dered 

non-d1 spers we. 

There 1s another set of acoust1c modes 1n the borehole. Waves of 

th1s type are known as ••tube-waves•• and 1nclude the Stonely and pseudo

Rayle1gh waves. Wh1le these tube-waves are very d1sperswe, mean1ng 

that phase veloc1ty vur1es w1th frequency, the1r veloc1t1es asymp

tot 1 ca lly approach the flu 1d ve 1 oc 1 ty as frequency 1 ncreases. These 

waves greatly compl1cate attempts to analyze shear wave behav1or s1nce 

the flu1d compress1onal veloc1ty and rock shear veloc1ty are about the 

same. In fact, 1f the shear wave veloc1ty 1s less than the flu1d veloc

lty, then the refracted shear wave can•t ex1st. But 1f the shear veloc

lty 1s sl1ghtly h1gher than the flu1d veloc1ty, the shear arr1val w1ll 

roughly co1nc1de w1th the arrwal of the larger ampl1tude tube-waves, 
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and the shear wave arr1val 1s masked. The Q values for tube waves are a 

funct1on of the Q values of the P-wave, shear wave, and flu1d P-wave. 

So, calculat1ng useful Q values (P-wave or shear wave) 1s d1ff1cult 

(see, for example Cheng, Toksoz, W1ll1s, 1981). 
I 

Therefore, s1nce the P-wave can usually be extracted from the total 

rece1ved waveform by w1ndow1ng, only the P-wave w1ll be cons1dered. For 

the rema1nder of th1s thes1s, 1t w11l be assumed that the "data" repre-

sents a w1 ndowed vers 1 on of the P-wave only. In th1s research, a 

Hamm1ng w1ndow 1s used and 1t g1ves good results. However, the 

attenuat1on est1mates are not very sens1t1ve to w1ndow cho1ce. 

G1ven a monochromat1c plane-wave (frequencyw) travel1ng a d1stance 

Z 1n a constant Q med1um, the ampl1tude coeff1c1ent of the wave funct1on 

lS 

A(Z) = A0 exp (-wZ/2Qc) (3) 

where 1 =angular frequency (rad1ans/second), A0 = 1n1t1al ampl1tude (at 

Z = 0), ~=phase veloc1ty, and Z = d1stance travelled. Assum1ng Q to 

be frequency 1ndependent, then by Equat1on (3), for every wavelength 

travelled, the wave ampl1tude decreases by the same fract1on. Th1s 

means that 1f one observes a plane wave w1th a broad spectrum prop

agatlng 1n the Z d1rect1on, then at any one part1cular po1nt Z0 , the 

attenuat1on undergone by the wave 1s an exponent1al funct1on of fre

quency. The follow1ng sect1on presents a d1scuss1on on attenuat1on by 

the earth and reasons for 1nvest1gat1ng th1s process. 
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1.1 Attenuat1on by the Earth 

Many researchers agree that Q 1s not dependent on frequency for dry 

rocks, and there 1 s a 1 arge body of 1 aboratory data to support th 1 s. 

Th1s 1ncludes Nur and W1nkler (1980), and Toksoz et al (1979). How

ever, most of these attenuat1on measurements have been conducted 1n the 

ultrason1c range (0.1 to 1.0 MHz), and 1t 1s not obv1ous that these 

results can be extrapolated down to son1c log frequenc1es (10 to 23 kHz) 

or further to se1sm1c frequnc1es (10 to 100Hz). 

There has been a great deal of effort spent to study the effects of 

fl u1d and gas saturat1on, pressure, and wave ampl 1tude on attenuat1on. 

All of the var1ables can have a s1gn1f1cant effect on Q, and there 1s 

some ev1dence to 1nd1cate that Q 1s much more dependent upon frequency 

when the rock 1s part1ally or totally flu1d saturated. The conclus1ons 

reached by Nur and W1nkler (1980), as well by T1ttman, Nadler, Clark, et 

al (1981) show a strong dependence of Q both on frequency and pressure 

for a water-saturated W1ngate sandstone. The conclus1ons to be drawn 

from the ava1lable laboratory data seems to be that there 1s ev1dence 

both for and aga1nst Q be1ng frequency dependent. 

F1eld measurements of the vanat1on of Q w1th frequency are pn

manly l1m1ted to se1sm1c frequenc1es and there have been fewer f1eld 

expenments than h1gh frequency lab exper1ments. The class1c exper-

1ments for se1sm1c frequenc1es 1nclude those by McOonal et al (1958), 

Tullos and Re1d (1969), and Ham1lton (1972). These expenments were 

pr1mar1ly vert1cal se1sm1c prof1le (VSP) exper1ments cons1st1ng of 

record1ng the arr1vals, due to se1sm1c energy sources at the surface, at 

var1ous geophones located at d1fferent depths 1n a borehole. They all 

cone 1 uded that Q 1 s approx1mate ly 1 ndependent of frequency. However, 



6 

d1fferences do ex1st 1n attenuat1on coeff1c1ents for d1fferent sub

surface layers, as subsurface layers cons1st of d1fferent rock types, at 

d1fferent pressures, and at d1fferent degrees of flu1d saturat1on. 

The mechan1sms of attenuat1on are not well understood and the 

models used to expla1n attenuat1on tend to be phys1cally complex. These 

mechan1sms are summar1zed by Johnston and Toksoz (1981). These 1nclude 

fr1ct1onal d1ss1pat1on due to movement of gra1n boundar1es (Walsh, 

1966), flu1d flow (Walsh, 1968), relat1ve mot1on of frame due to flu1d 

1nclus1ons (Stoll and Bryan, (1970), 11 Squ1rt1ng 11 (Mavko and Nur, 1975), 

gas pockets (Wh1te, 1975), and geometr1cal effects (Kuster and Toksoz, 

1974). From the po1nt of v1ew of acoust1c wave propagat1on along a 

borehole, 1t 1s l1kely that a comb1nat1on of many of the above mech

an1sms contr1bute to attenuat1on. 

The earth can affect a se1sm1c wave 1n an attenuat1ve manner w1th

out true 1ntr1ns1c attenuat1on. That 1s, the affect of 1ntrabed mul

t1ples can appear to be that of a frequency f1lter w1th the same general 

shape one would expect from a constant Q attenuat1on model. The works 

of Schoenberger and Lev1n (1974), and o•ooherty and Ansty (1971) lead to 

the cone 1 us 1 on that the .. tun 1 ng.. effect of 1 ntrabed mu 1 t 1 p 1 es may ac

count for 1/3 to 112 of the attent1on 1n se1sm1c data, and that the 

frequency f1lter1ng done by 1ntrabed mult1ples can be modeled as an 

attenuatlVe phenomenon. Scatter1ng and geometr1cal spread1ng may also 

appear to be attenuatlVe, and the borehole geometry may lead to fre

quency dependent tun1ng effects. Therefore, 1t may prove 1mposs1ble to 

completely separate 1ntr1ns1c attenuat1on from other 11 attenuat1ve .. 

phenomenon, and so attenuat1on est1mates from son1c log data may repre

sent an effect1ve Q, rather than a true 1ntr1ns1c Q. 
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However, many 1 nvest1 gators 1 ncl ud1 ng W11l1 s ( 1983) and Anderson 

and Castagna (1984) concluded that geometr1cal spread1ng can be assumed 

to be frequency 1 ndependent. In fact, Anderson and Castagna ( 1984) 

state that the theoret1cal geometr1cal spread1ng formula for a po1nt 

source (on the borehole ax1s) 1s 

1 (4) 

where Z 1s the rat1o of source-rece1ver offset to borehole rad1us. They 

also, state that for small offsets, the spread1ng formula above approx

lmately reduces to 1/Z and that the1r data conf1rm that th1s formula 1s 

val1 d for both the Schl umberger 1 ong and short tools. W1ll1 s ( 1983) 

also states that geometr1cal spread1ng loss formula for the P-wave 1s 

z1 - 1, where z1 1 s the source rece1 ver offset. Therefore, 1 n th1 s 

thes1s, geometr1cal spread1ng losses are assumed to be frequency 

1 ndependent, and the ampl1 tude decays 1 nversely proport1 anal to offset 

due to spread1ng losses. 

Attenuat1on est1mates from son1c logs should be useful because such 

est1 mates waul d prov1 de another phys1 cal parameter descr1 b1 ng the sub

surface wh1ch 1s 1ndependent of other parameters, such as veloc1ty and 

dens1ty. S1nce the var1at1on of Q w1th frequency seems to be related to 

the amount of saturat1on and pressure on the sample, an accurate est1-

mate of Q as a funct1 on of frequency caul d prov1 de some knowledge of 

water saturat1on (or poros1ty) and pressure. Knowledge of Q obta1ned 

from son1c logs could be used to 1mprove se1sm1c data and also to 1m-

prove the carrel at1 on between se1 sm1 c data and synthet1 c se1 smog rams 

calculated from well logs. 
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Synthet1c se1smograms from well logs frequently do not match se1s

m1c data very well. Many factors contnbute to th1s problem, one of 

wh1ch 1s that the reflected wavef1eld represented by the se1sm1c sect1on 

has undergone a s1gn1f1cant amount of attenuat1on. But the synthet1c 

se1smogram calculated from well log data 1s based on veloc1ty, dens1ty, 

and source est1mates w1th no attenuat1on taken 1nto account. The cor

relat1on could 1mprove s1gn1f1cantly when an attenuat1on f1lter based on 

the est1mated Q values 1s appl1ed to the synthet1c se1smogram. 

Hale (1982) and B1ckel (1982) demonstrated that 1t 1s poss1ble to 

des1gn 1nverse-Q f1lters for se1sm1c data. However, the des1gn of such 

f1lters requ1re some knowledge of the vanat1on of Q w1th depth, and 

th1s 1nformat1on 1s not generally ava1lable. Hence, Q est1mates from 

son1c logs could prov1de 1nformat1on useful for the process1ng of se1s

m1c data and 1ncreas1ng the resolut1on of se1sm1c data. F1nally, 1t 1s 

poss1ble that a techn1que developed for est1mat1ng attenuat1on from 

son1c logs could form the bas1s for a method of est1mat1ng the amount of 

attenuat1on 1n se1sm1c or VSP data d1rectly from the data 1tself. 

1.2 Attenuat1on Est1mat1on 

Attenuat1on measurements of acoust1c waves 1n the earth have been 

of 1nterest to sc1ent1sts for some t1me. Most of the early efforts were 

a1med at est1mat1ng attenuat1on 1n the frequency range generally used 1n 

surface se1sm1c esplorat1on (10-100 Hz). When h1gher frequenc1es were 

used, no spec1al effort was made to est1mate attenuat1on 1n the acoust1c 

well log frequency range (10-30 kHz). The class1c exper1ment 1s that by 

McDonal et al (1958) wh1le s1m1lar exper1ments have been done by Tullos 

and Re1d (1969), and Spencer et al (1982). These expenments were of 
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the vert1cal se1sm1c prof1le type. Exper1ments to est1mate the earth•s 

acoust1c attenuat1on also 1nclude those by Taylor and Toksoz (1982) to 

est1mate Q from earthquake data, and by Jacobson et al (1981) to estl

mate Q from offshore ocean bottom refract1on data. Hale (1982) d1S

cussed est1mat1ng and remov1ng attenuat1on effects from surface se1sm1c 

data. Kuc and Schwartz (1979) used an 1nterest1ng method to est1mate 

the attenuat1on coeff1c1ent for the l1ver from ultrason1c data. 

W1th the 1ntroduct1on of son1c logg1ng tools capable of record1ng 

the ent1re rece1ved waveform, rather than JUSt est1mat1ng P-wave veloc-

1ty, attempts were made to make use of the extra data ava1lable. If 

properly 1nterpreted, 1t 1s poss1ble to acqu1re knowledge about the 

compress1onal and shear format1on veloc1ty, as well as the attenuat1on 

coeff1c1ent. The waveform shapes themselves may hold even more 1nfor

mat1on about the cond1t1on of the hole and about the format1ons. Recent 

efforts to est1mate format1on parameters such as shear veloc1ty and 

attenuat1on coeff1c1ent 1nclude Anderson and Castagna (1984), Cheng et 

al (1981 and 1982), W1ll1s (1983), Aron et al (1978), Goldberg et al 

(1984), and Parks et al (1983). 

S1nce the attenuat1on est1mat1on problem may 1nvolve non-Gauss1an 

no1se, then the least-squares techn1ques may not work well. So, max1mum 

1 1kel 1hood and robust est1mat1on techn1ques are 1ntroduced 1n Chapter 

III for use as attenuat1on est1mators. 

The spectral rat1o method 1s the fundamental method used to est1-

mate the attenuat1on coeff1c1ent, Q. It has served as the bas1s for 

more soph1st1cated Q est1mat1on techn1ques, and the calculat1ons are 

relatwely s1mple and fast compared to some of the more complex tech

nlques. Unfortunately, modell1ng has shown that 1n the presence of a 
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no1sy s1gnal the vanance of the est1mate may be large. Further, the 

algor1thm tends to become unstable when the source spectrum has zeros or 

near zeros. 

The spectral rat1o method, as appl1ed to acoust1c logs, 1s based 

upon the model of a son1c tool 1n the borehole shown 1n F1gure 1, and 

upon Equat1on (3). Compress1onal waves w1ll or1g1nate at the source or 

transm1tter "T" and w1ll propagate out through the flu1d. Some of the 

compress1onal wave w1 11 1mp1nge upon the wall near "B". The energy 

wh1ch actually goes 1nto the rock w1ll be converted to P and shear waves 

1n the rock. The P-waves refracted at or near cnt1cal angle w1ll 

travel down the walls of the borehole, em1tt1ng compress1onal waves back 

1nto the flu1d. When the re-em1tted compress1onal waves reach the 

recelVers "R1'' and "R2", the wavetra1n 1s recorded. S1nce the P-wave 

veloc1ty 1n the rock 1s usually much greater than the shear veloc1ty of 

the rock and the flu1d veloc1ty, then the P-wave wh1ch travelled through 

the rock arrlVes f1rst. That 1s, 1t usually arnves before the "tube

waves" or the converted shear wave, and 1 s easy to w1 ndow out and se-

parate from the rest of the data. 

1.2.1 Development of the Spectral Rat1o 

Method 

The ampl1tude of a plane wave of frequency w wh1ch has travelled a 

d1stance Z 1n a med1um w1th attenuat1on coeff1c1ent Q, and phase veloc-

1ty C 1S 

A(Z,w) 

where A0 1s the 1n1t1al ampl1tude at Z = 0. For a plane wave w1th 



F1gure 1 Model of Son1c Tool 
1n a Borehole 

11 



12 

source spectrum S(w), the spectrum of the wave Z un1ts away from the 

source can be wr1tten as 
wZ 

R(Z,w) = B S(w) e- ZQC 
0 

{ 5) 

where B0 1s a constant. Rewr1t1ng Equat1on (5) and tak1ng the logar1thm 

of both s1des results 1n 

- In R(Z,w) _ wZ In (Bo) -srwr- - "21TC - (6) 

From equat1on (6), 1t 1s obv1ous that the negat1ve of the logar1thm of 

the rat1 o of the spectra from the rece1 ver and source 1 s 11 near 1 n 

frequency w. The slope of that 11 ne 1 s the same as the den vat1 ve of 

the r1ght hand s1de of Equat1on (6), wh1ch 1s 

z slope = "2Qc 

So, 1f the source-rece1ver offset and the veloc1ty are known, then Q can 

be calculated from the slope of the l1ne. 

In full waveform acoust1c logs, the spectrum of the rece1ved P-wave 

can be calculated v1a Four1er transform of the w1ndowed t1me-doma1n P-

wave arrlVal. The spectrum of the source can not be eas1ly measured 

down hole. Also, the source spectra 1s affected by source-fluld-bore

hole acoust1c coupl1ng, wh1ch 1s usually d1fferent every t1me the source 

f1res as the tool 1s pulled up the hole 

S1nce the source spectrum must be regarded as unknown, the spectral 

rat1os used must be those from adJacent rece1ver pa1rs. 

Us1ng Equat1on (5), the rat1o of the spectrum at R1 to the spectruM at 

R2 1S 

\ 
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(7) 

where X = d1stance between R1 and R2, and c and Q are the phase veloc1ty 

and attenuat1on coeff1c1ent of the subsurface between rece1vers R1 and 

R2• As prev1ously ment1oned the 1/X term approx1mately represents the 

geometr1c spread1ng losses for the P-wave. We shall def1ne the log

spectral rat1o, SR(w} to be 

SR(w} = - In 
R2(w} 

R1 (w) = Z~c + In (X) (8) 

where R1 (<1J) and R2(w) are the spectra of the P-wave arr1vals at re

ce1vers 11 R111 and 11 R2••. For real data, SR(w) w11l not be a stra1ght 

l1ne. An est1mate of the slope, g1ven by, 

1 
2trE 

1 s made by f1 nd1 ng the best-f1 t 11 ne through the data, and us1 ng the 

slope of that best-f1t l1ne S1nce X 1s the known rece1ver spac1ng and 

the phase veloc1ty c can be calculated from P-wave f1rst breaks, Q 

follows eas1ly from the slope 

The ln(X) term 1n (8) 1s due to the geometr1cal spread1ng loss, 

that 1 oss was assumed to be of the form 1/X But, 1f the geometr1cal 

spread1 ng 1 oss 1 s not exactly 1/X, then as 1 ong as 1 t 1 s frequency 

1ndependent, the effect of the loss w1ll appear only 1n the 1ntercept of 

SR((,l) 1n Equat1on (8) Thus the loss w1ll have no affect on the Q 

est1mate 

S1nce the spectral rat1o deals only w1th rat1os of rece1ved spec

tra, the offsets are typ1cally much shorter than the total source-

rece1 ver spac1 ng Th1 s has advantages as well as d1 sadvantages The 

pr1mary advantage 1s resolut1on That 1s, the est1mated Q 1s that for 
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the subsurface 1 ayer between rece1 vers 11 R111 and 11 R211 only. If the 

source-rece1ver spectral rat1o were used, the resolut1on would be much 

poorer, s1 nee Q would be measured over a much greater d1 stance In 

add1t1on, P-wave veloc1t1es can be p1cked accurately by analyz1ng t1m1ng 

d1fferences between adJacent rece1vers The d1sadvantage of small 

offset rece1Ver to rece1Ver spectral rat1 os 1 s that rel at1Vely 11 ttl e 

attenuat1on has taken place. For example, assume the follow1ng 

c = 10000 ft/sec , 1 = 2nf = 2" 10 kHz, X= 2 ft., Q = 100 

Then 
wX _ 2Jt" _ 
2trc - rorr - • o63 

wX 
So e- 2QC = 939, or 6.1% attenuat1on has taken place between rece1vers. 

In contrast, 1f the source spectrum was known, and assum1ng a source-

rece1ver offset of 12 ft., then 

~ = 0.38 
"''~'" ' 

and 
wX 

e- '2Qc = 0 68 

has taken place between source and rece1ver 

1.2 2 Attenuat1on Est1mat1on from Acoust1c 

Logs-Prev1ous Work 

Cheng, Taksoz, and W1ll1s (1981 and 1982) d1scuss est1mat1ng atten

uat1on from full waveform acoust1c logs. They argue that the effect1ve 

bandw1dth of the source spectrum 1s too narrow for the spectral rat1o 

method to work well. See F1 gure 2 for P-wave ampl 1 tude spectra from 
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Cheng (1981). So, they est1mate the attenuat1on from the decrease 1n 

ampl1tude of the second rece1ved spectrum at the peak. Th1s 1s roughly 

the same as us1ng the spectral rat1o method, but only us1ng the fre

quency po1nt at the max1mum of the spectrum. Th1s method has the advan

tage of only us1ng the frequency where the s1gnal 1s strongest. Fur

ther, for reasonable values of recelVer offset, Q, and veloc1ty, the 

drop 1n peak ampl1tude 1s s1gn1f1cant. 

On the other hand, there are several d1ff1cult1es 1nvolved 1n us1ng 

th1s techn1que. For the spectral rat1o method, any frequency 1nde-

pendent geometr1cal spread1ng losses w1ll appear 1n the 1ntercept rather 

than the slope of the best-flt l1ne. Thus, spread1ng effects need not 

be taken 1nto account to est1mate Q. However, for th1s method, spread

lng effects must be accounted for. Theoret1cally, the spread1ng loss 1s 

proport1onal to 1/Z, where Z 1s the source-rece1ver offset, and th1s 1s 

the correct1on factor used by Cheng. Th1s 1s f1ne as long as there are 

no other frequency 1ndependent losses (otherw1se the Q est1mate 1s 

affected), so hav1ng to account for spread1ng losses 1s one of the 

d1sadvantages of th1s techn1que. Another d1sadvantage 1s that th1s 

techn1que only uses one frequency po1nt. So, 1f the ent1re spectrum 1s 

corrupted by no1se, then the est1mate based upon one frequency po1nt 

w1ll be less rel1able than an est1mate based upon many po1nts. 

It 1s 1nterest1ng to note that the sh1ft 1n the spectral peak 

pred1cted by Kuc and Schwartz (1979) (d1scussed later) 1s only barely 

d1scernable 1n F1gure 2. So, 1t appears that the spectral sh1fts pre

sent 1n acoust1c log data 1s not be enough to allow the use of the1r 

method. 
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In h1s Ph.D. thes1s, W1ll1s (1983) uses the max1mum l1kel1hood 

method (P1sarenco, 1970) to est1mate the transfer funct1on (or earth 

response) from the 1nput (f1rst recewer data) to the output (second 

recewer data). The 1dea of est1mat1ng the transfer funct1on 1s the 

same as that used by the W1ener f1lter techn1que (Taylor and Toksoz, 

1982), except that the actual est1mat1on 1s done us1ng a d1fferent 

algor1thm. The max1mum l1kel1hood method of P1sarenko (1970) attempts 

to ach1eve an opt1mum est1mate of an unknown transfer funct1on when n 

d1fferent examples of no1se corrupted 1nput and output funct1ons are 

known. P1sarenko (1970) showed that h1s est1mator 1s asymptot1cally 

unb1ased, whereas the s1mple averag1ng of spectral rat1os results 1n a 

s1gn1f1cant b1as. In add1t1on, P1sarenko's method has a lower mean 

square error. 

Goldberg, Kan, and Castagna (1984) est1mated Q from synthet1c 

waveforms and from real data. They modelled the recewed power spec

trum, A(Z ,w), as 

A(Z,w) = T(Z) S(w) e- aZ (9) 

where T(Z) 1s the frequency 1ndependent power loss, Z 1s the source

rece1ver offset, S(w) 1s the total system response, and the exponent1al 

term, e-az 1 s the attenuat 1 on operator. The constant, a, 1 n the expo

nent 1s assumed to be l1nearly dependent on frequency, thus follow1ng 

the constant-Q assumpt1on. 

The system response, S(w) 1ncludes the source s1gnature, recewer 

response, cable transm1ss1on, all frequency dependent coupl1ng effects, 

and the electron1cs. S(w) 1s also assumed to be offset-1nvanant and 

thus 1s calculated by averag1ng over the ava1lable offsets for a shot. 
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T(Z) represents the geometr1cal spread1ng losses (assumed frequency 

1ndependent) and the coupl1ng losses wh1ch are frequency 1ndependent, 

and 1s calculated from the average power contr1but1on at each re

cewer. The ••an 1s calculated 1n the usual way v1a the spectral rat1o 

method. The est1mated parameters are then adJusted to m1n1m1ze a power

welghted measure of the mean square error between the data and the f1t 

from the est1mated model. 

Goldber, Kan, and Castagna (1984) concluded that the est1mate of Q 

1s adversely affected by .. deep nulls .. 1n the power spectra (what have 

been descnbed as zeros 1n th1s thes1s). In add1t1on, they determ1ned 

the est1mate to be sens1t1ve to w1ndow shape and s1ze. They also model

led the effects of a t1lted tool, and demonstrated that the effects were 

read1ly apparent 1n the recewed waveforms. Th1s may expla1n the 11 Spec

tral nulls .. or zeros 1n the spectra. 

Anderson and Castagna (1984) presented a paper on the analys1s of 

ampl1tudes of compress1onal waves on son1c logs. They use the .. borehole 

compensat1on•• (BHC) techn1que to remove from the log the coupl1ng and 

focus1ng affects wh1ch greatly affect ampl1tudes. The BHC method 1s 

based upon ray-path analys1s, and adds (or subtracts) s1gnals from 

var1ous rece1vers to approx1mately cancel effects such as borehole 

focus1ng due to tool pos1t1on and t1lt, attenuat1on 1n the flu1d, and 

flu1d-borehole coupl1ng. 

The authors use the BHC correct1on techn1que to produce ampl1tude, 

attenuat1on, and coupl1ng logs, as well as the usual trans1t t1me (slow

ness) log. They note that the ampl1tudes d1d approx1mately decay as 

theoret1cally pred1cted, but the corrected ampl1tude 1s st1ll 
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somet1mes less than pred1cted. Th1s was assumed to be caused by 1mper

fect compensat1on by the1r BHC method. 

1.2.3 Attenuat1on Est1mat1on from Data 

Other Than Acoust1c Well Log Data 

Taylor and Toksoz (1982) used a W1ener f1lter1ng approach to est1-

mate attenuat1on of the earth from earthquake se1smograms. The pr1mary 

advantage of th1s techn1que 1s that 1t y1elds a more rel1able est1mate 

of Q from data w1th spectral zeros than does the spectral rat1o 

method. The method 1s based upon est1mat1ng a t1me-doma1n f1lter to 

approx1mate the 1mpulse response of the earth between adJacent re-

cewers. The Founer transform of th1s f1lter 1s an est1mate of the 

spectral rat1o from wh1ch Q can be calculated. 

The spectral rat1o relat1on from Equat1on {6) actually represents 

the frequency doma1n transfer funct1on or Green's funct1on between 

rece1vers R1_1 and R1, G{w), and could be rewr1tten as 

SR(w) = - In [G{w)], 

where 

G{w) (10) 

Th1s could also be wr1tten 1n the t1me-doma1n as a convolut1on 

r 1(t) = g(t) * r1_1(t) (11) 

where g(t) 1s the 1mpulse response, and r1(t) 1s the s1gnal recorded by 

the 1th rece1ver. 
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In general, g(t) w1ll be an 1nf1n1tely long sequence. However, 1t 

could be approx1mated by a f1n1te length sequence f(t) us1ng a cr1ter1on 

such as m1n1m1z1ng the least squares error 

E =!: [f(t) * r 1_1 (t) - r1(t)] 2 
t 

{12) 

It 1s clear that th1s 1s the class1cal d1screte-t1me W1ener f1lter 

problem. To cast th1s as a least-squares l1near algebra problem, let 

bJ = r 1_1 (tJ), dJ = r1 (tJ), and fJ = f{tJ). Then m1n1m1z1ng E 1n {12) 

1s equ1valent to solv1ng {see for example W1ll1s, 1983) 

B..f. = .£. + ~, 

where 

bo 0 fo • • • bo f = • 
B = bn • 

• fm • • 
0 bn 

do eo 

• • 
d = e = error vector = 

• • 
dm+n em+n 

The solut1on 

f = (BTB)-1 BTd {13) 

m1n1m1zes the error energy, E = eT~. The matnx (BTB) 1s the auto

correlatlon matr1x and has the Toepl1tz form 

ao a1 . • . an-1 

BT B 
a1 ao an-2 

= • 
• • 

a n-1 a n-2 ao 



where a1 = ~J bJ bJ_ 1• The vector 

. . 
• . 
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1s the cross correlat1on between the 1nput and output, where 

z, = ~ bJ-1 dJ" 

A zero 1n R1_1 (w) corresponds to a s1ngulanty 1n the matnx 

(BTB). Also, 1f zeros were present 1n the spectrum R1_1(w), then the 

autocorrelat1on matr1x w1ll aga1n be s1ngular and 1t ~ust be d1agonally 

loaded to have a stable est1mate of Q. Th1s d1agonal load1ng of the 

matr1x (BTB) 1s roughly equ1valent to add1ng a constant to the spectrum 

R1_1(w). 

Once a solut1on for f 1s calculated to approx1mate the ong1nal 

1mpulse response g(t), the Founer transform of f can be calculated. 

Thus, the Founer transform of .f., F(w), 1s an est1mate of G(w). So, 

equat1on (10) can be restated as 

- ln [F(w)] = RR 1 (w) = W• (14) 

Now, 0 can be est1mated by do1ng a least-squares l1near regress1on on 

-In [F(w)] to f1nd the best-flt slope. 

Unfortunately, d1agonal load1ng of the autocorrelat1on matr1x 

results 1n erro"'s lh the est1mat1on of Q. Taylor and Toksoz, (1982), 

suggested a techn1que for deal1ng w1th the 1naccurac1es. D1agonal 

load1ng BTB 1s equ1valent to replac1ng BTB by (BTB + I\) where \ 1s some 

small pos1t1ve number and I 1s an 1dent1ty matr1x. The frequency doma1n 

analog of Equat1on (13) 1s 
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F(w) = jf:~ , (15) 

where C(w) and A(w) are Four1er transforms of z(t1) = z1 and a(t1) = a1 

respect1vely. 

In the frequency doma 1 n, d 1 agona 1 1 oad 1 ng of B T B corresponds to 

replac1ng A(w) by A(w) + ~ 1n (15). 
I 

Now, 

F' (w) z A~~}l~ (16) 

where F'(w) =the Four1er transform of f'(t), 

From th1s, we can wr1te 

F(w) = F' (w) AAtll~ (17} 

Hence, mult1ply1ng F' (w) by [ (A(w)+~) /A(w)] corrects the errors lntro

duced by d1agonal load1ng. However, we st1ll have not solved the pro

blem s1nce A(w) may be zero at certa1n frequenc1es. To allev1ate th1s 

problem Taylor and Toksoz (1978) suggested smooth1ng A(w) by w1ndow1ng 

the autocorrelat1on and apply1ng the correct1on only 1f A(w) 1s above 

some m1n1mum threshold. 

To correct the d1agonal load1ng 1nduced errors, apply the cor

rectlon factor 1n equat1on (17) whenever A(w) 1s large enough for the 

correct1on to be stable. Thus, a threshold must be set and Equat1on 

(14) only appl1ed when A(w) 1s above that threshold. Th1s threshold 1s 

def1 ned as a fract 1 on of the max 1mum A ( w) • S 1m1 1 ar ly, the amount of 

d1agonal load1ng appl1ed to the autocorrelat1on matr1x 1s def1ned as a 

fract1on of the d1agonal value. These two fract1ons must be 1nput 

parameters for the Q-est1mat1on algor1thm, and a poor cho1ce for e1ther 
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may lead to very poor results. Another approach m1ght be to 1nterpolate 

across frequenc1es 1n the v1C1n1ty of the spectral zero. 

The class1c exper1ment to est1mate 1n-s1tu attenuat1on of the earth 

1s that by McDonal, Angona, M1lls, et al (1958). They used geophones 

clamped to the s1dewalls of a borehole through a fa1rly homogeneous 500 

ft. th1ck layer of shale. The geophones measured the response of the 

earth at vanous depths from the same shot. They used the spectra 1 

rat1o method to est1mate the attenuat1on, and made the follow1ng con

cluslons (1) The shale attenuat1on followed the constant Q model very 

well (2) No veloc1ty d1spers1on was measured, mean1ng the propagat1on 

speeds of var1ous frequenc1es were the same (over the range 20-450 Hz) 

(3) The earth does not behave as a class1cal v1sco-elast1c med1um be

cause the veloc1ty d1spers1on wh1ch should accompany attenuat1on was not 

present. 

McDonal, Angona, M1l1s, et al (1958) found the lack of d1spers1on 

very surpr1s1ng, and adm1tted that 1t may not be val1d to extrapolate 

the lack of d1spers1on to h1gher frequenc1es (such as those used 1n 

son1c logg1ng). For the measured frequency range, ev1dence cont1nues to 

support the conclus1ons about the constant Q model and that the amount 

d1spers1on 1s negl1g1ble. Although some authors rna 1 nta 1 n that the 

d1spers1on 1s measurable, even from the data of McDonal, Angona, M1lls, 

et al (1958). 

Tullos and Re1d (1969) used an exper1mental layout very s1m1lar to 

that used by McDonal, Angona, M1lls, et al (1958) to est1mate atten-

uat1on of Gulf Coast sed1ments. They, too used the spectra 1 rat 1 o 

method, but averaged as many as 156 spectral samples to reduce the 

effects of no1se. They also concluded that, w1th1n a spec1f1c layer, Q 
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1s frequency 1ndependent. Further, Q may vary greatly from layer to 

layer. It 1s typ1cally very low (h1gh attenuat1on) near the surface, 

and the value of Q usually 1ncreases w1th depth. 

Spencer, Sonnad, and Butler (1982) modeled the VSP layout and used 

the spectra 1 rat1o method to analyze the data and est1mate Q. They 

averaged the1r spectral rat1os 1n a manner s1m1lar to Tullos and Re1d 

(1969). Spencer, Sonnad, and Bulter (1982) d1d an error analys1s to go 

along w1th the attenuat1on est1mates. They observed that the vanance 

of the Q est1mate was very large for small rece1ver separat1on, but the 

vanance decreased qu1ckly to a much smaller amount as the recelVer 

spac1ng 1ncreased. They also conclude that local 1nterference due to 

mult1ples accounts for much of the measured attenuat1on, and that the Q

est1mat1on problem 1s 111-posed (1.e. small data errors lead to large 

est1mat1on errors). 

From the1r data, 1t appears as though the var1ance 1s very h1gh for 

recelVer separat1on below 200 ft., for a frequency band of 0-125 Hz. 

The center of the band, 62.5 Hz, 1s 200 tlmes lower than a typ1cal 

frequency 1n son1c logs (12.5 kHz). Thus the m1n1mum rece1ver spac1ng 

scales down to about one foot for son1c log frequenc1es, hopefully th1s 

means that rece1ver spac1ngs over one foot w1ll g1ve adequate accuracy 

1n est1mat1ng Q. 

Two recent papers d1scuss attenuat1on affects present 1n surface 

se1sm1c data. B1ckel (1982) shows that for a band-l1m1ted source, a 

f1lter can be both a reasonably accurate 1nverse Q f1lter and stable as 

well. Unfortunately, B1ckel (1982) 1gnores the very d1ff1cult quest1on 

of Q-est1mat1on by show1ng that 1f Q =50 for a model, 1nverse f1lters 

use Q = 40 or Q = 60 work fa 1 r ly well to remove the attenuat 1 on 
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effects. He then concludes that all that 1s needed 1s a rough est1mate 

of Q, and he makes no effort to handle a depth-vanable attenuat1on 

coeff1c1ent. 

The work of Hale (1982) 1s s1gn1f1cantly d1fferent 1n that he 

descr1bes an algor1thm to est1mate Q. Assumpt1ons made by Hale 1nclude 

(1) Q does not vary w1th depth (2) the source waveform 1s m1n1mum 

phase. To preserve stnct causal1ty 1n order to ma1nta1n the m1n1mum 

phase assumpt1on, Hale (1982) changes the attenuat1on model by re

plac1ng w 1n equat1on (3) w1th 

w1 = I w I + J H (j w I ) (18) 

where !wl 1s the absolute value of angular frequency w, J = [ -1, H(•) 

1s the H1lbert transform operator and w• 1s the ••new" frequency. Hale 

and B1ckel both use as the1r bas1c 1nverse attenuat1on operat1on the 

••,nverse 11 of that gwen by equat1on (3) 

+ wl 
F(w,z) = e "2'Qc (19) 

where w,Z,Q, c are as def1ned before. Hale then forces causal1ty w1th 

the subst1tut1ons g1ven by equat1on (18). 

Hale then does the follow1ng. Let x(t) be the 1nput trace to 

1nverse attenuat1on operator, ~(t) be the output trace, and U(w) = !wl 

+ J H(lwl)• 

A 
r(t) = 

Then, by the pr1nc1ple of superpos1t1on 

u~ t 
:t eJwt[ e -zq- ] 
w 

(20) 

where X(w) = Founer Transform (F.T.) of x(t). Th1s can be rewntten 

as 

~(t) 
(Jwt) 1 t 2 2 

= ~ e X(w)[1+(t/2Q)U(w)+z ('ZQ'") U (w)+ ••• ] 
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or, 

~(t) = ~ frr (k) 1[u*1(t) * X(t)] (21) 
1=0 

where* denotes convolut1on, U{w) 1s the F.T. (u(t)), and u* 1 means u(t) 

convolved w1th 1tself 1 t1mes. Accord1ng to Hale, the number of terms, 
1\ necessary to est1mate r(t) 1n Equat1on (21) 1s a funct1on of t and Q, 

but the computat1onal effort needed to 1mplement (21) 1s comparable to 

other t1me-var1able deconvolut1on schemes. Most of the effort to eval-

uate (21) 1s 1nvolved 1n the convolut1on. Thus the Q-1ndependent con

volut1on only need be calculated once. Then ~(t) can be evaluated for 

var1ous guesses of Q, the opt1mum be1ng the Q wh1ch m1n1m1zes 

111: 

E = t [~(t) e4QJ 2 
t 

(22) 

Unfortunately, the convolut1onal model used by Hale and B1ckel does not 

f1t the models used for son1c logs, and Hale's assumpt1on of depth-

1nvar1ant Q 1s not a real1st1c one. 

The se1sm1c refract1on exper1ment used by Jacobson, Shor, and 

Dorman (1981) cons1sted of depth charges set to explode 1n deep water, 

and seafloor hydrophones as recewers. The P-wave energy from the 

source reaches the seafloor, and some of 1t 1s refracted along the floor 

and rock layers below 1t. As 1n the acoust1c log case the travel11ng 

refracted wave em1ts energy wh1ch travels back up to the recewers on 

the seafloor. The1r method of Q-est1mat1on 1s based upon the Jth ob

servatlon of the spectral rat1o as prev1ously def1ned. Accord1ng to 

Jacobson et al 

SRJ(w,Z) = 

w/2 m ~ n (23) 

where SRJ (w,z) 1s the Jth observat1on of the spectral rat1o at depth Z 
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and frequency w, Q(Z) 1s the attenuat10n coeff1c1ent at depth Z, n 1s 

the total number of layers, and t 1J 1s travelt1me 1n the 1th layer for 

the Jth observat1on. Rewr1t1ng the r1ght hand s1de of (23) US1ng k1 for 

the attenuat1on for the 1th layer measured 1n dB/kHz/m and Pl1J for the 

path length for layer 1 and the Jth apparent veloc1ty y1elds 

(24) 

Now, note that (24) now descr1bes a l1near system of equat1ons of 

the form Ao = .£.· Th1s underdeterm1ned system of equat1ons would nor

mally be solved by the m1n1mum norm least-squares techn1que. But, 

Jacobson, Shor, and Dorman (1981) chose to use an 1nverse techn1que from 

W1gg1ns (1972). Th1s techn1que 1nvolves solv1ng the system by decom

pos1ng the matnx A 1nto orthonormal e1genvectors and rank1ng these 

e1genvectors. The total number of e1genvectors used 1s based upon a 

ch1-square analys1s of the result us1ng d1fferent numbers of e1gen-

vectors. Jacobson, Shor, and Dorman state that th1s method 1s s1m1lar 

to least-squares analys1s, and 1ndeed 1t appears to be very s1m1lar to 

us1ng the so called QR decompos1t1on w1th column p1vot1ng to solv1ng a 

least squares system of equat1ons (Golub and Vanloan, 1983). In fact, 

the only th1ng not1ceably d1fferent about W1gg1ns techn1que as used by 

Jacobson 1s that a ch1-square test 1s used to determ1ne when enough 

e1genvectors have been used. Th1s 1s 1n contrast to some cut-off for 

m1n1mum e1genvalues suggested by Golub and Vanloan. 

Jacobson, Shor, Dorman (1981) concluded that the1r data analys1s 

method produced 1 ess van ance than other methods. The1 r data agreed 

w1th the usual conclus1on that, over a frequency range of 0 to 100 Hz, Q 

1 s frequency 1 ndependent and that Q generally 1 ncreases w1 th depth. 
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They d1d note a poss1ble sharp 1ncrease 1n attenuat1on (decrease 1n Q) 

around a depth of 600 meters and an average Q around one hundred. 

However, 1t must be po1nted out that the1r data showed very w1de con

f1dence 1ntervals, w1th poss1ble ranges of Q at some depths from about 

30 to 100 or from 100 to 1nf1n1ty. 

To est1mate the acoust1c attenuat1on coeff1c1ent of the human l1ver 

from ultrasound data, Kuc and Schwartz (1979) used an 1nterest1ng tech

n1que wh1ch 1s not based upon the spectral rat1o method (the attenuat1on 

coeff1c1ent y1elds data about l1ver c1rrhos1s). Kuc amd Schwartz (1979) 

showed that 1f the source power spectrum 1s Gauss1an, and 1f the con

stant-Q model holds, then the rece1ved s1gnal w1ll also have a Gauss1an 

power spectra. Furthermore, the rece1ved spectrum w1ll be sh1fted down 

1n frequency and the s1ze of the sh1ft w1ll be proport1onal to Q-1• 

Suppose the 1 nput spectrum 1 s Gauss 1 an, centered at frequency w0 

w1th var1ance s2• Then, 

(25) 

If a pulse w1th the above spectrum passes through an attenuat1ve, con

stant-Q med1um of th1ckness Z and veloc1ty c, then the output spectrum 

would be 

Then 

,,z (w-w0 ) 2 w2 
- 2b = ~ + 41. -s-..2,..-_ = ~ .. 

(26) 

(27) 
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Compl et1ng the square on (27) requ1res that the new center frequency, 

{28) 

where the second term (Zs212Qc) def1nes the sh1ft 1n the peak and 1t 1s 

proport1onal to o-1• 

The sh1ft 1n the peak 1s determ1ned by the cross correlat1on be

tween R1(w) and R2(w). The cross-correlat1on sh1ft detector 1s opt1mum 

1n the least-squares sense. If the no1se 1n the system 1s Gauss1an, 

then the cross-correlat1on detector w1ll also be a max1mum l1kel1hood 

(ML) detector. Th1s method has the potent1al to be appl1cable to acous

t1c well log data because the source spectrum may be roughly Gauss1an 1n 

shape. For example, F1gure 3 1s a plot of the source spectrum of a 

typ1cal acoust1c logg1ng tool (Aron, Murray, and Seeman, 1978). The 

ma1n lobe of th1s spectrum 1s approx1mately Gauss1an 1n shape. However, 

the tun1ng effects could eas1ly d1stort th1s shape and make th1s method 

1naccurate. 

1.3 Summary of Th1s Chapter and 

Descr1pt1on of Th1s Thes1s 

Apply1ng plane-wave attenuat1on models to a borehole 1s d1scussed 

1n Sect1on 1.2, as 1s the bas1c or fundamental method of est1mat1ng Q, 

known as the spectra 1 rat 1 o method. Th 1 s method 1 s based upon the 

observat1on that from Equat1on (3), the logar1thm of the rat1o of power 

spectra should be l1near 1n frequency. The slope of th1s l1ne should be 

1nversely proport1onal to Q. On real data, Q 1s est1mated from the 
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slope of the least squares best f1t l1ne to the log-spectral-rat1o of 

the data. 

Many d1fferent methods have been used to est1mate the acoust1c 

attenuat1on coeff1c1ent, Q, from many d1fferent types of acoust1c 

data. These data types 1nclude surface se1sm1c, vert1cal se1sm1c pro

flle (VSP), son1c logs, offshore refract1on, earth quakes, and ultra

sonlc data. Most methods are based upon the spectral rat1o method, and 

Sect1on 1.2 also conta1ns a d1scuss1on of these methods. 

Two prev1ously used methods for est1mat1ng attenuat1on, the spec

tral rat1o method and the W1ever f1lter method, are stud1ed 1n more 

depth and tested on s1mple model data 1n Chapter II. The performance of 

these est1mators 1n the presence of add1t1ve no1se 1s evaluated, as 1s 

the performance on data arr1s1ng from source spectra w1th 11 Zeroes 11 or 

11 nulls 11 1n them. F1nally, the performance of these methods 1s compared 

w1th model data from a source spectrum w1th 11 Zeroes'' wh1ch 1s also 

contam1nated w1th no1se. 

Chapter II also 1ntroduces an analys1s of the attenuat1on 

est1mat1on problem from a d1fferent po1nt of v1ew. A value of Q can be 

calculated from the recewed P-wave arrwals from two adJacent 

rece1vers, at each frequency po1nt. These Q est1mates can be cast as a 

matr1x, w1th the column number represent1ng the frequency value and the 

row number represent1ng the adJacent recewer pa1r number (or depth). 

Th1s matr1x representat1on of Q est1mates leads to several new ways of 

est1mat1ng Q. These new methods 1nvolve e1genvector-e1genvalue 

decompos1t1on as well as robust and max1mum l1kel1hood est1mat1on. 

S1nce the attenuat1on coeff1c1ent, Q, 1s assumed to be frequency 

1ndependent, then all of the columns of the data matnx w11l be the 
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same. Thus th1s matnx w1ll be a rank one matnx. For real data, of 

course, the est1mates w1ll be no1sy and the borehole w1ll not conform to 

the 1deal model. Therefore, the matr1x w1ll not be a rank one matr1x. 

However, 1f the 1deal model 1s fa1rly accurate, and 1f the no1se 

level 1s low, then the matnx w1ll be 11 almost 11 rank one. In other 

words, the matr1x w1 11 have one dom1 nant e1genva 1 ue. For non-square 

matr1ces, the dom1nant e1genvector (of the column space) correspond1ng 

to the dom1nant e1genvalue 1s found us1ng s1ngular value decom

posltlon. It can be shown that th1s dom1nant e1genvector 1s an opt1mum 

least-squares est1mate for the values of Q. Thus, the most s1gn1f1cant 

e1genvector of the column space of the Q matr1x 1s an est1mate of Q as a 

funct1on of depth or rece1ver pa1r number. Th1s method can be compared 

to an opt1mum (least squares) we1ghted sum of the columns of the Q 

matnx. 

Est1mat1on of Q from power spectra 1s an 111-posed problem because 

small errors 1n the spectral est1mate may lead to large errors 1n the 

f1nal est1mate of Q. Even for s1mple add1t1Ve 1nput no1se models, the 

no1se d1tr1but1on wh1ch contam1nates the Q est1mate cannot be wr1tten 1n 

closed form. Rather, the errors 1n Q est1mat1on can only be analyzed 

us1ng computer s1mulat1ons. These s1mulat1ons show that even 1f the 

1nput no1se 1s Gauss1an, the error 1n attenuat1on est1mat1on can be 

h1ghly non-Gauss1an. So, est1mators wh1ch are more robust than least

squares methods, and thus less sensltlVe to very bad data po1nts, are 

needed for more rel 1able est1mates of Q. Several classes of robust 

est1mators and the underly1ng pr1nc1ple of max1mum l1kel1hood est1mat1on 

are 1ntroduced 1n Chapter III. 



33 

Robust est1mators of attenuat1on are also "Just1fled" 1n Chapter 

III. A fa1rly s1mple model for no1se 1n attenuat1on est1mat1on 1s also 

1ntroduced 1n that chapter, and several types of robust est1mators are 

tested and compared for var1ous no1se models us1ng computer s1mu

lat1ons. These est1mators are also compared w1th some of the prev1ously 

d1scussed least-squares methods on the new no1se models 1ntroduced 1n 

Chapter III. 

More real1st1c no1se models appl1cable to acoust1c log data are 

1 ntroduced 1 n Chapter IV. The effect of the no1 se m these mode 1 s on 

the attenuat1on est1mate from vanous robust est1mators 1s analyzed. 

Computer s1mulat1ons are used to compare these robust est1mators w1th 

other types of est1mators, 1nclud1ng med1an, mean, -tr1mmed mean, and 

least-squares est1mators. The compansons are based upon accuracy of 

the est1mat1on, ab1l 1ty to handle non-assumed no1se d1stnbut1ons, and 

computat1onal cons1derat1ons. 

The models used to s1mulated borehole propagat1on to th1s po1nt are 

fa1rly s1mple, one d1mens1onal, 1deal1Zed models. These models do not 

1nclude geometr1cal spread1ng losses and other compl1cat1ons due to the 

borehole 1tself. The tun1ng effect of the borehole act1ng as a wave

gu1de may result 1n geometncal losses wh1ch may not conform to the 

losses pred1cted by theory. In add1t1on, these losses may be very 

dependent on frequency. Therefore the robust est1mat1on methods as well 

as s1mpler least-squares methods (spectral rat1os, e1genvector decom

posltlon) should be tested on more real1st1c data. Chapter IV also 

conta1ns a d1scuss1on of the test1ng of the above est1mators on "real-

1st1c" borehole model data from Conoco. 
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As a f1nal test of the Q-est1mat1on algor1thms, the1r performance 

on real full waveform son1c data 1s evaluated. Unl1ke the models, the 

actual value of Q 1s unknown. Therefore the preformance of the estl

mators 1s more d1ff1cult to determ1ne s1nce the 11 answer 11 rema1ns un

known. The real data used for th1s study comes from son1c logs from 

Conoco's borehole test fac1l1ty, and some results from th1s data are 

also g1ven 1n Chapter IV. 



CHAPTER II 

LEAST SQUARES ATTENUATION ESTIMATION METHODS 

The spectral rat1o method 1s the fundamental method of attenuat1on 

est1mat1on. In order to develope an understand1ng of attenuat1on est1-

mat1on 1n general and the spectral rat1o method 1n part1cular, the 

performance of the spectral rat1o method on s1mple model data 1s an

alyzed. In add1t1on, the effects of no1se and zeros 1n the source 

spectra on the spectral rat1o method are stud1ed. S1nce add1ng a con

stant to the d1agonal of the autocorrelat1on matr1x 1n the W1ener f1lter 

method roughly corresponds to wh1ten1ng the spectra of the rece1Ved 

s1gnals, then the W1ener f1lter method should be able to handle spectral 

zeros better than the spectral rat1o method. So, the W1ener f1lter 

method 1s also analyzed w1th regard to the effects no1se and spectral 

shape have on the attenuat1on est1mate. Th1s method 1s also compared to 

the spectral rat1o method. 

There are other attenuat1on est1mat1on methods wh1ch are d1fferent 

from the spectral rat1o from JUSt two adJacent rece1Vers. F1rst, re

member that an est1mate of attenuat1on can be calculated from every 

frequency value used 1n the spectral rat1o method, rather than Just one 

value of Q from the best-flt l1ne through many frequency po1nts. Th1s 

1s assum1ng that geometr1cal spread1ng has already been accounted for. 

These Q est1mates can be cast as a matnx where the row number cor

responds to the rec1ever pa1r from wh1ch the Q-est1mate 1s made, and the 

35 
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co 1 umn number corresponds to frequency. Then for a reasonab 1 e mode 1, 

th1s leads to a new techn1que where the dom1nant e1genvector of the 

column space of the data matr1x forms an opt1mum est1mate of Q for each 

recelVer pa1r. These recelVer pa1rs correspond to depth. Th1s forms 

the bas1s of the e1genvector decompos1t1on techn1que for the est1mat1on 

of attenuat1on. The e1genvector decompos1t1on method should perform 

better than the spectral rat1o method for data w1th spectral zeros. To 

evaluate th1s method, 1t 1s compared to both the W1ener f1lter and 

spectra 1 rat 1 o methods on sever a 1 data sets. These data sets conta 1 n 

var1ous levels of no1se and some of the data sets are from sources w1th 

spectral zeros. 

2.1 Numer1cal Model1ng of the Spectral 

Rat1o and W1ener F1lter Methods 

S 1 nee many researchers have used the spectra 1 rat 1 o method or a 

vanant of 1t, 1t 1s worthwh1le to show a few s1mple examples to 11-

lustrate the use of the method. Cons1der a s1ngle layer, one-d1men

S1onal model w1th the follow1ng parameters 

rece1ver spac1ng 2 ft. 

veloc1ty 10,00 ft./sec. 

Q 50 

no1se 1% 

Also, cons1der the broad-banded, cos1ne shaped spectrum 1s shown 1n 

F1gure 4a for the 1nput. The frequency range for th1s example 1s 10 kHz 

to 30 kHz. The spectrum of the s1gnal after attenuat1on by the s1ngle

layer model w1th the above parameters 1s shown 1n F1gure 4. F1gure 5 

shows the log spectral rat1o, SR(w) (see Equat1on 6) for th1s data set. 
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TABLE I 

AVERAGE 0 ESTIMATE AND STANDARD DEVIATION OF THE ESTIMATE 
FOR SOURCE FROM riGURE 4A 

SNR 

10000. 
1000. 
100. 
10. 
1. 

Average Q Est1mate 

50.1 
50.1 
49.6 
49.8 
59.5 

Standard Deviation of Est1mate 

TABLE II 

1.3 
0.2 
4.0 

14.4 
539. 

AVERAGE 0 ESTI~~TE AND STANDARD DEVIATION OF THE ESTIMATE 
FOR SOURCE FROM FIGURE 7 

SNR 

10000. 
1000. 
100. 
100. 

Average Q Est1mate 

50.9 
50.3 
295 
56.3 

Standard Dev1at1on of Est1mate 

3.3 
9.3 
1900 
28.7* 

*Us1ng the best 90 of 100 tr1als from the l1ne above. 
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To more accurately s1mulate the borehole env1ronment, Gauss1an 

no1se has been added to the rece1ved spectra w1th the no1se power level 

of one percent of the s1gnal power. F1gure 6a shows the spectrum of the 

s1 gnal after attenuat1 on and w1 th the no1 se added on a typ1 cal test 

run. The log spectral rat1o 1s shown 1n F1gure 6b, and the attenuat1on 

est1mated by the least-squares f1t 1s Q = 47 8, and the root-mean-square 

error of the f1t 1s 0.048. 

In order to ga1 n a better understand1 ng of the accuracy of the 

attenuat1on est1mate, the exper1ment descr1bed above was repeated 100 

t1 mes w1 th the same parameters. The average va 1 ue of Q was 49.6, and 

the calculated standard dev1at1on was 4.0. So, Q could be calculated 

fa1rly rel1ably 1n th1s case. Table 1 shows the average and standard 

dev1at1on of Q for var1ous s1gnal-to-no1se rat1os. 

Next, let us cons1der spectra that have both uncorrelated no1se and 

zeros. F1gure 7 shows a source spectral shape from Aron et al (1978), 

and the source obv1ously has a zero 1n 1ts spectrum The effect of th1s 

zero on the numer1cal calculat1ons 1s very s1gmf1cant. Assum1ng the 

borehole behaves as a l1near system, then very l1ttle energy w1ll pro

pagate w1th frequenc1es 1n the v1c1n1ty of the zero. Thus the spectral 

rat1o w1ll be the rat1o of a small number to (perhaps) an even smaller 

number. Th1s obv1ously leads to numer1cal 1nstab1l1t1es. Furthermore, 

s1nce random no1se may be present at all frequenc1es, overwhelm1ng the 

s1gnal near spectral zero, then the spectral rat1o may 1nvolve rat1os of 

no1se to no1Se. Th1s leads to completely unrel,able spectral rat1o 

est1mates, w1th potent1ally very h1gh errors 

Th1 s spectral rat1 o method 1 s unable to handle the more real 1 st1 c 

case of a source w1th spectral zeros (see F1gure 7) and add1t1ve random 
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no1se. To demonstrate th1s, the same model as before was used The 

spectral rat1o method was used on th1s data set, w1th and w1thout 

no1se. When the full frequency range (7-25 kHz} was used to calculate 

Q, negat1ve (non-phys1cal) values of Q resulted. When the frequency 

range was reduced to 1nclude JUSt the ma1n lobe (7-12 kHz}, the results 

are much better. Table 2 11 sts average Q est1mates, and the standard 

dev1at1on of the est1mate for several d1fferent no1se levels. Wh1le the 

spectral rat1o method works for a l1m1ted bandw1dth, 1t 1s unable to 

handle the spectral zero 1n the presence of any s1gmf1cant amount of 

no1Se. 

Table 3 l1sts the est1mated Q and the standard dev1at1on 1n the 

est1mate of Q at vary1 ng no1 se 1 evel s for the sorce spectrum shown 1 n 

F1 gure 7 (over the full 7-25 kHz frequency range}. Compared to the 

spectral rat1o method, the W1ener f1lter method does a much better JOb 

of Q est1mat1on when the source spectrum has zeros. However, the W1ener 

techm que 1 s also very sens1 tlVe to parameter ch01 ce. In order to 

stab1l1Ze the est1mate of Q when the source spectrum conta1 ned zeros, 

the autocorrelat1on matr1x (see Equat1on (10}} must be d1agonally 

loaded As prev1ously ment1oned, th1s 1s approx1mately equlValent to 

add1ng wh1te no1se to the spectrum of the 1nput s1gnal. Unfortunately, 

the Q-est1mate 1s very sens1t1ve to the amount of d1agonal load1ng If 

there 1s too l1ttle d1agonal load1ng, then the attenuat1on est1mate w1ll 

be poor due to the prev1ously ment1oned spectral zeros. If too much 

d1agonal load1ng occurs, then the errors 1nduced by the load1ng 1tself 

cannot be corrected. 

For the s1ngle examples, 1t has proven poss1ble to set the load1ng 

and threshold parameters to get reasonably accurate answers (of course, 



SNR 

10000. 
1000. 
100. 
10. 

TABLE III 

AVERAGE 0 ESTH1ATE AND STANDARD DEVIATION OF THE IIIENER 
METHOD ESTIMATE FOR SOURCE FROM FIGURE 7 

Average Q Est1mate 

50.6 
50.8 
51.7 
52.6 

Standard Dev1at1on of Est1mate 

3.0 
10.1 
27.3 
47.9 
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the Q 1s already known). It appears that by not1c1ng the change 1n Q 

est1mates versus the two parameters, 1t 1s poss1ble to p1ck values 

correspond1ng to good est1mates, by choos1ng parameters such that small 

changes 1n the parameters lead to very small change 1n Q. Unfortuately, 

for mult1-layered models (correspond1ng to data from a mult1-rece1Ver 

tool), choos1 ng the correct parameters becomes much more d1 ff1 cult. 

Because the Q va 1 ues d1 ffer, and because the spectra 1 shape of the 

s1gnal changes as 1t propagates through the model, the "best" cho1ce of 

the parameters 1 s d1 fferent for the d1 fferent 1 ayers ( correspond1 ng to 

d1'fferent rece1Ver pa1rs from the same tool). For a "no1sy11 source w1th 

spectral zeros, 1 t has not proved poss1 bl e to p1 ck the correct para

meters well enough to make rel1able est1amte of Q vs depth. Therefore, 

the W1ener f1lter method may not prove to be pract1cal for "real world" 

well log data, and 1t 1s dropped from further cons1derat1on. 

2.2 Matr1x Representat1on of Data 

Most of the techn1ques d1scussed so far use or are based upon the 

method of spectral rat1os to actually est1mate the attenuat1on coef-

f1c1ent, Q Unfortunately, as examples have shown and several authors 

have po1nted out, the spectra of rece1Ved s1gnals typ1cally have zeros 

or "nulls .. 1n them. These zeros result 1n extreme 1nstab1l1ty 1n the 

calculat1on of Q from the slope of the spectral rat1o plot. S1nce the 

s1gnal values 1n the frequency range surround1ng a zero 1s low, the 

no1se may predom1nate. Furthermore, s1nce a spectral zero at onere

ce1ver frequency means a spectral zero at an adJacent rece1ver, then the 

spectral rat1o at the frequency correspond1ng to the zero represents the 
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rat1o of no1se to no1se. Therefore, 1n the v1c1n1ty of a spectral zero 

the calculated values of the spectral rat1o may be very 1naccurate 

Several of the papers d1scussed earl1er conta1n var1ous methods of 

deal1ng w1th the problem of relat1vely mean1ngless data 1n some spectral 

reg1ons of the spectral rat1o. One approach 1s to only use data from 

the spectral peak, where the s1gnal-to-no1se rat1o 1s presumably the 

best. Cheng, Toksoz, and W1ll1s (1981 and 1982) measured the ampl1tude 

decay of the spectral peak, and from th1s Q 1s est1mated. Th1s does 

solve the problem of spectral zeros However, the spectrum may be 

contam1nated by no1se even at the peak, and only us1ng the peak value 

1gnores mean1ngful data at other frequenc1es. Note the d1fference 

between th1s and the spectral rat1o method, where all frequenc1es are 

treated equally 

An effect1ve method of treat1ng the above problem 1s to we1ght the 

frequenc1es used 1n the Q-est1mate accord1ng to the rel1ab1l1ty of the 

data. Cons1der the approach by Goldberg, Kan, and Castagna (1984), 

where the parameters are est1mated by m1n1m1z1ng the error between the 

pred1cted model and the data, w1th the error we1ghted by s1gnal power 

The follow1ng 1s an alternat1ve formulat1on of the problem wh1ch leads 

to some useful results and 1t allows we1ght1ng of d1fferent parts of the 

spectrum by d1fferent amounts. 

2.3 E1genvector Decompos1t1on 

The def1n1t1on of the spectral rat1o, SR(l) (Equat1on 8) can be 

general1zed from 2 rece1vers to m rece1vers, and can be wr1tten as 

Q ( 1} = Xl 1 ( 29) 
1 -zc,- _ l n [ R1 { I ) J 

R,_l (l)j 
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where, X = recelVer offset, w = frequency, c1 = phase ve 1 oc1 ty for the 

strata between the depths of recelVers R1 and R1_1, R1 (w) 1s the re

ce1ved spectrum of the 1th rece1ver, and Q1 1s the correspond1ng atten-

uat1 on est1mate. Th1s equat1on only holds true 1f the geometr1cal 

spread1ng losses are prev1ously accounted for. For the t1me be1ng, all 

frequency 1ndependent losses (such as spread1ng loss and poss1bly flu1d 

borehole coupl1ng) are assumed to have been corrected for. 

Equat1on (29) represents an est1mate of Q based upon one frequency 

po1nt and 1f Q 1s chosen to be the frequency of the spectral peak, then 

th1s 1s essent1ally the est1mator used by Cheng, Toksoz, and W1ll1s 

(1981 and 1982) However, th1s s1ngle data po1nt may be contam1nated by 

no1se, and 1f w corresponds to a spectral zero, then the calculated 

spectral rat1o may conta1n no useful 1nformat1on In terms of d1screte 

frequency, w can be wr1 tten as w = J {~w) = wJ , where wJ l s the Jth 

frequency value. Then the attenuat1on measurements from one shot w1th a 

mult1-rece1ver tool can be wr1tten as a matr1x A, where the (1,J) ele

ment of A 1s 

1 (30) 

-ln [::~:~w~. 
In th1s form, each element aJ) of the matr1x A represents an est1-

mate of Q from the 1th rece1ver pa1r at and the Jth frequency The rows 

of A correspond to Q est1mates for a 91 ven rece1 ver across all fre

quenc1es, and the columns of A correspond to Q est1mates for a g1ven 

frequency for all the recelVers If the data were perfect (no no1se) 

and assum1ng the constant-Q model holds, then all of the columns would 

be the same Therefore A w1ll be rank one, and the non-zero e1genvector 
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of the column space of A (an e1genvector of AAT) 1s proport1onal to the 

1dent1cal columns of A. 

Of course, any real data w1 11 have nolSe and the rank of A w1 11 

never be one. But, s1nce the columns should be nearly the same, then 

one e1 genval ue of A w1 11 be much 1 arger than the rest, and the cor

respondlng e1genvector of the column space w1ll be a good est1mate of 

the columns of A. In fact, the follow1ng w1ll show that the e1genvector 

of the column space of A correspond1ng to the largest e1genvalue 1s the 

same as the vector most nearly parallel to the columns of A Further-

more, th1s vector 1s also a m1n1mum mean square error est1mate for the 

columns of A. 

Let us cons1der the s1ngular value decompos1t1on of an M by N real 

matr1x A, wh1ch can be expressed as 

A = uovT (31) 

where U and V are orthonormal matr1 ces determ1 ned by the e1 genval ue -

e1genvector decompos1t1on. Th1s decompos1t1on leads to 

where (T) represents transpose The mart1x D has the general form 

[~1 ~ J (33) 

where o1 1s a d1agonal matr1x w1th 

o1 = d1a (d1,d2, ,dk) 

and 0' s are null matr1ces of appropr1ate d1mens1ons The d1 agonal 

entr1es 1n o1 are pos1t1Ve square roots of the nonzero e1genvalues of 
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AAT or ATA For future use, we w1ll assume that the d1agonal values 1n 

o1, d1,d2, ••• dk, are ordered. That 1s, 

Now, we want to def1ne a column vector~ that 1s most nearly par

allel to the columns of A. In other words, we want to f1nd a column 

vector c such that 

E = ~ S (A - £} T (A - £} 
1 =1 1 1 

(34} 

1s m1mmum, where ~1 1s the 1th column 1n A and c 1s constra1ned such 

the c T c 1s a constant, say one The error E can be expressed as 

N N 
E = ( ~ AT A } + (N(cTc}} - 2 ~ AT c 

1=1 -, -1 1'=1 -1 -

where the f1rst two terms are pos1t1ve. It 1s clear that E 1s m1n1m1zed 

when the 1 ast tern 1 s max1 m1 zed. The vector c can be determ1 ned by 

max1m1z1ng (~~~ £} 2 , wh1ch can be wr1tten as 

(35} 

Expand c 1n term of columns of U, where U 1s def1ned 1n Equat1on 

( 31} Th1 s 1 s, 

c = u b (36} 

Subst1tut1ng Equat1on (36} and (32} 1nto Equat1on (35} y1elds 

c = bTuTucooT>uTub. 

Let b1 be the 1th component of b. S1nce cT~ = bT~, then choos1ng a~ to 

max1m1ze C 1s equ1valent to choos1ng bT = [1 0 

state the follow1ng theorem 

0] Therefore we can 

Theorem 1 The column vector~ 1s the e1genvector correspond1ng to the 

1 argest e1 genval ue d1 of the symmetn c matr1 x A.B. T. 
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In the above analys1 s we assumed that the vectors Al are deter

m1n1st1c. We can general1ze th1s by wr1t1ng the matr1x A 1n the form 

(37) 

where x 1s an M d1mens1onal column vector and ..!!_1, 1=1,2, •• ,N are M 

d1mens1onal notse vectors, where the entr1es are from N(O,s~) That 1s, 

n1J' the (1,J) entry 1n theM by N matr1x g1ven by 

y = [ .!!J. .!!2 • .!!N ] ' 

sat1sf1es the follow1ng n1J 1s a wh1te Gauss1an random var1able, w1th 
n1J 

s2 1f 1 = k and J = 1 
E[ n1Jnkl] = 0~ otherw1se (38) 

Note that the entr1 es 1 n A are really est1mates of Q and also the pur

pose of the model 1n (36) for the matr1x A 1s to model the case when the 

rece1 ved spectra have zeros or nulls. Th1 s means that for some fre

quenc1es, the correspond1ng columns 1n A w1ll conta1n data co~tam1nated 

by no1se, wh1le other columns w1ll conta1n more rel1able data. 

If A 1 s as 91 ven 1 n Equat1 on ( 36), then f1 nd1 ng a vector c to 

m1 m m1 ze the error (£. - ~) T (_£ - ~) from A corresponds to f1 nd1 ng a _£ to 

max1m1ze cTx subJect to the prev1ously ment1oned constra1nt on.£· Th1s 

1 s the same _£ wh1 ch max1 mlZes E( c TAA T c), where E 1 s the expected value 

operator. Therefore, the e1genvector correspond1ng to the largest 

e1genvalue of AAT 1s an opt1mum (least squares) est1mate of the deter-

m1 n1 st1 c vector x S1 nee the elements of A are actually Q est1mates 

descr1bed by Equat1on (32), then~ 1s an opt1mum est1mate of frequency 

1ndependent Q values as a funct1on of depth 
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Th1s 1nterest1ng approach of est1mat1ng the values of Q as a func

tlon of depth us1ng e1genvectors 1s not free from problems when the data 

matr1x 1s as modelled 1n equat1on (36}. The problem results from the 

fact that the matr1x, E(AAT}, 1s not rank 1 due to the no1se Let the 

matr1x X cons1st1ng of n 1dent1cal column vectors be wr1tten 1n the form 

X = [x x •• x] (39} 

Then from Equat1ons (38} and {39}, we have 

AAT = xxT + xvT + vxT + yyT 

From th1s 1t follows that 

{40} 

where I 1s an 1dent1ty matr1x of d1mens1on M and E 1s the expected value 

operator. From (40}, 1t follows that the rank of E(AAT} 1s M, and not 

equal to 1 The effect of the var1 ance of the no1 se 1 s to add a pos-

1t1ve constant to the e1genvalues, but the e1genvectors rema1n un-

changed Therefore, wh1 1 e the no1 se does change the structure of the 

AA T matr1 x, the e1 genvector correspond1 ng to the 1 argest e1 genval ue 

should st1ll be a reasonable est1mate of the vector x. 

The e1 genvector decompos1 t1 on method us1 ng the e1 genvector cor

respondl ng to the most s1 gn1 f1cant e1 genval ue can be eas1 ly and ef

flClently 1mplemented by the power method (Golub and Van Loan, 1983}. 

Th1s s1mple 1terat1ve method converges to the e1genvector correspond1ng 

to the dom1nant e1genvalue prov1ded the e1genvalue 1s larger 1n mag-

n1 tude than the second 1 argest e1 genval ue 1 n magn1 tude In fact, the 

rat1o of the largest to second largest e1genvalue controls the rate of 

convergence. So, as long as the constant-Q model holds and the no1se 1s 
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not too large, the algor1thm converges fa1rly qu1ckly to the dom1nant 

e1genvector. 

Th1s method of s1gnal est1mat1on was tested w1th a model based upon 

Equat1on (37). The results were 1n1t1ally worse for the e1genvector 

algor1thm than for s1mply averag1ng the columns. The reason appeared to 

be because the real1zat1ons of AAT were frequently qu1te d1fferent from 

1ts expected value. Th1s resulted 1n the yyT matr1x not be1ng 

d1agonal. Furthermore, the d1agonal values, wh1le usually larger than 

off d1agonal values, were not at all the same. To s1mulate data from a 

typ1cal tool from only one shot, w1th e1ght rece1ver pa1rs, an e1ght by 

e1ght matr1x was used to s1mulate (AAT). Obv1ously, th1s 1s not a large 

enough sample. 

The results were drast1cally 1mproved when the d1agonal entr1es 1n 

(AAT) were mod1f1ed to make the rank of the matr1x as close as poss1ble 

to rank one. Th1 s construct1 on actually 1 nvol ves add1 ng a d1 agonal 

matr1x, say d1a (a1,a2, •• aM), such that the matr1x S = (AAT) + 

d1a(a1,a2, •• ,aM) 1s close to a rank 1 matr1x. Note that th1s handles a 

more general case than the case where a1's are equal. The d1agonal 

entr1es are computed success1vely by us1ng the follow1ng method F1rst, 

note that the determ1nants of all 2x2 submatr1ces of a rank 1 matr1x are 

all zero. Second, assum1ng that a1,a2, •• a1_1 are computed earl1er, and 

assum1ng further ak = 0, k>l+1, compute all poss1ble 2x2 subdeterm1nants 

of S 1 nvol v1 ng s11 • Clearly, these determ1 nants w1ll have a1 as a 

var1able. Now compute a set of a1 to make these determ1nants be zero 

Then, use the med1an of that set for a1 Once all the values of a1 are 

computed, then the process can be repeated. Th1 s resulted 1 n a s1 g

nlflcant 1mprovement over s1mply averag1ng the columns. 
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The follow1ng der1vat1on from Lanczos (1961) shows that~' the most 

s1gn1f1cant e1genvector of the column space of theM by N matr1x A, 1s a 

we1ghted sum of the columns of A. Let 

s = [:r :] 
be a (M+N) by (M+N) matr1x. S1nce S 1s a normal matr1x, 1t has (M + N) 

orthogonal e1genvectors. Let 

c 
w = g 

~e the e1genvector of S correspond1ng to the largest e1genvalue, denoted 

by d. Then the e1genvalue equat1on 1s 

Sw = dw 

Th1e 1mpl1es Ag =de, and AT~= dg. 

Therefore,~ 1s a we1ghted sum of the columns of the matr1x A, where the 

we1 ghts are proport1 onal to the elements of .[· 

Recall that c 1 s constra1 ned such that c T c = 1. Th1 s 1 s con-

ven1ent s1nce ~' the solut1on to an e1genvector 1s f1xed 1n terms of 1ts 

d1rect1on but not 1ts length. In orther words, ~ 1s only determ1ned to 

w1th1n an overall scale factor. 

To be used as an est1mate of the vector ~' c must be rescaled 1n 

ampl1tude. Idealy, 

where q 1s scale factor. But s1nce x 1s the unknown, xT~ must be 

approx1mated, the approx1mat1on used here 1s the follow1ng. Denote the 

average of the columns of the matr1x A by the vector a. Then approx1-

mate the value of x T~ by aT.! 
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An alternate way to formulate the problem 1s to f1nd an opt1mum, 

unb1ased solut1on. Th1s 1s accompl1shed by d1rectly solv1ng 

ATAg = d2..[ 

for ..[· Then, resca 1 e .£ to a new vector c 1 where 

C 1 = ~A..[ 

If g 1s normal1zed so that 

N 
d = :E g 

J=l J 

where the gJ 1 s are the elements of g, then c 1 would be an unb1 a sed 

est1mate of x. 

The we1 ghts for an opt1mal we1 ghted sum of the columns of A can 

also be calculated us1ng stra1ght forward least squares m1n1m1Zat1on. 

Let 

N 
C = :E ~ JWJ 

J=l 

Then choose wT = [w1, w2, 

and the ~ vector 

M 
E1 = E[ ~ (c1 - x )2J 

1=1 1 

(41) 

:t 
• , wN] such that the square error between .£ 

(43) 

1 s m1 mmlZed, where c1 and x1 are the 1 th elements of the vectors .£ and 

x, respectlVely. In order to match the assumpt1ons used 1n the e1gen

vector decompos1t1on est1mat1on, an appropr1ate constra1nt on CT.£ must 

be made. Such a constra 1 nt could take the form E ( c T c) = x T x. Add1 ng 

th1s constra1nt to (38) and us1ng the Lagrange mult1pl1er approach would 

result 1n a new error funct1on 
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E2 = E[ ~ (c1 - x1)2J + p[E(cT~) - xTx] 
1=1 
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(43) 

where p 1s the Lagrange mult1pl1er. F1nd1ng the opt1mum we1ghts, !_, 

would 1nvolve sett1ng 

oE2 
- = 0 for k = 1, 2, •• , 
owk 

oE 
Nand - 2 = 0 oP 

Unfortunately th1s leads to a system of non-l1near equat1ons for wh1ch 

no closed form solut1on ex1sts. Therefore, the equat1ons can only be 

solved numer1cally. 

The above constra1nt opt1m1Zat1on problem, due to 1ts lack of 

s1mple solut1on, does not lead to an understand1ng of the propert1es of 

the we1gted sum formulat1on. However, m1n1m1z1ng the errer E 1n Equa

t1on (42) w1th an unba1sed constra1nt does lead to a s1mple solut1on. 

Further, the propert1es of th1s solut1on should approx1mate those of the 

constra1ned least-squares problem 1n Equat1on (43). The unb1ased con

stra1nt 1s that 

N 
~ w = 1 

J=1 J 
(44) 

wh1ch guarantees E(c) = x. For th1s constra1nt, def1ne the error func-

t1on E3 by 

M N 
E3 = E[ ~ (c - x )2] + p( ~ w - 1) 

1=1 1 1 J=1 J 

Sett1ng 

oE3 
owk - 01 for k = 1, 2, • , N 

leads to 



S1nce a1J = x1 + n1J, then 

E(a1J • a1k) = x12 + uk2 8Jk 

and 

E(x1 a1k) = x12. 

Th1s reduces to 

thus, 

M N 2 2 2 
2; ( ~ WJ ( x1 + Uk 8Jk) - x1 ] + p = 0 

1=1 J=1 

M 2 N 2 
~ x1 ( ~ WJ - 1 ) + M wk u k + p = 0 

1=1 J=1 

But the constra1nt, Equat1on (44), reduces th1s to 

w = -P 
k M 2 (Tk 

Apply1ng the constra1nt, Equat1on (44), to (45) g1ves 

(-P) = 1 k 1 2 ~ =, , •• ,N 1'1 N 1 
~ 

J=1 7 

(45) 

(46) 

S1nce these we1ghts, wk, are a funct1on of the column var1ances, 

uk 2, they cannot be used on real data because the column var1 ance are 

not known. However, 1t 1s poss1ble to est1mate these var1ances from the 

data. Unfortunately, there w1ll be errors 1n the est1mat1on of the 

var1ances wh1ch w1ll 1n turn effect the results 1n the est1mat1on of the 

we1ghts These errors w1ll 1 ead to 1 ess than opt1 rna 1 performance and 

may, 1n some cases, result 1n worse performance than a s1mple average of 

the columns. Equat1 on ( 46) does prov1 de useful 1 nformat1 on, however 

56 
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The 1 deal we1 ghts can be used to calculate the expected value of the 

m1n1mum square error, Em,n' wh1ch would result from an opt1mum we1ghted 

sum of the columns. The error should serve as an approx1mate lower 

bound for the error from the e1genvector est1mator as well as for the 

error from any we1 ghted sum of the column of A. The max1mum expected 

error of a we1ghted sum of columns would actually be M umax2, where 

umax 1s the var1ance of the "worst" column. However, the error us1ng 

the s1mple column average should serve as a reasonable upper bound for 

most data correspond1ng to the Gauss1an model used here (see Equat1on 

(36)). 

Subst1tut1ng Equat1on (42) 1nto (43) and calculat1ng the error, E3, 

results 1n 

wh1ch becomes 

M N N 2 
E3 = E z [x1 ( ~ wJ - 1) + ~ w • n1 J] 

1=1 J=1 J=1 J 

Th1s s1mpl1f1es to 

If a s1mple average 1s computed, then w=1/N and 

M N 2 
Eavg = ::Z ~ uJ 

N J=1 

If the opt1mum we1ghts g1ven by Equat1on (45) are used, then 

M 
= ......,Nn---1-

~ 

J=1 ~ 
J 

(47) 

(48) 

(49) 

Accord1ng to G1ml1n, Keener, and Lawrence (1982), 1t can be shown, us1ng 
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Cauchy•s 1nequal1ty and the theorems of ar1thmet1c and geometr1c means, 

that 

N N 
~ 2 ~ 1 > N2 

{TJ ~-
J=1 J=1 CT 

J 

Th1s 1s suff1c1ent to prove that 

= M < 
N 1 
~ 

J=l uJ2 

w1th equal1ty occur1ng when uJ = u. 

2.4 Results of E1genvector Decompos1t1on 

To test the e1genvector est1mator, and to compare 1t w1th s1mply 

averag1ng the columns, a matr1x A 1s generated to match the model g1ven 

by Equat1on (37}. Remember from Equat1on (37), that the (l,J) element 

of the matr1x A 1s g1ven by 

a1J = x1 n1J, 1=1, 2, •• , M, J=1, 2, •• , N 

The "s1gnal" vector~ 1s composed of elements wh1ch are computer gen

erated, pseudo-random numbers from a probab1l1ty dens1ty funct1on wh1ch 

1 s um from on ( 0,1). The no1 se vectors, ..!!.1' are composed of random 

numbers wh1ch are N(O, u ,2>. The column var1ances, u,2, are umform 

random var1ables wh1ch are un1form on the 1nterval (0, Vmax), where Vmax 

1s the user determ1ned max1mum no1se var1ance. 

The e1genvector est1mator was used to est1mate the s1gnal vector,x, 

from the model data For each test, the total square error between x 

and 1ts est1mate was calculated In add1t1on, a med1an est1mator wh1ch 

calculates the med1an of {a11, a12 , •• , a1N} for 1 = 1, 2, •• , M,and a 

column average est1mator wh1ch calculates the average (mean) of {a11 , 
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a12 , •• , a1N} for 1=1, 2, • , Mare also used on the model. The total 

square error for these methods was calculated. Based on the values of 

the randomly generated varunces, the werghted-sum m1 mmum error from 

Equat1 on ( 41) 1 s computed for compar1 son w1 th actua 1 errors. The re

sults are shown 1n Table IV For every row l1sted 1n Table IV, a s1gnal 

vector x and a set of column var1ances are generated. Column one l1sts 

the max1mum column var1ances for the row, wh1ch 1s actually the upper 

l1m1t of the umform d1str1but1on from wh1ch the column var1ances are 

chosen Once the s1gnal vector and column var1ances are determ1ned, ten 

sets of no1se vectors are generated. For each set of no1se vectors, the 

square errors of the prev1ously ment1oned est1mators are calculated and 

the average square errors from the 10 sets are 11 sted 1 n appropr1 ate 

columns. For the data shown 1n Table IV, the s1ze of matr1x A chosen to 

be 10 by 10 (M = N = 10). 

Note that 3 to 4 runs were made at each l1sted level of max1mum 

column var1 ance. Each run used a d1 fferent s1 gnal vector and no1 se 

(column) var1ances and 10 sets of no1se vectors to calculate average 

errors. Surpr1s1ngly there 1s a large var1at1on error levels. Unfortu

nately, th1s makes conclus1ons regard1ng the relat1ve performance of the 

est1mators d1ff1cult. There are, however, several 1mportant obser-

vat1ons wh1ch can be made from th1s data. The e1genvector est1mator 

outperformed the average for all cases except when the no1 se var1 ance 

(max1mum = 1 0) 1s greater than the average s1gnal power, wh1ch 1s E(s2} 

= 1/3. Clearly, poorer est1mates of opt1mum we1ghts should result from 

large no1se var1ances S1nce the e1genvector est1mator 1mpl1c1tly uses 

a set of opt1 mum we1 ghts (the vector ~ 1 n equat1 on ( 39)), then 1 ts 

performance should depart from the opt1mum atta1nable from Equat1on 
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TABLE IV 

TOTAL SQUARE ERROR IN SIGNAL ESTH1ATION 

Maximum E1genvector Average Med1an M1nimum 
No1se Var1ance Error Error Error Error 

0.0001 1.7x1o-~ 1.9x10-~ 7.4x1o-~ 1.3xlo-g 
0.0001 4.5xlo-9 4.8x1o-9 4.2x1o-9 3.0x1o-11 
0.0001 3.2x10- 3.7x1o- 5.0x10- 2.8x10-

0.001 3.5x1o-~ 3.8x10-~ 4.7x10-~ 1.3x10-~ 
0.001 3.3x10-7 3.8x1o-9 1.6x1o-7 2.2x1o-8 
0.001 3.0x1o- 3.4x1o- 1.8x1o- 5.0x1o-

0.01 2.5x1o-~ 2.8x1o-~ 3.2x10-~ 1.4x10-~ 
0.01 2.9x1o-5 3.3x1o-5 1.3x1o-6 2.1x1o-7 
0.01 1.2x10-5 1.3x1o-5 3.7x1o-5 1.9x1o-6 
0.01 4.4x1o- 5.0x10- 3.9x10- 7.5x10-

0.1 2.9X10-~ 3.2x10-~ 2.2x1o-~ 6.0x1o-~ 
0.1 6.0x1o-3 6.6x1o-3 7.1x1o-3 1.7x1o-4 
0.1 3.8x10-3 4.3x1o-3 2.0x1o-3 9.4x1o-4 
0.1 3.5x1o- 3.6x1o- 2.7x10- 1.2x1o-

1.0 .60 .44 .45 .12 
1.0 .66 .49 .42 3.0x1o-2 
1.0 .29 .32 .32 .16 
1.0 .34 .30 .89 1.8x1o-3 
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(49) In fact, the e1genvector methods performance generally falls well 

short of the opt1 mum we1 ghted performance However, as 1 ong as the 

no1se var1ances are suff1c1ently smaller than the s1gnal var1ance, the 

e1genvector techn1que does represent a cons1derable 1mprovement over a 

s1mple column average. 

The most 1mportant th1ng to note about the results 1n Table IV 1s 

that the med1 an est1mator performed about as well as the e1 genvector 

est1mator and the column average. It 1s, however, d1ff1cult to make 

def1m te statements regard1 ng the performance of the med1 an est1mator. 

The rat1o of e1genvector error to average error 1s fa1rly constant for 

the tr1als l1sted 1n Table IV, w1th the e1genvector method hav1ng typ-

1 ca lly about ten percent 1 ower error But, the rat1 o of the med1 an 

error to the e1 genvector and average errors var1 es greatly So, a new 

method of analyz1ng the relat1ve performance 1s needed. Th1s 1s dls

cussed next. 

A table s1m1lar to Table IV 1s generated 1n a computer But 1 n-

stead of 10 sets of no1se vectors generated for every cho1ce of s1gnal 

vector, ~' and 10 column var1ances, 30 test sets of no1se are generated 

as 1nput to the est1mators. Thus the average errors that are l1sted 1n 

th1s table 1n the computer result from more tests and should be more 

rel1 able. Instead of only a few s1 gnal vectors and sets of column 

var1ances, 30 are generated Th1s means that for a part1cular max1mum 

no1se var1ance, 30 d1fferent s1gnal vectors and column var1ances are 

generated, and for each s1 gnal vector and set of column varunces, 30 

sets of no1se are generated Unfortunately, s1mply averag1ng all the 

rows w1th a part1cular max1mum column var1ance does not y1eld anyth1ng 

mean1 ngful. Th1 s 1 s because some sets of column var1 ances may have 
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s1gn1f1cantly h1gher no1se levels than others even w1th the same max1mum 

column var1ances. So, tak1ng an average of these tests would mean that 

the tests wh1ch resulted 1n h1gher errors would overwhelm those w1th 

lower errors. Thus, the average performance of the med1an compared to 

the other est1mators would tend to m1m1 c that for the tests w1 th the 

h1ghest no1se levels, obv1ously th1s 1s not good. The f1rst step to

wards comb1n1ng the data 1s to normal1ze all of the errors by d1v1d1ng 

each error by the error for the column average from the same row. Then 

the med1an of the normal1zed errors for each est1mator 1s used to repre

sent that est1mator•s relat1Ve performance for the part1cular max1mum 

column var1ance. The results are tabulated 1n Table v. In add1t1on, a 

count 1s also kept of the number of tr1als for wh1ch each of the three 

est1mators had the f1rst or second lowest average no1se levels The 

results of th1s rank1ng are shown 1n Table VI. 

S1 nee each row of Table V represents the med1an of 30 tr1 al runs 

w1 th 30 d1 fferent sets of no1 se per run, and s1 nee the results are 

normal1zed so that each tr1al 1s we1ghted about equally, then mean1ngful 

conclus1ons can be made from the data Except for no1 se var1 a nee 

greater than or equal to s1 gnal var1 a nee, the e1 genvector techn1 que 

always y1elded lower average errors than the column average. Further

more, the e1genvector error 1s typ1cally about 10 percent lower than 

that for the column average error However, the med1an est1mator per

formed even better. A typ1cal error from the med1an method 1s 30 per

cent lower than for the column average method, and 1t 1s about 20 

percent lower than for the e1genvector method From the above results, 

1t appears that the med1an 1s the super1or est1mator However, the 



Max1mum 
No1 se Van ance 

o.oooi 
0.001 
0.01 
0.1 
1.0 

TABLE V 

MEDIAN NORMALIZED ERROR FOR 30 TRIALS 
WITH 30 SETS OF NOISE PER TRIALS 

E1genvector 
Error 
0.898 
0.9000 
0.913 
0.898 
1.135 

Average 
Error 
1.0 
1.0 
1.0 
1.0 
1.0 

TABLE VI 

Med1an 
Error 
o.74o 
0.674 
0.696 
0.693 
0.683 

M1n1mum 
Error 
0.116 
0.057 
0.114 
0.112 
o.uo 

NUMBER OF TH1ES (OUT OF 30 TRIALS) EACH ESTIMATE 
RESULTS I~ FIRST OR SECOND 

LOWEST ERROR 

Max1mum E1genvector Column Average Med1an 
No1se Vanance 1st 2nd 1st 2nd 1st 2nd 

0.0001 12 18 0 7 18 5 
0.001 5 25 1 4 25 1 
0.01 11 19 0 7 19 4 
0.1 7 23 0 3 23 4 
1.0 1 4 0 24 24 2 

63 



64 

results l1sted 1n Table VI show that the med1an 1s not always the best 

est1mator. 

Each entry 1n Table VI 1s the number of t1mes, out of 30 tr1als, 

that the part1cular est1mator had the lowest or second lowest average 

error. It 1s 1mportant to keep 1n m1nd that the average error for each 

tr1al 1s actually the average error for one spec1f1c s1gnal vector and 

one set of column var1ances, averaged over 30 tr1als {30 sets of no1se} 

for the g1 ven co 1 umn va r1 ances. For ex amp 1 e, suppose one reads from 

Table VI that for a part1cular one max1mum no1se var1ance, the e1gen

vector method had the lower average error 11 t1mes and the med1an had 

the 1 ower average error 19 t1 mes Th1 s should be 1 nterpreted to mean 

that for eleven d1fferent cho1ces of a s1gnal vector and column var1-

ances, the e1genvector error {averaged over 30 d1fferent sets of no1se 

for those var1ances} was lower than the other 11 t1mes and the average 

med1an error was lower 19 t1mes. 

S1nce each one of these tnals 1s really the average of 30 tr1als 

on 30 no1 se sets, then one m1 ght say that for 19 tr1 a 1 s, the "expected 

value" of the error of the med1an est1mator 1s lower than that for the 

e1genvector method. The term "expected value" 1n quotat1on marks 1s 

really an approx1mat1 on of the expected value by an average of th1 rty 

sets of no1se. 

For the most part, the results from Table VI are as expected g1ven 

the results 1n Table V. However, there are a few po1nts about Table VI 

wh1ch need to be stated. Even when the med1an of the average errors of 

the med1 an est1mator 1 s 1 ower than for all other est1mators, the fol-

1 ow1 ng 1 s true For some no1se levels, the e1genvector techn1que re-

sulted 1n the lower average error nearly as often as the med1an 
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techn1que. Also, as often as 7 out of 30 t1mes the average error of the 

med1an est1mator 1s h1gher than the average errors for the sample aver-

age or e1 genvector method. So, the med1 an est1mator 1 s not as con-

s1stent as the other est1mator, but 1t 1s usua11y better 

The med1an outperformed the e1genvector and column average methods 

even though the 1 atter two methods are supposed to be opt1mum for 

Gauss1 an no1 se (used 1 n the tests) wh1l e the med1 an 1 s not Th1 s 1 s 

because the answer for the average est1mator 1s an opt1mum estimator of 

a parameter corrupted by Gauss1an no1se as long as the no1se var1ance 1s 

the same for every sample po1nt. Th1s obv1ously does not apply to th1s 

case as the var1ances vary a great deal. The follow1ng example from 

Huber (1981) 1llustrates th1s po1nt well. Let 

F = (1-e)X + eY, 

where X - N(O, u 2) and Y - N(O, 9 u 2) 

Here, 

N 1 N 2 I 
dN = ~ ~ lx11, SN = [ N ~ ( X) J1 2 

1=1 1=1 1 

are be1ng compared as est1mates of the scatter (var1ance) of the random 

var1able F For a s1ngle Gauss1an random var1able, sN 1s the opt1mum 

est1mator. Def1ne the asymptot1c relat1ve eff1c1ency, ARE, as 

ARE 

var(sN) 

[E( sN )]2 
= 11m 
N -oo var (dN) 

[E(dN)]2 

where var 1s the varlance operator 
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Huber shows that for e < 001, ARE(e) < 1, wh1ch means that sN 1s the 

more eff1c1ent est1mator However, for .002 ~ E ~ .998, dN 1s the more 

eff1c1ent est1mator Therefore, 1f the data departs at all from the 

nom1nal Gauss1an model, then the performance of the least-squares based 

est1mators deter1 orate rap1 dly compared to other types of est1mators 

such as the mednn est1mators. The e1 genvector method does not reach 

the potent1al lower l1m1t of error because of problems prev1ously d'ls

cussed 1n the Sect1on (2.3). Th1s leads to the search for better estl

mators us1 ng max1mum 11 kel1 hood methodology, and to the concept of 

robust est1mators wh1ch w1ll be d1scussed 1n the next chapter. 

2.5 Chapter Summary 

Many 1 east-squares based Q est1mators have been evaluated The 

W1ener f1lter method has been dropped from cons1derat1on because 1t 1s 

very sens1t1ve to the cho1ce of parameters. Further, 1t 1s not gener

ally poss1ble to set the parameters so that the est1mator works well on 

mul t1-l aye red mode 1 s The spectra 1 rat1 o method works we 11 on broad 

band data, but does not do well on data w1th a real1st1c spectrum. In 

fact, the spectral rat1o method only y1elds reasonable results when the 

bandw1dth of the est1mat1on 1s reduced to 1nclude only the ma1n lobe 1n 

the rece1ved spectrum, and not the spectral zero L1m1t1ng the band

Wldth to the ma1n lobe or peak 1s to be avo1ded 1f poss1ble because 1t 

reduces the number of data po1nts over wh1ch the attenuat1on est1mat1on 

1s made 

Attenuat1on est1mates at each frequency and for each rece1ver pa1r 

can be formulated 1n terms of matr1ces. Th1s matr1x formulat1on leads 

to a new model for attenuat1on, g1Ven by Equat1ons (36) and (37), and 
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subsequently 1 eads to new methods of Q est1 mat1 on. They 1 ncl ude the 

e1genvector decompos1t1on method and the sample med1an and sample mean 

of the columns. 

The med1 an est1mator 1 s generally the best of these methods, al- ' 

though the e1 genvector decompos1 t1 on method does somet1 mes outperform 

the med1an method Both the e1genvector decompos1t1on and med1an 

methods are better est1mators than the average of the columns. Of these 

two, the med1an est1mator 1s preferred because 1t 1s s1mpler to compute 

and 1t never falls to converge. The excellent performance of the med1an 

est1mator leads to the cons1derat1on of a group of est1mators known as 

robust est1mators, s1nce the med1an 1s a common example of a robust 

est1mator. 



CHAPTER III 

ROBUST ESTIMATION 

The pr1nc1ple attenuat1on algor1thms d1scussed so far, the spectral 

rat1o method, the W1ener f1lte method, and the e1genvector method, are 

all des1gned us1ng a least-squares cr1ter1on. That 1s, the parameters 

are chosen to m1n1m1ze the square error between the data and the model 

pred1ct1on based on the chosen parameters. The least-squares cr1ter1on 

1s frequenctly chosen for many theoret1cal reasons. These reasons 

1nclude (1) least-squares opt1m1zat1on problems generally lead to more 

tractable mathemat1cs (2) f1lters and est1mators based upon least

squares cr1ter1on frequently have n1ce l1near propert1es (3) least 

squares est1mators are max1mum l1kel1hood est1mators for Gauss1an no1se. 

There are also many reasons not to use 1 east-squares est1 mators. 

Wh1le they are max1mum-l1kel1hood est1mators for Gauss1an nolSe, the 

est1mators are not necessar1ly opt1mum for any type of real data 

Gauss1 an no1 se models are very popular for the same reasons as 1 east

squares techn1 ques, they 1 ead to pl eas1 ng theoret1 ca 1 results For 

example, the max1mum l1kel1hood est1mate of the data corrupted by 

Gauss1an no1se 1s the sample mean. In fact, accord1ng to Watt (1983), 

the reason Gauss chose the Gauss1an no1se d1str1but1on 1s because 1t led 

to the ar1thmet1c mean as an opt1mum est1mator, not because 1t 1s a good 

descr1ptor for any sets of real data However, there 1s one 

theoret1 cally sound reason for assum1 ng a Gauss1 an no1 se d1 str1 but1 on, 

68 
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and that 1 s the Central L 1m1 t theorem. Th1 s theorem states that as n 

1 ncreases to 1 nf1 m ty, the d1 str1 but1 on of any 11 near sum of n random 

var1 abl es (of any cont1 nuous d1 str1 but1 on) w1ll approach a Gauss1 an 

d1 str1 but1 on 

The greatest weakness of least-squares est1mators 1s they lack 

robustness. Est1mators are generally cons1 de red to be robust 1 f they 

are relat1vely 1mmune to extreme outly1ng data po1nts or 1f the1r 

performance does not deter1orate s1gn1f1cantly when the actual no1se 

d1str1but1on encountered d1ffers from the assumed model. Unfortunately, 

1 east-squares est1mators are extremely sens1t1 ve to outl 1 ers because 

they g1 ve equal we1 ght to all of the data po1 nts. Th1 s means that one 

very bad data po1nt may pull the est1mate away from many good po1nts due 

to the very 1 arge S1Ze of the error. In add1 t1 on, as demonstrated by 

the example from Huber (1981) d1scussed 1n th1s thes1s, least-squares 

est1mators are also sens1t1ve to dev1at1ons from the assumed no1se 

d1str1but1on. From th1s po1nt, a reasonable next step 1s to analyze the 

errors and see 1f the est1mates are robust. 

3.1 Data Modell1ng of the Q 

Est1mat1on Problem 

The model for the data matr1x, A, g1ven by equat1on (37) has been 

used as a work1ng model for the matr1x whose elements are Q est1mates 

In th1s model, the Q est1mates themselves are cons1dered to be 

contam1 nated by Gauss1an no1 se. On the other hand, 1 t waul d seem more 

phys1cally reasonable 1f the Gauss1an no1se was modelled as add1t1ve 

no1se to the or1g1nal s1gnal. That 1s 

r(t) = s(t) + n(t) 
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where r(t) 1s the rece1ved P-wave s1gnal, n(t) 1s Gauss1an wh1te no1se, 

and s(t) 1s the 11 pure 11 s1gnal. S1nce the Four1er transform 1s a l1near 

operator, 1t follows that 

R(w) = S(w) + N(w) 

where R(w), S(w), and N(w) are the Four1er transforms of r(t), s(t), and 

n(t) respect1vely. The spectral rat1 o def1 ned by Equa1 on ( 8) 

correspond1ng to the rece1ved 

SR(w) 

s1gnal r 1(t) and r 2(t) 1s 

s2(w) + N2(w) 

ln[S1(w) +"N"1(w)] 

where R1(w) = Four1er transfer of r 1(t). 

t 50) 

It would be conven1ent 1f Equat1on (50) could be reduced to the 

form 

SR(w) = SR0(w) + N (51) 

where 

and N 1s a no1se term 1ndependent of s1(w) and s2(w). If Equat1on (50) 

could be reduced to the form of (51), then a fa1rly smple max1mum 

l1kel1hood est1mator could be der1ved from SR( w) based upon the 

funct1onal form of N (as a funct1on of N1(w) and N2(w)). Unfortunately, 

separat1on of the terms 1n Equat1on (51) 1s not poss1ble and therefore 

the d1str1but1on of the errors 1n SR(w) must be analyzed numer1cally 

us1ng computer s1mulat1ons 

Because of the symmetry of the model 1n Equat1on (50), analyz1ng 

1/SR(w), wh1ch 1s proport1onal to Q, should g1ve the same result as 
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analyz1ng SR( w) To 1mplement the s1mulat1on for attenuat1on 

est1mat1on, or equ1Valently analys1s for the est1mat1on of SR( ), a 

s1mple one-d1mens1onal model 1s constructed. Th1s model 1s s1m1lar to 

the ones used to test the spectral rat1o and W1ener f1lter Q est1mators 

earl1er 1n th1s work. The model 1s as follows 

r1(t) = s1(t) + n1(t) 

r2(t) = s2(t) + n2(t) 

where r 1(t) and r2(t) are the rece1Ved P-wave s1gnals at two adJacent 

rece1 vers, and n1 and n2 are wh1 te Gauss1 an no1 se processes such that 

the s1gnal to no1se rat1o (SNR) 1s 100. Here, SR0(w), the 1deal log

spectral rat1o 1s g1ven by 

(52) 

As before, Z 1s the model layer th1ckness, c 1s the P-wave phase 

vel oc1 ty, and the attenuat1 on, Q, 1 s assumed to be frequency 

1ndependent. Then Q can be est1mated from SR(w) by 

z 
Q = 2c SR(w} (53) 

where SR(w) 1s as def1ned 1n Equat1on (SO}. Note that a value for Q can 

be ca 1 cul a ted for every frequency po1 nt. W1 th Q = 50, and the source 

spectrum as shown 1n F1gure 4a. Q 1s calculated for the 100 frequency 

po1nts wh1ch l1e w1th1n the fequency band of the source. Th1s process 

1s repeated for 50 d1fferent sets of no1se, result1ng 1n a total of 5000 

Q est1mates. 

These 5000 Q est1mates are put 1 nto b111s and a h1 stogram of the 

values 1s made. A plot of th1s h1stogram appears as the sol1d l1ne 1n 
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F1gure 8. The data po1nts at each end of the graph wh1ch appear to r1se 

sharply s1mply represent the total number of values wh1 ch exceed the 

l1m1ts of the h1stogram on e1ther s1de. The ma1n lobe of the graph, 

ly1ng approx1mately between 35 and 65 on the x-ax1s, appears to have 

roughlJ a Gauss1an shape. But 1t 1s 1mportant to determ1ne how wel1 the 

data really f1 ts a Gauss1 an curve. A Gaussun curve 1 s generated to 

approx1mately match the h1stogram 1n plot ampl1tude, mean, and w1dth of 

the ma1n lobe us1ng 11 eyeball 11 f1t. The var1ance of the h1stogram data 

1 s very h1 gh due to the 1 arge number of outl1 ers (the var1 ance = 

2300). So the var1ance of 1nterest 1s that of the Gauss1an curve wh1ch 

1 s f1 tted to the h1 stogram (the Gauss 1 an 1 s the dotted curve 1 n F1 gure 

7). Note that the Gauss1 an curve f1 ts the ma1 n 1 obe of the h1 stogram 

data very well except for that part of the ma1n lobe wh1ch l1es to the 

r1ght of Q = 55. 

The var1ance of the best-f1t Gauss1an curve 1s 64, so the standard 

dev1at1on 1s u= 8. The h1stogram plot dev1ates w1dely from the Gauss1an 

1n the ta1ls, because of the large number of data po1nts w1th very large 

de v1 at1 ons from the mean. For example, approx1mately 350 of 5000 data 

po1 nts 11 e outs1 de the 11 m1 ts of the h1 stogram That 1s, 350 of 5000 

data po1nts l1e outs1de plus or m1nus s1x standard dev1at1ons from the 

mean To demonstrate how badly the model dev1 ates from the Gauss1 an 

model, cons1der the follow1ng probab1l1t1es. The probabl1ty of one data 

po1 nt from a Gauss1 an d1 str1 but1 on be1 ng outs1 de plus or m1 nus s1 x 

standard dev1at1ons from the mean 1s less than lo-8 • By us1ng a 

Gauss1an approx1mat1on for a b1nom1al d1str1but1on, 1t can be shown that 

the probab1l1 ty of f1 nd1 ng 350 or more of 5000 data pol nts outs1 de of 

plus or m1nus s1x standard dev1at1ons 1s about lo-4X108 Obv1ously, the 
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ta1ls of th1s d1str1but1on are not Gauss1an, though perhaps the ma1n 

lobe could st1ll be modelled as a Gauss1an d1str1but1on. Clearly, an 

est1mator wh1ch 1s less sens1t1ve than least-squares est1mators to these 

frequently occur1ng outl1ers than 1s needed. A more r1gorous approach 

to der1v1ng est1mators wh1ch are opt1mum for a part1cular no1se 

d1str1but1on 1s known as max1mum l1kel1hood est1mat1on theory. The rest 

of th1s chapter deals w1th the development of max1mum l1kel1hood 

est1mators and the1r appl1cat1on to some data models. 

3.2 Max1mum L1kel1hood Est1mat1on 

The descr1pt1on here of the fundamental 1deas of max1mum l1kel1hood 

theory are taken ma1nly from Van Trees (1968), wh1le the sect1ons wh1ch 

relate to robust est1mat1on come ma1nly from Huber (1981), Watt 11983), 

and Kassam and Poor (1985) 

Bayes1an est1mat1on theory can be thought of as an extens1on of 

Bayes1an detect1on theory. In Bayes1an detect1on theory, the goal 1s to 

make a "good" guess about wh1ch of two poss1ble hypothes1s, H0 or H1, 1s 

true. S1nce the guess 1s to be as "good" as poss1ble, a quant1tat1ve 

measure of the "goodness" of the guess must be used The r1sk R 1s the 

mathemat1cal measure of the dec1s1on qual1ty and the opt1mal detector 

m1n1m1Zes the r1sk, R. Denote Pr(H11HJ) to be the probab1l1ty of the 

event H1 lHJ. That 1s, Pr(H11HJ) 1s the probab1l1ty of guess1ng H1 g1ven 

that HJ 1s true (1 and J are 0 or 1) Then the r1sk, R1, 1s def1ned by 

where the C1J are the cost funct1ons assoc1ated w1th the events H11HJ, 

and Po and P1 are the a pr1or1 probab1l1t1es of the events Ho and H1· 
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For Bayes1an est1mat1on the cost funct1on 1s, 1n general, a 

funct1on of the parameter to be est1mated, a, 1ts est1mate, a, and the 

observed random var1able, !.· Note that!. may be vector valued. Most 

cases of 1 nterest are 1 1 m1 ted to cost funct1 ons C wh1 ch are funct1 ons 

only of the est1mat1on error, a - ~(x) Then, the r1sk R can be wr1tten 

R = E{C[a - ~(x)]} 

or 

! T f 00 00 1\ 
R = _ da _ C[a - a(~)] P~,~ (a, ~)d~ 

00 00 

(54) 

where Pa,!. (a,!.) 1s the J01nt probab1l1ty dens1ty of the est1mat1on 

parameter a and the observat1on, x. The est1mat1on parameter, a, 1s 

cons1dered at th1s po1nt to be a random var1able However, 1t w111 

later be restr1cted to be a non-random parameter. Common cost funct1ons 

1nclude 

C(e) = e2 (55) 

C(e) = lei (56) 

1 ' lei > A/2 
C(e) = (57) 

0 ' I e I < ll./2 
1\ 

where the error e = a - a(x), and Als an undef1ned parameter It 1 s 

1nterest1ng to note that 1f C 1s chosen as 1n Equat1on (55), the square 

error cost funct1on, then sett1ng 

oR 
0~ 

0 

to m1n1m1ze R results 1n 

~(x) =/+
00

00a P (alx)da 
al~ -
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Now, a(~) 1 s the cond1 t1 on a 1 mean, and P a 1 x (a I~) 1 s the cond1 t1 on a 1 

probab1l1ty dens1ty of a g1ven ~· If C 1s chosen as 1n Equat1on (56), 

the absolute error, then 

f (x) r.oc 
- da Palx (al~) = da Palx_ (al~}. 

- - a(x) 
00 -

where ~ 1s the cond1t1onal med1an, or the med1an of the a poster1or1 

dens1ty. 

The cost funct1on 1n (57), known as the un1form cost funct1on, 1s 

the most 1mportant of the three 1n that 1 t 1 eads to the max1mum 

l1kel1hood est1mate The r1sk express1on for th1s cost funct1on leads 

to 

R =1+00d~ Px(~)[l _{a +~/2Palx (al~}da], 
- 00 - J a - A/2 -

(58} 

where Px(~} 1s the probab1l~ty dens1ty funct1on of the observat1on, x 

M1n1m1z1ng R 1n (58} requ1res max1m1z1ng the 1nner 1ntegral. As 

~becomes arb1trar1ly small, the value of~ wh1ch m1n1m1Zed R 1s the 

max1mum of the a poster1or1 dens1ty, Patx<al~}. S1nce the natural 

logar1thm 1s a monotone 1ncreas1ng funct1on, and s1nce all probab1l1t1es 

are non-negat1ve, then max1m1z1ng the cond1t1onal probab1l1ty 1s 

equ1valent to max1m1z1ng the natural logar1thm of the cond1t1onal 

probab1l1ty dens1ty Remember that the cond1t1onal probab1l1ty dens1ty 

1s also the a poster1or1 dens1ty Work1ng w1th the logar1thm of 

probab1l1ty dens1t1es 1s conven1ent because the natural log of Patx<al~) 

often has a fa1rly s1mple form The follow1ng, known as the MAP 

(Max1mum a Postenor1) equat1on 1s a necessary, but not suff1c1ent, 

cond1t1on for locat1ng the max1mum of R. 
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(59} 

For many problems of 1nterest, the est1mat1on parameter, a, 1s not 

actually a random var1able, but 1s actually an unknown constant. It 1s 

poss1ble to rewr1te the max1mum a poster1or1 equat1on to take th1s 1nto 

account. From Bayes• Theorem 
Pxla(~la) • Pa(a) 

Pal~(aJ~) = - Px(~) 

F1nd1ng an ~ to max1m1ze ln Patx (alx) 1s equ1valent to max1m1z1ng 

s1 nee Px(!> 1 s not dependent on a Now, assum1 ng a 1 s no 1 anger a 

random var1able, then the second term can be dropped. Thus, 

L (a) = 1 n P x 1 a (_~I a) ( 60) 

Accord1ng to Van Trees (1965), th1s corresponds to the l1m1t1ng case of 

a max1mum a poster1or1 est1mate 1n wh1ch the a pr1or1 knowledge 

approaches zero. The log-l1kehhood funct1on, L(a), or the l1kel1hood 

funct1on, Pxla(~la), are now the funct1ons to be max1m1zed by the cho1ce 

of a. As before, a necessary cond1t1on for max1m1zat1on 1s 

aL(a) I A= ~rn p (xla)J = 0 (61) 6a a=a •a xla - _A 
u - a-a 

wh1ch 1s known as the l1kel1hood equat1on. The est1mate derlVed from 

Equat1on (61) 1s known as the max1mum l1kel1hood est1mate. 

Analys1s of the var1ance of max1mum l1kel1hood est1mators 1s often 

d1ff1cult, but there are var1ous bounds on the var1ance of the 

est1mates. One very useful bound 1s known as the Cramer-Rao bound The 
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Cramer-Rao bound 1 s a 1 ower bound on the var1 ances of any unb1 a sed 
A est1mate, a(~), of a. It can be stated 1n two forms, they are 

or 

prov1ded 

&Pxla(~la) 

&a 

and 
2 

6 Pxla(~la) 

6a2 

ex1st and are absolutely 1ntegrable. 

(62) 

(63) 

Here, Var 1s the var1ance 

operator. It can be shown that the equal1t1es 1n Equat1on (62) and (63) 

hold 1f and only 1f 

L(a) = [a(x) - a] • k(a) (64) 
a -

where k(a) 1s some funct1on of a. An est1mate 1s sa1d to be eff1c1ent 

1f the equal1ty 1n Equat1on (62) or (63) holds (e g. the est1mate meets 

the Cramer-Rao bound). It can be shown that 1f an eff1c1ent est1mate 
1\ 
a(~) of a ex1sts, then the est1mate 1s the max1mum l1kel1hood est1mate 

of a. However, 1f an eff1c1ent est1mate does not ex1st, mean1ng that 

Equat1on (64) does not hold, then the only th1ng known about the 

var1ance of the max1mum l1kel1hood est1mate 1s that 1t must exceed the 

Cramer-Rao bound It 1s 1mportant to remember that the Cramer-Rao bound 
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only appl1es to unb1ased est1mates, although there ex1sts s1m1lar bounds 

for b1ased est1mates. 

To 1nvest1gate the use of max1mum l1kel1hood est1mat1on and Cramer

Rao bounds, cons1der the follow1ng s1mple but useful model 

x1 =a+ n1, 1 = 1, 2, • , N (65) 

where~= [x1,x2 , •• ,xN]T 1s the observat1on vector, a 1s the parameter 

to be est1mated, and n1 1s a wh1te no1se process wh1ch 1s N(O, cr />. 
For th1s model. 

Then, 

1 
L(a) = ln Pxla(~la) = ln[ N/ 2J + 

- (2H) 

Apply1ng Equat1on (59) y1elds 

oL(a)l A= ~ (x1-a) = o 
oa a=a 1=1 u2 

1 

Therefore, 

~ = 

N x1 
1: ~ 

1 =1 cr1 

N 1 
1:;;-z 

1 =1 CT1 

Note that 1f cr1 =cr for 1 = 1, 2, ••. , N, then 

1 N 
~ = N 1: x1 

p:1 

(66) 

- 1 n ( cr1 ) ] 

(67) 

(68) 

wh1ch 1s the fam1l1ar sample mean Obv1ously, E(~) = a. So, the 

est1mate 1s unb1ased and 

c5L (a) from Equat1 on ( 67) 
c5a 

est1mate must be eff1c1ent 

the Cramer-Rao bound appl1es Because 

has the form of Equat1on (64), then the 

S1nce 



o2L(a) 
oa2 = -

then by Equat1on 

N 
~ 1 

1=1 ~ 
(63) 

Var[~(x) - a] = ~-1-
N 1 

1~1 -;;z 
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(69) 

If IT1 =IT for 1 = 1, 2, ••• , N, then the var1ance s1mpl1f1es to 

A 0'"2 
Var[a(~) - a] = w-· 

Note that Equat1on (69) 1s the same as that g1ven by Equt1on {49) as the 

opt1mum m1n1mum error from a we1ghted average Therefore, Equat1on (49) 

descr1bes a Cramer-Rao bound. 

Accord1 ng the Van Trees {1965), under 11 rea so nab 1 e genera 111 

cond1t1ons the max1mum l1kel1hood est1mate converges 11 1n probab1l1ty 11 to 

the correct va 1 ue, a, as N approaches 1 nf1 n1 ty Also, the max1mum 

l1kel1hood est1mate 1s asymptot1cally Gauss1an w1th mean a. F1nally, 

even 1f the max1mum l1kel1hood est1mate 1s not eff1c1ent, the est1mate 

1s asymptot1cally eff1c1ent. In other words, 

Var[~(x) - a] 
11m 2- = 1. 

N-oo -E[ 0 lnpxla(~la)]~-1 
L o a2 \ 

If the max1mum l1kel1hood est1mate 1s eff1c1ent, then no unb1ased 

est1mate w1th a lower var1ance ex1sts. On the other hand, 1 f the 

max1mum l1kel1hood est1mate 1s not eff1c1ent, then there may ex1st an 

unb1ased est1mator w1th a lower var1ance Unfortunately, there 1s no 

s1mple rule for f1nd1ng these est1mators It 1s also poss1ble that 

b1ased est1mates ex1st wh1ch may have lower var1ances than do max1mum 

l1kel1hood unb1ased est1mates But, s1 nee they are rel at1 vely easy to 
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f1nd opt1mum est1mators, max1mum l1~el1hood est1mators are very 

popular. They are opt1 mum 1 n the sense that the max1 mum 1 1 ke 1 1 hood 

est1mate y1elds the est1mate wh1ch 1s most l1kely to have produced the 

g1ven observed parameter set. 

3 3 Robust Est1mat1on 

There are three bas1c types of robust est1mates. Two of these 

types w1ll be dealt w1th 1n th1s thes1s. The f1rst type 1s called the 

M-est1mate wh1ch has an max1mum l1kel1hood form, and may actually be a 

max1mum l1kel1hood est1mate The second type of est1mate 1 s known as 

the L-est1mate, wh1ch uses a l1near comb1nat1on of stat1st1cs That 1s, 

the L-est1mate uses a l1near comb1nat1on of the data or a l1near 

comb1nat1on of some funct1on of the data. Means and med1ans are both 

examples of L-est1mates, and they are also M-est1mates for part1cular 

no1se models. 

The M-est1mate 1s the solut1on of an equat1on wh1ch can be of two 

forms. The f1rst 1s the equat1on 

e = :Ef(x1 , a) 
1 

(70) 

1\ where a 1s the est1mate, and f 1s some funct1on of the est1mate and the 

observed data, x The est1mate 1s found by choos1ng the a to m1n1m1ze e 

1n Equat1on (70). The alternat1ve form 1s the equat1on 

where 

:E F(x1 , a)= 0 
1 

F(x1,y) = 0~ f(x1,y) 

( 71) 
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If f 1s of the form f(x,y) = -ln p(x,y) where p 1s a probab1l1ty dens1ty 

funct1on, then the M-est1mate 1s a max1mum l1kel1hood est1mate. 

In many problems, 1nclud1ng the attenuat1on est1mat1on problem 

d1scussed here, the est1mate of 1nterest 1s a locat1on est1mate Thus, 

Equat1on (71) becomes 

1\ 
~ F(x - a) = 0 
1 1 

wh1ch can be wr1tten as 

~ ( ") -1 w1 x1 - a - 0 

where 

F(x1 - a) 
w = 1 .....,.,.x---,."-

1 a 

Therefore, a can be wr1tten as 

1\ ~1 w, • x, 
a=-~~-

~ w1 
1 

(72) 

(73) 

(74) 

(75) 

Th1s means that the locat1on est1mate, ~' can be wr1tten as a we1ghted 

average of the observed data values {xl, x2, ••• ,xN} If the model 1s 

as g1ven by Equat1ons (65) and (66), then the est1mate g1ven by Equat1on 

(68) 1s of the same form as Equat1on (75). Note that Equat1on (75) has 

ar1sen w1thout assum1ng a max1mum l1kel1hood est1mat1on form. 

Important propert1es of any est1mate are the b1as and the var1ance 

of that est1mate A good est1mator 1s hopefully unb1ased, but the most 

1mportant qual 1 ty of an est1mator 1 s the var1 ance of the est1mate 

Obv1ously, the var1ance of the est1mate should be as small as 

poss1ble. As has been d1scussed, 1t 1s also 1mportant that the est1mate 

be robust A good 1nd1cat1on of the robustness of an est1mator 1s the 

1nfluence funct1on of the est1mator The 1nfluence funct1on 1s a 
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descn pt1 on of the effect a partl cul ar observed data value has on the 

est1mate. For M-est1mates of locat1on, the 1nfluence funct1on as 

def1ned by Huber (1981) 1s proport1onal to the funct1on F 1n Equat1on 

(72). If the funct1on 1s bounded, then the est1mate wh1ch 1s der1ved 

from Equat1on (72) 1s generally cons1dered to be robust. In other 

words, 1f 

l1m IF(t)l <oo 

then observed data values wh1ch are extreme outl1ers have only a lim1ted 

role 1n determ1n1ng the opt1mum est1mate, a. In fact, some 

stat1st1c1ans prefer a "redscend1ng" 1nfluence funct1on where 

11m IF(t) I = o 
so that extreme outl1 ers, wh1 ch may be "bad" data po1 nts, have very 

l1ttle 1nflucence on the est1mate 

As prev1ously stated, an est1mator 1s robust 1f the est1mates are 

reasonably eff1c1ent est1mates on data wh1ch dev1ates from the nom1nal 

model, or 1f the est1mate 1s relat1vely 1mmune to outly1ng data 

pol nts However, est1mators wh1 ch have bounded 1 nfl uence funct1 ons 

generally meet the other two cr1ter1a, and hence are robust. If the 

1nfluence funct1on, F(t), 1s l1near 1n t, then 1t 1s obv1ously 

unbounded S1nce th1s corresponds to the sample average as an est1mate, 

then 1t 1s obv1ously not robust. An est1mator wh1ch has an 1nfluence 

funct1 on wh1 ch 1 s not bounded but wh1 ch 1 ncreases 1 ess rap1 dly than a 

l1near funct1on 1s cons1dered to be somewhat robust. A common example 

of a robust est1mator 1s the med1an, for wh1ch the 1nfluence funct1on F 

can be wr1tten 
-1, t < 0 

F( t} = 0, t = 0 
+1, t = 0 
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Obv1ously, th1s 1nfluence funct1on 1s bounded 

The L-est1mate 1s a l1near comb1nat1on of a funct1on h of the 

observat1ons. The est1mate 1s of the form 

A a = ~ w h(x ) , , , 
Est1mat1on us1ng L-est1mates requ1res f1nd1ng the opt1mum set of we1ghts 

{w1 , w2, ••• } based upon a part1cular cr1ter1on The we1ghts should be 

chosen so that the est1mate 1s unb1ased or nearly so. There 1s then a 

tradeoff between m1n1mum var1ance and robustness, where the best 

est1mator has a bounded 1nfluence funct1on but 1s also fa1rly 

eff1c1ent. Both the sample mean and the med1an are L-est1mates as well 

as M-est1mates It 1s poss1ble to f1nd L-est1mates wh1ch are as 

eff1 c1 ent as M-est1 mates. In fact, 1 t can be shown that for most 

d1str1but1ons there 1s an opt1mum L-est1mate wh1ch has the same 

asymptot1c eff1c1ency as the opt1mum M-est1mate. However, there 1s no 

general method for f1nd1ng opt1mum L-est1mates. Because of the 

d1 ff1 cul ty of f1 nd1 ng opt1mum L-est1mates 1 n general, and because the 

alpha-tr1mmed mean, def1ned later, has good propert1es, the only L

est1mate under considerat1on w1ll be the alpha-tr1mmed mean 

3.4 M-est1mates 

Cons1der the data model g1ven by Equat1on (37} 

x1J = a1 + n1J, 1 = 1, 2, •• , M, J = 1, 2, • , N (76) 

where the x,J 1s an observat1on, a1 1s the locat1on parameter to be 

est1 mated, and n1 J represents 1 ndependent, uncorrel a ted random no1 se 

The no1se process, n1J 1s such that 



E[n1J • nkl] = 
o-;, 1f 1=k and J=1 

0, otherw1se 

85 

(77} 

Note that th1s model 1s essent1ally the same as g1ven by Equat1ons (37} 

and ( 38} except for notat1 on and that no d1 str1 but1 on has been chosen 

for the no1 se As 1 n Equat1 on ( 37}, 1 f the data have been cast as a 

matr1x where x1J 1s the (1,J} element of the matr1x, then the no1se 1n 

each column has the same var1ance. In th1s sect1on, max1mum l1kel1hood 

est1mators based upon the model 1n Equat1on (76} w1ll be der1ved. 

F1rst, cons1der the case of n1J be1ng Gauss1an, that 1s, n1J 1s 

N(O, uJ2}. S1nce the standard dev1at1ons, u/, are unknown, then a 

max1mum l1kel1hood est1mate of!.= [a1, a2, • , aM]T must also est1mate 

the standard dev1at1ons q' = [u1, u 2 , •• , a mJT. Th1s 1s the problem 

cons1dered by G1ml1n, Keener, and Lawrence (1982} The log-l1kel1hood 

funct1on for th1s model w1th Gauss1an no1se 1s 

MN N 1 M N 1 2 
L ( 2} = T 1 n ( 2Jt} - ~ Ml n ( o-J} - 'l ~ ~ ::;:-"2"( x - a 1 ) ( 78} 

J = 1 1 = 1 J = 1 <TJ 1 J 

Sett1ng 

and 

cSL{_g_} :u =~ = 0,1 = 1, 2, ., N 
cSu1 1 1 

to so 1 ve for ~k and 

follow1ng system 

1\ 
u 1 , the est1mates of ak and ul, results 1n the 

N xkJ 
~ T'T" 

1\ -- J=1 C1J k 1 2 a = ' ' k N 1 
~ 

J-:'1 8-/ 
' M (79} 
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and 

" 2 1 M 2 _ 
~1 = ~ ~ (x11 - a1) , 1 - 1, 2, ••• , N 

1=1 
(80) 

There 1s no closed form solut1on to Equat1ons (79) and (80), so the 

equat1on must be solved numer1cally In the1 r paper, G1 ml1 n, Keener, 

and Lawrence (1982} use a steepest ascent algor1thm to max1m1ze Equat1on 
1\ 1\ 

(78) to f1nd the opt1mum ~and ~ 

They d1d not prove that the steepest ascent algor1thm w1ll 

converge. They d1 d succeed, however, 1 n prov1 ng the ex1 stence of at 

least one solut1on to Equat1on (79) and (80). G1ml1n, Keener, and 

Lawrence (1982) also reported that 1t was necessary to constra1n the 
1\ steepest ascent algor1thm to keep the values of the est1mate vector a 

from approach1 ng too closely to any one column of the data matr1 x X 

(w1th elements x1J) They also d1scussed the un1queness of the solut1on 

to the problem. Wh1le they were unable to g1ve a proof of the 

un1queness of a solut1on e1ther to Equat1ons (79) and (80) G1ml1n, 

Keener, and Lawrence (1982) do state that there 1s strong numer1cal 

ev1dence that the steepest ascent method converges to a un1que max1mum 

of Equat1on (78). However, the form of Equat1ons (79) and (80) suggest 

that an 1 terat1 ve techn1 que may be used to solve the system g1 ven by 

Equat1ons (79) and (80). The 1terat1ve method 1s as follows 

1. F1nd the est1mate ~k by us1ng ~k = med1an {xkl' xk2' 

k=l,2,. ,M. 

2 

3. 

4 

Us1ng the current~, calculate ~ us1ng Equat1on (80) 
1\ 1\ 

Calculate a new~ from Equat1on (79) us1ng the current ~ 

Go to step (2) and repeat as necessary 

Wh1le 1t has not been proven that th1s 1terat1ve algor1thm 
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converges, 1t seems reasonable that 1t should for many cases. Assume 

f1rst that the data 1s no1sy, but good enough so that the med1an 1n step 

1 g1 ves a reasonable est1mate of t If we assume that the 1m t1 al ,, 
est1mate of~' 1s close enough to a so that the var1ance est1mates g1ven 

by Equat1on (80) y1eld h1gher var1ance for 11 bad 11 data columns relat1Ve 

to 11 good 11 columns, then the next guess for ~ should be closer. The 

est1mate ~ of~ 1n Equat1on (79) 1s a we1ghted sum of the columns of the 

data matr1x X. Th1s can be shown by rewr1t1ng Equat1on (79) as 

where 

N 
!; XkJ WJ , k=1,2, • ,M 

J=1 

1 
;;-z 

WJ = N 1 

p~1 ¥ 
J = 1, 2, •• , N. 

(81) 

(82) 

If the Jth column 1s no1s1er than the kth coluMn, then most of the 

t1me,a"l >ak2 • Therefore 1n the updated est1mated t the no1s1er Jth 

column contr1butes less than the 11 Cleaner 11 kth column. Thus the new 

est1mate ~ should be a better approx1mat1 on for ~ than the prev1 ous 

est1mate, lead1ng 1n turn to even better est1mates of ~ • So, wh1le 

convergence has not been proven, 1t seems plaus1ble that th1s 1terat1ve 

algor1thm should converge 

Max1m1z1ng the log-l1kel1hood funct1on g1ven by Equat1on (78) 1s 

equ1valent to m1n1m1z1ng 

N M N 
H(S) = z M ln(S + M) + } E !; 

J=1 J 1=1 J=1 

where 

5 = [a 1 ' a2' • ' aM' o-1 ' a 2' 

( - s )2 x,J 1 

S 2 + m 
J 

(83) 
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1 s the unknown co 1 umn vector of 1 ength ( M + N) The 1n1t1al guess 

necessary for the steepest descent method 1 s found by fall ow1 ng the 

f1rst two steps for the 1terat1ve solut1on to th1s problem That lS, 
A 

est1mate a from the med1an or mean of the observed data po1nts and use 
A 

th1s est1mate for a to est1mate the standard dev1at1ons, !: . Locat1ng 

the m1n1mum of H(S) 1n Equat1on (83) us1ng the steepest descent 

algor1thm 1nvolves evaluat1ng the grad1ent of H(S) for the prev1ous 

guess Then a search 1s made, 1n the d1rect1on of the negat1ve 

grad1ent, for the m1n1mum H(~) Th1s means that a parameter t 1s chosen 

to m1mm1Ze H(~(l) - t~) where ~(l) 1s the 1th guess at the solut1on and 

u 1s the grad1ent of Hat ~(l). Then the guess 1s updated accord1ng to 

s<,+l) = s<,) - t* u - -
* where t 1s the scale factor wh1ch produces the des1red m1n1mum 1n H 

It 1s 1nterest1ng to note from the form of Equat1on (83) that the 

funct1on H to be m1n1m1zed 1s not JUSt the we1ghted sum of the square 

errors. There 1s a second term, 

N 
~ Mln(SJ + M) 

J=l 

and the purpose of th1s term 1s to guarantee that the est1mate wh1ch 

m1n1m1zes H 1n (83) 1s an unb1ased est1mate. Unfortunately, th1s 

m1n1m1zat1on problem has an 1nstab1l1ty wh1ch can eas1ly occur 

Remember that f1nd1ng the zero of the grad1ent, or the m1n1mum of H(~), 

corresponds to s1multaneously solv1ng Equat1on (79) and (80). A If the a 

portl.on of some guess S happens to 11 e too close to an observed data 

vector 

X T = 
-1 
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then the sum 1n Equat1on (80) w1ll be very small and so w11l be ~1 2 • 

Th1s means that the we1ght, w1, (Equat1on {81)) on the lth column for 

the next est1 mate of a w11l be much h1 gher on the next 1 terat1 on, 

push1ng the est1mate even farther away The result 1s convegence to the 

data vector wh1ch 1s not generally the opt1mum solut1on. Th1s does 

happen for the 1terat1ve method. The grad1ent of H, ~' 1n Equat1on (83) 

1 s glVen by 

N (\ - xkJ) (84) 
~ 2 J=l SJ+M ' k=1,2, •• ,M 

fk = 
M 1 M 2 -s;- "$! ~ (X, k-m - s,> , k = m+1, •• ,M+N 

k 1 =1 ' (85) 

Wh1le 1t 1s not clear from Equat1ons (84) and (85) that the steepest 

descent may converge to a data vector, 1n pract1ce 1t occass1onally w1ll 

unless the algor1thm 1s constra1ned so as not to approach to closely to 

the data vector. 

The Cramer-Rao bound for th1s model must be calculated us1ng 

Flsher•s 1nformat1on matr1x, but 1s has the same form as Equat1on 

( 69) S1 nee th1 s prob 1 em cannot be expressed 1 n the form 91 ven by the 

vector equ1valent of Equat1on (64), then the est1mate 1s not eff1c1ent 

and w1ll not reach the Cramer-Rao bound Th1 s vector case max1 mum 

l1kel1hood est1mator 1s not actually a robust est1mator by most 

def1n1t1ons of the term. However, 1t does have some robust-l1ke 

propert1es. If one data vector 1 s part1 cu1 arly 11 bad 11 , then 1 t w1 11 

st11l have a s1gmf1cant effect on an 1n1t1al est1mate (lf the 1mt1al 

est1mate 1s done us1ng an average). As the steepest descent converges, 

the var1ance est1mate of the 11 bad 11 vector 1ncreases, and the 
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correspond1ng contr1but1on to the grad1ent decreases. Th1s can be seen 

from Equat1ons (84) and (85). Thus, the 11 bad'' data vector contr1butes 

less and less to the est1mates as the method converges. S1nce 11 bad 11 

data po1nts contr1bute less than 11 good 11 data po1nts, th1s method can be 

cons1dered to be somewhat robust. 

A w1der-ta1led no1se d1str1but1on, wh1ch 1s more l1kely to produce 

11 bad 11 data pol nts than the Gauss1 an, and, wh1 ch results 1 n med1 ans as 

max1mum l1kel1hood est1mates 1s the Laplac1an or double-exponent1al 

d1str1but1on. The probab1l1ty dens1ty funct1on for Laplac1an no1se has 

the form 

P(x) = ~ e-blxl • 

Cons1der the prev1ously stud1ed model 

x1 = a + n , 
1 1 =1' 2' •• , N 

where x1 1 s the observed data, n1 1 s Lap 1 ac1 an no1 se, and a 1 s the 

parameter to be est1mated. A The max1mum l1kel1hood est1mate of a, a. 1s 

G1ven a vector model for the data g1ven by Equat1ons (76) and (77), 

w1th a Laplac1an no1se process, the cond1t1onal probab1l1ty dens1ty 1s 

g1ven by 

Pxla (xla) (86) 

Th1s leads to a log-likel1hood funct1on g1ven by 

N M N 
= -~ ln(2) + M ~ ln(bJ)- ~ ~ bJix1J- a11 

J=1 1=1 J=1 

(87) 
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Sett1ng 

.OL(a) 
Ia 1\ = 0, k = 1' 2' ' M oak = a k k 

and 

ol(a) 
lb = ~ = 0, 1 c 1, 2, •• , N ob1 1 1 

to max1m1ze L(~) results 1n the follow1ng system of equat1ons, wh1ch 1s 

analygous to Equat1on (79) and (80) for Gauss1an 

N 
1; bJ . sgn(xkJ - ak) = 0, k = 1, 2, ••• , 

J=1 

b = M 
' 1 1' 2, • , N M = 1 

1; I x11 - a I 
1=1 1 

Here, sgn(x) lS the s1gn operator def1ned as 

0, x=O 
sgn(x) = -1, x<O 

+1, x>O 

no1se, 

M (88) 

(89) 

Note that from Equat1 on (88), ~k 1 s a we1 ghted med1 an of data po1 nts 

from the kth Equat1on row of the matr1x X, and b1 1s 1nversely 

proport1onal to an L1 est1mate of the scatter of the data values. 

Th1s system can be solved 1n the same manner as that for Gauss1an 

no1 se, us 1 ng e1 ther a steepest ascent method on the funct1 on L(~) or by 

an 1nterat1ve method us1ng Equat1ons (88) and (89). When an est1mate 

approaches too closely to a data vector, both methods demonstrate the 

same type of 1nstab1l1ty as d1d the Gauss1an no1se based methods 

Aga1n, the steepest ascent must be constra1ned to stay away from the 

data vectors. Due to the non-l1near nature of th1s med1an-type 

est1mator, a lower bound on the var1ance of the est1mate has not been 

calculated 
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3 5 L-Est1mates 

An L-est1 mate 1 s def1 ned as be1 ng an est1 mate wh1 ch 1 s a sum of 

order stat1 st1 cs. Th1 s means that, an L-est1 mate 1 s a sum of the 

observed data values or a sum of a funct1on of the data values The 

sample mean and med1an are both examples of L-est1mates A useful L-

est1mate wh1ch 1s not also a max1mum l1kel1hood est1mate 1s the alpha

trlmmed mean. The alpha-tr1mmed mean 1s an opt1mum L-est1mate for the 

11 1 east-1 nformat1Ve 11 d1 str1 but1 on g1 ven by the foll ow1 ng dens1 ty funct1 on 

(Huber, 1981) 
2 

c1 e-X 12 ' lxl < c 
f(x) = 2 -

c1 e-clxl + c /2, lxl > c. 

The alpha-tr1mmed mean of a set of data values Y = {Y1 , • , YN} 

can be found 1n the follow1ng manner. Let a set Z = {Z1, . , ZN} be an 

or den ng of the elements of a set Y such that z1 ~ z2 ~ • • ~ ZN Then 

the alpha-tr1mmed mean of the set Y 1s the average of the elements of 
1\ 

the set Z less k data po1nts on each end. In other words, Y, the alpha-

trlmmed mean of the set Y 1s g1ven by 
N-'< 
~ z 

1\ l=k+1 1 

y = N - 2k • 

The number of po1nts tr1mmed off each end of the set Z 1s related to the 

tr1mm1ng parameter a by k = 1nt (aN), where 1nt(x) denotes the largest 

1nteger less than or equal to x 

The alpha-tr1mmed mean has many useful propert1es. Th1s est1mator 

reta1ns the robust features of the med1an because extreme outl1ers or 

11 bad 11 data po1nts only 1nfluence the est1mate 1n that they help to 

determ1ne wh1ch other data po1nts contr1bute to the est1mate. Yet the 
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al pha-tr1mmed mean can be more eff1 c1 ent than the med1 an for 

d1str1but1ons close to Gauss1an. In fact, the alpha-tr1mmed mean may be 

a very good est1 mator 1 n a s1 tuat1 on where the no1 se d1 str1 but1 on 1 s 

pr1mar1ly Gauss1an but 1s contam1nated by a longer-ta1led d1str1but1on 

such as the Laplca1an d1str1but1on. In th1s case, the few outl1ers from 

the 1 onger-tra1l ed d1 str1 but1 on w1 11 be tr1mmed away and the rest w1ll 

be averaged. Thus for a Gauss1an d1str1but1on contam1nated by a 

Laplac1an d1str1but1on, the alpha-tr1mmed mean may be expected to 

outperform max1mum l1kel1hood est1mates based upon e1ther pure Laplac1an 

or Gauss1an no1se models. 

3.6 Results 

Cons1der a model of the form g1ven by Equat1on (76). In th1s case, 

though, the no1se n1J 1s a random process g1ven by 

n1J = (1 - e) ng1J + (e) ne1J (90) 

where ng1J 1s a wh1te Gauss1an no1se process, ne1J 1s a wh1te Laplac1an 

no1 se process, and e 1 s a contam1 nat1 on parameter. Thus n1 J 1 s a 

Gauss1an no1se process wh1ch 1s contam1nated by Laplac1an no1se Th1s 

contam1nated d1str1but1on 1s used because 1t 1s a good model for a no1se 

d1str1but1on shown 1n F1gure 8 

An exper1ment 1s conducted to test est1mators on the model g1ven by 

Equat1on (76), where the no1se model 1s g1ven by Equat1on (90) Th1s 

exper1ment 1s essent1ally the same as that one descr1bed 1n the prev1ous 

chapter wh1 ch produced the results shown 1 n Tables V and VI The 

pr1mary d1fferences between th1s exper1ment and the one prevtou~y 

descr1bed are that th1s exper1ment uses contam1nated no1se w1th vary1ng 



TABLE VII 

MEDIANS OF NORMALIZED AVERAGE NOISE VARIANCES-
LAPLACIAN CONTAMINATION 

Contam1nat1on Max No1se A1 ph a-Tr1111T1ed ML ML 
e Var1ance Mean Average La~1ac1an Gaussun 

0 0 0 001 73 1 0 39 28 
0 0 0 01 78 1 0 37 27 
0 0 0 1 78 1 0 40 31 
0 0 0 5 73 1 0 40 27 
0 01 0 001 73 1 0 46 32 
0 01 0 01 69 1 0 34 29 
0 01 0 1 73 1 0 33 21 
0 01 0 5 74 1 0 40 29 
0 1 0 001 57 1 0 51 52 
0 1 0 01 70 1 0 50 39 
0 1 0 1 74 1 0 41 34 
0 1 0 5 52 1 0 .24 17 
0 5 0 001 55 1 0 51 59 
0 5 001 52 1 0 44 45 
0 5 0 1 60 1 0 57 58 
0 5 0 5 67 1 0 54 51 
0 9 0 001 52 1 0 45 46 
0 9 0 01 50 1 0 48 51 
0 9 0 1 51 1 0 47 50 
0 9 0 5 51 1 0 44 46 
1 0 0 001 56 1 0 51 54 
1 0 0 01 53 1 0 49 58 
1 0 0 1 55 1 0 51 55 
1 0 0 5 56 1 0 49 52 

------ --- ----- ----

Med1an 

74 
66 
67 
69 
74 
62 
63 
72 
57 
67 
73 
45 
55 
52 
60 
67 
52 
48 
51 
50 
56 
54 
56 
53 

Norma11Zatlon 

4 Ox10=~ 
3 6x10_ 3 
3 2x10_2 
7 9x10_7 
3 9x10_5 
4 2x10~3 
3 2x10_2 
9 9x10_6 
5 1x10_5 
7 8x10_3 
3 3x1o_2 
8 3x10_4 
1 2x10_3 
1 3x10_2 
1 4x10_2 
8 5x10_4 
4 5x10_3 
3 6x10_2 
3 8x1o_1 
1 8x10_4 
4 1x10_3 
4 9x10_2 
5 2x1o_1 
2 6x10 

1.0 
-+==-
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amounts of contam1nat1on and that d1fferent est1mators are be1ng 

evaluated. In th1s case, the est1mators are the follow1ng sample 

average, sample med1an, alpha-tr1mmed mean, a max1mum l1kel1hood 

est1mator based upon a Laplac1an no1se model, and a max1mum l1kel1hood 

est1mate based upon a Gauss1an no1se model. Also, to reduce computat1on 

t1me, only 20 sets of s1gnal vectors and no1se var1ances were generated 

and for each set 20 d1fferent sets of no1se were generated. As was the 

case for the prev1ous exper1ment, both M and N were chosen to be ten to 

approx1mate what one m1ght expect from real data. 

As prev1ously ment1oned 1n Sect1on 3.1, the most 1mportant measure 

of an est1mator 1s the var1ance or error produced by the est1mtor. So, 

the qua 1 1 ty of the est1 mtor 1 s measured by the va r1 ance of the f1 na 1 

es1mate. S1nce the actual no1se d1str1but1on and s1gnal-to-no1se rat1os 

1n real data are unknown, 1t 1s necessary to test the proposed 

est1mators on a w1de range of contam1nat1on levels and over a w1de range 

of s1gnal-to-no1se rat1os. 

Table VII shows the results of th1s exper1ment run for max1mum 

no1se var1ances of 0.001, 0.01, 0.1, and 0.5, and for contam1nat1on 

levels (e} of 0., .01, 0.1, 0.5, 0.9, and 1 0. Remember that the s1gnal 

vector 1s generated from a un1form d1str1but1on on (0,1}. So, a max1mum 

column no1se var1ance of 0.5, result1ng 1n an "expected" column var1ance 

of 0.25 1s more than the s1gnal vector var1ance of 0.083 But, the 

"expected" column var1ance of 0 05 from a max1mum var1ance of 0.1 1s 

less than the expected s1gnal var1ance. 

S1nce a table correspond1ng to Table IV 1s not shown, and s1nce all 

of the errors 91 ven 1 n Table VII are med1 ans of normallZed average 

errors, there needs to be another column to g1ve an 1nd1cat1on of the 
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absolute level of the errors, rather than JUSt relat1ve levels of 

error. For th1s purpose, a separate column, labelled Normal1zat1on, 1s 

added. The normal1Zat1on 1s the med1an of the error values used to 

normal1Ze the data 1n Table VII. Mult1ply1ng the normal1zat1on values 

by the error va 1 ues on the same row of the tab 1 e wou 1 d g1 ve an ex amp 1 e 

of typ1cal error values for the var1ous method. 

From Table VII, many observat1ons can be made regard1ng the 

relatlVe eff1c1ency of the est1mators. S1nce all of the normal1Zed 

average errors are less than one, and s1nce the errors were normal1zed 

to that for the sample average method, then all of the other methods 

cons 1 stently outperformed the samp 1 e average. Thus the samp 1 e average 

should be dropped from further cons1 derat1on as an est1mator on these 

models. 

As one m1ght expect, the max1mum l1kel1hood est1mators based upon 

pure Gauss1an or pure Laplac1an no1se outperformed all others when the 

no1se 1s pure Gauss1an (e=O) or pure Laplac1an (e=l.O). The surpr1s1ng 

th1ng about the compar1son between the two max1mum l1kel1hood est1mates 

1s that even for no1se wh1ch 1s mostly Laplac1an, the performance of the 

max1mum l1kel1hood Gauss1an est1mator 1s st1ll close to that for the 

max1mum l1kel1hood Laplac1an est1mator. It 1s 1nterest1ng to note from 

a compar1son of the normal1zat1on values for d1fferent levels of 

contam1nat1on that the performance of all of the est1mators became worse 

as the amount of contam1nat1on became larger Th1s 1s 1n sp1te of the 

fact that the overall no1se var1ance rema1ned unchanged. 

The tr1mm1 ng parameter for the al pha-tr1mmed mean was adJusted to 

prov1de opt1mum performance for each case. In terms of average error, 

there 1 s not a s1 gm f1 cant d1 fference between the performances of the 
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alpha-t1mmed mean and the med1an est1mators on the data Th1 s 1 s 

somewhat surpr1 s1 ng for the data has been contam1 nated w1 th pr1mar1ly 

Gauss1an no1se One would th1nk that the alpha-tr1mmed mean would be a 

somewhat better est1mator than the med1an but 1t 1s not. In fact, the 

oppos1te 1s true. The alpha-tr1mmed mean seems to do sl1ghtly worse 

than the med1an for Gaussun data, but 1 t does about as well as the 

med1an for pnmar1ly Laplac1an no1se. Overall, the performance of the 

alpha-tr1mmed mean and med1an est1mators 1s def1mtely worse than that 

of the two max1mum l1kel1hood est1mators when the no1se 1s pr1mar1ly 

Gauss1an. But, the s1mpler to compute med1an and the alpha-tr1mmed mean 

do nearly as well as max1mum l1kel1hood est1mators when the no1se 

conta1ns 10% or more Laplac1an no1se 

Table VIII offers a d1fferent v1ewpo1nt of the results from the 

prev1ously descr1bed exper1ment, and 1s analagous to Table VI 1n the 

prev1ous chapter. That 1s, Table VIII l1sts the total number of t1mes 

(out of 20 tests} the var1ous est1mators had the 1st, 2nd, or 3rd lowest 

average errors. 

There 1s noth1ng part1cularly surpr1s1ng about the results 1n Table 

VIII cons1der1ng the results 1n Table VII. The relat1ve performances of 

the two ML est1mators as shown 1 n Table VI II are as expected from the 

data 1n Table VII. Wh1le there were a few cases when for nearly pure 

Gauss1an no1se the sample average d1d well, the overall performance of 

the sample average was poor. In fact, the sample average nearly always 

had the h1ghest average error. Probably the only observat1on to be made 

regard1ng the relat1ve performance of the est1mators for Table VIII 

wh1ch could not have been made from Table VII 1s the follow1ng When 

the no1se 1s half or more Laplac1an, e > 0 5, the alpha-tr1mmed mean 



TABLE VIII 

NUMBER OF TIMES THE AVERAGE ERRORS ARE FIRST, SECOND, OR THIRD LOWEST-LAPLACIAN CONTAMINATION 

- -· - -- -- - --·-

Contam1nat1on Max No1se A1pha-Triinined ML ML 
Var1ance Mean Averaqe Med1an Lap1ac1an Gauss1an 

e 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 

0 0 001 0 0 5 0 1 3 0 0 12 0 19 0 20 0 0 
0 0 01 0 0 6 0 0 1 0 0 13 0 20 0 20 0 0 
0 0 1 0 0 4 1 0 2 0 0 14 0 19 0 19 1 0 
0 0 5 0 0 5 0 0 3 0 0 12 0 20 0 20 0 0 

0 01 0 001 0 0 10 1 0 1 0 0 9 0 19 0 19 1 0 
0 01 0 01 0 0 3 1 0 3 0 0 14 0 19 0 19 1 0 
(} 01 0 1 0 0 4 0 0 1 0 0 15 0 20 0 20 0 0 
0 01 0 5 0 1 7 0 0 1 0 0 11 0 19 1 20 0 0 

0 1 0 001 2 6 6 0 0 0 3 3 7 6 8 6 9 3 1 
0 1 0 01 1 2 8 0 0 1 0 0 9 3 14 2 16 4 0 
0 1 0 1 0 0 7 0 1 0 0 0 13 1 18 0 19 1 0 
0 1 0 5 0 0 4 0 0 0 0 0 16 0 20 0 20 0 0 

0 5 0 001 4 5 5 0 0 0 2 8 8 14 0 5 0 7 2 
0 5 0 01 4 2 5 0 0 0 1 6 10 10 5 5 5 7 0 
0 5 0 1 2 3 6 0 0 0 1 4 10 12 5 3 5 8 1 
0 5 0 5 2 0 11 0 0 0 0 0 9 3 15 0 15 5 0 

0 9 0 001 5 0 6 0 0 0 1 7 10 10 6 4 4 7 0 
0 9 0 01 3 3 6 0 0 0 2 4 10 10 7 3 5 6 1 
0 9 0 1 2 4 6 0 0 0 2 5 8 10 7 3 6 4 3 
0 9 0 5 7 2 1 0 0 0 2 5 12 9 4 4 2 9 3 

1 0 0 001 3 5 8 0 0 0 4 5 6 7 7 6 6 3 0 
1 0 0 01 5 4 4 0 0 0 0 6 12 14 3 3 1 7 1 
1 0 0 1 6 3 6 0 0 0 2 8 8 11 4 5 1 5 1 
1 0 0 5 2 3 5 0 0 0 1 5 11 10 7 2 7 5 2 

1.0 
co 

~-~ --
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est1mator had the 1 owest average error much more often than d1 d the 

med1 an and about as often as d1 d the max1 mum 11 kel 1 hood ( Gauss1 an) 

method. Th1 s 1 s 1 n sp1 te of the fact that from Table VII, the med1 an 

est1mator average error for the alpha-tr1mmed mean 1s about the same as 

for the med1an and h1gher than that for the max1mum l1kel1hood 

(Gausslan) est1mator. Therefore the al pha-tr1mmed mean 1 s a better 

est1mator than 1nd1cated 1n Table VII. 

3.7 Chapter Summary 

Overall, there seems to be no clear w1nner among the est1mat1on 

methods d1 scussed here. The sample average 1 s obv1 ously the clear 

loser. The max1mum l1kel1hood est1mators outperform the others, but at 

a s1gn1f1cant computat1onal cost. Further, wh1le the steepest descent 

max1mum l1kel1hood est1mators generally converge 1n about 5 1terat1ons, 

they do occas1onally fa1l to converge and the est1mates appear to bounce 

around between data column vectors. Hence, the steepest descent max1mum 

l1kel1hood est1mators may not prove to be rel1able for real data. 

There are many advantages to the sample med1an and the alpha

trlmmed mean. They can be calculated eas1ly and they have no 

convergence problems. Furthermore, for levels of contam1nat1on of 

Gausss1an no1se by Laplac1an no1se wh1ch are greater or equal to 10%, 

the med1 an and the al pha-tr1mmed mean performed nearly as well as the 

max1mum l1kel1hood methods. Therefore, the med1an and the alpha-tr1mmed 

mean may be the best est1mators for use on real data, although the 

max1mum l1kel1hood method w1ll also rema1n under considerat1on. 



CHAPTER IV 

ATTENUATION ESTIMATION FROM REALISTIC 

MODELS AND REAL DATA 

It 1s 1mportant to model the effects of add1t1ve no1se 1n the 

or1g1nal 1nput s1gnal on the attenuat1on est1mate. Th1s results 1n a 

more accurate model of the types of no1 se {or errors} wh1 ch m1 ght be 

present 1n the f1nal attenuat1on est1mates Also, the robust est1mators 

descr1 bed 1 n the prev1 ous chpater should be tested on the same models 

used to test the spectral rat1o and W1ener f1lter methods. 

To truly evaluate the accuracy of the var1ous attenuat1on 

est1mat1on methods, they should be tested on real1st1c three d1mens1onal 

model data. Th1s step 1s very 1mportant because borehole geometry may 

strongly effect the est1mates, and borehole geometry has not prev1ously 

been taken 1 nto account Of course, the best attenuat1on est1mat1on 

methods must be tested on real data. Unfortunately, the results are 

very d1ff1cult to 1nterpret Th1s 1s because the actual values of Q are 

completely unknown, so no conclus1on can be made regard1ng the accuracy 

of the techn1ques. 

4 1 No1se Models 

The results 1 n F1 gure 7 showed that the contam1 nat1 ng no1 se {or 

errors} 1n the attenuat1on problem has a long-ta1led d1str1but1on Th1s 

JUst1f1es the use of robust est1mators. For the model g1ven by 
I 
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Equat1ons (66) and {67), w1th Laplac1an contam1nated Gauss1an no1se, 1t 

has been shown that the sample average 1s a very poor est1mator compared 

to some other est1mators S1nce the spectral rat1o method 1s a least

squares method wh1 ch does not attempt to we1 ght the data values, the 

performance of the spectra 1 rat1 o method 1 s s1 m1l ar to that of the 

sample average. Therefore 1f the model g1ven by Equat1on (66) 1s very 

real1st1c, then these robust methods should y1eld more rel1able 

est1mates of attenuat1on than the spectral rat1o method. 

It seems phys1cally more reasonable to assume that add1t1ve no1se 

1s present 1n the or1g1nal 1nput s1gnal than at some later po1nt 1n the 

analys1s. Furthermore, 1f add1t1ve Gauss1an no1se 1s present 1n the 

t1me doma1n, then the no1se 1n the frequency doma1n w1il also be 

add1t1ve Gauss1an no1se. In add1t1on, 1t appears that much of the no1se 

present 1n any se1sm1c s1gnal 1s not s1mply add1t1ve, 1ndependent, wh1te 

no1se, but 1s a no1se process that 1s very much correlated w1th the 

s1 gnal. In fact, the no1 se may take the form of a convol ut1 on between 

the s1gnal and a no1se that can be character1zed. Therefore the 

follow1ng no1se model 1s proposed 

R1(w) = s1(w) + N1(w) (91) 

R2((.,) = E2(w) • s2(w) + N2(w) (92) 

Here R1(w) and R2(w) are the ampl1tude coeff1c1ents of the Founer 

Transforms of the t1me doma1n s1gnals rl(t) and r2(t) The s1 gnal s 

r1 (t) and r2(t) are the compress1onal wave forms recorded at adJacent 

rece1vers for the same shot. 

In order to model the no1se 1n the attenuat1on est1mat1on problem, 

1t 1s necessary to analyze the effect that no1se terms 1n Equat1ons (91) 
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and (92) have on the actual attenuat1on est1mate The follow1ng leads 

to an approx1mate model for the no1se or error 1n the Q est1mate wh1ch 

results from the model g1ven by Equat1ons (91) and (92) 

Subst1tut1ng R1(w) and R2(w) from Equat1on (91) and (92) 1nto the 

Equat1on (66) to f1nd SR(w) y1elds 

sRtw)=-ln~~:::]- ln[E2 <w~ - lnf + :~:::s2 tw~ + lnf + :~:::] <93) 
Let SR0(w) be the 1deal log-spectral rat1o w1thout no1se and 

SRo(w) = -ln[~~::~) . 
Then, expand the logar1thms and assume that the add1t1ve no1se terms are 

very much smaller than the s1gnal terms. In other words, assume that 

and 

Then, 

SR(w) = SR0(w) - 1 n fE2 (w~ - N2{w) + N1 (w) l J E2(w)S2{w) S1(w) 
(94) 

Now, def1ne the total no1se term Nt(w) by 

An exper1ment 1s conducted to test est1mators on the model g1ven by 

Equat1on (66), where the no1se model 1s g1ven by Equat1ons {91) and 

(92). Th1s exper1ment 1s essent1ally the same as the descnbed 1n the 

prev1ous chapter wh1ch produced the results 1n Tables V and VI. The 

elements of the s1gnal vector a are computer generated random numbers 

wh1ch have a umform d1str1but1on on the 1nterval (0,1) Each element 
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of the var1 ance vector, ~' 1 s the var1 ance of the no1 se 1 n the 

correspond1 ng column of the data matr1 x X The vanance are also 

computer generated random numbers wh1 ch are un1 form on the 1 nterva 1 

(O,MNV), where MNV 1s the max1mum no1se var1ance parameter. For a 

part1cular glVen max1mum no1se var1ance, MNV, and contam1nat1on 

parameter, e, 30 d1fferent s1gnal and var1ance vectors are generated. 

Then, 

(95) 

S1nce Q 1s 1nversely proport1onal to SR(w), then Q 1s proport1onal to 

1 1 = 1 Nt{w) 
= SR(w) 

SRo(w) [1 + 
sR0(w) [SR0(w)J2 

Hence, Q 1S proport1onal to the Nt( w) g1ven by Equat1on (95). 

Unfortunately, the s1gnal terms do not separate from the no1se 1n th1s 

problem. However, 1f the s1gnal terms, S1{w) and s2{w,, are treated as 

constants for the analys1s, then the effect of the no1se terms 

(1ndependent of the s1gnal) can be 1nvest1gated. Then the est1mate of Q 

1s contam1ned by three no1se terms wh1ch are proport1onal 

to ln[E2 (w~, N2(w)/E2tw), and N1(w) 

In order to ga1n some 1ns1ght 1nto the no1se model, cons1der the 

form of the three contam1nat1ng terms 1f N1(w) and N2(w) are N(O,<T 12) 

and N(O, (J" 22) respect1vely, and 1f E2(w) 1s N(O, <Te2) The d1str1but1on 

of the f1rst term 1s g1ven by 
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Th1s d1str1but1on 1s approx1mate1y zero mean, asymetr1c, and has second 

and fourth moments wh1 ch are comparable to or 1 ess than those of the 

process E2(w). Th1s d1stnbut1on was stud1ed pr1mar11y us1ng computer 

mode111ng. The second term has a d1str1but1on g1ven by 

(96) 

Note that as z--~, f(z) becomes proport1ona1 to the Cauchy d1str1but1on 

g1ven by 

= CTX/ CT y 

i + 2/ 2 
CTX CTY 

g(z) (97) 

The term N1, 1s of course Gauss1an as assumed. 

The Cauchy d1str1but1on g1ven by Equat1on (97) 1s the d1str1but1on 

of the random var1ab1e z where z=x/y, x 1s N(O, x2), andy 1s N(O,y2) 

The Cauchy d1str1but1on 1s a symmetr1c d1str1but1on w1th a max1mum of 

--_cry g(z) 

at z=O. However, the ta1ls d1e off so slowly that the 1ntegral def1n1ng 

the second moment, E(z2), does not converge. Th1s could be 1nterpreted 

as mean1ng the Cauchy d1str1but1on has 1nf1n1te var1ance. In add1t1on, 

the 1ntegra1 def1n1ng the mean, E(z), also fa1ls to converge. S1nce the 

mean can be thought of 11 phys1cally 11 as the center of mass of the 

d1str1but1on, then the fa1lure of E(z) to converge could be 1nterpreted 

to as meamng the ta1ls are so long that the d1stnbut1on could be 

11 balanced 11 anywhere (or perhaps, nowhere) 

S1nce the second term, w1th d1str1but1on g1ven by Equat1on (96), 1s 

asymptot1cally Cauchy, the d1stnbut1on also has 11 lnf1n1te 11 var1ance and 
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the d1str1but1on 1s very w1de-ta1led Now, the no1se terms appear to be 

two fa1rly well behaved terms plus one that has very w1de ta1ls The 

sum of these can be approx1mated as a Gauss1an d1str1but1on contam1nated 

by a Cauchy d1str1but1on. 

To test the effect1veness of the prev1ously d1scussed robust 

est1mators, cons1der a repeat of the prev1ous exper1ment (results 1n 

Table VI, VII and VIII) w1th the follow1ng changes. F1rst, the 

contam1 nat1 ng no1 se 1 s Cauchy rather than Lapl ac1 an, and the standard 

dev1at1on of the Cauchy no1se 1s approx1mated by the analagous Cauchy 

parameter g1Ven by (rrxlrry) from Equat1on (97). Secondly, s1nce the 

sample mean has proved to be a very poor robust est1mator and s1nce the 

Cauchy no1se should make th1ngs 11Worse 11 , the sample mean was not used as 

an est1mator. Rather, 1t 1s replaced by a max1mum l1kel1hood est1mator 

based upon Cauchy no1se and the model from Equat1on (67). Th1s max1mum 

l1kel1hood est1mator 1s 1mplemented us1ng a steepest descent algor1thm 

s1m1lar to that used for the other max1mum l1kehhood est1mates The 

average errors are normal1zed to the average error for the med1an 

est1mator, s1nce the sample average 1s not used as an est1mator 1n th1s 

exper1ment. The results from th1s exper1ment are presented 1n Tables IX 

and X wh1ch are analogous to Tables VI and VII from the prev1ous 

exper1ment 

As was the case for Lapl ac1 an contam1 nat1 on, when the no1 se 1 s 

pr1mar1ly Gauss1an (e~O.l) the best est1mator 1s clearly the max1mum 

l1kel1hood Gauss1an est1mator The second best est1mator for mostly 

Gauss1an no1se (e < 0 1) 1s the max1mum l1kel1hood Laplac1an 

est1mator These conclus1ons are supported by data from both Tables 

VIII and IX. However, when the contam1nat1on 1s large (e ~ 0 5), the 



TABLE IX 

MEDIAN OF NORMALIZED AVERAGE ERRORS FOR 
CAUCHY CONTAMINATION 

Contam1nat1on Max. No1se Alpha-Tr1mmed ML ML ML 
e Variance Mean Cauchy Laplac1an Gaussian Med1an Normalizat1on 

0.0 0.001 1.07 1.82 1.82 1.82 1.0 2.3x1o-~ 
o. 0.01 1.12 5.88 .521 .413 1.0 3.8x1o-3 
0. 0.1 1.06 6.30 .617 .396 1.0 2.6x1o-2 
o. 0.5 1.03 1.62 .798 .378 1.0 5.7x1o-
0.01 0.001 1.03 2.93 .764 .496 1.0 1.7x1o-7 
0.01 0.01 1.05 6.30 .555 .446 1.0 3.6xlo-~ 
0.01 0.1 1.06 5.19 -- .433 1.0 2.9x10-2 
0.01 0.5 1.07 4.67 -- .423 1.0 8.1x10-7 
0.1 0.001 1.04 9.64 .967 .892 1.0 2.1x1o-5 
0.1 0.01 1.05 13.9 .731 .609 1.0 1.2x10-3 
0.1 0.1 1.04 21.0 .800 .685 1.0 1.8x1o-2 
0.1 0 5 1.14 5.26 -- .517 1.0 6.4x10-7 
0.5 0 001 1.10 6.59 3.57 2.48 1.0 1.7x1o-5 
0.5 0.01 1.11 9.07 1.94 2.48 1.0 2.2x1o-3 
0.5 0.1 1.05 24.1 1.80 2.31 1.0 2.9xlo-2 
0 5 0.1 1.14 7.93 -- 1.88 1.0 2.9xlo-7 
0.9 0.001 1.30 -- 4.81 3.80 1.0 3.2x1o-
0.9 0 01 1.17 -- 4.07 3.51 1.0 4.3xlo-~ 
0.9 0.1 1.23 -- -- -- 1.0 3 .oxlo-2 
0 9 0.5 1.26 -- -- -- 1.0 9.7x1o-7 
1.0 0.001 1.25 -- 7.02 4.30 1.0 4.9xlo-5 
1.0 0.01 1.23 -- 2.82 3.92 1.0 7.6x1o-3 
1.0 0.1 1.20 -- -- -- 1.0 6.2xlo-
1.0 0.5 1.18 -- -- -- 1.0 8.9x1o-2 

_, 
0 
0"1 

- -- ~~-



TABLE X 

NUHBER OF TH1ES THE AVERAGE ERRORS ARE FIRST, SECOND, OR THIRD LOIIEST -CAUCHY CONTAMINATION 

Contamination Max. Noise Alpha-Trimmed Ml Ml Ml 
Var1ance Mean Cauchy Med1an Laplac1an Gauss1an 

e 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 

0. 0.001 4 13 0 0 0 2 13 4 1 3 0 17 0 3 0 
0. 0.01 0 0 3 0 0 0 0 1 16 20 0 0 0 19 1 
o. 0.1 0 0 5 0 0 0 1 0 14 19 1 0 0 19 1 
0. 0.5 0 0 5 0 0 3 0 0 12 20 0 0 0 20 0 

0 01 0.001 1 5 7 0 0 0 4 2 6 14 1 5 1 12 2 
0.01 0.01 0 0 6 0 0 0 0 0 14 19 1 0 1 19 0 
0.01 0.1 0 1 3 0 0 0 0 0 16 17 3 0 3 16 1 
0.01 0.5 0 6 14 0 0 0 0 14 6 20 0 0 0 0 0 

0.1 0.001 4 5 2 0 0 0 2 4 11 13 3 3 1 8 4 
0.1 0.01 1 2 4 0 0 0 0 1 15 16 2 1 3 15 0 
0.1 0.1 0 1 7 0 0 0 0 0 13 15 4 0 5 15 0 
0.1 0.5 0 6 14 0 0 0 0 14 6 20 0 0 0 0 0 

0.5 0.001 1 16 2 0 0 0 16 3 1 3 0 13 0 1 4 
0.5 0.01 2 18 0 0 0 0 18 2 0 0 0 5 0 0 15 
0.5 0.1 2 13 6 0 0 0 18 1 0 0 6 1 0 0 13 
0.5 0.5 0 20 0 0 0 0 19 0 1 0 1 0 0 0 0 

0.9 0.001 2 18 0 0 0 0 18 2 0 0 0 8 0 0 12 
0.9 0.01 4 16 0 0 0 0 16 4 0 0 0 9 0 0 11 
0.9 0.1 3 17 0 0 0 0 17 3 0 0 0 0 0 0 0 
0.9 0.5 1 19 0 0 0 0 19 1 0 0 0 0 0 0 0 

1 0 0.001 3 17 0 0 0 0 17 3 0 0 0 2 0 0 18 
1.0 0.01 4 16 0 0 0 0 16 4 0 0 0 8 0 0 12 
1.0 0.1 7 13 0 0 0 0 13 7 0 0 0 0 0 0 0 
1.0 0.5 9 11 0 0 0 0 11 9 0 0 0 0 0 0 0 ...... 

0 
"'-.1 

- --~ ~--- -~ ~----
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max1mum l1kel1hood est1mators are outperformed by the alpha-tr1mmed mean 

and med1an est1mators by a large marg1n. The med1an est1mator appears 

to be only sl1 ghtly better than the al pha-tr1mmed mean from when the 

data from Table IX 1s used. But, from Table X, 1t 1s qu1te clear that 

the med1an 1s almost always better than the alpha-tr1mmed mean as an 

est1mator for contam1nated d1str1but1ons. 

The dashes 1n Table IX 1nd1cate a fa1lure of the algonthm to 

converge. When the Cauchy contam1nat1on of the Gauss1an becomes 

s1 gm f1 cant, the steepest descent max1mum 11 kel1 hood method falls to 

converge Furthermore, even 1 f the methods do converge, they produce 

large errors. Th1s 1s perhaps an 1nd1cat1on that the est1mate 1s 

converg1ng to a local max1mum or to a data vector. Not1ce that the 

max1mum l1kel1hood method based on Cauchy no1se generally fa1led to 

converge to anyth1ng w1th a reasonably low error. Th1s could be due to 

any number of reasons, and no clear answer has been found However, 1t 

1s qu1te poss1ble that the method does converge, but to a "bad" 

solut1on, such as a local max1mum Th1s 1s def1n1tely a poss1bl1ty for 

many reasons One reason 1s that the standard dev1a1on 1s used as an 

1 n1 t1 a 1 guess for the Cauchy parameter, a = <Tx, and th1 s may not produce 
<Ty 

a rel1able enough 1n1t1al guess Unfortunately, the max1mum l1kel1hood 

equat1ons for the Cauchy d1str1but1on do not lead to a system of 

equat1ons from wh1ch an est1mate of the Cauchy parameter can be made A 

s1 gm f1 cant error 1 nduced by us 1 ng the standard dev1 at1 on for a may 

result 1n such a poor 1n1t1al guess that the max1mum l1kel1hood Cauchy 

method fa1 1 s to converge The max1mum 11 kel 1 hood Cauchy method d1 d 

converge on small data sets, but not to the same solut1on as d1d the 

other methods It appears that w1thout a proper 1n1t1al guess for the 
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parameters, the Cauchy method (when 1t converges) may be converg1ng to a 

local max1mum rather than m1n1mum. 

The ma1n conclus1on to be reached from the data 1n Tables IX and X 

1s that for e ~ 0.1, and for Cauchy contam1nat1on less than or equal to 

10 percent, the max1mum l1kel1hood est1mator for a Gauss1an no1se model 

1 s the best. A 1 so, when e ~ 0. 5, the sample med1 an 1 s the best 

est1mator and the alpha-tnmmed mean does nearly as well For large 

amounts of Cauchy contam1nat1on, the max1mum l1kel1hood methods 

generally fall due to 1ts 1nab1l1ty to adaquately est1mate the data 

values and the "error" parameters (est1mates of spread of the 

d1str1but1on) The max1mum l1kel1hood methods have a potent1al 

disadvantage for use on real data Th1s 1s because even the 1nput no1se 

models and d1str1but1ons are unknown, so the d1str1but1ons could be non

Gausslan. As can be seen from Cauchy contam1nated Gauss1an no1se, these 

max1mum l1kel1hood methods are much more sens1t1ve to the no1se 

d1 str1 but1 on than 1 s the med1 an Because of 1ts rel1ab1l1ty for all 

types of no1se, the med1an appears to be the best cho1ce for an 

est1mator at th1s po1nt. 

4.2 Robust Attenuat1on Est1mat1on from 

1-D Model Data 

To s1mulate data from Conoco•s borehole model and to test the 

robust est1mates on a more phys1cal model, a s1mple earth model 1s 

constructed. There are 10 1dent1cal 2 foot th1ck layers w1th a veloc1ty 

of 15000 ft./sec and Q=100 The source used 1s the d1g1t1zed source 

plotted 1n F1gure 4 The bandw1dth used 1s 7-12 KHz (the peak area of 

the spectrum), and 10 runs w1 th 10 no1 se sets per run are used 1 n the 
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exper1ment The results, 1n terms of standard dev1at1on of the 

est1mates, are g1ven 1n Table XI for var1ous max1mum l1kel1hood and 

robust est1mates, as well as for several attenuat1on methods prev1ously 

d1scussed. Wh1te Gauss1an no1se 1s added to the t1me-doma1n 1nput 

s1gnals so that the s1gnal-to-no1se rat1o's {SNR) are 100 and 1000. 

That 1S, 

r1(t) = s1{t) + n1{t) 

where r1(t) 1s the P-wave s1gnal at the 1th rece1ver, s1(t) 1s the 1deal 

s1gnal, and n1(t) 1s a Gauss1an no1se process. 

When the s1gnal-to-no1se rat1o 1s 1000, then all of the method 

shown 1n Table XI worked fa1rly well. By far the best methods are the 

med1an and the alpha-tr1mmed mean. The max1mum l1kel1hood est1Mator for 

a Gauss1an model d1d not do well. The results for max1mum l1kel1hood 

Gauss1an method were not 1ncluded because they frequently fa1led to 

converge even for the relat1vely h1gh s1gnal-to-no1se rat1o of 1000. 

When the data conta1ns more no1se (s1gnal-to-no1se rat1o 1s 100), 

all the est1mators are h1gher. The e1genvector method fa1led to 

converge and the max1mum l1kel1hood (Gauss1an) method occas1onally 

fa1led to converge. The W1ener f1lter method worked fa1rly well, but 

the results shown 1n Table XI 1s the best result for the method and 1t 

was reached only after a great deal of exper1mentat1 on to f1 nd the 

opt1mum parameters. The spectral rat1o method d1d not do well. For 

th1s model of attenuat1on est1mat1on, the s1mplest and most robust 

scalar methods, namely the med1an and alpha-tr1mmed mean, performed the 

best 



S1gnal-to Spectral 
No1se Rat1o Rat1o 

TABLE XI 

ATTENUATION ESTIMATION - STANDARD DEVIATION 
OF ERROR FOR A SIMPLE, ONE 

DIMENSIONAL MODEL 

W1ener 
Filter 

E1genvector Max. L1kel1hood Alpha-Trtlmmed 
Decomposition Average Gauss1an Med1an Mean 

nrou-:--------9-.~-- - -- -1o .r--- -------s.-9- -------- 7.7- - ---- - -14.11-- ----~--o:-:r 6 .o 
100. 1900 27.32 381. n.a, 25.4 25 4 

1 = D1d Not always Converge 
2 = Requ1red Careful AdJUstment of Parameters 

_, 
_, 
_, 



4 3 Attenuat1on Est1mat1on from Borehole 

Model Data 

112 

Synthet1c data wh1ch accurately models the propagat1on of acoust1c 

energy 1 n a boreho 1 e has been supp 1 1 ed by both Amoco and Conoco The 

data set from Conoco was chosen for study because attenuat1on 1s read1ly 

apparent 1n the Conoco data Th1s data set conta1ns groups of 31 traces 

w1 th source-rece1 ver offsets rang1 ng from 3 0 meters to 6 0 meters at 

0 1 meter 1ncrements. A complete set of 31 traces 1s modelled for many 

d1fferent comb1nat1ons of borehole parameters (e g. shear and P-wave 

vel oc1 ty, shear wave attenuat1 on, and P-wave attenuat1 on). Two sets 

were chosen for deta1led study 

The f1rst data set, shown 1n F1gure 9, conta1ns model data w1th the 

follow1ng set of parameters Borehole rad1us = 10. em, flu1d veloc1ty = 

1600. m/sec., flu1d Q = 50 P-wave veloc1ty = 4000 m/sec , P-wave Q = 

100 , shear wave veloc1ty = 2300 m/sec., shear wave Q = 100. F1gure 10 

1s a plot of JUSt the near offset (3.0 m) trace from F1gure 9. The 

feature of 1nterest 1n th1s f1gure 1s the P-wave wh1ch beg1ns at about 

0.8 m1ll1seconds and ends at the onset of the shear wave arr1val at 

about 1.3 m1ll1seconds Note that the P-wave 1s much lower 1n ampl1tude 

than the other waves, but 1t 1s separated 1n t1me from the other waves 

and can eas1ly be 1solated us1ng a w1ndow. F1gure 11 1s a plot of JUSt 

the P-wave from the trace 1n F1gure 10 

A Hamm1 ng w1 ndow 1 s used to 1 sol ate the P-wave arr1 val from the 

rest of the trace The total length of the w1ndow 1s 0 75 m1ll1seconds 

( 60 samp 1 es) and the shoulder w1 dth 1 s 0 1 m1 11 1 seconds ( 8 samp 1 es) 

F1gure 12 shows the campl1tude spectrum of the P-wave 1n the near offset 

(3 0 m) trace. F1gure 13 shows the ampl1tude spectrum ~f the far offset 
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trace (6 0 m) Both traces have been mul t1 pl1 ed by the offset to 

approx1mately correct for geometr1cal spread1ng losses. For a d1fferent 

set of traces w1thout attenuat1on, mult1ply1ng by the offset d1d a good 

JOb of correct1ng for geometr1c spread1ng loss {to w1th1n a few 

percent) The effect of attenuat1on 1s read1ly apparent from a 

compar1son of F1gures 12 and 13. It 1s 1mportant to note here that the 

P-wave spectral shapes and the attenuat1on est1mates are fa1rly 

1 nsens1t1Ve to changes 1 n the method of w1 ndow1 ng. As 1 ong as the 

w1 ndow conta1 ned most of the P-wave arr1 val and has some taper at the 

shoulders, the result1ng spectra are not s1gn1f1cantly affected. Other 

w1ndows tr1ed 1nclude trapezo1dal, ra1sed cos1ne and rectangular 

w1ndows Only the rectangular w1ndow gave poor results. 

In order to produce rel1able attenuat1on est1mates 1t 1s necessary 

to carefully choose the frequenc1es over wh1ch the attenuat1on est1mate 

1s made. For th1s model data the best range 1s from 9.5 kHz to 11 5 

kHz. The f1nal attenuat1on est1mates are much more sens1t1Ve to the 

frequenc1es used than to the w1ndow1ng funct1on It 1s 1mportant that 

the range be restr1 cted to some ne1 ghborhood 1 n the v1 c1 n1 ty of a 

spectral peak. Us1ng less than the opt1mum number of frequency po1nts 

causes a sl1ght deter1orat1on 1n the accuracy of the est1mate. However 

us1 ng too many frequency po1 nts results 1 n very 1 naccurate est1mates 

It 1s 1nterest1ng to note that the 2.0 kHz frequency band used for the 

attenuat1on est1mates results 1n 13 frequency po1nts S1nce acoust1c 

logg1ng tools typ1cally have 10-12 rece1vers, the S1Ze of the data 

matr1x us1ng for many est1mat1on method 1s close to the ten by ten s1ze 

prev1ously used for s1mulat1ons 
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The results of apply1 ng some of the prev1 ously d1 scussed 

attenuat1on est1mators to the Conoco borehole model data are shown 1n 

Table XII The est1mators l1sted 1n Table XII are the sample average, 

the med1an, the alpha-tnmmed mean, the max1mum l1kel1hood Gauss1an 

est1mator and the max1mum l1kel1hood Laplac1an est1mator The follow1ng 

attenuat1on est1mators were tested on the model data but the results are 

not l1sted becasue they fa1led to produce phys1cally reasonable 

est1mates spectral rat1o, e1genvalue decompos1t1on, W1ener f1lter, and 

max1mum l1kel1hood Cauchy est1mators. Even though Q = 100 1s the 

correct value, these est1mators usually produced Q est1mates 1n the 

range -10 ~ Q ~ 10 

The f1rst row of Table XII l1sts the results when Q = 100, no no1se 

1s added, and the frequency range (9.5 - 11 5 kHz) 1s opt1mum. For th1s 

case, all of the est1mators l1sted d1d fa1rly well, except for the 

sample average. The med1 an had the 1 owest average error, and the 

max1mum 11 kel1 hood Gauss1 an est1mator performed nearly as well as the 

med1an When the attenuat1on est1mat1on 1s based upon frequenc1es from 

19.5 kHz to 21.5 kHz (the second 1 obe of the spectrum) the results of 

the est1mates are much worse for all of the est1mators. 

The Conoco model conta1ned one set of traces wh1ch were generated 

w1th Q = 30. The results are much worse than for Q = 100, because the 

low Q (hlgh attenuat1on) results 1n very l1ttle energy at the far 

offsets. The attenuat1on est1mate for the near offset 1s more accurate 

than for the far offsets, but the 1mprovement 1s sl1ght Because the Q 

1s low, and because d1spers1on can only be cons1dered negl1g1ble 1f when 

Q >> 10, 1t 1s poss1ble that d1spers1on effects are reduc1ng the 

accurac1es of the est1mate 



TABLE XII 

ROOT MEAN SQUARE ERROR OF ATTENUATION 
ESTIMATES FROM CONOCO MODEL DATA 

Percen True Frequency-- Alpha-Trinimea -- -~-- ML 
No1se Q (kHz) Average Med1an Mean Gauss1an Laplac1an 

U !UU. ':1 ::>-.L.L.::> O£.U J.2.3 17.2 13.4 17 1 
0. 
0 
0 1 
1.0 

100 
30 

100 
100. 

19.5-21.5 
9.5-11.5 
9 5-11.5 
9.5-11.5 

42 7 
26.2 
63.8 
66.8 

22 0 
30 0 
43.0 
44.7 

21.2 
27.6 
41.5 
43.4 

27.0 
27.0 

34 6 

...... 
N 
0 
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When no1se 1s added to the model, all of the est1mators gave 

1naccurate est1mates. The max1mum l1kel1hood Gauss1an and max1mum 

l1kel1hood Laplac1an est1mators fa1led to converge The three 

est1mators wh1ch d1d g1ve est1mates have average root mean square errors 

about half as large as the parameter be1ng est1mated. Even 0 1 percent 

no1se added to the s1gnal produced est1mates wh1ch have very large 

var1ances Actual Q est1mates range from near zero to around 150. Any 

decrease 1 n the amount of add1 t1 ve no1 se by an order of magm tude has 

l1ttle effect on the accuracy of the est1mates. 

The med1an attenuat1on est1mator had the best overall performance 

on the Conoco model data, and the alpha-tr1mmed mean also d1d well. The 

column average d1d not do well at all. The max1mum l1kel1hood Gauss1an 

est1mator d1d very well when no random no1se was present, but 1t d1dn't 

converge f'Or even very small levels of random no1se. The max1mum 

l1kel1hood Laplac1an est1mator d1d moderately well on the best no-no1se 

data set, but th1s method frequently fa1led to converge Overall, the 

med1an and the alpha-tr1mmed mean should perform the best on real data 

based upon the performance g1Ven 1n Table XII. The max1mum l1kel1hood 

Gauss1 an est1mator may also do well on real data prov1 ded the no1 se 

levels are very low 

4 4 Attenuat1~n Est1mat1on from Borehole Data 

The real acoust1c log data used 1n th1s study comes from Conoco and 

was recorded us1ng a 12 rece1ver Schlumberger tool The source-rece1ver 

offsets range from 13 ft to 18.5 ft , w1 th a rece1 ver to rece1 ver 

offsets of 0 5 ft. To thoroughly 1nvest1gate the use of several methods 

of attenuat1on est1mat1on on the data set, one set of 11 traces 1s 
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stud1ed. The f1rst trace, known as the near offset trace (offset = 13.0 

ft.) 1s shown 1n F1gure 14. The far-offset trace (offset= 18.5 ft ) 1s 

shown 1n F1gure 15 The loss of ampl1tude w1th offset 1s apparent even 

though these traces have been approx1mately corrected for geometr1c 

spread1ng losses by mult1ply1ng each trace by 1ts offset. 

The borehole wave under 1nvest1gat1on 1s the P-wave. The P-wave 1s 

the very small ampl1tude event wh1ch arrlVes f1rst. In F1gure 14, the 

P-wave arr1ves at 77 samples on the t1me ax1s and d1es away at 125 

samples on the t1me ax1s (the un1ts of t1me 1n the plots are 

11 Samples 11 ). The P-wave lasts about 50 samples, and so 50 samples 1s 

chosen as the 1 ength of the Hamm1 ng w1 ndow appl1 ed to separate the P

wave data from the rest of the data. The shoulder width of the Hamm1ng 

w1ndow 1s chosen to be e1ght samples. F1gures 16, 17 and 18 the 

ampl1tude spectra of the w1ndowed P-wave arr1val at offsets of 13.0 ft., 

15 0 ft., and 18.5 ft., respectlVely. Not1ce that the spectrum 1n 

F1gure 16 1s smooth, and the spectrum 1n F1gure 18 1s fa1rly smooth. 

However, the spectrum of F1gure 17 has a null or zero wh1ch occurs set 

the same frequency as the peak of the ma1n lobe 1n F1gure 16. 

Unfortunately th1s spectral shape makes attenuat1on est1mat1on very 

dl fflCUl t. 

Attempt1ng to est1mate Q for each rece1ver pa1r resulted 1n 

negatlVe or nearly zero Q est1mates for all methods. Only when the 

attenuat1 on est1 mate 1 s based upon the rat1 o of the spectra from the 

near and far offset rece1vers do phys1cally reasonable answers result 

The results of a few attenuat1on est1mators for var1ous frequency ranges 

are shown 1n Table XIII. There 1s a strong correlat1on between Q values 

and P-wave veloc1ty. When the P-wave veloc1ty 1s h1gh, there lS usually 



Layer Rece1ver 
Number Spac1ng (ft ) 

1 5.5 

1 5.5 

1 2 0 
2 2.0 

1 2 0 
2 2 0 

1 --
2 --
3 --
4 --
5 5 
6 --
7 --
8 --
9 --
10 --

TABLE XIII 

ATTENUATION ESTIMATES FROM CONOCO DATA 

Frequency Average Med1an 
(kHz) Q Q 

10.0-11.5 38.3 36 0 

7.5-11 5 20.8 14.9 

10 0-11.5 700.8 19 1 
10.0-11.5 22.7 21.6 

7 5-11 5 35.34 8.4 
7.5-11.5 20.7 18 4 

--- • 08 3 8 
--- -5.8 -6.0 
--- 4.8 4.8 
--- 8.4 8.4 
10 -11.5 8 0 8.0 
--- 4.4 -16.1 
--- .82 .81 
--- -.82 -.79 
--- 2.5 2.5 
--- -8.9 -8 0 

Alpha-Tr1mmed 
Mean Q 

37.1 

17.2 

20.9 
24.5 

13.3 
18.7 

3.8 
-6.0 
4.8 
8.4 
8.0 
-16 1 
81 

-.79 
2.5 
-8.0 

_, 
N 
co 
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l1ttle attenuat1on (hlgh Q) S1nce the P-wave veloc1ty est1mate for 

th1 s data set measured from the onset of the P-waves 1 s 2x104 ft. /sec 

(wh1ch 1s fa1rly hlgh), then Q est1mates should also be h1gh (perhaps Q 

= 100). 

As can be seen from Table XIII, most of the attenuat1on values are 

lower than should be expected based upon laboratory results. If the 

cr1ter1on for JUdg1ng the performance of attenuat1on est1mators 1s the 

laboratory values, then the best results are from us1ng a narrow 

frequency band (10 kHz to 11.5 kHz) wh1ch corresponds to the 

ne1ghborhood of the largest spectral peak 1n F1gure 18 As prev1ously 

ment1 oned, th1 s result 1 s based upon the spectra 1 ra t1 o 1 nvo 1 v1 ng the 

near and far offset traces only The only techn1 ques wh1 ch produce 

reasonable results are the sample average, the med1an, and the alpha

trlmmed mean. The max1mum l1kel1hood methods and the e1genvector method 

do not work on JUSt one spectral rat1o. Unfortunately, attenuat1on 

est1mates from real data can be JUdged for accuracy only by compar1 ng 

the Q est1mates w1th values measured 1n laborator1es. These laboratory 

measurements 1 nd1 cate that Q values may range from 50 to 150 though 

values outs1de that range are poss1ble. Est1mators such as the spectral 

rat1o and W1ener f1lter methods fa1l on th1s data set (they y1eld 

negatlVe values). The results w1 th the h1 ghest Q est1mates from Table 

XIII range from 36.0 for the med1an to 38.3 for the sample average w1th 

the al pha-tr111uned mean 1 n the m1 ddl e. The d1 fference between these 

three est1mates 1s probably not s1gn1f1cant, and 1t 1s not poss1ble to 

dec1de wh1ch 1s better based upon th1s one result. 
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4 5 Chapter Summary 

Attenuat1on est1mat1on methods have been tested on fa1rly real1st1c 

models wh1ch may have no1se added. The only est1mators able to perform 

adaquately are the med1an and the alpha-tr1mmed mean The sample 

average and the max1mum 11 kel1 hood Gauss1 an method work well 

occass1onally but not cons1stently. Therefore, based upon performance 

on model data, and tak1ng 1nto account computat1onal cons1derat1ons, the 

med1an and the alpha-tr1mmed mean are super1or to the others. Th1s 

conclus1on 1s not changed by the results on real data, because the 

est1mators cannot be JUdged when the values to be est1mated rema1 n 

unknown, and because the med1an and alpha-tr1mmed mean do g1ve 

phys1cally reasonable est1mates. 



CHAPTER V 

SUMMARY AND CONCLUSIONS 

The est1mat1on of the attenuat1on coeff1c1ent, Q, from acoust1c 

well log data 1s a d1ff1cult problem. The problem 1s 111-posed, so that 

small errors 1n the est1mat1on of the spectra of the recelVed s1gnals 

may result lh large errors 1n the est1mat1on of Q A phys1cally 

reasonable no1se model leads to an error d1str1but1on 1n the f1nal 

attenuat1on est1mate wh1ch 1s very long-ta1led Add1ng small amounts of 

random no1 se to borehole model data caused the est1mators to y1 el d 

1naccurate est1mates, the behav1or of the est1mators on model data w1th 

sma 11 amounts of no1 se matched what one would expect from the 1 ong

talled no1se d1str1but1ons prev1ously modelled. Some of the est1mators 

worked well enough on real data to y1eld phys1cally reasonable values of 

Q. Unfortunately, the accuracy of the Q est1mates from real data 

rema1ns unknown, because the actual Q values for the rock surround1ng 

the borehole are unknown. 

The class1c attenuat1on est1mator, the spectral rat1o method, 1s 

the most commonly used method for attenuat1one est1mat1on on all types 

of acoust1c data Th1s method 1s computat1onally s1mple, and 1t allows 

for an unknown amount of frequency-1ndenpendent geometr1c spread1ng 

losses. However, th1s method also has many d1sadvantages. The rat1o of 

no1 se contam1 nated spectra results 1 n very unstab 1 e est1 mates of the 

pure spectral rat1o S1nce the spectral rat1o method 1s a least-squares 
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method and 1 s thus sens1 t1 ve to bad data po1 nts, the method does not 

work very wel 1 when the spectra conta1 n zeros and no1 se Because the 

spectral rat1 o method can handle unknown geometr1 c 1 oss factors 1 f 1 t 

must est1mate another parameter. Th1s 1s actually a d1sadvantage 

because the est1mat1 ng an unnecessary parameter (the 1 ntercept of 11 ne 

1n the spectral rat1o method) results 1n h1gher est1Mat1on errors. The 

W1ener f1lter method 1s a var1at1on of the spectral rat1o Method and can 

handle spectral zeros better. Unfortunately, 1t 1s very sens1t1ve to 

parameter select1on, and s1nce 1t 1s also a least squares techn1que, the 

W1ener f1tler method 1s too sens1t1ve to large spectral errors. 

The Q est1mates for each frequency and depth can be cast as a 

matr1X, and the e1 genvector correspond1 ng to the 1 argest e1 genval ue 1 s 

an opt1mum least-squares est1mate for the values of Q versus depth. 

Unfortunately, the e1genvector method performs only sl1ghtly better than 

s1mply averag1ng the columns of the matr1x to f1nd Q. However, the 

matr1x formulat1on 1tself leads to max1mum l1kel1hood vector est1mators 

to f1nd Q versus depth Max1mum l1kel1hood est1mators based upon 

Gauss1an, Laplac1an, and Cauchy no1se were 1mplemented us1ng the 

steepest descent method and tested on var1ous data sets The Gauss1an 

based est1mator performed the best overall, and had fewer convergence 

problems However 1t d1d not work very well on model data w1th random 

no1se. 

Two very s1mple robust est1mators, the sample med1an and the alpha· 

tr1mmed mean, were tested on many models, w1th vary1ng levels of no1se 

w1 th d1 fferent d1 str1 but1 ons These two methods proved to be super1 or 

to all of the methods for most test cases. Th1 s 1 s because these 

est1mators are very robust, and thus not sens1t1ve to bad data values 
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Furthermore, the1r computat1onal s1mpl1c1ty and lack of convergence 

problems makes them the opt1mum cho1ces for use on real data. 

However, the max1mum l1kel1hood est1mator based upon a Gauss1an 

no1se model d1d work about as well as the med1an and alpha-tr1mmed mean 

on several data sets In part1cular, the max1mum l1kel1hood {Gausslan) 

method worked well on the synthet1c borehole data for low no1se 

levels. So, 1t should work on real data when the spectrum 1s smooth and 

the background no1se level 1s low. 

All of the est1mators wh1ch have been tested on model data were 

also tested on the real data set from Conoco Unfortunately, only three 

est1mators gave phys1cally reasonable results on real data They are 

the sample average, the med1an, and the alpha-tr1mmed mean. The 

est1mates of Q from real data are strongly affected by the cho1ce of the 

frequency band over wh1ch the est1mate 1s made. For models, the opt1mum 

results were ach1eved from a narrow band around the peak of the 

spectrum. The spectra from the real data 1s somet1mes more compl1cated 

than the spectra 1n the models, but choos1ng a w1ndow 1~ frequency wh1ch 

conta1ns the spectral peak for most offsets d1d y1eld what 1s probably 

the best results Th1 s compl1 cated spectrum 1 s probably the cause of 

the fa1lure of the max1mum l1kel1hood {Gauss1an) method. 

S1nce the actual Q values for the real data are unknown, the 

accuracy of the Q est1mates 1s also unknown. However, based upon 

laboratory data and g1ven the apparent P-wave veloc1ty, est1mates of Q 

should be near Q = 100. The 11 best11 Q est1mates from the real data are 

1n the range of 36 to 38 Th1s may be too low, but 1t 1s 1mposs1ble at 

th1s t1me to make any s1gn1f1cant conclus1ons regard1ng the accuracy of 

these est1mates In fact, even 1 f 1 aboratory Q measurements are made 
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from a core of the well wh1ch the data 1s from, one would st1ll not be 

able to reach a conclus1on regard1ng the accuracy of the attenuat1on 

est1mates. Th1s 1s because attenuat1on 1s a strong funct1on of the 

env1ronment of the rock (pressure, fu1ld saturat1on, etc ••• ) So, 1n 

order to compare laboratory values w1th well log values of Q, the 

measurements made 1n the lab must be under essent1ally the same 

env1ronmental cond1t1ons as those 1n the borehole. Th1s may not be 

poss1ble. But, 1f 1t 1s poss1ble to make such measurements, 1t should 

be done so that the accuracy of Q est1mates from real data can be 

determ1ned Only when th1s 1s completed w1ll 1t be poss1ble to 1mprove 

attenuat1 on est1mat1 on al gor1 thms to the po1 nt that they can be used 

rout1nely on real data. 

Futher research 1n the area of attenuat1on est1mat1on from acoust1c 

1 ogs should emphas1 ze two areas One area 1 n wh1 ch more research ts 

necessary 1 s understand1 ng the effects of borehole and tool geometr1 cs 

on the spectra of the rece1ved waveforms. Irregular1t1es 1n the 

borehole and t1lt1ng of the tool produce features 1n the spectr9 of the 

rece1Ved s1 gnal wh1 ch makes attenuat1 on est1mat1 on d1 ff1 cult. It may 

prove poss1ble to model these 1rregular1t1es w1th a s1mple model and 

remove them from the data 1n the same manner as mult1ple reflect1ons are 

removed from surface se1sm1c data. 

Even 1f the problems w1th spectral 1rregular1t1es were solved, much 

work would st1ll need to be done to evaluate the accuracy of the 

attenuat1 on est1 mates. Exper1ments to est1 mate the attenuat1 on from 

cores should be conducted where the core 1s kept 1n cond1t1ons that are 

as close to those 1n the borehole as poss1ble The frequences used 

should correspond to those of the source 1n the acoust1c logg1ng tool 
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In add1t1on, attempts should be made to generate attenuat1on est1mates 

from vert1cal se1sm1c prof1le data and surface se1sm1c data for 

compar1son w1th est1mates from acoust1c logs. Once the accuracy of the 

attenuat1on est1mates 1s establ1shed, then work can be done to develop 

rules for the 1nterpretat1on of attenuat1on logs. 
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