FACTORS WHICH DETERMINE THE INFLUENCE OF
 INDUSTRIAL ARTS ENROLLMENT ON OTHER

VOCATIONAL EDUCATION

PROGRAMS

By
SARAH MARGARET MYERS OSBORN
Bachelor of Arts
Oklahoma Baptıst Unıversıty
Shawnee, Oklahoma 1961
Master of Science
Oklahoma State Unıversity
Stıllwater, Oklahoma 1980

Submitted to the Faculty of the Graduate College of the Oklahoma State Unıversity
in partial fulfillment of the requirements
for the Degree of
DOCTOR OF EDUCATION
May, 1986

Theons
1161
$08:$
ran:

FACTORS WHICH DETERMINE THE INFLUENCE OF
 INDUSTRIAL ARTS ENROLLMENT ON OTHER VOCATIONAL EDUCATION

PROGRAMS

Thesis Approved

Copyright

by

Sarah Margaret Myers Osborn
 May, 1986

ACKNOWLEDGMENTS

I would like to express my appreciation to the members of my advisory commıttee，Dr Clyde Knıght，Dr Kenneth St Claır，Dr Don Frazier，and particularly Dr Cralg Anderson，who was my thesis adviser

My appreciation also goes to Dr Roger Stacy，the Oklahoma State Supervisor for Industrial Arts／Technology Education，for his help， suggestions，and encouragement when this study was Just an idea

I appreciate the help given me by the admınlstrators，teachers， and students who helped me with the survey at each of the elght schools Those schools were Guymon Hıgh School，Holdenville High School，Kıng－ fisher Hıgh School，Eastern Oklahoma County Area Vocational－Technıcal School，Choctaw，Kıamıchı Area Vocatıonal－Technıcal School，McAlester， Tulsa County Area Vocatıonal－Technıcal School，Memorıal Campus，and Western Oklahoma Area Vocatıonal－Technıcal School，Burns Flat I would be remiss if I did not express my appreciation to Caddo－Kıowa Area Vocatıonal－Technical School and Apache Hıgh School for allowing me to field test the survey instrument with their students The cooperation from each of the schools and their willingness to help so near the end of the school year will long be remembered

Wıthout the support and encouragement of my famıly and friends， this study may never have been completed

To each of them，＂Thank you＂

TABLE OF CONTENTS

Chapter Page
I INTRODUCTION 1
Statement of the problem 4
Purpose of the Study 4
Objectıves 4
Limıtations 5
Assumptions 6
Definition of Terms 6
II REVIEW OF LITERATURE 9
Governmental Influence on Industrial Arts 10
Industrial Arts/Trade and Industrial Education Relationship 14
Articulation Between Industrial Arts and Trade and Industrial Education 15
Industrial Arts Contrıbutıons to Other Subject Areas 19
Industrial Arts Influences on Students 21
Influences on Student Enrollment 23
Summary 25
III METHODOLOGY 26
Selection of the Population 27
Development of the Survey Instrument 29
Data Collection 30
Analysis of the Data 34
IV RESULTS OF THE STUDY 36
Analysis of Data With Respect to Objectives 37
Analysis of Data With Respect to Questions A Through D 42
Summary 59
V SUMMARY, CONCLUSIONS AND RECOMMENDATIONS 60
Summary 61
Conclusions 64
Recommendations 70
BIBLIOGRAPHY 73

Chapter Page
APPENDIX A - LIST OF DESCRIPTORS USED IN ERIC SEARCH 77
APPENDIX B - INDUSTRIAL ARTS/TRADE AND INDUSTRIAL QUESTIONNAIRE 79
APPENDIX C - LETTER TO ADMINISTRATORS 83
APPENDIX D - LIST BY SIZE OF HIGH SCHOOLS WHOSE STUDENTS WERE SURVEYED 85

LIST OF TABLES

Table Page
I Grade and Enrollment Status of Students Surveyed 31
II Grade and Enrollment Status of Females Surveyed 33
III Enrollment Status of Students Surveyed by Size of Home Hıgh School 34
IV Responses of Students Who Reported Influences on Trade and Industrial Enrollment 39
V Re-enrollment Plans of First-year Trade and Industrial Students by Status of Industrial Arts Experience 41
VI Re-enrollment Plans of Trade and Industrial Students by Type of Industrial Arts Experience 54
VII Re-enrollment Plans of Trade and Industrial Students by Size of Home High School 55
VIII Re-enrollment Plans of Trade and Industrial Students by Sex 57
IX Re-enrollment Plans of Trade and Industrial Students by Location of Trade and Industrial Program 58

LIST OF FIGURES

Figure Page
1 School Sıze Classification Showing Maxımum Number of Students Enrolled
Relationship of Industrial Arts and Trade and Industrial Education as Outlined by Federal Regulations 13
3 Industrial Arts Curriculum Structure 17
4 Location of School Surveyed 285 Percentages of Students Wıth Any Industrial Arts ExperienceWho Reported Influences on Trade and Industrial Enrollment406 Percentages of Students Wıth General Industrial Arts ExperienceWho Reported Influences on Trade and Industrial Enrollment43
7 Percentages of Students Wıth Industrial Arts Experıence inWoods Who Reported Influences on Trade and IndustrialEnrollment44
Percentages of Students Wıth Industrial Arts Experience in Metals Who Reported Influences on Trade and Industrial Enrollment45
9 Percentages of Students With Industrial Arts Experience in Drafting Who Reported Influences on Trade and Industrial Enrollment46
10 Percentages of Students With Other Industrial Arts Experience Who Reported Influences on Trade and Industrial Enrollment47
11 Percentages of Students Who Reported Influences on Trade and Industrial Enrollment by Size of Home High School50
12 Percentages of Students Who Reported Influences on Trade and Industrial Enrollment by Location of Trade and Industrial Program52

CHAPTER I

INTRODUCTION

For most of the last century, some form of industrial arts has been a part of the curriculum of many schools in the Unıted States Although begun as a part of general education, industrial arts, or manual training as it was first known, has developed through several name changes, as well as changes in its purposes (Barlow, 1967)

Industrial arts became elıgıble for federal reımbursement in 1973 as the result of Public Law 92-318, The Education Amendments to the Vocational Education Act of 1963 In order to receive funding, a state and its industrial arts program had to meet certain requirements One requirement has been the inclusion of industrial arts in the State Plan for Vocational Education The State Plan for Vocational Education ıncludes the organızation, the goals, and the objectives of all the programs that are a part of vocational education in the state The State Plan, which must be revised annually, is a contract between the state and the $U S$ Department of Education Another requirement of the law was that the industrial arts courses which receıved federal funding would be exploratory in nature (Steeb, 1979) Those guldelines exist today as a requirement for relmbursement as a part of the Carl Perkins Vocational Education Act (Public Law 98-524) The exploratory industrial arts courses are ones that allow students, both male and
female, to explore industry, what it is, what it does, and how it functions (Scobey, 1968)

In 1904 the term "industrial arts" was used for courses that had previously been called "manual trainıng" or "manual arts" Thirteen years later the Smith-Hughes Act of 1917 provided federal funds for vocational education The vocational education sections of the Smith-Hughes Act included vocational agriculture, home economics, and trade and industrial education (Barlow, 1967) As it exists today, trade and industrial education is a result of its development since the passage of the Smith-Hughes Act and the Vocational Education Act of 1963 (Calhoun \& Finch, 1982)

Trade and industrial education is that education intended to give a person job entry skills for a job, in a trade or industry, of less than a baccalaureate level (Section 8, Vocational Education Act of 1963)

In Oklahoma, trade and industrial programs are available in area vocational-technical schools and in several comprehensıve high schools The students in trade and industrial programs in area vocational-technical schools are juniors and seniors in high school, and adults, if space is available The students in trade and industrial programs in comprehensive high schools are primarıly junior and seniors, but may be sophomores also Most trade and industrial programs are three hours per day, or one-half day, for two years, or four semesters, for high school students The remaining half of their school day, the students study math, English, science, history, and other subjects required for graduation from high school (Public Information Office, 1983)

At the present time in Oklahoma, industrial arts is generally accepted as an exploratory course Industrial arts has had several concurrent purposes Among them have been exploratory, general education,
guldance, prevocational, avocatıonal, and even vocational (State Industrial Arts Curriculum Committee \& State Supervisor of Industrial Arts, 1979)

Exploratory industrial arts includes industrial arts/technology education, as fifty newly-funded programs in Oklahoma have been named These fifty programs comprise the first group of programs organized and developed as premıer programs in industrial arts/technology education to meet the requirements of the Vocational Education Act These programs encompass four clusters communication, manufacturing, construction, and transportation which includes power and energy The curriculum materials for the fifty programs include information concerning employment possibilities within each of the cluster areas Thus, students should know about many of the jobs avaılable in each area (Stacy, 1985) Also, sınce $1 n d u s t r i a l$ arts 1 ncludes psychomotor experıences as well as cognitive information, the students completing those exploratory programs will have begun to formulate opinions on whether they would lıke working in any of the jobs in a glven cluster (State Industrial Arts Curriculum Committee \& State Supervisor of Industrial Arts, 1979)

Because of the cost of training students and the limited number of openings for students in many programs, it is important that those students in trade and industrial programs be the ones who want to complete the program, 1 e stay in the program for both years (Simmons, 1979) There are students in trade and industrial classes who do not stay in the program for the enture two years Some of the students decide before the end of the first semester of their first year that they do not like the program Others decide by the end of the first year that they should not continue in the program the second year

Some of the students who choose to discontinue the program do so because of schedule conflicts and graduation requirements, but many drop out because they dislıke the program (Hopper, 1984)

Statement of the Problem

Educators need more information to help them determine whether industrial arts experiences influence students in their choices of trade and industrial programs and in their decisions to enroll in the second year of a two-year program

Purpose of the Study

The purpose of this study is to determine whether industrial arts experiences influence high school students as they decide to enroll in trade and industrial programs for the first year A second question is whether fewer of the students who plan not to take the second year of the two year program have had an industrial arts course than have not

Objectıves

There were two major objectives to be accomplished in this study 1 The first objective was to determine the association between a student's taking an industrial arts course and his or her decision to enroll in a particular trade and industrial program during the later years of the high school experience

2 The second objective was to determine the difference in plans for enrolling in the second year of two-year trade and industrial programs of those students who have had an industrial arts course prior
to enrolling in the trade and industrial program and of those students who have not had an industrial arts course

In addition to those two objectives, there are four questions which must be answered to discover some of the factors which influence the association and/or difference

A Did the results of the research vary by the type of industrial arts course (general industrial arts, woods, metals, drafting, or other) in which the student was enrolled?

B Did the results of the research vary by the size of the home high school, small, medium, or large?

C Did the results of the research vary by the sex of the student?
D Did the results of the research vary by whether the trade and industrial program was offered at the home high school or at the area vocational-technical school?

Limitations

This study was limited to those high school students enrolled in trade and industrial programs in comprehensive high schools and area vocational-technical schools in the state of Oklahoma Some 20 students were excluded from the study because their home high schools had dismissed for the summer or because they were not in school on the days that other students completed their questionnaires Another 30 students were in classes that left the campus to work on projects at the time All students were within the last three weeks of the end of the school year Those students surveyed were enrolled in trade and industrial programs in four comprehensive high schools and four area vocationaltechnical schools and were selected to be demographically representative
of trade and industrial education students in Oklahoma

Assumptions

These are the assumptions for this survey
1 The students and programs involved in the study are representative of students and programs in other comprehensive high schools and area vocational-technical schools in the state

2 The students answered the questions honestly and to the best of their abilıty

3 The students had been advised and counseled about courses they needed to take for graduation from high school and had decided whether they would continue the trade and industrial education program if all the courses they wanted to take could be incorporated into their schedules

4 The students knew whether they had had an industrial arts course rather than another course such as a vocational agriculture welding course or a Coordınated Vocational Education and Training (CVET) course Definition of Terms

Area vocational-technical school A school established in a vocational-technical school district which usually has been formed by the uniting of several school districts in order to offer students a wider choice of vocational programs

Comprehensive high school A high school which offers all types of courses and programs, college preparatory as well as vocational, general as well as specialized

Home high school The high school where the student is regularly enrolled and which gives credit toward graduation for vocational courses
as well as general education courses even though the course may have been taken at an area vocational-technical school

Industrial arts A program of classroom and laboratory experıences which provide students with a basic education in the industrial and technological aspects of society Industrial arts programs allow students to experıment, design, construct, and evaluate Students use tools, machınes, materıals, and processes which, in addıtion to developing an understanding of industry and technology, assist students in making informed and meanIngful occupational choices Students can also prepare for entry into advanced trade and industrial or technical education programs (Oklahoma State Department of Vocational and Technical Education, 1985)

Size of high school The classification of a high school based on the average dally enrollment in grade nine through twelve for the 1984-85 school year, as reported in the September, 1985, bulletin of the Oklahoma Secondary School Activities Association The 64 largest schools are classified as large, the next 136 schools are considered medium-sized, the remaining 291 schools are ranked smaller that the high school in Oklahoma ranked two hundredth in size (see Figure 1)

Trade and industrial education A vocational program intended to give high school students, and adults in some schools, entry level skills and knowledge in a trade to enable them to be employed in the trade upon graduation or program completion Trade and industrial courses may be avaılable to students at area vocational-technical schools or comprehensive high schools

Figure 1 School Size Classification Showing Maxımum Number of Students Enrolled

CHAPTER II

REVIEW OF LITERATURE

This review of the literature is to determine what has been written concerning the influence of industrial arts experiences on students as they decide to enroll or contınue in trade and industrial education programs This review revealed that there is very little literature directly related to the effect of industrial arts on trade and industrial education

Much of the literature is of a descriptive nature, that is, dealing with the philosophical objectives of either industrial arts or trade and industrial education The literature also addressed the value of industrial education as a means for $1 m p l e m e n t i n g$ the teachıng of other subjects

This review of literature is addressed in the following six topics
1 The influence of federal and state government on industrial arts,

2 The industrial arts/trade and industrial education relationshıp,
3 Articulation between industrial arts and trade and industrial education,

4 Contributions of industrial arts to other subject areas,
5 Industrial arts influences on students,
6 Industrial arts influences on student enrollment

A national survey of the research conducted in the United States on Industrial arts education from 1968 through 1979 reported

There have been relatively few studies involving vocational cholce and industrial arts For a field that has claımed to provide significant exploration and awareness level activites in career education industrial arts has not evidenced any significant degree of interest in terms of its impact on occupational choice of students who have experienced it

Many of the benefits attributed to industrial arts are not well documented, particularly as they relate to attıtude and achıevement claıms (Dyrenfurth \& Householder, 1980, p 87)

Hand and computer searches, such as ERIC, using a variety of descriptors (see Appendix A), revealed no related studies or research instruments

Governmental Influence on Industrial Arts

The earliest federal legıslation to affect industrial arts, the Morrıl1 Act, passed by Congress in 1862, provided for tne establıshment of colleges to teach agriculture and mechanical arts At that time only a very small percentage of the people went to college, but the creation of those colleges was one factor in the early beginnings of Industrial arts Because of the desire for the "ındustrial classes" to have an education equivalent to that of the literary and professional classes, the public schools began to incorporate skill training with general education One of the earliest proponents in the 1870 s of "manual traınıng" was Calvın M Woodward from Washıngton Unıversıty, Saint Louls He felt that general education should include "all of the nanual arts the mechanical processes, and the tools used in common in the trades and occupatıons" (Barlow, 1967, p 35) "Manual trainıng" was to aid in educating the "whole boy," not just his mind as the classical curriculum of the time did

At the turn of the century, manual training was, in many instances, preparatory for the trade schools which, up to that time, had been prıvately funded (Barlow, 1967) With the increase in public vocational education came confusion about the purposes and value of manual training This confusion continued even after the name change to "industrial arts" during the early part of this century (Wright and Barella, 1981)

The most recent federal legislation regulating vocational education and its funding is the Carl D Perkins Vocational Education Act (Public Law 98-524) which was passed October 19, 1984 Section 251 (a) (14) names "prevocational programs," and Section 251 (a) (15) names "programs of modern 1 ndustrial and agricultural arts" as programs for which a state may use federal funds, provided those programs are identıfied in a State Plan

A State Plan,
submitted for a three-year period in the case of the inntial plan and a two-year period thereafter, together with such annual revisions as the State board determines to be necessary (Sec 118(a) (1) (A)),
contains methods of providing and evaluating vocational education in a state and otherwise meeting the criteria of the Vocational Education Acts

Article XI Section 1515 of The Oklahoma School Law, 1971, provides for
the teaching of vocational education such as
industrial arts and such other aspects of vocational education as will promote occupational competence among school children and adults as potential and actual citizens of the state and nation

According to A Guide for Industrial Arts Education in Oklahoma (1979), 1 ndustrial arts in Oklahoma $1 s$ unlque

Modern industrial arts is unique as an educational program with defined obligations in both General and Vocational Education By the very nature of its programs, industrial arts can provide a bridge between academic education and the segments of vocational education that deal with technical and trade and industrial education (State Industrial Arts Curriculum Committee and State Supervisor of Industrial Arts, 1979, p 4)

The Industrial Arts Curriculum Committee and State Industrial Arts Supervisor based the relationship of industrial arts to vocational education on Rules and Regulations dated October 3, 1977, in the Federal Regıster, Section 104592

Because of those rules and regulations
industrial arts has an obligation to provide programs that (a) assist individuals in making informed and meaningful occupational choices in industry and technology, (b) provide occupational information and exploratory experiences pertaining to a broad range of occupations including training requisites, working conditions, salaries or wages, and other relevant information, and (c) prepare individuals for enrollment in vocational and technical education programs (State Industrial Arts Curriculum Committee and State Industrial Arts Supervisor, 1979, p 11)

For an illustration of the relationship of industrial arts to other vocational education as it meets the objectives of the Educational Amendments of 1976 (Public Law 94-482) see Figure 2 Industrial arts may begin in elementary school, but the illustration begins with the sixth grade and continues through high achool and the post-secondary years

As a result of the obligation of industrial arts to perform its functions, educators acknowledge that the industrial arts/technology education student will have
a foundation in safety, the use of tools, equipment, and materials, and will be familiar with occupationally specific nomenclature and decision-making skills (Stacy, 1985, p 1)

Stacy adds that the industrial arts/technology education students

Figure 2 Relatıonship of Industrial Arts and Trade and Industrial Education as Outlined by Federal Regulations
would have had the "opportunity to explore a wide range of occupations to determine if any interest exısted" (p 1) Because of that opportunity, Stacy says those students who have had industrial arts/technology education would not contribute to the number of students who dropped out of a trade and industrial program prior to completion

In personal communication with several State Supervisors of
Industrıal Arts, Powell, Stacy, and Steeb (1984), saıd
there have been no studies to determine whether industrial arts students truly perform better or have a better survival rate in trade and industrial programs than those who have not had industrial arts

Not only have there been no studies of performance or survival rate of students with and without industrial arts experience in trade and industrial programs, but Baker, Kapes, Somers, and Sharpe (1980) wrote that no method currently exists that actually measures "the contribution of industrial arts, in terms of either quality or quantity, to vocational education" (p 1)

Industrial Arts/Trade and Industrial
Education Relatıonshıp

Most of the information found in the literature concerning the relationshıp of industrial arts and trade and industrial education concluded that industrial arts is prevocational or exploratory while trade and industrial education is occupationally specific (Dyrenfurth, 1984, Swanson, Wrıght, \& Halfın, 1970, Wılııams, 1968)

London (1970) stated that, being prevocatıonal or exploratory, industrial arts has four goals

1 Inform them [students] of the nature and extent of job opportunities and requirements in the various industrial industrial occupations
2 Develop interest in following such an occupation as a career
3 Teach the basic tool skills and technical knowledge that constitute the foundation of the industrial occupations 4 Develop desırable personalıty traıts, attıtudes, and work habits (p 295)
Twelve years later, those four goals existed within three of the
four goals Worthington (1982) ascrıbed to industrial arts
1 Provide the opportunity for students to acquire as many exploratory experiences as possible The offerings in industrial arts should parallel the vocational trade and industrial and technical courses that the student will be choosing to enter in the hıgher grades of high school or after graduation 2 Provide information pertainıng to other technologies, occupations, or careers
3 Assist students in making knowledgeable and meanıngful career cholces
4 Provide in-depth skill trainıng for those students who do not have easy access to trade and industrial courses (p 4)
Larson (1969) wrote
The role of industrial arts must be accepted as that of prımarıly teaching students 'about work' rather than focusing specifically on a single trade, occupation, or even a cluster of occupations This is the job of occupational education (p 199)
Industrial arts is prevocational, and, as such, it "must help provide
 Ities, and occupatıonal goals in broad categorıes" (p 199) Larson further stated that if our educational system is going to accomplish this goal, the curriculum of industrial arts must be "integrated with a system's approach to vocational and technical education which must follow" (p 199)

Articulation Between Industrial Arts and

Trade and Industrial Education

Articulation is the integration of two or more programs so that they are distinct, sequential programs Articulation is a necessity,
as noted in the literature

Artıculatıon usually means establıshıng close working relations among elementary, secondary, and post-secondary schools The Commission stretches the meaning--we also advocate strong, positıve workıng relations within the secondary school itself (National Commission on Secondary Vocational Education, 1985, p 17)

The components of successful articulation are planning, implementing, and evaluatıng with cooperation and coordination between the leaders of the programs to be artıculated (Kraska, 1980)

Curriculum construction should reflect the combined efforts of the whole school, curriculum experts, advisory committee, and other community resources, to integrate general education and vocational education There should be a logical sequence of courses, and each course should have a written description so that each teacher will have a guide by which to plan hıs ınstruction (Gıachıno \& Gallıngton, 1977)

Figure 3 illustrates the structure of an industrial arts curriculum that can be a basis for industrial arts program development and articulation with later education

Figure 3 Industrial Arts Curriculum Structure

In an interview reported by Cuneo (1983) in Industrial Education, Layne, a vocational education adminıstrator with the Saint Louis, Missouri, public schools, indicated a need for better articulation between industrial arts and the vocational education that follows

In the same interview, Cuneo (1983) quoted Steeb of the Florida Department of Education, pointing out that federal vocational funding necessitated articulation between industrial arts and trade and industrial education There is a considerable amount of articulation in Florıda, as evidenced by the fact that one-third of the students enrolled in industrial arts in senior high schools in Florıda must go on to enroll in industrial education (trade and industrial) courses There is a definite sequence of courses, and those industrial arts credits earned in earlier high school years count for trade and industrial credit on completion of the trade and industrial program (Steeb, 1984)

Three school systems in Mıchıgan have completed a two-year pılot program of articulation involving vocational and prevocational teachers The articulation process included curriculum review and development, testing, and record keeping In the opinion of the authors, this type of articulation has much to offer teachers in high school programs (Baker \& Gustafson, 1984)

Williams wrote in 1968 that the Warren, Ohıo, school district had developed an articulation process throughout the public schools in Warren This articulation included requiring industrial arts exploratory courses for seventh and eighth grade boys and giving ninth and tenth grade students the opportunity to explore the vocational programs available by rotating through the programs throughout the year

From the beginning of the articulation program to the publication of the article, the percentage of students in the vocational programs who dropped out of school had decreased to 343 per cent per year (Williams, 1968)

Post-secondary and secondary articulation generally involves completely separate schools Junior colleges and area vocationaltechnical schools often establısh artıculation programs Kraska (1980) attributes much of this between-schools articulation to the influence of the American Association of Community and Junior Colleges and the Amerıcan Vocational Association

In Oklahoma, Tulsa Junior College and Tulsa County Area VocationalTechnical School have instituted articulation in some of their programs (Phıllıps \& Lemley, 1983) Among them are programs that lead to careers in the fields of business and management, computers, health, engineerıng, and industry Tulsa Junior College allows students who have taken courses at Tulsa County Area Vocational-Technical School to test out of certain classes through their credit by examination program (Tulsa Junior College Regents, 1986)

Industrial Arts Contributions to Other
 Subject Areas

Several authors addressed the contribution industrial arts can make to other subjects in school The majority of them wrote as a response to the publication of A Nation at Risk (Gardner, et al, 1983) A Nation at Rısk was critical of hıgh school education and vocational education in particular

Although The Contributions of Industrial Arts to Selected Areas of Education, 31st Yearbook, 1982 (American Council on Industrial Arts Teacher Education, Maley \& Starkweather, eds), is more comprehensive than other reports, it predated the report of Gardner and the National Commission on Excellence in Education The yearbook addressed vocational education and career education, both of which include industrial arts Other areas included were programs for the gifted and the handicapped, economic education, consumer education, readıng, language development, and the whole student in school

Industrial arts/technology education has strong connections with all subject areas, but particularly with math, science, and social studies Maley (1984) gave three reasons

1 The content of industrial arts/technology education is integrally tied in with essentially all of the disciplines of the secondary school
2 There is no logical rationale that supports the compartmentalism of student inquiry by subject matter without a concern for relevance and meaning to the individual
3 The increased emphasis on science and mathematics for all students in the schools makes it imperative that industrial arts/technology education have a significant role in student development in these areas (p 3)

Maley further stated that it is only natural that industrial arts/ technology education experiences should be used to teach the application and interpretation of mathematics and science

Industrial programs provide opportunities for students to apply what they have "learned" in science and mathematics Ryerson (1984) believes that application, as a high level of learning in Blooms's Taxonomy of Educational Objectıves (1956), is a hıgher level of learning than many students achieve in their mathematics and science classes The application experiences enable students to remember what they

Abstract

learn in industrial programs long after they have forgotten much of the other courses Ryerson further adds,

Cooperatıve endeavors with other teachers or departments are never easy, but they may be our route to indispensabilıty at a time when our contribution to education is being questioned by many (p 33)

All industrial arts/technology education teachers have a responsibılıty to teach the basics of education (the three "Rs"), Just as much as the teachers of those areas do Using and expecting correct grammar, both in writing and in speaking, and expecting students to learn to write answers to essay questions are means of emphasizing the basics (Haynıe, 1985)

Fitzpatrick (1985) is another who wrote that teachers in industrial programs need to require essay tests, both to encourage students to read and write and to test the students for a deeper understanding of the materıal

Industrial Arts Influences on Students

Industrial arts and vocational education may be the only "significant exposure to technology" avaılable to students in schools today (Dyrenfurth, 1983) Dyrenfurth stated that industrial arts programs, such as the industrial arts/technology education programs based on the four clusters provide students unique opportunities to

* develop insight and understanding about the place of industry in our society,
* appreciate the strength of free enterprise and the American economlc system,
* dıscover and develop individual talents, aptıtudes, interests, and potentials related to industry and technology,
* relnforce basic communlcation and computation skills that are important to every student's general education,
* develop an understanding of industrial processes and the practical applicatıon of scıentıfic prıncıples to industry,
* develop basic skills in the proper use of common industrial tools, materials, and processes,
* develop problem-solving skills and creatıve abılıtıes involving industrial materials, processes, and products,
* develop an understanding of industrial and technological career opportunities and their requirements,
* develop those traits that will help obtain and maintain employment,
* prepare for entrance into advanced and highly skilled secondary and postsecondary vocational programs (p 3)

Dyrenfurth (1984) went on to say that in prevocational programs, including industrial arts

* They [students] learn the structure of the knowledge and the skills associated with the vocational field
* They develop precursor skills, attitudes, and competencies that serve as a solid foundation for vocational education
* They [prevocational programs] provide a 2-3 year head start on all so $1 m p o r t a n t ~ a t t ı t u d i n a l ~ b u ı l d i n g ~ v o c a t i o n a l ~ s t u d e n t ~$ organization experience
* They allow students to explore varıous occupations and learn typical career paths This tends to facilitate tentative choice and solidify an interest in the vocational course chosen
* Because of their pervasive nature, 1 e most students experience one or more prevocational courses, they serve as a vitally important recruitment tool that exposes students to the varıety of opportunities available through vocatıonal education and the locations where they pursue such programs (p 6)

The National Center for Education Statıstıcs (1984) reported that a study of the transcripts of 12,000 students who graduated from high school in 1982 showed that 89 per cent of those students had taken an exploratory vocational education course in agriculture, business, consumer home economics, industrial arts, marketing, or trade and industrial education More than one-third (35 per cent) of all the students had taken at least one industrial arts course

Influences on Student Enrollment

The review of literature revealed that a parent or parents and other family members and teachers repeatedly have been important influences

Peters (1941) found that when high school senıors were asked to mark the first and second most influential factors in their selection of a vocation, factors which were marked the most frequently were a parent, a friend, a professional acquaintance, and a relative other than a parent The group marked second most influential included a parent, opportunity for advancement, a relatıve other than a parent, and opportunity for quick employment

Lungstrum (1973) asked high school students to identify in preferential order, from a list of ten cholces, those three persons who had given them the most helpful information in their occupational choices The most helpful sources of information were mother, teachers, workers in the occupation, fathers, and friends The members of that group of students who had made occupational choices, when asked who was the most influential on their occupational choices, reported parents and teachers were more influential than friends and counselors

Cobb and Cardozier (1966) learned that, among a group of 1812 ninth and twelfth graders, the students felt they themselves had the greatest influence on their own choice of curriculum Mothers were the next most influential group, according to the ninth graders, but the twelfth graders ranked two different teachers above their mothers Fathers ranked fifth, while friends were sıxth, followed by counselors Among those students who were enrolled in a vocational curriculum, three per cent of the ninth graders and seven per cent of the twelfth graders reported a shop or industrial arts teacher to be most influential Two per cent
of the ninth graders and six per cent of the twelfth graders in a general curriculum reported a shop or industrial arts teacher most influential

Cobb and Cardozier also reported that the prıncıpal was delighted that he ranked last in reported influence because it meant that his many influences on the students' curriculum cholces were indirect

Abusal (1983), however, found that no person, family member or other, had a signıficant influence on the student's choice of a vocational program He also noted that industrial arts and other prevocational courses had no significant influence on student enrollment in a program Signifıcant factors in the Abusal study were "student's interest, high income, avaılabılıty of job in the area of training, good working conditions, and ability in the area of training" (p 82) Abusal stated the data tended to pose the question, "How could the students come to realize the value of the influencing factors as being important in their decisions?" (p 82)

According to data compiled by the Oklahoma State Department of Vocatıonal and Technical Education (1986) for the 1984-85 school year, 69 per cent of the students enrolled in trade and industrial education programs left school prior to completion of the program but after they had completed fifty per cent of the program Those who transferred out of trade and industrial education into general academics were 54 per cent of students enrolled in trade and industrial education Another 27 per cent of the trade and industrial education students transferred to another vocational education program

Simmons (1979) reported that most of the approximately 25 per cent who were not returning for a second year were not returning because their career objective was not that for which they were being prepared

Summary

The interature is, to some extent, contradictory regarding the Influence of Industrial arts on students Dyrenfurth and Householder's statement in 1979, "the benefits attributed to industrial arts are not well documented" (p 87), was followed in 1983 and 1984 by Dyrenfurth's lists of the opportunities provided students in industrial arts

One of the studies cited mentioned an industrial arts teacher as having an $\operatorname{lnfluence}$ on $s i x$ to seven per cent of the twelfth grade students enrolled in the vocational and general curriculums In that same study, the students reported that they had the greatest influence on their own curriculum choice There was no indication what caused the students to decide they wanted to enroll in a partıcular curriculum The Abusal study indicated students gave reasons for enrolling in a course but gave no indication of how they reached their conclusions

No study has indicated that students who have had an industrial arts course enjoy an advantage when they decide in which trade and industrial program to enroll and whether to stay in the program untıl they complete It

CHAPTER III

METHODOLOGY

The purpose of this study was to determine whether industrial arts experiences influence high school students as they decide to enroll or continue in a trade and industrial education program The methodology was designed to answer the following questions

1 Is there an association between a student's taking industrial arts courses and his or her decision to enroll in a particular trade and industrial course during the later years of the high school experience?

2 Is there a significant difference in the plans for enroling in the second year of a two-year trade and industrial education program of those students who have had industrial arts prior to enrolling in the trade and industrial program and of those students who have not had Industrial arts?

In addition to those two major questions, there are four ather questions

A Do the results of the research vary by the type of industrial arts course (general industrial arts, woods, metals, drafting, or other) in which the student was enrolled?
B Do the results of the research vary by the slze of the home high school, whether small, medium, or large?

C Do the results of the research vary by the sex of the students?

D Do the results of the research vary by whether the trade and industrial education program is located at the home high school or the area vocatıonal-technical school?

Selection of the Population

Because high school students enrolled in trade and industrial education programs are best able to tell what influenced them to enroll in a partıcular program, the researcher determined that high school students enrolled in trade and industrial education programs in the comprehensive high schools and the area vocational-technical schools in Oklahoma would be the appropriate population to survey

The researcher, assisted by a panel of experts, selected those schools whose students were demographically representative of that population Comprehensive high schools had to meet the selection requirement that they offer more than two trade and industrial education programs The comprehensive high schools were all medium-sized, according to the definition of size recommended by Myers (1986) and used for the survey This was because the small schools could not support three programs, and the large schools found the area vocatıonal-technical schools more appropriate for their needs

Students from the area vocational-technical schools were from small, medıum, and large hıgh schools Schools were located in urban, suburban, and rural areas and in different geographical regions of the state (see Figure 4) The comprehensive high schools (medium size) were Guymon, Holdenville, Kıngfısher, and Pawhuska Included in the area vocationaltechnical schools were Eastern Oklahoma County Area Vocational-Technical School, Choctaw, Kıamıchı Area Vocatıonal-Technıcal School, McAlester,

Figure 4 Location of Schools Surveyed

Tulsa County Area Vocatıonal-Technıcal School, Memorial Campus, and Western Oklahoma Area Vocatıonal-Technıcal School, Burns Flat

Development of the Survey Instrument

The review of literature revealed no instrument already developed which could be used to answer the questions to be dealt with in this study Consequently, it was necessary for the researcher to develop a questionnaıre (see Appendix B) to be completed by the high school students enrolled in trade and industrial education programs in comprehensive high schools and area vocational-technical schools

After development of the questionnaire by the researcher, suggestions for modification and revision were submitted by a panel of experts The questionnaıre was then field tested by adminıstering it to thirty students enrolled in trade and industrial education programs at Caddo-Kıowa Area Vocatıonal-Technical School Consıderation of comments and questions of the field-test group led to further changes and refinements before final approval by the panel of experts

On the cover page of the questionnaıre, the student was asked to write the name of his or her home high school and the name of the school where the trade and industrial program was located The first three questions of the questionnaire were written to describe the student, his or her age, grade, and sex The next three questions described the trade and industrial program in which the student was enrolled, its location, whether in an area vocational-technical school or comprehensive high school, the name of the program, and the length of time the student had been in the program The next two questions pertained to plans to enroll
in the program the next school year and reasons for not enrolling in the program if that were the student's intention

The ninth question asked if the student had ever taken an industrial arts course, if not, the student was asked to terminate the questionnaire

If the student had taken industrial arts courses, he or she was asked to mark in which grades the courses were taken and to identify the types of industrial arts courses The next three questions concerned repetition and relative ease of the trade and industrial course as the result of having had the industrial arts course

The final question asked the student, "Who or what influenced your decision to enroll in the $T \& I$ [trade and industrial] course?"

Data Collection

Upon selection of the schools to survey, the researcher contacted an administrator at each school to obtain permission to administer the questionnaire and to make the necessary arrangements The researcher then drafted a letter to confirm the appointment with each administrator (see Appendix C) All the school districts were within three weeks of summer vacation

The researcher made on-site visits to six of the schools to administer the survey Due to requests of the administrators involved, the researcher maıled questionnaıres to two of the schools The two admınıstrators, from Guymon and Western Oklahoma Area Vocational-Technical School, then asked their teachers to have their students complete the questionnaires and returned the questionnalres to the researcher by mail

In each of the six schools visited, the researcher, accompanied by an administrator, administered the survey instrument to the students

Because two classes in one school had gone to work on off-campus projects (on-the-job training) and some of the students in the area vocationaltechnical schools had already completed their school year, approximately fifty students in the six schools were not surveyed

Those students who completed the survey, except for fifteen adults who completed the forms by mistake, and whose survey forms were excluded from analysis, were students enrolled in trade and industrial education programs Five hundred students completed the survey instrument from which data could be compıled (see Table I) Of the 500 students, 177 were twelfth graders, whıle 277 were eleventh graders, and 46 were tenth graders Twenty-nine sophomores, 62 junıors, and 49 senıors were enrolled in trade and industrial education programs in the comprehensive high schools Of the area vocational-technical school students, 128 were in the twelfth grade, and 215 were in the eleventh grade

TABLE I
GRADE AND ENROLLMENT STATUS OF STUDENTS SURVEYED

Grade	Area School Students Industrial Arts Experience			Comprehensive H S Students Industrial Arts Experience			
12	99	29	128	32	17	49	177
11	166	49	215	47	15	62	277
10	10	7	17	19	10	29	46
TOTAL	275	85	360	98	42	140	500

Seniors were excluded from the analysis of the number planning or not planning to enroll for a second year, as were the 18 Juniors who had already completed a second year Sophomores and Juniors were grouped together as first-year trade and industrial education students for that analysis

Of the 373 students who had taken industrial arts courses, 176 of them were juniors and sophomores enrolled in trade and industrial education programs in the area schools, while 66 were taking trade and industrial programs in the comprehensive high schools Of the seniors, 131 had taken Industrial arts Sixteen of the juniors who had already taken the second year of the program had had industrial arts

Twenty of the students were undecided at the time they completed the survey whether they would enroll for a second year Because of the small number of students in this category, in analyzing some of the questions, the number of undecided was combined with the number not enrolling in order to utılıze chi-square When cell sizes were still too small to utılıze chı-square effectively after combining categories, Fisher's Exact Probability Test with Tocher's modification was utilized

There were 40 female students, 21 were students in comprehensive high schools, while 19 were students in area vocational-technical schools (see Table II) Of the 21 female students who were juniors, there were 12 students in the area vocational-technical schools Eight were cosmetology students in one high school

TABLE II
GRADE AND ENROLLMENT STATUS OF FEMALES SURVEYED

Grade	Area School Students Industrial Arts Experience Yes No Subtotal			$\begin{array}{lcr} \text { Comprehensive } H & \text { Students } \\ \text { Industrial Arts } & \text { Experience } \\ \text { Yes } & \text { No } & \text { Subtotal } \end{array}$			TOTAL
12	3	4	7	2	10	12	19
11	8	4	12	0	9	9	21
10	0	0	0	0	0	0	0
TOTAL	11	8	19	2	19	21	40

Students surveyed represented 61 high schools (see Appendix D), with 72 of the students from small high schools, 266 from medium-sized high schools, and 162 from large high schools (see Table III) The four comprehensive high schools were of medium size, according to the criteria used Determination of school size was based on the Oklahoma Secondary School Activities Association listing of high school sizes in its September, 1985, bulletin The large schools were among the 64 largest high schools in the state The medium-size schools were all those high schools which were ranked sixty-fifth to two-hundredth in size This division was based on the opinion of school superintendents and principals, as expressed by Myers (1986)

TABLE III
ENROLLMENT STATUS OF STUDENTS SURVEYED
BY SIZE OF HOME HIGH SCHOOL

High School Size	Area School Students Industrial Arts Experience			Comprehensive H S Students Industrial Arts Experience			
Smal1	46	26	72	0	0	0	72
Medıum	86	40	126	98	42	140	266
Large	143	19	162	0	0	0	162
TOTAL	275	85	360	98	42	140	500

Analysis of the Data

The data from the survey were entered into a computer to analyze, first, for frequency of "prior industrial arts experience" and for frequency of "non-continuance in the program" for various reasons

Those frequencies were then compared for differences in type of industrial arts experience, size of home high school, sex, and location of the trade and industrial program, at the comprehensive high school or at the area vocational-technical school

After examınıng and analyzing the data with descriptive statistics, frequency counts, and percentages, the chr-square test was used on the data for plans for enrolling The chi-square test, a means of determining whether an observed behavior occurred more than would happen by chance, is appropriate when data $1 s$ of only nominal or categorical classification,
and when it is desırable to evaluate the significance of the differences in the frequencies in the various groups (Siegel, p 105)

Chi-square was used to detemine whether the difference in the numbers of the groups with and without industrial arts experience planning to enroll was signıficant

On the data with cells too small to utılıze ch1-square, even after combining the categories of "not planning to enroll" and "undecided", Fisher's Exact Probabılıty Test with Tocher's modification was used

In the literature of statistics, there has been considerable discussion of the applicability of the Fisher test to various sorts of data, inasmuch as there seems to be something arbitrary
 marginal totals might easily vary it we actually drew repeated samples of the same size by the same method from the same population Fisher recommended the test for all types of dichotomous data, but this recommendation has been questioned by others a slight modification of the Fisher test provides the most powerful one-talled test for data in a 2×2 table (Siegel, 1956, pp 101-102)

To measure the extent of the association between the "prior industrial arts experience" and the "plans for enrollment for the second year of a two-year trade and industrial education program", the contıngency coeffıclent C was used The contingency coefficient C uses chi-square as an element of its formula

Because of the nature of the data, that $1 s$, students marked more than one industrial arts course and more than one influence if they were applıcable, chi-square was not appropriate to measure the reported influences on students' enrollment in a trade and industrial education program

The α level for rejecting or failing to reject the null hypothesis was set at 05 and $d f=(k-1)(r-1)$ where $k=$ the number of columns and $r=$ the number of rows in the contingency table (see Table V)

CHAPTER IV

RESULTS OF THE STUDY

The results of this study to determine the relationship between student enrollment in trade and industrial education programs and industrial arts experience are analyzed and described in this chapter

The major objectives were
1 To determine if there is an association between a student's taking industrial arts and his or her decision to enroll in a particular trade and industrial program during the later years of the high school experience

2 To determine if there is a significant difference in the plans for enrolling in the second year of a two-year trade and industrial education program of those students who have had industrial arts prior to enrolling in the trade and industrial program and of those students who have not had industrial arts

There were also four questions related to the major objectives
A Do the results of the research vary by the type of industrial arts course (general industrial arts, woods, metals, drafting, or other) in which the student was enrolled?

B Do the results of the research vary by the size of the home high school, whether small, medıum, or large?

C Do the results of the research vary by the sex of the students?

D Do the results of the research vary by whether the trade and Industrial program is offered at the comprehensive high school or at the area vocational-technical school?

Analysis of the Data with Respect to Objectuves

Objectıve 1 was to determine if there was an assocıation between a student's takıng an industrial arts course and his or her decision to enroll in a partıcular trade and industrial education program during the later years of high school In the attempt to make that determination, It was found that 113 per cent of the 373 students who had taken at least one industrial arts course indicated that an industrial arts teacher had influenced them in their decision to enroll in a trade and Industrial education program An industrial arts course had influenced 48 or 129 per cent

Careers courses had influenced 359 per cent or 134 students Career vans had been an influence on only 20 students, 54 per cent of those who had taken at least one industrial arts course Parents influenced 104 students, 279 per cent of those who had taken industrial arts Counselors influenced 115 per cent, 43 students, while other teachers Influenced 33 or 89 per cent Friends influenced 142 or 381 per cent to enroll in a partıcular trade and industrial education program

Of the 81 who marked "other" as an influence, 63 , or 167 per cent of all who had taken an industrial arts course, indicated they had made the decision on their own They wrote "self", "I wanted to," "I wanted to learn it," or a similar comment in the blank provided those who marked "other" Nine students did not indicate who or what was the "other Influence
Three students indicated that they had decided to go to the areavocational-technical school as the result of a tour they had taken ofthe school One student enrolled in a trade and industrial program atan area vocational-technical school "to get out of h1gh school"Students marked as many responses as applied to them, causing thenumber of responses to exceed the number of students See Table IV fornumerical responses See Figure 5 for a graph of the percentages ofresponses for each influence

TABLE IV

RESPONSES OF STUDENTS WHO REPORTED INFLUENCES ON TRADE AND INDUSTRIAL ENROLLMENT

INDUSTRIAL ARTS COURSE	INFLUENCE								
	Careers Course	Career Van	Industrial Arts Teacher	Industrial Arts Course	Other Teacher	Counselor	Parent	Friend	Other
General									
$\mathrm{N}=95$	36	23	21	27	10	13	28	42	21
Woods									
$\mathrm{N}=307$	88	19	31	37	25	35	88	118	66
Metals									
$\mathrm{N}=110$	29	11	7	21	7	18	39	38	30
Drafting									
$\mathrm{N}=146$	51	8	23	27	20	20	45	61	35
Other									
$\mathrm{N}=86$	34	7	15	18	4	7	17	27	18
Any									
$\mathrm{N}=373$	134	20	42	48	33	43	104	142	81

Objective 2 was to determine if there is a significant difference in plans for enrolling for the second year of a two-year trade and industrial education program of those students who have had industrial arts prior to enrolling in the trade and industrial program and of those students who have not had industrial arts It was found that 305 of the 500 students who completed the survey were sophomores and Juniors who were first-year students (see Table V) Of those 305 students, 240 planned to enroll for the second year of their two-year trade and industrial program Of those, 183 were 810 per cent of the 226 who had taken an industrial arts course The 57 who had not taken an industrial arts course and planned to enroll were 722 per cent of those who had not taken an industrial arts course

TABLE V
RE-ENROLLMENT PLANS OF FIRST-YEAR TRADE
AND INDUSTRIAL STUDENTS BY STATUS OF INDUSTRIAL ARTS EXPERIENCE

Industrial Arts Experience	Yes Plan to	Enroll for Second No	Year UndecIded	TOTAL
Yes	183 (81 0\%)	29 (12 8\%)	14 (6 2\%)	226
No	57 (72 2\%)	16 (20 2\%)	6 (76\%)	79
TOTAL	240 (78 7\%)	45 (14 7\%)	20 (6 6\%)	305
	$\mathrm{x}^{2}=2939107$	$\mathrm{df}=2$		
$\mathrm{C}=097695$				

Of the students who had not decided to enroll for a second year, 25 Indicated that they needed to take courses at the home high school to meet graduation requirements Nine students reported that they did not like working in the particular program they were in, while sixteen indicated that they wanted to take a different program

Chı-square for these categories, "previous industrial arts experience" or not and "plans to enroll for a second year" or not, is 2939107 With df $=2$, ch1-square must be 599 when $\alpha=05$ to be significant (Siegel, p 249) The contingency coefficient $\mathrm{C}=097695$ As C tends toward zero there 1 s less association between the two variables Thus, the association between the two varıables is not significant beyond that which could happen by chance

Analysis of Data with Respect to

Questions A through D

Analysis of the data with respect to Question A indicates that the results do not vary significantly In Table IV (p 39) are the numbers of responses for students with experience in five of the various types of industrial arts and influences on enrollment The percentages by course, to answer Question A with regard to the first objective, are shown in Figures 6 through 10

Figure 6 Percentages of Students With Industrial Arts Experience in General Industrial Arts Who Reported Influences on Trade and Industrial Enrollment

Figure 7 Percentages of Students With Industrial Arts Experience in Woods Who Reported Influences on Trade and Industrial Enrollment

Figure 8 Percentages of Students With Industrial Arts Experience in Metals Who Reported Influences on Trade and Industrial Enrollment

Figure 9 Percentages of Students Wıth Industrial Arts Experience in Drafting Who Reported Influences on Trade and Industrial Enrollment

[^0]Parents had an influence on 279 per cent of the students who had taken any type of industrial arts course, and on 355 per cent of those who had had a metals course Parental influence rated only 21 percentage points apart (28 7-30 8 per cent) for students who had had woods, drafting, and general industrial arts, but the influence of parents on students who had taken other types of industrial arts rated 9 to 16 point lower than on those students who had taken the four named courses
"Frıends" ranked hıgher as an influence, however, than did "parents", and percentages varıed less for "frıends" as an influence (31 4-44 2 per cent) than for parents (19 8-35 5 per cent) The percentages of those who marked "counselor" varıed from 81 per cent for "other industrial arts experience" to 164 per cent for those who had taken a metals course The percentage who marked "other teacher" varied from 47 per cent for those who had taken other industrial arts courses to 116 per cent for those who had taken drafting

The percentages who marked "ındustrial arts teacher" varıed from 64 per cent for students who had had metal courses to 221 per cent for those who had taken general industrial arts The percentage who marked "Industrial arts course" ranged from 121 per cent who had taken woods courses to 284 for those who had taken general industrial arts
"Careers course" ranked hıgh, among "parents" and "frıends" as influences, with percentages from 264 per cent to 395 per cent "Career van" ranked lowest, with only 55 per cent to 105 per cent marking "career van" as an influence The percentages of those who marked "other" influence ranged from 209 per cent to 273 per cent

To answer question B, as related to objective 1 , the size of the home high school affected the influence of most other factors only
slightly (see Figure 11) Parental influence on students from all three sizes of schools varıed by only two percentage points An industrial arts course was an influence on 174 per cent of the students in small schools, but only 140 per cent of the students in large schools and 109 per cent of the students in medium-sized schools marked "ındustrial arts course"

Industrial arts teachers were an influence on 196 per cent of the students in small schools and on 130 per cent of the students in mediumslzed schools Among large school students, however, only 63 per cent, one thırd the percentage of small school students, marked "ındustrial arts course" as an influence The influence of "careers course" and the influence of "friend" showed a simılar, though not as extreme, difference All of the students in small schools marked "careers course" as an influence, but fewer that one-half (455 per cent) of the students in large schools and 625 per cent of the students in medium-sized schools indicated that a careers course influenced them

A career van influenced 152 per cent of the students in the small schools, but only 49 per cent of the students in medium-sized schools and 28 per cent of the students in large schools

Figure 11. Percentages of Students Who Reported Influences on Trade and Industrial Enrollment by Size of Home High School

To answer Question C as related to the first objective, it was noted that of the thırteen female students, an equal number (four) marked as an influence "careers course", "parent", and "friend" Three females marked "ındustrial arts course" and "other" Only the percentage for "industrial arts course" and "other" was higher for females than for the sample as a whole The percentage who marked "other" was only slıghtly higher, while that of "ındustrial arts course" was considerably hıgher (23 1 per cent compared to 129 per cent)

To answer Question D as it related to the first objective, the location of the trade and industrial program reflected the influences by the size of the high school "Careers course" as an influence, particularly, showed this (see Figure 12) The percentage of comprehensive (medium-sized) high school students who marked "careers course" as an influence was 296 per cent, however, 716 per cent of the area vocationaltechnical schools (small, medium, and large high schools) students marked "careers course" Of the comprehensive high school students, only 20 per cent marked "career van", while 65 per cent of the area vocationaltechnical school students dıd so

More comprehensive hıgh school students marked "industrial arts teacher" as an influence than did area vocational-technical school students (13 3 per cent compared to 105 per cent) However, more area vocational-technical school students (14 5 per cent) marked "industrial arts course" than dıd comprehensıve hıgh school students (8 2 per cent)

Figure 12. Percentages of Students Who Reported Influences on Trade and Industrial Enrollment by Location of Trade and Industrial Program

The numbers and percentages in Table VI are from the analysis of the data to answer Question A as $1 t$ relates to the second objective Question A concerned the association of plans to enroll for the second year of a two-year trade and industrial education program and industrial arts experlence by type of industrial arts course In order to have a significant difference in the number planning to enroll, chı-square had to be 599 Chı-square was below that level for all courses, therefore, the differences are not beyond that which could be expected by chance The percentages of those planning to enroll, not planning to enroll, and undecided are near the corresponding percentages for those who have taken any type of Industrial arts course Approximately 75-80 per cent of the students plan to enroll for a second year of their two-year program, 15 per cent do not plan to enroll for a second year, and 5-10 per cent are undecided

TABLE VI
RE-ENROLLMENT PLANS OF TRADE AND INDUSTRIAL STUDENTS BY TYPE OF INDUSTRIAL ARTS EXPERIENCE

| Type Industrial
 Arts Experıence | Yes Plan to Enroll for Second Year |
| :--- | :---: | :---: | :---: | :---: |
| Undecıded | |\quad Chi-Square

To answer Question B as it affects Objective 2, Table VII gives the numbers and percentages that result when the size of the home high school 1s considered with plans to enroll and plans not to enroll and industrial arts experience Chi-square is given in the table for each size of school None is significant at the 05 level with $d f=2$ Also given is chisquare for the entire table The number of undecided was combined with the number not planning to enroll in order to compute chi square At the 05 level and $d f=5$, ch1-square, at 1501354 , exceeds the 1107 required for significance of difference in the categories Thus, the difference between plans to enroll for the second year of a two-year at dıfferent sıze schools is sıgnıfıcant Larger schools have a better
percentage of students who plan to enroll for the second year of a twoyear trade and industrial education program than the small schools

Chi-square, when only slze of school and plans to enroll for a second year are considered, is 11943 with df = 4, which is also significant

TABLE VII
RE-ENROLLMENT PLANS OF TRADE AND INDUSTRIAL STUDENTS BY SIZE OF HOME HIGH SCHOOL

Consideration of the sex of the students with and without industrial rrts experience and plans to enroll or not to enroll for the second year yields the data given in Table VIII and provides the answer for Question C as it affects Objective 2 Of the male students who have taken an industrial arts course, 177 , or 808 per cent, plan to enroll for a second year of their two-year trade and industrial education program of the females, six or 858 per cent, of those who have taken an industrial arts course plan to enroll for the second year The percentage of students planning to enroll, but who have not taken an industrial arts course, is less than one point different for the sexes Because of the small cell sizes, even when the categories "no" and "undecided" are combined, the Fisher Exact Probabılıty Test with Tocher's modification was used to test the significance of the data for females The probability of occurrence of these values is 3443433 Since this probability is more than 05 , the \mathcal{C} level set previously, there is no significance of difference Chı-square for the data for the males is 169953 which also does not show significance Because of the small categories in the data for females, the chı-square test was not appropriate to test the significance of the differences in the entire table

TABLE VIII
RE-ENROLLMENT PLANS OF TRADE AND INDUSTRIAL STUDENTS BY SEX

The results from analysis of the data to answer Question D as it affects Objective 2 are shown in Table IX Question D pertained to the effect of location of the trade and industrial education program on the differences in plans to enroll for a second year or not of those students who had and had not had industrial arts courses Just over eighty per cent of the students who have had industrial arts are planning to enroll for a second year of a two-year trade and industrial education program at both the comprehensive high school and the area vocationaltechnical school Of those who have not had an industrial arts course, 72 per cent of the students in programs in both settings are planning to enroll Chı-square for each location and for the entire table are given The "undecıded" and the "not planning to enroll" categories were
combined in order to have large enough cells to utilize chı-square Chisquare is not large enough for significance of any of the differences in the table at the 05 level

TABLE IX
RE-ENROLLMENT PLANS OF TRADE AND INDUSTRIAL STUDENTS BY LOCATION OF TRADE AND INDUSTRIAL PROGRAM

Summary

Analysis of data from the 500 survey instruments indicates that, for the purposes of this study, there is no significant difference in plans for enrollment for a second year in a trade and industrial education program for those students with and without industrial arts experience Only when size of the home high school is considered is there any significance That significance relates to the size of the home high school whether industrial arts experience is considered or not

In this study, the percentage of students who plan to enroll for the second year of a two-year trade and industrial education program varied from approximately 70 per cent for those who have not had any industrial arts course to approximately 80 per cent for those who have had at least one industrial arts course

Parents have a considerable influence on students' decisions to enroll in a trade and industrial education program, but friends have more influence in some instances Careers courses have more influence on a student's enrollment in a small school than in a larger one An industrial arts course has influenced more students if they have taken a general industrial arts course rather than some other type course About ten to fifteen per cent of the students credit an industrial arts teacher or Industrial arts course with influencing them to enroll in a particular trade and industrial program

SUMMARY, CONCLUSIONS, AND RECOMMENDATIONS

The purpose of this study was to determine whether industrial arts experiences influence high school students as they decide to enroll or continue in a trade and industrial education program

There were two major objectives

1 To determine if there is an association between a student's taking industrial arts and his or her decision to enroll in a particular trade and industrial education program during the later years of the high school experience

2 To determine if there is a significant difference in the plans for enrolling for the second year of a two-year trade and industrial education program of those students who have had industrial arts prior to enrolling in the trade and industrial program and of those students who have not taken an industrial arts course

There were also four questions related to the major objectives
A Do the results of the research vary by the type of industrial arts course (general industrial arts, woods, metals, drafting, or other) in which the student was enrolled?

B Do the results of the research vary by the slze of the home high school, whether small, medium, or large?

C Do the results of the research vary by the sex of the student?

D Do the results of the research vary by whether the trade and industrial education program is offered at the home high school or at the area vocational-technical school?

In this study to determine whether there is an association between industrial arts experience and enrollment in trade and industrial education programs, 500 students enrolled in trade and industrial education programs were surveyed Of those 500 students, 360 of them were enrolled in four area vocational-technical schools, and 140 were enrolled in trade and industrial education programs in their home high schools Slightly more than one-fourth, 127 students, had not had any industrial arts experience

Summary

Analysis of data from the 500 survey instruments indicates that, for the purposes of this study there was little that could be considered statistically significant, in either influences on trade and industrial enrollment or plans for enrollment for a second year of a trade and industrial program While the results are not statistically significant except for the effect school size has on enrollment plans, there are points which bear mentioning

Approximately 10-15 per cent of the students in any category indicated an influence of an industrial arts course or industrial arts teacher as they decided to enroll in a trade and industrial education program Parents, as the literature indicated, have a strong influence However, the influence of friends and a careers course exceeded the influence of parents for many of the categories of students

Type of industrial arts course shows little variation in the percentages of factors marked as having been an influence except for those who took a general industrial arts course Those students who had had a general industrial arts course marked every influence more frequently than did those students who had had "any industrial arts course" Approximately twice as great a percentage marked "career van", "industrial arts course", and "ındustrial arts teacher" as influences

The slze of the home high school affected the percentage of several factors noticeably For instance, all students in small high schools marked "careers" course" Among students in small high schools, three times the percentage marked "career van" as did medium-sized-school students Students in small high schools marked "career van" over five times as frequently as the students in large high schools did Almost twice the percentage of small-school students marked "friend" as did large-school students Also, the percentage of small-school students who marked "Industrial arts teacher" was almost three times that of largeschool students and one and one-half times that of medium-sized-school students

The female students marked "Industrial arts course" almost twice as frequently as the entire sample The other percentages of the influences which female students marked are near the corresponding percentages of the sample

The location of the trade and industrial program, in the comprehensive high school or the area vocational-technical school, tended to reflect the sizes of the home high schools of the students in the percentages Noticeable differences are in the percentages who marked "careers course" and "friend" as influences

Analysis of the data relating to number of students with and without Industrial arts experience planning to enroll for the second year of the two-year trade and industrial education program or not planning to enroll showed no significant difference when chı-square was computed When the type of industrial arts course experience was considered, the percentages varied only slightly from the percentage of those who had had any type of industrial arts course

There was a signıficant difference in the number planning to enroll or not when slze of the home hlgh school was considered A greater percentage of the students from larger high schools planned to enroll for the second year of their trade and industrial education program Ninety per cent of the students in the large high schools were planning to enroll compared to 775 per cent for the medium-sized schools and 667 per cent of the students in small schools Elghty-one per cent of all students who had taken any industrial arts course planned to enroll for the second year of their trade and industrial education program

There was no significant difference in the numbers of students planning to enroll for a second year when compared by sex of the student

The location of the trade and industrial education program did not affect the significance of the differences in number planning to enroll, not planning to enroll, and undecided

The data from the study seems to indicate that size of the home high school is the primary factor that affects the influences on students and the related factors that prompt a student to enroll for the first time In a trade and industrial education program and to enroll for the second year of that program

Conclusions

Based on this survey, the conclusion must be made that there is IIttle association between industrial arts experience and trade and industrıal education program enrollment This is despite the fact that some educators have thought for years that there is a relationship The contradiction found in the review of the literature continues directly to the results of this study

One of the several purposes of industrial arts through the years has been guidance (State Industrial Arts Curriculum Commıttee and State Supervisor of Industrial Arts, 1979) Today the industrial arts/technology education programs have guldance, the assistance of all students to make meanıngful occupational and educatıonal cholces, as an objective, as 111 ustrated by Figure 2 on page 13 (State Industrial Arts Curriculum Committee and State Supervisor of Industrial Arts, 1979, Larson, 1969, London, 1970, Worthıngton, 1982, Stacy, 1985) Dyrenfurth (1984) and Stacy (1985) have emphasized the position of industrial arts as a recruitment means and the skills and knowledge from industrial arts that serve as a foundation for vocational education Baker, et al, (1980) wrote that there is no method that currently exists "to measure the contribution of industrıal arts to vocatıonal educatıon" (p 1) These authorıthes on industrial arts are among the educators who have sald that there is an association between industrial arts education and trade and industrial education

Perhaps then it is necessary to accept the fact that there is no way to measure the contributions industrial arts education can make to vocatıonal education If there are significant contributions that industrial arts can make to vocational education, and those contributions can be
measured, this study did not accurately measure the contributions that industrial arts can make Since this study did not reveal more of the significant factors, the assumptions of the study may have been incorrect

The first assumption was that the students and programs were demographıcally representatıve of the trade and industrial students and programs in the state of Oklahoma When selecting the schools, the students of which were to be surveyed, the researcher contacted administrators of one area vocational-technical school and one comprehensive high school who declined to partıcıpate Because it was impossible to select other schools whose students were identical, some of the characteristics which might have varıed were geographic, socio-economic, and educational background These characteristics may have been factors in the sample's not being truly representative of the population

Because of the nature of young people, all of those students who completed the survey instrument may not have answered completely honestly and to the best of their ability They may have marked answers as they thought someone would want them to answer, or they may have copied answers someone else wrote, or they may have marked anything just to finish the task of answering the questions, without considering the importance of the task However, the data does not appear to indicate this

The third assumption was that students had been advısed or counseled regarding courses they would have to complete the next year in order to graduate from high school and the likelihood that those courses and the trade and industrial program could all be taken during the school day The students who failed to pass a particular course the second semester of thelr junior year would not necessarıly have known of this fallure The second part of the assumption was that the students had decided
whether they would take the courses if the schedule allowed The percentage of undecided for each category analyzed varıed from 0 to 167 per cent, with 66 per cent of all students undecided about whether to enroll in the second year of their program

The fourth, and final, assumption was that students knew whether they had taken industrial arts courses rather than other types of classes such as a vocatıonal agriculture welding class or a coordınated vocational education and training (CVET) course In reviewing the completed surveys, the researcher found that there were some who had written in a CVET or "ag" course, as an industrial arts course they had taken, despıte the fact that students were given a description of industrial arts and cautioned about calling classes industrial arts when they were not industrial arts courses

Because of these exception to the assumptions, the effect of the assumptions on the results of the study can be questioned

Friends, parents, and a careers course were the influences on enrollment in a trade and industrial education program marked most often This was true regardless of the type of industrial arts courses a student had completed

An industrial arts teacher and an industrial arts course both Influenced about 10 to 15 per cent of the students An industrial arts course was an influence more frequently if at least one of the industrial arts courses was a general industrial arts course However, the highest percentage (20 3 per cent) of students who had taken an industrial arts course and were not planning to enroll for a second year of their trade and industrial education program were those who had taken a general industrial arts course Also, 108 per cent of the students who had had
general industrial arts stıll had not decided whether to re-enroll
Just under seven per cent of the students marked "career van" as an influence, giving "career van" the least influence In light of the manpower effort and finanacıal expendıture by the Oklahoma State Department of Vocational and Technical Education, the small response for the career van as an influence deserves some attention The State Department of Vocational and Technical Education makes the career vans avaılable to the students in many of the schools in the state During the time the van visits a school certain teachers send their students to the career van to give the students information about possible careers for each student Often the teachers who are responsible for sending their students are the English or history teachers Because they have all the students in those classes, those teachers are also responsible for many other duties such as adminısterıng tests, sending students for yearbook pictures, and a myriad of other "housekeeping chores" The career van may be Just another responsibility instead of an opportunity for developing career interest and awareness Because of the attıtude of the teachers, the visit to the career van may be just something the students feel they have to do, or just something to do to get out of class for the period This attitude may directly affect the influence the career van can have on the student (Allen, 1986) The career van was a more important influence for the students in small schools than to students in larger ones Eleven of the twenty-five students who marked "career van" were from the Western Oklahoma Area Vocatıonal-Technıcal School

Although the difference in plans to enroll for a second year of their trade and industrial education program is not statistically significant, the number of students intending to enroll for the second year of
a two-year program, among students who had taken an industrial arts course, was approxımately 81 per cent compared to approxımately 72 per cent of those students who had not taken in industrial arts course These percentages are near the rate, 75 per cent, that Simmons (1979) reported enroll for a second year

The size of the home high school made only slight differences in the factors selected as influences A careers course and a friend ranked more $1 m p o r t a n t$ for students in small schools than in large schools A careers course was not described in the survey instrument, but types of careers courses can vary from school to school and cause differing Influences

From personal observations by the researcher of schools throughout the state, a careers course may be an $1 n-c l a s s$ textbook-studying situation In other schools, the careers courses may function inside the classroom but have representative speakers from many career fields come anto the classroom to speak to the students Still other schools may utillze field trips so that students can observe persons in different occupations and the conditions under which they work Other schools may provide a program whereby students actually try some of the work in an occupation Options may be varıous combinations of these strategies for teaching young people about careers

The difference may also be due to the fact that students in small schools are not exposed to as wide a range of influencing factors in the general public This lack of exposure may account for a greater percentof students in small schools marking the factors that are available to influence them The students in small schools, particularly in rural areas, are limited in the number of contacts they can make in the career fields

The student from the rural areas, in the small school, have closer friends, though not as many, than the student in the larger schools The closer friends may decide to go to the area vocational-technical school together The friends of the parents may be friends of the students, particularly if there is a common interest That friendship may result in the friend influencing the student to try a particular type of training

The students in the larger high school have a larger group from which to choose their friends This larger group probably consists of students who are the same age and older Consequently, the student in the larger school may have more friends, but not as many close friends, who would or could encourage the student to train for a particular occupation Also, a student may not be aware of the influence of a friend who is not a close friend

The variation of re-enrollment plans by size of the high school was the only difference determined to be signıfıcan by the use of chı-square Large schools have a better percentage of students who plan to re-enroll

Sex is a factor two ways first is the fact that so few females were enrolled in the trade and industrial programs, the second is that several of the females were in programs that admittedly have no relationship to industrial arts, particularly cosmetology Even those students enrolled in interdisciplinary cooperative education (ICE) may be working in jobs that are in no way similar to industrial arts and and most trade and industrial education programs Those females who had taken an industrial arts course most often marked "careers course", "parent", and "friend" as influences The differences in enrollment plans by sex were not significant

The location of the trade and industrial program affected the findings very slightly Where there was a difference, that difference was largely a reflection of the differences in the sizes of the home high schools the students attended

Those 63 students (16 9 per cent of those who had taken an industrial arts course) who reported they were responsible for their own decision to enroll in a trade and industrial education program gave no indication of how they came to that decision Because influence is often so subtle and indirect, students may not be aware they are being influenced It is possible that the interest those 63 students had in an occupational area was encouraged and/or developed in an industrial arts course or by an ındustrial arts teacher

Recommendations

Recommendations for further study of this topic include further refinement of the survey instrument for students and the development of a survey instrument for teachers of trade and industrial education programs This survey instrument for the teachers should be designed to learn the teachers' opınıons of any dıfferences between those students who have and have not had industrial arts course, as well as compare the relatıve success of the two groups of students in the trade and industrial program

The area of retention and dropouts in trade and industrial eduaction programs should be a separate study This study should utilize the records of the Oklahoma State Department of Vocatıonal and Technical Education as well as the records from the area vocational-technical schools and home high schools The students or former students should have the opportunity to give reasons for changing programs or dropping out of school

The low rate of influence of the career van would seem to indicate that there should be a state-wide study of the effectiveness and efficiency of the mobıle careers program in Oklahoma Perhaps there is a better method for students to learn about theır career possibılıties

A further recommendation for Oklahoma is that current industrial arts/ technology education students be surveyed when they are enrolled in trade and industrial education programs to determine if the association between industrial arts enrollment and trade and industrial education programs 1s any greater

Industrial arts teachers need to be more aware of the influence they and the course they teach can have on the students as the students prepare for an occupation Teachers need to help students as they seek, consciously or unconsciously, to determine their occupational plans Industrial arts teachers and trade and industrial education teachers need to work together to help the students prepare for the trade and industrial programs some of them will be taking during their junior and senior years of high school Even those students not planning to enroll in a trade and industrial education program can benefit from the knowledge of safety procedures, problem-solving skılls, and tool use developed in industrial arts courses

The fact that this study did not show a significant association between a student's industrial arts experience and later enrollment in a trade and industrial education program does not refute the claims that have been made for industrial arts Influence is often so indirect, so subtle, that a person does not realıze that he or she is belng influenced The exploratory nature of the industrial arts/technology programs being developed and improved in the state of Oklahoma can help give the
students the job awareness they need to help them make the occupational decisions they need to make Industrial arts teachers need to accept the responsilbility of teaching job awareness, Just as they are beginning to accept the responsibilıty of teaching the "basics"

BIBLIOGRAPHY

Abusal, Mohammad Abdulkarım "Characterıstics and Factors Affecting Students' Choice of Vocational Programs in Area Vocational-Technical Schools in Oklahoma " (Unpublıshed Ed D dissertation, Oklahoma State Universıty, 1983)

Allen, Laura M Personal Communication Oklahoma Cıty, Oklahoma, April 17, 1986

Baker, George, and Roger Gustafson "Articulation of Industrial Arts Technology and Vocational Education Programs " The Technology Teacher, Vol 43, No 5 (February, 1984), pp 8-10

Baker, Glenn E, Jerome T Kapes, J Kenneth Somers, and Dennis B Sharpe Texas Industrial Arts Search for Effectiveness A Research Project in Vocational Education College Station, Texas Department of Industrial Education, Texas A \& M Unıversity, Final Report Project No 00230035, 1980

Barlow, Melvin L History of Industrial Education in the Unıted States Peorıa, Illınois Charles A Bennett Co , Inc, 1967

Bloom, Benjamın Taxonomy of Educatıonal Objectives New York D McKay Co , 1956

Calhoun, Calfrey C, and Alton V Finch Vocational Education Concepts and Operatıons, 2nd Ed Belmont Calıfornia Wadsworth Publıshing Co , 1982

Carl Perkıns Vocatıonal Education Act (Publıc Law 94-524), Sectıon 251 (1984)

Cobb, Robert A, and V R Cardozier "What Factors Influence Curriculum Cholce?" Amerıcan Vocational Journal, Vol 41, No 7 (October, 1966), pp 30-32

Cuneo, Paul K "Problems and Opportunities Facing Industrial Education " Industrial Education, Vol 72, No 4 (Aprıl, 1983), pp 10-13, 24

Dyrenfurth, Mıchael J "Industrial Arts Works with Vocational Education " (Unpublished paper presented to The National Association of State Dırectors of Vocatıonal Education, Anaheım, Calıfornıa, December, 1983) Mımeo Columbia, Missouri Unıversity of MissourıColumbia, Department of Practical Arts and Vocatıonal Technıcal Education, College of Education, 1983

Dyrenfurth, Mıchael J "The Roots of Excellence in Vocational Education-Foundation Buılding with Prevocational Programs " (Unpublished paper presented to The National Council of Local Administrators Fall Conference, Dallas, Texas, October, 1984) Mımeo Columbia, Mıssourı Unıversity of Missourı-Columbia, Department of Practical Arts and Vocational Technical Education, 1984

Dyrenfurth, Mıchael J , and Danıel L Householder Industrial Arts Education A Review and Synthesis of the Research 1968-1979 Informatıon Sérıes $18 \overline{3}$ Washington, D C Amerıcan Vocatıonal Association, 1979 ERIC Document No ED 185239

Federal Regıster (Vol 42, No 191) Washıngton, D C U S Government Printing Office, October 3, 1977, p 53847

Fitzpatrick, Mıke "Should We Gıve Essay Tests? You Bet " Vocational Education Journal, Vol 60, No 5 (August, 1985), pp 35-36

Gardner, David P , and Others A Natıon at Rısk The Imperative for Educational Reform An Open Letter to the American People A Report to the Nation and the Secretary of Education Washington, $\overline{D \quad C}$ National Commission on Excellence In Education (ED), 1983

Gıachıno, Joseph W, and Ralph 0 Gallıngton Course Construction in Industrial Arts and Vocational-Technical Education, 4th Ed Alsip, Illınols Amerıcan Technical Publishers, Inc , 1977

Haynie, W J , III "The Basics Is Your Laboratory a Battleground in the Fight Against Ignorance?" The Technology Teacher, Vol, 44, No 8 (May/June, 1985), pp 6-9

Hopper, John Personal Interview Drumright, Oklahoma, October 3, 1984
Kraska, Marıe "Currıculum Articulation Between Secondary and PostSecondary Vocational and Technical Education Programs " Journal of Industrial Teacher Education, Vol 17, No 2 (Winter, 1980), pp 53-61

Larson, Mılton E "Supportive Role of Industrial Arts in the Total Program of Occupational Education " Where the Action Is Selected Addresses and Proceedings of the American Industrial Arts Association's Annual Convention (31st, Las Vegas) Ed Linda A Taxis Washıngton, D C Amerıcan Industrıal Arts Association, 1969

London, H H "The Place and Function of Industria Arts in Preparing Youth for the World of Work " Theory Into Practice, Vol 9, No 4 (October, 1970), pp 294-297

Lungstrum, Ruth M Selected Factors Related to Occupational Preference of High School Students Enrolied in Vocational Education Programs in the Wichita Public Schools Urbana-Champaign, Illınols Unıversity of Illinols, College of Education, 1973 ERIC Document No ED 075267

Maley, Donald "The Role of Industrial Arts/Technology Education for Student Development in Mathematics, Science, and Other School Subjects " The Technology Teacher, Vol 44, No 2 (November, 1984), pp 3-6

Maley, Donald, and Kendall N Starkweather, Ed The Contributions of Industrial Arts to Selected Areas of Education 31st Yearbook 1982 Washington, D C American Council on Industrial Arts Teacher Education, 1982

Myers, Earl J Telephone Interview January 26, 1986
National Center for Education Statistics Patterns of Participation in Secondary Vocational Education - 1978-1982 Washington, D C U S Department of Education, 1984

National Commission on Secondary Vocational Education The Unfinished Agenda The Role of Vocational Education in the High School Columbus, Ohio National Center for Research in Vocational Education, 1985

Oklahoma School Law, 1971, Artıcle XI, Section 1515
Oklahoma State Department of Vocational and Technical Education Industrial Arts Technology Education Programs Stıllwater, Oklahoma, 1985

Peters, Edwin F "Factors which Contrıbute to Youth's Vocational Choice " The Journal of Applied Psychology, Vol XXV, No 4 (August, 1941), Pp 428-430

Phıllıps, A1, and Joe Lemley "How We Provide Vo-Tech Education for Tulsans " (Presentation to Extern Program for Leadership Development of Oklahoma State Department of Vocational and Technical Education, Tulsa, Oklahoma, Aprıl 8, 1983)

Powe11, Samue1 Telephone Interview November 9, 1984
Public Information Office A Guide to Oklahoma Vocational $\underset{\text { \& Technical }}{\text { The }}$ Education Stillwater, Oklahoma State Department of Vocational and Technical Education, 1983

Ryerson, Tom "Industrial Programs Enhance 'Back to the Basics '" School Shop, Vol 44, No 1 (August, 1984), pp 32-33

Scobey, Mary-Margaret Teaching Chıldren About Technology Bloomington, Illıno1s McKnıght and McKnıght Publıshing Company, 1968

Siegel, Sidney Nonparametric Statistics for the Behavioral Sciences New York McGraw-Hıll Book Company, Inc , 1956

Simmons, Ronald Raymond "A Study of First-Year Trade and Industrial Students at Area Vocational-Technical Schools in OKlahoma " (Unpublıshed Ed D dissertation, Oklahoma State University, 1979)

Stacy, John Roger Personal Interview Stıllwater, Oklahoma, October 17, 1984

Stacy, John Roger "The Importance of Industrial Arts/Technology Education and Vocational Education Establıshing a Partnership " (Unpublished paper presented to Industrial Arts Division, Oklahoma State Department of Vocational and Technical Education Summer Conference, August, 1985) Mimeo Stillwater, Oklahoma State Department of Vocational and Technical Education, 1979

State Industrial Arts Curriculum Eommittee and State Supervisor of Industrial Arts A Guide for Industrial Arts Education in Oklahoma Stillwater, Oklahoma Oklahoma State Department of Education and Oklahoma State Department of Vocational and Technical Education, 1979

Steeb, Ralph V "Federal Funding for Industrial Arts at the State Level " School Shop, Vol XXXIII, No 6 (February, 1974), pp 35, 55-56

Steeb, Ralph V Telephone Interview November 8, 1984
Swanson, Robert, L S Wright, and Harold Halfin "Occuaptional Education A Means of Focusing Industrial Arts " Theory into Practice, Vol 9, No 4 (October, 1970), pp 299-300

Tulsa Junior College Regents Planning for High School and Beyond With Help from Tulsa Vo-Tech and Tulsa Junior College Tulsa, Oklahoma, 1986

Willıams, R J "T\& I Correlated with Industrial Arts " American Vocational Journal, Vol 43, No 6 (September, 1968), pp 37-40

Worthington, Robert "Vocational Education as It Relates to Industrial Education " Pacesetter, Vol 1, No 1 (Fall, 1982), p 4

Wright, Thomas, and Richard Barella "Summary and Reflections " An Interpretive History of Industrial Arts The Interrelationship of Society, Education, and Industrial Arts 30th Yearbook 1981 Washington, D C Amerıcan Councıl on Industrial Arts Teacher Education, 1981

APPENDIX A

LIST OF DESCRIPTORS USED IN ERIC SEARCH

LIST OF DESCRIPTORS USED IN ERIC SEARCH

```
Academıc achievement
Academıc fålure
Attıtudes
Correlation
Dropouts
Enrollment
Follow-up studies
Grade polnt average
Graduate surveys
Industrial arts
Industrial education
Perception
Persistence
Post-secondary education
Prevocational education
Questionnaıre
Ratıng scales
Student characteristics
Surveys
Trade and Industrial education
Vocational education
Vocational follow-up
```

APPENDIX B

INDUSTRIAL ARTS/TRADE AND INDUSTRIAL QUESTIONNAIRE

INDUSTRIAL ARTS/TRADE AND INDUSTRIAL QUESTIONNAIRE

(School where you are enrolled in Trade and Industrial course)

An Industrial arts course is one such as woods, drafting, or
general shop in the home high school It is usually one hour
long Industrial arts does not include vocational agriculture
classes or "ag shops"

APPENDIX C

LETTER TO ADMINISTRATORS

Route 14, Box 82
Moore, Oklahoma 73165
May 9, 1985

Mr Charles Boyd, Director
Kıamichi AVTS, McAlester
P 0 Box 308
McAlester, Oklahoma 74502
Dear Mr Boyd
Confirming our telephone conversation of this afternoon, 1 will be at your school before 820 Monday morning, May 13 I do appreciate your willingness to allow me to survey some of your high school trade and industrial students by means of a fifteenitem questionnaire 1 realize that time is short before school is out for the year

Many people feel that industrial arts students make better informed choices of trade and industrial programs than those students who have not had any industrial arts This, however, has never been tested, and this study is an attempt to begin to determine whether this is true

Again, 1 appreciate your help, and 1 trust that this survey can be done with as little disruption of the students' learning as possible

Sincerely,

Sarah M Osborn

APPENDIX D

LIST BY SIZE OF HIGH SCHOOLS WHOSE
STUDENTS WERE SURVEYED

SMALL HIGH SCHOOLS

Arapaho	Crowder	Lıberty Mounds
Brooks	Dıll Cıty	Lone Wolf
Burns Flat	Eastwood	Merrıtt
Butler	Gotebo	Metro-Christian
Calvary Christian	Haıleyvılle	Quinton
Calvın	Indıanola	Sentınel
Canadıan	Kıowa	Stuart
Canute		

MEDIUM-SIZED HIGH SCHOOLS
Berryhı11
Clınton
Collınsvılle
Cordell
Elk Cıty
Glenpool
Guymon*
Harrah
Hartshorne
Hobart
Holdenville*
Jones
Kıngfisher*
Luther

LARGE HIGH SCHOOLS

Bixby
Broken Arrow
Catoosa
Central
Charles Page
Choctaw

East Central
Edison
Jenks
Bishop Kelley
McAlester
McLaln

Pawhuska*
Savanna
Skıatook
Sperry
Weatherford
Walburton

*One of the four comprehensive high schools whose students were surveyed

$$
\underset{\text { VITA }}{\stackrel{1}{2}}
$$

Sarah Margaret Myers Osborn
Candıdate for the Degree of
Doctor of Education

Thesis FACTORS WHICH DETERMINE THE INFLUENCE OF INDUSTRIAL ARTS ON OTHER VOCATIONAL EDUCATION PROGRAMS

Major Field Occupational and Adult Education
Bıographıcal
Personal Data Born in Fort Smith, Arkansas, March 18, 1940, the daughter of Earl M and Goldie Myers Married to Ronald L Osborn on November 8, 1960 Mother of two sons

Education Graduated from Fort Smith Senior High School, Fort Smith, Arkansas, May, 1957, recelved Associate of Arts degree from Westark Community College, May, 1959, recelved Bachelor of Arts degree from Oklahoma Baptıst Unıversity, May, 1960, recelved Master of Scıence degree from Oklahoma State University, May, 1980, completed requirements for the Doctor of Education degree at Oklahoma State University, May, 1986

Professional Experience Math Teacher, Sam Houston Junior Hıgh School, Amarı11o, Texas, August, 1960 to Aprıl, 1961, Math Teacher, Madison Junior High School, Abılene, Texas, August, 1964 to May, 1965, Substıtute Teacher, Moore Public Schools, September, 1975 to October, 1977, Drafter, Star Manufacturing Company, Oklahoma City, Oklahoma, October, 1977 to August, 1978, Trade and Industrial and Industrial Arts Draftıng and Math Teacher, U S Grant High School, Oklahoma City, Oklahoma, August, 1978, to May, 1984, Graduate Teachıng Associate, Industrial Arts Education, School of Occupatıonal and Adult Education, Oklahoma State Unıversıty, August, 1984 to May, 1985, Industrial Arts Drafting and Math Teacher, U S Grant Hıgh School, Oklahoma City, Oklahoma, August, 1985 to present

Professional Organizations American Vocational Association, Industrial Technology Education Association, Oklahoma Vocational Association, Oklahoma Technology Education Association, Oklahoma Technology Education Association Board of Directors, Phi Kappa Phı, Kappa Delta Pı

[^0]: Figure 17 Percentages of Students With Other Industrial Arts Experience Who Reported Influences on Trade and Industrial Enrollment

