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CHAPTER I 

INTRODUCTION 

Flexible automation has for many years provided an 

attractive alternative to fixed automation. However, the 

state-of-the-art in manipulator technology severely 

restricts its implementation in complex tasks. This 

restriction is either due to the inadequacy of the 

manipulator to meet the requirements of a complex task (as 

in a miniature assembly or an environment wherein random 

disturbances are possible) or the manipulator being capable 

of providing the required level of sophistication at very 

low speeds only. The latter in particular, is in direct 

conflict with the motivation for the increased 

implementation of these manipulators in industries. 

With the need for higher productivity in industries, 

the operating speeds of these manipulators are being 

continually upgraded. In such a situation, other issues 

relating to the manipulator's performance described in terms 

of end-effector precision, repeatability, accuracy, payload, 

control, etc., come under close scrutiny. However, the 

concept that regulates all these issues is the manipulator's 

dynamics. Under low operating speeds, the manipulators can 

be treated as multi-rigid body systems. On the other hand, 
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the assumption of rigidity may not be quite appropriate when 

the operating speeds are increased. At higher speeds, the 

deflections and bearing loads are dynamically amplified. 

These problems are currently being tackled either by 

settling for a conservatively-rigid design or by 

'stiffening' the system by a closed-loop, feed-back control 

system. Both of these methods have their drawbacks in that 

the former results in a very bulky design. Very often, this 

is the factor that limits the response of the system due to 

increased inertia effects. However sophisticated the 

control system may be, the physical inertia of the 

components may allow little or no improvement in the 

response time of the system. Further, the effect of inertia 

increases the nonlinearity of the response. The latter 

approach of 'pseudo-stiffening' by feedback correction has 

the inherent drawback of increased computational time and 

prolonged transient behavior. Hence, there is a strong need 

to design manipulators with reduced inertia effects (light­

weight manipulators). This in turn would lead to a parallel 

concern for the effects of link and joint flexibilities in 

the system, particularly at higher operating speeds. 

Therefore, more accurate and efficient analytical methods 

must be developed to predict the effects of the distributed 

mass and elasticity on the dynamic positioning 

characteristics of the manipulators. Sophisticated control 

systems may then be devised to improve the manipulator's 

performance. Prompted by functional incentives (both 



technical and economic), investigators over the last decade 

have increasingly shifted their attention to systems that 

include flexible components. 

Literature Survey 

Investigations on manipulator dynamics belong to the 

classical branch of multibody dynamics. The last two 

decades have seen significant strides in these analyses due 

to the availability of superior computing power. The 

existing literature relating to multibody dynamics in 

engineering has emerged mainly from two fields - simulation 

of spacecraft with flexible appendages and analysis of 

planar and spatial mechanisms in machinery design. The 

knowledge derived from these fields has been successfully 

applied in the area of manipulators. This literature can be 

classified into two categories--modeling of gross spatial 

motions of rigid body systems and structural behavior of 

general flexible systems with spatial motion. A brief 

review of this literature follows: 

Spacecraft Simulation 

3 

Since the early sixties, considerable· attention has 

been paid to the studies on the simulation of spacecraft. 

With the increasing sophistication of spacecraft technology, 

more computationally efficient schemes for the simulation of 

complex spacecraft have been developed. Hooker and 

Margulies [40] and Roberson and Wittenberg [80] developed 



the augmented body· method to analyze a system of rigid 

bodies in a topological chain. They observed that certain 

inertia-like terms appear in combination, in the individual 

equations of motion of each of the rigid bodies in the set. 

These combinations admit of physical interpretations as the 

inertia dyadics of abstractions called 'augmented bodies'. 

In this, the 1th augmented body consists of the 1th body of 

the set together with all masses attached to each of the 

joints of that body. If there are 1 r 1 number of constraint 

equations for this set, then the final system of equations 

is a set of 1 6n+r 1 first order differential equations. 

4 

These studies were followed by Velman [101] and Russell 

[81], who adopted the 'nested body methods' wherein subsets 

of rigid bodies (nested bod.ies) in an-body system of bodies 

were analyzed. Though the Newton-Euler approach was used, 

the formulation eliminated the constraint torques from the 

final set of equations. Kane and Wang [53] introduced the 

generalized force method which is under the framework of 

Lagrangian equations. Kane's equations have the advantage 

of automatically eliminating the 'non-working' internal 

constraint forces, without the introduction of tedious, 

o ft e n u n w i el dy , di ff e re n t i at i on of s ca l a r ·e n e r gy f u n c t i on s 

and other similar calculations. Euler parameters were used 

to define the system orientation. They provided for the 

computational efficiencies and for the avoidance of 

analytical singularities which are sometimes encountered 

with Euler angles. The use of generalized speeds also 
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decouples the equations involving the joint force and moment 

components. Further, Kane's method is applicable to some 

nonholonomic systems also. Likins et al.[55] developed the 

hybrid-coordinate method. The earlier developments analyzed 

a multibody system wherein flexible bodies were attached to 

a central rigid body. In the hybrid-coordinate method, 

separate coordinates were used to describe the large, rigid 

body motions and small (linearly) elastic deformations. 

This technique has been extended to a description of large 

flexible motion of a system of arbitrary number of hinge 

connected rigid bodies. 

Planar and Spatial Mechanisms 

There has been a contemporary development of literature 

in multibody dynamics in the field of mechanisms and 

machinery design. Significant amount of work has been done 

on the dynamic modeling of rigid planar and spatial 

closed-loop kinematic chains. Flexible planar linkages have 

also been analyzed in detail. A wide variety of 

mathematical tools were used in the investigations such as 

matrix methods, vector approach, screw calculus, dual 

vectors, etc. Sheth and Uicker [86] used the matrix 

approach to analyze multiloop, spatial mechanisms with 

multiple degrees of freedom. Chace [21] developed a vector 

technique to analyze three dimensional kinematic chains. 

Soni [89], Freudenstein [113], and others have promoted the 

screw calculus based approach while Yang [114] used a dual 



number approach. 

Further to analyzing these rigid systems, flexible 

planar systems have also been extensively studied. The 

basic methodology has been to freeze the mechanism at each 

position and analyze the resulting instantaneous structure. 

Finite element based schemes using beam like elements have 

been developed. Bahgat and Willmert [8] used a line 

geometry and hermite polynomials, to analyze the vibratory 

behavior of flexible planar mechanisms. Variable length 

finite elements were introduced for the first time to model 

links with moving sliders. Naganathan and Willmert [67] 

developed special finite elements to quasi-statically 

analyze planar chains. More recently, Dado and Soni [24] 

have presented comprehensive forward and .inverse analysis 

methodologies for planar elastic linkages. 

6 

The literature addressing elastic, closed-loop 

kinematic chains, executing spatial motion are comparatively 

limited. Winfrey [112] used simple beam elements along with 

a 4 X 4 matrix approach to analyze flexible Bennett 

mechanism. Spatial chains with single closed-loops have 

also been analyzed by Maatuk [57] and Sunada [93,94]. 

Bagci, et al.[7] used a matrix displacement, direct element 

method to analyze si~ple, spatial mechanisms with straight 

links. Some of the above schemes are capable of analyzing 

open-loop (serial) spatial manipulators also. The 

literature involving the dynamics of manipulators are 

discussed in detail in the following section. 
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Manipulator Dynamics 

The configurations of the commercially available 

robotic manipulators can be classified into two categories 

as open-loop chains (serial configurations) and mixed-loop 

chains (parallel configurations), as shown in figure 1. In 

the former, the links of the manipulator are arranged in an 

open chain form, while in the latter, closed-loop kinematic 

chains (usually parallelogram chains) are added to the 

open-loop configurations. The adjacent links of the 

manipulators are normally connected by single degree of 

freedom kinematic pairs. These joints can be either 

revolute or prismatic, and are actuated by electric, or 

hydraulic motors. In order to control the motion of the 

manipulators, the required values of forces/torques at these 

actuators must be computed repetitively, for a prescribed 

set of joint motions. This sampling rate is usually of the 

order of 60 Hertz or more. Therefore, efficient 

mathematical representation of manipulator dynamics is 

essential for the real time control of manipulator systems. 

For the purpose of dynamic modeling, the links of the 

manipulators are usually assumed to be rigid, while some of 

the formulations accommodate flexibility in the links. 

The existing literature.in manipulator dynamics deals 

almost exclusively with the open-loop chains. The problem 

in manipulator dynamics is classified into two kinds. The 

first problem is the 'inverse dynamics problem' wherein the 
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a) Open-Loop (Serial) Manipulator 

b) Mixed-Loop (Parallel) f1anipulator 

Figure 1. Manipulator Configurations 



motion at the joints are known and we are interested in 

computing the required actuator forces or torques. This is 

normally the case while the manipulator is controlled, to 

execute a predetermined motion. The second problem is 

commonly referred to as the 'forward dynamics problem'. In 

this case, the actuator forces are known, and we would like 

to determine the joint kinematics (displacements, 

velocities, and accelerations of the joints). This 

situation may arise during such applications as simulation 

studies. The various dynamic f~rmulations relevant to 

manipulator dynamics may be classified as below: 

* Tabular reference or memory schemes 

* Lagrangian formulations 

* Newton-Euler formulations 

*Kane's method of generalized speeds 

* Dynamic formulations including system flexibilities. 

In the following sections each of the above formulations is 

briefly reviewed. 

9 

Tabular Reference/Memory Schemes. Tabular references 

were initially sought after as possible solutions for real 

time computation of manipulator dynamics. Albus [2,3] 

indexed his table as a function of the n-dimensional vectors 

of displacements, velocities and accelerations. The 

actuator forces were derived by interpolating the contents 

of the table for given values of joint motion parameters. 

Raibert [78] eliminated the acceleration dimension, by 

storing position and velocity dependent terms in the memory. 



This scheme was further revised by Horn and Raibert [43]. 

They proposed the 'Configuration Space Method' with a 

reformulation of the Lagrangian equation. The control 

forces/torques were written as a function of the gravity 

compensation terms, inertial terms, and coriolis 

coefficients. For manipulators with less than 9 joints, 

this formulation has been found to be more efficient than 

the recursive Newton-Euler scheme of Luh, et al .[56] 

10 

Despite the saving in computational burden, the tabular 

methods have the disadvantage of requiring a large memory 

size for a fine enough search along the various dimensions 

of the table. Further, the table entries are valid only for 

a particular end-effector loading condition. 

Lagrangian Formulations. Lagrangian formulation has 

long been recognized as a very powerful dynamic analysis 

tool. The basic advantage of this formulation is the 

automatic elimination of internal joint reaction forces. 

For a prescribed set of joint motions, this method directly 

yields the desired set of joint actuator forces. Bejczy, et 

al.[12,13] derived these forces as a function of 'Dynamic 

Projection Functions'. Some of these terms are functions of 

partial derivatives of the elements of the transformation 

matrix with respect to the generalized coordinates. The 

presence of these numerical differentiations was the main 

hurdle to the computational efficiency on digital computers. 

Several reformulations have been proposed since, aiming at 

improving the computational efficiency of the Lagrangian 
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based schemes. 

Mahil [58,59] proposed an application of the Lagrangian 

approach to an open-loop manipulator with single degree of 

freedom revolute joints. Generalized Inertia Matrices which 

depend on the instantaneous configurations of the 

manipulator were developed. Several ~heorems have been 

derived which replace the numerical differentiation of the 

Generalized Inertia Matrix by a series of vector operations. 

However, no numerical evaluation of the computational 

efficiency has been cited. One of the earlier Lagrangian 

formulations of manipulator dynamics was by Kahn.[50] The 

number of multiplications and additions had a n4 dependency, 

where, 1 n 1 is the number of joints of the manipulator. 

Bejczy and Paul [13] observed that at low speeds, the 

coriolis and the centrifugal terms in equation (1.1), do not 

contribute significantly to the manipulator dynamics and 

they could be ignored in order to improve the computational 

efficiency of the algorithm. However, Raibert [78] pointed 

out that these ·terms were quite dominant at higher speeds. 

Errors due to ignoring these terms were found to exceed the 

limits of feedback correction. 

Recursive schemes have since been proposed to take 

advantage of the serial configurations of the industrial 

manipulators. In the forward recursive scheme, the analysis 

proceeds from the end-effector of the manipulator to the 

base of the manipulator. In backward recursion, the 

analysis proceeds from the base to the end-effector. Waters 
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[110] observed that an n2 dependency can be achieved for the 

arithmetic operations by adopting a backward recursion while 

evaluating the manipulator kinematics. Ho11erbach [37] 

achieved a linear dependency by adopting a forward recursion 

to determine the generalized forces. He further improved 

the efficiency of the algorithm by preferring 3 X 3 rotation 

matrices instead of the 4 X 4 homogeneous transformations. 

An improvement of more than 50% was observed in terms of the 

number of arithmetic operations. The number of arithmetic 

operations required for the various schemes has been 

tabulated by Hollerbach [37], and Cvetkovic and Vukobratovic 

[23]. Wang and Kohli [109] have proposed an alternate 

Lagrangian formulation starting from Silver's [87] form of 

the Lagrangian equations. This method is shown to be as 

efficient as the most efficient Newton-Euler scheme of Luh, 

et al.[56]. Thomas and Tesar [97] have developed a 

quasi-rigid link model of an open-loop manipulator using 

dynamic influence coefficients. The arm's dynamic 

properties were modeled by their effective values at the 

actuators. The influence coefficients necessary for the 

analysis were presented in a simple tabular form. 

Newton-Euler Formulations. Apart from the studies 

cited under spacecraft simulation, the Newton-Euler scheme 

has gained popularity for applications in the real time 

evaluation of manipulator dynamics. Vukobratovic, et al. 

[102-105] used the kinetostatic approach to determine the 

dynamics of articulated chains that include locomotion 
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mechanisms. The generalized forces were expressed in the 

base frame {inertial frame). This approach yielded a set of 

n-dimensional algebraic equations relating joint actuator 

forces and joint kinematics. Orin, et al.[69] suggested 

that the computational efficiency may be improved by 

referring the forces and torques to the local coordinate 

systems. Luh, Walker, and Paul [56] have proposed a 

backward recursive scheme to determine the system kinematics 

and a forward recursion to determine the actuator forces. 

This method has been observed to be the most computationally 

efficient scheme in terms of the number of arithmetic 

operations. In this formulation, the linear and angular 

velocities of the links were also represented in the local 

link coordinates. An accelerated algorithm based on the 

Newton-Euler scheme has been proposed by Cvetkovic and 

Vukobratovic [23]. Walker and Orin [108] solved the forward 

dynamics problem using a N~wton-Euler approach. 

Featherstone [31] utilized the concept of 'articulated body 

inertias• in solving the forward problem for an open-loop 

manipulator with a spherical wrist. This algorithm was 

found to be more efficient than that of Walker and Orin, 

when the number of joints was less than or· equal to 12. 

Pennock and Yang [75] presented an analytical technique 

based on screw-calculus and dual number matrices. The 

formulation aims at deriving closed-form expressions for 

joint forces and torques. The technique is demonstrated for 

the case of open-loop three degree of freedom chains. Use 



of the algebraic manipulation program (REDUCE) has been 

suggested for manipulators with general configurations. 

Silver [87] pointed out that both Newton-Euler and 

Lagrangian schemes have no fundamental difference in their 

computational efficiency. His work proved that with a 

proper choice of representation, the computational effort 

for both the schemes could be identical. 
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Horak [42] used both the Lagrangian and Newton-Euler 

techniques in improving the efficiency of the computation. 

The formulation is particularized to specific manipulator 

configurations wherein the positional and the orientational 

structures can be isolated. The equations were derived in 

closed-form using the Lagrangian approach for the position 

structure, and the Newton-Euler scheme for the orientational 

structure. The algorithm proved to be five times faster 

than the recursive Newton-Euler scheme. The efficiency was 

further doubled by using a second microprocessor in the 

computer architecture. 

Kane's Method of Generalized Forces. Huston, et al. 

[45-48] utilize Kane's dynamical equations to derive the 

governing equations. Kane's dynamical equations have the 

advantage of automatically eliminating the 'non-working' 

internal constraint forces, but without the introduction of 

tedious, often unwieldy differentiation of scalar energy 

functions. Each of the bodies was considered to be 

connected to the adjacent body through a spheric pair and 

Euler parameters were adopted to define the relative 



orientations of adjacent members. Kane and Levinson [51] 

choose to promote the discipline of formulations 

particularized to the system that is being analyzed. The 

concept of Kane's generalized speeds is used in deriving 

coefficients of the system equations in an explicit form. 

It is shown that such a formulation is more efficient than 

the recursive Newton-Euler scheme. 

15 

Dynamics of Flexible Manipulators. The literature on 

dynamics of flexible manipulators is comparatively limited. 

Book, et al.[20] discussed feedback control schemes for a 

two-beam, two link planar open-loop systems. The links wer~ 

assumed to be Euler-Bernoulli beams with distributed 

flexibility. A fixed-free type of an elastic deformation 

was assumed for each of the links. The dynamical equations 

were derived in an explicit form. Beazley [11] developed a 

method using transfer matrices for a quasi-static 

vibrational analysis of a slowly moving teleoperator. 

Maatuk [57] used beam-like links to analyze open-loop 

manipulators. A Lagrangian based scheme along with a normal 

mode synthesis technique was used to study the elastic 

deformations. The perturbed motion due to elasticity was 

considered small enough to admit Euler-Bernoulli beam 

theory. The equations of motion were derived for a 

particular three degrees of freedom open loop manipulator. 

The method was restricted to manipulators with rotational 

degrees of freedom only. Hopkins [41] presented a 

generalized finite element based scheme to investigate open 



chains with screw joints. However, the application of the 

method has not been demonstrated for practical 

configurations. Sunada [94,95] presented a method to 

investigate manipulators with links of complex geometry. 

16 

The kinematics and dynamics of the manipulator were 

expressed using 4 X 4 transformation matrices. The 

distributed flexibility and mass properties of the links 

were obtained using the commercially available NASTRAN 

software, at each instantaneous position of the manipulator. 

Component mode synthesis procedure was applied to simplify 

the final set of equations for numerical integration. The 

method is restricted to robotic manipulators with revolute 

joints only. Huston and Kelly [46] used a modified form of 

Kane's equations to investigate flexible open loop chains. 

Bagci, et al.[6,7] proposed flexural line elements to 

estimate the end-effector position and orientation errors of 

planar and spatial manipulators. A case study of a robot 

with planar configuration was presented. Singh and Likins 

[88] developed a scheme to study a general, flexible open 

loop chain. The bodies of this open-loop chain were 

considered to be connected together by kinematic pairs which 

permit kinematic constraints, control, or relative motion 

with six degrees of freedom. Kane's method has been 

extended to include elastic bodies in the chain. 

Truckenbrodt [98,99] developed a scheme based on Hamilton's 

principle using hybrid coordinates to study moving flexible 

structures. The resulting nonlinear, differential equations 



.were linearized with respect to a reference motion. The 

method was demonstrated for the case of a manipulator with 

one link only. Recently a modal control model has been 

proposed by Book [14] to simulate flexible open-loop 

manipulators with revolute joints. 

1 7 

Apart from the kinematic and link compliant effects, 

the compliance at the actuators have been known to influence 

the dynamic performance of a manipulator with servo-drives. 

The significance of these interactions have been cited in 

the previous works of various investigators. The basic 

methodology of modeling the actuator dynamics involves the 

identification of their inertia, stiffness, and damping 

parameters. Asada [5] has described in detail the design of 

a direct drive arm and the methodolgy to identify the design 

parameters of the control system, such as the position and 

velocity gains, servo stiffness, etc. Sunada and Dubowsky 

[94,95] used contant position and rate gains while modeling 

the interactions of the control system and the link 

flexibilities to augment the system equations. For the case 

of the indirect drive, Ahmad [1] has presented a 

comprehensive description of the second order, nonlinear 

kinematic effects associated with a typica~ actuator and the 

gear drives. Book, Majette, and Ma [18,19] presented a 

frequency domain analysis of the space shuttle arm and its 

payloads. Majette [60] discussed a modal state variable 

control model for a 2-arm planar manipulator with point 

compliances at the joints. 



Existing literature reports very few experimental 

investigations on the performance of flexible manipulators. 

Good et al.[32] experimentally investigated the flexibility 

effects in the actuator linkages of an industrial 

manipulator and developed a 4 degree of freedom nonlinear 

model. Hastings and Book [33] have recently reported a 

linear state-space model for a single link flexible arm, 

together with experimental results on the performance of 

this arm. 

From the above survey, it appears that much remains to 

be done in order to be able to predict and control ths 

complete performance of a flexible manipulator. There is a 

strong need to develop a comprehensive model that would 

predict the performance of a flexible manipulator in the 

presence of all-perturbive effects, namely kinematic 

effects, link compliance and joint compliance. 

Significance of the Study 

The modeling procedures for studies on flexible 

manipulator dynamics cited in the previous section have 

often evolved from research efforts in the areas of 

structural dynamics, spacecraft, and mechanisms. The usual 

procedure is to freeze the manipulator at a particular 

instant of time and apply basic principles of structural 

dynamics to this instantaneous structure. However, a 

18 

manipulator is typically different either from a structure, 
\ 

or a spacecraft in that we command the different joints of 
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the manipulator to·undergo gross motions. These motions are 

mutually independent and are time dependent. This being the 

case, the natural question would be, to what extent does 

this typical nature influence its positioning 

characteristics? Further, the interactions between the gross 

motions and system flexibilities are expected to be 

nonlinear in nature. How does this nonlinear interaction 

affect the performance of the manipulator? Instead of making 

empirical judgements on these issues, a comprehensive 

analytical model is developed in this study to critically 

examine the nonlinear interactions of the system gross 

motions with the flexibilities present in the system. 

While modeling manipulator links, most of the research 

efforts in the past have treated the manipulator links as 

slender beams. However, this assumption may not be quite 

valid when we consider commercially available industrial 

manipulators. It is desirable that the model is capable of 

handling a wider range of aspect ratios, particularly, 

higher values of aspect ratios that are more common among 

industrial manipulators. Further, the model is expected to 

effectively simulate the nonlinear coupling of the 

flexibility effects with the gross nonlinear motion of the 

manipulator links. Predicting the end-effector behavior 

under the influence of such dynamic effects has always been 

paralleled by a concern for the computational burden for 

such an analysis. With the above objectives in mind, a 
" simple and efficient finite element will be developed for 
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serial manipulators using Timoshenko beam theory. 

A typical manipulator system may accommodate a variety 

of flexibilities in the form of distributed elasticity in 

the links, compliant joints, control system flexibilities, 

etc. This study will comprehensively model the interactions 

of the gross motions with the system deformations due to the 

distributed elasticity in the links of the manipulator. 

Procedures will also be identified to take into account 

simplistic representations of the effects of servo­

compliances that may typically exist in the servo-drives of 

commercial actuators. 

Statement of the Problem 

The main objective of this study is to develop an 

analytical tool to critically examine the elasto-dynamic 

effects on the dynamic positioning characteristics of the 

manipulators. In particular, the study will highlight the 

nonlinear coupling between flexibilities in the links due to 

distributed elasticity and their gross nonlinear motions. 

Also, a simplistic representation of the control system 

effects will be used to augment the model. A dedicated 

finite element based scheme will be developed to study 

general serial manipulator configurations with revolute and 

prismatic pairs. The method will further eliminate any 

assumption of slenderness for the manipulator links. The 

manipulator configuration may consist of short (stunt) as 

well as long (slender) links. This is rendered possible 



using Timoshenko Beam Theory along with a reduced order 

integration, in the development of the finite element. 

Further, the developed methodology is applicable to systems 

with both revolute as well as prismatic pairs. The above 

problem will be solved in two phases: 

(1) Development of a finite element model for planar, 

open-loop, revolute jointed configurations. 

(2) Extension of the above model to spatial, open-loop 

manipulator configurations that include both revolute 

and prismatic pairs. 
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With the current emphasis in actuator designs directed 

at direct-drives, the inherent damping and friction in the 

drive mechanism is greatly diminished. Hence, the sources 

of link and control system flexibilities in the system are 

likely to influence the performance of the physical system 

at a more significant level. Studies such as the one 

presented in this work would be of great value in 

recognizing and evaluating those influences. 



CHAPTER II 

PLANAR MANIPULATORS 

Introduction 

In this chapter, the basic guidelines for the analysis 

of a general case of the revolute jointed planar 

manipulators will be formulated. Such a manipulator is 

shown in Figure 2. The model will allow for the complete 

interaction of elastic deformations and the commanded gross 

motions at the manipulator joints. The governing equations 

of motion will be derived including the effects of rotatory 

inertia, transverse shear, and the effects of the gross non­

linear motion of each of the links. Further, the effects of 

joint servo-compliances will be taken into account, while 

predicting the tip errors for the end-effectors of the 

planar manipulators. 

Problem Formulation 

The methodology will consist of the following seven 

steps: 

(1) Description of the configuration of the manipulator 

(2) Derivation of the kinematic and kinetic relations for 

a typical differential segment on a manipulator link 

(3) Use of Galerkin's technique to render the equations in 

22 
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Figure 2. Planar Manipulator 
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an integral form suitable for a finite element scheme 

(4) Development of a special finite element 

( 5) Derivation of system equations 

( 6) Augmentation of the system terms for joint servo -

compliances, and 

(7) Solution of the system equations. 

Manipulator Description 

Let (XbYbZb)O be a ground reference frame attached to 

the base of the planar manipulator as shown in Figure 3. 

The serial configuration may consist of any number of links 

(l, ••• ,n) connected by revolute pairs. According to the 

notation used in this study, the (i-l)th link will be 

connected to the ;th link, by a revolute pair at joint 'i'. 

Two orthogonal frames of reference will be attached to each 

of the manipulator links as shown in Figure 3. For the ith 

link, the frame (XbYbZb)i will be located at the proximal 

end of the link at joint 'i 1
• This wi 11 be referred to as 

the 'base reference' of the ;th link. Another frame of 

reference (XdYdZd)i will be located at the distal end of 

link•;• at joint 1 i+l 1
• This is the 'distal frame' of the 

;th link. When the manipulator is in its undeformed state, 

the distal frame can be located by a pure translation of the 

base reference (XbYbZb)i along the length 'L; 1 of the link. 

Also, the Z-axes of these frames will be chosen along a 

reference line on the link. The commanded motion at joint 

'i 1 will be given by the angle 1cp I 
i . This will be measured 
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in a counter-clockwise direction from Zd to Zb about Yb. 
i -1 i 

The subscript 'i 1 will be omitted from now on, while 

referring to the ith link parameters. 

Kinematic and Kinetic Relations 

The ;th link is shown in Figure 4, both in its 

undeformed state as well as in an exaggerated deformed 

state. The kinematic and kinetic relations will be derived 

by considering a differential segment on the ;th link, at a 

distance 's' from the origin of the base reference frame 

along the Zb axis. The kinematic parameters of the 

differential segment will be identified by considering the 

relative motion of the differential segment with respect to 

the base reference frame of the link. Let 'xyz' be another 

frame of reference attached to the center of mass 'G' of a 

differential segment on the ;th link. The following 

variables will be used in deriving the required expressions. 

p 

y 

Density of the material of the link 

Shear Modulus of the material 

Young's Modulus of the material 

Area of cross-section of the link 

Area moment of inertia of the link 

cross-section 

L Length of the link 
-+ -+ -+ 
kx ,ky ,kz Unit vectors of the base reference frame 

b b b 
'XbYbZb' 

Unit vectors of the differential segment 
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w 
b 

w 
s 

a. 
s 

reference frame 1 xyz 1 

Deformational displacements of the 

differential segment along Xb and Zb axes 

Deformational rotation of the differential 

segment about •y• axis with respect to the 

zb axis. 

28 

Deformational angular velocity of the 

differential segment with respect to the base 

reference frame 

Deformational angular acceleration of the 

differential segment with respect to the base 

reference frame. 

Absolute angular velocity of the base 

reference frame. 

Absolute angular acceleration of the base 

reference frame. 

Absolute angular velocity of the differential 

segment 

Absolute angular acceleration of the 

differential segment. 

The Newton-Euler equations can be written for the 

differential segment as: 

+ + 
F = dm aG ( 2. 1) 

• 
+ + 

MG = HG ( 2 . 2 ) 



+ 
where, F is the resultant force acting on the differential 

+ + 
segment, a6 is the absolute acceleration of 1 6 1

, and H6 is 

the angular momentum of the differential segment about its 

center of mass. For the planar case, the latter has the 

simple form as: 
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= ( 2. 3) 

For the planar case, the segment absolute angular 

velocity and absolute angular acceleration are given by, 

w 
s 

a 
s 

= wb 

= ab 

• 
+ 8.Y ... 
+ By 

If the distal frame of the ;th link has a relative 

( 2. 4) 

angular velocity of wd. with respect to the base reference , 
frame on the ;th link, then for the planar case, the 

absolute angular velocity of the base reference frame (wb) 

is given by, 

i 
= • I: 1 J= 

<P. + wd ) 
J j -1 

( 2. 5) 

A similar expression exists for the absolute angular 

acceleration of the link base reference frame. The absolute 
+ 

acceleration of the center of mass 1 6 1 (a 6 ) will be obtained 

by considering the acceleration of the origin of the base 

frame •ob• (ab) and the relative motion of 1 6 1 with respect 
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.... 
to the (XbYbZb) frame. aG is given by the classical 

acceleration expression, 

.... .... .... x (;, x r> .... x r + 2 .... x .... 
+ arel aG = ab+ wb + cxb wb vrel 

( 2. 6) 
.... .... 

where, r = ux kx + (s + u ) le z z .... b .... b 
vrel = ux kx + u kz 

.... b z .... b 
a rel = ux kx + u kz 

.,..b z 
Ji 

ab = ab kx + ab k ( 2. 7) 
x b z zb 

+ 
1 r 1 is the vector that locates the center of mass 'G' 

with respect to the origin of the base reference frame as 

shown in Figure 4. I + I vrel is the relative linear velocity of 

the differential segment, and 'arel 1 is the relative linear 

acceleration of the differential segment with respect to the 

base reference frame. + • If aG is given by, 

( 2 • 8 ) 

from equation (2.6) we have, 

ab -wb 2 -cxb -Wb 
2 

uz . s 
z 

= + + 

ab 
x 

cxb -Wb 2 
ux cxb. s 

• .. 
0 -2Wb uz uz 

+ + . .. 
2wb 0 ux ux ( 2. 9) 
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The free-body diagram for the differential segment on 

the XbZb plane is shown in Figure 5. From Timoshenko beam 

theory, the transverse shear can be included in the model as 

•.• (2.10) 

where, 1 kt' is the Timoshenko Shear Coefficient for the link 

cross-section. Also, the moment-curvature relations yield, 

..• (2.11) 

Referring to Figure 5, let f x and fz be the distributed 

forces acting on the element. In the absence of any other 

external loading, these will simply represent the gravity 

loading on the differential segment. We can write the 

governing equations for the differential segment as: 

ClQX/ClS + f = p A ax x 
a M /Cls + Q = P Iy Ct y x s 

AE a2uz/ as 2 + f = p A az . . . (2.12) z 

The above partial differential equations will be solved 

using finite elements in the spatial domain and finite 

differences in the time domain. In order to be able to use 

the finite element method, we have to render the equations 

in an integral form. This will be accomplished by using the 

Galerkin's method. 
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Galerkin's Method 

The Galerkin's method offers a generalized mathematical 

approach to render the governing equations in an integral 

form. In this method, we shall treat the displacements uz, 

ux and the rotation BY as the primary unknowns of the 

problem. Letting ouz, oux, and o8y be the arbitrary 

variations of these unknowns, by Galerkin's method, we have 

the fo~lowing integral: 

s2 

j[[ p Aax 
~l 

- aQ /os - f Jou + [ pAaz - AEo 2u /os 2 - f Jou x x x z z z 

••. (2.13) 

where, s 1 and s 2 locate the finite element on the ;th link 

as shown in Figure 6. Substituting for Qx and MY from 

equations (2.10) and (2.11) into equation (2.13), and 

partially integrating some of the terms, we have 

+ p Aa o u - f o u - f z o u + z z x x z 

•.. (2.14) 
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At this st~ge, the highest order of partial derivative 

in the integrand is of order 1 1 1
• Also, the right hand side 

of the above equation will equal zero at the limits, as the 

variations vanish at the boundaries of the finite element at 

Development of a Special Finite Element 

For the development of the finite element, we will 

assume that the manipulator links are beams of uniform 

cross-sections. However, this requirement is easily relaxed 

for a varying cross-section. In that case, the 

cross-sectional area 1 A(s)' and the area moment of inertia 

'Iy(s)' should be appropriately defined, while evaluating 

the integral in equation (2.14). 

The primary unknowns of the problem are uz, ux, and ey. 

These may be expressed as a function of the nodal 

displacements of the finite element using shape functions 

N1 (s) and N2(s ). The complexity of these shape functions may 

be determined by observing the highest order of the partial 

derivatives in the integrand in equation (2.14). If the 

highest order is observed to be 'n', then the shape 

functions are required to have a continuity of at least 

order 'n-1'.[115] The value of 'n' is equal to 'l' in 

equation (2.14). Therefore, a ath order continuity is 

required for the interpolation function. That is, a simple 

linear interpolation is adequate to model the manipulator 

links. Therefore, the shape functions N1(s) and N2(s) will 
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be given by: 

N1(s) = (s 2-s)/(s 2-s 1) 

N 2 ( s ) = ( s -s 1 ) I ( s 2-s 1) .•• (2.15) 

If {u}e is the vector of the primary unknowns of the 

problem, 

.•. (2.16) 

and {q}e is the vector of elemental nodal displacements of 

the finite element given by, 

.•• (2.17) 

then, the vectors {u}e and {q}e will be related by a shape 

matrix [Ne] as: 

•.. (2.18) 

The shape matrix [Ne] will be given by, 

••• (2.19) 

Taking the variations on both sides of equation (2.18), we 
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have, 

••• (2.20) 

Also, • • • ( 2 • 2 1 ) 

Substituting the above into equation (2.14) and 

performing the required differentiations and integrations, 

we have the governing equations of motion for an element on 

the ;th link as: 

where, 

= {F} e ••• (2.22) 

[J]e is the Element Inertia Matrix 

[C]e is the Coriolis Matrix due to the motion of 

the reference frame (XbYbZb) of the 

;th link. 

[K]e is the Element Stiffness Matrix 

= [Kc]e + [Kb]e 

is the Conventional Stiffness Matrix 

is the stiffness matrix due to· the motion of 

the frame (XbYbZb) of the ;th link. 

is the element force vector due to external 

forces, accelerations, gravity, etc. 

The element matrices have been included in Appendix A. 
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Note that there is ·a pseuo-damping term '[C]e' which is due 

to coriolis effects and this will be referred to as the 

Coriolis Matrix. Also, the elemental stiffness matrix is 

comprised of two parts, namely the conventional or 

structural stiffness [Kc]e and a pseudo-stiffness due to the 

gross motion characteristics of the ;th link of the 

manipulator [Kb]e. If one were to formulate the problem by 

applying the conventional structural dynamics principles, 

then the coriolis term and the stiffness term due to base 

motion would be ignored. Further, the governing equations 

for the element have been derived taking into consideration 

the coupling phenomenon between the link gross motions and 

the link deformations (equations 2.4 - 2.9). The matrix 

elements of the coriolis matrix [Ce], the stiffness matrix 

due to base motion [Ke], and the element force vector {Fe} 

are functions of the angular velocities and angular 

accelerations of the base reference frame of the manipulator 

link the finite element is associated with. Since these 

kinematic quantities (wb and ab) are also dependent on the 

nodal deformations, the elemental equations are coupled, 

non-linear ordinary equations. 

In this section, the elemental equations have been 

derived using Timoshenko Beam Theory along with a choice of 

linear interpolation within the finite element. However, it 

has been well documented in the literature [76,105] that this 

combination results in parasitic shear effects leading to a . 

stiff system of equations. These parasitic effects are 
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referred to as the 'shear lock effects' and are particularly 

dominant at lower aspect ratios. In ·order to avoid the shear 

lock, reduced order integration has been adopted for the 

conventional stiffness matrix [Kc]e.[ 115] The developed 

model can then be applied to a wider range of aspect ratios. 

That is, both short links (stunt beams) as well as fairly 

long links (slender beams) can be modeled using the finite 

element .develop~d in this section. 

Derivation of System Equations 

The system equations are to be obtained by identifying 

the relation between the elemental equations in terms of 

their local coordinates and their forms in terms of the 

system coordinates. Then, these equations must be properly 

assembled along with the appropriate boundary conditions to 

obtain the final system equations, corresponding to a set of 

user-defined system coordinates. 

Derivation of Global Elemental Equations 

The conversion of the elemental equations in terms of 

the elemental nodal coordinates to equations in terms of the 

global coordinates (global elemental equations) can be 

achieved in two ways. One of the methods is to request the 

user to provide the co~patibility conditions between the 

elemental and global coordinates in terms of matrices for 

each of the elements. [94,95] A second method is, to 

automate this process by providing an assembly procedure by 
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choosing an appropriate global coordinate description. The 

latter approach has been preferred in this study. The global 

coordinates at the nodes of the element are chosen parallel 

to the axes of the ground reference frame (XbYbZb>o· 

A typical finite element with its local and global 

coordinates are shown in Figure 7. By calculating the link 

orientations as the manipulator changes its configuration, 

the. computer code automatically generates the compatibility 

conditions for each of the finite elements. 

In structural dynamics methodologies, the compatibility 

matrices for the finite elements have normally been treated 

to be non-time-dependent. However, for a system such as the 

manipulator, the configuration undergoes gross changes 

during the task cycle. Particularly when the motion is 

executed at high speeds, the rates of these changes may also 

be significant. Therefore, the time varying nature of these 

compatibility matrices must be recognized while assembling 

the system equations. 

Let [<I>i(t)] be a time-varying compatibility matrix 

between the elemental and global coordinates at the nodes of 

the finite element. If {qg}e is the vector of element global 

displacements for an element on the ith link, the equations 

of motion can be written in global coordinates as: 

where, 



,.... 
ell 

x 

N 
ell 

N 

,.... 
ell 

N 

ell 
Cl.I 
+.> 
ca 
c -"C 
L­
o 
0 
u 
,.... 
ca 

.J:l 
0 ,.... 

t!:J 

"C 
c: 
ca 

,.... 
ca 
u 
0 _. 

.s:::. 
+.> .,.... 

+.> 
c: 
Cl.I 
E 
Cl.I ,.... 

I.LI 

c: .,.... 

,.... 
0.. 

.,.... 

41 



42 

[Kg]e=[4>i(t)]T [ [J]e [¥i(t)] + [C]e [~i(t)] 
+ [K]e [4>i(t)]] ••. (2.24) 

• •• 
[4>i(t)] and [4>i(t)] are the first and second time 

derivatives of the compatibility matrices. We can observe 

from the form of equations (2.24) that there is a cross-

contribution effect, because of the time varying nature of 

the compatibility conditions used in this study. The 

compatibility matrices for the case of revolute jointed 

planar manipulators may be easily obtained from figure 7, by 

inspection. These global elemental equations must be 

appropriately assembled to obtain the final system equations 

by imposing the boundary conditions of the problem. This 

assembly procedure is accomplished using a variable 

correlation table. The details of this method is described 

in the following section. 

Variable Correlation Table 

The global element matrices derived in the previous 

section must be assembled to form the system matrices 

imposing the appropriate boundary conditions. The element 

matrices will be assembled to obtain system inertia matrix 

[J]s, system damping term [C]s, system stiffness matrix 
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[K]s, and the system force vector {F}s. 

Variable correlation table is a two-dimensional array, 

each row of which corresponds to a particular element in the 

assemblage and each column of which represents one of the 

element nodal displacements. A typical row of this table is 

shown in Figure 8. For the case of revolute jointed planar 

manipulators, the number of columns in the variable 

correlation table has been set equal to 6, the size of the 

largest element nodal displacement vector. 

Letting Vc{i,j) represent the elements of the variable 

correlation table , the subscript 'i' will range from 1 to 

the number of finite elements, and 'j' from 1 to 6. The 

subscript 'j' refers to the jth nodal displacement of the 

element 'i '. If the jth nodal displacement of the ;th 

element is 'v', the array Vc{i,j) can be defined as: 

{

o, if v = o 

= location of 'v' within the 
system deformation numbering 
scheme, if v ·~ O 

Let us refer to a typical row of the variable 

correlation table corresponding to the rth element. If N1 to 

Nm are the entries in the 'm' columns of the rth row, then 

the sth column of the rth element should lie along the N th s 
column of the system matrix. Similarly the sth row of the 

rth element should lie along the Nsth row of the system 

matrix. In this manner all element matrices will be 

assembled to form the system matrices. 
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Figure 8. Typical Row of the Variable Correlation 
Table 
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System Equations 

Using the procedures described in the previous 

sections, we can assemble the system equations. The system 

equations will be of the form given below: 

[J(qs)]s {qs} + [C(qs,qs)]s {qs} + [K(qs,qs,qs)]s {qs} 

= {F(qs,qs,qs)}s ••. (2.25) 

These equations are non-linear, coupled, ordinary 

differential equations. The next step is to identify a 

solution procedure to solve this system of equations. 

Augmentation of System Equations for Joint 

Servo-Compliances 

Typically, the actuators of manipulators are driven by 

electric or hydraulic servo drives. For a simple servo-drive 

i n vol vi n g 'po s i ti on a n d v e 1 o c i ty feedback s , the transfer 

function at a particular joint may be written as [ 73]: 

e ( s) kekm ------- = ----2------------------- ... (2.26) 
ed ( s) s J + s(F+krkm) + kekm 

where, 

km is the actuator gain ... 

F is the viscous damping term 

ke is the position feedback gain 

kr is the rate feedback gain 

J is the reflected inertia at the joint 

In order to prevent structural oscillations and to 
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ensure system stability, the characteristic frequency of the 

control system is usually limited to 50% of the structural 

frequency. [73] Hence, the maximum value of the servo­

stiffness (kp) is given by, 

= 2 2 
k k = 1r f 0J O 

e mmax 
••. (2.27) 

where, f 0 is the structural frequency for an inertia value 

of J 0 . Similarly for a critical damping of the above 

system, the maximum value of the servo-damping (kv) is given 

by' 

k = F + k k = 2 v' J kekm v r m (2.28) 

If one were to assume that these gains to be constant 

over the operating range, this might result in overdamping 

when the ·reflected inertia values are below the maximum 

value assumed in the above expression. However, for such an 

approximation, the perturbative torque (Tp) is given by, 

T = - k * (8 - 8 ) - k * (B p p d a v d 

. 
Sa) .•. (2.29) 

where, ad and ea are the desired and actual values of the 

joint positions and (Sd - ea) is a measure of the compliance 

at the joint. Thus equation (2.29) may be used to augment 

the system forcing functions in equation (2.25) to include 

the effects of the joint servo-compliances. 



In describing the above compliant model, the system 

coordinates representing the rotational deformations in the 

finite element mesh, will no longer be compatible at the 

actuators of the manipulator. The difference in their 

values will represent the compliance at the joint. An 

analogy will be the modeling of torsional springs and 

rotational dashpots in structural configurations. 

Solution of System Equations 
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The set of system equations given by equation (2.25) is 

a set of nonlinear, coupled ordinary differential equations. 

An iterative numerical procedure will be used to solve the 

above set of equations. The procedure followed here is one 

of an incremental linearization and equilibrium 

iteration.[9] For iteration 'k' of the time step (t+.6.t), 

equation (2.25) may be rewritten as: 

t+.6.t[MJ(k_:l) t+.6.t{Ul (k) + t+.6.t[cJ(k-1) t+.6.t{Ul (k) 

+ t + .6.t [ K] ( k -1) t + .6.t { U} ( k ) = t + .6.t { F} ( k -1 ) ••• (2.30) 

where, the coefficient matrices have been evaluated based on 

the results of iteration 1 (k-1) 1
• Also, the following 

conditions will apply during the first iteration. 

t+.6.tu ( o) = tu 

t+.6.tu(O) = t· u 
t+.6.t••(O) u = 

+ •• 
I. u 

t+.6.tF(O) = tF . . . (2.31) 



48 

An implicit time integration scheme (Newmark's method) 

will be used in calculating the dynamic response from the 

above equations. The method (also referred to as constant 

average acceleration method or trapezoidal rule) has been 

proven to be unconditionally stable for a linear parametric 

system of equations. The stability of the method does not 

depend on the time step of the analysis. However, the time 

step is regulated by the accuracy requirements of the 

problem. Usually, a time step equal to 1% of the fundamental 

period is recommended to meet the accuracy requirements.[9] 

From the trapezoidal rule the following expressions may be 

written: 

t +flt u tu + 
flt 

(tu + t+iltu) = 
2 

t+ilt(J tu + 
flt t·· t +ilt·· = ( U + U) 

2 

From the above, we obtain the expressions for the 

deformational displacement derivatives, as: 

= 
flt 

• • . ( 2. 32) 

.•. (2.33) 

••• (2.34) 

t+ilt·· 4 t+flt t 4 t. t·· U = --2 ( U - U) - U - U ••. (2.35) 
flt ilt 

Substituting equations (2.34) and (2.35) in equation (2.30), 

we obtain the equation: 
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where, 

4 2 = __ 
2 

t+6t[M](k-1) + __ t+6t[C](k-1) 
6t 6t 

+ t+6t[K](k-1) ••• ( 2•37 ) 

• • • ( 2. 38) 

t+ 6t[K*](k-l) is referred to as the tangent stiffness 

matrix. Using Newton-Raphson iteration, a new approximation 

to the displacement solution is obtained as below: 

t+6t[K*](k-1) ~u(k) = t+At{F*}(k-1) _ 

t+6t[K*](k-1) t+6tu(k-1) 

• • • ( 2. 39) 

= {F }(k) ... (2.40) u 

where, {Fu}(k) is the vector of unbalanced forces during the 

kth "t t" and Au(k) · th d" · t l l era lOn u lS e correspon lng incremen a 

correction to the displacement solution. 

In order to provide some indication of when both the 

displacements and the forces are near their equilibrium 

values, an energy tolerance criterion will be employed.[9] 
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This criterion will be in terms of the increment in internal 

energy which is given by the amount of work done by the 

unbalanced forces on the displacement increments. The ratio 

of the increment in internal energy during the current 

iteration to that of the initial internal energy increment 

(during the first iteration of the current time step) will 

be compared to a preset energy tolerance value EE (usually 

of the order of lo- 10 ). Therefore, the criterion is given 

by, 

... (2.41) 

The flow chart corresponding to this solution procedure 

is shown in Figure 9. 

In this chapter, a finite element based method has been 

developed to analyze planar manipulator configurations with 

revolute joints. A special finite element was developed 

taking into account the complete nonlinear coupling between 

the link deformations due to distributed elasticity and 

nonlinear link gross motions due to the commanded motions at 

the joints. An assembly procedure based on a variable 

correlation table was used to assemble the elemental 

matrices into the system equations. These equations were 

nonlinear, ordinary differential equations. The system 

equations may also be augmented for any servo-compliant 

--effects that exist at the actuators. An iterative procedure 

involving an incremental linearization and equilibrium 
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t t+b.t 

Constant Average Acceleration t1ethod 

1. Inftfalfze {X}o, {XJo, and CXJo to zero. 

2. Set cS = 0.5 and Q = 0.25 

3. Calculate: ao = l/(a At2 ) a4 = cS/a - 1 

al = cS/(a At) as = (cS/a - 2) At/2 

a2 = 1/(a At) a6 = (1 -cS) At 

a3 = l/(2a) - I a7 = cS.At 

* 4. Calculate {F}t = {F}t + (M]t Ca0 {X}t-At + 
• •• 

az {X}t-At + a3 {X}t-At) 
• . . 

+ (C]t (al {X}t-At + a4{X}t-6t. + as{X}t-At) 

5. Solve [K]t + ao [M]t + * al [C]t {X}t = {F}t .. . 
6. Compute {X}t = ao ( {X}t - {X}t-tat ) - az {X}t-6t 

- a3 {X}t-At 
• • . . 

{X}t = {X}t-6t + a6 {X}t-6t + a7 {X}t 

7. Repeat f'rom Step 4 'for a 11 intervals. 

Figure 10. Newmark Algorithm 



iteration was identified to solve these differential 

equations. 

Before obtaining the vibrational response of the 

manipulator, it is necessary to verify the various 

components of the developed model. Procedures required for 

such a validation will be developed in the next chapter. 
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CHAPTER III 

PLANAR MODEL VERIFICATION 

Introduction 

Before solving the planar model to obtain the 

vibrational response, the performance and correctness of the 

finite element formulation must be studied. Both analytical 

and experimental procedures will be employed to accomplish 

the above objective. The following procedures have been used 

in this study to check the various components of the planar 

model developed in the previous chapter. 

(i) Eigenvalue analysis 

(ii) Static frame analysis 

(iii) Quasi-static analysis of a rotating link 

(iv) Experimental Investigation of a flexible manipulator, 

and 

(v) Quasi-static analysis of general planar 

configurations. 

Eigenvalue Analysis 

The first step in the verification process is an 

eigenvalue analysis of beams. The finite element developed 

in Chapter II is a special Tirnoshenko beam element. Closed 

form solutions are available in the classical literature for 
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Timoshenko beams with different boundary conditions. We can 

compare the eigenvalues obtained with the finite element 

developed in this study to these analytical solutions. 

Consider a beam of uniform cross section, simply 

supported at both ends. When both shear deformation and 

rotatory inertia are taken into account, the frequencies of 

free vibration w of such a beam are given by the roots of n 
the equation: 

2 
p 

w 4 - [~ 
n E 

E PA 
l+--- ) (nTI/L) 2 + ---] w 2 + (nTI/L) 4 = 0 n 
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kt Y E Iy 
( 3. 1 ) 

Using the finite elements developed in the last 

chapter, the eigenproblern is posed as: 

1 
[J]s {q}s = --2 [Kc]s {q}s 

wn 
( 3 . 2 ) 

Table I compares the exact natural frequencies for a 

simply supported Timoshenko beam with the numerical results 

obtained using finite elements. Various values of aspect 

ratios have been chosen to demonstrate the performance of 

the finite elements over a wide range of these ratios. The 

results have also been shown for the case of the 

conventional stiffness matrix derived using exact 

integration. It may be observed from the table that the 

reduced order integration yields a good comparison both at 

low and high aspect ratios. It is to be noted here, that the 



TABLE I 

NON-DIMENSIONAL FREQUENCY PARAMETER t
2

wn"'\fp A/Ely 
FOR SIMPLY-SUPPORTED TIMOSHENKO BEAM 

FINITE ELEMENTS DERIVED USING EXACT INTEGRATION 

. No. of 

Elements 0.02 

1 51.517 

5 19r830 

10 12.913 

20 10.650 

ANALYTICAL 9.839 

ASPECT RATIO (r/2 t) 

0.04 

27.055 

12.936 

10.479 

9.810 

9.580 

0.06 

19.245 

10.957 

9.692 

9.367 

9.258 

0.08 

15.446 

9.919 

9.131 

8.932 

8.866 

0.10 

13.164 

9.173 

8.623 

8.486 

8.441 

FINITE ELEMENTS DERIVED USING REDUCED ORDER INTEGRATION 

No •. of 

Elements 0.02 

1 13.686 

5 10.291 

10 9.915 

20 9.844 

ANALYTICAL 9.839 

ASPECT RATIO (r/2t) 

0.04 

13.218 

10.052 

9.695 

9.608 

9.580 

0.06 

12.553 

9.694 

9.364 

9.284 

9.258 

0.08 

11.793 

9.262 

8.963 

8.891 

8.866 

0.10 

11.017 

8.795 

8.527 

8.462 

8.441 
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agreement of the eigenvalues suggests the correctness of the 

element inertia matrix and the element conventional 

stiffness matrix only. 

Static Frame Analysis 

A simple, planar frame is shown in Figure 11. When the 

members of this frame are subjected primarily to bending 

strains (Euler-Bernoulli theory), the deflection at any 

~oint on the member is given by, 

where, 

y = / ~~ dx 
0 EI 

( 3. 3) 

y = Deflection at the point of interest 

M = Moment expressed as a function of 1 x 1 

m = Moment due to a unit load placed at the 

location of the desired deflection and in the 

direction of the desired deflection expressed 

as a function of 1 x 1 

l = length of the structure 

The horizontal deflection of the point 1 D1 in Figure 11 

can be analytically calculated to be 3.61 inches using 

equation (3.3).[10] Table II shows the static solutions 

obtained using the special finite element developed in this 

study. Again, the results are observed to be in good 

agreement. 



58 

A I 1= 2000 1n 4 
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D 

t ~ 240 11 

Figure 11. A Planar Frame 

TABLE II 

HORIZONTAL DEFLECTION AT FRAME TIP 

# Elements in Deflection at ID' 
AB BD (in inches) 

2 2 3.55 

4 4 3.59 

4 6 3.61 

Exact Solution 3.61 
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Quasi-Static Analysis of A Rotating Link 

Let us consider the dynamics of a single link rotating 

at constant angular velocity. Then the inertial loading on 

the arm will be a triangularly varying, distributed load as 

shown in Figure 12. For a cantilever beam subjected to such 

a distributed loading, the equations for the static 

deflection are given by, 

w 
-XS 15L 4x 5Lx 4 + 11L5 y = ----- [ - + ] (3.4) 

120EI 

11 
WL 3 

Ymax = y I = ----- (3.5) I 
1 x=O 120EI 

By imposing the inertial loads as the triangularly 

varying distributed load, we can provide a close estimate of 

the dynamic deflections in the link. This static deflection 

may be referred to as 'quasi-static deflection', since it is 

the deflection obtained for an equivalent dynamic loading. 

The vibrational response of the link would then be expected 

to closely match these results, displaying an oscillatory 

behavior about the quasi-static solution. The same may be 

observed from Figure 13. 

Experimental Investigation of a 

Flexible Manipulator 

A single link flexible manipulator was designed and 

fabricated (see Figure 14) to investigate the performance of 
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the special finite·element that has been derived in this 

study. The flexibility effects of the link were emphasized 

in this experiment. Therefore, the rotational actuator was 

selected to be the least compliant. A high torque stepper 

motor was found to be most appropriate for this experimental 

study due to its good positioning.accuracy at lower speeds 

(1000 rpm or less). The stepper motor employed in this 

study was rated at 400 steps per revolution (in half 

stepping mode), or 0.9 degrees per step. In order to reduce 

the effects of inertial torques at the motor shaft, a 

zero-backlash chain and sprocket set was used to reduce the 

speed of the motor by a factor of 9. This also helped to 

decrease the amplitude of the steps applied to the link, 

thus achieving a smoother motion for the link. 

Links with different values of stiffness and structural 

damping were tested in this experiment. The fundamental 

frequencies of these links ranged from 3 Hz to 20 Hz. A 

trapezoidal acceleration motion program was selected to 

excite the manipulator, with gross link motions varying from 

20 to 180 degrees, for different cycle times. The general 

form of the excitation function is shown in Figure 15. An 

APPLE-II Plus microcomputer was used to control the stepper 

motor. The time delays required to drive the stepper motor 

were precomputed for a given motion profile and stored in 

the memory. 

Strain gages were mounted on the link to record its 

dynamic response. A digital strain indicator (Vishay 
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Ellis-20) was used.to measure the strains. This instrument 

also served as an amplifier (app. 50) for the strain signal. 

The output signal from the strain indicator was analyzed for 

its frequency content and amplitude using a Spectral 

Dynamics SD-345 Spectrascope. This signal was also 

digitized using a 12-bit A/D ~onverter and stored in the 

computer memory for post-processing. Hardcopies of the 

signal were obtained using a strip chart recorder (HP 77026 

Sanborn Plotter) and an Axiom EX-850 Video Printer for 

further examination. The schematic of the experimental 

set-up is shown in Figure 16. 

Typical experimental results are shown in Figure 17 and 

the corresponding analytically predicted strains are shown 

in Figure 18. As one would expect, the exciting trapezoidal 

acceleration motion program can be observed both in the 

analytical and experimental results. From figures 17 and 

18, the experimental and analytical results may be observed 

to show a highly favorable correlation in the profile of the 

dynamic response. Also, the analytically predicted peak 

strains show a good agreement (70 - 85%) with the 

experimentally recorded strains, thus indicating a good 

level of performance for the analytical model. 

The dynamic response of the link was observed to be 

extremely sensitive to the value of the cycle time. Due to 

the absence of a hardware timer on board, the stepper motor 

time delays were generated by software using 6502 Assembly 

language. However, this was found to be a major handicap in 



Stepper Motor 

STRIP CHART 
RECORDER 

Flexible Arm 

DIGITAL 
STRAIN 

INDICATOR 

12 Bit 
A/D CONVERTER 

SPECTRUM 
ANALYZER 

Figure 16. Schematic of the Experimental Set-up 

O'I 
O'I 



Tit£ --10 
"° I 

0 
r-... 
Ln 

"° >< -
"O 
c 

I.LI EU 
+' 
~ 
rtl 

0 ..r::. 
V) 

~ 
> 

J 

" -1 
.,.... 
L 

Q 

+' 
rtl 

c .,.... 
rtl 
L 
+' 
V) 

0 
X 0.008SEC 

t 
~ 

~ 

LIN )( 
v -0.185 

t 
~ 

lJTG H 

J: 

:1 
~ 

SEC 
EU 

0.eeJ RMS 

I 
I 

I 
I 

I i 
; 

I 

·'. 
I 

. 

i 

4 

Figure 17. Experimentally Recorded $trains at Shaft End 

67 



68 

'O 650 
c 

LI.I 

.,... 

Ill 
c .,... 
ta 
s.. 
.µ 
Ill 
I 

0 
s.. 
u .,... 

::::: 

0 

-650L-------------------------------------------------------------------------:-: 
0 ) 

4.0 
TIME (seconds 

Figure 18. Analytically Predicted Strains at Shaft End 



69 

maintaining precise motor control. The lack of an interrupt 

timer required stalling the microprocessor that prevented 

proper execution of the other aspects of the experiment, 

such as strain data collection using an A/D converter. 

Although the use of a stepper motor was preferrable for the 

purpose of providing a least compliant actuator, the 

flexible arm was subjected to additional sources of 

vibrations. The agreement between the experimental and 

analytical results would be expected to improve if dedicated 

hardware could be developed for maintaining precise motor 

control and real-time data collection. 

Quasi-Static Analysis of General 

Planar Configurations 

In the previous section, we were able to obtain a 

quasi-static solution using an analytical expression, since 

the physical system consisted of a single link. However, the 

configuration of a manipulator normally undergoes gross 

changes while performing a task. In such cases, we can 

generate a quasi-static solution numerically, by ignoring 

the mass and damping terms in the system equations (2.25) 

as: 

= [ K] -l {F} 
s s ( 3 • 6 ) 

Should the numerical solution procedure be stable, the 

vibrational response should display an oscillatory behavior 
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about this quasi-static solution (figure 13). This will then 

provide an additional source of reliability for the results 

obtained using the finite element developed in this study. 

In this chapter, procedures such as eigenvalue 

analysis, static frame analysis, and quasi-static analysis 

were identified to verify the various components of the 

planar model developed in Chapter II. In the next chapter, 

this model will be used to determine the vibrational 

response of flexible, planar manipulator configurations. 



CHAPTER IV 

PLANAR MODEL RESULTS 

Introduction 

In this chapter, planar manipulators with revolute 

joints will be analyzed using the nonlinear model developed 

in chapter II. The objective here is to study the relative 

merits of the nonlinear model against lin~ar and quasi-

s tat i c mo de l s • 

Linear Vibrational Model 

In chapter II, the system equations were observed to be 

a set of nonlinear, coupled ordinary equations. This is due 

to the fact that the model has taken into account the 

coupling between the gross motion kinematics of the 

manipulator links and the deformations in the links 

(equations 2.4 - 2.9). On the other hand, if the system 

matrices are evaluated by ignoring such interactions, then 

the final set of equations will be linear, coupled ordinary 

equations. 

• •• (4.1) 

This model will be referred to as the 'linear model' in this 
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study. The end-eff~ctor positioning errors predicted by the 

complete nonlinear model formulated in chapter II could then 

be compared to this linear model. From such an analysis, 

one may be able to critically examine the merits and 

limitations of these two models, for a given manipulator 

configuration. 

Quasi-Static Model 

A quasi-static solution can be obtained for the 

problem, by ignoring the inertia and damping terms in 

equation (4.1) as: 

{q}s = [K]s -1 {F} ( 4 • 2 ) 

The value of the quasi-static solution is in that it 

provides a quick and reasonable approximation of the 

deformation time histories.[67,95] Further, the time 

history of the vibratory response would be expected to 

display an oscillatory behavior about this quasi-static 

solution. An approximate bound on the amplitude of the 

dynamic response can also be obtained from these solutions. 

However, these observations have been made· for fairly rigid 

mechanisms and manipulators. It will be of interest to 

compare these solutions to the vibrational response of 

flexible manipulators operating at higher speeds. 
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Example Problems 

Three example problems will be solved here. One of the 

studies will be for the case of a fairly flexible 

manipulator operating at high speeds in a gravity-free 

environment, similar to the Canadian Arm on the Space 

Shuttle. The second example will be a fairly rigid design 

under the influence of gravity, typical of currently 

available industrial configurations. The third example will 

be the case of a flexible manipulator with servo-compliant 

effects. 

Flexible Planar Manipulator 

A 2-R, planar, revolute-jointed manipulator (Figure 2) 

has been chosen with the following data for each of its 

links. 

Link Length = 1000 mm. 

Area of Cross-section = 350 mm 2 

Area Moment of Inertia = 10000 mm 4 

Cross-section Circular 

Shear Coefficient (kt) = 0.8864 

Material Aluminium 

Figure 19 shows a finite element discretization for the 

case of 2 elements per link. The number of elements were 

increased to monitor the convergence of the finite element. 

Cycloidal motion profiles (Figure 20) were used to command 

the motion at the two revolute joints. The maximum angular 

velocity and angular acceleration were respectively 
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0.84 rad/sec and 1.05 rad/sec 2 respectively. As mentioned 

earlier, results were obtained for the linear, nonlinear, 

and quasi-static models. The horizontal and vertical 

end-effector deflections for the linear and nonlinear models 

have been compared in Figures 21 and 22. Referring to 

Figure 21 we could see that significantly higher peak 

amplitudes are registered by the nonlinear model. The 

amplitudes differ by 15 to 25% at the peaks. Also, the time 

histories of the results are different. There have been 

some efforts in the recent past towards the design of 

controllers taking the flexibility effects into 

consideration. For the case of flexible arms operating at 

high speeds, it appears that a linear model may not be 

adequate to predict the possible dynamic deformations in the 

system that need correction. 

Figure 23.compares a quasi-static estimate of the 

horizontal displacement error at the end-effector with the 

vibrational response predicted by the nonlinear model. In 

this case, the quasi-static solution can be observed to be 

grossly underpredicting the displacement errors for the 

manipulator. On the other hand, the vibrational response is 

shown to display an oscillatory pattern about the 

quasi-static solution, indicating the stability of the 

numerical procedure used in obtaining the vibrational 

response. 

Currently available controllers estimate the torque 

requirements in the system from the assumption that the 
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links are rigid. If one were to consider the flexibility 

effects then the torque requirements at the joints may be 

significantly altered. Figure 24 compares the base joint 

torque computed using rigid-body dynamics and the torque 

requirements computed using the nonlinear model. 
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From Figure 24, we can observe that the torque 

requirements at the base joint have been significantly 

altered by the flexibility effects in the system. We can 

conclude from the above observations that the coupling 

between the gross motion kinematics and the deformations in 

the links are ~ignificant for the case of flexible 

manipulators operating at high speeds. This interaction 

should therefore be taken into account while designing the 

controllers for such configurations. 

Rigid Planar Manipulators 

A second example of planar, 2-R configuration will be 

considered here. The link dimensions are typical of­

commercial designs used in the industries. Currently 

available designs often resort to an arm-weight to payload 

ratio of 10:1. Hence, the gravity effects should not be 

ignored while analyzing such configurations. The 

dimensional data for the manipulator are: 

Lengths of links = 1000 mm, 1500mm 

Cross-section 

Outside Diameter 

Inside Diameter 

Tubular 

= 100 mm 

= 94 mm 
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The commanded motion profiles for the joints were 

chosen from a normally preferred ones in the industry, 

namely, constant acceleration - constant velocity - constant 

deceleration - settling phase (dwell ).[95] The motion 

profiles for the joints are shown in Figure 25. 

The end-effector dynamic deflections have been plotted 

in Figures 26-29. Figure 28 compares the linear and 

nonlinear models. Also a viscous damping factor of 5% was 

added to the damping terms for the purpose of analysis. We 

can make the following observations from Figure 28. 

(i) The end-effector deformations are of very small 

magnitude as one would expect in a conservatively (rigidly) 

designed industrial manipula.tor. 

(ii) As compared to the linear model, the nonlinear 

model does not appear to register significantly higher peak 

amplitudes. Hence, for fairly rigid designs, one may not 

need to model the nonlinearity of the coupling between 

gross motions and flexibilities. 

Figure 29 compares the end-effector vertical 

deformations for the linear, nonlinear and· quasi-static 

models. We note that the quasi-static model compares very 

well with the nonlinear and linear models, particularly with 

a damping factor of 5%. Hence, a quasi-static model appears 

to be adequate, if one were to be interested in obtaining a 

quick approximation of the maximum peak amplitudes of the 
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dynamic deformations. This observation is consistent with 

the author's previous study in the area of mechanisms.[67] 

Flexible Planar Manipulators With Effects of 

Servo-Compliance 

88 

A case of a flexible manipulator with joint servo­

compliances will be analyzed here. Following the procedures 

presented in Chapter II, the nonlinear model will be 

augmented with the effects of joint servo-compliances and 

the resulting dynamic response of the flexible manipulator 

will be analyzed. The planar flexible manipulator presented 

in the first example was chosen. Maximum values of 

reflected inertia at the joints were computed using a rigid 

body analysis. These values were then used to compute terms 

representing servo-compliance. The tip error at the 

end-effector along the global horizontal axis is presented 

in Figure 30. The same has been compared to the tip errors 

predicted by conventional, linearized structural analysis. 

The tip error predicted by the nonlinear model may be 

observed to be significantly more than the conventional 

structural methodology. 

In this chapter, three examples of planar, revolute­

jointed manipulators were analyzed. The first example was 

the case of a fairly flexible manipulator operating in a 

gravity-free environment at high speeds. The link dynamic 

effects were specifically investigated in this example. For 

this case, the nonlinear model identified significantly 
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higher dynamic deflections during the motion cycle. It 

appears that in such cases either a linear vibrational model 

or a quasi-static model may not be adequate in predicting 

the possible deformations in the system. The second e·xample 

was the case of a conservatively designed rigid manipulator. 

In this case, all the three models (nonlinear, linear, and 

quasi- static models) did not differ ~ppreciably from each 

other. The quasi-static model performed very well in terms 

of predicting a quick and fairly accurate time history of 

the deformation. Hence, this model may be preferred for 

rigid designs from the perspective of computational 

advantages. The importance of the effects of servo-

compl iances was investigated in the third example. For 

conservatively estimated values of these compliances 

(position and rate feedback gain values), the tip error at 

the end-effector was found to be significantly affected. 

Hence, there is a strong need to model these parameters in 

investigating the dynamic response of flexible manipulators 

with servo-drives. 

The above results emphasize the need for an accurate 

modeling of the system interactions (between gross motion 

kinematics and flexibilities) when the manipulators are 

designed lighter and more flexible. The nonlinearity of 

these interactions are likely to be more complex, in the 

case of spatial manipulators executing tasks in a three­

dimensional workspace. The modeling procedures for such 

manipulators will be developed in the next chapter. 



CHAPTER V 

SPATIAL MANIPULATORS 

Introduction 

Methodologies will be developed in this chapter for the 

analysis of spatial manipulators with revolute and prismatic 

joints. These manipulators normally execute tasks in a 

three-dimensional workspace. An example of a spatial, 

revolute manipulator is shown in Figure 31. The model to be 

analyzed will take into account the complete nonlinear 

coupling between the three-dimensional nonlinear gross 

motions of the manipulator links and their elastic 

deformations. The governing equations of motion will be 

derived including the effects of rotatory inertia, 

transverse shear, and the effects of the gross non-linear 

motion of each of the links. A simple and efficient finite 

element will be developed for the manipulator links, using 

Timoshenko Beam Theory. 

Problem Formulation 

Th e met h o do l o gy may be di vi de d i n to th e f o 11 ow i n g f i v e 

steps: 

(1) Description of the manipulator configuration 

(2) Formulation of an efficient procedure to derive the 

91 
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kinematic and kinetic relations for a typical 

differential segment on a manipulator link 
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(3) Use of Galerkin's Technique to render the equations in 

an integral form suitable for a finite element scheme 

(4) Development of a special finite element for the 

spatial manipulator, and 

(5) Derivation and solution of system equations. 

Description of the Manipulator 

The description of the manipulator configuration is an 

important step in developing the model for the case of 

spatial manipulators. The choice of reference frames for 

each of the manipulator links should be made so as to 

facilitate not only an easy description of the spatial 

configuration, but also an efficient evaluation of the 

kinematics and dynamics of the manipulator. Studies in the 

area of manipulator rigid-body dynamics have commonly 

preferred to associate the Hartenberg-Denavit frame of 

reference with each of the manipulator links. The 

Hartenberg-Denavit parameters ai' ~i' ei, and si (refer 

Figure 32) allow an easy description of the relative 

location and orientation of two orthogonal· frames x1v1z1 and 

x2v2z2• However, when one is aiming at a solution procedure 

in terms of a generalized scheme such as finite elements, 

the problem description would be rendered easy, if the 

choice of reference frame is made relevant to the geometry 

of the link rather than from a description of the kinematic 
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parameters. It would be preferable, however, if we can 

identify a method by which we could combine the merits of 

both the methods. 
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let (XbYbZb)O be a ground reference frame attached to 

the base of the spatial manipulator as shown in Figure 33. 

For spatial configuration, the Zb axis is chosen along the 
0 

axis of the first joint. The manipulator configuration may 

consist of any number of links (1, ••• ,n) connected by 

revolute and/or prismatic pairs. According to the notation 

used in this study, the (i-l)th link will be connected.to 

the ;th link, by a kinematic pair at joint 'i'. Three 

orthogonal frames of reference will be attached to each of 

the manipulator links as shown in Figure 33. For the ;th 

link with a revolute pair at joint 'i', the frame (XbYbZb)i 

will be located at the proximal end of the link (proximal to 

the base of the manipulator) at joint 'i '. If joint 'i' is 

a prismatic pair, then the origin of the proximal frame will 

correspond to the instantaneous location of joint 'i ', but 

rigidly attached to link 'i'. This will be referred to as 

the 'base reference' of the ;th link. Another frame of 

reference (XdYdZd)i will be located at the distal end of 

link 'i' at joint 'i+l'. This is the 'distal frame' of the 

ith link. When the manipulator is in its undeformed state, 

the distal frame can be located by a pure translation of the 

base reference (XbYbZb)i along the effective physical length 

'l;' of the link. Also, the Z-axes of these frames will be 

chosen along a reference line on the link. let (HxHyHz)i be 
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located at the distal end of the link •; 1 from a description 

of the kinematic parameters. This will be the Hartenberg­

Denavit frame for link •; •. The Hartenberg-Denavit frame 

will maintain a constant orientation with respect to the 

distal frame of the link (XdYdZd)i. This orientation can be 

easily described in terms of Euler angles, roll-pitch-yaw 

angles, or direction cosines. 

Kinematic and Kinetic Relations 

The procedure for deriving the kinematic and kinetic 

expressions for a differential segment on the ;th link may 

be divided into: 

(i) Derivation of link (base reference frame) kinematics 

(ii) Derivation of differential segment kinematics and 

(iii) Derivation of differential segment kinetics 

Link Kinematics 

For the purpose of deriving the kinematic expressions, 

let us consider the ;th link of a serial manipulator shown 

in Figure 34. Let us identify a differential segment on 

this link, with its frame of reference 1 xyz 1 and its center 

of mass 1 G1
• The following notations wi11· be used in 

deriving the kinematic and kinetic expressions. 

p Density of the link material 

A Area of cross section of the link 

! Area Moment of Inertia Dyadic 
+ + -+ 
k ,k ,kz Unit vectors of the frame (XbYbZb). 

xb Yb b 1 



Di ff. Seg. 

(Proximal) 
Link Ref. Frame 

vb. 
1 

Figure 34. Typical Link of a Spatial Manipulator 

• I "'zd. J 1 

"" co 



+ + + 
kx,ky,kz 

ux,uy,uz 

) 

ex,ey,ez 

dx,dy,dz 

~x' ~Y' ~z 

+ 
wb 

-+ 
ab 

-+ 
wd 

-+ 
ad 

-+ 
w s 

-+ 
as 

· Unit vectors of the frame ( xyz) 

Deformational displacements for the 

differential segment along the axes of 

the (XbYbZb)i frame. 

Angular deformations for the 

differential segment about the axes of 

the (XbYbZb)i frame 

Deformational displacements of the 

distal frame along the axes of 

the (XbYbZb)i frame 

Angular deformations of the 

distal frame about the axes of 

the (XbYbZb)i frame 

Absolute angular velocity of the 

(XbYbZb)i frame 

Absolute angular acceleration of the 

(XbYbZb)i frame 
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Relative angular velocity of the 

differential segment with respect to the 

(XbYbZb)i frame 

Relative angular acceleration of the 

differential segment with respect to the 

(XbYbZb)i frame 

Absolute angular velocity of the 

differential segment 

Absolute angular acceleration of the 

differential segment 
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+ 
ab ·Absolute linear acceleration of the 

origin 'Ob' of the (XbYbZb)i frame. 

Referring to Figure 35, let [Ai] be the orientation 

matrix at joint 'i' between the distal frame of link 'i-1' 

and the proximal frame of link 'i '. For a revolute pair, 

this matrix will be a function of the commanded gross 

motion, whereas for a prismatic pair this will be a constant 

transformation. Therefore, we have, 

{Xd } 
i -1 

= [A. ] { Xb } 
1 • 

1 

( 5. 1 ) 

[A.] 
1 = [Ll. 1]-1 [Hi] [Ll.J [L2.J ••• (5.2) 

1 - 1 1 

where, [L 1 _J is a constant transformation at the distal end 
1 

of the ;th link relating the Hartenberg-Denavit frame 

(HxHyHz)i' and the distal frame (XdYdZd)i. This can be 

easily described in terms of Euler angles, or direction 

cosines, or by a Roll-Pitch-Yaw transformation. 

xdi HXi 

ydi ]-1 Hy. 
= [ L 1 i ,> ... 

zd; Hz; 

1 1 

( 5. 3) 

[L 2_J is a transformation relating the proximal and 
1 

distal frames of the ;th link in its undeformed state as: 



Link{i) 
Proximal 

Frame 

Link{i-1) 
Distal 
Frame 

Link{i) 
Distal 
Frame 

Link{i+ 1) 
• 

1 
Proximal 

Frame 

Figure 35. Extended Matrix ~ethod _.. 
0 _.. 
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Xd; Xb; 

Yd; 
= [ L2;] 

Yb; 

Zd; Zb; 
( 5. 4) 

1 1 

where, [L2.J , is given by' 

1 0 0 0 

0 1 0 0 
[ L 2;] = 

0 0 1 -L; 
( 5. 5) 

0 0 0 1 

The effect i v e p hy s i ca 1 1 en gt h of the l i n k ( Li ) w i 11 be 

time varying in nature in the presence of a prismatic pair 

at joint 1 i 1
• Let [Hi] be the 4 X 4 transformation matrix 

between the Hartenberg-Denavit frames attached to the 

(i-l)th and the . th links. If { Hx. } is the Harten berg-l 
l .th Denavit coordinates associated with the l link, then 

{H } = [ H; ] {Hx.} ( 5. 6) 
x. 1 

l - l 

cos8; -cosa·sin8· l l s i n a; s i n 8 i a·cos8· l , 

sin 8; cos a; cos B; -sinct·COSB·· a·sin8· 
[Hi ] 

l l l l 
= 

0 s i na; cos ai si 

0 0 0 1 

( 5. 7) 

Apart from the gross motion, referring to Figure 36, 

let [Ei] represent the transformation due to the deformation 
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of the link. This will locate the distal frame with respect 

to the proximal frame of the link when the link undergoes 

deformation due to elastic effects. For small perturbations 

of the distal frame from its rigid-body position, one may 

model the shape-deformation transformation [Ei] as a 

differential transformation [ 73]. However, during the 

development of the nonlinear model, it was observed that 

such an approximation results in cumulative computational 

errors, while calculating the deformational velocities and 

accelerations. Hence, a Roll-Pitch-Yaw transformation was 

used using the angles ~x' ~y' and ~z as rotations about the 

(XbYbZb)i axes, since the order of rotation is immaterial 

for small angles. Thus, the transformation [Ei] is given 

by' 

CzCy czsysx-szcx CzSyCx+SZSX dx+Li ~y 

[ Ei ] = 
szcy SzSySx+CZCX szsycx-czsx dy-Li ~x 

Sy CySx CyCx dz+Li 

0 0 0 1 

where, ex = cos ~x Cy = cos ~y CZ = cos ~z 

sx = sin ~x Sy = sin ~y sz = sin ~ z 
Using the above expressions, the transformation 

describing the position and orientation of any of the 

manipulator links [Ti] can be given by, 

(5.8) 

( 5. 9) 
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where, [E 0J is an identity matrix. 

Also, the derivatives of the above transformation can 

be obtained as, 

• 
Ti 

•• i i 
Ti = E [ E 

j =1 k=l 
k ;Ej 

.... d(Ej-l"Aj}/dt •. Ei-lAi] + 

2 2 Eo.A1.E 1.A 2 ••• d (Ej-l"Aj}/dt .... Ei-lAi] (5.11) 

For a revolute pair, the time derivatives of the 

transformations [Aj] at joint 'j' can be obtained using the 

operator matrix [Qj] as below: 

... (5.12) 

• 2 
[Hj] + 8j [Qj] [Qj] [Hj]] X 

[Ll.] [L 2 _J ••• (5.13) 
J J 

For a revolute pair, the operator matrix [Q.] is given by, 
. J 

= 

0 

1 

0 

0 

-1 0 

0 0 

0 0 

0 0 

0 

0 

0 

0 

... (5.14) 
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For a prismatic pair at joint 'i ', these derivatives 

will vanish since the orientation at joint 'i 1 is not time 

dependent. The absolute angular velocity and acceleration 
• + + 

vectors of the proximal frame wb and ab can be obtained in 

their matrix form from the above transformations as: 

••• (5.15) 

••• (5.16) 

The components of these absolute quantities must be 

resolved along the local reference frame axes. 

Differential Segment Kinematics 

The absolute velocity and acceleration vectors of the 

differential segment can be given as, 

+ 
w s 

+ + 
= wb + wd •.• (5.17) 

.•• (5.18) 

Also, the absolute acceleration of the center of mass 'G' of 

the differential segment may be written using the classical 

expression, 

(5.19) 



+ + + + where, r = ux kx + u ky + ( u z +s) kz 
:+ b 

y 
:+ b b + . + • . it vrel = ux I< x Uy ICY b + u 

:+ b z zb 
+ •• .. 

itYb 
.. 

ltZb a rel = UX l{Xb + Uy + Uz ... 

Differential Segment Kinetics 

The Newton-Euler equations can be written for the 

differential segment as: 

+ + 
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(5.20) 

F = PA aG ds .•• (5.21) 

+ ~ + + + 
MG = HG = p [ I. as + w x ( I.w ) ds s - s 

= MG it + MG it + M it 
x xb y Yb Gz zb 

••. (5.22) 

+ 
where, F is the resultant force acting on the differential 

+ + 
segment, aG is the absolute acceleration of 1 G1

, MG is the . 
+ 

resultant moment about the center of mass, and HG is the 

rate of change of angular momentum of the differential 

segment about its center of mass. 

The free-body diagram for the differential segment on 

the two bending planes is shown in Figure 37. From 

Timoshenko beam theory, the transverse shear can be included 

in the model as: 

Qx = ktA Y (aux/as ey) 

QY = k t A y c au Y /as + ex ) •.• (5.23) 
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where, 'kt' is the Timoshenko shear coefficient and •v• is 

the shear modulus of the link material. Also, the 

moment-curvature relations yield, 

Mx = EIX a ex/as 

My = EIY a ey;a s 

Mz = y I z aez;as ... (5.24) 

The governing equations for the differential segment 

can be written from the free-body diagram shown in 

Figure 37. 

* 'dQ ;as F = PAax f x = 0 x x 
* ao /'ds FY = PAay f y = 0 y 
* AE a2u ;as 2 

Fz = PAaz - f z = 0 z 
* - a M /as M = MG + Qy = 0 x x 
* 

x 
My = MG aM /'ds Qx = 0 y 
* 

y 
Mz = MG 'dM /'ds = 0 ... (5.25) z z 

where f x, fy, and fz are the distributed external forces 

(including gravity) per unit length of the link. The above 

partial differential equations will be solved using finite 

elements in the spatial domain and finite 'differences in the 

time domain. In order to be able to use the finite element 

method, we have to render the equations in an integral form 

and this will be accomplished using the Galerkin 1 s method. 
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Galerkin's Method 

Let aux, ouy, ouz and oBx, oBY, oBz be the respective 

arbitrary variations of the primary unknowns. Then, by 

Galerkin's method, we have the following integral: 

* * * Fx OU + F oU + Fz oU + x y y z 

(5.26) 

where, s 1 and s 2 locate the finite element on the ;th link. 

(Refer Figure 38). Substituting from equation (5.25) and 

after partially integrating some of the terms, we have: 

[oux Qx + ouy QY + AE au2 /as.ou 2 

+dB M + oB M + oB M ]

52 

••• (5.27) x x y y z z 
sl 
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We can observe that the highest order of partial 

derivatives·in the integrand is of order 1 ! 1
• Therefore, a 

simple linear interpolation is adequate for the shape 

functions in the development of the finite element. 

Development of a Special Finite Element 

For the development of the finite element, let us 

assume that the manipulator links are beams of un.iform 

cross-sections. However, this assumption is easily relaxed 

for varying cross-sections, by treating the cross-sectional 

area A{s) and the Area Moment of Inertia {! {s)) as a 

function of the location parameter 1 s 1
• Referring to 

Figure 38, we can express the displacements and rotations as 

a function of nodal displacements as: 

••• (5.28) 

where, {u}e is the vector of elemental deformations, 

••• (5.29) 

and {q}e is the vector of elemental nodal "displacements. 

{q}e = [{Ux)l {Uy)! {Uz)l {Sx)l {Sy)! {Sz)l 

{Ux)2 {Uy)2 {Uz)2 {Sx)2 {By)2 {Sz)2] ··· {5. 3o) 

For the spatial link, the shape matrix [N]e is given by, 



Nl 0 

0 Nl 

0 0 

[N]e = 0 0 

0 0 

0 0 

where, 

o· 0 0 0 N2 0 

0 0 0 0 0 N2 

Nl 0 0 0 0 0 

0 Nl 0 0 0 0 

0 0 Nl 0 0 0 

0 0 0 Nl 0 0 

N1(s) = (s 2-s)/(s 2-s 1) 

N 2 ( s ) = ( s -s 1) I ( s 2 -s 1) 
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0 0 0 0 1' 
' 

0 0 0 0 

N2 0 0 0 

0 N2 0 0 

0 0 N2 0 

0 0 0 N2 

... (5.31) 

..• (5.32) 

Taking the variation on both sides of equation (5.28), we 

have, 

••. (5.33) 

Substituting the above into equation (5.27) and 

performing the required differentiations and integrations, 

we can derive the governing equations of motion for an 

element on the ith link of the spatial manipulator . 

• • • (5.34) 

[Je] is the Elemental Inertia Matrix 
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[Ce] is the Coriolis Matrix due to the motion of the 

reference frame (XbYbZb)i of the ;th link. 

[Ke] is the Elemental Stiffness Matrix 

= [Kc]e + [Kb]e 

is the Conventional Stiffness Matrix 

is the stiffness matrix due to the motion of 

the frame (XbYbZb)i of the ;th link. 

is the element force vector due to external 

forces, accelerations, gravity, etc. 

Derivation and Solution of System Equations 

For the case of general spatial manipulators, the 

following issues should be considered while defining the 

finite element mesh and the corresponding system 

coordinates. 

(i) The finite elements adjacent to the prismatic pair 

must be treated as 'variable-length' finite elements. 

Therefore, a typical link of the manipulator with a 

prismatic pair may have both 'constant-length' and 

'variable-length' finite elements. 

(ii) The finite elements adjacent to the actuators with 

servo-compliance, will have displacement 

compatibilities only along the normals to the slider 

axis. There will be no deformational compatibility 

along the slider axis. 

(iii) In the presence of servo-compliance effects, the 

orientations of the system deformations (finite 
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element nodal deformations) will also vary as the 

configuration of the manipulator changes during the 

task cycle. 

(v) The algorithm should take into account possible 

singularities that may arise due to the nature of the 

'variable-length finite elements' in the presence of 

prismatic pairs in the manipulator configuration. 

The elemental equations are to be properly assembled 

along with the appropriate boundary conditions to obtain the 

final system equations, corresponding to a set of 

user-defined system coordinates. To start with, the element 

matrices in the local coordinates should be transformed to 

their corresponding form in global (system) coordinates. 

This will be achieved by using time-varying compatibility 

matrices [~; (t)] and their derivatives as discussed for the 

planar case in Chapter II. However, in the spatial case, 

the compatibility matrix will be a 12 X 12 matrix, as 

against the 6 X 6 matrix for the planar case. In this 

study, these compatibility matrices are most conveniently 

obtained as combinations of 3 X 3 sub-matrices. These 3 X 3 

matrices may be the orientation part of the transformation 

matrices ([Ti]) or the joint transformation matrices ([Ai]) 

or simply identity matrices. The first of the three 

situations occur when the system coordinates are described 

along the direction of a base global reference (XbYbZb) 0, as 

for the case of non-compliant joints. The joint 

transformation matrices should be used in the presence of 
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servo-compliance effects, when the system coordinates must 

be described along the local coordinates of the adjacent 

link at the kinematic pair. When the local and system 

coordinates are oriented along the same direction, the 

compatitibility matrix will simply become an identity 

matrix. These global element matrices will then be 

assembled using a variable correlation table {refer 

Chapter II) to yield the system equations. The final set of 

system equations will be in the form of: 

... (5.35) 

While modeling the servo-compliance, the system 

equations may be suitably augmented with the values of 

servo-stiffness and servo-damping terms as described for the 

planar case in Chapter II. These nonlinear ordinary 

differential equations will then be solved using a procedure 

of incremental linearization and equilibrium iteration. 

Numerical Examples 

To demonstrate the feasibility of the methodology and 

the algorithm that has been developed in this study, two 

cases of spatial manipulators will be analyzed in this 

section. The first example will be the case of a revolute 

spatial manipulator shown in Figure 31. The second case 



1 1 7 

will be a general spatial R-P configuration as shown in 

Figure 39. In order to study the effect of the nonlinear 

kinematic coupling, the tip errors will be predicted by the 

complete nonlinear model taking into account the link 

flexibilities only. 

Example 1 

A 3-R spatial manipulator is chosen with the design 

parameters shown in Table III. Typical industrial motion 

profiles are used to drive the three revolute pairs, namely 

the hip, shoulder, and elbow joints as shown in Figure 40. 

A 5% damping factor is modeled in the system representative 

of the total damping and friction effects. Gravity effects 

are included in the analysis. The nonlinear and quasi­

static solutions for the tip errors along the global 

horizontal and vertical directions have been shown in 

Figures 41 and 42. The stability of the nonlinear solution 

scheme may be observed from the fact that the nonlinear 

solution displays a bounded oscillatory pattern about the 

quasi-static solution. 

Example 2 

A R-P manipulator configuration will be analyzed here 

to demonstrate the capability of the developed methodology 

to analyze general spatial configurations that include both 

revolute and prismatic pairs. The design parameters for the 

manipulator are shown in Table IV. The flexible manipulator 
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Figure 390 Industrial Manipulator with R- and P- Pairs 
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TABLE III 

DESIGN PARAMETERS FOR 3-R MANIPULATOR 

Sl. NO. Link Length 
(mm) 

Twist Angle 
(degrees) 

Kink-Length 
(mm) 

Sl. 

1 

2 

1 

2 

3 

o.o 
1000.0 

1000.0 

Area of cross section 
Area Moment of Inertia 
Material 
Cross-section 

TABLE IV 

90.0 

0.0 

o.o 

= 
= 

500.0 

o.o 
o.o 

915 2 
1. 08 x 10 6 ::4 
Steel 
Tubular 

DESIGN PARAMETERS FOR FLEXIBLE R-P MANIPULATOR 

NO. Link Twist Kink Rotation 
Length Angle Length Angle 

(mm) (deg) (mm) (deg) 

o.o -90.0 500.0 Variable 

0.0 0.0 Variable o.o 

Area of cross section = 315 mm 2 
Area Moment of Inertia = 10000 mm 4 
Material Aluminium 
Cross-section Tubular 
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was actuated using cycloidal motion profiles at the joints. 

Figure 43 shows the tip error along the global horizontal 

(Xb)O direction. Even for the case of the flexible 

configuration that has been considered in this example, the 

tip errors are found to be much smaller in magnitude as 

compared to the results presented for the all-revolute 

configurations. This would be expected to be the case, 

since the dynam~c forces arising due to the commanded gross 

motion influence the bending mode more directly for the case 

of a revolute pair. However, for the case of the prismatic 

joint, these dynamic forces are dominantly axial in nature, 

causing negligible deformations in the system. 

In this chapter, a methodology based on a finite 

element scheme was developed to analyze the nonlinear 

coupling effects of gross motion kinematics and the 

distributed flexibilities in general spatial manipulator 

configurations that include both revolute and prismatic 

pairs. A special finite element was derived from first 

principles to model the links of these manipulators. Two 

numerical examples were presented to demonstrate the 

capabilities of the computer code developed based on this 

algorithm. 
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CHAPTER VI 

SUMMARY AND RECOMMENDATIONS 

Summary 

The main objective of this study was to develop a 

comprehensive and dedicated methodology to analyze the 

nonlinear kinematic coupling effects in flexible, spatial 

manipulators. The developed methodology has taken into 

account the complete nonlinear coupling effects between the 

commanded gross motions of the links and the compliance in 

the system due to distributed elasticity in the links. The 

dynamic response of the end-effector was predicted for a 

given set of commanded joint motion profiles. The 

methodology was developed in two stages. 

First, a particularized methodology was developed for 

the case of revolute jointed, planar flexible manipulators. 

A special finite element was derived from first principles 

for the links of the planar manipulators based on Timoshenko 

Beam Theory and a Newton Euler formulation. The development 

took. into account the complete nonlinear kinematic coupling 

between the nonlinear gross motion kinematics of the 

manipulator and the deformations in the links due to 

distributed flexibility. Reduced order integration was 

adopted in the derivation of the conventional stiffness 
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matrix. This provided a mechanism to avoid the parasitic 

shear effects (shear _lock phenomenon) 1n the analysis, which 

appear when a linear interpolation scheme is used together 

with the Timoshenko Beam Theory. A simple linear 

interpolation was proved to be adequate for the finite 

element developed in the study. The study assumed uniform 

cross sections for the links of the manipulator. However, 

such an assumption may be easily relaxed for varying 

cross-sections, if the cross-sectional area and the area 

moment of inertia are represented as functions of the 

locations of the cross-sections on the manipulator link. 

Should numerical evaluation of the matrices be desired for 

complex cross-sections, the use of the linear interpolation 

would facilitate a more simple and thus, a computationally 

efficient evaluation of the element matrices. The commanded 

gross motion effects were observed to be present as coupled 

nonlinear terms in the elemental matrices in the form of 

pseudo-stiffness and pseudo-damping matrices. Time varying 

compatibility matrices were used to assemble the elemental 

terms to form the system equations. Since almost all 

practical manipulators are driven by servo-actuators, the 

complete nonlinear model was also augmented with simplistic 

representations of the joint servo-effects in the form of 

effective servo-stiffness and servo-damping terms. A 

solution scheme involving incremental linearization and 

equilibrium iteration was identified to solve the system 

equations. 
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Both analytical and experimental procedures were 

pursued to verify the correctness of the derivation of the 

special finite element model. Analytical procedures 

included such methods as eigenvalue analysis of Timoshenko 

beams, deformational studies on planar frames, and 

quasi-static analysis of a single rotating link. An 

experimental investigation of a single link flexible 

manipulator was also undertaken to evaluate the performance 

of the special finite element. Favorable correlations were 

observed between the analytical and experimental results, 

thus confirming the applicability of the finite element for 

practical flexible manipulators. 

The computer algorithm that was developed based on the 

above methodology facilitated analysis of flexible 

manipulators in three modes through a soft switch in the 

algorithm. The first mode was a complete, nonlinear 

analysis using the nonlinear model developed in this study. 

The final set of equations was a set of nonlinear, coupled 

ordinary differential equations. The second mode is the 

linearized analysis, wherein the nonlinear coupling effects 

were ignored while evaluating the link kinematics. This 

resulted in a linear, parametric system of· equations and 

hence the name, linearized analysis. Studies in the past 

have preferred to follow this approach and this is analogous 

to conventional structural dynamics methodology. The last 

of the modes was a quasi-static analysis wherein the inertia 

and damping effects were ignored and a quasi-static response 
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was computed. 

Numerical case studies identified significant 

nonlinear, kinematic coupling effects in flexible, 

manipulator configurations. Higher peak errors were 

observed for the nonlinear model as compared to the 

linearized and the quasi-static models. Also, the profiles 

of the computed reaction torques at the joints (drive 

torques for the given joint motion) were found to be 

significantly altered from their forms corresponding to 

rigid body dynamics computations. Also, for conservatively 

estimated values of joint servo-compliances, the nonlinear 

model registered significantly higher tip errors as compared 

to the linearized model with non-compliant joint 

assumptions. 

Following similar guidelines, a comprehensive nonlinear 

model was developed to analyze spatial manipulators with 

both revolute and prismatic pairs, operating in a three­

dimensional workspace. The methodology allowed for an easy 

description of the spatial manipulator in its initial 

configuration using the Hartenberg-Denavit parameters. An 

extended matrix method based on 4 X 4 homogeneous 

transformations was developed for a versatile modeling of 

the nonlinear kinematic coupling effects in spatial 

manipulators with both revolute and prismatic pairs. 

Similar to the case of planar manipulators described 

earlier, a special finite element was derived from first 

principles based on Timoshenko Beam Theory and a 



129 

Newton-Euler formulation. The choice of a reduced order 

integration in the development of element conventional 

stiffness matrices allowed for the simultaneous modeling of 

stunt and slender beams as manipulator links. This is 

particularly desirable for spatial manipulator 

configurations. Also, the matrix scheme allowed for the 

modeling of spatial manipulator links with offsets (kink 

links) by simply modeling additional passive or structural 

joints in the system. The algorithm is fully automated in 

being capable of generating the required time varying 

compatibility matrices (between local finite element nodal 

coordinates and nodal system coordinates), requiring no user 

effort. 

Two numerical examples were presented to demonstrate 

the feasibility of the algorithm developed in this study. 

The algorithm was found to be computationally intensive 

because of the larger size of the elemental matrices that 

require repeated evaluations during the iterative scheme. 

The first of the examples analyzed a 3-R spatial manipulator 

and the second example was the case of a more general 

spatial R-P configuration. The tip errors for the latter 

case was observed to be very small as comp·ared to the 

revolute configurations. This is to be expected, since the 

dynamic forces due to commanded gross motion at a revolute 

pair, influences the bending mode of a flexible link more 

directly. For the case of the prismatic pair, these dynamic 

forces are dominantly axial in nature, thus resulting in 
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negligible structural deformations. 

From the results presented for the planar and spatial 

manipulators, the nonlinear kinematic coupling effects 

appear to influence the performance of flexible manipulator 

configurations both in terms of end-effector positioning 

errors as well as distortions of drive-torque profiles. 

Hence, it appears that the nonlinear kinematic coupling 

effects should be particularly recognized in the development 

of controllers for flexible configurations. Thus, the 

methodology developed in this study offers the most 

comprehensive of the techniques available today for the 

analysis of flexible manipulators. 

Recommendations For Future Research 

Excellent perspectives exist to further the scope of 

the research presented in this work. The need for the 

utilization of flexible manipulators in outer-space as well 

as in mobile defense applications have been well identified 

by the researchers in this area. The advantage of 

manipulator compliance in such applications as miniature 

assembly have also been recognized in the past. The 

foremost of the future challenges is the n~ed for a more 

thorough modeling of the actuators and their drive trains. 

The lack of a complete understanding of all the nonlinear 

effects in these mechanisms have often posed a big hurdle in 

the control issues of even, rigidly designed manipulators. 

These problems are only compounded by the distributed link 
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flexibilities in flexible manipulators. Both analytical as 

well as experimental studies may be needed to fully explore 

and identify the effects of all compliances that exist in a 

typical actuator. Beyond the analysis of the effects of 

flexibilities, exists the issue of control. Sophisticated 

controllers must be designed to take into account the 

effects of flexibilities and the means to take advantage of 

these compliances, in order to efficiently execute the 

commanded tasks. The control issues are further complicated 

by the fact that in practice, manipulators are expected to 

handle varying end-effector load conditions. These load 

conditions may vary both in terms of the mass of the payload 

and as well as its moment of inertia. The latter is 

particularly important in outer space applications which 

involve manipulation of large space structures. Therefore, 

improved models for the manipulator dynamics are needed in 

representing the dynamic plant in the controller design 

process. It is hoped that the methodology developed in this 

work is yet another progressive step towards answering the 

above issues. 
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APPEtrnIX A 

ELEMENT MATRICES FOR PLANAR MANIPULATORS 

The governing equations for a finite element on the 

;th link is given by ~quation (2.22) as: 

where, 

= { F} e 

[J]e is the Element Inertia Matrix 

[C]e is the Coriolis Matrix due to the motion of 

the reference frame (XbYbZb) of the 

;th link. 

[K]e is the Element Stiffness Matrix 

= [Kc]e + [Kb]e 

is the Conventional Stiffness Matrix 

(A. 1) 

is the stiffness matrix due to the motion of 

the frame (XbYbZb) of the ;th link. 

is the element force vector due to external 

forces, accelerations, gravity, etc. 

The element matrices have been shown in figures 44-48. 
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APPENDIX B 

ELEMENT MATRICES FOR SPATIAL 

MANIPULATORS 

The elemental matrices for the case of spatial manipu-

1 ators are easily defined using the following sub-matrices 

and vectors. Let us define: 

A 0 0 Ixx -I -I xy xz 

[A]3X3 = 0 A 0 [I] 3X3 = -I Iyy -I yx yz 
0 0 A -Izx -I zy Izz 

0 wz -w 0 az - Cly b b Yb b 
[w b] 3X3 = -(JJ 0 w [ab] 3 X3 = - Oz 0 ax zb xb b b 

w -w 0 
Ciyb 

-a 0 
Yb xb xb 

['¥J3x3 = [wb] [wb] + [~] 

Let [nJ 3X3 be derived from: 

w h e re , {w r } i s th e v e ct or of a n g u l a r de f o rm a t i on a l v e l o c i t i e s . 

Using the above definitions, the element matrices for 

the spatial manipulators are shown in figures 49-53. 
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;=========================================================== 
SOURCE CODE FOR FLEXIBLE LINK CONTROL PROGRAM 

FOR STEPPER MOTOR CONTROL & STRAIN DATA COLLECTION 
ON APPLE-II PLUS 

;=========================================================== 
BUF EQU 
HMEMLO EQU 
HMEMHI EQU 
HIMEM EQU 
SAVE EQU 
RESTO EQU 
COUTl EQU 
PRBYTE EQU 
PRNTAX EQU 
CROUTl EQU 
GETLN EQU 
RDKEY EQU 
KEYIN EQU 
HOME EQU 
AI13 EQU 
MOPORT EQU 
WA.IT EQU 
STORLO EQU 
STORHI EQU 
RISRET EQU 
ADGAIN EQU 
ADSTOR EQU 
STPPTR EQU 
DLYADL EQU 
DLYADH EQU 
DLYPLO EQU 
DLYPHI EQU 

$0200 
$50 
HMEMLO+l 
$F299 
$FF4A 
$FF3F 
$FDFO 
$FDDA 
$F941 
$FD8B 
$FD6A 
$FDOC 
$FD1B 
$FC58 
$COCO 
$COBO 
$FCA8 
$06 
STORLO+l 
$08 
$09 
$19 
$1A 
$DO 
DLYADL+l 
$FA 
DLYPLO+l 

;APPLE INPUT BUFFER 
;HIMEM LO VALUE 
;HIMEM-HI VALUE 
;HIMEM-SETUP ROUTINE 
;SAVE REGISTERS ROUTINE 
;RESTORE REGISTERS ROUTINE 
;OUT CHAR TO SCREEN 
;PRINT 'A' AS HEX BYTE 
;PRINT 'A' & 'X' 
;PRINT <CR> & CLEAR TO <EOL> 
;GET AN INPUT LINE 
;READ THE KEYBOARD 
;DETECT KEYIN 
;CLEAR SCREEN & HOME 
;A/D ADDRESS FOR SLOT 4 
;MOTOR PORT LOCATION 
;APPLE'S WAIT ROUTINE 
;STORAGE ADDRESS 
;BYTES 
;RISE OR RETURN FLAG 
;A/D GAIN VALUE 
;UNUSED ON ZERO PAGE? 
;STEPPER TABLE POINTER 
;CURRENT DELAY VALUE 
;ADDRESS (INDIRECT) 
;DELAY TABLE 
;POINTERS 

;=========================================================== 
ORG $9100 

;=========================================================== 
START JMP STARTl ;START CODE EXECUTION HERE 
STARTl LDA #>RESULT ;AUTOMATICALLY SETS UP 

STA HMEMLO ;HIMEM DURING 'BRUN' 
LDA #<RESULT 
STA HMEMHI 
JSR HIMEM 
LDA #>BEGIN 
STA START+l 
LDA #<BEGIN 
STA START+2 
RTS 

STEPFU DFB 
STEPHF DFB 

$01,$02,$04,$08 
SOC,$08,$09,$01 
$03,$02,$06,$04 
$0C,$08,$09,$01 
$03,$02,$06,$04 
$04 

DFB 
STPTAB DFB 

STPSIZ 
ADCHNL 
MAXTIM 

DFB 
DFB 
DFB 
DFB 

$00 
$00 

;FULL STEP PHASE VALUES 
;HALF STEP PHASE VALUES 

;STEPPER TABLE HERE 

;HALF OR FULL STEP FLAG 
;A/D CHANNEL VALUE 
;# OF SWEEPS 



161 

POSTRD DFB $FO ;# OF POST-READINGS 
:=========================================================== 
BEGIN 

BEGINl 

BEGIN2 

BEGIN3 

BEGIN4 

EQU 
JSR 
LDA 
STA 
NOP 
JSR 
LDA 
STA 
LOA 
STA 
JSR 
STA 
LDA 
STA 
LDA 
STA 
JSR 
STA 
LDA 
STA 
LDA 
STA 
LDA 
STA 
JSR 
CMP 
BEQ 
LDA 
STA 
LDA 
STA 
TAX 
DEX 
CPX 
BEQ 
LDA 
STA 
JMP 
LDA 
STA 
LDA 
STA 
JSR 
CMP 
BNE 
LDA 
STA 
TAX 
DEX 
CPX 
BEQ 
LDA 

* 
SAVE 
#$00 
MO PORT 

HOME 
#>LABELl 
STORLO 
#<LABELl 
STORHI 
GETDAT 
ADCHNL 
#>LABEL2 
STORLO 
#<LABEL2 
STORHI 
GETDAT 
ADGAIN 
#$4C 
STEPOl 
#>LABEL3 
STORLO 
#<LABEL3 
STORHI 
GE TC HR 
#$09 
BEGINl 
#$60 
STEPOl 
#$04 
STPSIZ 

#$FF 
BEGIN3 
STEPFU,X 
STPTAB,X 
BEGIN2 
#>LABEL4 
STORLO 
#<LABEL4 
STORHI 
GETCHR 
#$CB 
BEGINS 
#$08 
STPSIZ 

#$FF 
BEGINS 
STEPHF,X 

;MOTOR CONTROL CODE BEGINS 
;SAVE REGISTERS 
;FREE MOTOR PHASES 

;CLEAR SCREEN 
;LEGEND FOR A/D CHANNEL # 

;PROMPT & RETURN DATA IN 'A' 

;A/D GAIN 

;PROMPT & RETURN DATA IN 'A' 

;LEGEND FOR # PRINT-OUT 
;OPTION 

; IF YES 

;HALF OR FULL STEP 

;IF = 'H' 



STA 
JMP 

BEGINS LDA 
STA 
LDA 
STA 
LDA 
STA 
JSR 
CMP 
BEQ 
DEC 

BEGIN6 LDA 
STA 
LDA 
STA 
JSR 
STA 
LDA 
BEQ 
LDA 
CMP 
BCC 
LDA 
STA 
LDA 
STA 
LDA 
STA 
JSR 

BEGIN7 LDA 
STA 
LDA 
STA 
JSR 
STA 
LDA 
STA 
LDA 
STA 
JSR 
JSR 
PHA 
JSR 
PLA 
CMP 
BEQ 
NOP 
NOP 
NOP 

STPTAB,X 
BEGIN4 
#>LABELS 
STORLO 
#<LABELS 
STORHI 
#$01 
ADS TOR 
GE TC HR 
#$D9 
BEGIN6 
ADS TOR 
#>LABEL6 
STORLO 
#<LABEL6 
STORHI 
GETDAT 
MAXTIM 
ADS TOR 
BEGIN7 
MAXTIM 
#$03 
BEGIN? 
#$02 
MAXTIM 
#>LABE6A 
STORLO 
#<LABE6A 
STORHI 
PROMPT 
#>LABEL7 
STORLO 
#<LABEL7 
STORHI 
GETDAT 
POSTRD 
#>LABELS 
STORLO 
#<LABELS 
STORHI. 
PROMPT 
KEYIN 

CROUTl 

#$9B 
QUIT 

;STORE A/D DATA? 

;DEFAULT IS TO STORE 

; IF YES? 

;MAX SWEEPS 

;PROMPT & RETURN DATA IN 'A' 

;IF MAX SWEEPS > 2 ? 

;RESET MAX SWEEPS = 2 

;MAX SWEEPS 

;MESSAGE FOR MAX VALUE 
;MAX SWEEPS 

;PROMPT & RETURN DATA IN 'A' 

;CONTINUE ? 

;READ A KEY 

; IF I ESC I 

;YES -- ABORT 
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;=========================================================== 
RUNPRG JSR 

LDA 
STA 

CLEAN 
#>RESULT 
STORLO 

;CLEAN STORAGE SPACE 
;INITIALIZE LOCATIONS 



LDA 
STA 
SEC 
LDA 
STA 
SBC 
STA 
LDA 
STA 
LDA 
AND 
ASL 
ASL 
ASL 
ASL 
CLC 
ADC 
STA 
LDA 
STA 
LDA 
STA 
STA 

LOOPl JSR 
LDA 
BEQ 
JSR 

SLEEP LDY 
LDA 
JSR 
LDA 
BNE 

DMPOUT LDA 
STA 
LDA 
STA 

LOOP2 LDA 
JSR 
JSR 
DEC 
BNE 

QUIT LDA 
STA 
LDA 
STA 
JSR 
JSR 
JSR 
LDA 
STA 
JMP 

#<RESULT 
STORHI 

STPSIZ 
TEMPl+l 
#$01 
TEMP2+1 
#$01 
RISRET 
ADGAIN 
#$OF 
A 
A 
A 
A 

ADCHNL 
ADGAIN 
#$FF 
STPPTR 
#$00 
DLYPLO 
DLYPHI 
STEP 
ADS TOR 
SLEEP 
READAD 
#$00 
(DLYADL), Y 
WAIT 
MAXTIM 
LOOPl 
#>RDONLY 
STORLO 
#<RDONLY 
STORHI 
#60 
WAIT 
READAD 
POSTRD 
LOOP2 
#>LABEL9 
STORLO 
#<LABEL9 
STORHI 
PROMPT 
KEYIN 
CROUTl 
#$00 
MO PORT 
RESTO 
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;STARTING LOCATIONS FOR STORING RESULTS 
;FULL/HALF STEP PARAMETERS 

;SET TO RISE 

;MULTIPLY GAIN BY 16 

;ADD IT TO CHANNEL # 
;VALUE TO POKE IN AI13 
;INITIALIZE POINTERS 
;STEPPER TABLE POINTER 
;INITIALIZE POINTERS 
;DELAY TABLE POINTER 

;STEP THE MOTOR 
; IF READ A/D ? 

;READ A-D & STORE 

;CURRENT DELAY VALUE BYTE 
;APPLE'S WAIT ROUTINE 
;IF ALL SWEEPS DONE? 
;NO --> GO & STEP 
;READ DAMPENING VIBRATIONS 

;APP. 10 MILLISEC WAIT 

;READ A-D & STORE 
;CHECK # OF POST-READS 
;IF 0, RETURN TO BASIC 
;PAUSE TO FREE MOTOR 

;READ A KEY 

;FREE THE MOTOR 

;RESTORE REGISTERS & 
;RETURN TO BASIC 

;=========================================================== 
GETDAT JSR LEGEND 



LDA 
CPX 
BEQ 
JSR 
STA 
DEX 
CPX 
BEQ 
JSR 
ASL 
ASL 
ASL 
ASL 
ORA 

DATEND RTS 

STPPTR 
#$FF 
DA TEND 
NUMBER 
RISRET 

#$FF 
DA TEND 
NUMBER 
A 
A 
A 
A 
RISRET 

;GET DEFAULT VALUE 

;USE 'RISRET' AS TEMPORARY 
;LOCATION 
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:=========================================================== 
;CONVERTS AN 
NUMBER LDA 

CMP 
BCS 
JMP 

DATHEX SEC 
SBC 

NUMEND AND 
RTS 

ASCII INPUT 
BUF,X 
#$BA 
DATHEX 
NUMEND 

#$B7 
#$OF 

TO A NUMERIC VALUE 

; IF <=9 
;IF' NOT, THEN HEX 

~=========================================================== 
;PROMPT 
PROMPT 

PROMPl 

THE 
LDY 
I.DA 
STA 
INY 
LDA 
CMP 
BEQ 

USER WITH THE 
#$00 
(STORLO), Y 
STPPTR 

( STORLO), Y 
#$CO 
PROMP2 

TITLE 

;DEFAULT VALUE 

;IF '@' THEN QUIT 

JSR COUTl ;OUTPUT A CHARACTER 
INY 
JMP PROMPl 

PROMP2 RTS 
;=========================================================== 
;CALL SUBROUTINE PROMPT,GET THE HEX DATA, & ISSUE <CR> 
LEGEND JSR PROMPT 

LDA #$AO ;NORMAL SPACE AS CURSOR 
STA $33 
JSR GETLN 
DEX 
TXA 
PHA 
JSR CROUTl 
PLA 
TAX 
RTS 

;=========================================================== 
;PROMPT, GET A CHARACTER & DISPLAY 
GETCHR JSR PROMPT 
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JSR RD KEY 
CMP #$BD ;IF = CR ? 
BNE GETCHl 
LDA STPPTR ; IF <CR>, THEN DEFAULT VALUE 

GETCHl PHA 
JSR COUTl 
JSR CROUTl 
JSR CROUTl 
PLA 
RTS 

;=========================================================== 
;NULLS THE STORAGE LOCATIONS 
CLEAN LDY #$00 

LDA #>RESULT ;USE STORAGE LOCATIONS 
STA STORLO ;FOR INDIRECT ADDRESSING 
LDA #<RESULT 
STA STORHI 

CLEANl TYA 
STA (STORLO),Y 
JSR INCSTO 
LDA STORHI 
CMP #<MAXPLO 
BNE CLEANl 
LDA STORLO 
CMP #>MAXPLO 
BCC CLEANl 
RTS 

;=========================================================== 
;STEP THE MOTOR AFTER CHECKING DIRECTIONS 
STEP LDA RISRET ;IF RISE OR RETURN? 

BEQ RETUNl ;IF 0, THEN RETURN 
LDA DLYPHI ;CHECK IF END OF RISE 
CMP MAXPHI 
BCC RISEl 
LDA DLYPLO 
CMP MAXPLO 
BCC RISEl 
LDA #$00 
STA RISRET 
JMP DRIVEl 

RISEl CLC 
LDA 
ADC 
STA 
BCC 
INC 

RISE2 JMP 
RETUNl LDA 

BNE 
LDA 
CMP 
BCS 
DEC 
BEQ 

DLYPLO 
#$01 
DLYPLO 
RISE2 
DLYPHI 
DRIVEl 
DLYPHI 
RETUN2 
DLYPLO 
#$02 
RETUN2 
MAXTIM 
DONE 

;IF < NOT YET AT THE END OF RISE 
;CHECK LOW BYTE 

;IF <, NOT YET 
;IF END, REVERSE 
;WITH CURRENT DELAY POINTER 

;IF RISE TO.CONTINUE, 
;INCREMENT POINTER ON DELAY 
;TABLE 

;& MOVE FORWARD 
;WHERE AT REVERSE? 
;THEN CONTINUE RETURN 
;CHECK IF END OF RETURN 

;NOT YET THERE 
;CHECK # OF SWEEPS 
;IF 0, NO MORE STEPPING 



LDA 
STA 
JMP 

RETUN2 SEC 
LDA 
SBC 
STA 
BCS 
DEC 

DRIVEl CLC 
LDA 
ADC 
STA 
LDA 
ADC 
STA 
LDX 
LDA 
BEQ 
INX 

TEMPl CPX 
BNE 
LDX 
JMP 

REVERS DEX 
CPX 
BNE 

TEMP2 LDX 
STEPON LDA 

STA 
STX 

STEPOl JMP 
DONE RTS 

#$01 
RISRET 
DRIVEl 

DLYPLO 
#$01 
DLYPLO 
DRIVEl 
DLYPHI 

#>DLYTAB 
DLYPLO 
DLYADL 
#<DLYTAB 
DLYPHI 
DLYADH 
STPPTR 
RISRET 
REVERS 

#$04 
STE PON 
#$00 
STE PON 

#$FF 
STE PON 
#$03 
STPTAB,X 
MO PORT 
STPPTR 
DISPLY 

;OTHERWISE, RISE AGAIN 

;START RISE WITH CURRENT PTR. 
;DECREMENT DELAY POINTER 

;GET NEW DELAY VALUE ADDRESS 
;COMPUTE CURRENT DELAY 
;ADDRESS 

;HIGH BYTE 

;PTR. TO STEPPER PHASE TABLE 
;IF FORWARD OR REVERSE ? 
; IF 0, REVERSE 
;MOVE UP IN THE TABLE 
;IF FORWARD, IF TABLE-END? 
;IF NOT, MOVE ON 
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;IF END OF TABLE, THEN RESET POINTER ~ 

;DECREMENT SEQUENCE 
;IF BOTTOM OF TABLE? 

;RESET, IF NEEDED 

;STEP THE MOTOR 
;SAVE CURRENT POINTER 
;PRINT DATA 
;STEP DONE 

;=========================================================== 
;DISPLAYS MAXTIM,RISRET,DLYPTR,DLYVAL,STPPTR,PHASE-VALUE 
DISPLY LDA 

JSR 
LDA 
JSR 
LDA 
LDX 
JSR 
JSR 
LDY 
LDA 
JSR 
LDA 
JSR 
LDX 
LDA 
JSR 
JMP 

MAXTIM 
PRINT 
RISRET 
PRINT 
DLYPHI 
DLYPLO 
PRNTAX 
PRINTl 
#$00 
(DLYADL), Y 
PRINT 
STPPTR 
PRINT 
STPPTR 
STPTAB,X 
PRBYTE 
CROUTl 

;PRINT DELAY POINTER (2 BYTES) 

;DELAY VALUE 

;=========================================================== 
;PRINT A BYTE & THEN SPACE 



PRINT JSR 
PRINTl LDA 

JMP 

PRBYTE 
#$AO 
COUTl 
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;PRINT A SPACE 

;=========================================================== 
;READS A-D & 
READAD LDA 

STA 
PHA 
LDY 
PLA 
LDA 
AND 
PHA 
LDA 
STA 
JSR 
PLA 
STA 
JSR 

READAl RTS 

STORES IN THE MEMORY USING POINTERS 
ADGAIN ;POKE VALUE IN AI13 
AI13 

#$00 

AI13+1 
#$OF 

AI13 
(STORLO),Y 
INCSTO 

(STORLO), Y 
INCSTO 

;DELAY FOR CONVERSION 

;HI-BYTE IN 'A' 
;MASK OFF HIGH NIBBLE 
;SAVE HI-BYTE ON STACK 
;LSB IN 'A' 
;STORE LSB FIRST 
;INCREMENT MEMORY LOCATION 
;RETRIEVE HI-BYTE FROM STACK 
;SAVE HI-BYTE IN MEMORY 
;UPDATE STORAGE FOR NEXT READING 

;=========================================================== 
;INCREMENTS STORAGE LOCATIONS 
INCSTO CLC 

LDA 
ADC 
STA 
BCC 
INC 

INCSTl LDY 
RTS 

STORLO 
.#$01 
STORLO 
INCSTl 
STORHI 
#$00 

~=========================================================== 
MAXPLO EQU 
MAXPHI EQU 
DLYTAB EQU 
RDONLY EQU 
RESULT EQU 

START-$0FOO ;ALLbCATE 15 PAGES 
MAXPLO+l 
MAXPHI+l 
MAXPL0-$0200 ;2 PAGES FOR POST-READINGS 
RDONLY-$4000 

;=========================================================== 
LABELl DFB 

ASC 
DFB 
ASC 

LABEL2 DFB 
ASC 
DFB 
ASC 

LABEL3 ASC 
DFB 
ASC 

LABEL4 ASC 
DFB 
ASC 

LABELS ASC 
DFB 
ASC 

$00,$8D,$8D 
'A/D CHANNEL#,--------------(' 
$30 
')-> $@' 
$04 
'A/D GAIN # --------------(' 
$34 
')-> $@' 
'NOUTPUT PARAMETERS TO SCREEN (Y/' 
$OE 
' ) @' 
'HHALF (' 
$08 
')OR FULL (F) STEPPING ? @' 
'NLIKE TO STORE A/D DATA ? (Y/' 
$OE 
') @' 



LABEL6 

LABE6A 

LABEL7 

LABELS 

LABEL9 

DFB 
ASC 
DFB 
ASC 
DFB 
ASC 
DFB 
ASC 
DFB 
ASC -
DFB 
DFB 
ASC 
DFB 
ASC 
DFB 
ASC 
DFB 
ASC 

$0A 
'IF YOU CHOOSE TO STORE A/D DATA, THEN,' 
$8D 
'THE MAXIMUM # OF SWEEPS ALLOWED = $ 02' 
$8D,$8D 
'ENTER MAXIMUM# OF SWEEPS (' 
$24,$30,$01 
I) $@I 
$A0,$87 
'*** (MAX SWEEPS = 2) ***' 
$8D,$8D,$CO 
$01 
'#OF POST-READINGS (MAX=$FF) (' 
$24,$30,$31 
I ) $@' 
$A0,$8D 
'PRESS <RET> TO PROCEED / <ESC> TO ABORT@' 
$A0,$8D 
'PRESS ANY KEY TO FREE MOTOR@' 
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