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PREFACE 

The last twenty years have witnessed a constant stream 

of research in the general area of finding global algorithms 

for solving nonlinear systems of equations. A primary 

objective of this study is to explore some of the existing 

algorithms and the theories behind them, which are scattered 

in the literature, and put this in an integrated form. It 

is hoped that this will make these materials more accessible 

to those who are interested in this area of mathematics. 

To do so, Chapter I contains the precise statement of 

the problem of this study, and some examples. Also, in this 

chapter a brief account of the historical development of 

this area as .well as the necessary background materials for 

this study are given. 

In Chapter II, a detailed construction of Hirsch and 

Smale's definition of a unit vector field is obtained by 

means of which an initial value problem is defined. Also, 

an alternative definition of this vector field by an 

explicit formula is given, and a detailed proof of Hirsch 

and Smale's convergence theorem for their algorithm to 

compute zeros of certain nonlinear maps presented. 

In Chapter III, a constructive proof of Brouwer's fixed 

point theorem is given. Chapter IV deals with the global 
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Newton and global homotopy methods. and compares the 

solution curves of these two methods. 

Chapter V describes several algorithms based on the 

continuous Newton and homotopy methods. Chapter VI 

concludes this thesis, highlighting its salient points. 

A study of this -type could not have been completed 

without the good will of my advisor, Professor Hermann 

Burchard, whose wise and critical comments helped to clarify 

my thinking on many points throughout this study, especially 

when things seemed to come to a dead end. My gratitude goes 

to him for his patient guidance and assistance throughout 

the preparation of this thesis. 

I acknowledge my obligation to professors Gardiner, 

Haack, and Wolfe as my teachers and as members of my com

mittee, for their time and effort on my behalf. I would 

like also to thank Professor Paul Duvall, an ex-member of my 

advisory committee, for his interest in this project and 

encouragement. 

Special gratitude is expressed to my wife, children, 

and family for their understanding, patience, and numerous 

sacrifices. Last but not least, I would like to dedicate 

this study to the memories of my mother and father, without 

whom this project could not have been realized. 
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CHAPTER I 

INTRODUCTION 

The objectives of this chapter are to state the problem 

under consideration and to give some examples in 1.1; to 

mention the historical development of finding global methods 

for solving nonlinear systems of equations in 1.2; to 

briefly discuss the continuation methods and the nature of 

this study in 1.3; and finally, to give the necessary back

ground materials for this study in 1.4. 

1.1 statement of the Problem 

and Some Examples 

Suppose a smooth nonlinear map f : Rn --+ Rn is given. 

It is of interest to find global algorithms that solve the 

system of equations: 

f (x) = o. (1.1) 

A global algorithm is considered as an algorithm for which 

the starting point of the solution may by chosen anywhere in 

Rn, or at least in a large portion of Rn. 

The global methods, which are the subject of this 

study, will be introduced in the following chapters. Here, 
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it is emphasized that these global methods must be con-

trasted with the more familiar local methods such as the 

classical (discrete, local) Newton method. This can be very 

simply described by the iteration formula 

(1.2) 

Beginning at some point x 0 , which the user of this method 

must supply, successive iterates xn are computed by means of 

formula (1.2), provided the current point xn belongs to the 

domain of f (x) and the Jacobian matrix Df (x) is defined and 

invertible at xn. The sequence (xn>n=l, 2 ... thus generated 

may be assumed to converge to a solution x* of equation 

(1.1), under fairly simple hypotheses on the map f such as 

Df (x) being continuous in a neighborhood U of x* for which 

f(x*) = O, and Df(x*) is nonsingular, if only the initial 

point x 0 was chosen sufficiently near the solution x*. 

This can be expressed by saying that the local Newton 

method (1.2) works in a neighborhood of the zeros of the map 

f, as sought in (1.1). 

However, cases are known where the convergence works 

from an arbitrary starting point. For example, let f 

satisfy the following rather strong conditions: 

1. f is continuously differentiable, convex; 

2. the Jacobian matrix Df(x) is nonsingular; 

3. [Df(x)]-l ~ O for all x E Rn; 

4. equation (1.1) has a solution x*; and 

5. Df(x) is continuous on Rn. (1.3} 
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Then it follows that x* is unique, and starting at any point, 

x 0 E Rn, the local Newton method converges to-x*. 

Further discussion about this result and others can be 

found in Ortega and Rheinboldt [42]. 

Some problems from various fields, such as numerical 

analysis and optimization theory, may be formulated in the 

form (1.1). 

An illustrative example: An illustration of how a 

system of nonlinear equations arises in a typical applied 

problem is given below. In numerical analysis, a simple 

form of the two point boundary value problem (BVP) is given 

by: 

II 
u = g(t,u), o 5 t 5 1, u(O) =a, u(l) = b. 

Assume g(t,u) is c2 function on the set 

A = { (t, u) : o 5 t 5 1, -oo < u < + oo}, 

and g(t,u) satisfies the following: 

(1) g(t,u) is Lipschitz, that is, 

llg(t,u) - g(t,u'>ll 5 Kllu-u'·ll for all (t,u), (t,u') EA 

and K is a constant. 

(2) 
a 
~ g(t,u) > o for (t,u) E A. . (1.4) 
au 

Then the above BVP possesses a unique solution. Solu-

tions to (1.4), as it is customary in nonlinear or linear 



problems, are approximated by means of finite differ-

ence methods. 

To this end, the interval [0,1] is partitioned by 

equally spaced grid points: 

= ih, h = 

i = 0,1,2, .•• n. 

1 

11' 

At each ti, u"(ti) is approximated by a second central 

difference; in fact, if u E c3 [0,1], then 

4 

(1. 5) 

Suppose xi is the approximation to u(ti), then (1.5) 

gives rise to the system of nonlinear equations 

i = 1,2,3, ... ,n, x 0 =a, xn = b. (1. 6) 

Equation (1.6) can be put in the compact form 

Here A is an nxn tridiagonal matrix, and H is a nonlinear 

map depending on g and the grid points. Under the condi-

tions in (1.4), the above system of finite difference. equa-

tions possesses a unique solution as well as the BVP, and 

this unique solution can be found by the Newton method for h 



sufficiently small. Further discussion about this BVP 

problem can be found in Henrici [24]. 
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If the strong conditions in (1.3) do not hold, the 

Newton method converges only locally. In this way arises 

the need of finding global-methods for solving (1.1). Addi

tional examples in numerical analysis can be found in Ortega 

and Rheinboldt [42]. 

In optimization theory, there are many problems which 

lead to problem (1.1). For example, in unconstrained opti

mization, one seeks to minimize the real valued function 

h : Rn --1- R. Assuming that h is differentiable, then the 

gradient of h, denoted by:-Vh, is given by 

Then the minima of h(x) are among the zeros of 

f (x) = Vh (x) • 

Having introduced the problem and some typical exam- . 

ples, it is appropriate to mention the methods that will be 

considered in solving it. Existence theorems and algorithms 

for solving (1.1) that will be considered in this study 

originate from two global approaches: the Hirsch and Smale's 

approach, which is also called the continuous Newton method, (Li 

and Yorke [ 3 7] ) , and the homotopy method. 

To find a zero of the system (1.1), both approaches 

follow a solution curve of an initial value problem (IVP) 



until the zero is reached. To be more specific, in Hirsch 

and Smale's approach the following IVP is obtained 

d~ 

dt 
(1.7) 

where ~(x) is a unit vector, which may be obtained by nor

malizing the vector - [Df(x)]-1 f(x) provided that Df(x) is 

nonsingular (when the rank (Df(x)) = n-1, and f(x) ~ 

range(Df (x) then ~ may be extended by a continuity 

agrument). 

In the homotopy approach, too, one gets the IVP 

DH(Y)Y = o, Y(O) = (t(O),x(O)) = (t0 ,x0 ), 

where H: Rn+l -+ Rn and Y = (dt/ds,dx/ds) is a unit 

vector, too. 

1.2 Historical Background 

6 

Finding zeros of nonlinear maps is a classical problem 

in numerical analysis. Until quite recently, methods and 

algorithms available to solve such problems were local in 

character in the sense that the starting point of the iter

ative process must be a good approximation for the zero that 

need to be found. The literature of the local theory is too 

vast to be reported here, but for details, the reader should 

consult the authoritative works by Householder [26], 
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Ostrowski [40], Traub [46], and the extensive bibliogra-

phies therein. 

Global methods of solving nonlinear systems of equa-

tions seem to have been used for the first time by Lahaye 

[36] in 1934. He applied what is called the d~cretecontinuation 

(imbedding, homotopy) approach to obtain global algorithms 

for solving such a problem. In fact, Lahaye first imple-

mented this approach to find the zeros of a single equation 

where the Newton method was used to move along the continua-

tion curve. Lahaye further applied this approach in 1948 to 

obtain zeros of nonalgebraic systems of equations. 

In 1951, this continuation approach was considered in 

an abstract setting by Ficken [16]. In 1971, Avila [6] used 

.this approach to globalize the Newton method. For the first 

time, Avila studied the feasibility of this approach. For 

example, when the Newton method is used in the continuation 

process, the process is called feasible if there exists a 

partition {tk}n of the interval I = [0,1] and finite 
k=l 

integers {jk}, .k = 1, .•• ,n such that the Newton method takes 

the form 

xi+l = 
k 

fork = 1, ... ,n, i = o, ... ,jk, and x 0 = x(O), where 

H: IXRn -+ Rn in a homotopy map, and DxH is the Jacobian 

matrix of H with respect to x. If DxH and its inverse 
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[DxHJ-l exist and the latter is bounded in the neighborhood , 

of the curve x: I-+ Rn with H(t, x(x)) = o, then the above 

form of the Newton method converges to a zero of f. 

In 1977, Wacker, Zarzer, and Zulehner [52] considered 

this continuation approach to globalize both the Newton and 

the modified Newton methods, that is, the iterative process 

of the form 

n = 0,1,2, .... 

Another technique of continuation, called anafytic 

(continuous) continuation, was initiated in 1953 by Davidenko 

[10] (for more details see 1.3). In a series of papers, 

Davidenko used this approach to deal with several problems 

in numerical analysis such as the eigenvalue problem, the 

evaluation of determinants, and the inversion of matrices. 

An English translation of Davidenko's complete work can be 

found in Rall [45]. Tne Davidenko's approach attracted many 

researchers such as Yokavlev [57], Davis [11], Meyer [40], 

and Wasserstrom [53], to mention a few. 

The last twenty years have witnessed a constant stream 

of research in the general area of obtaining a global algo

rithm for solving nonlinear systems of equations. To be 

more specific, in 1967 a new line of development was opened 

by Scarf's algorithm [47], which computes fixed points of 

continuous maps. This approach uses a simplicial decomposi

tion of the. domain of the given map and a systematic search 
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technique based on Sperner's Lemma to find a simplex of the 

decomposition which contains or is near to a fixed point or 

a zero of a map. For example, a path which leads to a fixed 

point or a zero of the given nonlinear map is linearly 

approximated over those simplices of the decomposition which 

it crosses. 

Since the introduction of Scarf's algorithm, a host of 

other algorithms have been published by many researchers: 

Allgower, Keller, and Reeves [2], Kuhn [32, .33], Eaves [13], 

Eaves and Saigal [14], Merrill [39], and Lann [35], to list 

a few. 

The simplicial approach does not assume the smoothness 

of the map f and therefore does not depend on evaluating the 

Jacobian matrices, except possibly in the.final stages, in 

order to take advantage of the smoothness if it is present. 

In the mid-1970's, another approach, which uses dif

ferential topology techniques to obtain global algorithms, 

was introduced independently by Kellogg, Li, and Yorke [31], 

and Smale [49]. This new development and Davidenko's 

approach share one common feature; that is, both approaches 

translate the problem of solving nonlinear systems of 

equations into a problem of solving an initial value problem 

(IVP) . 

This approach also attracted many researchers: Alexan

der [1], Allgower and Georg [3], Chow, Mallet-Paret, and 
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Yorke [8], Garcia and Gould [17, 18], Garcia and Zangwill 

[19], Keller [34], Rheinboldt [46], and Watson [54], to men

tion a few. A survey of the development of this approach is 

given by Allgower [4]. 

Additional details and an extensive bibliography con

cerning the development of both the simplicial and continua

tion methods can be found in the two review articles by 

Allgower and Georg [3,5]. 

1.3 The Scope of the Study 

As an introduction to this study, it will be advanta

geous to introduce the bas~c ideas behind the continuation 

methods and how they evolved. To begin, the following 

definition is stated: 

Definition 1.1 

Let I be the closed interval [0,1]. A map H: RnXI--+ 

Rn is a homotopy between the functions f, g Rn --+ Rn, if 

His continuous with H(x,O) = g(x), H(x,1) = f(x) for all 

x E Rn. 

For ·the purpose of solving the nonlinear system (1.1), 

the system g(x) = O will be assumed to have either a solu

tion that is known explicitly or can be found by a standard 

method. 

Let f be a c1 map and assume Df (x) is nonsingular for 

all x E Rn. Assume, also, that li[Df(x)J-1
11 ~ [3, f3 > o, then 

there exists a continuous map x : I --+ Rn such that 



H(x(t) ,t) = o, for all t E I. (1.8) 

Thus, x(t) is a curve in Rn with one end point at x(O) 

= x0 and the other end point x(l) = x*, the solution of 

(1.1) (Ortega and Rheinboldt (42]). 

To find x*, the interval I is divided into, say, n + 1 

points 

Then consider the family of problems 

11 

i = 0,1,2,3, ••• ,n. (1.9) 

Using a local iterative method, such as Newton's, each 

problem in (1.9) may be solved with starting point at xi-l 

and iterating until the solution xi of the ith problem is 

obtained. If hi = ti+l - ti is small enough, then xi-l will 

be a good starting approximation to xi and the local Newton 

method is expected to succeed in finding xi. 

This approach runs into difficulties if the Jacobian 

matrix DxH (x,t) becomes singular at any point on the curve 

x(t). Also, the precise spacing of the ti for efficiency 

and stability is a major difficulty. Much of the work in 

this direction seems to have been towards obtaining an opti-

mal step size hi = ti - ti-l' so that computational effort 

in solving (1.9) is minimal. Additional details about this 

approach can be found in Ortega and Rheinboldt [42]. Also, 

Wacker [51] reviewed this approach and its development. 
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In the continuous homotopy, too, one works under condi-, 

tions such as "x(t) is continuously differentiable on [O,l]" 

and "the homotopy H has continuous partial derivatives" 

[42]. 

Differentiating (1.8) with respect to t, one gets the 

Davidenko's differential equation 

DxH(x(t),t) dx/dt + DtH(x(t),t) = o 

Thus the following IVP is obtained 

H(x(O) ,oy = o, x(O) = x 0 . ( 1.10) 

By means of numerical integration of the IVP in (1.10) an 

approximation to the homotopy path x(t) is obtained, and 

hence for x(l) = x*. 

A great deal of research has been done in this direc-

tion, especially in the case when the matrix DxH becomes 

singular during the integration process. After all, this 

contingency must be dealt with successfully if, as assumed, 

the initial point x 0 is far from x*. Additional details 

about this approach can be found in Rall [45], Ortega and 

Rheinholdt [42], Wacker [51], and the more recent work by 

Georg [20]. 

As pointed out earlier, the 1970's witnessed the emer-

gence of a powerful theory which uses differential topology 

techniques to obtain global algorithms for solving (1.1). 
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To be more specific, in 1976, Kellogg et al. [31] gave 

a constructive proof of Brouwer's fixed point theorem using 

the nonretraction principle; that is, there is no continuous 

map from the closure of a bounded open set into its boundary 

which acts as the identity function on the boundary of this 

set. As a consequence of this constructive proof, they also 

gave an algorithm based on following a solution curve of an 

IVP to a fixed point of the map f. 

Smale [49], in the same year, introduced the so-called 

global Newton method along with existence theorems to zeros 

of certain maps. Although Smale's theorems asserts the 

existence of a solution curve of the global Newton equation, 

no algorithm was given on how to follow this curve. Smale's 

sketched proofs rested on Sard's Theorem and the utilization 

of a projection map of a compact set onto sn-l. 

Further development took place toward the end of the 

1970's. For example, Chow et al. [8], in 1978, used the 

Parametrized Sard's Theorem to establish homotopy methods 

that find fixed points of maps with "Probability 1"; that is 

to say, if for almost every u E U ~ Rn in the n-dimensional 

Lebesgue measure sense, there exists a point "Pu" and a 

solution curve, C(Pu), of an IVP that starts at Pu and 

terminates at a fixed point of the map f. 

Moreover, Watson [54,55,56], in a series of articles 

between 1978 and 1980, used the Chow et al. [8] algorithm to 

find fixed points of nonlinear maps, to solve the nonlinear 

complementarity problem, that is, finding a vector u E Rn 
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such that u > o, f (u) > o, and uf(u) = o, where the inequal-, 

ity sign to be understood as componentwise of both u and 

f (u); to solve the two-point boundary value problem; and to 

deal with many engineering problems. Also, in 1978, Keller 

[34] extended the work of Smale. 

Since the publication of Hirsch and Smale's [29] long 

paper in 1979, very little response has appeared in the lit

erature. In that paper Hirsch and Smale [29] gave several 

existence and convergence theorems and algorithms. 

One main objective of this study, on the one hand, .is 

to fill out the missing details in Hirsch and Smale's proof 

of an existence and convergence theorem of zeros of certain 

nonlinear maps. In 2.1, the definition of Hirsch and 

Smale's vector field that defines the IVP (1.7) is recon-

structed. In 2.2, an alternative definition to this vector 

field by an explicit formula is given. To obtain this for-

mula, it is necessary to characterize the regular points in 

the. domain of the projection map g (x) , which is related to the 

map f by the equation: 

g(x) 
f (x) 

= lif ex> II • 

Another main objective of this study, on the one hand, 

is to report in Chapter III on existence theory of fixed 

points or zeros of maps which based on the new homotopy 

(Chow et al. [8]) approach. On the other hand, Chapter V 

describes algorithms that are based on this approach. In 



Chapter IV, an extension to Smale's existence theorem [49] 

is given, and the relation between the global Newton and 

global homotopy methods is studied. 

15 

The final aim of this study is to report in Chapter V 

on some existing algorithms, and modify or formulate others. 

1.4 Background Materials 

During discussion of the historical development of the 

various glob~l methods, the differential topology approach 

was mentioned as one of the most successful techniques used 

to establish and to justify existence theorems and algo

rithms. 

Differential topology terminologies and results will be 

used throughout this study. Therefore, for ease of refer

ence, some definitions are recalled and several theorems are 

listed. 

This process begins with the basic definitions relating 

to smooth manifolds and maps between them. 

Definition 1.2 

Let U be an open subset of Rn. The map f : U --> Rn is 

said to be a C'map (or of class er) if f is r-times 

continuously differentiable. In general, let X, Y be 

arbitrary subsets of Rn, Rm respectively; a map f : X.--> Y 

is said to be a er map if for each x E X there exists a 

neighborhood of x, say U E Rn, and a er map F : U --> Rm such 

that F(u) = f(u) for all u E u n x. 
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Definition 1. 3 

A map f : X --+- Y between two subsets of Euclidian 

spaces is called a homeomorph~m if f is bijective and both f 

and its inverse, f-1 , are continuous. 

Next, a topological manifold is defined: 

Definition 1. 4 

Let M be a Hausdorff space, then M is called an n-dimen

sional topological manifold if M is locally homeomorphic to Rn. 

More precisely, there exists an open cover, U = {Ui}i E A 

of M such that for each i E A there is a homeomorphism 'l'i 

of Ui onto an open subset. of Rn. The pair ('l'i,ui) is 

called a charl (or a coordinate system) and the collection 'I' 
., 

= {('I' i, ui) } i E A is called an atlas. 

('I' j , uj ) are said to have a er overlap 

u · ) --+- 'I'· (u · n u · ) is of class er. J J 1 J 

Two charts ('l'i,ui) and 

1• f ~Tr , ~Tr , -1 ~Tr ( 
'i" J 'i" 1 : 'j' i ui n 

An atlas 'I' on M is called er if every pair of its 

charts has er overlap. A maximal er atlas ¢ on a topologi

cal manifold M is a er differentiable structure. The pair 

(M,¢) is called a manifold of class er (or M~ a smooth manifold). 

Note that in this study it is not necessary to deal 

with the full generality of abstract manifolds, but rather 

with ones that are embedded in Euclidian spaces. 
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Definition 1. 5 

M is an (embedded) er submanifold ~f RK if and only if 

M ~ RK, and for all x E M and for all charts ¢ of M defined 

at x there exists an open subset U ~ RK, such that x E u, U 

~ domain(¢) and such that ¢ extends to a er map from U to 

Rm; i.e., ¢is a er in the sense of Definition 1.2. 

Below, smooth maps and manifolds are frequently refered 

to. This is meant to be a short-hand expression for the 

standard condition of r-fold differentiability, or, mem

bership in class er. 

From this point on the reader should note that all man

ifolds under discussion may be assumed to be embedded in 

Euclidian space. This is important in the next definition, 

as it now may be assumed that all charts automatically 

extend to smooth maps on all of RK. 

Definition 1. 6 

If A, M are er manifolds and A ~ M, then A is called a 

submanifold of M. 

Next, the notion of derivative of a er map is defined 

over a smooth manifold. For this purpose, a few more defi

nitions are recalled. 

Definition 1. 7 

A map f : M --+ N between two er manifolds is called a 

er diffeomorph~m if f is bijective and both f and its 
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inverse, f-1 , are of class er. When such a map exists it is 

said that M and N are dif f eomorphic and this is denoted 

by M ~ N. 

Remark: As the concern here is not with general 

abstract manifolds, there appears to be no need for develop-

ing the full machinery of abstract tangent spaces and of 

derivatives of maps between manifolds. Therefore, in the 

following, when reference is made to tangent vectors and 

derivatives, it is assumed that these are defined by methods 

of advanced calculus. Thus; only the more pertinent defini-

tions and results are formally stated below. 

Definition 1.8 

Let U C Rn, V C RK be open subsets, and M C RK be a 

smooth m-manifold. Let f : U --+ V n M be a smooth map, 

The derivative of f and x, denoted by Df (x) or Dxf, is the 

linear operator Df(x) : Rn --+ RK, defined by the usual con-

dition that 

II f (x+h) -f (x) -Df (x) hli = o ( IJhll) . 

Using standard coordinates, Df (x) may be represented by the 

usual Jacobian matrix 

Df (x) J i=l, ... I K 
j=l, ... ,n 
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The tangent space of M at x, denoted by TxM, which may , 

be constructed by methods of ordinary calculus, can be given 

by means of the equation 

where now cp-l is a chart of M at x. 

Definition 1.9 

(a) Given a smooth map f : U ~ Rn --+ M ~ RK, let x E U 

with y = f (x) E M. Then f is called submersive at x, provided 

that the derivative Df (x) : Rn --+ TyM C RK is a surjective 

map. If the map f is submersive at each x E u, then f is 

said to be a submersion. 

(b) Given y E RK, if f is submersive at every x such 

that y = f (x) then y is called a regular value of f. Otherwise, 

y is a critical value of f . 

(c) If y = f (x) is a regular value of f then x is said 

to be a regular point of f. Otherwise x is called a critical point 

of f. 

Several results that will be used in later chapters are 

listed below. Proofs which are readily available in many 

standard text books, such as Guillemin and Pollack [23], 

Hirsch [28], and Milnor [41], are omitted. 

Local Submersion Theorem 1.10 

Let M and N be two manifolds and m = dim(M) ~ dim(N) = 

n. Suppose f : M --+ N is a map that is submersive at 



x EM and y = f(x). Then there exists local charts ('l',U) 

and (~,V) around x and y respectively such that for 

the map h defined by h = ~f'l'-l and h(x1 ,x2 ,x3 , ..• ,xm) 

= (x1 ,x2 ,x3 , ••• ,xn>· 

That is, h is the canonical projection near x. 

20 

For the proof of this standard result of differential 

topology, the reader may wish to consult the textbook liter

ature (e.g., Guillemin and Pollack [23], p. 20). 

Preimage Theorem 1.11 

Let M and N be two manifolds with dim(M) ~ dim(N) . 

suppose y is a regular value of the er map f : M ~ N, then 

the preimage f-1 (y) is a er submanifold of M, and 

dim(f-1 (y)) = dim(M) - dim(N). 

Proof: See Hirsch [28], page 22. 

As a consequence of the Preimage Theorem, the following 

corollary is obtained: 

Corollary 1.12 

Let f : M ~ N be a er map, y = f (x) E N be a regular 

value off, and let z = f- 1 (y), then the kernel of Df(x), 

denoted by ker(Df(x)), where Df(x) : TxM ~ TyN at any x E 

Z, is precisely the tangent space to Z, TxZ. 
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The concept of transversality is of central importance for . , 

differential topology and in particular in this study. A 

definition of this concept follows. 

Definition 1.13 CTransversality) 

Let M, N be two manifolds, and L is a submanifold of N. 

Then the er map f : M -+ N is said to be transversal to L, 

denoted in symbols by f m L, if the following condition 

holds: 

(1.11) 

whenever y = f (x) E L, x E M. This means that the tangent 

space to N at y is generated by the tangent space to L at y 

and the image under Df (x) of the tangent space to M at x. 

Note that a direct sum in (1.11) is not required .. 

Remark: Observe, in case L = {y}, Lis a-dimensional, 

then f is submersive at all x with f (x) = y iff f m L. 

Definition 1.14 

If L is a submanifold of .N, then the codimension of L, 

denoted by codim(L), is given by the equation Codim(L) 

= dim(N) - dim(L). 

The next result relates the concepts in the previous 

two definitions. 



Transversality Theorem 1.15 

Let f : M --+ N be a er map, and L be a submanifold 

of N. If f ~ L, then f- 1 (L) is a er submanifold of M. 

Furthermore, codim(f-1 (L)) = codim(L). 

Proof: See Hirsch [28], page 22. 

Remark: Observe, in case L = {y}, L is a-dimensional, 

then the Transversality Theorem reduces to the Preimage 

Theorem. 

The next three theorems play a central part in estab-

1 ishing existence theorems in this study. 

Classification Theorem of One-dimensional 

Manifold 1.16 

Any c1 , connected one-dimensional manifold is diffeo

morphic to s 1 , the unit circle, or to some interval of the 

real numbers. 

Proof: See Milnor [41], page 55. 
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Remark: It should be noted here that the interval men

tioned in the theorem can be bounded, unbounded, closed, 

half-closed, or open. 



Sard's Theorem 1.17 

Let U C Rn be an open subset, f : u --+ Rm be a er map 

with r > max(O, n-m). Let c = {x EU: rank(Df(x)) < m}. 

Then f (C) has m-dimensional Lebesgue measure zero. 

Proof: See Milnor [41], page 16. 

Parametrized Sard's Theorem (Parametric 

Transversality Theorem) 1.18 
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Let V, U be open subsets of Rq and Rm respectively, and 

H: VXU--+ RP be a er map with r > max(O,m-p). Define the map 

Ha Rm--+ RP by Ha(x) = ff(a,x) for all a EV, x EU. If O 

is a regular value of H, then for almost every a E V, in 

the Lebesque measure sense, O is a regular value of Ha. 

Proof: See Hirsch [28], page 79. 

Finally, this section is concluded by stating two 

existence theorems from the theory of ordinary differential 

equations. 

Theorem 1.19 

Let U be an open subset of a finite dimensional normed 

linear space E, f : u --+ E a c1 map, and x 0 E u. There is 

a maximal open interval (a., f3) , a. < x 0 < f3 x : (a., f3 ). --+ U 

of the IVP 
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dx 
dt = f (x) with x(O) = x 0 . ( 1.12) 

Proof: See Hirsch and Smale [27], page 163. 

Theorem 1.20 

Let u, E and f as in the previous theorem. Let y(t) be 

a solution of the differential equation 

dx 
dt 

= f (x) 

on the maximal open interval J = (a,~) C R with ~ < oo. 

Then given any compact set K C u, there is some t E (a,~) 

such that y(t) ~ K. 

Proof: See Hirsch and Smale [27], page 172. 

Next, the notion of an w-limit point is defined. 

Definition 1. 21 

Let x(t) be a solution of the IVP (1.12), and YE Rn. 

If there exists a sequence {tn} of real numbers with lim tn 
n-oo 

= ~' a < tn < ~ such that lim x(tn) = y, then y is called an 
n-oo 

w-limit point of x(t) . 



CHAPTER II 

CONVERGENCE OF THE CONTINUOUS 

NEWTON METHOD 

In this chapter, following Hirsch and Smale [29], a 

proof of a convergence theorem is given. This theorem 

states that under certain conditions the paths defined by 

the continuous Newton method converge to a zero of the given 

map from almost all initial points. 

In 2.1, a definition of a certain unit vector field 

~(x) is given. This vector field, considered the equiva-

lent of a differential equation· by means of the equation 

dx 
dt = ~(x), (*) 

has integral curves which are the paths of the continuous 

Newton method. In Chapter V, numerical methods relating to 

the practical implementation of this method are discussed. 

Also, in 2.1, the projection map 

g = f/ilfll, 

which maps Rn to sn-l and is associated with the nonlinear 

map f whose zeros are being sought to compute is introduced. 
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A characterization of the set Reg(g) of regular points of 

the map g is given. It will turn out that Reg(f) may be a 

proper subset of Reg(g). 

This is, incidentally, one major advantage of the 

continuous Newton method of the present chapter over 

the ordinary (classical, discrete) local Newton method 

defined in 1.1, equation (1.2), which breaks down when 

det(Df(x)) = o. 
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In 2.2, another definition of the vector field ~(x) 

which was given by Smale (49], is stated. This second defi

nition, which is in terms of an explicit formula, has the 

advantage of being easier_ to understand. 

The main emphasis of this chapter is on the convergence 

theorem for the continuous Newton method which was given by 

Smale (49] in 1976 and in fuller form by Hirsch and Smale 

(29] in their 1979 paper. Under certain conditions the 

solutions of the differential equation (*) converge to a 

zero of the map f for almost all initial points. This 

result represents a major milestone of the area of mathemat

ics to which this thesis is devoted. curiously, the paper 

has so far remained a monolith that has little relation to 

other work in the area. This phenomenon may be due in part 

to the fact that other ideas have evolved (8, 9, 34] which 

have certain advantages over those presented in this chap

ter. These ideas are discussed in succeeding parts of this 

thesis. 



The convergence a.e. of the continuous Newton method 

under the conditions stated in 2.3 implies also the 

existence of zeros of the map f. Thus, a convergence theorem 

for a numerical method perhaps not unexpectedly also yields 

an existence theorem for the solution of an equation. 

2.1 Hirsch and Smale's Definition of 

the Vector Field $(x) 

Hirsch and Smale's definition of a vector field, given 

in [29], was rather brief and not defined by an explicit 

formula. The importance of this vector field is its essen

tial role of defining an IVP whose solution curve is fol

lowed to a zero of the map f. 
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In this section a detailed construction of Hirsch and 

Smale's definition of this vector is given. First, however, 

it is necessary to lay down some notations and establish a 

few results. 

Let f :_Rn -1- Rn be a er map, and assume that Rn is 

equipped with the usual 2-norm and dot product. Also, let 

us denote the determinant of the Jacobian matrix Df (x) by 

J (x) or by det (Df (x)) and sn-l = {x E Rn : llxll = 1}, the 

unit sphere in Rn. 

Let the set of regular points of f be denoted by 

Reg(f) = {x E Rn : rank(Df(x)) = n}, 

the set of critial points by 

Crit(f) = Rn\Reg(f). 
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(Cf. Definitionl.9). The set of zeros off is E = f- 1 (0). 

Next, associate with f the projection map 

Which is defined by 

g(x) 
f (x) = II f cx>ll . (2.1) 

Using the same notation as above, let Reg(g) be the set of 

regular points of g. It is well to remember that according 

to Definition 1.9, if x E Reg(g) and y = g(x) then 

rank(Dg(z)) = n-1 for every z such that g(z) = y. 

Next, let 

Crit(g) = (Rn\E)\Reg(g). 

The set Reg(g) may be viewed in a different manner as 

the proof of the following result shows: 

Lemma 2.1 

Let the map g be defined as in (2.1), then the set 

Reg(g) is open. 

Proof: 

Let x E Reg(g), then rank(Dg(x)) = n-1. This implies 

that there exists a subscript j 0 , say, such that 



[ 
agi J 'I', (X) = det - -=f:. 0. 

Jo axj j * jo 

Because det(.) is a continuous function, then 

n 
Reg(g) = u {X E·Rn 

jo=1 
'I'. (x) * O} is open. 
Jo 

29 

If x E Reg(g), what kind of a geometric configuration 

is obtained for the preimage g-1 (g(x)) ? The answer to this 

question is given by the next result. 

Proposition 2.2 

Let the map g be defined as in (2.1), x E Reg(g), and 

define the set A(x) by 

A(x) = g-1 (g(x)). 

Then A(x) is a er one-dimensional submanifold closed in 

Reg(g). Furthermore, let C(x) denote the connected compo

nent through x in A(x), then C(x) is a er one-dimensional 

manifold diffeomorphic to s 1 or R. 

Proof: 

Since x E Reg(g), that is, g(x) is a regular value of 

g, then, by the Preimage Theorem 1 .. 11, the set A(x) 

= g-1 (g(x)) is a er submanifold of Reg(g). With dim(A(x)) 

= dim(Rn\E). - dim(sn-l) = 1. Also, becauses {g(x)} is 

closed in sn-l, then A(x) is closed in Reg(g). 
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Now, since C(x} is a connected component in A(x}, by 

the Classification Theorem of One-dimensional Manifolds 1.16 

C(x} is diffeomorphic to s 1 or to an interval. 

But, C(x} is a manifold (without boundary}, so C(x} 

cannot be diffeomorphic either to a closed interval or to a 

half-closed interval. Hence, either C(x} ~ s1 or C(x} ~ R. 

Next, a proof is given for the following useful propo-

sition, which shows that Dg is parallel to the orthogonal 

projection of Df perpendicular to f or g. The reader may 

recall that the matrix of the orthogonal projection P onto 

the span of the unit column-vector u can be written as 

P = uut. The orthogonal projection perpendicular to u is 

then I - uut. This occurs below with u = g(x}. 

Proposition 2.3 

If the map g is defined as in (2.1}, then 

Dg(x} = 1 
{I - g(x}g(x}t} Df(x). l\f ex> 11 

( 2. 2) 

In particular, range(Dg(x}} ~ [g(x) ]_L, where "J_" indicates 

the orthogonal complement. 

Proof: 

Let g (x} II f (x} II - f (x) = O. Differentiate this equa-

tion with respect to x to get 

Dg(x)llf(x)ll + g(x)Dxllf(x)ll - Df(x) = O. (2.3) 



Since !lf(x)ll = v' f 2 (x) + f 2 (x) + ..• + f 2 (x) 
1 2 n I then 

Thus, 

= 1 
f (x) tof (x). 

llf ex> 11 
( 2. 4) 

Substitute (2.4) in (2.3) and collect terms to obtain 

Dg(x) = Df(x)-g(x)f(x)tDf(x)/ilf(x)ll 
llf ex> 11 

= llf~x) II {(I - g(x)g(x) t}Df(x). 

The second part follows from noting that range(Dg(x)) ~ 

range(I - g(x)g(x)t). But, ker(I - g(x)g(x)t) = [g(x)]. 

Hence, range(Dg(x)) ~ [g(x)]~. 

One should note that if x E Reg(g), then,ker(Dg(x)) is 

one-dimensional. By Corollary 1.12 of the Preimage Theorem 

1.11 the tangent line to C(x) at x is parallel to the. 

linear space ker(Dg(x)). 

Now the unit vector field ~(x) may be defined. For 

each x E Reg(g) let ~(x) E ker(Dg(x)) with ll~(x)ll = 1 so 
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that ~(x) is tangent to C(x). To define ~(x), since x E 

Reg(g), the rank(Dg(x)) = n-1, an ordered basis, say, 

{e1 , e 2 , ..• , en_1 } can be picked for the space 

~ 
U = [ker(Dg(x))] =the row space of Dg(x), 

in such a way that the ordered basis 

B = {g(x), Dg(x)e1 , Dg(x)e2 , ••• , Dg(x)en_1 } 

defines the positive orientation of Rn; that is, the deter-

minant of the matrix of their coordinates is positive. 

In particular, Dg(x)e1 , Dg(x)e2 , .•• ,Dg(x)en-l are 

linearly independent. Namely, if 

n-1 
LA· Dg(x)e1· = o . 1 

l=l 

for some scalars Ai, then 

n-1 
L Ai ei E ker(Dg(x)) n [ker(Dg(x))]~ = {O}. So, 

i=l 

n-1 
L 

i=l 
A· e· = 1 1 O, and Ai = o, as claimed. 

Also, claim B is linearly independent, for otherwise 

n-1 
g(x) = L Ai Dg(x)ei E [g(x)]~, 

i=l 
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from Proposition 2.2, a contradiction, as l!g(x)ll = 1. 

Therefore, B is an ordered basis for Rn. 

Next, choose a sign on ~(x) such that ~(x) E 

ker(Dg(x)) and such that the ordered basis {~(x), e 1 , 
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e 2 , ••• ,en_1 } defines the negative orientation of Rn. By the 

Implicit Function Theorem: locally in Reg(g), a nonvanishing 

unit tangent vector 0(x) E ker(Dg(x) can be found. This is 

possible because ker(Dg(x)) is one-dimensional. Also, if 

f is a er map, then 0(x) is a er-l. Thus, 

~(x) =.± 0(x) 

Now give the curves C(x) an orientation by ~(x). 

Lemma 2.4 

Let f be a er map and for x E Reg(g) let ~(x) be 

defined as above, then 

Df(x)~(x) = A(x)f(x). 

Furthermore, A(X) and J(x) have opposite signs, and 

A(X) = 0 iff J(x) = 0. 

Proof: 

By definition 

~(x) E ker(Dg(x)) = ker[(I - g(x)g(x)t)Df(x)]. 

Then Df(x)~(x) E ker(I - g(x)g(x}t) = range(g(x)g(x)t). 

But range(g(x)g(x)t) = A(X)f(x), because 

(2.5) 
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f (x) 
= 

~II f-<-x>~ll 

f(x)t 
!if(x)ll (A.(x)f(x)) 

= A.(x)f(x). 

Hence, the claim. 
I 

To show A.(x) and J(x) have opposite signs, and A.(x) = O 

iff J(x) = o, consider the following two cases. 

Case I: J(x) = o 

By (2.5) A.(x) = O iff ~(x) E ker(Df(x)), but this is 

true iff J(x) = o. 

Case II: J(x) * o 

Let A be the coordinate matrix of the ordered basis 

B' = {~(x), e 1 , e 2 , .•• ,en_1 }. When Df(x) is applied to A 

and using (2.5), then 

Df(x)A = (A.(x)f(x), Df(x)e1 , Df(x)e2 , .•• ,Df(x)en-i>. ( 2. 6) 

The definition of ~(x) shows that det(A) < o, but 

det(Df(x)A) = det(Df(x))det(A). 

Therefore, an orientation reversal occurs iff J(x) < o. 

Now apply 

lif(~)ll (I - g(x)g(x)t) to Df(x)ei, to get 

(2.7) 



Claim that going from (2.6) to (2.7) does not change 

orientation. To show this let e' = Df(x)ei·- Because Df(x) 

is invertable, then ei = [Df(x)]-1e•. Consequently 

Dg(x)ei = e ! . 
1 

This is because (I - g(x)g(x)t) is a projection map and e! 
1 

E range(! - g(x)g(x)t), otherwise,.e' E ker(I - g(x)g(x)t), 
1 

but this would contradict e'. •s being linearly independent, 
1 

hence the claim. 

2.2 Definition to the Vector Field ~(x) by 

Means of the Classical Adjoint 
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In this section a second definition of the vector field 

~(x) is given. This definition, which was used by Smale in 

his initial paper [49], has the advantage that it is given 

by an explicit formula, and hence is easier to understand 

than the more abstract definition given by Hirsch and Smale 

[29]. Theorem 2.8 shows that the vector field defined above 

is also replaced by the elementary formula 

~(x) = - ~(x)adj(Df(x))f(x), 

where ~(x) is a certain scalar. Also, this explicit formula 

for ~(x) certainly makes it easier to think about practical 

algorithms when implementing the convergence theorem of this 

chapter. It is shown in this section that the vector field 

~(x), given by the above formula, shares all the basic 



properties required for the proof in 2.3. In most cases it 

is easy to verify that the two vector fields are indeed 

the same. 

For f(x) * o let L = {a.f(x) : x E Rn, a> O}, that 

is, L is a ray in Rn. Recall that in the proof of Lemma 

2.4, it was shown that L is the range of the projection map 

given by G(x) = g(x)g(x)t. But, range(~(x)) = ker(I -

G(x)), and ker(G(x)) =range(! - G(x)). Thus, the 

orthogonal complement of L, is L~ = ker(G(x)) =range(! -

G(x)). Hence, a translation of L~ is the tangent space to 

sn-l at g(x), as shown in Figure 1. 

L J_ 
L 

Figure 1. A Tangent Space to sn-l at g(x) 
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The next result characterizes the regular points of the 

map g(x). 

Theorem 2.5 

Let the map g be defined as in (2.1), then x E Reg(g) 

iff one· of the following two conditions is satisfied: 

(i) rank(Df(x)) = n, or 

(ii) rank(Df(x)) = n-1, and range(Df(x)) n L = {O}. 

Proof: 

Necessity: Let x E Reg(g). Recall from linear algebra if 

A and B are matrices such-that their product is defined, 

then rank(AB) ~ min(rank(A), rank(B)). By proposition 2.3 

Dg(x) = 1 
[(I - g(x)g(x)t)DF(x)], 

llf ex> 11 

then by the regularity of g, rank(Dg(x)) = n-1. Hence 

rank(I - g(x)g(x)t) ~ n-1 and rank(Df(x)) > n-1. 

Case I: Suppose the rank of Df (x) = n. Then condition 

(i) holds. 

Case II: Suppose the rank(Df(x)) = n-1. Claim that 

condition (ii) holds, i.e., range(Df(x)) n L = {O}. If 

not, since Lis one dimensional, then L ~ range(Df(x)). 

This implies g(x) E range(Df(x)), and hence there exists a 

nonzero u 1 E Rn such that Df(x)u1 = g(x). Also, since 



rank(Df(x)) = n-1, there exists u 2 E ker(Df(x)). Then both 

u 1 , u 2 E ker(Dg~x)). 

Next, note that u 1 and u 2 are linearly independent, as 

Df (x)u1 = g(x) * o, Df (x)u2 = O by assumption, while both 

u 1 and u 2 are nonzero. 

Sufficiency: Consider the following two cases: 

Case I: Condition (i) holds. 

Suppose condition (i) holds, that is, for x E Rn, 

rank(Df(x)) = n. To compute the kernel of Dg(x), let 

u E ker(Dg(x)). Then by Proposition 2.2, 

.....----
1
---,,- (I g(x)g(x)t)Df(x)u = o. ilf ex> 11 -

Let v = Df(x)u. Thus, 

v E ker(I - g(x)g(x)t) .= range(g(x)g(x)t) = L. 
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Hence, Df (x)u = tg(x) for t E R. Therefore, u = 

t[Df(x)]-1 (g(x)). This makes it evident that the nullity of 

Dg(x) = 1. Thus, x E Reg(g). 

Case II: Condition (ii) holds. 

Again, compute the kernal of Dg(x). Observe that from 

the preceeding computation, u E ker(Dg(x)) if and only if 

Df(x)u = tg(x), where t = g(x)tDf(x)u. Because condition 

(ii) holds, then t = o and Df (x)u = O follow necessarily. 

Hence the kernels of Df (x) and Dg(x) agree. 



Therefore, it follows that nullity(Dg(x)) = 1. Conse

quently, rank(Dg(x)) = n-1, and hence, in Case II, then 

x E Reg(g). 

The next two propositions are essential for the alter

native definition of the vector field ~(x). Let the clas

sical adjoint of an nxn matrix A be denoted by adj(A). 

Proposition 2.6 

Let A be an nxn matrix. If rank(A) = n-1, then 

rank(adj(A)) = 1. Moreover, range(adj(A)) = ker(A), and 

ker(adj(A)) = range(A). 

Proof: 
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By assumption rank(A) = n-1, then det(A) = O, and there 

exists a submatrix of A of order n-1 whose determinant is 

not zero. Thus, adj(A) * o. Now by a familiar equation 

Aadj(A) = O, (*) 

then range(adj(A)) ~ ker(A). 

But, nullity(A) = 1, then rank(adj(A)) = 1. Also, since 

adj(A)A = O, 

then range(A) ~ ker(adj(A)). 

But, rank(A) = n-1, and nullity(adj(A)) = n-1, then 

range(A) = ker(adj(A)). By(*) and (**) range(adj(A)) 

= ker(A). 

(**) 



Now, denote the span of the vector u by [u]. 

Proposition 2.7 

Let x E Reg(g), then the kerDg(x) = [adj(Df(x))f(x)]. 

Proof: 

Case I: rank(Df(x)) = n. 

In the proof of Theorem 2.5, it is shown that if 

rank(Df(x)) = n, then u E ker(Dg(x)) iff 

u = t[Df(x)]-1 (g(x). But, 

[Df(x)]-l = 1 
adj (Df (x)) , 

J (x) 

then u = 0(x)adj(Df(x))f(x), where 

ta. 
0(x) = J(x) !If (x) II' and because x E Reg(g), then ker(Dg(x)) 

is one-dimensiona·l. Therefor~, 

ker(Dg(x)) = [adj(Df(x))f(x)]. 

Case II: rank(Df(x)) = n-1. 

Suppose x E Reg(g), rank(Df(x)) = n-1, and Lg 

range(Df(x)); that is, g(x) ~ range(Df(x)). Then, o * u 

E ker(Dg(x)) iff u E ker(Df(x)). 

Let v = adj(Df(x))f(x), then by Proposition 2.6 since 

ker(Df(x)) = range(adj(Df(x))), v E ker(Df(x)). Thus, v E 
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ker(Dg(x)). But the nullity(Dg(x)) = 1, then vis parallel 

to ker(Dg(x)); that is, ker(Dg(x)) = [v]. Therefore, 

ker(Dg(x)) = [adj(Df(x))f(x)]. 

Note that v * o, because by assumption a.f(x) = g(x) 

~ range(Df(x)) = ker(adj(Df(x)). 

The vector field $(x) can now be defined. 

Theorem 2.8 

Let f be a er map and x E Reg(g). Define a unit 

vector $(x) by 
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$(x) = - ~(x)adj(Df(x))f(x), (2.8) 

where ~(x) 
1 

= 
II adj (Df (x) f (x) 11 • 

Then, $(x) has the following properties: 

(i) $(x) is of class cr-l, 

(ii) $(x) E ker(Dg(x)), and 

(iii) $(x) * o. 

Proof: 

The proof of (i) follows from noting that f is er, then 

Df(x) and consequently adj(Df(x) is of class cr-l. By (2.8) 

$(x) is of class cr-l. 

To proof (ii), note that Proposition 2.7 implies that 

any vector in ker(Dg(x)) is a constant multiple of the 



vector adj(Df(x))f(x). From the definition of ~(x) it is . 
immediate that ~(x) E ker(Dg(x)). 

For the proof of (iii), suppose that ~(x) = o, then 

adj(Df(x))f(x) = o, and Proposition 2.6 implies that 

f(x) E ker(adj(Df(x))) = range(Df(x)). But this 

contradicts Theorem 2.5 since x E Reg(g). 

Corollarv 2.9 

Let x E Reg(g), define A(X) : Rn---+ R by 

A(x) = -~(x)J(x), 

where ~(x) is defined as in (2.8), and J(x) is the Jacobian 

determinant. Then, 

Df(x)~(x) = A(X)f(x), 
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A(x), and J(x) are opposite in signs. Furthermore, A(x) = o 

iff J(x) = o. 

Proof: 

By the definition of ~(x) 

Df(x)~(x) = Df(x) [- ~(x)adj (Df(x)) f(x)] 

= -~ ( x) [ J ( x) f ( x) ] 

Thus, Df(x)~(x) = A(x)f(x). 
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Note that A(x)J(x) = -~(x)J2 (x). But by definition 

~(x) > O and hence, A(x)J(x) < o. Hence, A(x) and J(x) have 

opposite signs. Also, A(x) = O iff J(x) = o. 

2.3 The Hirsch and Smale's 

Convergence Theorem 

In this section detailed proofs of two convergence 

theorems due to Hirsch and Smale [29] are· given. The proofs 

of these theorems depend on following certain solution 

curves of an IVP. To drive this IVP, let x 0 E. Reg(g) and 

C(x0 ) be the component in A(x0 ) through x 0 • By Proposition 

2.2 let £(t) be a parametrization of C(x0 ), with £(t0 ) = x 0 . 

For any x E C(x0 ) 

g(x) = g(x0 ), 

differentiating the above equation with respect to t, 

Dg ( £ ( t) ) :~ = 0 • 

dx . . dx 
Hence, dt is in the ker(Dg(x)), but dt 

d£ 
= 

dt
0 Also, from 

Propositions 2.7 and 2.8, it was known that ker(Dg(x)) is 

generated by ~(x), therefore, provided that tis arc length 

:~ = ~(£(t)), with £(t0 ) = (2.9) 
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By Theorem 1.19 (the existence and uniqueness theorem of 

IVP) £(t) is the unique solution of (2.9). 

Interestingly enough, by means of numerical methods one 

approximates the solution curve £(t) and follows it until a 

zero of the map f is reached. This subject is pursued in 

some depth in Chapter V. 

Next, it is shown that the solution curves of the IVP 

in (2.9) cannot be periodic; that is, £(t) cannot be diffeo-

morphic to a circle. To show this, it is necessary to 

establish several lemmas. 

Lemma 2.10 

Let f be defined as before, then llf (x) II is nonincreas

ing along the curve C(x) in every open set where J(x) > O 

and llf(x)ll is strictly decreasing where J(x) > o. 

Proof: 
( 

Let h(t) = llf(£(t))ll, where x(t) = £(t). By differen-

tiating h(t) with respect to t: 

but, from (2. 4) DxJJf(x) II = 
1 

f (x) tDf (x) , then /If ex) 11 

dh 
dt 

1 f(x)t Df(x) d£ 
Jlf<x) 11 dt 



Again, from (2.9) and by Corollary 2.8 the following is 

obtained: 

:~ = l/f~x)I/ f(x)tDf(x) cj>(x) = llftx>ll f(x)tA.(x)f(x) 

= A. (x) II f (x) II· 

Since J(x) ~ O; then by Corollary 2.9 A.(x) 5 o. Thus, 

:~ 5 O; hence, ilf(x)ll is nonincreasing along C(x) in every 

neighborhood where J(x) ~ o. In a similar way it can be 

shown that in a neighborhood where J (x) > O, II f (x) II is 

strictly decreasing. 

In the remainder of this section, the following nota

tion will be used: Let O 5 a 5 b, define 

E [a, b] = { x E Rn : a 5 II f ( x) II 5 b} • 

If s > O, define 

E ( s) = { x E Rn : II f ( x) II = s } • 

E+(s) = {x E Rn: llf(x)ll ~ s}. 

Finally, define 

R+ = {XE R : x > O}. 

The next lemma gives conditions which guarantee that 

C (x) ?Ii" E (s). 
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Lemma 2.11 

Let U be an open subset of Reg(g) with E(s) C U, 

II fll : U ---+- R+. Suppose s is a regular value of II f (x) II, J (x) 

* o, then E(S) is a er closed submanifold in Reg(g), and 

C(x) i11 E(s). 

Proof: 
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Since s is a regular value of lif(x)ll, then by the 

Preimage Theorem 1.11 E(s) is a er submanifold of Reg(g) and 

dim(E(s)) = n-1. Moreover, E(s) is closed in Reg(g). 

Claim Tx(C(x)) + Tx(E(s)) =Rn. Recall that, 

Dxllf (x) II = ll f~x) II f (x) tDf (x); then s = llf(x) II for some 

x E Reg(g) is a regular value of lif(x)li if f(x)tDf(x) * O. 

By assumptions is a regular value of lif(x)ll, then by Corol

lary 2.8 Dxlif(x)li<f>Cx) = A.(x)lif(x)ll· Also, since J(x) * o, 

then Dxlif(x)li<f>Cx) * O. Thus, <f>(x) 9! ker(Dxlif(x)li) and 

consequently, [<f>(x)] + [f(x)tDf(x)]~ =Rn. 

This implies that C(x) i11 E(x). 

The following assumptions are made in the next four 

propositions: 

(i) lif(x0 )11 = s 0 > o, 

(I) (ii) J(x0) > o, 

(iii) J(x) ~ o in a neighborhood of E(s0 ). 



Recall that in Proposition (2.2), it was proven that 

C(x) ~ s1 or C(x) ~ R. 

In the next result, it is shown that C(x) cannot be diffeo

morphic to s 1 • 

Proposition 2.12 

Let f : Rn -+ Rn be a er map satisfying the conditions 

in I, then 

Proof: 

Let h(t) = llf(~(t))li· By assumption (iii) above since 

J(x) > o, and as result of Lem1na 2.10 h'(t) 5 o, where"'" 

dh 
stands for dt' for all ~(t) in a neighborhood of E(s0 ). 

Suppose C(x0 ) ~ s 1 ; then there exists t 0 and t 1 with 

t 0 * t 1 and h(t0 ) = s 0 = h(t1 ). By assumption (ii) 

J(x0 ) > o, then h' (t0 ) < o. Therefore, there exists 

8 > o and e > o such that h' (t) < o on [t0-8, t 0+8] with 

47 

( 2. 10) 

Suppose t 1 < t 0-8. Since h(t1 ) = s 0 > O by assumption, 

then h' (t) 5 o for all t in a neighborhood of t 1 (Figure 2). 



t 

Figure 2. The ·Function h(t) = l!f(x(t))il 

Let t 2 = Sup{t 

t 2 < t 0-3. 

in a Neighborhood of t 1 and t 2 

But, h(t2 ) = s 0 , then h'(t) < O in a neighborhood of 

t 2 ; that is, there exists an~ > O such that h(t) ~ s 0 for 

all t E [t2 , t2+~] (Figure 2). 

But, h(t0-3) ~ s + e; then by the Intermediate Value 

Theorem there exists t 3 E (t2 , t 0-3) such that h(t3 ) = s 0 . 

This contradicts the definition of t 2 . Hence, no such t 1 

exists. 
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In this case one defines t 4 = inf {t t 0+8 ~ t ~ ti, 

h(t) = s 0 }. By a similar argument to that of Case I, one 

arrives to another contradiction. Therefore, C(x0 ) cannot 

be diffeomorphic to si, and hence C(x0 ) ~ R. 

It remains to show that C(x0 ) n E(s0 ) = {x0 }. For 

this purpose, it is shown that x 0 disconnects C(x0 ). Let 

v = {x: llf(x)jj < s 0 }, and w = {x: llf(x)ll > s 0 }. It is 

clear that both v and W are open. 
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Next, it is shown that v n C(x0), w n C(x0 ) are 

nonempty. From (2.io) there exist ti E (t0-8,t0 ), and t 2 E 

(t0 ,t0+8) with ~(ti) =xi,- and ~(t2 ) = x 2 • Then llfCxi)ll > 

so, and jjf(x2 )11 < s 0 • Hence, the claim. But this says that 

C(x0 )\{x0 } = [C(x0 ) n VJ n [C(x0 ) n WJ. 

Therefore, x 0 disconnect C(x0). By Lemma 2.io since 

C(xo) m E(so), then C(xo) n E(so) = {Xo}· 

It is shown in Proposition 2.i2 that x disconnects 

C(x) into two components; each is diffeomorphic to R. Let 

us denote the closure of these two components by C+(x), and 

C_(x), where the vector field ~(x) points toward C+(x), the 

forward orbit (the solution curve ~(t)) associated with the 

vector field ~(x). 

The following corollary is a conquence of Lemma 2.io 

and Proposition 2.i2: 
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Corollary 2.13 

Let f be defined as in the proposition, then 

llf (y) II < s 0 for all y E C+(x0 ) \{x0 }. 

Proof: 

Note that from the hypothesis (i) above llf(x0 >11 = s 0 , 

J(x) ~ o in a neighborhood of E(s 0 ), then Lemma 2.10 implies 

II f (y) II is nonincreasing along C (x0 ) • Also, Proposition 2. 11 

.i_mplies that for y E C+(x0 ) \{x0 }, llf (y) II < s 0 . 

Let £ : R-+ C(x) be a parametrization of C(x), which 

is given by x = £(t) and £([0, oo)) = C+(x). If y is a 

w-limit point of C+(x), what is the connection between this 

w-limit point and the maps f and g ? The answer to this 

question is given by the next proposition. 

Proposition 2.14 

If y is an w-limit point of C+(x), then either y is a 

critical point of g or a zero of f. 

Proof: 

Let y be an w-limit point of C+(x), suppose f(y) * o, 

and y ~ Crit(g). This implies y E Reg(g). Claim that 

C(y) ~ A(x). Since y is an w-limit point of C+(x), there 

exists a sequence of real numbers {tm} and a diffeomrphism 

£ : [O, oo) -+ C+(x) such that lim £Ctm) = y, also, 
m-+oo 

£Ctm) = g(x). By the continuoutity of g, lim g(£(tm)) 
m-+oo 



= g(lim ~Ctm)) = g(y). Hence, g(y) = g(x) and y E A(x). 
m~oo 

Therefore, C(y) c A(x). 

Claim, C(x) = C(y). Since y E C(x), then by 

hypothesis C(x) U C(y) is connected. Suppose C(x) * C(y); 

then because C(x) and C(y) are components of A(x), there 

exists open sets u, Vs Rn such that C(x) s (U n A(x)), 

and C(y) s (V n A(x)). Moreover, ~Ctm) E C(y), this 

implies that ~(tm) E V. 

Now, U n V n A(x) = 0. But because lim ~(tm) = y, 
m~oo 

there exists and E > O and N > O such that ~(tm) E B(y,e) s 
U for all m ~ N. Therefore, ~(~) E U n V n A(x), but 

this is a contradiction. Hence, the claim. 

The next result is the last proposition required for 

the establishment of the convergence theorems of this 

chapter. 

Proposition 2.15 

In addition to the assumptions (i-iii) in (I) suppose 

O < q < s 0 and the following two more conditions hold: 

a) E[q,s 0 ] is compact, 

b) g(x0 ) is a regular value of ~E[q s ]" 
' 0 

Then C+(x0 ) n E(q) * 0. 

Proof: 

Let x E C+(x0 ), then by Corollary 2.13 \\f(x)I\ ~ s 0 . 

suppose C+(x0 ) n E(q) = 0, then q < l\f(x)I\ and C+(x0 ) \;;;; 
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E[q,s0 ]\E(q), by connectedness. By hypothesis E[q,s0 ] is 

compact; then C+(x0 ) has an w-limit point y E E[q, s 0 J and 

as consequence of Proposition 2.15 either f(y) = o or y E 

Cri t ( g) . But, II f ( y) II > q > O , and 1 im g ( ~ ( ~) ) = g ( 1 im 
m~oo m~oo 

~Ctm>> = g(y). Also, g(~(~)) = g(x0 ), then g(y) = g(x0 ). 
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Once more by hypothesis, since g(x0 ) is a regular value 

of glE [ q, so], then y ~ Crit (g) . This is a contradiction 

toy being an w-limit point of C+(x0 ). Hence, C+(x0 ) n 

E (q) =F 0. 

It should be noted here that the above proposition 

affirms the statement of Theorem 1.20 in that the solution 

curve of an IVP, which is defined on a maximal open inter-

val, leaves every compact subset of the domain. 

Recall also that if w1 is a subset of W and W\W1 has 

measure zero, then w1 is said to have full measure. 

Now the first convergence theorem of this chapter can 

be stated and proved. 

Theorem 2.16 (Hirsch and Smale's) 

Let f Rn ~ Rn and a > O satisfy the following condi-

tions: 

(i) f is a c2 and proper, 

(ii) J-1 (0) has measure zero, and 

(iii) J (x) ?. o if llxll ?. a. 

Let O < e < a. Then there exists a subset 

W(e) ~ E+ (a) 
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which is open and of full measure, such that if x 0 E W(e), 

then C (x0 ) ~ R and C+ (x) contains a point y with lif (y) 11 = e. 

Proof: 

For the sake of clarity, the proof will be divided into 

five major steps. To begin with, for each ~ > cr define 

B(E, ~) = g(Crit(g) n E[e, ~]) 

First, claim that B(e, ~) is compact in sn-l. Let 

A= {f(x) : e 5 llf(x>ll 5 ~};then f- 1 (A) = E[e, ~]. Since f 

is proper, and A is compact, then E[e, ~] is compact. 

Also, since crit(g) is closed, then Crit(g) n E[e, ~] is 

compact and hence, B(e, ~) is compact supset of sn-l by the 

continuity of g. As a consequence of Sard's Theorem 1.18 

B(e, ~) has measure zero. Therefore, sn-l\B(e, ~) has full 

measure and open in sn-1. 

Secondly, claim that Reg(g) has f~ll measure in 

Rn\E. By hypothesis J-1 (0) has measure zero, then Reg(f) 

= Rn\J-1 (0) has full measure in Rn. But Reg(f) C Reg(g), 

then [Reg(g)]c ~ [Reg(f)]c = J-1 (0). Thus, Reg(g) has full 

measure in Rn\E. 

Thirdly, claim g-1 (sn-l\B(e, ~)) has full measure in 

Rn\E. To show this, it suffices to check it at points in 

Reg(g). Let x E Reg(g), then Dg(x) is serjective and hence 

g is a submersive at x. Let y = g(x). By the Local Submer

sion Theorem 1.10 there exist local charts ('l',U) and (¢,V) 



around x and y respectively, such that TI = ~ g 'l'-1 is the 

standard projection, from Rn onto Rn-l. 
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It is shown that TI-l takes a full measurable subset of 

Rn-l into a full measurable subset of Rn. For this purpose, 

let DC Rn-l and J.Ln-l(D) = o, where J.Ln-l stands for 

Lebesgue measure in Rn-l. Also, let F = TI-1 (D), then 

F = DXR. 

If z E Rn-l, then TI-1 (z) = zXR and F can be rewritten 
00 00 

as F = DXR = DX[U (-k, k)] = u [DX(-k, k)]. Then, 

J.Ln(F) 

k=l k=l 

00 00 

= J.Ln(U DX(-k,- k)) ~ L J.Ln(DX(-k, k)) 
k=l k=l 

00 

< L J.Ln-l(D).µ 1 (-k, k) = o. 
k=l 

Thus TI-l carries subset of full measure in Rn-l into full 

measurable subsets of Rn. 

Fourthly, let M = {x E Rn : ex< llf(x)ll < ~}, and 

It should be shown that W(e, ~) is open in Rn and has 

full measure in E[ex, ~]. Note first that, M ~ E[ex, ~], 

also, since every point in sn-l\B(e, ~) is regular value of 

glE[e, ~]'then N =Mn g-1 csn-l\B(e, ~))has full measure in 

E[e, ~]. In particular, since e <ex, then W(e, ~) has a full 



measure in E[a, ~]. The openness of W(e, ~) follows from 

the fact that every set of the sets involved is open in Rn. 

Finally, define W(e) = n W(e, ~), 
~>a 

claim W(e) is open in Rn and has full measure in E+(a). 

Clearly, W(e) is open because each W(e, ~) is. Note 

also [W(e)]c = n wc(e, ~) C [W(e, ~)Jc, which has measure 

zero, for each e, a, and ~· Hence, the claim. 
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Let x 0 E W(e), then x 0 e W(e, ~) for some ~ with o < e < 

llf (x0 ) II < ~- Put lif (x0 ) II = s 0 , then by Proposition 2 .12 

C(x0 ) n E(e) * 0, this implies that there exists ye C+(x0 ) 

such that lif (y) 11 = e. 

As a consequence of the proof of the theorem and Propo-

sition 2.15, it may be concluded that C+(x0 ) has no w-limit 

points in E[e, a]. 

The above remark will be used to establish the main 

convergence theorem. Recall that a Baire subset of X C Rn is 

the intersection of countably many open dense subsets 

of X. 

Theorem 2.17 (Hirsch and Smale's) 

Suppose the hypotheses of Theorem 2.16 hold, then there 

exists a Baire subset W of full measure in E+(a) such that 

if x 0 E W, then C(x0) ~ R. Furthermore, if {~} is a 

sequence of real numbers in [ O, oo) with 1 im tm = oo and 
m--roo 

£ : R --r C(x0 ) is a diffeomorphism with £(0) = x 0 and 



~[O,oo) = C+(x0), then lim ~(tm) EE for all x 0 E w, and in 
m--+oo 

particular the set E * 0. 

Proof: 

Let W(e) be defined as in Theorem 2.16 and put 

W = n {W(~) 
n 

1, 2, 3, ••. }. 

1 1 
Since W(-) is open and of full measure in E+(a); then W(-) 

n n 

is a dense subset of E+(a). Therefore, W is a Baire subset 

and it has a full measure in E+(a). 

Let x 0 E w, llf (x0 ) II = s 0 ; then by Theorem 2 .16 

C(x0 ) ~ R, and for all E such that o < e < s 0 then, 

C+(x0 ) n E(e) * 0. ~ccording to the remark following the 

proof of the preceding theorem, C+(x0 ) has no w-limit 

points in E[e,s0 ]. 

Choose a sequence {en} where En = 
1 

Again, by -. n 

Theorem 2.16, correspond to each En, an xn E C+(x0 ) can be 

1 
chosen, such that lif (xn> II ~ n" An w-limit point for C+ (Xo) 

needs to be obtained out of the sequence {xn}· 

To this end, claim that E[O,s0 ] is compact. To show 

this, let A= {y E Rn: o ~ llYll ~ s 0 }. Since 11·11 is a con-
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tinuous function, then A is closed set. Also, A is bounded, 

therefore, A is compact. By the properness of the map f, 

f- 1 (A) is compact. Furthermore, since f is continuous, then 

B = f(f- 1 (A)) is compact. Note that B ~A, once more, 
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the properness of the map f implies that f- 1 (B) = E[O,s0 ] is 

a compact set. 

Now, {Xn} is a sequence in the compact set E[O,s0 ] 

which is sequentially compact, that is, {xn} has a conver

gence subsequence {Xm}, say. 

Let y be the w-limit point of C+(x0 ) obtained from 

taking the limit of {Xnt}· Because f is continuous, then 

O = lim llfCXm>ll = llf(lim xm>ll = llfCY>ll· Therefore, f(y} = O. 
m-+oo m-+oo 

Hence, the result. 

In both Theorems 2.16 and 2.17 the nonlinear map f is 

assumed to be proper. As a conclusion to this chapter, 

equivalent conditions to the properness assumption are 

stated. To do so, the following definition should be 

recalled: 

Definition 18 

Let f : Rn --+ Rn be a nonlinear map, then f is said to 

be coercive if lim llf (x} II = oo. Next, these equivalent 
llxll-+oo 

conditions are stated. 

Theorem 2.19 

Let f Rn --+ Rn be a continuous map. Then the following 

are equivelant: 

and 

(i) f is proper, 

(ii) f is a closed mapping and the solution set Sp = 

{x E Rn, f(x) = p} is compact for any fixed p, 



(iii) f is coercive. 

Proof: 

Only a sketch to the proof of the theorem is given; 

however, the details can be found in Berger [7]. 
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(i) => (ii): The compactness of Sp follows from the 

properness of f and {p} being compact. To show f is closed, 

pick a sequence of points in a closed subset of the domain, 

say, {xn} EK with Yn = f(xn), again by the properness off 

and passing to a subsequence, if necessary, it can be 

shown that the limit of the sequence {Xn}, say x, belongs 

-to K, and as a consequence {Yn} converges to f (x). 

(ii) => (i): Let C be a compact subset of the range of 

f, claim that f-1 (C) is com~act. To this end, pick a col

lection of closed subsets of the domain that has the finite 

intersection property and covers f- 1 (c), then show that the 

intersection of this collection is not empty. 

(ii) => (iii): Suppose f is proper, then the inverse 

image of a bounded subset of the range is a bounded subset 

of the domain. But this implies that f is coercive. 

(iii) => (ii): if f is coercive and C is a compact 

subset of the image, then f- 1 (C) is bounded and so rela-

tively compact in the domain. 



CHAPTER III 

HOMOTOPY EXISTENCE THEOREMS 

Even though Brouwer's and Leray-Schauder's fixed point 

theorems have been established for many years, proofs for 

these theorems were nonconstructive in character, in the 

sense that the techniques used in those proofs did not pro

vide means to calculate such fixed points. 

Since the introduction of Scarf's algorithm, many con

structive proofs of Brouwer's fixed point theorem under var

ious hypothesis have appeared. 

The objective.s of this chapter are two fold. First, to 

give a constructive proof of Brouwer's fixed point theorem 

following Chow et al. [ 8]. The term constructive proof means 

that a practical numerical method for locating the fixed 

point emerges as part and for the purpose of proving its 

existence. Moreover, using the same technique in proving 

Brouwer's fixed point theorem, a constructive proof of the 

Leray-Schauder's theorem is given. 

Once more, by using a similar proof method, the second 

objective of this chapter is reached by giving a construc

tive proof of an existence theorem of a zero of a map satis

fying certain conditions. 
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3.1 c2 Maps Fixed Point Theorems 

Let F, G : Rn --)- Rn nonlinear maps and define the homo-

topy 

H(x, t) = tF(x) + (1-t)G(x), (3.1) 

where H(x,O) = G(x), H(x,1) = F(x). 

As pointed out in Chapter I, the map G is usually cho

sen such that the equation G(x) = O has a trivial solution 

or it can be easily obtained. For certain purposes G will 

be taken to be either G(x) = x - a or G(x) = F(x) - F(x0 ), 

x, x 0 , and a E Rn. 

A natural question that arises here is how freely can a 

be chosen and at the same time guarantee that O is a regular 

value of H. An answer to this question is provided by the 

Parametric Transversality Theorem 1.18 of Chapter I. 

Suppose f is c2 nonlinear map and f : K --)- K, where K 

is a convex and compact subset of Rn. 

Choose a E int(K) and let the maps G and F in (3.1) be 

defined by 

G(x) = x - a, F(x) = x - f (x), (3.2) 

where int(.) stands for the interior of a set. 

Define the homotopy H int(K)X(O,l)Xint(K) --)- Rn ' by 

H(a,t,x) = t (x - f(x)) + (1 - t) (x - a). (3.3) 
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Finally, define the map Ha (O,l)Xint(K) -lo Rn by 

Ha(t,x) = H(a,t,x). (3.4) 

It was pointed out earlier in Chapter I that finding a 

fixed point or a zero of a map by means of analytic homotopy 

essentially reduced to following a solution curve of an IVP. 

Moreover, the new homotopy approach differs from the 

Davidenko's approach in one basic thing; that is, the latter 

uses the variable t of the homotopy map H(t,x) as the inde

pendent variable while the new homotopy approach introduces 

arc length, say s, as an independent variable to the homo

topy map H(t(s) ,x(s)). 

Thus, even if the matrix DxHa(t,x) becomes singular on 

the solution curve of the IVP to be defined later, this 

causes no serious difficulty to the new homotopy approach as 

it does to the Davidenko's case. 

Differentiating the equation Ha(t(s),x(s)) = O with 

respect to s, the following IVP is obtained: 

d/ds Ha(t(s),x(s)) = O 

ldt/dsl2 + lldx/dsf = 1 (3.5) 

with t(O) = o, x(O) = a 

From (3.5) 

[I - t(s)Df(x(s))] dx/ds + [a - f(x(s))] dt/ds = O 
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Let Y = (dx/ds,dt/ds)t, the above equation can be written in 

the compact form: 

DHa(t,x) Y = o 

where DHa(t,x) = (I -tDf(x),a - f(x)). Thus, solving the 

IVP in (3.5) is equivalent to finding Y and hence Y. But Y 

can be obtained by finding the kernel of the matrix 

DHa(t,x). 

The existence of the solution curve of the above IVP 

will now be established by first proving the following 

important lemma. 

Lemma 3.1 

Let the maps f, H, Ha be given as in (3.2) - (3.4), and 

o be a regular value of Ha. Then C(a), the component of 

H-1 (0) through (O,a), is diffeomorphic to an interval. 
a 

Proof: 

By the Preimage Theorem 1.11, since O is a regular 

value of Ha, then C(a) is a c2 one-dimensional submanifold 

of H-1 (0). As a consequence of the Classification Theorem 

of one-dimensional Manifold 1.16, C(a) is diffeomorphic to a 

circle or an open interval. It needs to be shown.that C(a) 

is not diffeomorphic to a circle. To this end, consider the 

map Ha of equation (3.4) to be defined on the larger 

domain(-oo,l}Xint(K). 



~· 

Since Ha(O,a) = o, DxHa(t,x) = t(I-Df(x)) + (1-t)I, 

where I is the identity nXn matrix. 

Note DxHa(O,x) = I, so by the Implicit Function 

Theorem, in the neighborhood of (O,a). There is an open 

interval J with o E J and a neighborhood W of (O,a) such 

that for each t E J, there exists a unique c1 map 

g: J-+ Rn with (t,g(t)) E wand Ha(t,g(t)) = o, where 
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g(O) = a. Thus every solution of Ha(t,x) = O must be of the 

form x = g(t), t EL= [O,l] n J. 

Now, suppose C(a) is diffeomorphic to a circle, and 

T : [O,l] -+ (O,l)Xint(K) be a parametrization of C(a) so 

that t = T(s) and let h(s) = g(T(s)), s E [O,l]. 

By assumption C(a) is diffeomorphic to a circle, then 

(T(O) ,h(O)) = (T(l) ,h(l)) = (O,a), 

Ha(T(s),h(s) = o, ( 3. 6) 

with IT' (s) 12 + llh' (s) 11
2 

-=!= o, 

where "'" stands for d/ds. Also, since o is a minimum value 

of T, then T' (0) = O. Differentiate (3.6) with respect to s 

one gets 

() 
at Ha ( T ( s) , g ( s) ) TI ( s) + DxHa ( t ( s) , h ( s) ) h I ( s) = 0. 

At t = O it is known T(O) = T' (0) = O, h(O) = a, DxHa(O,a) = 

I to get h' (0) = o. But this is a contradiction to (3.6). 

Hence C(a) is diffeomorphic to an open interval. 
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Note here that the above lemma says that C(a) cannot be 

diffeomorphic to any of the components rl, r2, and r3 shown 

in Figure 3, but rather to a component such as r. 

t=O 

Figure 3. Components of H-1 (0) 
a 

t=l 

Brouwer's fixed point theorem for c2 maps can now be 

stated and proved. 

Theorem 3.2 

Let the maps f, H, Ha be defined as in (3.2) - (3.4); 

and C(a) be the component of H-1 (0) through (O,a) in (O,l)X 
a 

int (K) ; ( O, a) E C (a) . 



Then 

(i) o is a regular value of H, 

(ii) for almost every a E int(K), in the sense of 

n-dimensional Lebesgue measure, C(a) is c2 one-dimensional 
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manifold in (0,1)Xint(K) joining (O,a) to a fixed point of f 

(or to a set of fixed points) at t = 1. 

Proof: 

/\ /\ /\ /\ /\ /\ 

Let (a,t,x) E int(K)X(0,1)Xint(K) and H(a,t,x) = o. 
/\ /\ /\ /\ /\ /\ 

Since DaH(a,t,x) = (1-t) (~I) = (t-1) I, then for t * 1 
/\ /\ /\ /\ /\ /\ 

range(DH(a,t,x) ~ range(DaH(a,t,x) = Rn. Hence O is a 

regular value of H; this proves (i). 

By the Parametric Transversality Theorem 1.18, for 

almost every a E int(K), O is a regular value of Ha. Also, 

by Lemma 3.1 C(a) is a c2 one-dimensional manifold in 

(0,1)Xint(K) and is diffeomorphic to an open interval. 

To complete the proof it needs to be shown that C(a) 

does not have a limit point on the surface of the cylinder 

(O,l)XaK, where aK denotes the bo~ndary of K. To show this, 

let O < t < 1 and suppose (t,x) is a limit point of C(a); 

thus Ha(t,x)= o; hence, t(x - f(x)) + (1-t) (x - a) = O; 

obtained from this is 

x = tf(x) + (1 - t)a O<t<l. 

By assumption a E int(K), f(x) EK, and K is a convex set, 

then x E int(K). 



Consequently, C(a) has no limit point on (O,l)XoK. 

Furthermore, any limit point of C(a) is in H-1 (0). 
a 

Moreover, because C(a) is diffeomorphic to an open 

interval, (O,a) is at o~e end of C(a); also, by the com-
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pactness of [O,l]XK, there is at least one more limit point 

of C(a) at {l}Xint(K). If (1,x*) is one such a limit point, 

then from (3.3) f(x*) = x*. Thus, x* is a fixed point of f. 

Corollary 3.3 

Suppose the assumptions of the.theorem hold. If at 

every fixed point of the map f the matrix I-Df (x) is nonsin

gular, then C(a) has a finite arc length. 

Proof: 

The proof follows from the fact that C(a) ~(O,l)Xint(K) 

and [O,l]XK is compact, then C(a) is bounded and hence has a 

finite arc length. 

The next result gives a constructive proof of a version 

of Leray-Schauder's fixed point theorem for c2 maps. 

Theorem 3.4 

Let U be an open, bounded subset of Rn, and f : U --+ Rn 

is a c2 map. Suppose there is an a E U such that f (x) * sx 

+ (1-s)a, s > 1, whenever x E au. Then f has a fixed point 

in u. 
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Proof: 

Let the maps H, Ha be defined as in (3.3) and (3.4). 

Let C(a) be the component of H-1 (0) through (O,a) in 

(O,l)XU, and (O,a) E C(a). Then by a similar argument to 

that in the proof of Theorem 3.2, one shows that for almost 

every a E u, C(a) is a c2 one-dimensional manifold in 

(O,l)XU, and C(a) is diffeomorphic to a open interval. One 

needs only to prove that C(a) can be continued from (O,a) to 

a fixed point of f. 

To do so, it needs to be shown that C(a) has no limit 

point on (O,l)xau. To this end, let (t,x) E (O,l}xau then 

Ha(t,x) = (1- t) (x - a) + t(x - f(x)) (3.7) 

Let s = 1/t, thens E (1,oo) and (3.7) becomes 

Ha(s,x) = (1- 1/s) ( - a) + 1/s(x - f(x)) 

= 1/s [sx + (1-s}a - f(x)]. 

By assumption f (x) * sx + (1-s)a for x E au, s > 1; there

fore, Ha(s,x) * O. Hence, C(a) has no limit point on 

(O,l)xau. Because C(a) is diffeomorphic to an open interval, 

(O,a} at one end of C(a), and since [O,l]XU is compact, 

there must exist at least one limit point of C(a) at 

{l}XU say (1,x*). Therefore, from (3.7) f(x*) = x*. 



3.2 Existence Theorem of 

Zeros of Maps 
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Recall that, if f : [a,b] ---+- R is a continuous function 

satisfying f (a) ~ o and f(b) ~ o, then there exists an x E 

[a,b] such that f (x) = o. These conditions can be rewritten 

in the following form. For x 0 E (a,b), 

(x-x0 )f(x) ~ o. 

The above fact has been extended to n-dimension, a 

proof of which may be found in Ortega and Rheinboldt [42]. 

The objective of this section is to give a constructive 

: proof of the result in its most general setting for c2 maps 

(Chow et al. [8]). 

Theorem 3.5 

Let U be an open, bounded subset of Rn and assume that 

f U ---+- Rn is a c2 map which satisfies 

(x-a)t f(x) ~ o for some a E u and all x E au. (3.8) 

Then there exists an x* E U such that f(x*) = o. 

Proof: 

Define a homotopy H : UX(O,l)XU---+- Rn by 

H(a,t,x) = (1-t) (x - a) + tf(x). 

Let the map Ha (O,l)XU ---+- Rn be defined by 



Ha(t,x) = H(a,t,x). 

By applying the same argument that was used to prove 

Theorem 3.2 , it can be shown that for almost every a EU, 

C(a), the component of H-1 (0) through (O,a), is a c2 one
a 

dimensional manifold in (O,l)XU diffeomorphic to an open 

interval. If it can be shown that C(a) has no limit point 

on the cylinder (O,l)XoU, the proof will be completed. 

Because C(a) starts at one end at (O,a) and ends at (1,x*)' 

a limit point of C(a) at {l}XU. Thus, f(x*) = o. 
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To show C(a) has no limit point on (O,l)XoU, suppose 

there is t E (0,1) and x E au such that Ha(t,x) = O; that is 

(1-t) (x-a) + tf(x) = o. (3.9) 

The following is obtained by taking the dot product of (3.9) 

with (x-a)t 

(1-t) (x-a)t(x-a) + t(x-a)tf(x) = o. 

From (3.8) (x-a)t(x-a) + t(x-a)tf(x) = o. (x-a)t (x-a) ~ o 

must be obtained. But this is a contradiction. Hence, C(a) 

has no limit point on (O,l)xau. 

Finally, the following corollary, which was given with-

out proof by Allgower [4], is established. 

Corollary 3.6 

Let f, U as in the theorem. Suppose a E U and if for 

every x E au there is a nonzero vector vx E Rn which satis

fies: 
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vt f (x) > o and vt (x-a) > o, 
x x 

(3.10) 

then there exists an x* E U such that f (x*) = o. 

Proof: 

The proof is the same as in the proof of the theorem 

except in proving that C(a) has no limit point on the cylin-

der (O,l)XoU. But this follows from noting that for 

t E (0,1), x Eau and using (3.10) the following is obtained 

vt Ha(t,x) = (1-t) vt (x-a) + vt f(x) > o. 
x x x 

Hence, C(a) has no limit point on (O,l)XoU. Therefore, the 

result. 



CHAPTER IV 

THE RELATION BETWEEN GLOBAL NEWTON AND 

GLOBAL HOMOTOPY METHODS 

since the introduction of the global Newton method by 

Smale [49] in 1976, several extensions of Smale's results 

have been published. In 1979, Keller [34] used the so

called global homotopy to extend Smale' s results. Also, Garcia 

and Gould in [18], and Gould and Schmidt in [22] obtained 

similar extensions. 

The aims of this chapter are, first, in 4.1, on the one 

hand, to give a detailed proof of Smale's theorems, and on 

the other hand, to extend these theorems so that they can be 

applied to a wider class of maps. 

Secondly, in 4.2, an extension of Smale's results due 

to Keller is given. The advantage of the global homotopy 

method is that one can find several zeros of a map using a 

single solution curve of an IVP. 

Thirdly, in 4.3, the relation between the global Newton 

and the global homotopy methods is studied. 

4.1 Global Newton Method 

Let n C Rn be a compact domain with a smooth boundary 

oil, that is, a c1 submanifold of Rn of dimension n-1. 
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Let f : fi ---+ Rn be a c2 nonlinear map. Associate with 

f, just as in Chapter II, a map g : fi\E ---+ sn-l which is 

defined by 

g(x) = 
f (x) 

llf ex> 11 • 

where E = f- 1 (0). 

Recall from Chapter II that the unit vector field ~(x) 

satisfies the following differential equation: 

Df(x)~(x) = A(x)f(x), ( 4 .1) 

where A(x) 
+ J (x) 

= II adj (Df (x)) f (x) II • 

Smale in [49] refers to (4.1) as the "Global Newton 

Equation". The name seems to be originated from the fact 

that if one uses Euler's method to approximate equation 

(4.1) with step size h, assuming that Df(x) is nonsingular, 

one gets the different equation 
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(4.2) 

Of course, equation (4.2) resembles the well known 

local Newton method; in fact, if h is chosen to be 1/A, then 

(4.2) reduced to Newton method. 

To ensure the existence of zeros of the system 

f(x) = O , ( 4. 3) 



Smale in [49] formulated the following boundary 

conditions: 

(a) Df (x) is nonsingular for all x E an, 

(b) there is a sign choice for A, as defined by (4.1), 

so that cl>(x) pointsinto n for all a E n. 
The term points into n should be understood in the 

following sense: 

Definition 4.1 

Let .N(x) be a unit normal vector at x E an, then N(x) 

is said to be inward pointing if there exists an E > o such 

that for all t E (o, E), x+tN(x) En. 

Definition 4.2 

Let x E an, cl>(x) is said to point into n if 

cl>(x). N(X) > 0. 

The main result of this section may now be stated. 

Theorem 4.3 (Smale's) 
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Let n be a compact domain with a smooth boundary an in 

n --? Rn be a c2 map satisfying the boundary 

conditions (a) and (b). Then (4.1) has a unique c1 solution 

£ : [t0 , tl) --? n starting at x 0 , that means, £(to) = Xo 1 

with the properties //d£/dt// = 1, the interval [t0 , t 1 ) is 

maximal, and t 1 ~ oo. 

point of £ (t) . 

Furthermore, lim £(t) = y, an w-limit 
t-?tl 



Proof: 

Let x 0 E an, and Yo = g(x0). By boundary condition 

(a) and Theorem 2.5 of Chapter II, y 0 is a regular value of 

g. Therefore, by the Preimage Theorem 1.11 g-1 (y0 ) is a 

one-dimensional submanifold in n;E. 
Let C(x0 ) be the component of g-1 (y0 ) starting at x 0 . 

By the Classification Theorem of One-Dimensional Manifold 

1.16 C(x0 ) is diffeomorphic to a circle or an interval. 

Claim C(x0 ) is not diffeomorphic to a circle. Suppose 

it is, then C(x0 ) would be a loop in n;E, and hence it 

would meet an once more at x 0 , where it started, but this 

says that ~(X) would be tangent to an at XO a contradiction 

to boundary condition (b). Hence, C(x0 ) is not diffeomor

phic to a circle. 

Thus, the only other choice for C(x0 ) is to be 

diffeomorphic to an interval (open, half-closed or closed). 

The first choice cannot happen, because C(x0 ) has a 

boundary point, namely, x 0 E an. Also, claim the third 

choice cannot be true either. Without loss of generality, 

suppose on the contrary C(x0 ) is diffeomorphic to the 

closed interval [t0 , t 1 ]. Since C(x0 ) is the solution of 

an IVP and n is compact set, then by Theorem 1.20 (the 

Maximal Interval Theorem) C(x0 ) must "leave" n. Thus, 

C(x0 ) must have another boundary point, say, x 2 such that 

s(t2 ) = x 2 E an, t 2 < t 1 . Hence, at t = t 2 , ~(x2 ) must 

point out of n. But, this contradicts boundary condition 
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(b). Therefore, C(x0 ) is not diffeomorphic to a closed 

interval. Consequently, C(x0 ) is diffeomorphic to a half

closed interval; thus, there exists a diffeomorphism £ : 

[t0 , t 1 ) --+ C(x0 ). In fact, £ is a parametrization of C(x0 ) 

by arc length. This follows from noting that d£/dt is 

tangent to C(x0 ) at £(t0 ); also, by Theorem 2.8 of Chapter 

II the tangent to C(x0 ) is the unit vector ~(x) which spans 

the kernel of Dg(x). Thus, 

:~ = ~(~(t)), £(t0 ) = x 0 
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As a consequence of Theorem 1.19 (the Existence and 

Uniqueness Theorem of an IVP) £ is a unique c1 solution of 

the "Global Newton Equation." 

Without loss of generality, one may assume that [O,+oo) 

To complete the proof it needs to be shown that 

lim £(t) = y is an w-limit point of C(x0). 
t-+oo 

Since il is compact and C(x0 ) ~ il, then C(x0 ) must have 

a w-limit point y E il, say. Let {tn} be a sequence of real 

numbers such that lim tn = oo and £Ctn) = xn E C(x0 ), then 
n-+oo 

by the sequential compactness of n there exists a 

subsequence, say, {Xro} such that lim Xm = y. 
m-+oo 

By a variant of Lemma 2.15 of Chapter II, y is either a 

critical point of g or it is a zero of f. 

Next, the following important hypothesis is introduced: 
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Genericity Hypothesis (G.H.): 

Suppose f is defined as before. If x E E, then Df (x) 

is nonsingular. 

As a consequence of the G.H. the preceding theorem 

becomes: 

Theorem 4.4 

If f : n, ---+ Rn is a er map, satisfying the boundary 

conditions (a) and (b) and the G.H.; then lim £(t) = x* with 
t--+t1 

f (x*) = o; that is, the solution curve £(t) converges to a 

single zero of f. 

Proof: 

The proof is the same as in the previous theorem except 

for showing the solution £(t) converges to a single zero 

of f. 

It needs to be shown that the set E is finite. To this 

end, since f satisfies the G.H., then for each x EE, one 

can find a small open ball Bx around x so that if y E E, y 

* x, then y ~ Bx. But E is closed and E C il, which is 

compact, then there are finite number of these balls 

covering E and as a consequence of this finitely many of 

these balls cover E, hence E is finite. By Theorem 4.3 the 

solution curve £(t) of the IVP given by (4.1) converge to E, 

but the zeros of f are isolated. Thus, £(t) converge to a 

single zero f. 



In smale's existence theorems the first boundary 

condition; that is Df(x), is nonsingular for all x E an, 

seems too strong as the following example shows: 

Example: 

Let f R2 ~ R2 defined by 

f (x, y) = 

Df (x, y) = 

Note that det(Df(x)) = - (2x-l) (2y+l) - 4xy. The 

2X 1 
det(Df(x)) = o <==> y = 2 _ ax 

Now, let n be a ball with radius greater_ than one and 

center at (1/4, -1/4), say. Then Df(x, y) have four singu-

larity points on an as can easily be seen from Figure 4. 

Therefore, Smale's Theorems do not hold in this 

particular example. As a consequence of this, one should 

pose the following question: Is it possible to weaken 
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Smale's boundary conditions without changing the conclusions 

of the theorems for this section? The answer to this 

question is affirmative; in fact, Smale mentioned the 

possibility of relaxing this boundary conditions, but he did 

not give a clear formulation. 



y 

(O, 0) 
------ -

I 
I 

--~--------~-~-~-=-=t-.r,,...,. ........ r=-:= 
I 
I (! -!) 
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I 
I 
I 
I 
I 
I 
I 
I 

J(x) > 0 

Figure 4. A Region n Where J(x) = 0 on an 

x 

Now, Smale's boundary conditions (a) may be replaced by the 

following: 

(aa) for all x E an, g(x) is a regular value of g and the 

set C = {X E an : J(x) = O} has measure zero in an. 
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Note that condition (aa) implies Smale's boundary 

condition (a). By Theorem 2.5 of Chapter II if x is a 

regular point of g, then 

(i) Df(x) is nonsingular for all x E an (Smale's), 

or 

(ii) rank(D"f(x)) = n-1, and range(Df(x)) n L = {O}. 

where L = {a.y E Rn: y = f(x), x En, a> O}. 
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The whole point in Smale's first boundary condition is 

to guarantee the starting point at an is a regular point for 

the map g. 

Now, an extension to Smale's results may be stated as 

follows: 

Theorem 4.5 

Let f : n --+ Rn satisfies the boundary conditions (aa) 

and (b); then the conclusions of both Theorems 4.3 and 4.4 

hold. 

Proof: 

The proof of the theorem is exactly the same as in 

Theorems 4.3 and 4.4. 

4.2 Global Homotopy Method 

Let n ~ Rn be a compact domain with smooth boundary 

an, f : n --+ Rn be a c2 map. For a fixed x 0 E an define 

the Newton homotopy H : nxR --+ Rn by 
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H(u, 0) = f(u) - 0 f(uo). ( 4. 6) 

For the time being it may be assumed that u and 0 are 

functions of another variable, say, s. Differentiating the 

identity H(u(s), 0(s)) = O with respect to s 

Df (u) du/ds - d0/ds f (u0 ) = o. (4.7) 

On the one hand by (4.6), (4.7) becomes 

Df(u) du/ds = d0/ds f (u) . 
0 

On the other hand (4.7) can be rewritten in the form 

[Df(u), - f(u0 )] [ ~~ ] = o. 
de 
ds 

(4.8) 

Hence, (du/ds, d0/ds)t is in the kernel of DH(u, 0) = 

(Df(u), - f(u0 ). Therefore, by normalizing the above vector 

gives 

JJdu/dsJl 2 + ld0/dsl2 = 1. (4.9) 

The identity in (4.9) makes s an arc length parameter. 

Let the ith component of du/ds and DH (u, 0) be denoted 

by ui and Hi(u) I respectively, and let ui, Hi(u) denote the 

remaining components of du/ds and DH(u, 0). 

To establish the main result of this section, the 

following two lemmas, whose proofs are due to Garcia and 

Gould [17], need to be proven. 



Lemma 4.6 

Let o be a regular value of the homotopy map 

H : Rn+l -+ Rn defined as in (4.6) and let C(v) be the 

component of H-1 (0) through v and ~ is parametrization of 

C(v) such that H(v(s)) = o, where v(s) = (u(s), 0(s)) = 

~(s). Then 

Proof: 

Differentiate H(v(t)) = O with respect to s to get 

DH(v) dv/ds = o 

Since O is a regular value of H, that is, rank(DH(u)) 

= n, then a 1i'tn+1 vector ej = ( o , ••• , ~ o , 1, o , ••• , o) can be 

chosen so that the n+li'tn+l matrix defined by 

A= 

[ 

DH(v) l 
ej 

is nonsingular. Then 

A dv/ds = 

By Cramer's rule for i = 1, 2, 3, ... , n+l 

det(Hj) 
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Since dv/ds is a tangent vector to C(v) at v, then dv/dt * 
0. Thus, there exists some j such that vj * 0. Therefore, 

Lemma 4.7 
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Suppose the hypotheses of the previous lemma hold, then 

sgn(vi(s)) = sgn(det(Hi(v(s)) for alls 

or 

sgn(vi(s)) = - sgn(det(Hi(v(s)) for alls 

Where sgn(O) - o. 

Proof: 

Let A(s) = 

B(s) = 

Since DH(v) dv/ds = O, then v(s) is orthogonal to DH(v) and 

consequently, rank(A(s)) = n+l for alls. Therefore, 

det(A(s)) * o. Thus, det(A(s)) > o or det(A(s)) < o. But, 

AB = 

Hence, det (AB) = vtv [det(Hi)J 2 . By the previous 

lemma since vi * O; then det(Hi) * O. Also, since det(AB) = 

detA detB > O, then det(A) and det(B) have the same sign for 
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alls. But, because detB = videt(Hi), then videt(Hi) > 0 or 

videt(Hi) < 0. 

Let v = (u1 , u 2 , ..• ,ua,0), and define H by H(v) = f(u) 

- 0 f (u0 ) where f : Rn --+ Rn, then the conclusion of the 

above lemma takes the special form. 

Corollary 4.8 

Let f, H be defined as above and satisfy the hypotheses 

of the lemma, then 

sgn(0) = sgn(detDf(u)) for alls, or 

sgn(0) = - sgn(detDf(u)) for alls. 

Proof: Follows immediately from the lemma. 

Next, the statement and proof of Keller's theorem is 

given. 

Theorem 4.9 (Keller's) 

Let il be a compact domain in Rn and f : il --+ Rn be a 

c2 nonlinear map. Define the homotopy map H as in (4.6). 

Also, Suppose the map f satisfies smale's boundary 

conditions (a) and (b) . Then for any u 0 E ail for which 0 

is a regular value of H, there is a c1 solution (u(s), 0(s)) 

of (4.7) and (4.9) over the interval [O,Sp] starting at 

(u(O), 0(0)) = (u0 , 1), 

and terminating at (u(Sp),0(Sp)) where: 

( 4. 10) 
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u (Sp) E an, 10 (Sp) I < L and 
( 4. 11) 

L = Max llf (x) II/Min llf (y) II· 
xEn yEan 

Furthermore, for an odd number of points Sv E~(O,Sp) 

0(sv) = o, and f(u(Sv)) = o. ( 4. 12) 

Proof: 

Consider the cylinder K = nx[-L, L], where Lis given 

by (4.11). Fix u 0 E an and claim H(u, 0) * 0 on the bases 

of the cylinder K; that is, where 0 = + L, x E n. This 

follows from noting that L >> 1. On the surface of the 

cylinder K there exists at least one zero of H, namely 

(u0 , 1) (Figure 5). 

Since O is a regular value of H, by the Preimage 

Theorem 1.11 H-1 (0) is a c2 one-dimensional manifold in 

nxR. Let C(v0 ) be the component of H-1 (0) that contains 

v 0 = (u0 , 1). 

By the Classification Theorem of One-Dimensional 

Manifold 1.16 C(v0 ) cannot be diffeomorphic to a circle 

because this would contradict Smale's boundary condition 

(b) . Also, since v 0 is a boundary point of the indicated 

component; then C(v0 ) is not diffeomorphic to an open 

interval. Thus, two choices are left to be checked. 



e 

L 

1 

0 

-L 

Figure 5. The Cylinder K = ilX[-L,L] 

The first choice for C(v0 ) is to be diffeomorphic to a 

half-closed interval, but this cannot happen because if it 

does, then C(v0 ) would terminate at an interior point of 

the cylinder K. But then since C(v0 ) consists of regular 

points, by the Implicit Function Theorem it could be 

continued beyond the indicated interior point of K. 
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The second choice, C(v0 ) is to be diffeomorphic to a 

closed interval. It may be assumed that this closed 

interval is [O,SF]. Hence, there exists a diffeomorphism ~ 

d~ [du d0 ] . [O,SF] -t C(v0 ) so that ~ = ~, ~ is a tangent vector 
ds ds ds 

to C(v0 ) at v 0 with ~(O) = (u(O), 0(0) = v 0 and ~(SF) 

= (u(SF), 0(SF)) = (uF, 0F) E an. 
Without loss of generality, it may be assumed that at 

(u0 ,1), the vector du/ds has the Newton direction, that is, 

du/ds points into n, so that by equation (4.8) ~ < o, but 
0 

0(0)=1 hence 0 (0)< o. By Corollary 4.8 0(s) < 0 for all 

86 

s E (O,sF), in particular, 0(SF) < o. Because the solution 

C(v0 ) leaves the cylinder K; then d~/ds cannot point into K. 

This says that du/ds is the negative Newton direction. 

0(SF) 
Consequently, 

0 
> O, thus, 0(SF) < 0. Therefore, 

(SF) 
it has been shown that 0(0) = 1 > o, 0(sF) < o, then by the 

Intermediate Value Theorem there exists at least one sv E 

(O, SF) such that 0(sv) = o, that is 0(s) has an odd number 

of zeros. But, then from (4.6) we get H(u(sv)) = f(u(sv)) -

0(sv) f(u 0 ) = o. Hence, f(u(sv)) = o. 

For the sake of completeness of the discussion at hand, 

it should be noted that the hypothesis of Keller's Theorem 

assumes that for any x 0 E an, o is a regular value of H. 

This assumption holds for a large class of maps. In fact, 

Percell in [44] showed that for almost any starting point x 

E an, 0 is a regular value of H. To be more precise, 

Percell's result is stated next. 



Theorem 4.10 (Percell's) 

Let M be a c2 n-dimensional manifold with boundary and 

let V CM be a c2 (n-1)-dimensional submanifold without 

boundary (that is, V = oM). Let f: M---+ Rn be a c2 map 

such that the following conditions do hold: 

(i) 

(ii) 

(iii) 

(iv) 

rank(Df (x)~) = n-1 for all v E V, 

f (v) (Df(x)~) (TvV) C Rn for all v E V, 

rank(Df(x)) ~ n-1 whenever f(x) = o, and 

f(x) = O for at most countably many x E M. 

For v E V, define Hv : MXR ---+ Rn by 

liv(x, 0) = f (x) - 0f (v). 

Then O E Rn is a regular value of Hv for almost all v E V. 

Proof: See Percell [44]. 

4.3 The Relation Between the Solution 

Curves of the Global Newton and 

Global Homotopy Methods 
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To facilitate the comparison between the solution 

curves of both the global Newton and global homotopy 

methods, let their solution curves be denoted by ~(t), res), 

respectively. Let x = £(t), (u,0) = ~(s) be their 

parametrization. 

Claim ~(t) is a particular instance of r(s). In fact, 

by a change of variable and projecting r(s) onto Rn it is 
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shown x(t) = u(s). Thus, starting at the boundary point x 0 

= u 0 , both x{t), u(s) define the same curve in Rn leading to 

the first zero of the map f (Figure 6). 

e 

L 

1 

0 

-L 

Figure 6. The Solution Curves ~ and f 
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To prove the claim, recall that the associate map g is 

defined by 

g(x) 
f (x) 

= 
"TT""":ll f=--=-( x___,..) ..,,...II • 

Let x 0 E ail be a regular point of g, and let a(t) the 

solution curve of the IVP: 

d~ 
dt 

cl> (X) I X (t) = ~(t) and ~(O) = x 0 = 

It was also proved in 4.1 that 

dx 
Df(x)dt = A.(x)f(x). 

Where A.(x) = 
+ J(x) 

..,,...II a-d=-=j___,(-Df_(_x_) .....,..f ...,....( x->.....-11 • 

(4.13) 

( 4. 14) 

( 4. 15) 

Since g(x(t)) = g(x0 ) = g(u0 ). Then from (4.14) we get 

f(x(t)) 
f (u0 ) 

= llf (x(t)) II llf (uO) II" 

hence, (4.15) becomes 

dx f (uo) 
Df(x(t))dt = A.(x(t)) lif(x(t))li llfCua>ll" ( 4. 16) 

Now, by making the change of variable s = s(t) such that s 

satisfies 



d0 
dt = 

d0 ds 
ds dt 

A (x (t)) II f (x (t)) II 
= ilf(uo>ll s(O) = 0. 

It needs to be proven that s is monotone, and hence 

one-to-one. But this follows from the definition of A and 

'\ d0 . t Corollary (4.8) that both ,~ and ds vanish at the same , 

namely when det(Df(x)) = o, and change sign together. Then 

(4.16) becomes: 

dx 
Df(x(t))dt 

From (4.7) 
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dx 
Df(x(t))dt 

du = Df(u(s))dt" (4.17) 

This implies that fort E [1, t 1 ], x(t) = u(s(t)), where 

x(t1 ) is the first zero of f, which was the goal of this 

section. 

As mentioned earlier, the advantage of the global 

homotopy method is in its ability of finding several zeros 

of the map f by following a single solution curve. In 

Figure 7, it is shown a possible solution curve, C(s), of 

the global homotopy method, where the part of this curve 

from (x0 , 1) to the first zero of the map f is essentially 

Smale's path. 

By Corollary 4.8 it was shown that det(Df(x)) = 0 if 0 

= o. The graph also shows 0 = O at x = x 1 , x 2 , x 4 , and x 6 . 
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Interestingly, even if Df(x) becomes singular along the 

solution curve of the IVP (4.15), the method still works. 

e 

e =1 

8 =O 

e =-1 

Figure 7. A Solution curve f(s) Passing Through 
several Zeros of H 



CHAPTER V 

ALGORITHMS AND COMPUTATIONS 

The objectives of this chapter are to describe typical 

algorithms based on both the continuous Newton method and 

homotopy methods. In 5.1 a description of three algorithms 

due to Hirsch and Smale [29] is given. Also, using the 

alternative definition of Hirsch and Smale's unit vector 

field, a new algorithm is described. In 5.2 typical homo

topy algorithms are reported. To this end, two algorithms 

are described. The first is due to Watson [50], and the 

second is due to Li and Yorke [38]. According to Theorems 

3.2 and 3.5 of Chapter III, the former finds fixed points of 

a c2 map and the latter may be used to find zeros of certain 

c2 maps. In 5.3 computational experience about some of 

these algorithms is reported. 

5.1 Algorithms Based on the Continuous 

Newton Method 

All algorithms of this section are based on the contin

uous Newton method and the theory developed in Chapters II 

and IV. To begin with, let f : Rn --+ Rn be a nonlinear map 

satisfying certain conditions to be specified shortly. The 
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basic idea behind all these algorithms is to follow the 

solution curve, C(x0 ), of the IVP 
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d~ 

dt 
= <f>(~(t)) (5 .1) 

where the unit vector field <f>(x), x = ~(t) satisfies the 

equation 

Df(x)<f>(x) = A(X)f(x). (5.2) 

By following the solution curve, C(x0), it is meant that a 

numerical approximation to the solution curve is obtained so 

that eventually one reaches a zero of the map f. 

To describe Hirsch and Smale's algorithms the following 

definitions and notations are introduced. Let the map f be 

of class er, r ~ 2. Suppose a point x E Rn at which J(x) * 
o. A Newton vector, N (x), is defined by 

N(x) = - sgn(J(x)) [Df(x)J-1f(x). 

Thus, N(x) is just a scalar multiple of the unit vector 

<f>(x) defined in Chapter II. 

For p > o, the Newton transformation of length p is the 

cr-l map TP : Reg(f) ~ Rn defined by 

Tp(x) = x + tN(x), t > O, !!tN(x) 11 = p. 

ANewtonstepoflength p from x is defined to be Tp(x). 

Finally, by ~ successive Newton steps it is meant to be the 
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2 T'Y sequence Tp(x), Tp(x), ••• , p if all these are defined. 

Now, Hirsch and Smale's first algorithm may be 

described. 

Algorithm A (Hirsch and Smale's) 

This algorithm uses Euler's method to integrate the IVP 

in (5.1). The integration process goes as follows: the 

algorithm starts at a point x 0 where J(x0 ) > o, with step 

length 1. For i = o, 1, 2, •.. , the algorithm takes a Newton 

step and tests the norm condition llf (xi) II < e for some 

e > O. If the norm condition does not hold and the allow

able number of steps is reached, that is, 4k Newton steps 

for each "cycle" of integration, k = o, 1, 2, ... ; or the 

determinant J(xi) = o, then the integration process is 

restarted at x 0 . Note here that the efficiency of the algo

rithm is bound to be low. 

In each restart of the integration process the step 

size is cut into half of what it was in the previous cycle. 

Furthermore, the number of Newton steps increased to four 

times the number of steps of the preceding cycle, that is, 

the integration process extends over an interval of length 

twice that of the preceding cycle. 

One should note here that in each cycle of integration 

the step size is fixed. 

The algorithm may be summarized as follows: 



1. Start: Choose a set of starting points {y1 0 }1 = 0 , , 
where J(y110 ) > o and a tolerance e > o. 

Set p = 1, k = 1, i = O, 1 = O. 

2. set x 0 = y110 . 

3. If J(xi) = o go to (7). 

4. Take a Newton step of length 2-l and set xi+l = Tp(xi). 

5. If llf(xi+l>ll < e stop. 

6. If i < k-1, set i = i+l and go to (3). 

1 
7. Set p = 

2 
p. k = 4k, i = o, 1 = l+l, and go to (2). 

The algorithm is also illustrated by Figure 8. 

Next, a theorem concerning the convergence of Algor-

ithm A whose proof can be found in Hirsch and Smale [29] is 

stated. 

Theorem 5.1 

Let f : Rn -+ Rn be a proper analytic map. Let e > o 

be given .. Suppose J(x) ~ o outside some compact set and 

J(x) is not identically O. Also, suppose a number a 0 E R 

is known such that J(x) > o if llfCx>ll ~ a 0 • Then there is 

* an open subset W of full measure of the set E+(a0 ) = { x E 

Rn : llf(x) II > a 0 } such that for every x 0 E w*, Algorithm A, 

described above, is defined and it stops at a point x with 

llf(x)ll < e. 
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The discussion about Algorithm A is concluded by giving 

several remarks. Theoretically speaking, Theorem 5.1 



yes 
i = i + 1 

Figure 8. 

p = 1, k = l,i = 0 

yes 

yes 

no 

p = .!p 
2 

k = 4k 

i = 0 

Stop 

Flowchart of Algorithm A 
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ensures that after a finite number of Newton steps Algorithm 

A stops at a point x with ·llf (x) II < E, for some tolerance E. 

But, in practice this algorithm is not very useful for 

many reasons. Perhaps the greatest disadvantage of all is 

the waste in computing time because of the nature of this 

algorithm of stopping the integration process as soon as the 

maximum allowable number of Newton steps for each cycle is 

reached, even though the integration may have been 

successful when it stopped. 

Another disadvantage of this algorithm lies in the 

method of integration itself; that is, it is well known that 

the Euler's method is not an efficient method of integra-

tion. Even with the introduction of the strategy of the 

step length halving so that it stays as closed as possible 

to solution curve, another problem arises, the problem of 

rounding error. 

Computational experiments with this algorithm will be 

given in 5.3. 

To overcome some of the above mentioned problems, the 

following algorithm is offered: 

Algorithm AA 

To describe the algorithm recall the definition of the 

vector field ¢(x) given in Chapter II. ¢(x) is defined by 

¢(x) = - ~(x)adj(Df(x))f(x), (5.3) 

where ~(x) 
1 

= II adj (Df (x)) f (x) II 
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Suppose at x E Reg(f) and J(x) * o, then (5.3) can be 

rewritten as follows: 

-1 

<I> ( x) = _ sgn(J(x)) [Df(x)] f(x) 
ll[Df(x)J-1 f(x)ll 0 

(5.4) 

One should note that in practice, one does not actually 

find the inverse of the Jacobian matrix Df(x), but rather 

solves the linear system Df (x)'l'(x) = f(x) and then set 

cj>(x) 
'l'(x) 

= - sgn(J(x)) ll'l'(x)\j 

Now, the algorithm may be describe. The basic idea 

behind this algorithm is to follow the solution curve, 

C(x0 ), of the IVP (5.1). Thus, one needs to approximate the 

solution curve C(x0 ) by means of numerical integration. 

To this end, a predictor-corrector method is used. 

This is the first difference between Algorithms AA and A. 

For the sake of simplicity, the Forward Euler's (F.E.) 

method, that is, the explicit method of integrating an IVP 

is given by the difference equation 

(5.5) 

I 
where X = f(t,X), and his the step size. 

As pointed out earlier in this section, the Euler's 

method is not an accurate method for numerical integration, 

especially when the IVP to be integrated is stiff problem. 

For this reason the Backward Euler's (B.E.) method is used, 
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which is better than the F.E. method from the numerical 

integration point of view, to correct the predicted point. 

The B.E. is given by the difference equation 

(5. 6) 

The B.E. method has the advantage of handling stiff 

IVP. Also, because the B.E. is an implicit method and a 

classical correction process is not effective in the case of 

stiff IVP, the local Newton method is used in the correction 

of the function: 

One should note that in the above equations, f (t,X) = cf>(X). 

In the correction process using equation (5.7) one 

needs the derivative of R(x) and consequently that of the 

vector field cf>(x), which is very difficult to come by if 

not impossible to get in an explicit form. One way to 

overcome this is to get an approximation to the derivative 

of R(x) by means of the forward finite-difference, that is, 

an approximation to the (i,j)th component of the Jacobian 

matrix DR(x) given by the formula 

where ej = (O, ... ,o, 1, o, ... ,o), and his sufficiently 

small. 



100 

Other methods of approximating the Jacobian matrix can 

be found in Dennis and Schnabel [12]. 

Another point of departure in Algorithm AA from that of 

Hirsch and Smale is the variability of the step size during 

integration. As pointed out earlier, Algorithm A of Hirsch 

and Smale does not really have a variable step size during 

the integration process. Instead, it keeps reducing the 

step size to half of what it was in the previous cycle if 

the integration is not successful, and then it continues the 

integration with the latest fixed step size. 

On the contrary, Algorithm AA uses a variable step size 

by means of the Milne's device. This is achieved by 

measuring the local error of the integration after the 

correction process to a predicted point. 

Let T denote the local truncation error of integration, 

then T is obtained by the formula: 

1 
T = 

2 
llX B.E. 

corr. 
- x F .E. II 

pred. 

F.E. B.E. 
where X is the predicted point and X is the point 

pred. corr. 

after correction. An estimate of the new step size can be 

found from the formula: 

= 
E 

T 

where e is predetermined tolerance. 
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Furthermore, the algorithm follows the following 

strategy to control both the local error and the step size: 

Given a tolerance E > O and constants c 1 and c 2 with c 1 

< c 2 , and set E1 = E2 , E2 = c 1*E, and E3 = c 2*E, the new point 

is accepted and the integration is continued with the same 

step size if E2 .:5. 'T .:5. E3 . Otherwise, the new point is 

rejected and a new step size is calculated as follows: 

(i) If 'T < E1 , then hnew = 2hold' or 

(ii) If El < 'T < E2 or E3 < 'TI then the step size 

given by (5.8). 

Finally, a criterion on which the algorithm will 

successfully terminated is described. To do so, note 

is 

be 

first 

that the continuous Newton (Hirsch and Smale's) method is 

itself a homotopy method. To see this, recall that if x E 

C(x0), the solution curve of the IVP (5.1), then g(x) = 

g(x0 ), where g(x) = ll:~=~ll" Rewrite this to get 

f (x) 

Define t R -7 R by 

t = 

llf ex> 11 
= f(xo) llfCxo>ll" 

llf ex> 11 if ft(x)f(x0) 
llfCxo>ll 

I 

llf ex> II if ft(x)f(x0 ) 
llfCx0 > II I 

> o. 

< 0. 

(5.9) 



Thus, (5.9) becomes f(x) - tf(x0 ) = o, but this 

equation is just the homotopy defined by equation (4.6) in 

4.2. 
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When following the solution curve, C(x0 ), the IVP 

solver has no way of knowing if it is or it is not near a 

zero of the map f. For this reason, a criterion is needed 

to prevent the occurrence of an overshooting. The criterion 

is simply to fpllow the solution curve by means of integra

tion and at each new point the value of t is checked and as 

soon as the value of t becomes very closed to zero, say, 

when t = 0.05, then a switch to the local Newton method is 

made until a zero of f is found. 

Figure 9 briefly describes the algorithm: 

Next, the other two algorithms of Hirsch and Smale 

given in [29] are described. Under certain conditions to be 

given later, the first of these two algorithms does not 

guarantee to stop, but, produces an infinite sequence {Xn} 

which converges to a zero of the map f. Moreover, there 

exists an n 0 such that if n ~ n 0 , the algorithm proceeds by 

the Newton method. 

Algorithm B (Hirsch and Smale'sl 

First, Algorithm B essentially is a modification of 

Algorithm A. What is new in this algorithm is the 

introduction of the local Newton method which is used after 

each Newton step of the integration process to test if the 
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epsl = e: 2 

Solve 
Df(Yn) '!'(Yn) = f(Yn) 

<1>(Y ) = ~ sgn(J) '!' (Yn) 
n i!'!'CYn)JI 

Ynml = Yn 

Figure 9. Flowchart of Algorithm AA 



Pred. a new point 
Yn = Ynml + h cl> (Ynml) 

Ypred = Yn 

R(Yn) = Yn - Ynml - h cl> (Yn) 
Calculate DR(Yn) 

Solve 

DR(yn) X = R(Yn) 

Correct Yn 
Yn = Yn - X 

T = } llYn - Ypred II 

No 

n = n + 1 

Figure 9 (Continued) 
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generated sequence by the Euler's method is close to the 

zero of f ~ If this is the case, then the algorithm proceeds 

by the Newton method; otherwise, the integration process is 

repeated. The following test of closeness to a zero of f is 

checked: 

1 
2 

!lf(u)!I, where v = u - [Df(u)]-1 f(u). 

Figure 10 describes the algorithm. 

In order to state a theorem concerning the above 

algorithm, the following Nondegeneracy (ND) condition is 

assumed: 

(ND) 

(a) (a) The set E = f-1 (0) is discrete and Df(x) 
is nonsingular at each x E E. 

(b) These {J-1 (0)} is closed and has measure 
zero. 

Now, the necessary conditions which guarantee the 

sequence produced by Algorithm B are stated in the following 

theorem a proof of which can be found in Hirsch and Smale 

[ 29] • 

Theorem 5.2 (Hirsch and Smale's) 

Let f : Rn ~ Rn be a proper c2 map satisfying the ND 

condition. Also, suppose that a number a 0 ~ O is know such 

that J(x) ~ o if !if(x)ll ~ a 0 • * Then there is an open set W 

of full measure in E+(a0 ) = {x E Rn : JJf(x)JJ > a 0 } with the 



·y = Y' 

Start 

Xo 

1 = 0 

K = 1 

p = 1 

x. = Ti(x0 ) 
l. p 

Y' = Y - [Df(Y)]-lf(Y) 

i = i + 1 

No 

Figure 10. Flowchart of Algorithm B 

1 
p= 2 p 

K = 4K 
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following properties. When Algorithm B (defined above) is 

* started at any x 0 E W , it produces an infinite sequence 

{Xn} which converges to a zero of f. Moreover, there exists 

an n 0 such that if n ~ n 0 , 

In other words, eventually and automatically the 

sequence proceeds by the Newton-Raphson iteration. 

This section is concluded by describing Algorithm c of 

Hirsch and Smale. 

Algorithm C (Hirsch and Smale's) 

This algorithm is a modification of both Algorithms, A 

and B. Again, the map f is assumed to satisfy the same 

conditions stated before, that is, f is c2 , proper, J(x) > o 

outside a compact set, and J(x) is not identically zero. 

However, with all the above conditions, the algorithm may 

fail as reported by Hirsch and Smale in [29]. 

The algorithm may be summarized by the flowchart shown 

in Figure 11. 

5.2 Algorithms Based on Homotopy Methods 

It is shown in Chapter III that there are two types of 

existence theorems of c2-nonlinear maps. The first type is 

about fixed points and the second type is about zeros of 

maps satisfying certain conditions. 
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X = X' 

h = 1 

Yes 

No 

X' = X - sgn(J(X)h(Df(X)]-lf(X) 

Yes 

h 
h = -

2 

Figure 11. Flowchart of Algorithm C 

108 



109 

In this section typical algorithms from each type are 

reported and some possibilities for improvement in the 

implementations of these algorithms are also indicated. 

A typical algorithm of finding fixed points of c2 

nonlinear maps is Chow-Yorke algorithm given in [8]. This 

algorithm was implemented and extensively tested by Watson 

in [50]. 

Watson's Algorithm 

In order to describe Watson's algorithm, first recall 

some of the facts that were established in Chapter III: 

Let H : int(K)X(O,l)Xint(K) -+ Rn be defined by 

H(a,t,x) = t(x-f(x)) + (1-t) (x-a), (5.9) 

where K is a compact convex subset of Rn. 

It is also shown in Chapter III that if O is regular 

value of the homotopy H, then O is a regular value of the 

map Ha : (O,l)Xint(K) -+ Rn defined by Ha(t,x) = H(a,t,x). 

Differentiating Ha with respect to arc length, say s, 

and get the IVP 

d 
ds Ha(t(s),x(s)) = o 

(5.10) 

ldt/dsl2 + lldx/dsll 2 = 1, t(O) = O, x(O) = a. 
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The above IVP can be put in the compact form 

DHa(t,x)Y = o, with Y(O) = (O,a) ,l!Yll = 1, ( 5. 11) 

where Y = (t,x) and DHa(t,x) = (I-tDf(x),a-f(x)). 

According to Theorem 3.2, if one starts at (O,a), the 

solution curve of the above IVP leads to a fixed point at 

(1,x*) with f (x*) = x*. For this, one needs to approximate 

this solution curve numerically. 

To this end, an ODE solver is needed to follow the 

solution curve emanating from the point (o,a). Watson has 

suggested the use of the STEP subroutine along with other 

subroutines written by Shampine and Gordon [48]. The STEP 

subroutine is based on Adame's predictor-corrector methods 

with variable step size. 

Furthermore, because the IVP at hand is implicit, one 

needs to find a unit vector field in the kernel of the 

matrix DHa(Y) at each point on the solution curve. Also, 

Watson has recommended the use of Householder's 

transformation to obtain such a unit vector field. 

Since the main goal is to find a fixed point as soon as 

possible, Watson has advised to follow the solution curve of 

the IVP in (5.10) rather loosely, except in two particular 

instances where the curve should be followed very closely. 

The first case (when the curve makes "sharp" turns of 

some sort) when ldt/dsl becomes very small, say, ldt/dsl < • 01. 
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This type of measure is to taken to prevent drifting away to 

another nearby component of H-1 (0). Figure 12a shows a case 
a 

where cycling may occur due to such drifting. Also, Figure 

12b shows another case in which a misorientation to the 

solution curve occurred and this may lead back to the 

beginning. 

The second case occurs near a fixed point. Thus, as 

soon as the value of t becomes closed to 1, say, .99. The 

process of following the solution curve is restarted by 

calculating a new starting point (t,a) where a is obtained 

by using the following equation: 

a = 
x - tf (x) 

(5.12) 
-

1 - t 

- -
The point (t, a) lies exactly on the new solution curve 

C(a) which is followed as accurate as machine precision 

permits until a fixed point of f (x) is reached or t > 1. 

-
When the value of t becomes greater than 1, x(s) is deter-

-
mined, where x(s) is a fixed point of f (x), and x(s) 

- -
corresponds to t(s) = 1. The value s is unknown, but this 

can be obtained by solving the equation t(s) = 1 for s using 

inverse interpolation. Then by Using the available data 

- -
near the point (t(s) ,x(s)) to interpolate once more and get 

-
x ( s) • 



a 

0 

C(a) a 

a 

t 0 

(a) (b) 

Figure 12. A Cycling or Misorientation in 
Watson's Algorithm 
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If the arc length of the solution curve C(a) happen to 

be very large, then points generated by the ODE solver may 

lie far away from the actual solution curve. To remedy this 

problem, Watson suggests the use of equation (5.12) to 

restart the whole process from the last computed point and 

- -get (t, a). Again the new solution curve C(a) is followed 

until a fixed point of f (x) is reached. When taking the 

last measure it might happen that a ~ int(K), but this 

indicates that the computed solution curve has drifted too 

far from the original solution curve. A way out of this is 

to follow the solution curve very closely from the first 

starting point. 

Now, a summary of the previous discussion follows: 

Algorithm (Watson's) 

1. start. Choose a E int(K), a tolerance S for normal 

following the solution curve, and e to be used in case 

the solution curve has a sharp turn or t > 0.99. 

Usually, choose e << S. Also, set s = o, t(O) = O and 

x(O) = a. 

2. Compute a unit vector field Y. 

3. Compute a new point along the solution curve by means 

of the ODE solver using the tolerance S. 

4. If the ODE solver fails to compute a new point go to 

( 10) . 

5. If the current arc length is too long or t > 0.99 

restart the following process by computing a new 



- -
starting point (t, a) using equation (5.12) above and 

set a flag to indicate to the ODE solver to follow the 

new solution curve C(a). 

6. If ldt/dsl ~ O. 01 or t ~ O. 99 set the tolerance equal 

to E. 

7. If too many steps have been taken without getting 

closer to a fixed point go to (10). 

8. If t < 1 go to (2). 

-
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9. Use inverse interpolation to find s such that t(s) = 1. 

10. Set appropriate flag and stop. 

At this point of the discussion one should point out 

the ODE solver used by Watson was designed essentially to 

solve nonstiff IVP. If the system obtained as a result of 

differentiating the homotopy map given by (5.9) is a stiff 

system, then one should expect some difficulties in 

following the solution curve C(a). 

To remedy this problem, maybe, the use of ODEPACK, 

which is a software designed by Hindmarsh [23], might help. 

This software consists of several subroutines, each dealing 

with a certain type of IVP. Because the problem at hand is 

implicit, one may use the subroutine LSODI, which is specif-

ically designed to solve this kind of IVP. In this way, one 

does not need to use the Householder's transformation to get 

a unit vector field. LSODI has another advantage; that is 

it determines internally whether a given IVP is stiff and 

adjusts to that automatically. 



Another possible modification to Watson's algorithm is 

the use of the local Newton method in the final stage of 

following the solution curve instead of interpolations. To 

do this, one may keep a record of one point on the approxi

mating curve and as soon as the level t = .99 is reached. 

This process is continued until the value of t becomes 

greater than one, then one uses the point just before the 

last point generated by the ODE solver as a starting point 

for the local Newton method. 

Li and Yorke Algorithm 
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Now, a typical algorithm of finding zeros of certain 

nonlinear c2 maps is described. The algorithm was developed 

by Li and Yorke [38]. 

To start the description of this algorithm, some of the 

facts given in Chapter III should first be recalled. Let 

f Rn ~ Rn be a c2 nonlinear map. Define the homotopy map 

H [ 0 ' 1] XRn ~ Rn by 

H(t,x) = tf(x) + (1-t)g(x), 

where H(O,x0 ) = g(x0 ), H(l,x) = f(x), and g(x0 ) has a 

trivial solution. 

(5.13) 

Suppose that 0 is a regular value of Hand C(a) is a 

component of H-1 (0) through (O,a). Also, let £ : [O,b] ~ 

[O,l]XRn be a parametrization of C(a) by arc length, that 

is, £(s) = (t(s) ,x(s)) and lld£/dsil = 1. By differentiating 

H(x,t) = o with respect to s one gets the IVP 
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Thus, to find a zero of the map f one needs to follow 

the solution curve of the above IVP. A discussion of Li and 

Yorke's algorithm follows: 

The algorithm first predicts a point on the solution 

curve C(a); for this purpose Li and Yorke used a 4th order 

Runge-Kutta method. In this way, it is unavoidable to make 

some errors during the integration process. To remedy this 

problem, the local Newton method is used as a corrector to 

bring back the predicted point closer to the solution curve. 

The correction process goes as follows: let Yn be the 

corrected value at the n-th step of integration. One 

predicts a new point Yn+l' say, starting at Yn and let z0 = 

Yn + 8 ~Yn, where 8 is the current step size of the 

predictor method. Now, z0 is used as a starting point for 

the local Newton method to obtain Zn on the intersection of 

the solution curve C(a) and a hyperplane, say N, that is 

approximately normal to the solution curve Figure 13. 

Let G(Zk, ~y) = 

To get Zn the local Newton method is used, that is, one 

iterates using 

0,1,2, ... ( 5. 15) 



\ 
~ 

\ 

' \ 
' \ Zo 

C(a) 

Figure 13. A Normal Plane to the Solution 
Curve C(a) 
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Depending on the location of z 0 the Newton method may or may 

not converge. For this reason, Li and Yorke suggested the 

use of the following criterion to be checked: 

( 5. 16) 

If the above condition is satisfied then one continues 

the Newton itergration until ll.6.Znll = llzn - Zn-lll < E for 

some tolerance e. Then one sets Yn+l = Zn and continues the 

integration process. Otherwise, if ll.6.Znll > e, then the step 

size of the ODE solver at Yn, say, on is cut in half and the 

whole procedure is restarted with the new step size. 



Next, an orientation to the solution curve of the IVP 

(5.14) is needed. To achieve it, one uses a unit vector 

field, u, obtained from the kernel of DH(£). But, then 

there are two choices of direction, namely, d£/ds = + u. 

Thus, at each new point on the solution curve the correct 

sign for the unit vector field needs to be chosen, other 

wise, a misorientation to the solution curve may lead back 

to the starting point or a cycling of the integration pro 

cess may occur. 
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To prevent a misorientation from happening, Li and 

Yorke used the following criteria: Let Y1 , Y2 be two 

successive points on the solution curve and u1 , u2 be the 

corresponding unit vector fields obtained from the kernel of 

DH(£). Then a sign choice of u2 is made such that 

(5.17) 

where<.,.> stands for the usual inner product. The 

criterion in (5.17) amounts to saying the angle between u1 , 

u2 should always be less than or equal 18°. On the one 

hand, if the above criterion does not hold, the current step 

size is cut in half and the whole process is restarted once 

more. On the other hand, if the criterion does hold, then 

the current step size is doubled and one continues the 

integration process. 

The discussion of Li and Yorke's algorithm may be 

closed by briefly mentioning the criterion on which the 



algorithm terminates. To this end, it should be first 

pointed out that according to the theory developed in 

Chapter III, Li and Yorke's algorithm may not work. To be 

more specific, the algorithm may fail if the curve that is 

being followed turns back to the level t = o as shown in 

Figure 14. 

a 

0 t;.l 

Figure 14. A Solution curve Turns back to the 
Level t = O or Becomes Unbounded 

Thus, it is necessary to take this into consideration; 

otherwise, the solution curve may wander around in the 

region where t < O and as a result, a lot of computing time 

may be wasted. 
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Another situation in which the algorithm may fail is in 

the case when the solution curve is not bounded, as shown in 

Figure 14. In this case also, a lot of computing time may 

be wasted in following a curve which cannot reach the level 

t = 1. 

Having introduced some of the problems which may cause 

Li and Yorke's algorithm to fail, the criteria on which the 

algorithm terminates with success is now discussed. 

Let A= { (t, x) E Rn : 11 - ti< e}, where,e is some 

tolerance. The algorithm is terminated when (tn+l' xn+l> E 

A. Now, there are two cases to consider. The first case, 

tn+l > 1, then one interpolates t in terms of s to find a 

new step size o which gives tn+l(s) - 1, and the 

corresponding xn+l is the zero of f (x). 

The second case is when the solution curve changes 

direction just at t = 1 so that it touches the level t = 1. 

This situation is shown in Figure 15. 

In this case, suppose Yn = (tn, xn) lies on the 

solution curve and t < 1. Also, let y* be the point 

symmetric to Yn with respect to t = 1, that is, 

y* = (2-tn, xn) and Yn+l = (tn+l' xn+l>, tn+l < 1. Suppose 

also dt/dslt < O, and if IY*n - Yn_11 < o, where o is the 
n+l 

current step size. Then, the solution curve must have 

touched the level t = 1. 

- -
To find the point of contact, say, Yn+l = (tn+l' xn+l) 

one interpolates dt/dsltn, dt/dsl'tn+l linearly and finds a 

new o0 which makes dt/ds - o. 



t=l 

* y 

Figure 15. The Solution Curve C(a) Touches 
the Level t = 1 

t 

A final remark about the discussion is about how the 

unit vector field ds/ds is obtained. Even though Li and 

Yorke did not point out how to get such a unit vector, one 

may find it by using either Gauss elimination with partial 

pivoting or the Householder transformation. 

In brief, the algorithm is shown in Figure 16. 
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Next, some of the improvements that might be introduced 

to Li and Yorke's algorithm are pointed out. On the one 



Yes 

0 = § 
2 

Figure 16. 

Start 

(0,Xo), n = 0 

Calculate a unit vector Un 

Pred. a new point by R-K 
method Yn+l = Yn +ti Y 

Hnew = H(Yn+l) 

Corr. the new point using 
Newton method 

Zk+l = Yn + tiZk 
Hold = Hnew 

Hnew = H(Zk+l) 

No 

Yes 
End of Curve 

print Yn+l 

Flowchart of Li and Yorke's Algorithm 
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o =o dt/ds!tn 

dt/ds!t - dt/ds!t 
n n 

0-tn) 
tn+l - tn 

0 = 20 

Figure 16 (Continued) 
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n = n+l 
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be achieved by following the solution curve very closely as 

soon as the value of t becomes .95, say. In doing so, one 

also keeps record of one point on the solution curve; then 

as soon as t reaches a value greater than 1, one use~ the 

penultimate point as starting point for the Newton method. 

At this point of the discussion, one should point out a 

similar algorithm given by Allgower and Georg in [3]. But 

they substituted the Runge-Kutta method by the Euler's as a 

predictor method. 

Speaking of other alternatives, an algorithm similar to 

that which was given in 5.1 may be developed. To be more 

specific, one may use the forward Euler's method as a 

predictor and the Backward Euler's method as a corrector. 

Because the latter method can handle stiff IVP such as those 

arising from solving systems of polynomials, this subject 

will not be dealt with here. 

In addition, with this algorithm a special form of 

homotopy that was suggested by Chow et al. [9] may be 

incorporated. The homotopy map is given by 

with its ith component given by 

di n di 
= (1-t) (Z 1· - b 1·) + tP1· (Z) + t(l-t) La· ·Z· . J l J 

J=l 



where b E en, a E c , t E [0,1], di~ 1 is the degree of 

the ith component, and P(Z) : en ~ en is a polynomial and 

the degree of PK(Z) is dk. 

Also, note here that the extra term 
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is added to force the solution curves emanating at t = O to 

go all the way to t = 1. In addition, it is also shown by 

Chow et al. [9] that for almost every (b,a) E cnxcn
2

, in 

Lebesque sense, every solution curve starting at the level 

t = O reaches the level t = 1; that is, all solution curves 

are bounded. This would be a big advantage over Li and 

Yorke's algorithm. 

This section may be closed by briefly mentioning 

another type of modification to Li and Yorke's algorithm. 

These types of algorithms are based on the derivative-free 

(Quasi-Newton) methods for following the solution of an IVP. 

In fact, Georg in [19] and Kearfott in [28] developed 

similar derivative-free path following methods. Their main 

modification seems to be in the use of a Least-Change Secant 

method for the Jacobian matrix DH(Y). To achieve this, an 

adoptive controlled predictor step size, and Powell's 

indexing procedure to preserve linear independence when 

updating are used. 

The derivative-free path following methods have another 

useful feature. These methods can handle bifurcation 



problems, but this subject too is beyond the scope of this 

study. Further details on this matter can be found in the 

above mentioned two references. 

5.3 Computational Experience 

The computational experience reported here is limited 

to algorithms based on the continuous Newton method. 

To be more specific, Hirsch and Smale's three 

algorithms and Algorithm AA were actually tested. The 

computations reported here are about five different 

problems. 

The first problem is to find all roots of the 

polynomial 
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P(x) = x 3 + 1 (5.18) 

This polynomial has one real root and two complex 

roots, namely -1.0 and (1 + y'-:X- i)/2. 

To find all the roots of P(x) numerically, one first 

complexifies this polynomial, that is to sa~, write P(x) as 

a complex polynomial and get 

P(Z) = z3 + 1, 

then, one separates P(Z) into real and imaginary parts. Let 

P1 (x, y), and P2 (x, y) be the real and imaginary parts of 

P(Z), respectively. Thus, the nonlinear system is obtained 
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P1 (x, y) = x 3 - 3xy + 1 

P2 (x, y) = 3x2y - y 3 . 
(5.19) 

One should note that the problem of finding the roots of 

(5.18) is equivalent to determining the zeros of (5.19). 

A summary of the results obtained from solving the 

system (5.19) using Algorithms AA, B, and c are given in 

Table I. 

The solution curves of the system of the IVP that 

correspond to the system (5.19) obtained by using Algorithms 

AA and c are also shown in Figures 17 and 18, respectively. 

From Table I, one may point out several remarks. The 

first is about the number of iterations it took each 

algorithm to converge to a zero of (5.19). Algorithm AA 

took almost three times the number of iterations taken by 

both Algorithm B and c, while the last two algorithms took 

the same number of iterations to converge to a zero of 

(5.19). 

The second remark is about the starting points of these 

algorithms. When Algorithms AA and C were started at the 

point (-20., -20.) they did converge to the zero (-1.0, 

0.0), while Algorithm B did not converge. But when the 

starting point was changed to (-20., -15.) Algorithm B 

converged to the above zero without any difficulty. 

The second problem that was used in computations is the 

following "simple" nonlinear system: 



Alg. 

AA 

B 

c 

TABLE I 

SUMMARY OF THE RESULTS OF THE 
FIRST PROBLEM 

Initial No. 
Values Iterations 

E = 10-5 
cl = • 8 I I 

c2 = 1.2 

(20.0, 20. 0) 37 
(20.0, -2 0. 0) 37 

(-20.0, -20.0) 39 

E = 10-6 

(20.0, 20. 0) 13 
(20.0, -2 0. 0) 13 

(-20.0, -15. 0) 14 

E = 10-5 

(20.0, 20. 0) 13 
(20.0, -20. 0) 13 

(-20.0, -20. 0) 14 
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Zeros 
and Notes 

( • 5 I 0.86602) 
( • 5 I -.886602) 

(-1.0, 0.0) 

( • 5 I 0.86602) 
( • 5 I -.86602) 

(-1. 0 I 0.0) 

( • 5 I 0.86602) 
(.5, -.86602) 

(-1. 0 I 0.0) 
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fl(X, y) = X - y 

f 2 (x, y) = x 2 - y - 2. 
(5.20) 

Note that the determinant of this system, 

J(x) = 2x - 1. 

Thus, J(x) > O if x > 1/2. Also, according to Theorems 5.1 

and 5.2 starting at any point where J(x) > o, both 

Algorithms B and c converge to a zero of the system (5.20). 

In fact, this system has two zeros, namely, (-1., -1.) where 

J(x) < o, and (2., 2.) where J(x) > o. 

The computational results obtained from solving system 

(5.20) using all four algorithms are shown in Table II. 

It is also shown in Figures 19 and 20 some of the 

solution curves of system (5.20) obtained by using Algorithm 

AA. 

From Table II one may note the following: 

(i) Algorithm A when started at the point (3.0, 4.0) 

did not converge even after 500 iterations. Also, one can 

see from Figure 21 how this algorithm overshoots beyond the 

zero ( 2. o, 2. o) . 

(ii) When Algorithms AA, B, and C are started at 

points where J(x) > o, they do converge to the zero 

(2.0, 2.0) with almost the same number of iterations for 

both Algorithms B and c, while Algorithm AA took more 

iterations to converge to the above mentioned zero. 



Alg. 

A 

B 

c 

E = 

AA 
E = 

TABLE II 

SUMMARY OF THE RESULTS OF THE 
SECOND PROBLEM 

Initial No. 
Values Iterations 

E 10-3 
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Zeros 
and Notes 

( 3. , 4.) 500 (1.9938, 1. 9885) 
no conv. 

E = 10-6 

(-0.9, -0.8) 4 (-1. 0, -1. 0) 
(-0.5, -o. 6) 5 (-1. 0, -1. 0) 

(-200., 1000.) 11 (-1. 0, -1. 0) 
(300., 200.) 12 (2. 0, 2. 0) 

(-0.4, -1. 0) 100 no conv. 

E = 10-5 

(-0.9, -0.8) 9 ( 2. 0, 2. 0) 
(-0.4, -1. 0) 9 (2.0, 2. 0) 

(5.0, 70. 0) 6 ( 2. 0, 2. 0) 
(200.0, 300.0) 12 ( 2. 0, 2. 0) 
(-1.1, -0.9) 25 (-11610.9, -6699281) 

div. 

10-4 , cl = • 8, 

C2 = 1.2 
(-0.9, -0.8) 136 ( 2. 0, 2. 0) 
(-0.5, -0.6) 77 (2.0, 2. 0) 
(-0.2, -1. 0) 38 (2.0, 2. 0) 

10-3 
I cl = • 8 I 

c2 = 1.2 

( 5 • I 70.) 12 (2.0, 2. 0) 
( 2 0 • I 0. 0) 15 ( 2 • 0 I 2. 0) 
( 50 • I 80.) 13 (2.0, 2. 0) 
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(iii) When the starting points of these algorithms are 

at points where J(x) < o, it should be noted that both 

Algorithms AA and c converge to the zero (2.0, 2.0) for x ~ 

-0.9, but they diverge for x ~ -1.1. On the contrary, when 

Algorithm B converges, it does so but to the second zero of 

(5.20), namely to (-1.0, -1.0). Moreover, note here that 

Algorithm B did not converge when the starting point lies in 

the rectangle -0.4 ~ x ~ 0.4 and -1.5 ~ y ~ -0.6. 

(iv) Interestingly enough, when the starting points of 

both Algorithms AA and C are at points where J(x) < O and 

these algorithms converge to the zero (2.0, 2.0), the 

solution curves of the IVP correspond to system (5.20) must 

cross the line x = 1/2 where J(x) = o, but this causes no 

problem for both algorithms. One can see how these solution 

curves jump over the line x = 1/2 in the case of Algorithm 

AA from Figure 19. 

The third problem that was used in computations is the 

following system given by Hirsch and Smale in [29]. 

f 1 (x, y) = x 3 - 3xy2 + 25(2x2 + xy) + y 2 + 2x + 3y 

(5.21) 

A summary of the computational results of this problem is 

given in Table III. 

Again, one may come up with several remarks over the 

results of Table III: 



Alg. 

B 

c 

AA 
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TABLE III 

SUMMARY OF THE RESULTS OF THE 
THIRD PROBLEM 

Initial No. Zeros 
Values Iterations and Notes 

E = 10-6 

(100.0, -30. 0) 6 (50.46500, -37.263) 
( 1. 0 f 200.0) 11 (0.62774, 22.244) 

(200.0, 50.0) 9 (36.05400, 36.807) 
(-200.0, -50. 0) 9 (-50.39700, -.80424) 

(-1. 0 f -500.0) 100 no conv. 

E = 10-5 

(1. 0 f 200.0) 12 (.62774, 22.244) 
(200.0, 50. 0) 10 (36.045, 36.807) 
(-200.0, -50. 0) 10 (-50.397, -.80724) 
(-1. 0 f -500.0) 35 (50.465, -37.263) 

E = 10-5 
cl = • 8 I I 

c2 = 1.2 

(200.0, -20. 0) 288 (50.465, -37.263) 
(1. 0 f 200.0) 38 (.62774, 22.244) 

(200.0, 50. 0) 202 (36.045, 36.807) 
(-200.0, -50. 0) 64 (-50.397, -.80424) 
(-1.0, -500.0) 151 (.62774, 22.244) 
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(i) Both Algorithms-Band c took-almost the same 

number of iterations to converge to the zeros as indicated 

in Table III with one exception, that is, when both. 

algorithms were started at the point (-1.0, -500.0) 

Algorithm B did not converge, while Algorithm C converged to 

the zero (50.465, -37.263). On the other hand, when 

Algorithm B was started at the point (100.0, -30.0), it did 

converge to the above zero. 

(ii) Algorithm AA did converge for all cases, but was 

much slower than Algorithms B and c. A possible reason for 

this might be the stiffness of the solution curves obtained 

from system (5.21). Some of these solution curves are shown 

in Figures 22 to 24. 

(iii) When Algorithm AA was started at the point 

(-1.0, -500.0) it converged to the zero (0.62774, 22.244), 

while Algorithm c when started at the same point converged 

to the zero (50.465, -37.263). 

(iv) One should indicate here that one of the zeros of 

the system (5.21), namely, (36.0454, 36.8075) also was 

reported by Hirsch and Smale in [27], but there is a little 

bit of difference in the second coordinate of the zero. In 

fact, the answer they reported is (36.0454, 36.8056). 

The fourth problem that was used in computations is the 

following third order system: 
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f 1 (x, y, z) = x - ln(y/z) -1 

f 2 (x, y, z) = 2x2 + y - z 2 - 0.4 

f 3 (x, y, z) = xy/20 - z + 2. 

(5.22) 

When Algorithm AA was started at the points (-15.0, 4.0, 

5.0) and (-30.0, 4.0, 5.0) withe= 10-4 , c 1 = .8, c 2 = 1.2, 

it took 123 iterations to converge to the zero (-1.4453, 

0.17231, 1.9875). On the contrary, Algorithm c did not 

converge when it was started at the above points and many 

others. 

The last problem that was used in this computation is 

the following fourth order system which was reported in 

[ 15] . 

fi(xl, X2, X3, X4) = (xl - 0.1) 2 + X2 - 0.1 

f2 (xl, X2, X3, X4) = (X2 0.1) 2 + X3 - 0.1 

0.1) 2 
(5.23) 

f3(x1, X2, X3, X4) = (X3 - + X4 - 0.1 

f4(x1, X2, X3, X4) = (X4 - 0.1) 2 + xl - 0 .1. 

The computational results obtained from using 

Algorithms AA and C to solve system (5.23) are given in 

Table IV. 

From Table IV, one may remark the following: 

For the zero (-.9, -.9, -.9, -.9), even though 

Algorithm AA did not converge when started at the point 

(O.O, o.o, o.o, 0.0), it converged to the above zero, and so 

did Algorithm C when both algorithms were started at the 

point (-0.1, o.o, o.o, 0.0). On the contrary, when 



c 

AA 

TABLE IV 

SUMMARY OF THE RESULTS OF THE 
FIFTH PROBLEM 

Alg. 

E = 

(O.O, o.o, 

Initial 
Values 

10-S 

o.o, 0. 0) 

(-1. 0' o.o, o.o, 0. 0) 

(200., 300.' 400.' 100.) 

E = 10-3 
' cl = • 8' 

C2 - 1.2 

(O.O, o.o, o.o, 0. 0) 

(-1. 0' o.o, o.o, 0.0) 

E = 10-7 
cl = • 8' ' 

C2 = 1. 2 

No. 
Iterations 

13 

14 

0 

0 

39 

(200 .. ' 3 00.' 400. ' 100.) 298 

(-.9, 

(-.9, 

(-.9, 

(0.1, 

Zeros 
and Notes 

-.9, -.9, 

-.9, -.9, 

div. 

div. 

-.9, -.9, 

0.1, 0.1, 
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-.9) 

-.9) 

-.9) 

0 .1) 
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Algorithm c was started at the point (200.0, 300.0, 400.0, 

100.0) and many other points too, it did not converge to the 

second zero, namely (0.1, 0.1, 0.1, 0.1). The reason might 

be due to the inability of Algorithm C to change its step 

size fast enough so that it stays close to the solution 

curve. This also might justify the small tolerance and many 

iterations used by Algorithm AA. 

Computational results and the performance of Watson's 

and Li and Yorke's algorithms can be found in [50] and [38], 

respectively. 



CHAPTER VI 

SUMMARY AND CONCLUSIONS 

The aim of this study was to explore the theory and 

algorithms based on the homotopy methods for solving smooth 

nonlinear systems of equations. 

In Chapter I the precise statement of the problem at 

hand was stated, and at the same time the necessary 

background materials were given. 

In Chapter II, an alternative definition to Hirsch and 

Smale's vector field was given. By ~eans of this vector 

field an IVP was obtained. The solution curves of this IVP 

were used in Chapter V to find zeros of the map f. 

Chapter III was devoted to homotopy methods that find 

certain types of fixed points of nonlinear maps. 

In Chapter IV the relationship between the global 

Newton and the global homotopy methods was studied. 

Finally, in Chapter V several algorithms based on the 

continuous Newton and the homotopy methods were described, 

and at the same time a new algorithm was given. 

As it was pointed out earlier in Chapter V, there are 

many possibilities for modifying some of these algorithms. 

Also, a comparison in performance between these algorithms 
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and their applicability to certain types of problems are 

some of the points yet to be explored. 
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The rate of convergence of all these algorithms has not 

been studied. It is yet to be determined by further 

investigation what is the rate of convergence of each of 

these algorithms. 

In Chapter IV it was shown how the global homotopy 

method may be used to determine several zeros of a nonlinear 

map by means of following a single solution curve of an IVP, 

but no algorithm based on this method was given. It would 

be of interest to develop and test algorithms based on this 

method and, at the same time, others similar to those 

algorithms reported in Chapter v. 

The subject of using an approximation to the Jacobian 

matrix in Hirsch and Smale's algorithms has not been 

studied. It would be of interest to investigate this 

subject and seek a comparison in the performance of these 

algorithms when such an approximation takes place. 

Another subject which has not been investigated is the 

sparsity of the Jacobian matrix in the algorithms based on 

the continuous Newton method in particular and the homotopy 

methods in general. It would be very interesting to see 

what is the effect of the sparsity of the Jacobian matrix on 

the cost of solving the linear systems which arise at each 

new point on the solution curves. 



147 

Finally, it would be desirable to study the performance 

of the algorithms based on the continuous method in very 

large problems. 
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