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CHAPTER 1I
INTRODUCTION
1.1 Purpose

The general purpose of this study is to analyze the
elastic behavior of a U-Frame structure by the coupling of
boundary and finite element methods and to compare the
results with those obtained from the finite element method
alone. The stress analysis of a U-Frame structure is a Soil
Structure Interaction (SSI) problem where the behavior of
the U-Frame structure and the surrounding soil are interde-
pendent. The following are the specific objectives of this
study:

1. To develop an SSI computer program for the coupling
of boundary and finite element methods which incorporates
both symmetrical and unsymmetrical solutions of plane strain
problems;

2. To develop another SSI computer program, as general
purpose programs STRUDL (1) and NASTRAN (2) cannot simulate
the behavior at soil/structure interface, to solve plane
strain problems by the finite element method alone for com-
parison;

3. To examine the accuracy and validity of the coupling

of boundary and finite element methods in the stress



analysis of a U-Frame structure;
4, To compare the efficiencies between the coupling of
boundary and finite element methods and the finite element

methods alone in solving SSI problems.
1.2 Description of a U-Frame Structure

A typical U-Frame structure, shown in Figure 1, is a
water-filled chamber used to raise or lower ships, barges,
or boats from one elevation to another along parts of a
canal. It consists of artificial sidewalls, movable water-
tight gates at both ends which can be opened or closed as
needed, and a water conduit with inlet and outlet valves for
letting water in and out of the U-Frame structure by gravity
flow (3).

A U-Frame structure is one in which the structure walls
are designed to act monolithically with the floor slab. The
structure monoliths are normally lightly reinforced. The
walls and base are considered to form a continuous frame in

the generalized shape of a "U".

1.3 Background for the Coupling of

Boundary and Finite Element Methods

The boundary element method has been well developed
recently and it is now accepted as a general numerical
method applicable to a wide range of engineering problems.
This method is frequently applied to problems with infinite
domains such as wave diffraction, harbor resonance, fluid

flow, etc., because it satisfies the conditions at infinity
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which are difficult to represent by the finite element
method. One of the shortcomings of the finite element
method is its inability to model domains extending to infin-
ity. The boundary element method, on the other hand, uses
fundamental solutions which naturally satisfy the conditions
at infinity.

The idea of the coupling of boundary and finite element
methods is of great interest in solving problems with
unbounded domains or regions of high stress concentration,
both of which can be better represented by using boundary
integral solutions. Finite elements, however, may be easier
to apply to those parts of the domain which present aniso-
tropic or nonlinear behavior (4).

Osias, Wilson, and Seitelman (5) first combined the
boundary and the finite element methods by using boundary
integral solutions to represent unbounded wave propagation
problems in 1977. Zienkiewicz, Kelly, and Bettes (6)
applied the same technique to elastostatics for which the
boundary element region is treated as a finite element prob-
lem (see section 4.3). The following are the advantages of
the coupling of boundary and finite element methods:

1. It allows the use of appropriate conditions to rep-
resent infinite domains.

2. It simplifies the required data input to run such
computer programs due to a reduction in the dimensionality

of the problem.



1.4 Methods of Approach

Two methods are used in the stress analysis of a
U-Frame structure: the coupling of boundary and finite ele-
ment methods; and, the finite element method alone. The

essential steps of the two methods are as follows.

1l.4.1 The Coupling of Boundary and

Finite Element Methods

1. Use joint elements to simulate the behavior of the
interface between the structure and the soil.

2, Discretize the structure into qguadrilateral finite
elements and assemble all element stiffness matrices
(including joint element stiffness matrices) and nodal force
vectors to generate a set of simultaneous equations.

3. Discretize the boundaries of the soil mass into lin-
ear boundary elements and discretize the soil stratum into
cells of integration used in the calculation of body forces;
assemble all boundary integral equations to generate another
set of simultaneous equations.

4., Combine the equations obtained in steps 2 and 3 to
solve for the unknown displacements and tractions. Note
that equilibrium and compatability conditions must be satis-
fied along the interface.

5. Eliminate any tensile stresses present at the inter-
face. This step can be done by iteration.

6. Calculate the stresses and displacements at any

point of interest.



1.4.2 The Finite Element Method Alone

The required procedures in this method are the same as
those in the coupling of boundary and finite element methods
except that quadrilateral finite elements are used to model
the soil mass in~the domain instead of using linear boundary

elements to model the boundary.
1.5 Limitations and Assumptions

The U-Frame structure and surrounding soil comprise a
complex three dimensional system which exhibits nonlinear
response to applied loads. For short term loads, however,
the response of the system may be assumed to be linear.
Except in unusual structures, the U-Frame structure is
essentially prismatic. These observations allow the follow-
ing limitations and assumptions to be imposed to permit the
investigation of the structure-soil system by the coupling
of boundary and finite element methods:

1. A representative two-dimensional slice of the soil/
structure system in a state of plane strain is analyzed.

2. The soil is treated as a linearly elastic, iso-
tropic, homogeneous half space.

3. The U-Frame structure is assumed to be linearly
elastic, isotropic, and homogeneous.

4, There is no transfer of tensile stresses across the
soil/structure interface. Shear stresses on the interface
are assumed to be proportional to the compressive stresses

on the interface.



5. Horizontal displacements of the soil surface are
assumed to be negligible at a sufficient distance from the
structure center line.

6. Vertical displacements are negligible at a suffi-

cient depth below ground surface.



CHAPTER 11
THE BOUNDARY ELEMENT METHOD
2.1 Introduction

The boundary element method is now well developed as a
general numerical technique available for the solution of
field problems. In contrast with the finite element method,
degrees of freedoms only need to be defined on the boundary
of the domain of the problem. Once these degrees of free-
doms are determined, solutions within the domain are
obtained by using appropriate surface/line integrals of the
boundary solution.

The main idea of the boundary element method is to gen-
erate a system of boundary integral equations which pre-
cisely states the problem to be solved in terms of unknown
field parameters. Boundary integral equations are generally
established by using fundamental solutions of the given
problem with the singular point located on the boundary.
Therefore, an infinite number of boundary integral equations
can be generated. After discretization and numerical inte-
gration are performed, the entire boundary of the given
problem is first discretized into a finite number of bound-
ary elements in the same manner as it is done in the finite

element method; the resulting finite system of boundary



integral equations becomes a finite system of algebraic
equations suitable for solution with a computer.

The boundary element method is classified into two cat-
egories: the direct boundary element method and the indi-
rect boundary element method. In the direct boundary ele-
ment method, the boundary node unknowns are directly
obtained by solving a boundary integral equation. Then,
domain unknowns can be computed everywhere with the aid of
boundary node values. In the indirect boundary element
method, boundary node parameters are used. A boundary inte-
gral system has to be solved to compute these parameters
which allow the calculation of boundary and domain unknowns.

The direct boundary element method (7) and the indirect
boundary element method (8) have been simultaneously devel-
oped for elastostatics. These two approaches have provided
an effective treatment of practical engineering problems in
the last few years. Only the direct boundary element method

is derived for plane elasticity in this study.
2.2 Boundary Integral Formulation

2.2.1 Fundamental Solution

The problem of a concentrated force at a point in an
infinite elastic solid is known as Kelvin's problem. Navi-
er's equation is the governing equation of Kelvin's problem,
which expresses the equilibrium condition in the infinite
domain when a unit load is applied at point Q in the X;

direction., Navier's equation can be written as
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7,,(,8),; +&i(Q) = 0 i, 3=1,2 . (2.1)

where "," denotes partial differentiation when used before a
subscript. A repeated subscript implies summation. C? is
Dirac delta. dﬂ(Q)=l if a load acts at point Q in the X,
direction; otherwise, éﬂ(Q)=0. S is a field point.

The analytical or fundamental solution of equation 2.1
can be found in reference (9). This solution indicates the
displacement UiﬂQ,S) and traction T”(Q,S) at any point S in
the infinite domain in the Xj direction due to a unit
applied load at point Q in the X, direction. For two-dimen-

sional plane strain problems,

U;{Q,8) = ~{(3-4)1n ()0} -x,; x| }/{BM1-1)G}
or

T,(,8) = ~{l(1-2)8; *2r,; v, 1= (2.2)
on

=(1-2V) (r,;nj-r,;n;) }/{4M1-V)r]}

Where G is shear modulus, ) is Poisson's ratio, r=r(Q,S) is
the distance between load point and the field point,ézj=l if
i=j; otherwise,dij=0, and n; is a direction cosine. The

fundamental solution and geometric parameters used in equa-

tion 2.2 are illustrated in Figure 2.

2.2.2 The Reciprocal Theorem

The reciprocal theorem is the key to the direct bound-
ary element method. This theorem links the solutions to two
different linear elasticity problems for the same region

(10). Suppose that the first problem is characterized by a
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set of displacements {u} and force systems {f} including
surface tractions, concentrated forces, and body forces over
the region R. Suppose further that the second problem is
characterized by another set of displacements {U} and force
systems {F} including surface tractions, concentrated
forces, and body forces over the same region. According to
the reciprocal theorem, the work done by the first set of
force systems {f} in moving through the second set of dis-
placements {U} is equal to the work done by the second set
of force systems {F} in moving through the first set of dis-
placements {u}.

The statement of the reciprocal theorem provides the
basis for the formulation of Somigliana identity and bound-

ary integral equation (11).

2.2.3 Somigliana Identity

The Somigliana identity can be used to determine the
displacements in the X, direction at an interior point Q,
u;(Q), of region R once all of the displacements uj(S) and
tractions tj(S) on the boundary C of region R are known.
Imagine that the actual region R with boundary C is mapped
into an infinite plane and a unit force is applied at the
image of point Q in this plane in the same direction as the
displacement to be determined, then all of the displacements
UU(Q’S) and tractions TU(Q,S) on the auxiliary boundary in
this plane can be determined from the fundamental solution
(equation 2.2), and the required displacement u;(Q) can be

computed from the reciprocal theorem directly.
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The Somigliana identity can be fully explained with
reference to Figure 3. Figure 3(a) represents the actual
region R with boundary C. All of the displacements uj(S)
and tractions tj(S) on boundary C are known and body forces
bj(S) are assumed to be prescribed everywhere in region R.
Figure 3(b) represents an infinite plane and an auxiliary
boundary which is the tracing of the actual boundary onto
this plane. U”(Q,S) and T”(Q,S) are displacements and trac-
tions on the auxiliary boundary due to a unit force applied
at point Q in the X, direction. Clearly, the only unknown
in Figure 3(a) and Figure 3(b) is the displacement u,(Q).
The mathematical statement of the reciprocal theorem in
solving for this internal unknown displacement (the Somigli-

ana identity) can be written as

ui(Q)+fTij(Q,S)uj (s)as=[v;(@,5)t; (s)as+[v;(@,5)b; (5)aa
or (2.3)
u;(Q)=[U;0,8)t (s)ds+[U; (0, 8)b; (s)a-[T; (@, ) u; (5)ds

After computing the displacements at any point within
the domain under consideration by equation 2.3, the stresses
at this specific point can be computed by ordinary strain-
displacement and stress-strain relationships. The method to
calculate the stresses at an internal point is presented in

section 2.3.

2.2.4 Boundary Integral eguation

The boundary integral equation which is the starting

equation of the boundary element method relates the



u.(Q) +ﬁ.- (Q,5)u;(s)ds =ﬁ..(o.s)t-(s)ds +ﬁl--(0.s)b-(s)dA
or | 3 ! ) )

J J J
ui(Q) =f;jij(o.s)tj(s)ds +ﬁij(°.5)bj‘5)dA -f;ij(o'S)uj(S)ds
e X2
A A
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ua(S). ta(S) UIZ(Q'S)' le(O.S)
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r S
-------- -Auxiliary
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- Boundary
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. ul(o) --Actual !
Boundary
Region R
> Xy > X
(a) Actual Boundary with Known Tractions (b) Auxiliary Boundary and Its
and Displacements Fundamental Solutions

Figure 3. 1Illustration of Somigliana Identity
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unspecified boundary displacements and tractions of the
given problem to the specified boundary displacements and
tractions plus the solution to another problem for the same
region. Considering the Kelvin's problem, the Somigliana
identity is not adequate to obtain boundary solutions unless
the displacements and tractions on the boundary are known.
The boundary integral equation can be treated as a lim-
iting case of the Somigliana identity (equation 2.3) as load
point Q moves to the boundary. The formulation of the
boundary integral equation at singular point Q is shown in
Figure 4. 1Imagine that the actual region R with boundary C
is mapped into an infinite plane and a unit force is applied
at the image of point Q on the auxiliary boundary in this
plane in the X; direction; then all of the displacements
UU(Q,S) and tractions T”(Q,s) on the auxiliary boundary can
be determined from the fundamental solution (eguation 2.2)
and the boundary integral eguation at point Q can be gener-

ated from the reciprocal theorem.

ci(@)u; (@)+[T,(2,5)u; (s)as = [u;(@,5)¢; (s)as
+ [u;40,5)b; (s)aa (2.4)

Where i is a constant, cij is equal to 0.5C2j for a smooth
boundary but generally is different from this value (12).
Fortunately explicit calculation of this value is unneces-
sary as it can be computed by using the rigid body motions
explained later.

Boundary integral equations are used to compute all

unknown displacements and tractions on the boundary of a
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given problem. 1In fact, because either the displacement or
traction is unprescribed at each boundary point in X, direc-
tion and because only one boundary integral eguation can be
generated at this specific boundary point in this direction,
a set of simultaneous eguations can be generated and the
unknown displacements/tractions on the boundary can be
solved since the number of boundary integral equations is
equal to the number of unprescribed boundary displacements/

tractions.
2.3 Stresses at Internal Points

The Somigliana identity (equation 2.3) is a continuous
representation of the displacement at a point Q within
region R. Therefore, the stress state at this point can be
evaluated by combining the derivatives of equation 2.3 with
respect to the coordinates of Q to produce the strain tensor
and then substituting the result into generalized Hooke's
Law (13). The final expression of the stresses at an inter-

nal point Q of a two dimensional isotropic continuum is (14)

g;;(Q) =fYkijtk(S)ds +[Ykijbk(s)dA - [zkijuk(S)ds (2.5)
where the third order tensor components qu and Zkij are
Ykij = {(l-ZV)[é&ir,j+éﬁjr,i—éijr,k]+2r,ir,jr,k}
/4Tr(1-Y)r] (2.6)

Jr
Zkij = 2V{Za_n[(l_2V)§” f,k'*'Z/(é\ikr,j +é\jkr'i )-4r'i r:j rrk]

+22/(nir,jr,k+njr,ir,k)+(l-27/)(2nkr,ir,j+nié;jk (2.7)
+n, 5ik)'(1‘47/)“k5;j }/[4mm(1-V)r?]



18
2.4 Numerical Implementation

Equations 2.3, 2.4, and 2.5 cannot be solved explicitly
as the functions inside the surface/line integrals are very
complex. By performing discretization, numerical integra-
tion, and special treatment of body forces, the surface/line
integrals can be transformed into a finite system of alge-
braic equations which are the approximate solution of a
field problem.

The required steps of numerical implementation for the
boundary element method can be summarized as follows:

1. The boundary C is discretized into a series of ele-
ments over which displacements and tractions are chosen to
be piecewise interpolated between the boundary nodes. The
domain R is discretized into a number of cells which are
used to calculate the integrals involving body forces.

2. The boundary integral equation (equation 2.4) is
applied at each boundary node Q on the boundary C and the
integrals are computed numerically over each boundary ele-
ment. A system of linear algebraic equations are thus gen-
erated for a given problem.

3. Boundary conditions are imposed on the boundary C
such that the resulting unknown displacements/tractions can
be solved from the linear algebraic equations established in
step 3.

4, Internal displacements (equation 2.3) and stresses
(equation 2.5) for any point of interest can be obtained by

numerical integration.
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2.4.1 Matrix Formulation

For convenience equations 2.3, 2.4, and 2.5 are
expressed in matrix form as follows. The boundary integral

equation

i (@)u; (@)+[T(0,8)u; (s)as = [u;(e,5)¢;(5)ds
* | U;(Q,S)b;(s)dA (2.4)

can now be expressed in matrix form instead of using indi-
cial notation. The displacements and tractions on the
boundary C are expressed as {u} and {t}, and the body forces
over the domain R are defined as {b} such that
U £ b
{u} = , {t} = » {b} = (2.8)
Ua t2 ba
: : Q
The displacements at load pcint Q are denoted {d }. 1In

addition, the following three matrices are defined:

(U]l = , =
Q c(Q) 0 )
[c ] =
0 coAQ)

where the coefficients UH(Q,S) and T”(Q,S) in matrices [U]
and [T] are the fundamental solutions of displacement and
traction in the Xj direction due to a unit force acting at
node Q in X, direction. The matrix form of equation 2.4 can

be written as
Q Q
[c 1{d }+j}T]{u}ds = fEU]{t}ds+!EU]{b}dA (2.10)

This formulation is valid for a load point Q on the boundary
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C. Note that [T], [U], and {b} are known and the diagonal
terms in matrix [c ] can be found from the rigid body
conditions (see subsection 2.4.3). The unknowns are the
unprescribed displacements and tractions over the boundary.
Similarly, internal displacements (equation 2.3) and
stresses (equation 2.5) at an interior point Q are written
in matrix form as follows. The matrix expression of equa-

tion 2.3 1is

0
(@} = [tviteias + [tultsian - [tritulas (2.11)

Where matrices [U] and [T] are already defined in equation
Q
2.9, {d } indicates the displacements at internal point Q.

The matrix expression of equation 2.5 is
Q
T} = f[Y]{t}ds + f[Y]{b}dA - ﬁz]{u}ds (2.12)

Q
The vector {O } and matrices [Y], [Z] are defined as

Y Y Yoy Ziyp o Zan
03} =(Tpp, [Y] = |Y o Y|, [2] = |2))5 Zpp (2.13)
T2z Y02 Yopp Zipp Zopp

The terms Ykij and Zkij in matrices [Y] and [2Z] can be calcu-

lated from equation 2.6 and equation 2.7.

2.4.2 Boundary Elements

Discretization is the process of dividing the given
boundary into an equivalent system of boundary elements.
The boundary elements may be constant, linear, qQuadratic, or

higher order in a two dimensional continuum. Figure 5 is an
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illustration of constant and linear boundary elements. The
domain under consideration is divided into a number of cells
which are used only for the numerical integration of the
body force terms and should not be confused with finite ele-
ments. Figure 5(a) shows a constant element where the val-
ues of displacement {u} and traction {t} are assumed to be
constant over the element, and the boundary node is

assumed to be located at the center of the element. Figure
5(b) shows a linear element j where the values of {uj} and
{t?} at any point are defined in terms of nodal displacement

J ]
{d } and nodal traction {p } of this element by

interpolation functions F, and F, such that

j FF 0O F 0 j T 3

wy=|! 2 {a’} = [F] {4’}
0 F 0 Fp

(2.14)

j F, 0 F 0 j T 3

(£ = | e {p'} = [F] {p}
0 FI 0 F2

The functions F, and F2 are given by

F, = 0.5(1-2§/L), F, = 0.5(1+23/L) (2.15)
where L is the element length. § is the distance between
the element centroid and any point of interest.

Linear boundary elements are used to demonstrate the
boundary element method. The boundary of a given problem is
divided into linear elements and two boundary nodes are
placed at the ends of each element. Equation 2.14 is sub-
stituted into eguation 2.10 to obtain an approximate bound-

ary integral eguation for load point Q:
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Q Q T 3 -

(e 148 1+ 5, L([ITIF] as)Ma’3] -
j=1 Cj

(2.16)

T j K ]
L ftotel as) tp }]+a(ﬁul{b }aa)
where the summation from j = 1 to M indicates summation over
M elements on the boundary and Cj is the boundary of element
j. The summation from s = 1 to K is carried out over the
internal cells and A. is the area of cell s.

Applying numerical integration, equation 2.16 becomes

(15)

Q. 09 L T j
[c 1{a 3+ [{|V ([Tllr] ) }{a }] =
eI G G D),
(2.17)
ﬁ&[{ I 3 (full ]T) H j}] 3 []J] 3 ([ ]{bs}) ]
v UlLF + J w U
=1 | Egaw' r 2P éga ééa r r

Where L and I are the number of integration points; w, are
T

r
weighting coefficients; ([T][F]T)r, ([ul[F] ), , and
([U]{bs})r are the values of the function at the integration
points; |V| is a scale factor equal to the half length of
the linear boundary element; and |J| is the Jacobian for the

internal cell under consideration.

2.4.3 System of equations

Equation 2.17 gives two influence equations corre-
sponding to a particular node Q. The evaluation of the body

s
force term at cell s produces a vector {B }. The terms

L T L T
(V] 5w (T10F1), ) and ([v] Syw, ([0)LF) ), )
r=1 r=
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relate the "Q" node with the nodes of the "j" element over
which the summation is carried out. These two 2X4 matrices
are denoted [hqj] and [gqj]' and equation 2.17 can be

expressed as two algebraic equations:

Q Q j M j K s
[c 1{d }+ (fh,.1{d }) = ([g..1{p })+ {B } (2.18)
RERIPHEN 2 oy 10 D+ 3y

Eguation 2.18 relates the value of displacement at node Q
with the value of displacements and tractions at all the
nodes on the boundary, including "Q".

After assemblage of equation 2.18 for each boundary
node, a set of simultaneous algebraic equations can be

expressed in matrix form as

[c]{D} + [H]{D} = [G]{P} + {B}
or (2.19)
[H]{D} = [G]{P} + {B}

where [H] = [c] + [H], and [c] is a diagonal matrix. {D} is
the nodal displacement vector and {P} is a vector of nodal
tractions on the boundary.

The diagonal coefficients in matrix [H] can be obtained
by applying rigid body conditions (16). For a unit rigid
body displacement in any one direction, equation 2.19
becomes

(H][1;] = [0] (2.20)
where [I;] is a vector defining a unit rigid body displace-
ment in the X; direction. Hence the diagonal terms of [H]

are simply
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N
V-4

h.. = - h, (2.21)
1
k

e
E |}

where N is the number of boundary nodes. This equation
means that the diagonal terms in matrix [c] do not need to
be determined explicitly.

As N1 values of displacements and N2 values of trac-
tions are prescribed (N1+N2=2N), after reordering the equa-
tions such that the 2N unknowns {X} appear on the left hand
side, equation 2.19 can be written as

[A]{X} = {F} + {B} (2.22)

2.4.4 Internal Displacements and Tractions

The displacements and tractions at an interior point Q
can be computed ohce the nodal displacements {D} and trac-
tions {P} on the boundary are found from equation 2.22.

Assuming the boundary under consideration is discre-
tized by linear elements, the displacements and stresses at
node Q can be obtained by substituting equation 2.14 into
equations 2.11 and 2.12. Hence the internal displacements

at point Q can be expressed as

@ = 5 1([toltel as) s ([to1ts 1am)
d = Ul[F s)ip + UJib A
J:l C. S;. As
J (2.23)
M r T j
- 2 L(JITIIF] as){d"}]

j=1 Cj

and the internal stresses at point Q can be expressed as
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0 M T i K s
g1l = [(/[Y][F] as){p }]+ ([[Yl{b }aa)
;gi j;j SItP égi j;s ( )
2.24

" L ftzite) as (a1
- ZJLlF
J;. Cj °

where {dj} and {pj} are the nodal displacements and
tractions at element j. The summatign from j = 1 to M indi-
cates summation over M elements on the boundary and Cj is
the boundary of element j. The summation from s = 1 to K is
carried out over the internal cells and A, is the area of
cell s.

Applying numerical integration (usually the Gaussian
quadrature scheme), the values of {d } in equation 2.23 and

the values of {O } in equation 2.24 can be determined.
2.5 Traction Discontinuity

Special techniques are required to deal with traction
discontinuity problems. These problems will arise when the
boundary is discretized by linear elements because linear
interpolations cannot be applied to the tractions over the
element for which a specific boundary node has two different
values of tractions.

Two concepts have been applied to simulate traction
discontinuities over the boundary: the concept of double
nodes (17) and the concept of an artificial small element
(18).

In the concept of double nodes, two boundary nodes are

placed with exactly the same coordinates without any bound-
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ary element in between. This approach is illustrated in
Figure 6. Figure 6(a) represents traction discontinuities
over the boundary in a real problem. Figure 6(b) illus-
trates the concept of double nodes, which defines the con-
nectivity of the elements where traction discontinuities can
be simultated by assigning different values for the trac-
tions at node j, t(j), and node k, t(k). However, this
approach has a limitation when both nodes have a prescribed
displacement component in the same direction. This condi-
tion generates a singular matrix [A] (such possibility vio-
lates the displacement continuity condition) (19).

In the concept of an artificial small element, an arti-
ficial element is placed to simulate traction discontinu-
ities as shown in figure 7. Figure 7(a) represents the
actual distribution of traction discontinuities over the
boundary. Figure 7(b) represents the modified distribution
of tractions by using an artificial small element where

traction discontinuities no longer exist.
2.6 Symmetry Conditions

Symmetry about a vertical axis may exist for certain
soil-structure interaction problem when the elastic proper-
ties of the material, the geometric configuration of the
boundaries, and the loading conditions are all symmetrical
with respect to the vertical axis. The effects of symmetry
cause no horizontal displacements and no shear stresses

along the vertical axis.
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Two physical consequences should be noted in the incor-
poration of symmetry conditions in the boundary element
method:

1. Only one half of the given problem is analyzed by
reflecting the image of nodes, elements, and internal cells
at the appropriate location with respect to the line of sym-
metry.

2. When symmetry conditions are taken into considera-
tion, the contribution of an actual boundary node to the
image elements and cells can be replaced by the contribution
of an image node to the actual elements and cells. The
results of reflection for symmetry about a vertical axis are
that the horizontal displacements and shear stresses at the
actual and image boundary node/element are always equal in
magnitude but opposite in sign and that the vertical dis-
placements and normal stresses are always equal.

In order to explain the incorporation of symmetry about
a vertical axis in the boundary element method, eqguation

2.16 is repeated for completeness:

Q Q M T j
[c 1{d }+ [C{[T]IF] ds){d }] =
¢ PN [C :
J (2.16)
M T j K s
[(|[{u]lF] as){p }]+ ({[ul{b }aa)

This equation is the discretized form of the boundary inte-
gral equation which relates the value of displacement at
node Q with the value of displacements and tractions at all
the nodes on the boundary, including "Q".

The consideration of symmetry about the vertical (X2)
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axis is shown in Figure 8. Figure 8(a) shows a given prob-
lem which is symmetrical about a vertical axis. This prob-
lem can be solved by generating the boundary integral equa-
tion in a form such as equation 2.16 without taking the
symmetry into account. Figure 8(b) shows the same problem
as in Figure 8(a) for which the entire domain is divided
into two halves. The one on the right hand side is the
actual problem and the other is the image of the actual
problem. For each boundary node Q, element j, and internal
cell s in the actual problem, an image boundary node Q',
element j', and internal cell s' are reflected on the oppo-
site side with respect to the line of symmetry. Due to the
influence of this reflection, the coordinates of any image
point S can be written in terms of the coordinates of the
corresponding actual point S as

X (s') = -X (8), X5(8") = X,(S) (2.25)
Note that the actual and image nodes (or elements) coincide
along the line of symmetry.

Assuming that I and L represent the number of elements
and internal cells in the actual and image problem, respec-
tively, several terms in equation 2.16 can be seperated into
actual and image parts as follows:

QO o I T . I T 3!
[c 1{d }+ [(|[T]I[F] as){a }]+ [C]IT'][F] as){ad }]
© ;g% j;j ézll C}

I T j I T !
= [({[UllF] as){p }]+ [({[u']lF] @s){p }] (2.26)
}5} j;j P ;ZLI j;i TP
s L s’
(ﬁU]{b jaa)+ 3 ([lu1p taa)
= As s'=1 Aé

L

&
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where the summation from j or j' = 1 to I indicates summa-
tion over I actual or image elements. The summation from s
or s' =1 toL is carried out over the actual or image
internal cells. The terms
T j! I T j’
i} [C|[T']I[F] d@s{a }], 23 [(j}U'][F] ds{p }1,
j'=1 C! ' =1 (O
) } (2.27)

L s
and ({{u']l{b }da)
s' =1 é

represent the contribution of actual node Q to each image
element j' and cell s'

The remaining task is to seek the image of actual node,
Q', such that the terms in eguation 2.27 can be replaced by
the contribution of Q' to each actual element j and cell s.

The mathematical statements are as follows:

ﬁ% (J}T][F] as){d 1]

I
23 (JEU][F] ds){p }]

T i
é: [({[T']1[F] as){d }1],
a1 Je

23 [( [U 1[F] ds){p }] (2.28)

4 <j?ﬁ]{bs}aA> = (tu ]{g'}dA)
an = '
s; A SZ-- 1-7A 'S

T
where [F] is the interpolation matrix for both actual and

image elements. [U] and [T] are matrices to be evaluated in
terms of UU(Q',S) and TU(Q',S).

U”(Q',S) and TU(Q‘,S) are fundamental solutions at
actual elements when a unit force acts at image node Q'.
The definitions of fundamental solutions U”(Q,S‘), ﬁU(Q',S),

TU(Q,S'), and T”(Q',S) are given in Figure 9.
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For symmetry about the vertical axis, matrices [U'] and
[T'] can be expressed in terms of U, (Q' s) and T, (Q' S) by
substituting the coordinates of points Q, Q', S, and S' into
fundamental solution (equation 2.2) as
(acts on image elements) (acts on actual elements)
Ull(Q's‘)’ UIZ(Q,S')I UlI(Q',S)’-U‘Z(Q"S)
(U'l= =

=[U"]
U2|(Q,S'), UZéQ,S') —Ual(Q"S)' UZE(Q'IS)

(2.29)

(acts on image elements) (acts on actual elements)
T (Qrs')r T (Qrs') T (Q'IS)I—T (Q'IS)
I 12 | 12 —[T"]

To(Q,8"), TofQ,8")| [-T5(Q",8), T,4Q',S)

where point S is located at an actual element and point S'

(T']=

is the image of point S. Equation 2.29 can be substituted
for the matrix terms on the right hand side of equation 2.28
to evaluate the summation over actual elements instead of

over image elements. Therefore equations 2.28 become

2%[(]ET][F] ds) 1d }]-Z%[ ]ﬂT"][F] as){a 11,

E%[(jEUJ[F] as)(p 1] = z%[(jEU"][F] as) (o 11, (2.30)
and é;;(j;z]{b Jda) = ;Z%(j;z"]{b Jaa)

Matrices [U] and [T] are now ready to be computed once the
symmetry condition of nodal displacements and tractions
between actual and image elements, and body forces between
actual and image cells are considered. For instance, the
following relations should be satisfied when the vertical

axis is the line of symmetry.
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1d; 1p|' _lpl
2 ld‘ 1 \ 1
@1 =4 2N 2N T,
Zdl' Zpll _2p|
2d| zpv 2p
2 2 (2.31)
s' b; - b
and {b } = = '
by by

where superscripts 1 and 2 are the node numbers of an
element, and subscripts 1 and 2 indicate directions.
Matrices [U] and [T] can be determined in terms of UU(Q',S)
and TU(Q’,S) by substituténg equation 2.31 for the vector
terms on the right hand side of equation 2.30. The final

results are

-T,(Q',8),-T,(Q",S)
TZl(Q' rS)l T22(Q' rS)

-U”(Q’ rS) r_U|2(Q' lS)
U,(Q",S), UpdQ',S)

[U]= (2.32)

14

Equations 2.32 indicate that the coefficients in matrices
[U] and [T] can be found with appropriate signs from the
fundamental solutions at actual elements when an image node
is taken as the load point. Hence the discretized form of
the boundary integral equation need be analyzed only on
actual elements and cells to obtain effects for actual and

image nodes. Then equation 2.26 is reduced to

0 o I T j
[e 1{a b+ 3, [ [{ITIIF] +[TIF] }as){a 1] =
Jj=1 C.
J (2.33)
L T T j L s
[([1tullF] +[T1LF] }as){p }1+ > [ [([U1+[T1){b }da]
}g& j;- P éga j;s

J
This equation is the compact form of the boundary integral
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equation which incorporates the symmetry condition about a
vertical axis.

Similarly, under the same symmetric condition, the dis-
cretized forms for internal displacements and stresses are

expressed as

0 I T T j
(@} = X [([(lullr] +[TIIF] Jas)ip }] -
j=1 -“C.
J (2.34)
I - T T j L s
CC[TITIIF) +ITIF) 3as){a 11+ 50 L [([UI+[01) {b }dal
Ay Hie Rt

and

o) I T _ T j
0} = Ziufémm +[T11F] }as){p’}] -
J= :
J (2.35)
T _ T j L _ s
fiuf{[z]m +[Z1[F] }ds){d }]+2[ﬁ[Y]+[Y]){b }da]
j= C. s=1 “A
j S
where [Y] and [Z] are influences performed on actual
elements and cells due to a unit force acting on image
nodes. The matrices can be represented in terms of the

coefficients in [Y] and [Z] with appropriate signs:

T o 2y Zo
[_Y-] = ‘YHE "Ya'e ’ [E] = "Z“2 —ZZIZ (2.36)
Y22 Yop2 Zi22 Zop2

Performing numerical integration on equations 2.33,
2.34, and 2.35, the problem may be solved by considering

only half of the boundary and domain of interest.



CHAPTER II1
THE FINITE ELEMENT METHOD
3.1 Introduction

The finite element method is a digital method for
stress analysis and other field problems of large size. It
is an especially powerful method for Soil Structure Interac-
tion problems for which the complex behavior of soil, struc-
ture, and the interface between soil and structure can be
simulated by different types of finite elements.

The finite element method is classified into three
approaches depending on the selection of assumed displace-
ment or stress function over the continuum: the displace-
ment method, the equilibrium method, and the mixed method.
Displacements are assumed as primary unknown guantities in
the displacement method; stresses are assumed as primary
unknown quantities in the equilibrium method; and some dis-
placements and some stresses are assumed as unknown guanti-
ties in the mixed method. The displacement method is the
only one to be further presented in this report.

In the displacement method of finite element analysis
of a continuum, the continuous body-is represented by an
gssemb;age of discrete elements connected at various nodal

points to build a discretized model of the body. Assumed

38
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displacement functions are chosen to approximate the behav-
ior of the actual displacement field over each element. The
principle of minimum potential energy is usually applied to
obtain a set of equilibrium equations for each element. The
overall performance of the continuum can be established by
superimposing the equilibrium equations of each element.
After incorporating boundary conditions (prescribed dis-
placements along the boundary), the whole set of simultane-
ous equations are ready to be solved.

In order to achieve a realistic modeling in the study
of U-Frame-soil system by the finite element method, the
behavior of the U-Frame structure and the response of the
interface between the U-Frame structure and surrounding soil
must be examined. The idealization of the U-Frame structure
has been presented in section 1.5 and it can be discretized
by any type of 2-D finite elements. Isoparametric quadri-
lateral elements are used herein.

The soil/structure interface may produce discontinu-
ities in displacements and stresses. The physical behavior
of such discontinuities involves debonding and slip. The
term "debonding" describes the separation of the two blocks
of the continuum adjacent to the interface surface, which
are initially in contact. Subsequent contact can also
develop by the movement of the two blocks towards each
other. The term "slip" defines the relative motion along
the interface surface when the shearing force exceeds the
shear strength of the interface. The debonding and slip

make the discontinuities physically nonlinear; therefore,
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special solution techniques must be employed (20).

Previous attempts have been made to develop discrete
elements to represent the interface behavior. Goodman, Tay-
lor, and Brekke (21) developed a simple rectangular, two-di-
mensional element with eight degrees-of-freedom. With this
element, adjacent blocks of continuous elements can pene-
trate into each other. 2Zienkiewicz, et al. (22) advocate
the use of continuous isoparametric elements with a simple
nonlinear material property for shear and normal stresses,
assuming uniform strain in the thickness direction.

Goodman, Taylor, and Brekke's joint elements are
applied to model the interface between the U-Frame structure
and surrounding soil. As numerical difficulties may arise
in their suggested iterative procedure in simulating no-ten-
sion behavior along the interface, the iterative procedure
proposed by Zienkiewicz, Valliappan, and King (23)-which has

been proved always convergent-is employed instead.
3.2 Basic Steps of Displacement Method

The displacement method of finite element analysis can
be considered to involve six steps (24)(25).

Step 1. Discretization of a continuum: Discretization is

the process of dividing the given body into an equivalent
system of finite elements. In particular, for the infinite
continuum such as encountered in SSI problems, only a sig-
nificant portion of such a continuum needs to be considered

and discretized.
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Step 2. Selection of element displacement function: In this

step, a pattern of solution for the unknown displacements is
assumed over each element. A number of conditions must be
satisfied for the chosen pattern to yield a satisfactory,
consistent, and convergent solution. Details of mathematics
of these requirements, such as conforming and nonconforming
conditions can be found elsewhere (26). 1In general, the
assumed displacement function {u} is in a polynomial form
expressed in terms of a series of interpolation functions
[N]T and a set of nodal displacements {d} such that

T
{u} = [N] {d} (3.1)

Step 3. Derivation of element stiffness and element egua-

tions: Several procedures are available for the derivation
of equations defining properties of a finite element. The
strain vector {€} and stress vector {0} are first calculated
in terms of the matrix of differential operators [Q] and the
elastic matrix [C] by strain-displacement and stress-strain

relationships.

T
[O1IN] {4} = [Bl{a} (3.2)
[cl[Bl{a} (3.3)

[31{u}
[clie}

The total strain energy in an element is then calculated and

{€}
{T}

the element stiffness [k] can be derived from the principal
of minimum potential energy by taking the first variation of
strain energy with respect to nodal displacements. The

strain energy and the element stiffness can be expressed as

T T T
S.E. =[0.5 {€} {olav = O.Bﬁd} [B] [cl[Bl{d}lav (3.4)
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T
[k] =f[B] [cl[Blav (3.5)

where the integral denotes a volume integral performed over
a 3-D element or an area integral performed over a 2-D ele-
ment. An element in the stiffness matrix [k], kij' is the
influence coefficient which indicates the force induced in
the ith degree-of-freedom due to a unit displacment allowed
in the jth degree-of-freedom.

Since the surface/body forces acting on the element can
be converted into an equivalent nodal force vector {sb}, a
set of simultaneous algebraic equations is generated when
the equilibrium relation among the stiffness matrix [k],
nodal force vector {r}, equivalent nodal force vector {sb},
and nodal displacement vector {d} is applied:

[k1{d} = {r} + {sb} (3.6)

Step 4. Assembly of element stiffness and nodal forces:

Equation 3.6 is evaluated for each element in the structure
and combined to obtain a stiffness relation for the entire
system. This is done by the "direct stiffness method" by
adding the matrix equations for each element one by one.
Again, the overall equilibrium equations can be expressed as
a set of simultaneous algebraic equations in terms of global
stiffness [K], global nodal force vector {R}, displacement
vector {D}, and equivalent nodal force vector {SB} due to
surface/body forces for the entire body. Thus,

[k]1{D} = {R} + {SB} (3.7)
Before the set of simultaneous equations, 3.7, can be

solved, prescribed displacement boundary conditions must be
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taken into account by appropriate modifications.

Step 5. Solutions for the unknown displacements: The alge-

braic eguations assembled in step 4 are solved for the
unknown nodal displacements {D}. 1In linear equilibrium
problems, this is a relatively straightforward application
of matrix algebra techniques. However, for nonlinear prob-
lems the desired solutions are obtained by a sequence of
steps, each step involving modifications of the stiffness
matrix and/or load vector.

Step 6. Computation of element stresses and strains: In the

displacement method, nodal displacements are computed as
primary unknown quantities by solving equation 3.7.
Stresses and strains are the secondary quantities that can
be computed based on the nodal displacements from equation

3.2 and equation 3.3.

3.3 The Isoparametric Formulation

of Quadrilateral Elements

The concept of isoparametric elements has been used
commonly for the finite element formulations. It offers a
number of advantages such as efficient integration and dif-
ferentiation, and easy handling of curved and arbitary geo-
metric shapes. The basic idea of isoparametric elements is
to express both the displacement and the geometry of the
element by using the same interpolation functions N, .

For a four-node qQuadrilateral isoparametric element
shown in Figure 10, the displacements at any point within

this element are given by
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N O Np; O Ny 0 Ng o0
{ul =
0 N, O Np O Nz 0 Ny

T
{d} = [N] {d} (3.8)

T
Where {d} is the vector of nodal displacements, [N] 1is the

interpolation matrix.

In the isoparametric concept, the coordinates of any
point within the element, {x}, can be expressed in terms of
the same functions Ni' Hence,

N, 0 Ny O Ny 0 Ny 0

T
{x} = {xq} = [N] {x.} (3.9)

0 N, O Ny 0 Ng 0 N
where {x,} contains the coordinates of the nodal points.
T
The matrix [N] 1in equations 3.8 and 3.9 is composed of
the following interpolation functions:

L= (=8 (-m/e, Ny = (1+8) (1) /4
(1+8) (197 /4, Ny = (1-8) (147 /4

If plane strain conditions are assumed, the strain-dis-

N

(3.10)

N3

placement relation for small strains is

du
EX -
ox
v
{€} =< &y p = — = [B]{d} (3.11)

to)'¢

7’ Ju av

— e —

XY 9y oX

where [B] is obtained by taking appropriate derivatives of N,
T

in matrix [N] of eguation 3.8.
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oY

The global (x,y) and local (gfn) derivatives

dXx QY 93X QY 9x 93y

related through the Jacobian as

-1} 9 -1 1
= [J] , where [J] = —
ON, ||
2
is the determinant of [J]:
ox g3y
a& & n 2N o,
|g| = det =
3x a3y i=l j= 8§ afr;
on

where n is the

0
3N
4 (3.12)
ay
aN,
oX
are
3y -3y
om %
(3.13)
-9x ox
an  ag
aN; av; ( )
v, (3.14
a§ aq; ‘YJ

number of nodes in the element.

The variational functional for the displacement method

is given by the potential energy‘ﬂb of the system, which can

be written as

7T =

Where 0.5{€} {0}dV is the strain energy per unit volume,

T T
o 0.5/25} {a?dvi/;u} {b}dvi[}
T

T
u} {t}ds

(3.15)

{b}

and {t} are the prescribed body force and surface traction

vector respectively.

By assuming that the material behavior is linearly
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elastic, the stress-strain relation can be expressed for the

plane strain case as

(75( 1-v 0 Ex
E
{o} =(ay »= 1-v 0 KE&,p= [clie} (3.16)
(1+v) (1-2v)
Ty 0 0 1-2V| %y

where [C] is the elastic matrix, E is Young's modulus, and
Vv is Poisson's ratio. Substitution of equations 3.8, 3.11,

and 3.16 into equation 3.15 leads to

T T T
T, = O.Sﬁ{d} [B] [cl[Bl{d}-2{d} [N]{b})av -

T
[{d} [N]{t}as

By taking the first variation of‘nb with respect to nodal

(3.17)

displacements and considering the principal of minimum

potential energy,

&ty = 0 (3.18)
the following is obtained
(k1{a} = [INIiblav + [INItelas = (o} (3.19)
where for the element in Figure 10
1 /1 T
(k] = hfl[l [B] [clB]|J|a&dam (3.20)
and
1 /1
{r} = hf f [N1{b}|J|a Eam+ hﬁN]{t}dS (3.21)
-1J-1

in which h is the thickness of the element; for plane strain

conditions h is taken as unity.
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3.4 Analysis of Joint Elements

A discontinuity at the interface between the U-Frame
structure and surrounding soil can be simulated as a special
kind of joint between faces of blocks. The characteristic
of joint elements is that they will separate in response to
tension, slide in response to shear, and transmit any force
in response to compression.

Figure 11 shows a four-node joint element. This ele-
ment has length L and very small width h. The origin is at
the center and ' is the angle between local (s,n) and global
(x,y) coordinate systems.

The derivation of the joint element stiffness matrix is
obtained from the work of Goodman, Taylor, and Brekke (21).
The iterative solution to simulate real properties of joint
elements is based on the so called "load transfer method”

proposed by Zienkiewicz, Valliappan, and King (23).

3.4.1 "Strain"-Displacement Relationship

for the Joint Elements

The strain-displacement relationship [BJ] describes the
relative displacement between joint walls JK and HI (see
Figure 11) as a function of nodal displacements {d}g,N-.

T
{dlg,N = {uy vy u v u; v, ug Vg ! (3.22)

where u; and v, are the displacements of node i in the tan-

gential and normal directions.
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The joint "strain" is defined as the relative displace-
ment between wall JK and HI in the tangential and normal
direction. Thus, the shear "strain" )\u and normal "strain"
A\v are given by

top bottom

AU u - u

{EJ}S,N = (3.23)

top bottom
)y v - v
where {EJ}SrN is the strain vector in local coordinate sys-
tem.
The displacements in the joint element can be expressed
in terms of nodal displacements {d}g,N through a linear

interpolation formula. Thus, the displacements along the

bottom wall HI are

bottom uy
u 1-2s/L 0 1+2s/L 0
VH
= 0.5 (3.24)
bottom u,
v 0 1-2s/L 0 1+2s/L

I1f a=1-2s/L and b=1+2s/L, with a similar expression, the

displacements along the top wall JK are

top u,
u b 0 a 0
M|
= 0.5 (3.25)
top uy
v 0 b 0 a
vk

Subsititution of equations 3.24 and 3.25 into equation 3.23

leads to
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\u -a 0-b 0 b 0 a ©0
{€ logn= = 0.5 {d}g/N
J AV 0-a 0-b 0 b 0 a
= [BJ]{d}s,N (3.26)
Equation 3.26 relates "strains" to nodal displacements for

the joint elements.

3.4.2 "Stress-Strain" Relationship

for the Joint Elements

Since the actual load transfer across a rough interface
may occur at point contacts, Goodman (27) defined the joint
element "stresses" as follows: the normal and shear
stresses on the interface wall are equal to the total normal
and shear forces per unit area (the thickness of the element

is taken as unity).

(-a's 1 |Fg
{UJ}S,N = = — (3.27)
Iy L | By

where {Oa}s,N = the "stress" vector of joint elements,

Fg tangential force in the joint element, and

FN
The "stress-strain" relationship for joint elements can

normal force in the joint element.

be expressed as

ke O
S
0, }sN = € Is,N = [ 1€ JsiN (3.28)
o kN J J J
where kg = stiffness per unit length in tangential direction

and ky = stiffness per unit length in normal direction.
The unit normal stiffness ky and shear stiffness kg can

be obtained from a direct shear test. For a joint element
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with length L and unit thickness, at first, a normal force
is applied and the specimen shortens. The joint normal
deformation \v is measured and it may be plotted against the
applied force per unit length, FN/L, as illustrated in curve
1l of Figure 12 (21). Similarly, the tangential deformation
Au may be plotted against the shearing force per unit
length, FS/L, as shown in curve 2 of Figure 12, when a tan-

gential force is applied.

3.4.3 Derivation of Joint Stiffness Matrix

When the "strain"-displacement and "stress-strain"
relationship are obtained for a joint element, the joint

stiffness matrix can be evaluated from equation 3.5:
T
[kl = |[B] [cl[B] av (3.5)

Thus, the joint stiffness [kJ]SrN with unit thickness can be
expressed in terms of its length L as
L/2
T
[kJ]s,N = (8,1 [c,1[B,] ds (3.29)
L/2
where [BJ] and [CJ] are given by equations 3.26 and 3.28.
The only terms in equation 3.29 varying along the
length are the products of a (1-2s/L) and b (1+2s/L) in
matrix [BJ]. After performing the integration with respect
to length for these a and b terms, equation 3.29 is reduced

to



Curve 1 Curve 2

Normal Shear
F.,/L Deformation Deformation

)y or )y

Figure 12. The Unit Tangential and Normal Stiffness of Rock
Joints from the Result of Direct Shear Test
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[kJ]s,N =

o |

2kg 0 1lkg 0 -lkg 0 -2kg O
0 2ky 0 1ky 0 -lky 0 -2ky
lkg 0 2kg 0 -2kg 0 -lkg O
0 1lky 0 2ky 0 -2ky 0 -1k,
-lkg 0 -2kg 0 2kg 0 1kg O
0 -1ky 0 -2ky 0 2ky 0 1lky
-2kg 0 -lkg 0 1lkg 0 2kg O
0 -2ky 0 -lky 0 1lky 0 2ky
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(3.30)

The task remaining now is to rotate the local stiffness

matrix [kJ]SrN to global stiffness matrix [kJ]x:Y with ref-

erence to Figure 11.

T
[k, Ix,y = [W] [k 1g,NIW]

in which [W] is the transformation matrix and

cosy siny 0 0 0 0 0 0
-siny cosy 0 0 0 0 0 0
0 0 cosy siny 0 0 0 0
0 0 -siny cosy 0 0 0 0
= 0 0 0 0 cosy siny 0 0
0 0 0 0 -siny cosy 0 0

0 0 0 0 0 0 cosy sin7r

0 0 0 0 0 0 -sinjf cosy

The final results can be expressed as

(3.31)

(3.32)

where 7 is the angle between local and global coordinate

systems.
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3.4.4 Iterative Solution to Simulate

Real Properties of Joint Elements

Joint elements are used to simulate the interface
between the U-Frame structure and surrounding soil. They
are generally incapable of sustaining tensile stresses.
Therefore, the assumptions for linear-elastic behavior can
only exist when all joint elements are subjected to compres-
sive stresses within the elastic limit.

The load transfer method is an iterative process
devised for the stress analysis of joint elements resulting
in a no tension state. The essential steps of the load
transfer method are summarized as follows (23):

1. Analyze the problem as an elastic one and compute
the principal stresses in each joint element.

2. At the end of stage 1, certain tensile stresses may
develop. As joint elements are assumed incapable of sus-
taining tensions, they should be eliminated without permit-
ting any point in the structure to displace. Hence,
"restraining" forces have to be applied temporarily to main-
tain the structure in "equilibrium" at this stage. Such
restraining forces along the wall of joint elements can be
evaluated by using the existing tensile stresses and shear
stresses. These restraining forces are transformed into
equivalent nodal forces in terms of the reverse procedure
used in calculating shear and normal stresses.

3. As the restraining forces do not in fact exist,

their effects have to be removed from the structure by
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superposition of equal but opposite nodal forces. The
structure in now reanalyzed with a new nodal force vector
which is updated at the nodes of joint elements by including
the "de-restraining” forces. The structure is again assumed
elastic and it will be found that tensions may still
develop. However, these tensions will be much reduced com-
pared with those of the previous stage.

4, If at the end of stage 3, principal tensions are
still in existence, steps 2 and 3 are repeated until all
tensile stresses are reduced to a negligible value.

The load transfer method which has been proved always
convergent (23) provides an effective treatment for the
iterative solution to simulate real properties of joint ele-
ments. As the global stiffness matrix remains the same
throughout, the inversion of this matrix must be computed

only in the first solution.
3.5 Incorporation of Symmetry Conditions

The incorporation of symmetry conditions in the finite
element analysis is simple. Only one half of the domain of
interest needs to be discretized and analyzed, since stiff-
ness matrices are symmetrical. Care must be taken that some
artificial displacement boundary conditions must be imposed
along the line of symmetry.

In the case of symmetry about a vertical axis, for
instance, the effects of such symmetry cause no horizontal
displacements along the vertical axis. Therefore, only one

half of the original problem need be analyzed by the proce-



dures presented in section 3.2 with imposed artificial
roller supports to prevent horizontal movements along the

vertical axis.
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CHAPTER 1V

THE COUPLING OF BOUNDARY AND

FINITE ELEMENT METHODS
4,1 1Introduction

The boundary and the finite element methods are appli-
cable to solve most engineering problems. Neither of the
two methods is a unigque technigue applied to elasticity
problems.

The finite element method discretizes the domain of
interest into a number of finite elements. The equilibrium
equations are then approximated by displacement functions
which satisfy displacement boundary conditions. The bound-
ary element method discretizes the boundary of interest into
a number of boundary elements. Both displacement and trac-
tion boundary conditions are then approximated by "fundamen-
tal solutions" which satisfy the equilibrium equations at
infinity. This implies that the idea of combining boundary
and finite element methods is of great interest in analyzing
the U-Frame structure as the surrounding soil extends to
infinity which can be better represented by boundary ele-
ments, Finite elements, on the other hand, are easier to
apply to simulate the U-Frame structure and the interface of

soil-structure system.
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In order to obtain the required matrices used in the
coupling of boundary and finite element methods, the element
equilibrium equation is rearranged and assembled such that
the global equilibrium equations can be expressed in a
fashion similar to that used for the governing boundary
integral equation.

The starting expression of an elasticity problem for a

finite element solution is presented in equation 3.19:

[k1{a} =f[N]{b}dV +[[N]{t}ds = {r} (3.19)

where {t} is the applied traction function over the element
side on the boundary and it can be linearly interpolated in

terms of the nodal traction vector {p} on the same side with

length L:
F, 0 F, 0 T
{t} = {p} = [F] {p} (4.1)
0 F 0 F,

where F|=l-2§7L and F2=1+2§/L.

Equation 4.1 is substituted into equation 3.19 and
equilibrium equations are assembled for each element, then
the global equilibrium equation for two-dimensional problems
can be written as

J T j
[K1{D} = 21 [NI[F] {P}ds” + {V} (4.2)
=

C

T
where {V} is the global body force term, [N] and [F] are
interpolation functions of nodal displacements and trac-
tions, and the summation applies over the side of the jth

element on the boundary. Thus, the integral terms in this
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T

equation can be evaluated as matrix [M] from:
J
[N][F] {P}ds = [MI]{P} (4.3)
C.

j=1jc;

where [M] is the distribution matrix. The coefficients of

a=

[M] depend on the type of interpolation functions used for
the displacements and tractions. Hence the global equilib-
rium equation becomes

[K]{D} = [MI{P} + {V} (4.4)
which is similar to the governing boundary integral equation

[H]{D} = [Gl{P} + {B} (2.19)

Suppose that a given problem consists of two regions,

R* and R? as shown in Figure 13. Region 1 is studied using
finite elements and region 2 is formulated by boundary ele-
ments. r;is the interface between the two regions. The
compatibility and equilibrium requirements along the inter-
face when the two regions are joined together are

1 = 2 1 2 =
U[ UI P[ + PI 0 (4.5)

in which Uf, Uf, Pf, and Pf refer to the displacements and
tractions on the interface for regions 1 and 2.

The coupling of boundary and finite element methods may
be achieved in either of two ways: by considering the whole
problem using an equivalent boundary element method or con-
verting the boundary element subregions into an equivalent

finite element method (28)(29). These two approaches will

be described in detail in the following sections.
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Figure 13, Domain Divided into Finite and
Boundary Element Regions
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4.2 The Equivalent Boundary

Element Method

In the equivalent boundary element method, region 1
(see Figure 13) is treated as a boundary element type

region. For this region, equation 4.4 can be written as

D! P!

[KR? K:] = [M* M:] + {Vv} (4.6)
I Dl I P.l
I I

‘and for region 2, eguation 2.19 becomes

2 Pz
(a2 w21 13=1p[62 621{ I} + (B} (4.7)
I DZ I PZ
by letting R[ = 3{ = - %; and U1 = Uf = Uf which satisfy the

compatibility and equilibrium conditions (equation 4.5).

Equations 4.6 and 4.7 can be reordered as follows:

Dl

[K* Ki Mi] D; [M*1{P*} + {V} (4.8)
and

[G*1{p*} + {B} (4.9)

H? -G? H? P
[ I 1 ] 1

DZ
Writing equations 4.8 and 4.9 together as a single matrix

equation, yields

Dl
K: KX M: 0
I [ D M 0 p: v \
IV, + (4.10)
P 0 @ p: B
0 HZ _Gz H2 I
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Notice that on the boundary of finite element region R?,
only the displacements have to be prescribed; however, on
the boundary of R?, displacements or tractions need to be
defined. The disadvantage of the equivalent boundary ele-
ment method is that the equations of the boundary element

region must be reordered.
4.3 The Equivalent Finite Element Method

The equivalent finite element method transforms the
boundary element region (region 2 in Figure 13) into a
finite element type region. The traction {P} in equation

4.4 can be computed by inverting matrix [G].

-1
[G] ([H]{D} - {B}) = {P} (4.11)
Premultiplying equation 4.11 by matrix [M] defined by

equation 4.3 yields:

-1 -1
(IM][e] [H]){D} - ([MI[G] ) {B} = [M]{P} (4.12)

Hence the following can be defined:

[K'] = [M][G]l[H], {v'} = [M][G]l{B}, {R'} = [M]{P} (4.13)
Thus equation 4.12 has the same form of a finite element
problem:

[K']{D} = {R'} + {V'} (4.14)
The main difficulty in the above formulation is that the
matrix [K'] is generally unsymmetrical, although from the
reciprocal theorem a stiffness matrix should be symmetric.
The asymmetry is due to the approximation involved in the

discretization process and the choice of the assumed solu-
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tion (29). The matrix can be made symmetric by applying the
least square method to the nonsymmetric off-diagonal terms.

After minimizing the errors, the new symmetric coefficients

are

k = 0.5 (ki'j + k!.) (4.15)

1) Ji

The equivalent finite element type matrices of equation
4.14 may be assembled with matrices obtained from region 1
to form a global system of equations. The disadvantage of
this method is that the inverse of matrix [G] must be com-
puted and a number of matrix multiplications must be per-
formed.

As the equivalent finite element method involves a num-
ber of matrix multiplications, it needs more computer execu-
tion time and requires more storage to save the intermediate

data in the multiplication process. Therefore, the equiva-

lent boundary element method is employed here.



CHAPTER V
DESCRIPTION OF COMPUTER PROGRAMS
5.1 Flowcharts of Computer Programs

The equivalent boundary element approach of the
coupling of boundary and finite element methods has been
coded in program BOUFIN to implement the numerical processes
developed in chapters II, III, and IV, The displacement
approach of the finite element method alone has been coded
in program FINITE since general purpose programs STRUDL and
NASTRAN can not simulate the behavior at soil/structure
interface. Both programs are written in the FORTRAN pro-
gramming language. In program BOUFIN, isoparametric quadri-
lateral elements are used to simulate structure behavior;
linear boundary elements and internal cells are used to
model the boundary of surrounding soil and to compute the
body force terms of soil mass. In program FINITE, isoparam-
etric quadrilateral elements are employed for both structure
and surrounding soil.

The flowchart of program BOUFIN is shown in Figure 14,
which presents the essential numerical procedures performed
in the coupling of boundary and finite element methods. To
check if the soil-structure system is symmetrical about a

vertical axis is crucial as, unlike the finite element
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r/Input required data

Compute element stiffness for U-Frame
(eq. 3.20) and joint elements (eq. 3.31)

Assemble element stiffness
matrices into global matrix

Modify global matrix and load vector
by considering displacement boundaries

v
Generate distribution matrix [M] (eq. 4.3)
and assemble it into global matrix (eq. 4.10)

Generate matrix [H] and [G] based
on boundary integral equation

I

O

matrices into global matrix (eq. 4.10)

Reorder matrix [H} and [G] and assemble the

Calculate right hand side vector by
considering boundary conditions

Solve the simultaneous equation by the

>l global matrix and right hand side vector

Yes

Are tensile stresses along
he interface negligible

No

Add the restraining force vector

No Generate Matrix
3 [H] and [G]
from eq. 2.16

Is the problem symmetric
about vertical axis ?

ves |

| Generate matrix [H] and [G] from eq. 2.33

v

O

< at the interface to the previous
right hand side vector

Compute required internal stresses
and displacements at U-Frame

(eq. 3.3), soil (eq. 2.23, 2.24), |
and interface (eq. 3.23, 3.28)

v
r/ﬁutput stresses and displacements

Stop

End

Figure 14, Flowcharts of Program BOUFIN
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method which can satisfy required symmetry conditions by
simply modifying displacement boundaries, special treatments
must be taken into consideration. Note that in the formula-
tion of matrices [H] and [G], the required integrals are
evaluated analytically to obtain more accurate results for a
linear boundary element with singularities at either of its
extremities (30).
The flowchart of program FINITE is shown in Figure 15,

which presents the essential numerical procedures adopted in
the finite element method alone. It requires fewer steps

than those in program BOUFIN.
5.2 Guide for Data Input

This section provides the details of required data
input to run programs BOUFIN and FINITE. Due to the facili-
ties in evaluating the complex behavior in the interface of
soil-structure system, each joint element can be considered
as part of the structure and part of the interface. For
instance

1. The nodes on the side of a joint element attached to
the structure are classified as sructure nodes; however, the
nodes on the other side are classified as interface nodes.

2. All joint elements are classified as structure ele-
ments; however, the side of each joint element attached to

the soil mass is classified as an interface element.



r/Tnput required data |

Compute element stiffness for U-Frame, soil
(eq. 3.20), and joint elements (eq. 3.31)

Assemble element stiffness
matrices into global matrix

Modify global matrix and load vector by
considering displacement boundaries

v

O

Figure 15.

©

Solve the simultaneous equation by the
global matrix and right hand side vector

Yes

Are tensile stresses along
he interface negligible

No

Add the reﬁtrainlng force vector at the interface

to the previous right hand side vector

compute required internal displacements and

stresses at U-Frame, soil (eq. 2.23, 2.24) "
and interface (eq. 3.23, 3.283

r/0utput stresses and displacements

!

Stop

End

Flowcharts of Program FINITE
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5.2.1 Numbering Scheme in Soil-Structure System

The following are the restrictions imposed on numbering
nodes and elements in the soil-structure system.

1. Each node and element (including internal cells)
must be assigned a positive number in sequence starting from
the number "one". The U-Frame structure is numbered first,
followed by the interface between structure and surrounding
soil, then the soil mass. Note that the U-Frame structure
must be counted before the interface which, in turn, is num-
bered before soil mass, otherwise, the computer programs do
not run properly.

2. The element incidences should be designated in a
counterclockwise direction for isoparametric quadrilateral,
joint, and linear boundary elements. Moreover, in order to
establish the local coordinate system for each joint ele-
ment, the two nodes on the side attached to the soil mass

are designated first.

5.2.2 Data Format

All data input are read in free field formats. Data
items should be separated by one or more blanks/commas. No
restrictions are imposed to tell integer numbers from real
numbers; however, the exponential forms for real or integer

numbers are prohibited.

5.2.3 Predefined Data File

In addition to the numbering rules and format require-
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ments in subsections 5.2.1 and 5.2.2, the following pertain
to the input data description in the next two subsections.

1. The only accepted unit for length is "inch" and the
only accepted unit for force is "kip".

2. A line of input may require both alphanumeric and
numeric data items. Alphanumeric data items are enclosed in
single quotes.

3. A line of input may require a keyword. The accepta-
ble abbreviation for the keyword is indicated by underlined
captital letters, namely, the acceptable abbreviation for
the keyword "TITle" is "TIT".

4, Items designated by uppercase letters and numbers
without quotes indicate numeric data values. Numeric data
values are either real or integer according to standard
FORTRAN variable naming conventions.

5. Data items enclosed in brackets [ ] may not be

required.

5.2.4 Input Data Description for BOUFIN

A. Symmetry Conditions--One line for indentifying
whether the vertical axis is the line of symmetry
a. Contents
'TYPe' 1l(or 2)
b. Definitions
'l' = unsymmetrical about the vertical axis
'2' = symmetrical about the vertical axis.
B. Heading--Several lines for identifying the problem

a. Contents
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e « « « s « Mlines

b. Definition
M = number of lines for any alphanumeric
information, eighty characters (including
any imbedded blanks) in each line.
C. Structure Input:
1. Structural Properties--One line
a. Contents
'STRuctural' 'PROperties' E V D

b. Definitions

E = modulus of elasticity for structure
V = Poisson's ratio for structure
D = density of structure.

2. Node Coordinates--As many lines as required
a. Contents
'NODe' 'gggrdinates' M
N XN YN
. . . M lines

b. Definitions

M = number of nodes in structure
N = node number in structure

XN = X coordinate of node N

YN = Y coordinate of node N.

3. Element Connectivities--As many lines as required
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a. Contents

'ELEment' 'CONnectivities' M1 M2

N

.

IN1 IN2 IN3 IN4

. . . . M1l lines

b. Definitions

Ml

M2
N
IN1
IN2
IN3
IN4

4, Prescribed

= number of isoparametric quadrilateral
elements in structure

= number of joint elements

= element number in structure

= the first node number in element N

= the second node number in element N

the third node number in element N
= the fourth node number in element N.

Displacements--As many lines as required

a. Contents

'PREscribed' 'DISplacements’ M

N

['X' DxN] ['Y'" DIN]
. . . . M lines

b. Definitions

M

DXN

number of nodes with prescribed
displacements in structure

node number in structure

prescribed horizontal displacement at
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node N
DYN = prescribed vertical displacement at
node N,
5. Prescribed Non-zero Concentrated Loads--As many
lines as required
a. Contents
'"PREscribed’ 'LOAds' M
N ['X'" FXN] ['Y" FIN]
. . . . . M lines
b. Definitions
M = number of nodes with prescribed non-
zero concentrated loads in structure

N = node number in structure

FXN prescribed horizontal load at node N
FYN = prescribed vertical load at node N.
D. Interface Input:
1. Interface Properties--One line
a. Contents
'INTerface' 'PROperties' SN  SS

b. Definitions

SN

unit normal stiffness at interface

SS unit shear stiffness at interface.

2. Node Coordinates--As many lines as required, same as

3. Element Connectivities--As many lines as required
a. Contents

'ELEment' 'CONnectivities' M
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b. Definitions

M =

N

IN1

IN2

number of elements at interface
element number at interface
the first node number in element N

the second node number in element N.

4, Prescribed Displacements--As many lines as required,

same as C.4.

5. Prescribed Non-zero Concentrated Loads-—-As many

lines as required, same as C.5.

E. Soil Input:

1. Soil Properties--One line

a. Contents

'SOIl’

'PROperties' E V D

b. Definitions

E

\Y%

D

modulus of elasticity for soil
Poisson's ratio for soil

density of soil.

2. Node Coordinates--As many lines as required

a. Contents

'NODe'

N

'COOrdinates' M1l M2
XN YN

. . Ml lines
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. . M2 lines

b. Definitions

Ml

M2

N

XN

YN

number of nodes along the boundary
of soil mass

number of nodes inside the soil mass
used for integration

node number in soil mass

X coordinate of node N

Y coordinate of node N.

3. Element Connectivities--As many lines as required

a. Contents

'ELEment' 'CONnectivities' M1 M2
N IN1 IN2

. . . Ml lines

N IN1 IN2 IN3 IN4

. . . . M2 lines

b. Definitions

Ml

M2

IN1
IN2

number of linear elements along the
boundary of soil mass

number of internal cells used for
integration

element number

the first node number in element N

the second node number in element N
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IN3 the third node number in element N

IN4 the forth node number in element N.

4, Prescribed Displacements--As many lines as required,
same as C.4.
5. Prescribed Non-zero Stresses--As many lines as
required
a. Contents
'PREscribed’' 'STResses' M
N ['g' TXN] ['X' TYN]
. . . . . M lines

. . . (] .

b. Definitions

M = number of nodes with prescribed non-
zero stresses in soil mass

N = node number in soil mass

TXN = prescribed horizontal stress

TYN = prescribed vertical stress.

5.2.5 Input Data Description for FINITE

A. Heading--Several lines for identifying the problem
a. Contents

'TITle' M

e« « « o« « « Mlines

b. Definition

M = number of lines for any alphanumeric

information, eighty characters(including



77

any imbedded blanks) in each line.
B. Structure Input:
1. Structural Properties--One line
a. Contents
'STRuctural' 'PROperties' E V D

b. Definitions

E = modulus of elasticity for structure
V = Poisson's ratio for structure
D = density of structure.

2. Node Coordinates--As many lines as required
a. Contents
'NODe' 'COOrdinates’ M
N XN YN
. . . M lines

b. Definitions

M = number of nodes in structure
N = node number in structure

XN = X coordinate of node N

YN = Y coordinate of node N.

3. Element Connectivities--As many lines as required
a. Contents
'ELEment' 'CONnectivities' Ml M2
N IN1 IN2 IN3 IN4

. . . . . Ml lines
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. . . . M2 lines

b. Definitions

Ml

M2
N
IN1
IN2
IN3
IN4

4, Prescribed

= number of isoparametric quadrilateral
elements in structure
= number of joint elements

= element number in structure

the first node number in element N

the second node number in element N
= the third node number in element N

the fourth node number in element N.

Displacements--As .many lines as required

a. Contents

'PREscribed’ 'DISplacements' M

N

['X' DXN] ['Y' D¥N]
. . . . M lines

b. Definitions

M

DXN

DYN

5., Prescribed

lines as required

= number of nodes with prescribed
displacements in structure

= node number in structure

= prescribed horizontal displacement at

node N

prescribed vertical displacement at
node N,

Non-zero Concentrated Loads--As many
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a. Contents
'PREscribed' 'LOAds' M
N ['X'" FXN] ['Y FIN]
. . . . . M lines
b. Definitions
M = number of nodes with prescribed non-
zero concentrated load in structure
N = node number in structure

FXN

prescribed horizontal load at node N
FYN = prescribed vertical load at node N.
C. Interface Input:
l. Interface Properties--One line
a. Contents
'INTerface' 'PROperties' SN  SS
b. Definitions

SN

unit normal stiffness at interface

SS

unit shear stiffness at interface.

2. Node Coordinates--As many lines as required, same as

3. Element Connectivities--As many lines as required

a. Contents

'ELEment' 'CONnectivities' M
N IN1 IN2
. . . M lines

b. Definitions

M = number of elements at interface
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N = element number at interface
INl = the first node number in element N
IN2 = the second node number in element N.

4, Prescribed Displacements--As many lines as required,
same as B.4.

5. Prescribed Non-zero Concentrated Loads--As many
lines as required, same as B.5.

D. Soil Input:

1. Soil Properties--One line

a. Contents
'SOI1' 'PROperties' E V D

b. Definitions

E = modulus of elasticity for soil
V = Poisson's ratio for soil
D = density of soil.

2. Node Coordinates--As many lines as required, same as

3. Element Connectivities--As many lines as required
a. Contents
'"ELEment' 'CONnectivities' M
N IN1 IN2 IN3 IN4
. . . . . M lines
b. Definitions
M = number of isoparametric quadrilateral
elements in soil
N = element number in soil

IN1 the first node number in element N
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IN2 = the second node number in element N
IN3 = the third node number in element N
IN4 = the fourth node number in element N.

4. Prescribed Displacements--As many lines as required,
same as B.4.
5. Prescribed Non-zero Concentrated Loads--As many

lines as required, same as B.5.
5.3 Output Information

Output data are provided in two parts in programs
BOUFIN and FINITE. The first part is the echoprint which
contains a tabular listing of all input data for heading,
structure, interface, and soil sections, respectively. The
second part contains the complete results for the specified
Soil Streucture Interaction problem. The guantities
involved in the results are displacements (inch) and
stresses (ksi). The positive senses for displacements and

stresses are shown in Figure 16.

X

=

Figure 16. Positive Senses for Stresses
and Displacements



CHAPTER VI

COMPARISON OF RESULTS

6.1 Introduction

In order to illustrate the solution capability of pro-
gram BOUFIN, the accuracy of program FINITE must be assured
before comparison. For this purpose, test problems without
performing iterations on joint elements were solved by the
general purpose program STRUDL (1) and by program FINITE;
identical results were obtained. An additional test problem
where tensile stresses were present along the soil/structure
interface was analyzed by program FINITE. The results of
this solution must satisfy the limitation of no tensile
stresses across soil/structure interface. The convergence
of normal and tangential stresses of joint elements in each
iteration is discussed in section 6.2. The accuracy of pro-
gram FINITE is thus proven.

An example problem of a U-Frame structure was solved
using programs BOUFIN and FINITE. The validity of the
coupling of boundary and finite element methods was examined
by comparing the results of nodal displacements and element
stresses in the structure, at the interface, and in the soil
mass. A further discussion for both numerical techniques is

also included.
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6.2 Load Transfer Test

The load transfer method (see subsection 3.4.4), which
provides an effective treatment to simulate the real proper-
ties of joint elements, is incorporated in programs BOUFIN
and FINITE. In the load transfer subroutine, the number of
iterations is controlled by a designated small value. This
value defines the tolerable limit of absolute difference for
each displacement at the interface between two consecutive
iterations,

A test problem analyzed by program FINITE with tolera-
ble limit equal to 1 x 10-* was solved to demonstrate the
way that the joint elements approach the so called "no ten-
sion" state by the load transfer method. The configuration,
system properties, and the numbering of joint elements of
the test problem are shown in Figure 17. The results of the
analysis are given in Appendix C. The normal and tangential
stresses of joint elements in each iteration are listed in
Tables I and II. Since joint element 1 exhibits tensile
stress (i.e. positive normal stress) in the first solution,
a number of iterations are executed to eliminate the undesi-
rable stresses. Note that tensile stresses still develop at
the end of each iteration but are much reduced when compared
to the previous solution. After eight iterations the normal
and tangential stresses at joint element 1 are reduced to
negligible guantities while the stresses in the remainder of
the joint elements are converged to definite values. There-

fore, the "no tension state” in the interface is reached and



0.24 k/in
15k <----- _
<-- Joint Element {
50"
Structure Property Soil Property
Elastic Modulus: Elastic Modulus:
3000 ksi 15 ksi
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0.25 0.35
Weight: 150 pcf Weight: 128 pcf
Element 4 Joint Element 3 -
50"
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Figure 17. A Test Problem for Load Transfer Method
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TABLE I

- NORMAL STRESSES OF JOINT ELEMENTS

FOR EACH ITERATION
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Iteration Joint 1 Joint 2 Joint 3 Joint 4
No. (ksi) (ksi) (ksi) (ksi)
0 0.016047320 -0.1177049 -0.0250310 -0.0610852
1 0.002262905 -0.1196641 -0.0203801 -0.0621226
2 0.000322616 -0.1199396 -0.0196600 -0.0622832
3 0.000046477 -0.1199788 -0.0195485 -0.0623081
4 0.000006761 -0.1199844 -0.0195313 -0.062311°9
5 0.000000992 -0.1199852 -0.0195286 -0.0623125
6 0.000000147 -0.1199854 -0.0195282 -0.0623126
7 0.000000022 -0.1199854 -0.0195281 -0.0623126
8 0.000000003 -0.1200 -0.01953 -0.06231

(Results)




TANGENTIAL STRESSES OF JOINT ELEMENTS

TABLE II

ELEMENTS FOR EACH ITERATION
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Iteration Joint 1 Joint 2 Joint 3 Joint 4
No. (ksi) (ksi) (ksi) (ksi)
0 0.056051976 0.0170428 0.0046481 0.0042666
1 0.008678506 0.0047507 0.0046240 0.0042536
2 0.001343685 0.0028476 0.0046204 0.0042516
3 0.000208041 0.0025529 0.0046199 0.0042513
4 0.000032211 0.0025073 0.0046198 0.0042512
5 0.000004987 0.0025002 0.0046198 0.0042512
6 0.000000772 0.0024991 0.0046198 0.0042512
7 0.000000119 0.0024990 0.0046198 0.0042512
8 0.000000018 0.002499 0.004620 0.004251

(Results)
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the validity of the load transfer method is verified.
6.3 ;omparison of Example Solutions

6.3.1 Description of Example Soil-

Structure System

A typical U-Frame structure was analyzed by programs
BOUFIN and FINITE. The idealizations of the symmetric
U-Frame structure, surrounding soil, and prescribed trac-
tion/displacement boundaries for the coupling of boundary
and finite element methods and the finite element method
alone are shown in Figures 18 and 19. The assumptions of
negligible horizontal and vertical displacements at a suffi-
cient distance from the structure center line and ground
surface have been taken into account.

The specified soil-structure system is treated as a
plane strain type problem since it involves a long body
whose geometry and loading do not vary significantly in the
longitudinal direction. The forces applied to the system
are water pressure, weights of soil and structure, and pre-
scribed loads/tractions. Water pressure is linearly dis-
tributed along the vertical wall of the U-Frame and becomes
a constant at the floor slab. The properties of weight,
elastic modulus, shear modulus, and Poisson's ratio for the
U-Frame and soil are listed in Table III based on the
assumptions that the U-Frame is composed of normal weight
concrete with f'c = 3000 psi and that the surrounding soil

is composed of dense sand.
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TABLE III

U-FRAME AND SOIL PROPERTIES USED IN THE
PROPOSED SOIL-STRUCTURE SYSTEM

Weight Poisson's Elastic Shear
Ratio Modulus Modulus
U-Frame 150 pcf 0.25 3000 ksi 1200 ksi
Soil 128 pcf 0.35 15 ksi 5.56 ksi

Because the unit normal and shear stiffnesses of joint
elements are unavailable, the elastic modulus of U-Frame is
taken as the unit normal stiffness and the shear modulus of

soil is taken as the unit shear stiffness.

6.3.2 Verification of Solution Convergence

The numerical solutions of the coupling of boundary and
finite element methods and the finite element method alone
can be improved by increasing the mesh sizes of the soil-
structure system. However, if the tradeoff between cost and
accuracy is taken into consideration, the optimum case may
be the solution close to the exact one with lower cost.

In order to acquire the optimum solutions for the exam-
ple problem, several computer runs using programs BOUFIN and
FINITE were conducted and a critical point at the soil mass
near the corner of the U-Frame was chosen to test solution

convergence. When the displacements and stresses at the
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specified critical point are close in two consecutive runs
the results obtained from the finer mesh were used for com-

parison.

6.3.3 Comparison of Nodal Displacements

and Element Stresses

The example U-Frame structure was analyzed with 209
nodes and 221 elements by program BOUFIN, and 204 nodes and
185 elements by program FINITE when the solutions converged.
Data input and output information are presented in Chapter
V. Computer codings and input listings of programs BOUFIN
and FINITE are given in Appendices A and B. The printout
sheets for program BOUFIN with 209 nodes and 221 elements,
and for program FINITE with 204 nodes and 185 elements are
listed in Appendices D and E. All computations were carried
out on the IBM 3081D computer.

Nodal displacements and element stresses calculated
from programs BOUFIN and FINITE for the U-Frame-soil system
are presented in the following tables. Element stresses are
evaluated at the centroid of the element.

Tables IV, V, and VI list the results of nodal dis-
placements for the U-Frame structure, the interface, and
surrounding soil mass, respectively. Tables VII, VIII, and
IX are the results of element stresses for the U-Frame
structure, the interface (joint elements), and surrounding

soil mass, respectively.



RESULTS OF NODAL DISPLACEMENTS

TABLE IV

IN U-FRAME STRUCTURE
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Node X Y u v

No. (inch) (inch) (inch) (inch)
FINITE BOUFIN FINITE BOUFIN
1 0 576 0.000 0.000 -1.203 -1.200
2 0 540 0.000 0.000 -1.202 -1.199
3 0 504 0.000 0.000 -1.202 -1.199
4 0 468 0.000 0.000 -1.202 -1.199
5 0 432 0.000 0.000 -1.203 -1.200
6 144 576 0.014 0.014 -1.221 -1.218
7 las 540 0.006 0.006 -1.220 -1.217
8 144 504 -0.002 -0.002 -1.219 -1.216
9 144 468 -0.011 -0.011 -1.219 -1.216
10 144 432 -0.019 -0.019 -1.220 -1.217
11 264 576 0.025 0.025 -1.261 -1.258
12 264 540 0.010 0.010 -1.260 -1.257
13 264 504 -0.004 -0.004 -1.259 -1.257
14 264 468 -0.019 -0.01°9 -1.259 -1.257
15 264 432 -0.033 -0.033 -1.260 -1.257
16 360 576 0.031 0.031 -1.307 -1.305
17 360 540 0.012 0.012 -1.307 -1.304
18 360 504 -0.006 -0.006 -1.306 -1.304
1% 360 468 -0.024 -0.024 -1.306 -1.304
20 360 432 -0.043 -0.043 -1.306 -1.304
21 432 1392 0.579 0.594 -1.353 -1.350
22 432 1272 0.488 0.500 -1.353 -1.350
23 432 1128 0.379 0.389 -1.354 -1.351
24 432 984 0.279 0.286 -1.355 -1.352
25 432 840 0.188 0.191 -1.355 -1.353
26 432 768 0.144 0.146 -1.355 -1.353
27 432 696 0.101 0.103 -1.354 -1.352
28 432 576 0.033 0.034 -1.350 -1.348
29 432 540 0.013 0.013 -1.348 -1.346
30 432 504 -0.007 -0.007 -1.348 -1.345
31 432 468 -0.027 -0.027 -1.347 -1.345
32 432 432 -0.047 -0.047 -1.347 -1.345
33 456 1392 0.579 0.594 -1.372 -1.369
34 456 1272 0.488 0.500 -1.371 -1.369
35 456 1128 0.37% 0.389 -1.371 -1.36°9
36 462 984 0.27% 0.285 -1.375 -1.373
37 468 840 0.188 0.191 -1.378 -1.376
38 468 768 0.144 0.146 -1.377 -=-1.375
39 480 696 0.101 0.103 -1.382 -1.380
40 480 624 0.061 0.062 -1.380 -1.378
41 480 576 0.034 0.034 -1.378 -1.376
42 480 528 0.006 0.006 -1.376 -1.375
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TABLE IV (Continued)

Node X Y u v
No. (inch) (inch) (inch) (inch)
FINITE BOUFIN FINITE BOUFIN

43 504 480 -0.022 -0.022 -1.388 -1.388
44 516 450 -0.040 -0.040 -1.396 -1.395
45 480 1392 0.579 0.594 -1.390 -1.388
46 480 1272 0.488 0.500 -1.390 -1.388
47 480 1128 0.379 0.388 -1.389 -1.387
48 492 984 0.279 0.285 -1.395 -1.393
49 504 840 0.188 0.191 -1.400 -1.399
50 504 768 0.144 0.147 -1.399 -1.397
51 528 696 0.101 0.103 -1.412 ~-1.410
52 528 648 0.075 0.076 -1.408 ~-1.407
53 528 600 0.048 0.048 -1.406 -1.405
54 528 552 0.020 0.021 -1.404 -1.403
55 576 504 -0.008 -0.009 -1.433 -1.432
56 600 468 -0.032 -0.032 -1.448 -1.447
57 504 1392 0.579 0.594 -1.408 -1.407
58 504 1272 0.488 0.500 -1.408 -1.406
59 504 1128 0.379 0.389 -1.406 -1.405
60 522 984 0.278 0.285 -1.415 -1.414
61 540 840 0.188 0.191 -1.423 ~-1.422
62 540 768 0.144 0.147 -1.421 -1.420
63 564 696 0.100 0.102 -1.436 -1.435
64 600 552 0.019 0.020 -1,448 -1.447
65 648 504 -0.011 -0.011 -1.478 -1.478
66 684 486 -0.022 =-0.023 -1.501 -1.501
67 552 1392 0.579 0.594 -1.445 -1.444
68 552 1344 0.543 0.556 -1.445 -1.444
69 528 1320 0.524 0.537 -1.427 -1.,425
70 528 1272 0.488 0.500 -1.427 -1.425
71 528 1128 0.379 0.389 -1.423 -1.422
72 552 984 0.279 0.286 -1.435 -1.434
73 576 840 0.188 0.191 =1.445 -1.444
74 600 768 0.144 0.147 -1.459 -1.458
75 600 696 0.100 0.102 -1.458 -1.458
76 672 816 0.172 0.175 -1.502 -1.502
77 672 768 0.143 0.146 -1.502 -1.502
78 636 696 0.100 0.102 -1.480 -1.480
79 672 696 0.100 0.102 -1.501 -1.501
80 672 648 0.072 0.074 -1.499 -1.500
81 672 600 0.044 0.046 -1.497 -1.498
82 672 552 0.018 0.018 -1.494 -1.494
83 720 744 0.128 0.131 -1.530 ~-1.531
84 720 672 . 0.086 0.088 -1.528 ~-1.529
85 720 600 0.045 0.046 -1.525 -1.526
86 720 528 0.003 0.003 -1.524 -1.525

87 768 792 0.157 0.160 -1.561 ~-1.561
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TABLE IV (Continued)
Node X Y u v
No. (inch) (inch) (inch) (inch)
FINITE BOUFIN FINITE BOUFIN
88 768 696 0.100 0.102 -1.557 -1.558
89 768 600 0.045 0.046 -1.554 -1.555
90 768 504 -0.011 -0.011 -1.552 -1.554




RESULTS OF NODAL DISPLACEMENTS

TABLE V

AT INTERFACE
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Node

X Y u A

No. (inch) (inch) (inch) (inch)
FINITE BOUFIN FINITE BOUFIN
1 528 1272 0.488 0.500 -1.427 -1.426
2 528 1128 0.379 0.389 -1.423 -1.423
3 552 984 0.280 0.286 -1.437 -1.436
4 576 840 0.188 0.191 -1.445 -1.444
5 672 816 0.170 0.174 -1.502 -1.502
6 768 792 0.157 0.160 -1.561 -1.561
7 768 696 0.100 0.102 -1.560 -1.562
8 768 600 0.045 0.046 -1.555 -1.554
9 768 504 -0.011 -0.011 -1.552 -1.554
10 684 486 -0.021 -0.022 -1.500 -1.501
11 600 468 -0.031 -0.031 -1.448 -1.447
12 516 450 -0.039 -0.039% -1.396 -1.395
13 432 432 -0.047 -0.047 -1.347 -1.345
14 360 432 -0.042 -0.043 -1.306 -1.304
15 264 432 -0.033 -0.033 -1.260 -1.257
16 144 432 -0.019 -0.019 -1,220 -1.217
17 0 432 0.000 -0.000 -1.203 -1.200
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TABLE VI

RESULTS OF NODAL DISPLACEMENTS
IN SOIL MASS

Node X Y u v
No. (inch) (inch) (inch) (inch)
FINITE BOUFIN FINITE BOUFIN

1 0 360 0.000 +0.000 -1.042 ~-1.041

2 0 264 0.000 +0.000 -0.804 -0.803

3 0 144 0.000 +0.000 -0.466 -0.466

4 0 0 0.000 +0,000 0.000 0.000

5 144 0 -0.035 =-0.035 0.000 0.000

6 264 0 -0.058 -0.058 0.000 0.000

7 360 0 -0.071 -0.072 0.000 0.000

8 432 0 -0.077 -0.078 0.000 0.000

) 516 0 -0.081 -0.083 0.000 0.000
10 600 0 -0.084 -0.085 0.000 0.000
11 684 0 -0.085 -0.087 0.000 0.000
12 768 0 -0.086 -0.089 0.000 0.000
13 864 0 -0.088 -0.091 0.000 0.000
14 1008 0 -0.088 =-0.092 0.000 0.000
15 1200 0 -0.078 -0.081 0.000 0.000
16 1440 0 -0.046 -0.047 0.000 0.000
17 1680 0 0.000 -0.000 0.000 0.000
18 1680 144 0.000 0.000 -0.567 -0.567
19 1680 264 0.000 0.000 -0.990 -0.991
20 1680 408 0.000 0.000 -1.438 -1.440
21 1680 504 0.000 0.000 -1.699 -1.700
22 1680 600 0.000 0.000 -1.928 -1.928
23 1680 696 0.000 0.000 -2.123 -2.123
24 1680 792 0.000 0.000 -2.283 -2.283
25 1680 o84 0.000 0.000 -2.490 -2.491
26 1680 1128 0.000 0.000 -2.551 -2.553
27 1680 1272 0.000 0.000 -2.543 -2.544
28 1440 1272 0.131 0.129 -2.544 -2,544
29 1200 1272 0.289 0.273 -2.609 -2.607
30 1008 1272 0.438 0.452 -2.705 =-2.742
31 864 1272 0.537 0.571 -2.262 -2.261
32 768 1272 0.569 0.592 -1.991 -1.994

33 672 1272 0.564 0.588 -1.770 ~-1.768
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Elm. Centroid Sigma X Sigma Y Tau XY
No. (inch) (ksi) (ksi) (ksi)

X Y FINITE BOUFIN FINITE BOUFIN FINITE BOUFIN

1 72 558 .2125 ,2138 -.0277 -.0280 -.0070 -.0070
2 72 522 .0274 ,0281 -.0354 -.0348 -.0087 -.0086
3 72 486 -.1569 -.1572 ~-,0433 -,0430 -.0085 -.0085
4 72 450 -.3419 -.3431 -.0506 -.0505 -.0070 -.0070
5 204 558 .1899 .1%20 -.0273 -.0274 -.0184 -.0182
6 204 522 .0182 .,0200 -.0341 -.0340 -.0265 -.0261
7 204 486 -.1491 -.1495 -.0438 -.0436 -.0271 -.0266
8 204 450 -.3204 -.3220 -.0528 -.0523 ~-.0186 -.0183
9 312 558 .1310 .1344 -.0234 -,0238 =-.0221 -,0219
10 312 522 -,0054 -.0039 -.0348 -.0345 -.0458 -.0450
11 312 486 -.1308 -.1317 -.0456 -.0453 -.0476 -.0470
12 312 450 -.2580 -.2612 ~-.,0532 -.0531 -.0286 -.0283
13 396 558 .0440 .0496 -.0628 -.0611 -.0448 -.0433
14 396 522 -,0291 -.0279 -.0654 -.0641 -.0592 -.0583
15 396 486 -.1050 -.1066 -.0604 -.0596 -.0559 -.0556
16 396 450 -.1758 -.1800 -.0605 -.0603 -.0318 -.0318
17 444 1332 .0004 ,0003 -.0038 -.0042 .0011 .0010
18 444 1200 -.0025 -.0024 .0020 .0017 .0086 .0085
1% 446 1056 -.0071 -.,0072 ~-.0112 -.0121 .0031 .0041
20 448 812 -.0141 -.0144 -.0137 -.0086 -.0074 -.0065
21 450 804 -.,0155 -.0154 -.0406 -.0335 -.0054 -.0065
22 453 732 -.,0199 -.0198 -.0654 -.0615 -.0000 -,0004
23 456 648 -.0302 -.0303 -,1251 -.1206 -.0273 -.0268
24 456 579 -.0181 -.0145 -.1245 -,1223 -.0261 -.0256
25 456 537 -.0200 -.0178 -.1018 -.1008 -.0299 -.0306
26 465 495 -.0796 -.0810 -.0794 -.0786 ~-.0295 -.0301
27 471 458 -.,1212 -,1250 -.0624 -.0617 -.0238 -.0246
28 468 1332 .0021 .0019 -.0060 -.0059 .0015 ,0013
29 468 1200 -.0011 -.0010 =-.0161 -.0154 .0116 .0114
30 472 1056 -.0104 -.0100 -.0262 -.0256 .0046 .0059
31 482 812 -.0164 -.0172 ~-.0450 -.0424 -.0095 -.0079
32 486 804 -.0105 -.0110 ~-.0639 -.0609 -.0136 -.0155
33 495 732 -.0348 -.0332 -.0985 -.,0975 -.0208 -.0221
34 504 666 -.,0373 -.0370 -.1659 -.1662 -.0454 -.,0453
35 504 612 -.0038 -.,0037 =-.1330 -.1348 -.0102 -.0098
36 504 564 -.0113 -.0086 -.1176 -.1192 ~-.0016 -.0024
37 522 516 -.0641 -.0639 -.0511 -.0506 -.0058 -.0065
38 549 476 -.1122 -.1161 -.0560 -.0563 -.0169 -.0179
39 492 1332 .0039 .0037 -.0076 -.0072 .0002 .0003
40 492 1200 .0003 .0007 =-.0352 -.,0331 .0111 .0109%
41 500 1056 -.0134 -.0127 -.0626 -.0627 .0062 .0073
42 515 912 -.0200 -.0217 -.0763 -.0761 -.0066 -.0042
43 522 804 -.0147 -.0162 -.0759 -.0758 ~-.0203 -.0228
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Elm. Centroid Sigma X Sigma Y Tau XY

No. (inch) (ksi) (ksi) (ksi)

X b4 FINITE BOUFIN FINITE BOUFIN FINITE BOUFIN
44 534 732 -.0455 -,0417 -.0957 -.0970 ~-.0497 -.0518
45 588 528 -.0666 -.0651 -,0321 -.0326 -.0132 -,0135
46 627 491 -.0860 -.0898 -.0656 -.0662 ~-.0249 -.0256
47 534 1362 +.0000 .0001 -.0043 -.0042 -,0001 -.0000
48 516 1314 .0067 .0062 -.0058 -.0060 -.,0040 -.0034
49 516 1200 .0022 .0028 -.0559 -.0518 .0071 .0071
50 526 1056 -.0151 -.0140 -.0997 -.1011 .0075 .0083
51 548 912 -.0250 -.0277 =-.1103 -.1126 .0030 .0057
52 564 804 -.0331 -.0354 -.0671 -.0728 -.0142 -.0164
53 576 732 -.0338 -.0291 -.0289 -.0298 ~-.0236 -.0244
54 660 534 -.0798 -.0772 -.0760 -.0773 -.0398 -.0404
55 705 506 -.0441 -.0433 -.0844 -.0818 -.0077 -.0078
56 630 798 -.0527 -.0553 ~-.0348 -.0382 .0055 .0075
57 627 732 -.0334 -.0292 -.0183 -.0189 .0025 .0045
58 708 780 -.0387 -.0358 -.0621 -.0573 -.0072 -.0028
59 675 726 -.0289 -.0259 -.0516 -.0518 .0124 .0150
60 696 690 -.0210 -.0207 -.1025 -.0998 .0066 .0081
61 744 726 -.0271 -.0271 -.1106 -.0981 -.0083 -.0071
62 696 630 -.0071 -.0075 -.1284 -.1249 -.0150 -.0154
63 744 642 -.0271 -.,0295 =-.1225 -.,1209 -.0185 -.0185
64 696 570 -.0608 -.0603 =-.1542 -.,1519 -.0449 -.0452
65 744 558 -.0403 -.0390 -.0897 -.0762 -.0130 -.012S
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Elm. Centroid Normal Stress Tangential Stress
No. (inch) (ksi) (ksi)
X Y FINITE BOUFIN FINITE BOUFIN
1 528 1200 -.0099 -.0074 .0020 .0016
2 540 1056 -.0113 =-.0234 .0066 .0061
3 564 912 -.0196 -.0162 .0069 .0060
4 624 828 -.0215 -.,0353 -.0046 -.0041
5 720 804 -.0786 -.0716 -.0046 -.0040
6 768 744 -.0227 -.0261 .0071 .0109
7 768 648 -.0343 -.0358 .0090 .0082
8 768 552 -.0256 -.0269 -.0020 -.0027
S 726 495 -.0847 -.0536 -.0024 -.,0012
10 642 477 -.0483 -.0283 -.0044 -.0035
11 558 459 -.0629 -.,0509 -.0053 -.0058
12 474 441 ~-.0445 -.0403 -.0036 -.0037
13 396 432 -.0792 -.0705 -.0010 -.0010
14 312 432 -.0523 -.0495 -.0011 -.0011
15 204 432 -.0556 -.0516 -.0007 -.0008
16 72 432 -.0532 -.0404 -.0002 .0004
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RESULTS OF ELEMENT STRESSES IN SOIL MASS

Elm. Centroid Sigma X Sigma Y Tau XY
No. (inch) (ksi) (ksi) (ksi)

X Y FINITE BOUFIN FINITE BOUFIN FINITE BOUFIN

1 72 396 -.0330 -.0479 -.0562 -.0358 -.0003 -.0012
2 72 312 -.,0374 -.0374 -.0628 -.0627 ~-.,0003 -.0003
3 72 204 -.0424 -.0424 -.0713 -.0711 ~-.0003 -.0003
4 72 72 -.0479 -.0480 -.0815 -.0812 -.0001 -.0001
5 204 396 -.0333 -.0404 -.0574 -.0479 -.0009 -.0011
6 204 312 -.0374 -.0374 -.0640 -.0639 -.0010 -.0009
7 204 204 ~-.0421 -.0422 -,0724 -.0723 ~-.0007 -.0007
8 204 72 -.0476 -.0477 -.0824 -.0822 -.0003 -.0003
S 312 396 -.0337 -.0357 -.0595 -.0569 -.0014 -.0015
10 312 312 -.0372 -.0372 -.0660 -.0658 -.0013 -.0013
11 312 204 -.0417 -.0417 -.0739 -.0738 -.0008 -.0008
12 312 72 -.0472 -.0472 -.0835 -.0835 -.0003 -.0003
13 396 396 -.0342 -.0341 -.0628 -.0622 =-.0017 -.0017
14 396 312 -.0367 -.0368 -.0678 -.0678 -.0010 -.0010
15 396 204 -,0414 -.0414 -.0751 -.0751 -.0006 -.0006
16 396 72 ~-.0469 -.046% -.0845 -.0845 -.,0002 -.,0002
17 474 401 -.0331 -.0334 -.0629 -.0629 .0003 .0008
18 474 312 -.0368 -.0368 -.0686 -.0687 -.0000 -.0000
19 474 204 -.0413 -.0413 -.0759 -,0759 -.0002 -.0002
20 474 72 -.0467 -.0468 -,0853 -.0853 ~-.0001 -.0001
21 558 410 -.0329 -.0329 -.0617 -.0617 .0006 .0005
22 558 312 -.0371 -.0370 -.0688 -.0688 .0003 .0003
23 558 204 -.0414 -.0414 -.0765 -.0764 .0001 .0001
24 558 72 -.0467 -.0467 -.0859 -.0859 +.0000 +.0000
25 600 1200 .0014 .0012 -.0015 -.0025 -.0062 -.0062
26 606 1056 -.0138 -.0137 =-.0130 -.0116 ~-.0074 -.0079%
27 618 %06 -.0167 -.0163 =-,0202 -.0219 ~-.0058 -.0061
28 642 419 -.0328 -.0328 ~-.0615 -.0618 .0009 .0008
29 642 312 -.,0375 -.0371 -.0693 -.06°91 .0003 .0006
30 642 204 -.,0414 -.0415 -.0768 -.0768 .0004 .0004
31 642 72 -.0468 -.0468 -.0864 -.0863 .0001 .0001
32 720 1200 -.0050 -.0050 -.0057 -.0052 ~-.0041 -.0040
33 720 1056 -.011% -.0135 =-.0159 -.0164 -.0079 -.0082
34 720 8%4 -,0200 -.0177 -.0340 -.0341 -.0069 -.0078
35 726 440 -,0331 ~.0323 -.0614 -.0614 .0013 .0017
36 726 324 -.0366 -.0369 -.0685 -.0683 .0009 .0011
37 726 204 -.0417 -.0418 -.,0770 -.0769 .0005 .0005
38 726 72 -.0470 -.0470 -.0868 -.0867 .0001 .0002
39 816 1200 -.0096¢ -.0108 ~-.0084 -.0078 ~-,0053 -.0053
40 816 1056 -.0136 -.0142 -.,0216 -.0210 ~-.0095 -.0094
41 816 888 -.0231 -.0207 -.,0355 -.0336 -.0133 -.0123
42 8le 744 -.0236 -.0242 -.0230 -.0288 =-.0111 -.0107
43 816 648 -.0285 -.,0291 -.0266 -.0268 -.0052 -.0051
44 816 5562 -.,0269 -.0265 =-.0296 -.0366 .0017 .001e6



101

TABLE IX (Continued)

Elm. Centroid Sigma X Sigma Y Tau XY

No. (inch) (ksi) (ksi) (ksi)
X Y FINITE BOUFIN FINITE BOUFIN FINITE BOUFIN
45 816 456 -.0355 -.0347 -.0578 -.0541 .0038 .0030
46 816 336 -.0371 -.0374 -.0669 -.0665 .0015 .0012
47 816 204 -.0422 -,0421 -.0772 -.0770 .0005 .0004
48 816 72 -,0472 -.0472 -.0871 -.0870 .0001 .0001
49 936 1200 -.0170 -.0163 -.0213 -.0220 -.0071 -.0080
50 936 1056 -.0149 -.,0144 -.0268 -.0272 -.0077 -.0075
51 936 888 -.0201 -.0206 -.0315 -.0321 ~-.0064 -.0065
52 936 744 -,0234 -.0232 -.,0367 -.0373 -.0033 -.0033
53 836 648 -.,0235 -.0241 -.0401 -.0423 -.0026 -.0025
54 836 552 -.0275 -.0271 -.0482 -.048% -.0024 -.0024
55 936 456 -.0319 -.0325 -.0551 -.0562 -.0018 -.0017
56 936 336 -.0377 -.0375 -.0668 -.0666 -.0003 -.0004
57 936 204 -,0423 -.,0423 -.0775 -.0774 +.0000 -.0001
58 836 72 -.0473 -.0473 -.0876 -.0875 +.0000 +.0000
59 1104 1200 =-.0191 -.0207 -.0208 -.0187 .0037 .0053
60 1104 1056 -.0160 -.0159 -.0257 -.0273 .0010 .0016
61 1104 888 -.0193 -.0193 -.0333 -.0342 -.0004 -.0002
62 1104 744 -,0223 -.0223 -.0412 -.0422 -.,0003 -.0003
63 1104 648 -.0245 -.0245 -,0477 -.0482 -.0008 -.0007
64 1104 552 -.0274 -.0276 -.0538 -.0544 -.0014 -.0012
65 1104 456 -.0315 -.0315 -.0605 -.0608 -.0016 -.0014
66 1104 336 -.0365 -.0365 -.0689 -.0693 -.0012 -.0011
67 1104 204 -.0419 -.0418 -.0790 -.0791 -.0006 -.0006
68 1104 72 -.0471 -.0472 -.0889 -.0886 -.0002 -.0001
69 1320 1200 -.0144 -.0217 -.0074 -.0027 .0016 .0018
70 1320 1056 -.0180 -.0182 -.0199 -.0188 .0028 .0027
71 1320 888 -.0205 -.0207 -.0322 -.0321 .0019 .0022
72 1320 744 -,0234 -.0235 -.0425 -.0427 .0011 .0013
73 1320 648 -.0258 -.0259 -.0494 -.0496 .0005 0006
74 1320 552 -.0286 -.0286 -.0563 -.0564 -.0001 .00O01
75 1320 456 -.0317 -.0318 -.0629 -.0632 -.0004 -.0003
76 1320 336 -.0362 -.0362 -.0714 -.0717 -.0006 -.0005
77 1320 204 -.0413 -.0413 -.0809 -.0812 -.0005 -.0004
78 1320 72 -.0465 -.0470 -.0906 -.0900 -.0002 +.0000
79 1560 1200 -.0122 -.0192 -.0052 -.0037 .0001 .0003
80 1560 1056 -.0172 -.0173 -.0166 -.0167 .0008 .0007
81 1560 888 -.0214 -.0214 -.0305 -.0303 .0009 0009
82 1560 744 -,0245 -.0246 -.0420 -.0418 .0006 0007
83 1560 648 -.0268 -.0269 -.0495 -.04893 .0004 .0004
84 1560 552 -.0294 -.0295 -.0567 -.0566 .0002 .0002
85 1560 456 -.0322 -.0324 -.0638 -.0638 -.0000 .0001
86 1560 336 -.0363 -.0364 -.0725 -.0727 -.0001 -.0000
87 1560 204 -.0411 -.0412 -.0821 -.0823 -,0001 -.0001
88 1560 72 -.0462 -.0468 -.0918 -.0912 -.0001 0001
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6.4 Discussions and Conclusions

Tables IV through IX present the nodal displacements
and element stresses for the example problem analyzed in a
one inch width by programs BOUFIN and FINITE. The results
obtained from the test run of program BOUFIN indicate excel-
lent agreement with those from program FINITE. In addition,
because the iterative scheme for simulating the interface
behavior is adopted in both programs, the iimitation of no
tensile stresses across the soil/structure interface is sat-
isfied in program BOUFIN. The accuracy of the coupling of
boundary and finite element methods in solving Soil Struc-
ture Interaction problems is proven.

As the boundary element matrices are fully populated,
the computer cost of program BOUFIN is greater than that of
program FINITE in solving a problem with similar sizes of
system matrices. This indicates that the coupling of bound-
ary and finite element methods is less efficient computa-
tionally than the finite element method alone. However, due
to the fact that the dimensionality of the boundary element
region is reduced, the equations generated by the coupling
of boundary and finite element methods are fewer than the
equations generated by the finite element method alone in
acquiring the same accuracy. This advantage is more evident
for complex two- or three-dimensional continuum problems.
For instance, in the example given in section 6.3, the size
of the system matrix in BOUFIN (324x324) is much smaller

than the size of the system matrix in FINITE (408x408);
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hence, the computer execution time needed in program BOUFIN
is about three-fourths of the computer execution time needed
in program FINITE.

Another advantage of the coupling of boundary and
finite element methods, which is not prominent in this
study, is the required time in data preparation. The input
data required for program BOUFIN can be simplified signifi-
cantly if the domain integrals in evaluating body force
terms are transformed into boundary integrals (31). In con-
strast, a large amount of data is needed for program FINITE.
This is an important point as many man-hours are lost in

preparing and checking finite element data.



CHAPTER VII

SUMMARY AND CONCLUSIONS

7.1 Summary

The direct boundary element method has been formulated
in which the symmetry condition is introduced. The dis-
placement approach of the finite element method has been
reviewed where the joint stiffness formulation is included.
The coupling of boundary and finite element methods is
derived for both equivalent boundary and finite element
approaches.

A computer program based on the coupling of boundary
and finite element methods was developed to analyze the
elastic behavior of a U-Frame structure. Another computer
program based on the finite element method alone was devel-
oped to solve the same soil-structure system for comparison.
Both structure and soil mass were assumed to be linearly
elastic, isotropic, and homogeneous. The limitation of no
transfer of tensile stresses across soil/structure interface
was ensured by employing iterative schemes on joint ele-

ments.
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7.2 Conclusions

An example problem of U-Frame structure has been ana-
lyzed using the two numerical methods indicated above. Com-
parison of the results of nodal displacements and element
stresses in the soil-structure system obtained from both
techniques demonstrates the accuracy and validity of the
coupling of boundary and finite element methods. Due to the
fact that the dimensionality of the boundary element region
is reduced, the equations generated by the coupling of
boundary and finite element methods are fewer than the egqua-
tions generated by the finite element method alone in
acquiring the same accuracy. Therefore, the coupling of
boundary and finite element methods is more efficient than
the finite element method alone in solving a complex Soil

Structure Interaction problem.
7.3 Recommendations

The coupling of boundary and finite methods is the pro-
posed approach to analyze a U-Frame structure. 1In this
study, boundary elements were applied to simulate the behav-
ior of surrounding soil and internal cells were used to cal-
culate body force terms by a domain integral. The process
in computing body force terms adopted is the traditional
boundary element method which requires soil mass to be
divided into integration cells since the domain integral
must be evaluated numerically. This process greatly

increases the amount of required data preparation and causes
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the boundary element method to lose much of its advantage
over the finite element method.

Danson (31) has presented a numerical technique
recently to improve the efficiency in evaluating body force
terms. According to his method, the body force terms are
expressed by a simple function of gravity inertia such that
the domain integral can be transformed to a boundary inte-
gral which may be evaluated at the same time as the other
boundary integrals.

The present study concentrates on the linear isotropic
stress analysis of a soil-structure system. However, in
many practical applications, the soil-structure system is
non-homogeneous and/or non-linear. Brebbia (32) has pro-
posed a solution to the system with non-homogeneous materi-
als. Therefore, any future work should place emphasis upon

the boundary integral formulation of inelastic problems.
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Cc----

C----

1000

=m=zz==saz==zs=ss=s=zs==

s=====cs==scozzzsazszzozassscomssmsszssss

THIS PROGRAM IS APPLIED TO EVALUATE THE ELASTIC BEHAVIOR
OF A U-FRAME STRUCTURE BY THE COUPLING OF
BOUNDARY AND FINITE ELEMENT METHODS

X, Y. NODE COORDINATES

E. ELASTICITY MATRIX FOR STRUCTURE

ICONNE ELEMENT INCIDENCE VECTOR

A SYSTEM MATRIX

IDCOLY SPECIFIED BOUNDARY CONDITIONS, O -~ LOAD, ' -> DISP
COLUMN SPECIFIED BOUNDARY VALUE

BODY BOOY FORCE VECTOR

STR. STRESS VECTOR

DISP DISPLACEMENT VECTOR

ELSTIF ELEMENT STIFFNESS MATRIX

NNSTR2. 2 X NUMBER OF NODES IN STRUCTURE

NNINT4 4 X NUMBER OF NODES IN INTERFACE

NNSOL2. 2 X NUMBER OF NODES IN SOIL

NESTR NUMBER OF STRUCTURE ELEMENTS

NEJON. NUMBER OF JOINT ELEMENTS

NEINT. NUMBER OF INTERFACE ELEMENTS

NESOL NUMBER OF SOIL ELEMENTS

NEREG. NUMBER OF INTEGRATION CELLS

HH, GG. MATRIX GENERATED IN BOUNDARY ELEMENT REGION
XM, XM1 VECTOR IN STORING SOLUTIONS

IMPLICIT REAL*8(A-H,0-2)
DIMENSION Xx(250), Y(250), €(3,3), ICONNE(250,4). IDCOLU(420)
DIMENSION COLUMN(420), A(420,420), BODY(420), XM1(420)

DIMENSION STR(3,1), DISP(2,1), HH(200,200). GG(200,200), XM(420)

DIMENSION ELSTIF(8,8)
COMMON /CO/ X, Y

COMMON /NNN/NNSTR2,NNINT4,NNSOL2,NESTR,NEJON,NEINT, NESOL, NEREG

COMMON /MMM/ NEB, NEL, NEREG!, NEREG2
COMMON /I0/IRE.IWR

SET POINTERS AND INPUT TITLE

IRE = 5

R = 6

Iw
WRITE (IWR.9)
CALL SUBROUTINE "INPUT*"

R =0
CALL INPUT(TCONNE, IDCOLU,COLUMN, IUNKNO, ITYPE,IER)
IF (IER EQ O0) GO TO 1000
GO TO 10000

DO 5 M = 1, IUNKNO
BODY(M) = O
XM1(M) =
DO 8 N = TUNKNO

A(m,

o
1,
N) = 0

o0o00000

"o

C----

CALL

C----

CALL

C----

70
60

CONTINUE
CONTINUE

FINITE ELEMENT FORMULATION
FINITE(E, ICONNE,A,BODY)
BOUNDARY CONDITION IN THE STRUCTURE AND INTERFACE

IK = NNSTR2 + NNINT4 / 2
DO 10 J = 1, IK
IF (IDCOLU(J) EQ O) GO TO 20
CALL CLEAN{J,COLUMN(J),A . BODY)
BODY(J) = COLUMN(J)
GO TO 10
BODY(J) = BODY(J) + COLUMN(J)
CONT INUE

MATRIX “M* FORMULATION

JB = NESTR + NEJON + 1
JL = NESTR + NEJON + NEINT

D0 30 Ju = JB, JL
I8 = ICONNE(JJ, 1)
IL = ICONNE(JJ,2)
XLENG = DSQRT((X(IL)-X(1B)) ** 2 + (Y(IL)-V(IB)) *+ 2)
KK = 2 * IB - {
L =2 % 10JL -1
MM = KK + NNINT4 / 2
NN = LL + NNINT4 / 2

A(KK,MM) = A(KK,MM) + XLENG / 3.
A(LL,MM) = A(LL,MM) + XLENG / 6
A(KK+1,MM+1) = A(KK+1,MM+1) + XLENG / 3
A(LL+1,MM+1) = A(LL+1 MM+1) + XLENG / 6
A(KK,NN) = A(KK,NN) + XLENG / 6
A(LL,NN) = A(LL,NN) + XLENG / 3.
A(KK+1,NN+1) = A(KK+1,NN+1) + XLENG / 6
A(LL+1,NN+1) = A(LL+1,NN+1) + XLENG / 3

CONTINUE

BOUNDARY ELEMENT FORMULATION
ITYPE = 1 UNSYMMETRY
ITYPE = 2 SYMMETRY ABOUT Y AXIS

BOUND ( ICONNE ,HH, GG, BODY , ITYPE, IFA ,NIF, IDCOLU, COLUMN,CC)

IROW = NNSTR2 + NNINT4 / 2
ICOL1 = NNSTR2

ICOL2 = IROW

MROW = NNSOL2 + NNINT4 / 2
MCOL = NNINT4 / 2

ASSEMBLE MATRIX "HH" AND "GG" INTO MATRIX *

DO 60 M = 1, MROW
D0 70 N = 1, MCOL

A(IROW+M, ICOL1+N) = HH(M,N)
A(IROW+M, ICOL2+N) = - GG(M,N)
CONT INUE
CONT INUE

MCOL = MCOL + 1
DO 80 M = 1, MROW
DO 110 N = MCOl , MROW

TiT



65

40

c----

C----
c

2000
c

C----

120

C----
130
140

C-=-mn

C----

180

CALL

CALL

IF (1T EQ

A(IROW+M, ICOL2+N) =
CONT INUE
CONTINUE

HH(M,N) 530

SOME TERMS IN MATRIX A ARE MULTIPLIED BY CC OR CD TO AVOID
NUMERICAL ERROR

NNSTR2 + 1
MM + NNINT4 / 2
TUNKNO - NNSOL2
A(1,1) / A(NN,MM)
cc * cp

O J = MM,
DO 50 K = 1, ITUNKNO
IF (( LT NN) OR (J GT LL)) GO YO 55

A(K,Ju) = CC * A(K.,U)
GO 1O 50
A(K.J) = CD * A(K,J)
CONT INUE
CONT INUE

540

Sowwonouw

TUNKNO 550

C----

570
IT =
MB =
M-

o
NESTR + 1
NESTR + NEJON

CALAULATE THE INVERSE OF GLOBAL MATRIX
INVER(A, 420, JUNKND)

XM STORE SOLUTION OF UNKNOWNS 580

PROD 1(A,BODY, XM, 420, IUNKND, IDCOLU,CC,CD)
CHECK THE CONVERGENCE OF DISPLACEMENTS AT INTERFACE

11) GO TO 180

IB = NNSTR2 + 1

IL = NNSTR2 + NNINT4 / 2
585

DO 120 K = IB

IF (DABS(XM(K) - xus(K))

CONT INUE

GT 0 000000%1) GO TO 130 C---=-

GO TO 190

RESTART THE PROLEM STORE "XM" TO "XM{i"

00 140 I = 1, IUNKNO
XM1(1) = xM(1) 590
CONTINUE
C----
ITERATIVE ROUTINE

IT = IT + 1

CALL ITER(XM,BODY, ICONNE,MB,ML)

GO TO 2000
600
REORDER AND STORE DISPLACEMENTS TO XM, TRACTIONS TO COLUMN

= NNSTR2 + NNINT4 / 2 + 1
= NNSTR2 + NNINT4
530 K = M, N
L = K - NNINT4 / 2
COLUMN(L) = XM(K)

M
N
D

CONT INUE

M =N+
DO 550 K = M, IUNKNO
L = K - NNINT4 / 2
IF (IDCOLU(K) EQ O) GO TO 540
COLUMN(L) = XM(K)
XM(L) = COLUMN(K)
GO TO 550
COLUMN(L) = COLUMN(K)
XM(L) = XxM(K)
CONT INUE

STRUCTURE OUTPUT

NNSTR = NNSTR2 / 2
WRITE (IWR,90)
DO 570 L = 1,
WRITE (IWR, 94) L XM(Z‘L 1), XM(2%L)
CONT INUE
WRITE (IWR,97)
DO 580 JJ = 1, NESTR
= ICONNE(uJ, 1)
J = ICONNE(JJ,2)
K = ICONNE(JJ.3)
L = ICONNE(uJ.4)
CALL SOLVE(I.J,K,L.E,STR,DISP,XM)
WRITE (IWR,904) JJ,(DISP(M, 1) ,M=1,2), (STR(M, 1) ,M=1,3)
CONT INUE
WRITE (IWR,99)
DO 585 JJ = MB, ML
1 = ICONNE(JJ,1)
J = ICONNE(JY,2)
K = ICONNE(JJ,3)
= ICONNE(UJ,4)
CALL FlND(l J,K,L,STR.DISP,XM)
WRITE (IWR.906) uJ.I.J.(DISP(M,1),M=1,2), (STR(M,.1).M=1,2)
CONTINUE .

INTERFACE OUTPUT

WRITE (IWR,907)
M = NNSTR + 1
N = NNSTR + NNINT4 / 4

DO 590 K = M,
WRITE (IWR, 904) K. XM(24K-1),XM(2*K),COLUMN(2+K-1),COLUMN(2*K)
CONT INUE
SOIL OUTPUT
WRITE (IWR,917)
M=N+ 1
N = M+ NNSOL2 / 2 - 1
DO 600 K =
WRITE (IWR, 914) K,XM(2*K-1) ,XM(2*K),COLUMN(2+*K-1) COLUMN(2*K)
CONT INUE
WRITE (IWR,97)
1F (NEREG EQ 0) GO TO 10000
00 200 JJ = NEREG!, NEREG2

= ICONNE(JU, 1)
= ICONNE(J,2)

AN



K = ICONNE(uUJ.3)

L = ICONNE(JJ,4)

XI = X(I)

XJ = X(u)

XK = X(K)

XL = x(L)

YL = Y(1)

YJ = Y(J)

YK = Y(K)

YL = v(L)

XS = 25 * (XI + XJ + XK + XL)
¥YS = 25 ¢ (VI + YJ + YK + YL)

0 230 ISY = 1, IFA, NIF
IF (ISY EQ 1) GO TO 235
XS = - XS
GO TO 240
235 DISP(1,1) =
DISP(2,1) =
STR(1,1) = o
STR(2,1) = O
STR(3,1) = O
240 CALL CALCU(ICONNE,XS,YS,COLUMN, XM, STR,DISP,ISY)
230 CONT INUE
WRITE(IWR,904)ud, (DISP(M,. 1) .M=1,2),STR(1,1),.STR(3,1),STR(2,1)
200 CONT INUE

WRITE(IWR,924)
9 FORMAT(1H1,///,40X,‘COUPLING OF FINITE AND BOUNDARY ELEMENT"
‘  METHODS',

//.40%, "’ APPLIED TO‘,
//.42x,’ SOIL-STRUCTURE INTERACTION PROBLEMS’)

LR

90 FQRMAT(/////IQQX_'tttaootoot'oottott‘tttl_
& /.,36X, STRUCTURE QUTPUT *°
8 . 36X, "‘n‘tttt‘...ot'."“.t"
[3 /7//.41X, *NODAL DISPLACEMENT *,
& //.34X,’NODE’,7X,'U’ 13X, ‘V’)

94 FORMAT(34X,13,2(3X,E11 4))

97 FORMAT(////.S51X,’ELEMENT DISPLACEMENT AND STRESS',//,
34X, 'ELEMENT’,4X, U’ , 13X, 'V’ 12X, “SXX’, 11X, 'SYY’ 10X, *SXY’)

99 FORMAT(////.47X, 'RELATIVE DISPLACEMENT AND LOCAL STRESS ‘,
“AT JOINT ELEMENT’,//,34X,'ELEMENT’,5X,’LOCAL X AXIS’,
& 7X,’TAN DISP’,5X,’NOR DISP’,BX,’TAU’, 10X, ‘SIGMA’)

904 FORMAT(34X,13,5(3X,E11 4))
c
906 FORMAT(34X,13,6X,'NODE’,I3,’ TO NODE’,13,4(3X,E11 4))

207 FORMAT(///// T R e T T A
& . GX." INTERFACE OUTPUT =+’
& / K R e A A L L
3 ////,43X.’DlSPLACEMENT AND TRACTION AT INTERFACE’,
& //.,34X,’NODE’,7X, U’ 13X, 'V’ 12X, TXX’ , 11X, ‘TYY")

914 FORMAT(34X,I3,4(3X,E11 4))

917 FORMAT(///// ., 36X, *teesersnsnnnkissss
& /.36X,’* SOIL OUTPUT *,
8 /36X, e ras kb anrns
& ////.43%, ‘DISPLACEMENT AND TRACTION AT BOUNDARY NODE’,
& //.34X,’NODE’,7X, U’ 13X, "V’ 42X, ‘TXX' 11X, TYY’)

c
924 FORMAT( 1H1)

c
10000 STOP
END

Cmmmmmmmm e ccmammmmm———————
c
c SUBPROGRAM " INVER*
c
Cmmmmm e mmm e mc e m
c
SUBROUTINE INVER(A,NX.N)
c
IMPLICIT REAL*8(A-H,0-2)
DIMENSION A(NX,NX)
c
DO 100 K = 1, N
c
D0 20 J =,
IF (J EQ K) GO TO 20
A(K.J) = A(K,J) / A(K,K)
20 CONT INUE
c
A(K.K) = + / A(K.K)
c
DO 30 I = 1,
IF(I EQ K) GD 70 30
c
DO 40 U = 1,
IF (J .EQ K) GO TO 40
A(I.4) = A(L,0) - A(K,J) * A(1,K)
a0 CONT INUE
30 CONT INUE
c
DO SO I = 1,
IF (I EQ K) eo 10
A(I,K) = -A(I, K) * A(K.K)
50 CONTINUE
100 CONT INUE
c
RETURN
END
Commmmmmmmm e mmmmmm
c
c SUBPROGRAM “ITER™
c
Cmmmmmmcmm e mem
c .
SUBROUTINE ITER(XM,BODY, ICONNE,MB ML)
c
IMPLICIT REAL*8(A-H,0-2)
DIMENSION XM(420), BODY(420), ELSTIF(8.8), X(250)
DIMENSION Y(250), ICONNE(250.4)
c
COMMON /CO/ X,Y
COMMON /PROP/ESTR,PSTR,WSTR, EKN, EKS, ESOL ,PSOL , WSOL
c
DO 10 JJ = MB, ML
I = ICONNE(JJ,1)
J = ICONNE(JJ,2)
K = ICONNE(JJ,3)
L = ICONNE(JJ,4)
XLENG = DSQRT((X(J) - X(I)) *+* 2 + (Y(J) - Y(I)) *+ 2)
COST = (X(J) - X(I)) / XLENG
SINT = (Y{(J) - v(I)) / XLENG
¢

€1t



C---~

C----

1000

RELATIVE DISPLACEMENT AT CENTROID OF JOINT ELEMENT

U= 05 * (XM(2*K-1) + XM(2eL-1) - XM(2°I-1) - XM(2+U-1))
V =05 * (XM(2*K) + XM(2%L) - XM(2*I) - XM(2*JU))

TRANSFORM TO LOCAL DISPLACEMENT

WS = U * COST + V * SINT
WN = - U * SINT +# v ¢ COST

TAU = WS * EKS
SIGMA = WN * EKN
IF (SIGMA LE 0) GO TO 10

RESTRAINING FORCE IS - SIGMA * LENGTH AND - TAU * LENGTH

TX = (COST * TAU - SIGMA * SINT) * XLENG / 2
TY = (SINT * TAU + SIGMA * COST) * XLENG / 2
BODY(2¢1-1) = BODY(2*1-1) + TX
BODY(2*1) = BODY(2+1) + Ty
B80DY(2*y-1) = BODY(24J-1) + TX
BODY(24J) = BODY(24y) + TY
BODY(2°*K-1) = BODY(2*K-1) - TX
BODY(2*K) = BODY(2°K) - Tv
BODY(2*L-1) = BODY(2*L-1) - TX
BODY(2+L) = BODY(2¢L) - TY
CONT INUE

RETURN
END

SUBPROGRAM "FIND*
SUBROUTINE FIND(I,J.K,L,STR,DISP,XM)

IMPLICIT REAL*8(A-H,0-2)
DIMENSION STR(3,1), DISP(2,1), XM(420), D(2), X(250), Y(250)

COMMON /CO/ X.,Y
COMMON /PROP/ESTR,PSTR,WSTR, EKN, EKS, ESOL,PSOL,WSOL

XD = X(J) - x(I)

YD = Y(J) - Y(1)

D(1) = (-XM(2¢1-1) - XM(2*U-1) + XM(2*K-1) + XM(2*L-1)) * O 5
D(2) = (- XM(2%I) - XM(2+J) + XM(2*K) + XM(2*L)) * 0 5

XLENG = DSQRT(XD * XD + YD * YD)
COST = XD / XLENG
SINT = VYD / XLENG

TRANSFORM DISPLACEMENT TO LOCAL COORDINATES AND FIND STRESS

DISP(1,1) = €OST * D(1) + SINT * D(2)
DISP(2,1) = -SINT * D(1) + COST * D(2)
STR(1,1) = EKS * DISP(1.,1) -
STR(2,1) = EKN * DISP(2,1)

RETURN

END

SUBPROGRAM "FINITE"

o000

S0

70

100

oo

o0

c----

SUBROUTINE FINITE(E,ICONNE,A,BODY)

IMPLICIT REAL*B(A-H,0-2)
DIMENSION ELSTIF(8,8), A(420,420)
DIMENSION ICONNE(250.4), BODY(420), E(3,3), DETUAC(4)

COMMON /PROP/ESTR,PSTR,WSTR,EKN, EKS,ESOL,PSOL ,WSOL
COMMON /NNN/NNSTR2 ,NNINT4,NNSOL2 ,NESTR ,NEJON,NEINT ,NESOL ,NEREG

CONST = ESTR / ((1. + PSTR) * (1t - 2 * PSTR))
-= CONST * (1 - PSTR)

€(2.2) = E(1.1)

E(3.3) = CONST * 5 v (1 - 2 * PSTR)
E(1,2) = CONST * PSTR

E(2,1) = E(1.,2)

E(2.3) = O

E(3,2) = E(2.,3)

E(1,3) = 0

E(3,1) = 0

N = NESTR + NEJON
DO 100 WU = 1, N
1CONNE (WY, 1)
ICONNE (JJ, 2)
ICONNE (JJ, 3)

L = ICONNE(uJ.4)
IF (JJ GT NESTR) GO TO 50

J
K

nonouwow

CALL STIFF(I.J,K,L,E,ELSTIF,DETUAC)

BODY(2*1) = BODY(2*1) - WSTR * DETJUAC(1)
BODY(2+*J) = BODY(2*J) - WSTR * DETJUAC(2)
BODY(2+*K) = BODY(2*K) - WSTR * DETJUAC(3)
BODY(2°L) = BODY(2*L) - WSTR * DETUAC(4)
Go T0 70
CALL SJUOINT(I,J,K,L,EKS,EKN,ELSTIF)
CALL ASSEM(ELSTIF,I,J.K,L,A)
CONT INUE
RETURN
END

SUBPROGRAM “SUOINT*
SUBROUTINE SUOINT(I,J.K,L.ES,EN,ELSTIF)
IMPLICIT REAL*8(A-H,0-2)
DIMENSION SQ4(8,8), ELSTIF(8,8), TRAN(8,8), TEMP(8.8), X(250)
DIMENSION Y(250)
COMMON /CO/ X, Y
CLEAR TRANSFORMATION MATRIX AND LOCAL JOINT STIFFNESS MATRIX
DO 1OM =1, 8
DO 20N =1, 8

TRAN(M,N) = O
SQ4(M,N) = O

PIT



20
10

C---~

C--=-

CONT INUE
CONT INUE
X0 = X(J) - X(I)
YD = v(J) - V(1)
XLENG = DSQRT(XD % XD + YD * YD)
FORMULATION OF TRANSPOSE
TRAN(1,1) = XD / XLENG
TRAN(2,2) = XD / XLENG
TRAN(3,3) = XD / XLENG
TRAN(4,4) = XD / XLENG
TRAN(S,5) = XD / XLENG
TRAN(6,6) = XD / XLENG
TRAN(7,7) = XD / XLENG
TRAN{8,8) = XD / XLENG
TRAN(1,2) = - YD / XLENG
TRAN(2,1) = vD / XLENG
TRAN(3,4) = - YD / XLENG
TRAN(4.,3) = YD / XLENG
TRAN(5,6) = - YD / XLENG
TRAN(6.5) = YD / XLENG
TRAN(7.8) = - YD / XLENG
TRAN(8.7) = YD / XLENG
FORMULAT ION
SQ4(1,1) = XLENG / @ =+ ES
SQ4(1,3) = XLENG / 6 * ES
SQ4(1,5) = - XLENG / 6 * ES
SQ4(1,7) = - XLENG / 3 * ES
SQ4(3,1) = XLENG / 6 * ES
SQ4(3,3) = XLENG / 3 * ES
SQ4(3.5) = - XLENG / 3 * ES
SQ4(3,7) = - XLENG / 6 * ES
SQ4(5,1) = - XLENG / 6 * ES
SQ4(5,3) = - XLENG / 3 * ES
SQ4(5,5) = XLENG / 3 * ES
SQ4(5.7) = XLENG / 6 * ES
SQ4(7,1) = - XLENG / 3 * ES
SQ4(7,3) = - XLENG / 6 * ES
SQ4(7.5) = XLENG / 6 * ES
SQ4(7.7) = XLENG / 3 * ES
$Q4(2,2) = XLENG / 3 * EN
SQ4(2,4) = XLENG / 6 * EN
SQ4(2,6) = - XLENG / 6 * EN
SQ4(2,8) = - XLENG / 3 * EN
$Q4(4.2) = XLENG / 6 * EN
SQ4(4.4) = XLENG / 3 * EN
SQ4(4,6) = - XLENG / 3 * EN
SQ4(4,8) = - XLENG / 6 * EN
SQ4(6,2) = - XLENG / 6 * EN
SQ4(6,4) = - XLENG / 3 * EN
SQ4(6,6) = XLENG / 3 * EN
SQ4(6,8) = XLENG / 6 * EN
SQ4(8,2) = - XLENG / 3 * EN
SQ4(8,4) = - XLENG / 6 =* EN
S04(8 6) = XIFNG / 6 * FN

OF LDACL JOINT ELEMENT STIFFNESS

“TRAN"

C----

C----

SQ4(8,8) = XLENG / 3 * EN
TRANSFORMATION TO GLOBAL JOINT STIFFNESS MATRIX

CALL PROD(TRAN,SQ4,TEMP,8,8.8)

TRAN(1,2) = - TRAN(1,2)
TRAN(2,1) = - TRAN(2,1)
TRAN(3,4) = - TRAN(3,4)
TRAN(4,3) = - TRAN(4,3)
TRAN(S5.6) = - TRAN(5,6)
TRAN(6.5) = - TRAN(6,5)
TRAN(7.8) = - TRAN(7.8)
TRAN(8,7) = - TRAN(8,7)

CALL PROD(TEMP,TRAN,ELSTIF,8.8,8)

RETURN
END

SUBPROGRAM “"STIFF"

SUBROUTINE STIFF(I,J,K.L,E.ELSTIF,DETUAC)

IMPLICIT REAL*B(A-H,0-2)

DIMENSION E(3,3), SQ4(8.8), B(3.8), DUMM(8,3), DETUAC(4)
DIMENSION XJINV(2,2), XM1(2,8), XM2(2,8), ELSTIF(8,8)
DIMENSION AALPHA(4), ABETA(4), BT(8,3), X(250), Y(250)

COMMON /cO/ X, Y
COMMON /ALPH/ AALPHA, ABETA

IGNORE WEIGHT, BECAUSE WEIGHT = 1 FOR 4 POINT INTEGRATION

XI = X(I)
XJ = X(J)
XK = X(K)
XL = X(L)
YI = v(I)
vd = v(J)
YK = V(K)
YL = v(L)

D0 10 IR = {1, 8
DO 20 IC = {, 8
ELSTIF(IR,IC) = O
CONTINUE
CONTINUE

IPOINT = 1
ALPHA = AALPHA(IPOINT)
BETA = ABETA(IPOINT)

DXDA = - 25 * (1 - BETA) * XI + 25 * (1 - BETA) * XJ
+ 25 * (1 + BETA) * XK - 25 * (1 + BETA) * XL

DYDA = - 25 * (1 - BETA) * YI + 25 * (1 - BETA) * vy
+ 25 * (1 + BETA) * YK - 25 * (1 + BETA) * yL

DXDB = - 25 * (1 - ALPHA) * XI - 25 % ({1 + ALPHA) * Xy
+ 25 * (1 + ALPHA) * XK + 25 # ({1 - ALPHA) * Xi

STT



C----

30

50

40

70
60

- 25 ¢ (1 - ALPHA) * YI - 25 * (1 + ALPHA) * YU
+ 25 * (1 + ALPHA) * VK + 25 * (1 - ALPHA) * YL

DXDA, DYDA, DXDB AND DYDB ARE TERMS IN JACOBIAN

XJUDET = DXDA * DYDB - DXDB * DYDA
XJINV(1,1) = DYDB / XJUDET
XJINV(1,2) = - DYDA / XJDET
XJINV(2,1) = - DXDB / XJDET
XJINV(2,2) = DXDA / XJDET
DETJAC(IPOINT) = DABS(XJDET)

DO 30 M =1, 4

XM1(1,2°M) = O
XM1(2,2*M) = O
XM2(1,2°M-1) = O
XM2(2,2*M-1) = O
CONT INUE
XM1(1,1) = - 25 * (1 - BETA)
xXM2(1,2) = xM1(1.1)
XM1(1,3) = + 25 * (1 - BETA)
XM2(1,4) = xM1(1,3)
XM1(1.5) = + 25 * (1 + BETA)
XM2(1,6) = xM1(1,5)
XM1(1,7) = - 25 * (1 + BETA)
XM2(1,8) = xM1(1,7)
XM1(2,1) = - 25 * (1 - ALPHA)
xM2(2,2) = xM1(2.1)
XM1(2,3) = - 256 * (1 + ALPHA)
XM2(2.4) = xM1(2,3)
XM1(2,5) = + 25 ¢ (1 + ALPHA)
XM2(2,6) = xM1(2.,5)
XM1(2,7) = ¢ 25 ¢ (1 - ALPHA)
XM2(2,8) = xM1(2.7)
DO 40 M =1, 8
B(1,M) = 0
B8(2.M) = 0
B(3I.M) = O
DO SO N =1, 2
B(1.M) = B(1.M) + XUINV(1,N) * XM1(N,M)
8(2.M) = B(2.M) + XJINV(2,N) * XM2(N.,M)
B(3.,M) = B(3,M) + XJINV(2,N) * XMI(N.M)
+ XJINV(1,N) * XM2(N.M)
CONT INUE
BT(M,1) = B(1.M)
BT(M,2) = B(2,M)
BT(M,3) = B(3,M)
CONT INUE
CALL PROD(BT,E,DUMM.8,3,3)
CALL PROD(DUMM,B,SQ4.8,3,8)
DO 6O M =1, 8
DO 70N =1, 8
ELSTIF(M,N) = ELSTIF(M,N)+SQ4(M,N) * DETUAC(IPOINT)
CONT INUE
CONTINUE

IF (IPOINT EQ 4 ) GO TO 1000

IPOINT = IPOINT + 1
GO TO 15

c
1000 RETURN

000000

END

SUBROUTINE ASSEM(ELSTIF,I,J,K,L,A)

IMPLICIT REAL*8(A-H,0-2)
DIMENSION ELSTIF(8,8), JR(4), NR(8), A(420,420)

JR(1) =1
JR(2) =y
JR(3) = K
JrR(4) = L
DO 10M =1, 4
IX =2 ¢ M- 1
IV = IX + 1
NR(IX) = 2 * UR(M) -1
NR(1IY) = 2 * UR(M)
CONT INUE
DO 20M = 1, 8
D0 30 N = 1,8
A(NR(M) ,NR(N)) = A(NR(M).NR(N)) + ELSTIF(M,N)
CONT INUE
CONTINUE
RETURN
END

SUBPROGRAM “SOLVE"

SUBROUTINE SOLVE(I,J.K,L,E,STR,DISP,BODY)

IMPLICIT REAL*8(A-H,0-2)

DIMENSION E(3,3). STR(3,1), STRAIN(3.1), BODY(420)
DIMENSION 8(3.8), DISP(2,1), XJINV(2,2), XM1(2,8), xM2(2,8)
DIMENSION X(250), Y(250), DD(8,1)

COMMON /CO/ X, Y

XI = x(I)
XJ = X(J)
XK = X(K)
XL = X(L)
VI = v(I)
YJ = v(J)
YK = Y(K)
YL = v(L)

D0D(1,1) = BODV(2+1-1)
DD(2,1) = BODY(2+1)
DD(3,1) = BODY(2¢u-1)
DD(4,1) = BODY(2+Y)
DD(S 1) = BODY(2°*K-1)
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DD(6,1) = BODY(2*K)
pb(7.1) = BODY(2*L-1)
pD(8,1) = BODY(2+L)

DISP(1,1) = O
pISP(2,1) = O

DO 15K =1, 4

DISP(1,1) = DISP(1,1) + 25 * DD(2°K-1,1)
DISP(2,1) = DISP(2.1) + 25 ¢ DD(2°*K, 1)
CONTINUE
DXDA = - 25 ¢ XI + 25 % XJ + 25 ¢ XK - 25 * XL
DYDA = - 25 * YI + 25 * YU + 25 ¢ YK - 25 * VL
DXDB = - 25 * XI - 25 % XJ + 25 * XK + 25 ¢ XL
DYDB = - 25 * YI - 25 * Yy + 25 % YK + 25 ¢ VL

DXDA, DYDA, DXDB AND DYDB ARE TERMS IN JACOBIAN

XJUDET = DXDA ¢ DYDB - DXDB * DYDA
XJINV(1,1) = DYDB / XJDET
XJINV(1,2) = - DYDA / XJDEY
XJINV(2,1) = - DXDB / XJDET
XJINV(2,2) = DXDA / XJUDET

DO 30 M = 1,
XM1(1, 2'M) =0
XM1(2,2*M) = 0
XM2(1,2*M-1) =
XM2(2,2*M-1) =

CONTINUE
XM1(1,1) = - .26
xM2(1,2) = XM1(1,1)
xM1(1.3) = + 25
XM2(1,4) = xM1(1,3)
XM1(1,5) = + 25
xM2(1,6) = XM1(1,5)
XM1(1,7) = - 25
xM2(1,8) = XM1(1,7)
XM1(2,1) = 25
xM2(2,2) = xM1(2.1)
xMi(2,3) = - 28
xM2(2,4) = xM1(2,3)
XM1(2,5) = + 25
XM2(2,6) = XM1(2.,5)
XM1(2,7) = +
XM2(2,8) = XM1(2,7)
DO 40M =1, 8
B(1.M) = 0
B(2,M) = O
B(3a.M) = O

+ XJINV(1,
+ XJINV(2,
B(3.M) = B(3.M) + XJINV(2,
+ XJINV(Y,

o
-
~
=
-

"

™

-

1S

=

-
e n

N)
N)
N)
N)
CONTINUE

CONT INUE

XM1(N,M)
XM2(N.M)
XM1(N,M)
XM2(N,M)

CALL PROD(B,DD,STRAIN,3,8,1)

c
CALL PROD(E,STRAIN,STR,3,3,1)
c
RETURN
END
Commmmmmmm e m e
c
c SUBPROGRAM "CLEAN“
c
c
c
SUBROUTINE CLEAN(U,V,A,B80DY)
c
IMPLICIT REAL*8(A-H,0-2)
DIMENSION A(420,420),B0DY(420)
c
COMMON /NNN/NNSTR2,NNINT4,NNSOL2 ,NESTR,NEJON,NEINT, NESOL, NEREG
c

IK = NN57R2 + NNINT4 + NNSOL2
DO 10 K = IK
EDDV(K) = BODY(K) - A(K,J) * V

o

SUBPROGRAM “BOUND"

SUBROUTINE BOUND( ICONNE ,HH,GG,BODY, ITYPE,IFA ,NIF, IDCOLU,COLUMN,CC)

IMPLICIT REAL*8(A-H,0-2)

DIMENSION GI(3.6), OME(3.6), D(2,2), HH(200,200), GG(200,200)
DIMENSION H(2,4), G(2,4)., USTAR(2,2), AALPHA(4), ABETA(4)
DIMENSION ICONNE(250,4), BODY(420), x(250), ¥(250), IDCOLU(420)
DIMENSION COLUMN(420)

COMMON /CO/ X, ¥

COMMON /NNN/NNSTR2 ,NNINT4 ,NNSOL2 ,NESTR ,NEJON,NEINT, NESOL. NEREG
COMMON /CONS/ €%, C€2, €3, C4, C5, C6, C7 GI, OME,

COMMON /PRDP/ESTR PSTR,WSTR, EKN EKS ESOL,PSOL,WSOL

COMMON /ALPH/ AALPHA, ABETA

COMMON /MMM/ NEB, NEL. NEREGt, NEREG2

GE = ESDL / (2 + (1 + PsoL))
c2 = - 4 « psoL

€3 = I / ((1 - PSOL) * 12 56637062)
C4 =1 - 2. * PSOL

ce = 2 + c3 * GE

C7 =1 -4 * PSOL

Ct =C3 / (2 * GE)

cs = Ct / 2.

cc =2 *GE/ (1. - PsoL)
0(1.1) = 1

D(1,2) =0

D(2,1) = 0

D(2,2) = 1
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C----

NNB = NNSTR2 / 2 +
NNL = NNB + NNSOL2 / 2 + NNINT4 / 4 -V c
KKK = 2 * (NNL - NNB + 1)
DO 10 J = 1, KKK
D0 15 L = 1, KKK
HH(J,L) = O
GG(J,L) = O c
CONT INUE
CONT INUE
NEB = NESTR + NEJON +
NEL = NEB + NEINT + NESDL -1
0
IFA = 1
NIF = 1
IF (ITYPE EQ 1) GO TO 23
100
IFA = 3
NIF = 2
DO 990 ISY = 1, IFA, NIF c
NODE = NNB
XS = X(NODE)
¥S = Y(NODE)
IF (ISsY EQ 1) GO TO S5
XS = -XS
0O 100 J = NEB, NEL
18 = ICONNE(J,1)
1L = ICONNE(J,2)
DXB = DABS(X(1B)-XS)
DYB = DABS(Y(IB)-YS)
DXL = DABS(X(IL)-XS)
DYL = DABS(Y(IL)-YS) c
1c00 = 1
IF ((ISY NE 1) AND (DABS(XS) GT 0 001)) GO TO 40 300
IF ((DXB GT O 001) OR (DYB GT O 001)) GO TO 25
1coD = 2 &
GO TO 40
IF((DXL G¥ O 001) OR (DYL GV O 001)) GO 70 40 c
1coD = 3
8
CALL FUNC(ICOD,H,G,IB,IL,XS,YS,USTAR XX, YV ISY) .
SET REQUIRED POINTERS IN TERMS OF LOCAL MATRIX "HH", "GG" C
M =2 * (NODE - NNB) + 1 &
N =2+* (IB - NNB) + 1 c
L =2* (IL - NNB) + 1 .

HH(M,N) = HH(M,N) + H(1, [
HH(M,N+1) = HH(M,N+1) + H(' 2)

HH(M,L) = HH(M,L) + H(1.,3)

HH(M,L+1) = HH(M.L+1) + H(1,4)

c
HH(M+1,N) = HH(M+1,N) + H(2,1)
HH(M+ 1, N+1) = HH(M+1 N+1) + H(2,2) c
HH(M+1,L) = HH(M#1, L) + H(2.3) G-~
HH(M+1,L+1) = HH(M# 1, L+1) + H(2.4) [

c

GG(M,N) = GG(M,N) + G(1.1)
GG(M N+1) = GG(M,N+1) + G(| 2)
GG(M.1) = GG(M 1) + G(1 7)

GG(M,L+1) = GG(M.L+1) + G(1,4)

GG(M+1,N) = GG(M+1,N) + G(2
GG(M+1.N+1) = GG(MH1,N+1) + G(2 2)
GG(M+1.L) = GG(M+1,L) + G(2,3)
GG(M+1.L+1) = GG(MHI,L+1) + G(2.4)

IF (ISY EQ 1) GO TO SO
H(1,1) = - H(1,1)

H(2,1) = - H(2.1)
H(1.3) = - H(1.3)
H(2.3) = -

(2,3)
HH(M,M) = HH(M,M)~ H(1,1)- H(1,3)
HH(M,M+1) = HH(M . M+1)- H(1,2)- H(1,4)
HH(M+1,M) = HH(M+1,M) - H(2.|) - H(2,3)
HH(M+ 1 M+1) = HH(M+1 M+1) - H(2.2) - H(2.4)
CONT INUE
IF (NEREG EQ O) GO TO 220
NEREG1 = NEL + 1
NEREG2 = NEREGY + NEREG - 1

DO 200 JJ = NEREG!, NEREG2
= ICONNE(JuJ,1)
= ICONNE(JUJ,2)

K = ICONNE(JJ,3)
= lCONTE(dJ.4)

X = X(I

XJ = X(J)

XK = X(K)

xL = x(L)

Y1 = V(1)

YJ = Y(J)

YK = Y(K)

YL = v(L)

IPOINT = 1

AL = AALPHA(IPOINT)

BE = ABETA(IPOINT)

XX = 25*(1-AL)*(1-BE)*XI + 25%(1+AL)*(1-BE)*XJ

4+ 25*(1+AL)*(1+BE)*XK + 25%(1-AL)*(1+BE)*XL
YY = 25%(1-AL)*(1-BE)*YI + 25%(1+AL)*(1-BE)*YU
+ 25+ (1+AL)*(1+BE)*YK + .25*(1-AL)*(1+BE)*YL

DXDA = - 25 * (1 - BE) * XI + 25 * (1 - BE) * Xu
+ 25 ¢+ (1 + BE) * XK - 25 * (1 + BE) * XL

DYDA = - 25 * (1 - BE) * VI + 25 * (1 - BE) *+ vy
+ 25 % (1 + BE) * YK - 25 % (1 + BE) * VL

DXDB = - 25 * (1 ~ AL) * XI - 25 * (1 + AL) * Xxu
+ 25 % (1 + AL) * XK + 25 + (1 - AL) * XL

DYDB = - 25 * (1 - AL) * YI - 25 + (1 + AL) * VU
+ .25 % (1 + AL) * YK + 25 * (1 - AL) * VYL

XJDET = DXDA * DYDB - DXDB * DYDA

XJA = DABS(XJDET)

1coD = 4

CALL FUNC(ICOD,H,G,IB,IL,XS,YS,USTAR,XX,YY, ISY)

SET REQUIRED POINTERS IN TERMS OF GLOBAL MATRIX *A“

MM = 2 * NODE - 1 + NNINT4 / 2

BODY(MM) = BODY(MM) - WSOL * USTAR(1,2) * XuA
BODY(MM+1) = BODY(MM+1) - WSOL * USTAR(2,2) * XJA
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200
c
220
c
990
[
C----
c
c
c
C----
Cc
380
[
c
400
450
c
350
Cmmmm=
c
c
Cc
c
Cc
c
20
10
C

IPOINT = IPOINT + 1
IF (IPOINT LE 4) GO TO 300

CONTINUE

NODE = NODE + 1
IF (NODE LE NNL) GO TO 1000

CONTINUE
TAKE CARE OF GIVEN BOUNDARY CONDITION FOR “HH" AND "GG*
ILOC = KKK - NNSOL2 + 1

DO 350 K = ILOC, KKK
IGLO = K + NNSTR2 + NNINT4 / 2
IF (IDCOLU(IGLO) EQ O) GO TO 400

THE TERMS IN GG ARE MULTIPLIED BY CC TO AVOID NUMERICAL ERROR

DO 380 N = 1, KKK
IG = N + NNSTR2 + NNINT4 / 2
BODY(IG) = BODY(1G) - HH(N,K) * COLUMN(IGLO)
HH(N,K) = - GG(N,K) * cC

CONT INUE

GO TO 350

DO 450 M = 1, KKK
1G = M + NNSTR2 + NNINT4 / 2
80DY(IG) = BODY(IG) + GG(M,K) * COLUMN(IGLO)
CONTINUE

CONTINUE
RETURN
END

SUBPROGRAM "FUNC™

SUBROUTINE FUNC(ICOD,H,G,IB,IL,XS,YS,USTAR, XX,YY ISY)

IMPLICIT REAL*8(A-H,0-2)

DIMENSION USTAR(2,2). G(2,4), H(2,4), GI(3,6), OME(3,6)

DIMENSION PSTAR(2.2), DRD(2), DND(2), PHISC(2). XY(2)

DIMENSION X(250), Y(250). D(2,2)

COMMON /CO/ X, Y

COMMON /CONS/ C1, C2, €3, €4, C5, C6, C7, GI, OME, D
DO 10 KK = 1, 2

0

00 20L =1, 4
G(KK,L) = O
H(KK,L) = O
CONT INUE
CONTINUE
XY(1) = x(IL) - x(iB)

xv(2) = v(I1L) - v(18)
XLENG = (XY(1) * XY(1) + X¥(2) * XY(2)) ** 0 5
DND(1) = XY(2) / XLENG
DND(2) = - XV(1) / XLENG
IF ((IcCOD EQ 2) OR (IcoD EQ 3)) GO TO 2000

IF (IcoD EQ 1) GO TO 1000

500

c
1000
&

115

125

135
700

25

C----

&
40
30

XDD = XX - XS
YDD = YY - ¥§
GO To 25

SEL = 0 S * DSQRT((2 * XS - X(IB) - X(IL)) ** 2 + (2 +
¥S - Y(IB) - Y(IL)) =% 2) / XLENG
IF (SEL LE 1 5) GO TO 115
IF (SEL LE S5 5) GO TO 125
L=t
NPOINT = 2
GO TO 135

L =23
NPOINT = 6
GO TO 135

L=2

NPOINT = 4

IPOINT = 1

XOD = (X(IB)+X(IL)) / 2 - XS + XY(1) / 2 * GI(L,IPOINT)
voD = (V(IB)+v(IL)) / 2 - vS + Xv(2) / 2 * GI(L,IPOINT)
R = (XDD * XDD + YOD * YDD) ** 0 §

DRD(1) = xDD / R

DRD(2) = vOD / R

DRDN = DRD(1) * DND(1) + DRD(2) * DND(2)

COMPUTE MATRICES H AND G

oo 30 l =1,
40 J =1, 2

USTAR(I,J) = -C1*(C2*DLOG(R)*D(1,J)-DRD(1)*DRD(J))
IF (ICOD EQ 4) Go 70 40
PSTAR(I,J) = -C3*((C4*D(1,U)+2 *DRD(I)*DRD(J))*DRON
+Ca+(DRD(J) *DND(1)-DRD(1)*DND(U) ) )/R
CONT INUE
CONT INUE

IF (ICOD EQ 4) GO TO 900

PHISC(1) = 25 * (1.-GI(L,IPOINT)) * XLENG * OME(L,IPOINT)
PHISC(2) = 25 * (1 +GI(L,IPOINT)) * XLENG * OME(L,IPGINT)

G(1.1) = G(1,1) + USTAR(1,1) * PHISC(1
G(1,2) = G(1,2) + USTAR(1,2) * PHISC(1
G(1,3) = G(1,3) + USTAR(4.1) * PHISC(2
G(1,4) = G(1,4) + USTAR(1,2) * PHISC(2
G(2,1) = G(2,1) + USTAR(2,1) * PHISC(14
G(2,2) = G(2,2) + USTAR(2,2) * PHISC(1
G(2,3) = G(2,3) + USTAR(2.1) * PHISC(2
G(2,4) = G(2,4) + USTAR(2,2) * PHISC(2
H(1,1) = H(1,1) + PSTAR(1,1) * PHISC(1
H(1,2) = H(1,2) + PSTAR(1,2) * PHISC(1
H(1,3) = H(1,3) + PSTAR(1,1) * PHISC(2
H(1,4) = H(1.4) + PSTAR(1,2) * PHISC(2
H(2,1) = H(2,1) + PSTAR(2.1) * PHISC(1)
H(2,2) = H(2,2) + PSTAR(2.2) * PHISC(1)
H(2.3) = H(2.a) + PSTAR(2,1) * PHISC(2)

(2,4) = H(2,4) + PSTAR(2,2) * PHISC(2)

H(2,

IF (IPOINT EQ NPOINT) GO TO 800
IPOINT = IPOINT + 1
GO T0 700

6TT



2000

80
70

80

X

AL = C5 * C2 LENG
- DLOG(XLENG))

AA = AL * (O

*
5
D070 1 = 1, 2
D0 80 J =1, 4
IT=(4/2)*2+2-4
G(I,J) = C5 * XV(I) * XY(IT) / XLENG
IF (IT NE 1) GO TO 80

G(I,J) = G(I,J) + AA
CONTINUE
CONTINUE
1AA = -2
IF (ICOD NE 3) GO TO SO

1AA = O
G(1,3+IAA) = G(1,3+1AA) + AL
G(2,4+1AA) = G(2,4+1AA) + AL
H(1,2-TAA) = C3 * C4 * (1 + 1AA)
H(2,1-TAA) = - H(1,2-1AA)

IF (ISY EQ 1) GO TO 10000

USTAR(1,2) = - USTAR(1,2)
DO 130 U = 1, 4
H(1,4) = - H(1,J)
G(1,J) = - G(1,J)
CONT INUE
RETURN

SUBROUTINE CALCU(ICONNE,XS,YS,COLUMN,BODY,STR,DISP,ISY)

IMPLICIT REAL*8(A-H,0-2)

DIMENSION GI(3,6), OME(3,6), D(2,2), DISP(2,1), S(2,1), T(2,1)
DIMENSION AALPHA(4), ABETA(4), B(3,1), XY(2), PHI(2), DD(2,2,2)
DIMENSION ICONNE(250,4), BODY(420), X(250). Y(250), STR(3.1)
DIMENSION COLUMN(420). A(3,1), S55(3,4), DDD(3,4), P(4.1), Q(4,1)

DIMENSION H(2,4), G(2.4), USTAR(2,2)

COMMON /ca/ X, Y

COMMON /CONS/ €1, C2, €3, C4, C5, C6, C7, GI, OME, D
COMMON /PROP/ESTR,PSTR,WSTR, EKN, EKS,ESOL,PSOL,WSOL
COMMON /ALPH/ AALPHA, ABETA

COMMON /MMM/ NEB, NEL, NEREG!, NEREG2

IFLAG = 1
Icop = 1

DO 100 J = NEB, NEL

IB = ICONNE(J.1)

IL = ICONNE(J,2)

P(1,1) = COLUMN(2*1B-1)
P(2,1) = COLUMN(2*1B)
P(3.1) = COLUMN(2+IL-1)
P(4,1) = COLUMN(2*IL)
Q(1,1) = BODY(2+*IB-1)
Q(2,1) = BODY(2*1B)
Q(3.1) = BODY(2+IL-1)

Q(4.1) BoDY(2+1L)
CALL FORM(IFLAG,IB,IL XX,YY,XS,YS.DDD,SSS,.DD.ISY)

100

300

200

CALL PROD(DDD,P.A,3,
CALL PROD(SSS,Q,8B,3,
STR(1.1) = STR(
STR(2,1) = STR(
STR(3,1) = STR(3
CALL FUNC(ICOD,H,G,IB,
CALL PROD(G.P.S,2,4,1)
CALL PROD(H.Q,T,2.4,1)

a,
4,
1. - 8(1,1)
2, - B(2,1)
. - B(3.1)
TAR,XX,YY,ISY)

DISP(1,1) = DISP(1,1) + S(1.1) - T(1,1)
DISP(2,1) = DISP(2,1) + S(2.1) - T(2.1)

CONTINUE

IFLAG= 2

1C0D = 4

DO 200 JJ = NEREG!, NEREG2
T = ICONNE(UJ, 1)

J = ICONNE(JJ,2)

K = ICONNE(JJ,3)

L = ICONNE(JJ,4)

X1 = X(1)

XJ = X(J)

XK = X(K)

XL = x(L)

YI = v(1)

Yd = Y(J)

YK = V(K)

YL = v(L)

IPOINT = 1

AL = AALPHA(IPOINT)

BE = ABETA(IPOINT)

XX = 25%(1-AL)*(1-BE)*XI + 25+*(1+AL)*{(1-BE)*Xu

+ .25%(1+AL)*(1+BE)*XK + .25*(1-AL)*( 14BE)*XL
VY = 25%(1-AL)*(1-BE)*Yl + 25+(1+AL)*(1-BE)*Yy
+ 25¢(1+AL)*(1+BE)*VYK + 25%(1-AL)*(1+BE)*vL

DXDA = - 25 * (1 - BE) * XI + 25 * (1 - BE) * X4
+ 25 % (1 + BE) * XK - .25 * (1 + BE) * XL

DYDA = - 25 * (1 - BE) * VI + 25 ¢ ({ - BE) *» Yy
+ 25 % (1 + BE) * VK - 25 * (1 + BE) * vL

DXDB = - 25 ¢ (1 - AL) * XI - 25 * (4 + AL) * XJ
+ 25 % (1 + AL) * XK + 25 * (4 - AL) * XL

DYDB = - 25 % (1 - AL) * VI - 25 * (1 + AL) * vy
+ 025 % (1 +AL) * YK+ 25 ¢ (1 - AL) * vL

XJDET = DXDA * DYDB - DXDB * DYDA

XJA = DABS(XUDET)

CALL FORM(IFLAG.IB,IL,XX,YY,XS,YS,DDD,SSS,DD,ISY)
STR(1,1) = STR(1,1) - DD(2,1,1) * WSOL * XuA
STR(2,1) = STR(2,1) - DD(2,1,2) * WSOL * XuA
STR(3,1) = STR(3,1) - DD(2,2,2) * WSOL * XUA

CALL FUNC(ICOD,H,G,IB,IL,XS,YS,USTAR,XX,YV,ISY)
DISP(1,1) = DISP(1,1) - USTAR(1,2) * WSOL * XJA
DISP(2,1) = DISP(2,1) - USTAR(2,2) * WSOL * XJA
IPOINT = IPOINT + 1
IF (IPOINT LE 4) GO TO 300

CONT INUE

RFTURN
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SUBROUTINE PROD1(A,.B,C.M,IN,1DCOLU,CC,CD)

IMPLICIT REAL*B(A-H,0-2Z)
DIMENSION A(M,M), B(M). C(M), IDCOLU(M)

COMMON /NNN/ NNSTR2,NNINT4 ,NNSOL2,NESTR,NEJON, NE INT .NESOL ,NEREG

00 10 I = 1, IN
c(1

IN
c(1) + A(I.K) * B(K)
20 CONT INUE N

10 CONTINUE

MM = NNSTR2 + 1
= MM + NNINT4 / 2 - 4
DO 40 1 = MM, NN
c(1) = €0 * C(1)
40 CONT INUE

MM = NN + 1
NN = MM + NNINT4 / 2 - 1
DO SO I = MM, NN
c(1) = cc * c(1)
50 CONTINUE

MM = NN + 1

00 60 I = MM, IN ’

IF (IbcoLu(I) EQ 0) GO TO 70
c(1) = cc * c(i)

GO TO 60
70 c(1) = ¢b * c(1)
60 CONT INUE

RETURN
END

SUBPROGRAM "FORM"

SUBROUT INE FORM(IFLAG,IB,IL XX,YY,XS,YS,00D,S5S,DD,ISY)

IMPLICIT REAL*8(A-H,0-2

DIMENSION GI(3,6), ous(a 6), D(2,2). $SS(3,4), DDD(3,4)
DIMENSION Xv(2), PHI(2), DD(2,2.2). s5(2.2,2). DND(2), DRD(2)
DIMENSION X(250), Y(250)

COMMON /CO/ X, Y
COMMON /CONS/ Ct, €2, €3, C4, C5, C6, C7, GI, OME, D
COMMON /PROP/ESTR,PSTR,WSTR,EKN, EKS, ESOL . PSOL , WSOL

DO 10 KK = 1, 3
Do 20L =1, 4
SSS(KK,L) = O
DDD(KK,L) = O
20 CONT INUE
10 CONT INUE

XY (1) X(IL) - X(IB)

Xv(2) = v(It) - v(I18)

XLENG = (XY(1) * XY(1) + X¥(2) * XY(2)) ** 0 S
IF (IFLAG EQ 2) GO TO 155

DND( Xv(2) / XLENG

) =

DND(2) = - XY(1) / XLENG

SEL = 0 5 * DSQRT((2 ¢ XS - X(IB) - X(IL)) ** 2 + (2
¥S - V(IB) - Y(IL)) ** 2) / XLENG

&
IF (SEL LE t 5) GO TO 115

115

125

135
500

155

50
40
30

IF (SEL LE 5 5) GO TO 125

L =1
NPOINT = 2
GO TO 135

L =3
NPOINT = 6
GO TO 135

L =2
NPOINT = 4
IPOINT = 1
XX = (X(IB)+X(I

L)) + XY(t) / 2 v GI(L,IPOINT)
= (V(IB)+Y(IL))

(.-

1

/2

/ 2 4+ Xv(2) / 2 * GI(L.IPOINT)
PHI(1) = 25 + GI
PHI(2) = 25 * G

(L IPOINT) )*XLENG*OME (L, IPOINT)
+GI(L,IPOINT))*XLENG*OME(L, IPOINT)

XDD = XX - XS
YDD = VY - VS
= (XDD * XDD + YDD * YDD) ** O S
DRD{ 1) = xoo /R
DRD(2) = YDD / R
DRDN = DRD(!) * DND(1) + DRD(2) * DND(2)

DO 30 I = 1,
40 J = 1,
DO S0 K = 1, 2
DD(K, I,J)=C3+(C4*(DRD(J)*D(K,I)+DRD(I)*D(K, J)~
DRD(K)*D(1,J))+2. *ORD(1)*DRD(u)*DRD(K) ) /R
IF (IFLAG €Q 2) GO T0 50

[ EY)

2
=

B1=2. *DRDN*(C4*DRD(K)*D(1,U)+PSOL*(DRD(J)*
D(1,K)+DRD(1)*D(J.K))-4 *DRD(1)*DRD(J)*DRD(K))

B2=2 *PSOL*(DND(1)*DRD(J)*DRD(K)+DND(u)*
DRD(I)*DRD(K))

B83=C4*(2 *DND(K)*DRD(1)*DRD(J)+DND(J)*D(I . K)+

DND(I1)*D(U.K))
SS(K,I,U)=C6*(B1+B2+BI-CT+DND(K)*D(1,J))/R*+2
CONT INUE
CONT INUE

CONTINUE
If (IFLAG EQ 2) GO TO 700

DDD(1,1) = DDD(1,1) + PHI(1) * DD(1.1,1)
DDD(1,2) = DDD(1,2) + PHI(1) » DD(2,1,1)
DDD(1,3) = DDD(1,3) + PHI(2) * DD(1,1,1)
DDD(1,4) = DDD(1,4) + PHI(2) * DD(2,1.1)
DDD(2.1) = DDD(2,1) + PHI(1) * DD(1,1,2)
DpDD(2,2) = DDD(2,2) + PHI(1) * DD(2.1,2)
DDD(2 3) = DOD(2 3) + PHI(2) * DD(1,1 2)
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DDD(2,4) = DDD(2,4) + PHI(2) * DD(2,1.2)
DDD(3,1) = DDD(3,1) + PHI(1) * DD(1,2,2)
pDD(3,2) = DDD(3.2) + PHI(1) * DD(2.2,2)
pDp(3,3) = DDD(3,3) + PHI(2) * DD(1,2,2)
DpDD(3.4) = DDD(3.4) + PHI(2) *» 0D(2,2,2)

c
$SS(1,1) = SSS(1.1) + PHI(1) * SS(1.1,1)
§55(1.2) = SSS(1.2) + PHI(1) * §S(2.1,1)
$SS(1.3) = S55(1,3) + PHI(2) * SS(1.1.1)
$5S(1,4) = SSS(1,4) + PHI(2) * SS(2,1,1)
$SS(2,1) = $55(2,1) + PHI(1) * S5(1,1,2)
$SS(2,2) = S55(2,2) + PHI(1) * $5(2.1.2)
$55(2,3) = $55(2,3) + PHI(2) * $S(1.1,2)
$SS(2,4) = $585(2.4) + PHI(2) * S5(2,1,2)
§5S(3,1) = S55(3.1) + PHI(1) * S5(1,2,2)
$SS(3,2) = §S5(3,2) + PHI(1) * S$5(2,2,2)
§SS(3,3) = SS5(3.3) + PHI(2) * s$S(1.2,2)
$55(3,4) = $SS(3,4) + PHI(2) * sS5(2,2,2)

IF (IPOINT EQ NPOINT) GO TO 700

IPOINT = IPOINT + 1
GO TO 500

c

700 IF (ISY EQ 1) GO TO 1000

c
DD(2,1,2) = -DD(2,1,2)
DO 25y =1, 4

bDD(2,J) = - DDD(2,J)
$5S(2,4d) = - §5S(2,J)
25 CONT INUE
1000 RETURN
END

c
c SUBPROGRAM “INPUT"
c
Cmmmm e e
c
SUBROUTINE INPUT(ICONNE, IDCOLU,COLUMN, IUNKNO, ITYPE, IER)
c
IMPLICIT REAL*B(A-H,0-2)
CHARACTER*1 CARD(80), WORD(6), TIT(3), STR(3), SOI(3), PRO(3)
CHARACTER*1 INTE(3), NODCOO(6). PRELOA(6), PRESTR(6), PREDIS(6)
CHARACTER*1 ELECON(6), TYP(3)
c
DIMENSION VAR(5), ICONNE(250,4), IDCOLU(420)
DIMENSION COLUMN(420), X(250), Y(250), AALPHA(4), ABETA(4)
DIMENSION GI(3,6), OME(3,6), D(2.2)
c
COMMON /CO/ X, ¥
COMMON /PROP/ESTR,PSTR,WSTR, EKN, EKS, ESOL,PSOL,WSOL
COMMON /NNN/ NNSTR2,NNINT4,NNSOL2,NESTR,NEJON,NEINT ,NESOL ,NEREG
COMMON /IO0/IRE, IWR
COMMON /ALPH/ AALPHA, ABETA
COMMON /CONS/ C1, €2, €3, C4, C5, C6, C7, GI, OME, D
c
DATA TIT/AHT,1HI,1HT/, STR/1HS, IHT, tHR/, SOI/1HS, 1HO, 1H1/
DATA PRO/1HP, 1HR, 1HO/, INTE/{HI, 1HN, 1HT/, TYP/1HT, {HY, 1HP/
DATA NODCOO/ 1HN, 1HO, 1HD, 1HC, 1HO, tHO/
DATA PREDIS/1HP, 1HR, 1HE, 1HD, 1HI , 1HS/
DATA PRELOA/HP, 1HR, 1HE, 1HL, 1HO, 1HA/
DATA PRESTR/1HP, 1HR, 1HE, 1HS, 1HT, 1HR/
DATA ELECON/1HE, fHL, 1HE, 1HC, 1HO, tHN/
c
C---- INITIALIZATION OF GAUSS INTEGRATING POINTS GI AND WEIGHTS OME
c

AALPHA(1) = - 577350269189626

11

READ

CALL

AALPHA(2) + 577350269 189626

AALPHA(3) + 577350269189626
AALPHA(4) = - 577350269189626
ABETA(1) = - $77350269189626
ABETA(2) = - 577350269189626
ABETA(3) = + 577350269189626
ABETA(4) = + 577350269189626
GI(

- 0 577350269 189626
GI(1,1)

OME(1,1) = 1 00000000000C000
OME(1.2) = 1 0OO000000000000
GI(2,1) = - O 861136311594053
GI(2,2) = - O 339981043584856
GI(2.3) = - GI(2,2)
GI(2,4) = - GI(2,1)
OME(2,1) = O 347854845137454
OME(2.2) = O 652145154862546
OME(2,3) = OME(2,2)
OME(2,4) = OME(2,1)
GI(3,1) = - 0.932469514203152
GI(3,2) = - 0.661209386466265
GI(3,3) = - 0.238619186083197
GI(3.4) = - GI(3,3)
GI(3,5) = - GI(3,2)
GI(3.6) = - GI(3.1)
OME(3,1) = 0O 171324492379170
OME(3,2) = 0.360761573048139
OME(3.3) = O 467913934572691
OME(3.4) = OME(3,3)
OME(3,5) = OME(3,2)
OME(3,6) = OME(3,1)
IUNKND = O
NETO = O
STRUCTURE ICHECK = -1
INTERFACE ICHECK = O
SoIL ICHECK = 1
ICHECK = -1
TYPE CARDS
Do 24J-=1,3

WORD(J) = TYP(Y)
CONT INUE

ID IDENTIFIER

NW. NUMBER OF WORDS, 3 CHARACTERS PER WORD
NV: NUMBER OF VARIABLES

READ TYPE CARD

(IRE,4) (CARD(K), K= 1,80)
=1

NV = 1
CONV1(1ER,NW,NV,CARD,WORD, VAR, ID)
0 1§

IF (IER EQ O) GO T
WRITE (IWR.6)

A



c
GO TO 10000
15 ITYPE = VAR(1)
IF (ITYPE EQ 1) GO TO 13
IF (ITYPE EQ 2) GO TO 16
IER = 1
13 WRITE (IWR,7)
GO TO 17
16 WRITE (IWR,.8)
c
c---- SET WORDS FOR TITLE CARD
c
17 DO 10 J = 1,
WORD(U) = rxrlu)
10 CONT INUE
c
C---- READ TITLE CARD
c
READ (IRE,4) (CARD(K), K= 1,80)
CALL CONV{(IER,NW,NV,CARD,WORD,VAR,1D)
IF (IER EQ O) GO TO 20
c
WRITE (IWR, 9)
GO TO 10000
c
20 WRITE (IWR, 93)
Ju = VAR(1)
c
C---- READ INPUT CARDS OF TITLE
[
D0 30 J = t, W
READ (IRE,4) (CARD(K), K=1,80)
WRITE (IWR,96) (CARD(K), K=1,80)
30 CONTINUE
c
Cc---- SET WORDS FOR PROPERTY CARDS
c
5000 D=1
NW = 2
IF (ICHECK) 100, 200 300
100 D0 110 ¥ = 1,
WORD(Y) = STR(J)
110 CONT INUE
NV = 3
GO TO 400
c
200 00 210y = 1, 3
WORD(J) = INTE(Y)
210 CONTINUE
NV = 2
G0 TO 400
c
300 DO 310 U = 1, 3
WORD(J) = SOI(J)
310 CONT INUE
N = 3
c
400 DO 410 J = 1,
woan(u»s) = PRO(Y)
410 CONT INUE
c
C---= READ PROPERTY CARD
c

READ (IRE,4) (CARD(K), K= 1,80)
NW = 2

CALL CONV1(I1ER.NW,NV,CARD,WORD,VAR,ID)

IF (IER EQ O0) GO TO 415

WRITE (IWR, 99)
GO TO 10000

c
4'5 IF (ICHECK) 420, 430, 440
20 ESTR = VAR(1)
PSTR = VAR(2)
WSTR = VAR(3)
WRITE (IWR,903) ESTR, PSTR, WSTR
GO TO 450
c
430 EKN = VAR(1)
KS = VAR(2)
WRITE (le 906) EKN, EKS
GO TO 450

440 ESOL = VAR(1)
PSOL = VAR(2)
WSOL = VAR(3)
WRITE (IWR,909) ESOL, PSOL, WSOL
C--=- SET WORDS FOR COORDINATE CARDS
450 D0 460 U = 1, &
WORD(uJ) = NODCOO(J)
460 CONT INUE
C-~-- READ COORDINATE CARD
READ (IRE,4) (CARD(K), K= 1,80)
NV =
1F (xcnecx NE 1) GO TO 468

468 CALL CONV!(IER NW,NV, CARD WORD, VAR, ID)
IF (IER €Q O) GO TO 48

470 WRITE (IWR, 913)
GO TO 10000

480 NN = VAR(1)
IF (ICHECK) 480, 500, 510

STRESSES OR LOADS ARE ASSUMED TO BE O AT THE BEGINNING
IDCOLU = O STRESSES OR LOADS ARE PRESCRIBED
IDCOLU = 1 DISPLACEMENTS ARE PRESCRIBED

490 NNSTR2 = 2 +« NN
TUNKNO = IUNKNO + NNSTR2
WRITE (IWR,916) NN
L =1

GO TO 520
c
500 NNINT4 = 4 » NN
TUNKND = TUNKNO + NNINT4
WRITE (IWR,919) NN
LL = IUNKNO - NNINT4 + 1
GO TO 520
c
510 NNSOL2 = 2 * NN
IUNKNO = TUNKNO + NNSOL2
MM = VAR(2)
WRITE (IWR,923) NN, MM
NN = NN + MM
LL = IUNKND - NNSOL2 + 1
c

YA



520 D0 525 J = LL, IUNKNO
10COLU(Y) = O
COLUMN(J) = O

525 CONT INUE
c
WRITE (IWR,926)
D =
NV = 3
c
c---- READ INPUT CARDS OF COORDINATE
c
DO 530 J = 1.NN
READ (IRE,4) (CARD(K),K=1,80)
CALL CONV1(IER,NW,NV,CARD,WORD.VAR,ID)
IF (IER NE O) GO TO 470
c
KK = VAR(1)
X(KK) = VAR(2)
Y(KK) = VAR(3)
WRITE (IWR,929) KK, X(KK), Y(KK)
530 CONT INUE
c
Cc---- SET WORDS FOR CONNECTIVITY CARDS
c
D0 540 J = 1, 6
WORD(J) = ELECON(U)
540 CONT INUE
c
c---- READ CONNECTIVITY CARD
c

READ (IRE,4) (CARD(K), K= 1,80)
1D =1

Nw = 2
IF (ICHECK NE O) GO TO 535
NV = 1

GO TO 555
535 NV = 2
555 CALL CONV1(IER,NW,NV,CARD,WORD,VAR,ID)
IF (IER EQ O) GO TO 545

c
550 WRITE (IWR, 933)
GO TO 10000

[
C---- READ INPUT CARDS OF CONNECTIVITY

c
545 IF (ICHECK) 560, 580, €00

560 KK = VAR(1)
NESTR = KK
NEJON = VAR(2)
NETO = NETO + NESTR + NEJON
WRITE (IWR,936) KK, NEJUON

NN = KK + NEJON
ID =3
562 NV = §
c
DO 565 J = 1, NN
READ (IRE,4) (CARD(K),K=1,80)
CALL CONV1(IER,NW,NV,CARD,WORD,VAR,ID)
IF (IER NE O) GO TO 550
c
M = VAR(1)
c
DO 570 K = 1, 4
ICONNE(M,K) = VAR(K+1)
570 CONT INUE

c IF (ICHECK EQ -1) GO TO 575
IF (U LE KK) GO TO 575
WRITE (IWR,937) M, (ICONNE(M.K), K=1,4)
o8 s? 70565
WRITE (IWR.938) M, (ICONNE(M.K), K=
565 CONTINUE Yok

GO TO 620

580 NM = VAR(1)
NEINT = NM
NETO = NETO + NEINT
WRITE (IWR,939) NM
ID = 3
582 NV =3

DO 585 U = 1, NM

READ (IRE,4) (CARD(K),K=1,80)

CALL CONVI(IER.NU.NV.CARD.HORD.VAR.ID)
IF (IER NE O0) GO TO 550

M = VAR(1)
D0 590 K = 1, 2
ICONNE(M,K) = VAR(K+1
590 CONT INUE !

WRITE (IWR,941) M, (ICONNE(M
sas CoNTENDE ( E(M.K), K=1,2)

IF (ICHECK EQ 1) GO TO 605
GO 70 620

600 NM = VAR(1)
NN = VAR(2)
NESOL = NM
NEREG = NN
NETO = NETO + NESOL + NER
WRITE (IWR,943) NM EREG
1D =3
GO TO 582

605 WRITE (IWR,944) NN
IF (NN EQ ©) GO TO 620

c GO TO 562
g-—-- SET WORDS FOR PRESCRIBED DISPLACEMENTS
620 DO 640 U = 1, 6 i
WORD(JU) = PREDIS(J)
c 640 CONT INUE
g-—~- READ PRESCRIBED DISPLACEMENT CARD
READ (IRE.4) (CARD(K), K= 1,80)

D = 1

NW o= 2

NV =

CALL CONV!(IER.NV.NV,CARD,HDRD.VAR.lD)
IF (IER EQ O) GO TO 645

c
650 WRITE (IWR,946)
c GO TO 10000
645 JJ = VAR(1)
TF (ICHFCK) 655 658 660

4N



655 WRITE (IWR,949) JJ

GO To 670

c
658 WRITE (IWR,951) JJ

GO TO 670

660 WRITE (IWR,953) JJ
670 IF (JJ EQ O) GO TO 8OO

C
C----
C

705
710

720

730

740

1D = 2

READ INPUT CARDS OF PRESCRIBED DISPLACEMENTS
DO 700 K = 1, JJ

READ (IRE,4) (CARD(J), J=1, 80)

CALL CONV2(IER,CARD,WORD,VAR,ID)
IF (IER NE O) GO TO 650

KK = VAR(1)
1P =
IF (ICHECK EQ 1) GO TO 705

MM = 2 * KK - 1
GO To 710

MM = 2 * KK - 1 + NNINT4 / 2
IF (WORD(IP) EQ ‘ ‘) GO TO 740

IF (WORD(IP) NE ‘X’) GO TO 720
I0COLU(MM) = 1
COLUMN(MM) = VAR(IP+1)
GO TO 730
IDCOLU(MM+1) = 1
COLUMN(MM+1) = VAR(IP+1)
IP = IP + 1
GO TO 710
IF (IP EQ 3) GO TO 760
WRITE (IWR,956) KK, WORD(1), VAR(2)
GO TO 700
WRITE (IWR,959) KK, WORD(1)., VAR(2). WORD(2), VAR(3)
CONTINUE

SET WORD FOR PRESCRIBED NON-ZERO LOADS OR STRESSES

800 IF (ICHECK) B30, 830, 834

848
c
C--=-

c
838 READ

CAlLL

DO 840 J = 1, 6

WORD(JU) = PRELOA(V)
CONT INUE
GO TO 838

DO 848 J = 1, 6
WORD(J) = PRESTR(J)
CONTINUE

READ PRESCRIBED LOAD OR STRESS CARDS

(IRE,4) (CARD(K), K= 1,80)
=1
NW = 2

NV =
CONV1(TER,NW NV,CARD WORD VAR ID)

855
845
860
865

870
880

C-mm=

905
910

920
930

940

925

960

93§

965
900

1200

c
1300

IF (1ER EQ O) GO TO 845

WRITE (IWR,963)
GO TO 10000

JJ = VAR(1)
IF (ICHECK) 860, 865, 870

WRITE (IWR,.966) Ju
GO TO 880
WRITE (IWR,968) uJ
GO TO 880

WRITE (IWR,969) JJ
IF (JJ EQ.O) GO TO 1200
10 = 2
READ INPUT CARDS OF PRESCRIBED LOADS OR STRESSES
DO S00 K = 1, JJ
READ (IRE,4) (CARD(J), u=t, 80)
CALL CONV2(IER,CARD,WORD,VAR,ID)
IF (IER .NE. O) GO 7O 855
KK = VAR(1)
1P =1
IF (ICHECK EQ 1) GD TO 805

MM = 2 * KK - 1
GO TO 910

MM = 2 * KK - ‘1 + NNINT4 / 2
IF (WORD(IP) EQ ' ‘) GO TO 940

IF (WORD(IP) NE. ‘X’) GO TO 920

COLUMN(MM) = VAR(IP+1)
GO TO 930

COLUMN(MM+1) = VAR(IP+1)
P =P+
GO TO 910

IF (ICHECK) 925, 1200, 935

IF (IP EQ. 3) GO TO 960

WRITE (IWR,973) KK, WORD(1), VAR(2)
G0 TO 900

WRITE (IWR,976) KK, WORD(1), VAR(2), WORD(2), VAR(3)
GO 70 900

IF (IP EQ 3) GO TO 965
WRITE (IWR,979) KK, WORD(1), VAR(2)
GO TO 800
WRITE (IWR,983) KK, WORD(1), VAR(2), WORD(2), VAR(3)
CONTINUE
IF (ICHECK) 1300, 1400, 10000

ICHECK = O
GO TO 5000

ETAN
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1400 ICHECK = 1
GO TO 5000
4 FORMAT(80A1)
6 FORMAT(///.26X,”**%+%+  TYPE CARD ARE LOST OR WRONG serare)
7 FORMAT(///.44X, *sssevsee UNSYMMETRICAL  CASE srvveevar)
8 FORMAT(///,44X, ’#esveses SYMMETRICAL ABOUT Y AXIS <*essssesv’)
9 FORMAT(///.26X,**#*%+%s  TITLE CARDS ARE LOST OR WRONG sesvear)
93 FORMAT(/////.26X.'PROBLEM IDENTIFICATION -,
& /26X, t == m oo ‘.
96 FORMAT(36X,80A1)
99 FORMAT(//.26X,*++ss=+ PROPERTY CARDS ARE LOST OR WRONG *e*+¢+’,
& 26X, *
3 /.26X,’**%+* NUMBER OF TITLE CARDS 1s lucous:steur seever,
& /.26X,°
& /.26X, **NUMBER OF STRUCTURE LOAD CARDS IS INCONSISTENI"
8 /.26X,* .
& /.26X,'%%+*  NUMBER OF INIERFACE CONNECTIVITY sereer
& /,26X, " sesse CARDS IS INCONSISTENT sesssr)
903 FORMAT(///.26X. 'svnucruke INPUT
& 126X, P mmmm e ‘.
& //.3ex.'£LAstlc MODULUS = * ,E11 4,  KSI’,
& /.36X, ‘POISSON RATIO = ‘,Eit 4,
& /.36X, 'UNIT SELFWEIGHT = /,E11 4,’ KCI’)
906 FORMAT(///.26X, ' INTERFACE INPUT -,
& V26X, = .
& //.36X, "UNIT NORMAL STIFFNESS = ‘*LE11 4,° KPI’
8 /.36X, 'UNIT TANGENTIAL STIFFNESS = ‘,E11 4,° KPI’)
909 FuRMAT(///.zex.'solL INPUT
& L26X, fmmmmmmmem oo ‘.
& //.36X, ELASTIC MODULUS = ‘, E11 4,’ KSI',
& /.36X, ‘POISSON RATIO = ‘, Ei1 4,
& /.36X, ‘UNIT SELFWEIGHT = *, E11 4,’ KCI’)

913 FORMAT(//,26X,
916 FORMAT(//,36X,
919 FORMAT(//.36X,

923 FORMAT(//.36X,
& /.36X,

926 FORMAT(/,36X,’
c

c
933 FORMAT(//,26X,
& /

929 FORMAT(36X,13,

& /.26X,

c
936 FORMAT(//,36X,

/.36X,

& //.36X, ELEMENT NO’,4X, 'NODE 1‘,
& 6

‘estees COORDINATE CARDS ARE LOST OR WRONG **¢*%+’)
‘NUMBER OF NODES IN STRUCTURE = ’,I3)
‘NUMBER OF NODES IN INTERFACE = ’,13)

‘NUMBER OF NODES IN SOIL ‘.13,
‘NUMBER OF NODES FOR INTEGRATION = '.13)

NODE’, 10X, ‘X COORDINATE’,10X,’Y COORDINATE’)
11X,E11 4,11X,E11 4)
‘#%%s+ CONNECTIVITY CARDS ARE LOST OR NRONG Al
:" NUMBER OF CDORDINATE CARDS IS INCONSISTENT )
’NUMBER OF ELEMENTS IN STRUCTURE = * Ig.

=

‘NUMBER OF JOINT ELEMENTS 13,
. 'NODE 2’ ,6X, 'NODE 3°,

X.'NODE 47)

C
937 FORMAT(39X,13,4(9X,13),"

JOINT ELEMENT')

938 FORMAT(39X,13,4(9%,13))

939 FORMAT(//,36X,

‘NUMBER OF ELEMENTS IN INTERFACE = °,I3,

/.36X, 'ELEMENT NO’,4X,‘'NODE 1‘,6X,’NODE 2°)

941 FORMAT(39X,13,2(9x,13))

943 FORMAT(// 36X,

‘NUMBER OF ELEMENTS IN SOIL = ’,13,

/,36X, *ELEMENT NO’,4X, ‘NODE 1‘,6X,'NODE 2’)

944 FORMAT(//,36X,
&

‘NUMBER OF ELEMENTS FOR INTEGRATION = ‘,I3,

/.36X, *ELEMENT NO‘,4X, ‘NODE 1’,6X, ‘NODE 2’,6X,‘NODE.3’,
X, ‘NODE 4°)

946 FORMAT(//,26X,
& /.26X,
8 /.26x,

c
949 FORMAT(//,36X,
&

951 FORMAT(//,36X,
&

953 FORMAT(//,36X,
&

‘eevs* DISPLACEMENT CARDS ARE LOST OR VRONG bR dd AN
OR
‘* NUMBER OF CONNECTIVITY CARDS IS INCONSISTENT )

/NUMBER OF PRESCRIBED DISPLACEMENT’.
IN STRUCTURE = ‘,13,/)

‘NUMBER OF PRESCRIBED DISPLACEMENT’,
‘ IN INTERFACE = ’,13,/)

'NUMBER OF PRESCRIBED DISPLACEMENT',
SOIL = ‘,13,/)

956 FORMAT(36X,‘NODE ‘,13,8X,At1,’ = ’ E11 4,8X, INCH’)

959 FORMAT(36X, 'NDDE ‘L I13,8X,A1,° = ' E1Y 4,8X,A1,’ = ‘ E1t 4,
& .

963 FORMAT(//,26X,
&

NCH’ )

‘#%%> LOAD OR STRESS CARDS ARE LOST OR WRONG **%+‘
OR ’

/.26X, " '
c & /.26X, ‘% NUMBER OF DISPLACEMENT CARDS 1S INCONSISTENT *‘)
SGG&FDRMAT(//.3GX.’NUMBER oc/pnsscnlaso NON-ZERO LOAD IN STRUCTURE’,
co=013,/)
c
968 FORMAT(//.36X, 'NUMBER OF PRESCRIBED NON-ZERO LOAD IN INTERFACE’,
& ‘o= 013,
c
969 FORMAT(//,36X,‘NUMBER OF PRESCRIBED NON-ZERO TRACTION IN SOIL’,
c & I & N
973 FORMAT(36GX,’'NODE ‘,I3,8X,At,’ = ‘,E11 4,8X, KIPS’)
c
976 FORMAT(36X,‘NODE ‘,13,8X,A1,’ = ‘,E11 4,8X,A1,’ = ‘' Ei1 4,
& 4 KIPS')
c
979 FORMAT(36X,’NODE ‘,13,8X,A1,’ = ’,E11 4,8X,’'KPI’)
c
983 FORMAT(36X,’NODE ‘,13,8X,A1,’ = ' ,E11 4,8X,A1,’ = ‘' E11 4,
& ’ KPI*)

C
10000 RETURN
END

c SUBPROGRAM “CONV1“

9¢t



SUBROUTINE CONV1(IER,NW,NV, CARD.WORD,VAR,ID)

IMPLICIT REAL*8(A-H,0-2)
CHARACTER*1 CARD(80), WORD(6)
DIMENSION VAR(S)

FOR MAUOR INPUT CARD (START WITH CHARACTER), ID = 1
FOR COORDINATE, DISPLACEMENT OR LOAD, ID = 2 (MAYBE NEGATIVE)
FOR CONNECTIVITY CARD ID = 3 (POSITIVE VALUE ONLY)

J =
IF (ID NE 1) GO TO 65
c
C---- FIND CHARACTER
c
DO 100 K = 1, NW
20 IF (J GE 77) GO TO 500
c
IF ((CARD(J) NE ' ‘) AND (CARD(J) NE ‘,’)) GO TO 30
c
J=dJd+ 1
GO TO 20
c
30 IF ((CARD(J) NE WORD(3*K-2)) OR (CARD(J+1) NE
& WORD(3*K-1)) OR (CARD(U+2) NE WORD(3*K))) GO TO 500
c
J=uJ+3
60 IF (J GE 80) GO TO 500
c
IF ((CARD(J) EQ * ‘) OR (CARD(JU) EQ ’.’)) GO TO 100
c
J=4J+1
GO TO 60
c
100 CONT INUE
[
Cc---- FIND VARIABLE
c
65 DO 200 K = 1, NV
VAR(K) = O
70 IF (J GE 80) GO TO 500
c
IF ((CARD(U) NE * ‘) AND (CARD(J) NE ‘,’)) GO TO 80
c
U=J+
GO TO 70
c
80 CALL VALUE(IER,CARD,VAR(K),ID,J)
IF (VAR(1) LT O ) GO TO 500
c
200 CONT INUE
c
GO TO 1000
c
500 1ER = 1
1000 RETURN
END
Cmmmmmm e mmm e mmm e
c
c SUBPROGRAM “CONV2"
c
e e mm i mmmm e mmm e
c

SUBROUTINE CONV2(IER,CARD,WORD,VAR,ID)

IMPLICTT RFAL*A(A-H 0-7)

CHARACTER*1 CARD(80), WORD(6)
DIMENSION VAR(S)

C---- INITIALIZATION

WORD( 1)
WORD(2)
VAR(1) = O
VAR(2) = 0
VAR(3) = 0
Jo= 9

=
= 4o

1

Ic =
10 IF (U GE B80) GO TO 500

IF ((CARD(J) NE ' ‘) .AND (CARD(J) NE ‘.’)) GO TO 100

J=J+ 1
GO TO 10

c
100 CALL VALUE(IER,CARD,VAR(IC),ID,u)

o o0 o6 o

IF ((IER NE 0) OR (VAR(1) LT 1 )) Go TO 500

20 IF ((J GE 80) AND (IC NE 1)) GO TO 900

IF ((J GE 80) AND (IC EQ 1)) GO TO 500
IF ((CARD(J) NE. ‘ ‘) AND (CARD(J) NE ‘.’)) GO0 TO0 200

J=dJd+ 1
GO TO 20

c
2 g iy
c 00 IF ((CARD(U) NE X‘) AND (CARD(J) NE. ‘v )) Go TO 500

500

WORD(IC) = CARD(J)
IC = IC + 1
J=dJd+t

GO TO 10

900 IF (WORD(1) EQ WORD(2)) GO TO 500
= v

WORD(3)
GO TO 1000
1ER = 1

1000 RETURN
END

(4

30
20
10

SUBROUTINE PROD(A,B,C,M,L,N)

IMPLICIT REAL*8(A-H,0-2)
DIMENSION A(M,L), B(L.N), C(M.N)

DO 101 =1, M
DO 20J =1, N

C(1,J) =0
Do 30 ? =1L
C(1,4) = C(1,4) + A(I,K) *
coNTINGE (1,K) * B(K,u)
CONT INUE
CONT INUE
RETURN
END

Let
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SUBROUTINE VALUE(IER,CARD,VAL,ID,J)

IMPLICIT REAL*8(A-H,0-2)
CHARACTER*1 CARD(80)
DIMENSION IDIGIT(16)

ND NUMBER OF DIGIT
IP. LOCATION OF * *

INITIALIZATION
SIGN = 1 0
ND = 1
IP = 0
VAL = O
IF ((CARD(J) NE ‘-‘) AND (CARD(J) NE
IF (CARD(J) EQ ‘+’) GO T0 15
IF (ID NE 2) GO TO 500
SIGN = -1
15 J=u 4+
IF (U GT 80) GO TO S00

IF (CARD(Y EQ ‘ ') GO TO 15
K

)
K =

DO 1000 K = KK, 80
IF (CARD(K) EQ ‘O’) GO TO 20

IF (CARD(K) EQ ‘1‘) GO TO 30
IF (CARD(K) EQ ‘2’') GO TO 40
IF (CARD(K) EQ ‘3’) GO TO SO
IF (CARD(K) EQ ‘4‘) GO TO 60
IF (CARD(K) EQ ‘S‘) GO TO 70
IF (CARD(K) EQ ‘6') GO TO 80
IF (CARD(K) .EQ ‘7‘) GO TO 90
IF (CARD(K) EQ ‘8‘) GO TO 100
IF (CARD(K) EQ ‘9') GO TO 110
IF (CARD(K) EQ ‘' ‘) GO TO 120
IF ((CARD(K) NE ‘ ') AND (CARD(K)
J=K+ 1
GO TO 125
20 IDIGIT(ND) = O
GO TO 115
3o IDIGIT(ND) = 1§
GO TO 115

‘+’)) GO TO 10

NE

’.")) GO TO 500

40 IDIGIT(ND) = 2
GO TO 115
c
50 IDIGIT(ND) = 3
GO TO 115
c
€0 IDIGIT(ND) = 4
GD 7O 115
c
70 IDIGIT(ND) = &
GO TO 115
c
80 IDIGIT(ND) = 6
GO TO 115
c
90 IDIGIT(ND) = 7
GO TO 115
c
100 IDIGIT(ND) = 8
GO TO 115
c
110 IDIGIT(ND) = 9
115 ND = ND + 1
GO TO 1000
c
120 IP = ND
1000 CONT INUE
c
125 IF (IP NE O) GO TO 130
[
1P = ND
c
130 NM = ND - 1
c

DD 200 K = 1, NM
VAL = VAL + SIGN * IDIGIT(K) * 10 *+ (IP-K-1)
200 CONT INUE

c
c GO TO 2000
500 IER =
2000 RETURN
END
SENTRY
TYPE 2
TITLE S

THIS PROBLEM IS TO TEST A U-FRAME STRUCTURE BY THE COUPLING OF BOUNDARY
AND FINITE ELEMENT METHODS. IT INCLUDES 209 NODES AND 221 ELEMENTS
THE RESULTS ARE COMPARED WITH THOSE OBTAINED FROM THE FINITE ELEMENT
METHOD ALONE NOTE THAT TWO SMALL ELEMENTS ARE USED AT EACH END OF
INTERFACE TO AVOID DISPLACEMENT DISCONTINUITIES
STR PROP 3000 25 O 00008681

NODE COOR 90

1 0 S§76

2 0, 540

o

8CT



14 264 468
15 264 432

16 360 576
17 360, 540
i8 360 504

19 360 468
20 360 432
21 432 1392
22 432 1272
23 432 +1128
24 + 432, ., 984
25 432 840
26 432 768
27 432 696

28 432 576
29 432 540
30 432 504
3t 432 468
32 432,, 432
33 456 1392
34 456 1272
35 456 1128
36 462 984
37 468 840
38 468 768
39 480 696
40 480
41 480 576
42 480 528
43 504 480
44 516, 450
45 480 1392

48 492, ,, 984
49 504 840
50 504 768
51 52 696
52 528 648
s3 528 600
54 528 552
55 576 504
56 600 468
57 504 1392
S8 504 1272
59 S04 1128
60 522 984
61 540 840
62 540 768

65 648 504
66 684 486
67 552 1392

NEON =

62T



PRE OIS 5
1X0
2 X 0.
3 X 0.
4 X0
5 X 0.
PRE LOAD 11
1 Y -1810
6 Y -3.318
11ty -2.71

24 X 1 498
25 X 1 592
26 X 1310
27 X 2 053

INT PROP 3000

NODE COOR 17
91 528 1271
82 528 1128
a3 552 984
94 576 840
95 €72 816
96 768 792
87 768 696
98 768 600
99 768 504
100 684 486.

101 600 468

102 516 450.
103 432 432.
104 360 + 432
105 264 432.

106 144 432
107 1 432.
ELEM CONN 16
82 91 92

g1 100 101
92 101 102
93 102 103
94 103 104

97 106 107
PRES DISP O
PRES LOAD 0
SOI PROP 15 35 0 00007407
NODE COORDINATES 38 ... 64
108 o 43

110 264
111 o 144
11 o 0.

113 o -
114 144 O
115 264 o

116 360 o
117 432 o

118 516 (4]
119 € o

122 864
123 1008 o
124 1200
125 1440 o
126 1680 o
127 1680
128 1680 144
129 1680 264
130 1680 408
131 1680 504

135 1680 984
136 1680 1128
137 1680 1272
138 1680 1272

3 2
t44 672 1272
145 529 1272
146 144 360
147 144 264
148 144 144

0€T



15! 432 360 108 119 120
156 432 264 110 120 121
157 432 144 1 121 122
158 516 360 112 122 123
$9 516 264 113 123 124
160 516 144 114 124 125
161 600 360 115 125 126
162 600 264 116 127 128
163 600 144 17 128 129
164 €72 1128 118 1 130
165 672 84 119 130 131
166 €84 360 120 131 132
167 684 264 121 132 133
8 €84 144 122 133 134
169 768 1128 123 134 135
170 768 S84 124 135 36
171 768 408 125 136 137
172 768 264 126 138 139
173 768 144 127 1 140
174 864 1128 128 140 141
175 864 984 129 1414 142
176 864 792 130 142 143
177 864 696 131 143 144
178 864 600 132 144 145
179 864 504 133 145 91
180 864 408 134 108 109 146 106
181 864 264 135 108 110 147 146
182 864 144 136 110 111 148 147
183 1008 1128 137 111 112 114 148
184 1008 984 138 106 146 149 105
185 1008 792 139 146 147 150 149
186 1008 696 - 140 147 148 151 150
187 1008 600 141 148 114 115 151
188 1008 504 142 105 149 162 104
189 1008 408 143 149 150 153 152
190 1008 264 144 15 151 154 153
191 1008 144 145 151 115 116 154
192 1200 1128 146 104 152 155 103
193 1200 984 147 152 153 156 155
194 1200 792 ) 148 153 154 157 156
195 1200 696 149 154 116 17 157
196 1200 600 150 103 155 158 102
197 1200 504 151 155 156 159 158
198 1200 408 152 156 157 160 159
198 1200 264 153 157 17 118 160
200 1200 144 154 102 158 161 101
201 1440 1128 155 158 159 162 161
202 1440 984 156 159 160 163 162
203 1440 792 157 160 118 119 163
204 1440 696 158 91 92 164 144
205 1440 600 159 92 93 165 164
206 1440 504 160 a3 94 95 165
207 1440 408 1 101 161 166 100
208 1440 264 162 161 162 167 166
209 1440 144 163 162 163 168 167
ELEMENT CONNECTIVITY 36, 88 164 163 119 120 168
98 107 108 165 144 164 169 143
99 108 109 166 164 165 170 169
100 109 110 167 165 95 96 170
101 110 111 168 100 166 171 99
102 111 112 169 166 167 172 171
103 113 114 170 167 168 173 172
104 114 115 171 168 120 121 173
105 115 116 172 143 169 174 142
106 116 17 173 169 170 175 174
107 117 118

TET



174 170 96 176 175
175 96 a7 177 176
176 a7 98 178 177
177 98 99 179 178

180 172 173 182 181
181 173 121 122 182
182 142 174 183 1414

18 17 175 184 183

196 186 187 196 195
197 187 188 197 196
198 188 189 198 197
199 189 180 199 198
200 190 191 200 199
201 191t 123 124 200
202 140 192 201 139
203 192 193 202 201
204 193 194 203 202
205 194 195 204 203
206 195 196 205 204
207 196 197 206 208
208 197 198 207 206
209 198 199 208 207
210 199 200 209 208
211 200 124 125 208
212 139 201 136 137
213 201 202 135 136
214 202 203 134 135
215 203 204 133 134
216 204 205 132 133
217 205 206 131 132
218 206 207 130 131
219 207 208 129 130
220 208 208 128
221 209 125 126 128
PRESCRIBED DISPLACEMENT 25
113 Y o
114 v O
115
116

< <<
ocoo

1
118 Y
119 v
120 v

121
122 v

123

130
131
132
133
134
135
136
137
PRES STRESS 1
141 Y -0 0375
$1B8SYS

//

X X X X X X X
ooocooo00

ZEeT



APPENDIX B

COMPUTER CODINGS AND INPUT LISTINGS
OF PROGRAM FINITE
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THIS PROGRAM IS APPLIED TO EVALUATE THE ELASTIC BEHAVIOR OF
A U-FRAME STRUCTURE BY THE FINITE ELEMENT MEHTOD ALONE

szszasszss==zzasaczczs=s

X, Y NODE COORDINATES

STRE ELASTICITY MATRIX FOR STRUCTURE
SOLE ELASTICITY MATRIX FOR SOIL

ICONNE ELEMENT INCIDENCE VECTOR

A SYSTEM MATRIX

IDCOLU  SPECIFIED BOUNDARY CONDITIONS, O -> LOAD, 1 -> DISP
COLUMN SPECIFIED BOUNDARY VALUES

BODY BODY FORCE VECTOR

STR. STRESS VECTOR

DISP DISPLACEMENT VECTOR

ELSTIF ELEMENT STIFFNESS MATRIX

NNSTR2 2 X NUMBER OF NODES IN STRUCTURE
NNINT2 2 X NUMBER OF NODES IN INTERFACE
NNSOL2 2 X NUMBER OF NODES IN SOIL
NESTR NUMBER OF STRUCTURE ELEMENTS
NEJON NUMBER OF JOINT ELEMENTS

NEINT NUMBER OF INTERFACE ELEMENTS
NESOL NUMBER OF SOIL ELEMENTS

XM, XMt VECTOR IN STORING SOLUTIONS

2R RN RN e e NN e N N o N o N o N o N o N o N o N o N o N o N e o N oo NeNo No N o No N o N o N o)

Commm o e et e
IMPLICIT REAL*8(A-H,0-2)
DIMENSION X(250), Y(250), STRE(3,3), ICONNE(250,4), IDCOLU(420)
DIMENSION COLUMN(420), A(420,420), BODY(420), STR(3,1), xM1(420)
DIMENSION DISP(2,1),XM(420) ,ELSTIF(8,8),SOLE(3,3)
c
COMMON /CO/ X, Y
COMMON /NNN/ NNSTR2,NNINT2,NNSOL2.NESTR,NEJON,NEINT, NESOL
COMMON /10/IRE. [WR
c
C---- SET POINTERS AND INPUT TITLE
c
IRE = 5
IWR = 6
WRITE (IWR,9)
c
c---- CALL SUBROUTINE "INPUT"
c
IER =
CALL INPUT(ICONNE, IDCOLU, COLUMN, IUNKNO, IER)
IF (IER EQ O©) GO TO 1000
GO TO 10000
c
1000 DO 5 M = 1, IUNKNO
8ODY(M) = O
XM1(M) = O
DO 8 N = 1, IUNKNO
A(M,N) =
8 CONTINUE
5 CONTINUE
c
C---- FINITE ELEMENT FORMULATION
c

[2XsKzXsNoNsl

CALL FINITE(STRE,SOLE,ICONNE,A,BODY,NEB,NEL)
c
Cc---- TAKE BOUNDARY CONDITION AND NODAL FORCE VECTOR INTO ACCOUNT
c
DO 10 J = 1, TUNKND
IF (IDCOLU(JY) EQ O) GO TO 20
CALL CLEAN(J.COLUMN(J),A,.BODY, IUNKND)
BODY(J) = COLUMN(J)
GO T0 10
20 BODY(U) = BODY(J) + COLUMN(J)
10 CONT INUE
c
IT = 0
MB = NESTR + 1
ML = NESTR + NEJON
c
C---= CALCULATE THE INVERSE OF GLOBAL MATRIX
c
CALL INVER(A,420, IUNKND)
c
c---- XM STORE DISPLACEMENTS
c
2000 CALL PROD1(A,BODY,XM, 420, IUNKNO)
c---- CHECK THE CONVERGENCE OF DISPLACEMENTS AT INTERFACE
c
IF (IT GT 10) GO TO 190
IB = NNSTR2 + 1
IL = NNSTR2 + NNINT2
c
DO 120 K = IB, IL
IF (DABS(XM(K) - XM1(K)) GT O 0000001) GO TO 130
120 CONT INUE
c
GO 10 190
[
C---- RESTART THE PROLEM. RESTORE "XM*® TO “XM{*
130 D0 140 I = |. TUNKNO
MI(I) = XM(I)
140 CONT INUE
c
c---- ITERATIVE ROUTINE
c
IT = 1T +
c
CALL ITER(XM,BODY,ICONNE,MB,ML)
c
GO YO 2000
c
C---- STRUCTURE OUTPUT
c
190 NNSTR = NNSTR2 / 2
WRITE (IWR,90)
DO 570 L = 1, NNSTR
leTE (IWR,94) L, XM(2*L-1), XM(2*L)
570 INT ENUE

WRITE (IWR a7)

580

DO 580 JJ = 1, NESTR
T = ICONNE(JdJ,1)
J = ICONNE(UJ,2)
K = ICONNE(uyJ,3)
L = ICONNE(JJ,4)
CALL SOLVE(I,J,K,L,STRE,STR.DISP,XM)
WRITE (IWR.904) JJ.(DISP(M, 1) .M=1, 2) (STR(M, 1) ,M=1,3)
CONT INUE

PET



wa11s (IWR 99)
85 JJ = MB, ML
I = ICONNE(uJ, 1)
J = ICONNE(JJ.2)
K = ICONNE(uUJ,3)
= ICONNE(JJ,4)
CALL FIND(I J.K,L,STR,DISP,XM)
WRITE (IWR,906) uJ,1,J.(DISP(M, 1), M=1,2),(STR(M,1),M=1,2)
585 CONT INUE

c
c---- INTERFACE OUTPUT
c
WRITE (IWR,907)
M = NNSTR + 1
N = NNSTR + NNINT2 / 2
c
DO 590 K =
WRITE (IWR, 94) K, XM(2+4K-1) , XM(2*K)
590 CONTINUE
c
c---- SOIL OUTPUT
c
WRITE (IWR,917)
M=N+1
N = M+ NNSOL2 / 2 -
c
DO 600 K =
WRITE (IWR, 94) K XM(2*K-1)  XM(2*K)
600 CONTINUE
WRITE (1WR,97)
c
00 2oo JJ = NEB, NEL
= ICONNE(uJ,1)
u = ICONNE(JJ,2)
K = ICONNE(JJ.3)
= ICONNE(JJ,4)
CALL SOLVE(I J.K,L,SOLE,STR,DISP,XM)
WRITE (IWR.904) JJ.(DISP(M.1).M=1.2),(STR(M,1).M=1,3)
200 CONT INUE
WRITE(IWR,924)
9 FORMAT(1H1.,///.,40X, * FlNlTE ELEMENT METHOD .
/.40X,* PPLIED TO
& /7.42x,°* SOIL-STRUCTURE INVERACTION "PROBLEMS * )
c
90 FORMAT(/////.36XK, " #sesssvossssveorsarson:
& /.36X,’* STRUCTURE OUTPUT +°,
& < REA LA L R AR L L
8 ////.41%, 'NODAL DISPLACEMENT *
& //.,34X,°NODE’,7X,’U’, 13X, V')
c
94 FORMAT(34X,13,2(3X,E11 4))
c
97 FORMAT(////.51X, ELEMENT DISPLACEMENT AND STRESS',//,
& 34X, ELEMENT’,4X,‘U’,13X,‘V’, 12X, 'SXX’, 11X, ‘SYY’, 10X, 'SXY’)
c

99 FORMAT(////.47X,’RELATIVE DISPLACEMENT AND LOCAL STRESS °‘,
‘AT JOINT ELEMENT',//.34X, ELEMENT’,5X, 'LOCAL X AXIS‘,
& 7X.’TAN DISP’,5X,'NOR DISP’,.8X, ’TAU‘ 10X, SIGMA’)
c
904 FORMAT(34X,13,5(3X.E11 4))
c
906 FORMAT(34X,I3,6X, NODE’,I3,’ TO NODE’,13,4(3X.E11 4))

007 FORMAT(///// 36X, 1e¥vvsesassvrvvessssnes

& /.36X,‘* INTERFACE OUTPUT =’
& R T A T T TN
& ////.,41X,'NODAL DISPLACEMENT ‘.,

& //,34X,’NODE’,7X,'U’ 13X, 'V’)

c
Q17 FORMAT(/////.36X, 'sesssvssnnsnsssnesns
& /.36X,’* SOIL OUTPUT *-,
L36X, ‘evessrborasenntrnes
8 ////,41%, ‘NODAL DISPLACEMENT *
& //,34X,’NODE’,7X,‘U’, 13X, 'V’)

c
924 FORMAT(1H1)

c
10000 STOP
END
Cmmmmmm e e
[
c SUBPROGRAM *INVER"
[
Cmmmmmmm e e e
c
SUBROUTINE INVER(A,NX,N)
c
IMPLICIT REAL*8(A-H,0-2)
DIMENSION A(NX ,NX)
c
00 100K = 1, N
c
D0 20 J = {,
IF (J Eo K) GO TO
A(K J) = A(K,J) / A(K,K)
20 CONT INU
c
A(K,K) = 1 / A(K,K)
c
DO 301 =1, N
IF(I EQ K) GO TO 30
c
DO 40 U = 1, .
IF (J .EQ K) GO T0 40
A(I,0) = A(1,0) - A(K,J) * A(I.K)
40 CONTINUE
30 CONT INUE
[
00 50 I = 1,
IF (1 EQ K) co 70 50
A(I,K) = -A(1,K) * A(K,K)
50 CONT INUE
100 CONT INUE
c
RETURN
END
Cmmmmm e ————
[
g SUBPROGRAM "ITER"
Cmm e e m e e e
c
c SUBROUTINE ITER(XM,BODY, ICONNE ,MB,ML)
IMPLICIT REAL*8(A-H,0-2)
DIMENSION XM(420), BODY(420), ELSTIF(8.8), X(250)
DIMENSION Y(250), ICONNE(250,4)
c

COMMON /CO/ X,V
COMMON /PROP/FSTR PSTR WSTR FKN EKS FSOL PSOl WSO

GET



c
00 |o JJ = MB, ML
= ICONNE(JJ, 1)
a = ICONNE(JJ,2)
K = ICONNE(JJ.3)
L = ICONNE(JJ.4)
XLENG = DSQRT((X(J) - X(I)) ** 2 + (Y(J) - V(1)) ** 2)
€oST = (X(v) - x(1)) / XLENG
SINT = (Y(J) - v(1)) / XLENG
c
c---- RELATIVE DISPLACEMENT AT CENTROID OF JOINT ELEMENT
c
Us 06 ¢ (XM(2°K-1) + XM(2*L-1) - XM(2*1-1) - XM(2°*J-1))
V=06 * (XM(2¢K) + XM(2*L) - XM(2*1) - XM(2*J))
c
c---- TRANSFORM TO LOCAL DISPLACEMENT
c
WS = U ¢ COST + V * SINT
WN = - U * SINT + V ¢ COST
TAU = WS * EKS
SIGMA = WN * EKN
c
IF (SIGMA LE 0) GO TO 10
c
C---- RESTRAINING FORCE IS - SIGMA * LENGTH * ANGLE OF TRANSFORM
c
= (COST * TAU - SIGMA * SINT) * XLENG / 2
= (SINT * TAU + COST * SIGMA) * XLENG / 2
aoov(2~1 1) = BODY(2*I-1) + TX
BODY(2*1) = BODY(2+¢I) + TY
BODY(2*J-1) = BODY(24u-1) + TX
BODY(2%J) = BODY(2+J) + TV
c
BODY(2*L-1) = BODY(2*L-1) - TX
BODY(2+L) = BODY(2+L) - TY
BODY(2*K-1) = BODY(2*K-1) -TX
BODY(2*K) = BODY(2+K) - TY
c
10 CONTINUE
c
RETURN
END
Cmmmm e
c
c SUBFROGRAM "FIND"
c

SUBROUTINE FIND(I,J.K.L,STR,DISP.XM)

c
IMPLICIT REAL*8(A-H,0-2)
DIMENSION STR(3,1), DISP(2,1), XxM(420). D(2). Xx(250).
c
COMMON /CO/ X,
COMMON /PROP/ESTR PSTR,WSTR, EKN, EKS, ESOL, PSOL , WSOL
c
XD = x(J) - X(1)
YD = Y(J) - Y(I)
D(1) = (~XM(291-1) - XM(2*J-1) + XM(2*K-1) + XM(2*L- t)) 05
D(2) = (- XM(2¢I) - XM(2*J) + XM(2*K) + XM(2*L)) * O 5
c
XLENG = DSQRT(XD * XD + YD * YD)
COST = XD / XLENG
SINT = YD / XLENG
c
C---- TRANSFORM DISPIACFMENT TO 1 OCAL CONRDTINATFS AMD FTND STRFSS

DISP(1,1) = COST * D(1) + SINT * D(2)
DISP(2.1) = - SINT ¢ D(1) + cosT * D(2)
STR(1,1) = EKS * DISP(1,1)

STR(2,1) = EKN * DISP(2.1)

o o o o

50

70

SUBPROGRAM "FINITE"

SUBROUTINE FINITE(STRE,SOLE, ICONNE,A,BODY,NEB,NEL)
IMPLICIT REAL*B(A-H,0-2)

DIMENSION ELSTIF(8,8), A(420,420), STRE(3,3)

DIMENSION ICONNE(250,4), BODY(420), SOLE(3.3). DETJAC(4)

COMMON /PROP/ESTR,PSTR,WSTR,EKN, EKS,ESOL,PSOL ,WSOL
COMMON /NNN/NNSTR2,NNINT2,NNSOL2,NESTR,NEJUON,NEINT, NESOL

CONST = ESTR / ((1 + PSTR) * (1 - 2 * PSIR))
STRE(1,1) = CONST * (1. - PSTR)

STRE(2,2) = STRE(1,1)

STRE(3,3) = CONST * .5 * (1 - 2 * PSTR)
STRE(1,2) = CONST * PSTR

STRE(2,1) = STRE(1,2)

STRE(2,3) = O

STRE(3,2) = STRE(2,3)

STRE(1.3) = O

STRE(3,1) = 0

N = NESTR + NEJON

DO 100 WJ = 1, N
I = ICONNE(UJ,1)
J = ICONNE(Jy,2)
K = ICONNE(JUJ,3)
L = ICONNE(JJ,4)

IfF (JU GT. NESTR) GO TO 50

CALL STIFF(I,J,K.L,STRE,ELSTIF,DETUAC)

BODY(2°*<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>